SCUOLA DI DOT'TORATO IN SANITÀ E PRODUZIONI ANIMALI: SCIENZA, TECNOLOGIA E BIOTECNOLOGIE

DOT'TORATO DI RICERCA IN PRODUZIONI ANIMALI XXVII CICLO

Genome-Wide detection of QTL and CNVs in dairy cattle population

Tesi di: Dott.ssa Maria Giuseppina Strillacci Docente guida: Prof. Alessandro Bagnato

Anno Accademico 2013/2014

To my little
Family

CONTENTS

Index I
Abstract 3
Abbreviations 6
Part I GENOME SCAN FOR THE QTL IDENTIFICATION INVOLVED IN THE PHENOTYPIC VARIATION OF THE ECONOMICALLY IMPORTANT TRAITS IN DAIRY CATTLE 7
References 15
I - Quantitative trait loci mapping for conjugated linoleic acid,vaccenic acid and $\Delta 9$-desaturase in Italian Brown Swiss dairy cattleusing selective DNA pooling.
Animal genetics, 20I4: 45, 485-499 I7
Abstract I8
Introduction I9
Materials and Methods 21
Results and Discussion 27
Conclusions 32
References 32
Table 39
Figure 48
2 - Genome-wide association study for somatic cell score inValdostana Red Pied cattle breed using pooled DNA.BMC Genetics, I5:I06 (doi:I0.I I86/sI2863-0I4-0I06-7)55
Abstract 56
Background 57
Results and discussion 58
Conclusions 63
Methods 64
References 68
Table 72
Figure 76
Additional File 78
Part 2 GENOME SCAN FOR THE CNVS DISCOVERY IN DAIRY CATTLE 95
References I05
3 - Identification and validation of copy number variants in Italian
Brown Swiss dairy cattle using Illumina Bovine SNP50 Beadchip. Short Communication. Submitted Animal Genetics I09
Abstract IIO
Text III
References II6
Table I2I
Figure I23
Supplementary Information I24
General Discussion. I55
International and National Conferences: Posters I59

Abstract

The QTL involved in susceptibility/resistance of infectious diseases and in the productive traits variations, are characterized by genetic heterogeneity and multifactorial inheritance, involving gene polymorphisms from different alternative pathways. With the availavility of single nucleotide polymorphism (SNP) genotyping arrays, the genome-wide association studies (GWAS) have been frequently used to determine the genetic component of complex trait. The Copy Number Variations (CNVs) are another genomic marker that can be possibly used in GWAS and that can be identified from SNP chips themselves. The aims and related discussions for each of the studies presented in this thesis were grouped into three different chapters. - Chapter I described the QTL mapping analysis to identify the existence of genetic variability associated to the CLA, VA and D9D contents in milk of the Italian Brown Swiss dairy cattle breed. For this study a selective DNA pooling in a daughter design was adopted, using the Illumina Bovine SNP50 Bead Chip to genotype the pools. Milk samples from 60 animals with higher values (after correction for environmental factors) and 60 animals with lower values for each of these traits from each of five half-sib families were pooled separately. Allele frequencies were compared between pools of high and low value at the sire and marker level for each SNPs for which the sires were heterozygous. An R procedure was implemented to perform data analysis. A correction for multiple tests was applied using the proportion of false positives approach. BTA I9 showed the largest number of markers in association with CLA. Associations between SNPs and the VA and D9-desaturase traits were found on several chromosomes. A bioinformatics survey identified genes with an important role in pathways for milk fat and fatty acids metabolism within I Mb distance from SNP markers associated with fatty acids contents. This is the first available mapping for fatty acid content in the Brown Swiss population.

- Chapter 2 described a genome-wide association study for somatic cell score (SCS) in the Valdostana Red Pied cattle, with a selective DNA pooling analysis, using the Illumina BovineHD BeadChip. The phenotypes of 275 sires for SCS were expressed as Deregressed Proofs (DP-EBVs) for SCS. The sires were ranked according to DP-EBVs for SCS and the 20% high and 20% low sires included in the pools. The multiple marker test was performed in R software. On BTAs I, 2, 3, 4, 9, I3, I5, I7, 2 I and 22 the largest number of markers in association to the trait was found identifying novel genomic regions related to mastitis (I-Mb SNP windows) and confirming others already mapped. The largest number of significant SNPs exceeding the threshold for genomewide significant signal was found on BTA I5, located at 50.435 I .63 Mb . The genomic regions identified in this study contribute to a better understanding of the genetic control of the mastitis immune response in cattle and may allow the inclusion of more detailed QTL information in selection programs.
- Chapter 3 described a genome wide CNVs discovery in 65 I bulls of the Italian Brown Swiss breed using the Illumina Bovine SNP50 BeadChip data. Hidden Markov Model (HMM) of PennCNV and SVS7 software (Golden Helix) were used for the identification of the CNVs and Copy Number Variation Regions (CNVRs). A total of 5,099 and I,289 CNVs were identified using PennCNV and SVS7 software, respectively. These were grouped at the population level into I,IOI (220 losses, 774 gains, IO7 complex) and 277 (I85 losses, 56 gains and 36 complex) CNVRs, covering 682 Mb (27.14\%) and 33.7 Mb (1.35\%) of the autosome, respectively. Ten of the selected CNVRs were experimentally validated with qPCR and the proportions of confirmed positive samples for each region varied from 50% to 100%. The GO and pathway analyses identified genes (false discovery rate corrected) in the CNVRs related to biological processes, cellular component, molecular function and metabolic pathways. Although there is variability in the CNVRs detection across methods, platforms, this study allowed the identification CNVRs in Italian Brown Swiss,
overlapping those already detected in other breeds and finding additional ones.

ABREVIATIONS

aCGH	(Comparative genomic hybridization array)
BAF	(B allele frequency)
CLA	(conjugated linoleic acid)
CNV	(copy number variant)
CNVR	(copy number variant region)
DP	(deregressed proofs)
DLRS	(derivative log ratio spread)
D9D	($\Delta 9$-Desaturase)
EBV	(estimated breeding value)
FDR	(false discovery rate)
FISH	(Fluorescent in situ hybridization technique)
DGV	(direct genomic values)
GS	(genomic selection)
GWAS	(genome-wide association study)
HMM	(hidden markov model)
Kb	(kilobase)
KEGG	(Kyoto Encyclopedia of Genes and Genomes)
LD	(Linkage disequilibrium)
LRR-LR	($\log \mathrm{R}$ ratio)
MAS	(marker-assisted selection)
Mb	(megabase)
NCBI	(National Center for Biotechnology Information)
NGS	(next generation sequencing).
PFP	(proportion of false positives)
PCA	(Principal component analysis)
PFP	(proportion of false positives)
qPCR	(quantitative polymerase chain reaction)
QTL	(quantitative trait loci)
SCS	(somatic cell score)
SCC	(somatic cell count)
SDP	(Selective DNA pooling)
SNP	(single nucleotide polymorphism)

PART I

Genome scan for the QTL identification involved in the phenotypic variation of the economic traits in dairy cattle

A.I Qantitative trait loci (QTL)

Goddard and Hayes (2009) have defined Quantitative trait loci (QTL) as: " A measurable trait that depends on the cumulative action of many genes and the environment, and that can vary among individuals over a given range to produce a continuous distribution of phenotypes".
For livestock, as well as for human and for other classes of organism online database ${ }^{1}$ grouping all the openly accessible trait mapping data, (e.g. including QTL, candidate gene, association data from GWAS and copy number variations mapped on genomes) are available. These databases make it feasible to facilitate the location of genes responsible for quantitative traits, confirming and comparing QTL within and between species. Among the various databases, the Cattle QTLdb reports about 9,I80 QTL for 472 different traits ${ }^{2}$.
The identification of the genes involved in the phenotypic variation of one trait can be approached mainly into two ways: the "candidate gene" "and genome wide scanning" approaches. The "candidate gene" is an approach that requires, for its application, the knowledge of the biological and biochemical pathways (physiology) involved in the phenotypic variation of the traits. The candidate gene is a gene in which functional mutations (including e.g. single nucleotide and CNVs variation), may be causative of extreme phenotypes. In animals, this method can be based on comparative human genomics. Instead, the "genome wide scanning" (GWS) allows to detect the chromosomal regions of QTL at base-pair level with the use of DNA markers in population-based experimental designs (Zhu and Zhao (2007)).

The general principle of the identification of QTL is based on the presence of LD Linkage disequilibrium (LD) among QTL alleles and marker loci.

[^0]In particular, QTL can be mapped on chromosomal regions using linkage and association mapping analyses.
The linkage analysis allow to map the chromosome regions location by identifying the genetic markers that are co-inherited with a QTL involved in the expression of a phenotype of interest, within pedigree and on the same chromosome. Due to the restricted number of meiotic events that are captured in a bi-parental mapping population, the genetic resolution of QTL maps often remains confined, to a range of IO-30 centimorgan (cM). Moreover, linkage analysis can only sample a small fraction of all possible alleles in a population from which the parents originated. (Pasam K. et al, 2012). Instead, the association mapping or $L D$ analysis is mapping QTL on different chromosomes and in not related individuals (natural/designed population). LD is the non-random association of alleles in haplotypes ${ }^{3}$ at different loci within a population. LD mapping exploits ancestral recombination events that occurred in the population and takes into account all present alleles in the population to identify significant marker-phenotype associations (Pasam K. et al, 20I2). LD always exists if there is physical linkage between QTL and the marker: if two genes segregate together, they are told to be in LD (Goddard and Hayes, 2009).
One of the available LD mapping strategies is based on genome-wide association (GWA), which exploits marker polymorphisms across all chromosomes. In a GWA study (GWAS), samples are recorded for a trait of interest and tested for a genome-wide panel of markers (highthroughput genotyping), to detect possible associations between the trait and the markers (Goddard and Hayes, 2009). GWAS has the ability to detect smaller chromosomal regions affecting a trait in respect to linkage analysis, thus providing more precise evaluations of the size and direction of the effects of the alleles at identified loci (Abdel-Shafy et al. 20I4). The power to establish a relationship between genetic polymorphisms (allele at loci) and phenotypic

[^1]variation is dependent on the accuracy with which these can be measured.

AI. 2 QTL detection for milk fatty acid content in dairy cattle

 Cow's milk is one of major components of human diet and it is a great source of balanced nutrients, with a range of biological activities that influence metabolic processes and disease resistance. Among the microcomponents in milk, the conjugated linoleic acids (CLA) is one of the most significant. CLA is a collective term for isomers of linoleic acid with conjugated double bonds in several positions and conformations. The major precursor of CLA in milk fat is the vaccenic acid (II-trans-octadecenoic acid; VA). Desaturation of VA to CLA (CI8:2 cis-9, trans-II) occuring in the mammary gland (75$90 \%$) and other tissues, is catalyzed by $\Delta 9$-Desaturase (D9D).The heritability value (h^{2}) of CLA reported in literature ranged from 0.12 to 0.2I (Mele et al., 2009; Stoop et al., 2008). Also, Mele et al., (2009) reported the h^{2} values of 0.I9 and 0.I5 for VA and D9D (as CLA/VA), respectively and highlighted the negative correlation between CLA, VA, D9D with milk fat (\%) ($-0.55,-0.69,-0.52$). The detail regarding the studies reported in literature including the QTL detection associated to CLA, VA and D9D are reported in chapter 2. Some of them are graphically summarized in Figure A.I (http://www.animalgenome.org/cgi-bin/QTLdb/BT/index)

Figure A.I Graphical representation of QTL associated with milk conjcated linoleic acid percentage, milk fatty acid unsaturated index and milk trans-vaccenic acid percentage on all bovine chromosomes.

A.I. 3 QTL detection for somatic cell score in dairy cattle

Mastitis is an inflammation of bovine mammary gland that occurs in response to physical damages or infection and is one of the most costly production-related diseases in dairy farms.
The difference in "mastitis state" (progress and resolution) are mainly due to how the responsible factors of the disease (animal, environment and pathogens) interact each others. Individuals can differentially be susceptible/resistant to mastitis depending on their genetic that is responsible for the udder conformation and for the physiological and immunological responses to the infections.
The commonly phenotypes used to investigate the resistance to mastitis are the milk somatic cell count (SCC), its log transformation in somatic cell score (SCS) for positive correlation with clinical mastitis (0.50-0.80) (Rupp and Boichard 2003) and the clinical mastitis occurrence.
The genetic correlations among SCC and milk traits were investigated by several authors and seem to be different for parity and stage of lactation. Samorè et al. (2008) showed that genetic correlations for lactation measures ($305-\mathrm{d}$ protein yield and lactation SCS) were positive in the first parity (0.3 I) and close to 0 in the second (0.0I) and third (0.09) parities. In addition, the genetic correlation among SCC and milk traits was positive in the first lactation, and near zero in the second lactation (Koivula et al., 2005).
Several authors have investigated the mastitis resistance in cattle and the existence of QTL for this trait has been reported on almost all bovine chromosomes (www.animalgenome.org/QTLdb/)(Figure A.2).
(http://www.animalgenome.org/cgi-bin/QTLdb/BT/index).
The detail regarding the studies reported in literature, including the QTL detection for mastitis resistance are reported in chapter 3.

Figure A. 2 Graphical representation of QTL on all bovine chromosomes associated to clinical mastitis (CM), somatic cell count (SCC) and somatic cell count (SCS).

A. 2 Selective DNA pooling

The selective DNA pooling experimental design is an efficient method to detect the association between markers and QTL by comparing marker allele frequencies in pooled DNA from phenotypically extreme individuals (Darvasi and Soller, I994). This approach is based on the theoretical demonstration that almost all the mapping information for a trait are linked to the allele frequency of the marker in the best and the worst 25% of the population phenotypic distribution for the trait.
Pools construction requires equal amount of DNA from individual samples, and the differences in allele frequencies in pools are estimated based on the intensity of the signal for each allele in the pool. Experimental error can be occur during the pool constitution and genotyping; these can be reduced by averaging allele frequency estimates over repeated measurements of the pools.
Within a selective DNA pooling design, the major disadvantage occurs with the study of different traits of interest, for which it will be necessary to genotype different samples for each tail (Sham et al., 2002).

References

\checkmark Abdel-Shafy H., Bortfeldt R.H., Tetens J., Brockmann G.A. (2014). Single nucleotide polymorphism and haplotype effects associated with somatic cell score in German Holstein cattle. Genet Sel Evol. 4;46(I):35.
\checkmark Darvasi A, Soller M. (1994) Selective DNA pooling for determination of linkage between a molecular marker and a quantitative trait locus. Genetics. I38(4):1365-73.
\checkmark Goddard M.E., Hayes B.J. (2009). Mapping genes for complex traits in domestic animals and their use in breeding programmes..Nat Rev Genet. IO(6):38I-9I.
\checkmark Koivula M., Mantysaari E. A., Negussie E. and Serenius T., 2005. Genetic and phenotypic relationships among milk yield and somatic cell count before and after clinical mastitis. J. Dairy Sci. 88:827833.
\checkmark Mele M., Dal Zotto R., Cassandro M., Conte G., Serra A., Buccioni A., Bittante G., Secchiari P. (2009). Genetic parameters for conjugated linoleic acid, selected milk fatty acids, and milk fatty acid unsaturation of Italian Holstein-Friesian cows. J Dairy Sci. 92(I):392-400.
\checkmark Moro-Méndez J., Hayes J.F. (2006) Quantitative trait loci mapping methods and potential applications in the dairy cattle industry. Téc Pecu Méx 44(3):329-350.
\checkmark Pasam R.K., Sharma R., Malosetti M., Van Eeuwijk F. A., Haseneyer G., Kilian B., Graner A. (2012). Genome-wide association studies for agronomical traits in a world wide spring barley collection. BMC Plant Biology, I2:I6.
\checkmark Sham P., Bader J.S., Craig .I, O'Donovan M., Owen M. (2002). DNA Pooling: a tool for large-scale association studies. Nat Rev Genet. 3(II):862-7I.
\checkmark Samoré A. B., Groen A. F., Boettcher P. J., Jamrozik J., Canavesi F. and Bagnato A. (2008). Genetic correlation patterns between
somatic cell score and protein yield in the Italian Holstein-Friesian population. J. Dairy Sci. 9I:40I3-402I.
\checkmark Stoop, W. M., J. A. M. van Arendonk, J. M. L. Heck, H. J. F. vanValenberg, and H. Bovenhuis. (2008). Genetic parameters for majormilk fatty acids and milk production traits of Dutch HolsteinFriesians. J. Dairy Sci. 9I:385-394.
\checkmark Zhu M, Zhao S. (2007). Candidate gene identification approach: progress and challenges. Int J Biol Sci 25;3(7):420-7.

I

QUANTITATIVE TRAIT LOCI MAPPING FOR CONJUGATED LINOLEIC ACID, VACCENIC ACID AND Δ°-DESATURASE IN ITALIAN BROWN SWISS DAIRY CATTLE USING SELECTIVE DNA POOLING

Animal genetics, 2014: 45, 485-499 doi IO.IIII/age.I2I74

QUANTITATIVE TRAIT LOCI MAPPING FOR CONJUGATED LINOLEIC ACID, VACCENIC ACID AND Δ^{9}-DESATURASE IN ITALIAN BROWN SWISS DAIRY CATTLE USING SELECTIVE DNA POOLING

M.G. Strillacci* ${ }^{*}$, E. Frigo*I, F. Canavesi* 1 , Y. Ungar§I, F. Schiavini*\#, L. Zaniboni*, L. Reghenzani*, M.C. Cozzi*, A.B. Samoré*, Y. Kashi§, E. Shimoni§, R. Tal-Stein \dagger, M. Soller \dagger, E. Lipkin \dagger, A. Bagnato* $\#$
*Department of Health, Animal Science and Food Safety (VESPA), University of Milan, Via Celoria I0, 20133, Milan, Italy.
\#Genomic and Bioinformatics Platform, University of Milan, c/o Fondazione Filarete, Viale Ortles 20, 20100 Milano, Italy.
\dagger Department of Genetics. The Hebrew University of Jerusalem, 91904 Jerusalem, Israel.
§Israel Institute of Technology (Technion), Department of Biotechnology and Food Engineering, Technion City, Haifa 3200003, Israel

I.I. ABSTRACT

A selective DNA pooling approach was applied to identify QTLs for conjugated linoleic acid, vaccenic acid and Δ^{9}-Desaturase milk content in Italian Brown Swiss dairy cattle. Milk samples of 60 animals with higher values (after correction for environmental factors) and 60 animals with lower values for each of these traits from each of five half-sib families were pooled separately. The pools were genotyped using the Illumina Bovine SNP50 BeadChip. Sire allele frequencies were compared between high and low tails at sire and marker level for SNPs for which the sires were heterozygous. An R procedure was implemented to perform data analysis in a selective DNA pooling design. A correction for multiple tests was applied using the proportion of false positives among all test results. BTA I9 showed the largest number of markers in association to CLA. Associations among between SNPs and the traits VA and $\Delta 9$-Desaturase were found on several chromosomes. A bioinformatics survey identified
genes with an important role in pathways for milk fat and fatty acids metabolism within I Mbp of SNP markers associated with fatty acids contents.
Acknowledgments: This study was part of the QuaLAT project supported by Regione Lombardia (Project n. 837).

I.2. INTRODUCTION

The detection of genomic regions affecting complex traits has led the interest in using dense panels of single nucleotide polymorphisms (SNPs) to identify quantitative trait loci (QTL) (Goddard \& Hayes, 2009).

Selective DNA pooling (SDP) is an experimental design that is able to reduce costs in genomic studies by genotyping pooled DNA samples from selected individuals at each of the two phenotypic extremes of a sample (Darvasi \& Soller, I994). The test to identify markers in association with a QTL is based on the difference of marker allele frequencies between the pools of individuals at the two tails of the phenotypic distribution. Theoretical analysis shows that for experiments involving backcross, F2 and half-sib designs, SDP power to detect genes with large effect, is comparable to individual selective genotyping (Darvasi \& Soller, I994).
Milk contains a number of micro-components having nutraceutical properties with beneficial effect on human health. Among these compounds, conjugated linoleic acid (CLA) is one of the most relevant. Bauman \& Lock (2006), Benjamin \& Spener (2009) reported that studies with animal models have demonstrated a variety of beneficial health effects from CLA, including anti-carcinogenic, anti-atherogenic, anti-obesity, immune system enhancement and antidiabetic effect. Although in recent studies the biological effects of CLA results are controversial, many of its benefits related to the diet supplementation were confirmed (Oleszczuk et al., 20I2). CLA represents a heterogeneous group of positional and geometric isomers of linoleic acid with a conjugated double bond system. These are
produced as transient intermediates in a rumen enzymatic biohydrogenation of unsaturated fatty acids consumed in the diet. The vaccenic acid (VA) (CI8:I trans-II) is the major biohydrogenation intermediate produced in the rumen and $75-90 \%$ of it is converted into CLA (CI8:2 cis-9, trans-II) by $\Delta 9$-Desaturase (D9D) in the mammary gland and other tissues (Bauman \& Lock, 2006). The role of rumen biohydrogenation and tissue D9D in the production of CLA in milk fat and in other tissues is represented in Figure I adapted from Bauman \& Lock (2006).
Genetic analyses of bovine milk fatty acids in several populations have shown heritability of 0.12, 0.12 to 0.2 I , and 0.15 for VA, CLA and D9D, respectively (Stoop et al, 2008; Mele et al., 2009). The identification of genomic regions that may be responsible for genetic variation in milk fat composition could help in understanding the genetic basis of the biological pathways involved in fatty acid synthesis and thus, may create opportunities for selection for milk nutraceutical components. A number of studies identified QTLs affecting bovine milk fatty acids composition. Morris et al. (2007) identified QTLs for VA and CLA on BTAI9 in a linkage analysis using microsatellite markers. Schennink et al. (2009) in a GWAS analysis using SNP markers, found QTLs for CLA (BTAII, BTAI4 and BTAI7), VA (BTAI, BTAII, BTAI8 and BTA27) and D9D (BTAI, BTA6, BTAI4, BTAI6 and BTAI9). Moreover, Bouwman et al. (20II) identified QTLs for CLA on BTA6, BTA7, BTAI4, BTAI7, BTAI9, BTA26, BTA27 and BTA28. All of these results are reported in AnimalQTLdb (http://www.animalgenome.org). The purpose of the present study was to verify the existence of genetic variability related to the major actors involved in the CLA synthesis in the mammary gland in cattle.
Hence, the variation of VA level as substrate for the D9D activity, of D9D as the indicator of the efficiency of the enzymatic activity and of CLA as the product of the efficiency of the endogenous synthesis of VA by the D9D, were studied biometrically. In addition, a QTL
mapping analysis for CLA, VA and D9D in Italian Brown Swiss dairy cattle, with a selective DNA pooling in a daughter design (Lipkin et al. I998) using the Illumina Bovine SNP50 BeadChip was performed.

I.3. MATERIALS AND METHODS

I.3.I. Sampling of families

Five large Italian Brown Swiss half-sib sire families (denoted B, C, E, F, G as per Bagnato et al. 2008) were used in this study. Milk samples were collected and stored from previous studies (Bagnato et al. 2008) and were available for further analyses. The number of milk samples available for each of the 5 families is reported in Table I.
Semen samples of the sires for genotyping were provided by the Italian Brown Cattle Breeders Association semen bank. Milk samples of about 500 available daughters for each family (total 2,60I samples) were used for milk fatty acids determination and for D9D calculation, and as a source of DNA from Somatic Cells.

I.3.2. Fatty acids determination

Milk fat was extracted and transmethylated according to Chouinard et al. (I999). Fatty acid methyl esters were analyzed by gas chromatography (GC-FID) with a highly polar 100 m SP-2560 column, using GLC-60. An indirect measurement of D9D was used, calculated as the ratio of milk CLA to the sum of milk CLA and VA, as described by Bauman \& Lock (2006), Conte et al. (20I0) and Schennink et al. (2008).

I.3.3. Variance components analysis

(Co)variance components for fatty acids were estimated using the VCE 6.0 package (Groeneveld et al., 20I0; Neumaier \& Groeneveld, 1998). Environmental factors included in the model of analysis for variance components estimation were previously tested for their significance with the GLM procedure of SAS®.

Pedigree information were provided by the Herd Book of ANARB and included all known ancestors for a total of 8,604 animals.
The following single trait animal model was used to obtain estimates of heritabilities for VA, CLA and D9D:
yijklmnp $=\mu+\mathrm{Pi}+\mathrm{AGj}+\mathrm{YMk}+\mathrm{Sl}+\mathrm{DIMm}+\mathrm{PRn}+\mathrm{ap}+$ eijklmnp
where:
\checkmark yijklmnp is the value of VA, CLA or D9D determined for each daughter milk sample;
$\checkmark \mu$ is the factor common to all observations;
$\checkmark \mathrm{Pi}(\mathrm{i}=\mathrm{I}, \ldots 4)$ is the fixed effect of the class of parity;
$\checkmark \operatorname{AGj}(\mathrm{j}=\mathrm{I}, \ldots 4)$ is the fixed effect of class age at calving;
$\checkmark \mathrm{YMk}(\mathrm{k}=\mathrm{I}, \ldots . \mathrm{I} 6)$ is the fixed effect of the interaction between year and month of calving;
$\checkmark \mathrm{Sl}(1=\mathrm{I}, \ldots 4)$ is the fixed effect of the season of calving;
\checkmark DIMm (m=I,...I5) is the fixed effect of the class of days in milk;
$\checkmark \operatorname{PRn}(\mathrm{n}=92)$ is the fixed effect of province;
\checkmark ap is the random additive genetic effect of the animal $\mathrm{p}(0$, Aб2a);
\checkmark eijklmnp is a random residual (0 , I $\sigma 2 \mathrm{e}$).
Parity was classified into 4 classes for first, second, third and later parities. Age at calving was classified into 4 classes (class I: from I8 to 42 months, class 2: from 42 to 54 months, class 3: from 54 to 66 months, class $4: \geq 67$ months). Season effect was classified in 3-mo classes ($\mathrm{I}=$ spring; $2=$ summer; $3=$ autumn; $4=$ winter). Days in milk were grouped in 30-days classes (I5 classes).

1.3.4. Pools constitution

The residual values (phenotypes adjusted for all environmental factors) for the three traits VA, CLA and D9D, obtained from a

GLM analysis with the same fixed effect of the variance component estimation model described above (no additive genetic effect), were used to identify the 60 more extreme daughters in the high and low tails of the trait distribution within each family/trait combination. Thus, for each trait, a total of I20 daughters were identified for each family. The selected samples for each tail (high and low values respectively for VA, CLA and D9D) were divided (even and odd sample numbers) into 2 sub-pools of 30 individuals each, in order to have two sub-pools with comparable phenotypic value. Hence, a total of 4 pools were constructed for each family/trait combination, for a total of 20 pools per trait (60 pools across all the three traits). The milk of each individual was included in the pools in different volumes according to Somatic Cell Count (SCC), ensuring that DNA of all individuals was equally represented within each pool. SCC were available from routine milk sampling, or determined by Somacount I50 (Bentley instrument, Chaska, MN). Each sub-pools contained a total of 40,000 cells.

1.3.5. DNA extraction and genotyping

Milk pools were treated according to Murphy et al. (2002) to obtain a clear pellet of cells; genomic DNA was then extracted utilizing NucleoSpin® Blood kit (Macherey-Nagel, GmbH \& Co. KG). Genomic DNA was also extracted from semen using the ZR Genomic DNA TM Tissue MiniPrep (Zymo Research, Irvine, CA). DNA samples were quantified using NanoQuant Infinite m200 (Tecan) and diluted to $50 \mathrm{ng} / \mathrm{ul}$. A Quality Control (QC) was performed on each sample to verify the DNA integrity on Invitrogen E-Gel I\% Agarose Gel. DNA samples were genotyped using Illumina Bovine SNP50 BeadChip interrogating 54,00I SNPs.

1.3.6. Statistical analyses
Statistical analysis of pools.

Pools were analyzed according to the SDP approach in a daughter design (Darvasi \& Soller, I994; Bagnato et al., 2008). Statistical analyses were performed with respect to SNP markers for which the sires were heterozygous, as these were the only ones that could segregate alternative sire alleles within family linked to a QTL for the trait of interest.

Frequency estimates.

The estimation of allele frequency in DNA pools is one of the critical steps in DNA pooling analysis, especially with SNP chips (Janicki \& Liu, 2009). These authors demonstrated the validity of the B-allele frequency, calculated by the BeadStudio software from Illumina, as a good estimator of the allele frequency of the individuals that are part of a pool. In the present study, the generation of B-allele frequency was performed using the self-normalization algorithm of Illumina BeadStudio software (Genotyping Module v3.2) as suggested by Janicki \& Liu (2009).
The marker-sire-trait test. A pipeline in R software (http://www.rproject.org/) was programmed to perform a single-marker sire test. In SDP, significance of marker j for a single sire i, heterozygous at marker \mathfrak{j}, was determined for each trait by the single-sire test statistic (Darvasi \& Soller, I994; Lipkin et al., 2008; Bagnato et al., 2008). Briefly, a test statistic for the ijth sire \times marker combination was calculated as:

$$
\mathrm{Z}_{\mathrm{ij}}=\mathrm{Dtestij} / \mathrm{SD}(\text { Dnullij })
$$

where Dtestij $=[(\mathrm{HI}+\mathrm{H} 2)-(\mathrm{LI}+\mathrm{L} 2)] / 2$ is the difference in sire allele frequencies between the high and low daughters pools of the ith sire with respect to the j th marker, averaged over the two subpools of the same tail.

Dnullij $=[(\mathrm{HI}-\mathrm{H} 2)+(\mathrm{LI}-\mathrm{L} 2)] / 2$ is the difference in allele frequencies between the 2 subpools of the same tail of the ith sire with respect to the j th marker, averaged over the high and low pools. Dtestij and Dnullij were calculated only for markers for which the sire was heterozygous. Because Dnullij is calculated within tails, it has expectation of 0 and thus should distribute as the D under the null hypothesis of no QTL effecting linkage to the marker. Thus, the standard deviation (SD) of the Dnullij values obtained across all markers $[\mathrm{SD}$ (Dnullij) $]$ is an empirical estimate of the standard error of Dtestij under the null hypothesis.
Under the null hypothesis, Zij values distribute as a standardized normal variable and P -values for the individual sire-marker combinations were obtained accordingly. The test statistic $\left(\mathrm{TSj}_{\mathrm{j}}\right)$ for the jth marker was then calculated by summing the $Z_{i j} 2$ across all heterozygous sires:

$$
T S j=\sum(Z 2 i j)
$$

Under the null hypothesis, TSj distributes as chi-square with degrees of freedom (df) equal to k, where k is the number of sires heterozygous at the marker (Lipkin et al., 1998). The comparison wise error rate P -values for the jth marker (CWER-P) were obtained accordingly.

Quality control.

Dnull for each pool was computed as the difference in allele frequency estimates between replicate pools in the same tail. As such, it should represent the distribution of D under the null hypothesis. Anderson-Darling, Shapiro-Wilk and Kolmogorov-Smirnov normality tests were performed on Dnull distribution within and across sires (Stephens, I986; Royston, I995; Marsaglia et al., 2003). The quantiles of the observed p -values corresponding to the Dnull values were compared with the quantiles of the standard normal
distribution using a quantile-quantile plot (Q-Q plot) to visually assess the quality of data distribution.
The distribution of actual allele frequency differences within and across tails was analyzed in order to identify SNPs with unexpected variability within tail (Bagnato et al., 2008; Huang et al, 20I0) and possible outlier pools whose estimated allele frequencies deviated within tails over many markers. All SNPs that showed a significant allele frequency difference at p -value $\leq 0.0 \mathrm{I}$ within tail of the tested distribution (2.33 SD), were excluded from the analysis. These represented SNPs whose allele frequency estimations could be linked to errors of various sources (Bagnato et al., 2008; Huang et al., 2010). One pool for the high CLA tail in family B was entirely excluded from the analysis. An additional quality control step was to identify SNPs with at least IO bead score reads that are the base for the estimation of pooling allele frequency (PAF) used to compute B-allele frequencies by Illumina BeadStudio (McGregor et al,. 2008). All SNPs that did not have at least IO PAF within pool were removed from the analysis.

Correction for multiple tests.

A second Q-Q plot was used to assess the number and magnitude of observed linkage between SNPs and the traits under study, comparing the linkage statistics expected under the null hypothesis of no linkage and the observed $-\log \mathrm{IO}(\mathrm{p}$-value $)$.
A multiple-test correction was applied using the proportion of false positives (PFP). As illustrated by Fernando et al. (2004), PFP was computed as:

$$
\widehat{P} \widehat{F P_{\alpha}}=\frac{\alpha \widehat{\mathrm{P}_{0}}}{\mathrm{R}_{\alpha}}
$$

where P_{0}, the proportion of true null hypothesis among all hypotheses tested, is estimated as proposed by Mosig et al. (200I), using a R routine developed by Nettleton et a,. (2006), α is the set significance
level ($0.05 ; 0.10$ or 0.20), K is the number of tests and $\mathrm{R} \alpha$ denotes the observed number of rejected null hypothesis at the set significance level. As reported by Fernando et al. (2004), PFP is the estimator that Mosig et al. (200I) called "adjusted false discovery rate (FDR)". The corresponding threshold for PFP levels of 5, IO and 20\% were determined.
Using the $-\log I 0$ of the linkage test p -values for each SNP, Manhattan plots were created for each trait.

Bioinformatics.

A list of genes with an important role in pathways for milk fat and fatty acids metabolism was generated using Kyoto Encyclopedia of Genes and Genomes (KEGG)
(http://www.genome.ad.jp/kegg/pathway.html).
Bos_taurus_UMD_3.I assembly in NCBI, ENSEMBL and UCSC databases were used in order to verify which of the significant SNPs were close (within $I \mathrm{Mb}$) to one of these genes.

I.4. RESULTS AND DISCUSSION

A total of I,482 milk samples were successfully analysed by gas chromatography GC-FID. Descriptive statistics are reported in Table 2 where means, residual values for each trait within each family, are reported in high and low tails for the sub-pools. Means for CLA were higher than those reported by Kelsey et al. (2003) and De Marchi et al. (20II) in US and Italian Brown Swiss cattle, while values for VA and D9D were similar to those reported by Kelsey et al. (2003). Moderate heritability values were estimated for VA (0.33) and CLA (0.37). CLA heritability was similar to that reported by Stoop et al. (2008). Because CLA is a recognized bioactive food component of milk fat, the existence of genetic variability of this fatty acid shows that the nutritional properties of milk fat can be improved by selective breeding. D9D heritability was 0.38 , confirming a genetic variability related to the enzyme activity.

A total of $13,533,14,560,14,389,13,447$ and $13,325 \mathrm{SNPs}$, for which the sires were heterozygous, were analysed for family B, C, E, F, G, respectively.
Figure 2 shows the Q-Q plots of the observed and expected p-values of sire markers for CLA, VA and D9D. Data appeared to follow approximately a normal distribution, deviating from it only at the two extremes of the regression line. Across all traits, the mean value of Dnull at sire level was equal to zero as expected. Observations at the extreme of the observed distribution showed values that were slightly smaller than expected. Thus, Dnull distributes as a standard normal distribution with mean zero, confirming that Dnull indeed represents D under the null hypothesis. The values of SD of Dnull were 0.I49, 0.163 and 0.147 for CLA, D9D and VA, respectively.

Figure 3 shows the Q-Q plots, comparing, for each trait, the number and magnitude of observed linkage test p-values across all sires x heterozygous-marker combinations, and the test distribution expected under the null hypothesis of no QTL linkage. Marked deviations from the identity line suggest that the samples contain many values arising from truly falsified null-hypothesis tests.
According to PFP corrections adopted, different thresholds levels of $\log I O$ (p-values) significance were obtained and applied to Manhattan plots (Figure 4) for each trait. The PFP thresholds (5\%, I0\%, 20\%) were different in the Manhattan plots for CLA, VA and D9D. In particular, p-values corresponding to 5% PFP were I.5E-4, I.0E-5, and I.2E-5 respectively for CLA, VA and D9D; values corresponding to 10% PFP were I.IE-3, I.0E-4, and 5.0E-5 respectively; and values corresponding to 20% PFP were $6.6 \mathrm{E}-3,7.2 \mathrm{E}-4$, and I.7E-3 respectively. Each point in the Manhattan plots is a SNP set out across the chromosome from left to right, and the heights correspond to the strength of the association to the analysed trait. Figure 5, Figure 6 and Figure 7 illustrate significant markers at different PFP for CLA, VA and D9D, showing the region in each chromosome where the markers were associated with putative QTL.
1.4.I. Association tests of significant $S N P$ s considering PFP threshold of 5\%
Table 3 shows for each trait, the significant SNPs located above the 5\% PFP threshold, their chromosomal positions and p-values. A total of 73,6 , and 7 SNPs were significant for CLA, VA and D9D at 5% PFP. These significant markers were distributed over BTAs 5, 7 and 2I. Only a single marker, BTA-38242-no-rs on BTAI6, was significant for more than I trait (CLA and VA).
On BTAI9 no less than 2I markers were significant for CLA (the next significant chromosome was I7 with only IO significant markers).
Also shown in Table 3 is whether the significant marker is intragenic, within I Mbp of an annotated gene (independently of is function), or not close to a known gene. We will not discuss in detail in this paper all of the chromosomal regions associated with the traits considered. What follows are some selected regions that showed associations with the most studied metabolic pathways in literature. Most of the regions included in Table 3 have significant effects on predisposition to cancer in humans (e.g.: PCDHIO, MYC, AATF) (Wang et al., 2009; Kaul \& Mehrotra, 2007). Also, several SNPs on different BTAs are significantly associated with genes involved in human neurodegenerative diseases (e.g.: ATXNIO, NSF, RIMBP2) (Wardle et al., 2009; Liu et al., 20II; Hollingworth et al., 20I2) and hypertension (e.g.: KCNA5) (Wipff et al., 2010).
Table 4 shows significant SNPs located above the 5\% PFP threshold line of the Manhattan plots within I Mbp from genes encoding for enzymes with an important role in fat and fatty acid metabolism. Genes near significant SNPs for the three traits are here commented separately.

- CLA: On BTA 2, at 98.4 Mbp , ACADL gene was found close to the ARS-BFGL-NGS-3990 SNP (98.2 Mbp) that was significantly associated to CLA amount in milk. This gene encodes for acyl-CoA dehydrogenase long-chain that is involved in several metabolic
pathways, including fatty acid metabolism and the peroxisome proliferation-activated receptors $(P P A R s)$ signalling pathway that has a strategic role in increased adipogenesis and fatty acid storage. On BTA 4, at IOI. $8 \mathrm{Mbp}, D G K I$ gene encodes for diacylglycerol kinase-iota, which is involved in glycerophospholipid and glycerolipids metabolism. The major chromosomal regions that showed highly significant associations with CLA were on BTA I9: SNPs close to the $A C A C A$ gene (13.7 Mbp , involved in fatty acid biosynthesis) were found significantly associated to CLA phenotypic variation. In the region located at $30-44 \mathrm{Mbp}$, where SNPs were found associated to the trait, genes involved in the biosynthesis of milk fat, including sterol regulatory element binding transcription factor I (SREBFI at 35.7 Mbp), citrate lyase ($A C L Y$, at 43.4 Mbp) and signal transducer and activator of transcription $5 \mathrm{~A}(S T A T 5 A$, at 43.7 Mbp), are annotated and are reported by Bouwman et al. (20II). Additionally, within the same region on BTA I9, three SNPs (BTB-0I3I6060, BTB-0I3I5978, ARS-BFGL-NGS-42430) close to $A D P R M$ gene at 30.30 Mbp (ADP-ribose/CDP-alcohol diphosphatase, manganese-dependent) involved in glycerophospholipid metabolism. At 35.3 Mbp , ARS-BFGL-NGS-II2923 SNP is mapped into the PEMT gene (phosphatidylethanolamine N -methyltransferase) that is involved in glycerophospholipid metabolism. Finally, two SNPs (Hapmap58303-ss46526468 and Hapmap496I7-BTA-45355) were associated to the PHOSPHOI gene at 37.9 Mbp (phosphatase, orphan I) involved in glycerophospholipid, phospholipid, lipids and lipoproteins metabolism and biosynthesis.
- VA : No SNPs were found "significant" above the 5\% PFP threshold line of the Manhattan plots for this trait.
- D9D: The region at 3.37 Mbp on BTA 28 is the region harboring GNPAT (glyceronephosphate O-acyltransferase) gene that is involved in lipids, lipoproteins and glycerophospholipid metabolism. The region at 66.1 Mbp on BTA 17 showing an
association with D 9 D , is the region harboring $A C A C B$ (acetyl-CoA carboxylase beta) gene that is involved in lipids and lipoproteins metabolism.

1.4.2. Association tests of significant SNPs located below the 5\% PFP threshold line of the Manhattan plots

Tables 5 and 6 show significant SNPs located below the 5% PFP threshold line of the Manhattan plots, associated with genes ($<$ I Mb) encoding for enzymes with an important role in fat and fatty acid metabolism. There was an overlap in the list of chromosomes that had the largest number of SNPs associated with CLA and D9D below the 5% PFP threshold line of the Manhattan plots, and some chromosomal regions showed associations with VA.

- CLA: The major regions that showed significant associations with CLA were on BTA I9, where most of the SNPs were close to PEMT, SREBFI, STAT5A, PHOSPHOI and ADPRM genes. Moreover, located at 51.38 Mb , mapped $F A S N$ gene that encodes for fatty acid synthase which is a multifunctional enzyme that catalyses de novo fatty acid synthesis. The region at 64.8 Mbp on BTA I3 is the region harbouring ACSS2 gene (acyl-CoA synthetase short-chain family member 2), one of the most abundant enzymes in bovine mammary tissue whose expression increased during lactation and is responsible for the activation of acetate for de novo fatty acid synthesis (Bionaz \& Loor, 2008). The region on BTA I4 includes the DGATI gene (diacylglycerol O-acyltransferase I), which is known to influence milk production traits and milk fat composition (Bouwman et al., 20II). On BTA I5, the region located at 78.3 Mbp encodes the NRIH3 (nuclear receptor subfamily I, group H, member 3), alias LXRalpha, a nuclear hormone receptor whose activation (alone or in conjunction with SREBP gene), promotes the SCD stearoyl-CoA desaturase ($D 9 D$) gene expression in a wide range of tissue (Hebbachi et al., 2008). On BTA 26, the glycerol-3-phosphate acyltransferase mitochondrial
(GPAM), is the enzyme that catalyses the initial and committed step of glycerolipids synthesis and, therefore, it is a potential site for triacylglycerol synthesis regulation (Roy et al., 2006)
- VA: The region at 64.95 Mbp on BTA I7 showing an association with VA, is the region harboring $\operatorname{ALDH2}$ (aldehyde dehydrogenase 2 family) gene that is involved in lipids and lipoproteins metabolism. On BTA 27 the region located at 37.I Mbp showed association with I-acylglycerol-3-phosphate-O-acyltransferase (AGPATO), that has been recognized as microsomal glycerol-3phosphate acyltransferase (GPAT), which catalyzes the glycerolipids biosynthesis pathway (Bionaz \& Loor, 2008). Also, AGPAT6 isoform expression is under the control of the above mentioned $P P A R$ signalling pathway in several tissues.
- D9D: The major region that showed significant associations with D9D were on BTA I7. The region between $64.95-66.79 \mathrm{Mbp}$ on BTA I7 is the region harboring ALDH 2 (aldehyde dehydrogenase 2 family) and ACACB (acetyl-CoA carboxylase beta) genes which are involved in lipids and lipoproteins metabolism. On BTA I9, the region located at 55.7 Mbp encodes for acyl-CoA oxidase ($A C O X I$) that catalyse the first step of peroxisomal fatty acid β oxidation. On BTA 26, as described for CLA, the region encoding for $G P A M$ was associated with D9D.

I.4.3. Pathways

Several metabolic lipid pathways, according to KEGG database, were identified for the genes associated with SNPs located within 5-20\% PFP threshold (Tables 3-4-5), and they are represented in Figure 8. For VA, D9D and CLA, the most frequent pathways were the metabolism of lipids and lipoproteins, the glycerophospholipid and fatty acid metabolism and the triacylglycerol biosynthesis.

I.5. CONCLUSIONS

Using a selective DNA pooling approach a QTL mapping was performed for CLA, VA and D9D, resulting in various genomic associated regions. In particularly, on BTA I9 there were several genes involved in CLA synthesis, while for VA and D9D the significant SNPs were distributed over all the chromosomes.
This is the first mapping for fatty acids contents in Italian Brown Swiss cattle.
The results may allow improving milk fat composition using breeding selection based on genomic merit of cows for milk fat composition. The identification of genomic regions that may be responsible for genetic variation in milk fat composition will help understanding the biological pathways involved in fatty acid synthesis and relevant markers can be added to SNP prediction equations.
The possibility to calculate prediction equations for fatty acid is enhanced and made possible by the NIR technology able to phenotype milk samples from the routine milk recording system for fatty acids. The interest of farmers in enhancing the nutraceutical value of milk is growing, as the Bleu-Blanc-Coeur consortium has been successful in marketing Omega 3 naturally enriched milk. The Italian Brown Swiss breed is currently having a specific consortium for marketing cheese produced only from Brown Swiss milk. An additional specialized product may be attractive to consumers, especially in short production to consumer chains, as often found in alpine areas.

REFERENCES

Bagnato A., Schiavini F., Rossoni A., Maltecca C., Dolezal M., Medugorac I., Sölkner J., Russo V., Fontanesi L., Friedmann A. , Soller M. \& Lipkin E. (2008) Quantitative Trait Loci Affecting Milk Yield and Protein Percent in a 3 Countries Brown Swiss Population. Journal of Dairy Science 9I, 767-783.

Bauman D.E. \& Lock A.L. (2006) Conjugated Linoleic Acid: Biosynthesis and Nutritional Significance. In: Advanced Dairy Chemistry, Lipids (ed. by P.F. Fox, \& P.L.H. McSweeney) Vol. 2, pp 93-I36, Springer US.

Benjamin S. \& Spener F. (2009) Conjugated linoleic acids as functional food: an insight into their health benefits. Nutr Metab I8, 6-36.

Bionaz M. \& Loor J.J. (2008) Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genomics 9, 366-387.

Bouwman A.C., Bovenhuis H., Visker M.H. \& Van Arendonk J.A. (20II) Genome-wide association of milk fatty acids in Dutch dairy cattle. BMC Genetics I2, 43.

Chouinard P.Y, Corneau L., Barbano D.M., Metzger L.E \& Bauman D.E. (I999) Conjugated linoleic acids alter milk fatty acid composition and inhibit milk fat secretion in dairy cows. The Journal of Nutrition I29 (8), I579-I584.

Conte G., Mele M. Chessa S., Castiglioni B., Serra A., Pagnacco G., Secchiari P. (2010) Diacylglycerol acyltransferase I, stearoyl-CoA desaturase I, and sterol regulatory element binding protein I gene polymorphisms and milk fatty acid composition in Italian Brown cattle. Journal of Dairy Science 93(2), 753-763.

Darvasi A. \& Soller M. (1994) Selective DNA pooling for determination of linkage between a molecular marker and a quantitative trait locus. Genetics I38, I365-I373.

De Marchi M., Penasa M., Cecchinato A., Mele M., Secchiari P. \& Bittante G.(20II) Effectiveness of mid-infrared spectroscopy to predict fatty acid composition of Brown Swiss bovine milk. Animal 5, I653-I658.

Fernando R., Nettleton L., Southey B.R., Dekkers J.C.M., Rothschild M. \& Soller M. (2004) Controlling the proportion of false positive (PFP) in a multiple test situation. Genetics I66, 6II-6I9.

Goddard M.E. \& Hayes B.J. (2009) Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nature Reviews Genetics I0, 38I-39I.

Groeneveld E., Kovac M. \& Mielenz N. (20I0) VCE User's Guide and Reference Manual Version 6.0.

Hebbachi A.M., Knight B.L., Wiggins D., Patel D.D. \& Gibbons G.F. (2008) Peroxisome proliferator-activated receptor alpha deficiency abolishes the response of lipogenic gene expression to re-feeding: restoration of the normal response by activation of liver X receptor alpha. The Journal of Biological Chemistry 283, 4866-4876.

Hollingworth P., Sweet R., Sims R., Harold D., Russo G., Abraham R., Stretton A., Jones N., Gerrish A., Chapman J., Ivanov D., Moskvina V., Lovestone S., Priotsi P., Lupton M., Brayne C., Gill M., Lawlor B., Lynch A., Craig D., McGuinness B., Johnston J., Holmes C., Livingston G., Bass N.J., Gurling H., McQuillin A.; the GERAD Consortium; the National Institute on Aging Late-Onset Alzheimer's Disease Family Study Group, Holmans P., Jones L., Devlin B., Klei L., Barmada M.M., Demirci F.Y., Dekosky S.T., Lopez O.L., Passmore P., Owen M.J., O'Donovan M.C., Mayeux R., Kamboh M.I. \& Williams J. (2012) Genome-wide association study of

Alzheimer's disease with psychotic symptoms. Molecular Psychiatry I7,I3I6-I327.

Huang W., Kirkpatrick B.W., Rosa G.J.M. \& Khatib H. (20I0) A genome-wide association study using selective DNA pooling identifies candidate markers for fertility in Holstein cattle. Animal Genetics 4I, 570-578.

Janicki P.K \& Liu J. (2009) Accuracy of allele frequency estimates in pool DNA analyzed by high-density Illumina Human 610-Quad microarray. The Internet Journal of Genomics and Proteomics 5, I.

Kaul D. \& Mehrotra A. (2007) Functional characterization of AATF transcriptome in human leukemic cells. Molecular and Cellular Biochemistry 297, 215-220.

Kelsey J.A., Corl B.A., Collier R.J. \& Bauman D.E. (2003) The effect of breed parity and stage of lactation on conjugated linoleic acid (CLA) in milk fat from dairy cows. Journal of Dairy Science 86, 2588-2597.

Lipkin E., Mosig M.O., Darvasi A., Ezra E., Shalom A., Friedmann A. \& Soller M. (I998) Mapping loci controlling milk protein percentage in dairy cattle by means of selective milk DNA pooling using dinucleotide microsatellite markers. Genetics I49, I557-I567.

Lipkin E., Tal-Stein R., Friedmann A. \& Soller M. (2008) Effect of quantitative trait loci for milk protein percentage on milk protein yield and milk yield in Israeli Holstein dairy cattle. Journal of Dairy Science 9I, I6I4-I627.

Liu X., Cheng R., Verbitsky M., Kisselev S., Browne A., MejiaSanatana H., Louis E.D., Cote L.J., Andrews H., Waters C., Ford B., Frucht S., Fahn S., Marder K., Clark L.N. \& Lee J.H. (20II) Genome-wide association study identifies candidate genes for

Parkinson's disease in an Ashkenazi Jewish population. BMC Medical Genetics I2, I04.

Macgregor S, Zhao Z.Z, Henders A., Nicholas M.G., Montgomery G.W. \& Visscher P.M. (2008) Highly cost-efficient genome-wide association studies using DNA pools and dense SNP arrays. Nucleic Acids Research 36, e35.

Marsaglia G., Tsang W.W. \& Jingbo W. (2003) Evaluating Kolmogorov's distribution. Journal of Statistical Software 8/I8.

Mele M., Dal Zotto R., Cassandro M., Conte G., Serra A., Buccioni A., Bittante G. \& Secchiari P. (2009) Genetic parameters for conjugated linoleic acid, selected milk fatty acids, and milk fatty acid unsaturation of Italian Holstein-Friesian cows. Journal of Dairy Science 92, 392-400.

Mosig, M.O., Lipkin E., Khutoreskaya G., Tchourzyna E., Soller M. \& Friedmann A. (200I) A whole genome scan for quantitative trait loci affecting milk protein percentage in Israeli-Holstein cattle, by means of selective milk DNA pooling in a daughter design, using an adjusted false discovery rate criterion. Genetics I57, I683-I698.

Morris C.A., Cullen N.G., Glass B.C., Hyndman D.L., Manley T.R., Hickey S.M., McEwan J.C., Pitchford W.S., Bottema C.D. \& Lee M.A. (2007) Fatty acid synthase effects on bovine adipose fat and milk fat. Mammalian Genome I8, 64-74.

Murphy M.A., Shariflou M.R. \& Moran C. (2002) High quality genomic DNA extraction from large milk samples. Journal of Dairy Research 69, 645-649.

Nettleton D., Hwang J.T.G., Caldo R.A. \& Wise R.P. (2006) Estimating the number of true null hypotheses from a histogram of p values. Journal of Agricultural, Biological, and Environmental Statistics II, 337-356

Neumaier A. \& Groeneveld E. (I998) Restricted Maximum Likelihood Estimation of Covariances in Sparse Linear Models. Genetics, Selection, Evolution $I(30): 3-26$.

Oleszczuk J., Oleszczuk L., Siwicki A.K. \& Skopińska-Skopińska E. (20I2) Biological effects of conjugated linoleic acids supplementation. Polish Journal of Veterinary Science I5 (2), 403-8.

Roy R., Ordovas L., Taourit S., Zaragoza .P, Eggen A. \& Rodellar C. (2006) Genomic structure and an alternative transcript of bovine mitochondrial glycerol-3-phosphate acyltransferase gene (GPAM). Cytogenetic and Genome Research II2, 82-89.

Royston P., Remark AS R94 (1995) A remark on Algorithm AS I8I: The W test for normality. Applied Statistics 44 54755I.Schennink A., Heck J.M., Bovenhuis H., Visker M.H., van Valenberg H.J., van Arendonk J.A. (2008) Milk fatty acid unsaturation: genetic parameters and effects of stearoyl-CoA desaturase (SCDI) and acyl CoA: diacylglycerol acyltransferase I (DGATI). Journal of Dairy Science 9I(5), 2I35-2I 43.

Schennink A., Stoop W.M., Visker M.H., Van Der Poel J.J., Bovenhuis H. \& Van Arendonk J.A. (2009). Genome-wide scan for bovine milk-fat composition. II. Quantitative trait loci for long-chain fatty acids. Journal of Dairy Science 92, 4676-4682.

Stephens M.A. (1986) Tests based on EDF statistics. In: D'Agostino R.B. and Stephens M.A. eds.: Goodness-of-Fit Techniques. Pp 97I23. Marcel Dekker New York.

Stoop W.M., Van Arendonk J.A., Heck J.M., van Valenberg H.J. \& Bovenhuis H. (2008) Genetic Parameters for Major Milk Fatty Acids and Milk Production Traits of Dutch Holstein-Friesians. Journal of Dairy Science 9I, 385-394.

Wang K.H., Liu H.W., Lin S.R., Ding D.C. \& Chu T.Y.(2009) Field methylation silencing of the protocadherin 10 gene in cervical carcinogenesis as a potential specific diagnostic test from cervical scrapings. Cancer Science IO0, 2I75-2I80.

Wardle M., Majounie E., Muzaimi M.B., Williams N.M., Morris H.R. \& Robertson N.P. (2009) The genetic aetiology of late-onset chronic progressive cerebellar ataxia. A population-based study. Journal of Neurology 256, 343-348.

Wipff J., Dieudé P., Guedj M., Ruiz B., Riemekasten G., Cracowski J.L., Matucci-Cerinic M., Melchers I., Humbert M., Hachulla E., Airo P.. Diot E., Hunzelmann N., Caramaschi P., Sibilia J., Valentini G., Tiev K., Girerd B., Mouthon L., Riccieri V., Carpentier P.H., Distler J., Amoura Z., Tarner I., Degano B., Avouac J., Meyer O., Kahan A., Boileau C. \& Allanore Y. (2010) Association of a KCNA5 gene polymorphism with systemic sclerosis-associated pulmonary arterial hypertension in the European Caucasian population. Arthritis Rheumatism 62, 3093-I00.

Table I. Number of daughters (family size) for each of the 5 families used in the analysis

Family	Size
B	I,4I3
C	I,782
E	2,568
F	947
G	I,255

Table 2. Residual mean values and their STD for CLA, VA and D9D for each of the 5 selected Italian Brown Swiss families in the sub-pools in the low (L) and high (H) tails.

FAMILY	TAIL	CLA		D9D		VA	
		MEAN	STD	MEAN	STD	MEAN	STD
B	LI	-0.49390	0.10852	-0.I4094	0.05296	-0.98427	0.17217
B	L2	-0.48696	0.10104	-0.13735	0.04867	-0.96798	0.14856
B	HI	0.74772	0.70436	0.20718	0.069	0.9953 I	0.72585
B	H2	0.70672	0.64998	0.20341	0.06599	0.9202 I	0.53167
C	LI	-0.43098	0.09008	-0.I3594	0.05934	-0.65494	0.17082
C	L2	-0.44452	0.11882	-0.I2992	0.04603	-0.64364	0.16760
C	HI	0.66386	0.52609	0.08092	0.05768	133.338	0.62860
C	H2	0.63265	0.49619	0.07627	0.05099	I26.80I	0.49839
E	LI	-0.47744	0.13375	-0.I4867	0.04537	-0.79669	0.30011
E	L2	-0.48485	0.13695	-0.I4591	0.04201	-0.77258	0.27312
E	HI	I30.968	0.44947	0.22401	0.15114	193.435	282.528
E	H2	I27.32I	0.40445	0.2116	0.13075	I44.863	0.6047 I
F	LI	-0.50308	0.10199	-0.07378	0.07427	-I03.623	0.16730
F	L2	-0.49592	0.09206	-0.06773	0.06253	-102.954	0.16530
F	HI	0.61353	0.56768	0.2127 I	0.07876	0.20082	0.44377
F	H2	0.55806	0.43636	0.20518	0.0693	0.16536	0.38295
G	LI	-0.52235	0.15092	-0.18892	0.07339	-0.63733	0.3343 I
G	L2	-0.53004	0.15388	-0.19254	0.07874	-0.6152	0.31305
G	HI	0.20165	0.23559	0.02299	0.0692	126.227	0.85484
G	H2	0.18913	0.22741	0.01712	0.05935	I20.646	0.79237

Table 3. SNPs significant above 5\% PFP threshold with their chromosomal positions, p-values, along with symbols of genes located and Genbank used to identify the gene-SNP association. Gene and SNPs location (Mbp) as in the Bos_taurus_UMD_3.I assembly; gene symbol as in Genbank; $\left(^{*}\right.$) SNP designated as in a gene; (-) not near a gene; () near gene.

Illumina SNP name	Genbank SNP code	Bta	SNP position	P -value	Gene symbol
CLA					
DPI-50	rs43006866	I	21693513	8.7E-05	NRIPI
Hapmap55498-ss46527080	rs41255623	I	57752344	I.2E-04	ATG3**
Hapmap44I72-BTA-96950	rs41616212	I	58985342	9.1E-05	GRAMDIC ${ }^{*}$
Hapmap48236-BTA-I7964	rs41623976	I	90714916	4.4E-06	TBLIXRI
Hapmap47178-BTA-IIII57	rs41566432	I	92461552	3.2E-06	NAALADL2 ${ }^{* *}$
ARS-BFGL-NGS-3990	rsIIO539904	2	98217598	6.2E-05	UNC80*******
Hapmap44637-BTA-I7098	rs4157939I	2	II715I265	$7.2 \mathrm{E}-05$	A7E352_BOVIN
BTB-01240408	rs41701446	3	86180854	$5.6 \mathrm{E}-05$	CIorf87
ARS-BFGL-NGS-II3196	rsIIIOIO813	4	103231866	I.OE-04	ATP6VOA4**
BTB-002I803I	rs43425225	5	6528982	I.0E-05	E2F7
ARS-BFGL-NGS-I2094	rsI08986373	5	2205366 I	I.3E-05	BTGI
BTA-III858-no-rs	rs41611289	5	91494429	7.IE-05	PLCZI
ARS-BFGL-NGS-8730	rs43442824	5	105449703	5.8E-05	KCNA5
BTB-OIIO5737	rs42260933	7	66550122	6.2E-05	GRIAI
Hapmap44668-BTA-119022	rs41622993	7	87556048	I.3E-04	EDIL3
Hapmap45685-BTA-80525	rs41597368	7	109970008	2.2E-05	LOC523504**
ARS-BFGL-NGS-61077	rsII0932603	8	I0I405I5	$4.6 \mathrm{E}-05$	FBXOI6
ARS-BFGL-NGS-103122	rsIIO608572	10	I2870180	I.0E-04	MEGFII**
Hapmap41480-BTA-20737	rs41624135	10	50462356	$6.0 \mathrm{E}-05$	FOXBI
Hapmap59000-rs29026853	rs29026853	10	53560658	5.8E-05	TCFI2
BTA-I06955-no-rs	rs41615197	II	35897464	$9.8 \mathrm{E}-05$	ASB3
ARS-BFGL-NGS-106479	rsI10205996	II	79852413	8.3E-05	OSR I
ARS-BFGL-NGS-5267	rs42256240	12	9925695	I.4E-04	LOC786945
ARS-BFGL-NGS-I426	rs109605584	12	33576827	I.0E-04	SHISA2
ARS-BFGL-NGS-55763	rs 109152570	12	3463567 I	I.2E-04	MIPEP**
Hapmap40222-BTA-65450	rs41651027	12	56055676	7.9E-06	ORIOPI
Hapmap50611-BTA-19865	rs41628446	I2	57684714	$3.5 \mathrm{E}-05$	IL23A
BTB-00505587	rs41680023	12	76896007	3.7E-06	DZIPI ${ }^{\text {* }}$
Hapmap25446-BTC-054694	rsIIO267284	I4	26003598	I.3E-04	FAMIIOB

Hapmap5II49-BTA-II3410	rs41571939	15	5400560	2.9E-07	DYNC2HI **
BTB-0086278I	rs42022714	15	5825778	4.3E-05	MMPI3
BTA-38242-no-ts	rs41578757	16	27164390	3.5E-07	DISPI**
ARS-BFGL-NGS-27682	rs109893602	16	30186769	1.3E-04	PARPI
ARS-BFGL-NGS-19358	rs109405104	16	70754436	I.3E-04	SMYD2
ARS-BFGL-NGS-I725I	rsi09024372	16	72114575	9.IE-06	RPS6KCI
ARS-BFGL-NGS-I459I	rsI08956519	17	20892863	1.4E-04	PCDHI8
BTA-46636-no-ts	rs41572972	17	26418537	9.5E-09	PCDHIO
BTA-4072I-no-ts	ts41604816	17	27826675	9.3E-05	-
ARS-BFGL-NGS-61134	rs 109438470	17	30676454	1.6E-06	INTU
BTB-01870009	rs42982I63	17	3092544 I	1.4E-05	INTU
ARS-BFGL-BAC-34666	rs IIO202120	17	38467666	6.9E-06	-
ARS-BFGL-NGS-32208	rsIIO602266	17	41066514	2.3E-05	CI7H4orf45
ARS-BFGL-NGS-73072	tsIIO459320	17	44822427	6.5E-05	GUCYIA3
BTA-27953-no-ts	rs41633195	17	47700237	3.0E-05	RIMBP2**
Hapmap4180I-BTA-2191I	rs41627925	17	50429878	$4.3 \mathrm{E}-05$	HSFY2
ARS-BFGL-NGS-116497	rsI09230481	19	13720853	$2.6 \mathrm{E}-05$	AATF*
ARS-BFGL-NGS-II4182	rsIIO697583	19	14008574	7.9E-06	CI9HI7orf78*
ARS-BFGL-NGS-6298	rsi09209050	19	16779459	6.9E-07	ACCNI**
Hapmap5I23I-BTA-44563	ts41584865	19	17118867	5.6E-07	ACCNI**
UA-IFASA-5746	rs41617418	19	18384729	I.IE-04	ADAP2**
ARS-BFGL-NGS-73727	${ }_{\text {rs }} 109876252$	19	19587050	3.7E-06	KSRI ${ }^{\text {** }}$
Hapmap4154I-BTA-44653	rs41640976	19	20293612	1.3E-05	$N L K^{*}$
ARS-BFGL-NGS-32894	rs IO905789I	19	20974167	2.9E-05	PIPOX **
ARS-BFGL-NGS-81462	rs41598054	19	24917540	I.0E-04	SHPK
ARS-BFGL-NGS-328I	tsIIO386214	19	25047166	1.9E-08	ITGAE**
BTB-01316060	rs4244274I	19	30340650	5.IE-07	TMEM220
BTB-01315978	rs42441962	19	30446351	8.9E-06	PIRT
ARS-BFGL-NGS-42430	rsi09099212	19	31087581	$7.8 \mathrm{E}-05$	DNAH9**
ARS-BFGL-NGS-4759	rs109182853	19	35253851	4.IE-05	RAII**
ARS-BFGL-NGS-II2923	rs41909659	19	35419429	9.8E-07	PEMT**
Hapmap58303-ss46526468	rs4I25693I	19	37552530	I.IE-04	SLC35BI**
Hapmap496I7-BTA-45355	rs41576388	19	38466576	9.8E-04	HOXB9
Hapmap56957-ss46526454	${ }_{\text {rs } 41256918 ~}^{18}$	19	42902904	9.5E-05	RAB5C**
ARS-BFGL-NGS-24479	rs41916457	19	45109206	3.IE-05	ADAMII*
UA-IFASA-6II7	rs41636123	19	46075773	4.3E-05	WNT3
BTA-45655-no-ts	rs41577559	19	46202442	I.0E-04	NSF**
BTA-50728-no-ts	rs41581533	20	48749320	4.0E-08	CDHIO
ARS-BFGL-NGS-107424	${ }_{\text {ts } 111020323 ~}^{\text {l }}$	21	63708710	4.6E-08	VRKI
ARS-BFGL-NGS-79806	tsI09898853	23	16625327	1.4E-04	PPP2R5D*

UA-IFASA-7925	rs41604928	24	679380	$9.5 \mathrm{E}-05$	ADNP2
Hapmap50827-BTA-94026	rs41668379	24	216663 I	$4.9 \mathrm{E}-05$	GALRI
ARS-BFGL-NGS-20502	rs108990458	25	42097688	$8.3 \mathrm{E}-05$	MICALL2
Hapmap48I4I-BTA-98457	rs41566027	27	42751177	I.2E-05	UBE2E2
$\underline{V A}$					
ARS-BFGL-NGS-I930I	rsIIO847444	4	89017584	3.8E-06	SPAMI
Hapmap3839I-BTA-18545	rs41575963	12	26810556	1.0E-05	RFC3
ARS-BFGL-NGS-9705I	rs42357017	15	20500282	6.3E-06	ZC3HI2C**
BTA-38242-no-rs	rs41578757	16	27164390	2.8E-06	DISPI ${ }^{\text {* }}$
ARS-BFGL-NGS-IO8496	rs109178989	17	25441346	4.7E-06	PCDHIO
BTB-OIOI7247	rs42176310	29	28809817	4.8E-06	CCDCI5*
$\underline{D^{9} D}$					
ARS-BFGL-NGS-98565	rs109886869	5	I1686I955	1.2E-05	ATXNIO**
Hapmap43748-BTA-103824	rs41609745	7	65358446	2.7E-06	GLRAI
Hapmap56398-rs29010937	rs29010937	14	I3949095	8.7E-06	MYC
ARS-BFGL-NGS-62454	rs41851087	17	66751217	$3.8 \mathrm{E}-06$	ISCU
ARS-BFGL-NGS-42947	rs42703571	28	2313753	7.1E-06	RHOU
Hapmap47516-BTA-116004	rs41566730	28	2902778	3.2E-06	OR4P4
ARS-BFGL-NGS-16913	rs109873278	28	8346709	4.0E-06	$G N G 4{ }^{\text {* }}$

Table 4. SNPs located above PFP 5\% threshold within I Mbp distance from genes encoding for enzymes with an important role in fat and fatty acid metabolism. Gene and SNPs location (near gene) as in the Bos_taurus_UMD_3.I assembly; gene symbol as in GenBank.

Illumina SNP name	Genbank SNP code	Bta	SNP position	P -value	Gene symbol
CLA					
ARS-BFGL-NGS-3990	tsI10539904	2	98217598	6.2E-05	ACADL
ARS-BFGL-NGS-II3196	rsIIIOIO813	4	I0323I866	I.IE-04	DGKI
ARS-BFGL-NGS-II6497	rsI09230481	19	I3720853	$2.6 \mathrm{E}-05$	ACACA
BTB-01316060	rs 42442741	19	30340650	5.IE-07	ADPRM
BTB-01315978	rs42441962	19	30446351	8.9E-06	ADPRM
ARS-BFGL-NGS-42430	rsI09099212	19	31087581	$7.8 \mathrm{E}-05$	ADPRM
ARS-BFGL-NGS-4759	rsI09182853	19	3525385 I	4.1E-05	PEMT/SREBFI
ARS-BFGL-NGS-II2923	rs41909659	19	35419429	$9.8 \mathrm{E}-07$	PEMT/SREBFI
Hapmap58303-ss46526468	rs4125693I	19	37552530	I.2E-04	PHOSPHOI
Hapmap49617-BTA-45355	rs41576388	19	38466576	I.IE-04	PHOSPHOI
Hapmap56957-ss46526454	rs41256918	19	42902904	I.0E-04	STAT5A/ACLY
$\underline{D^{9} D}$					
ARS-BFGL-NGS-62454	rs41851087	17	66751217	3.8E-06	$A C A C B$
Hapmap47516-BTA-II6004	rs41566730	28	2902778	3.3E-06	GNPAT

Table 5. SNPs significant between 5 and I0\% PFP threshold located within I Mbp from genes encoding for enzymes with an important role in fat and fatty acid metabolism. Gene and SNPs location (near gene) as in the Bos_taurus_UMD_3.I assembly; gene symbol as in GenBank.

Illumina SNP name	Genbank SNP code	Bta	SNP position	P -value	Gene symbol
CLA					
BTA-II483I-no-rs	rs 41574370	2	39709004	3.3E-04	GPD2
ARS-BFGL-BAC-2813	rs 42208635	2	3908652 I	3.0E-04	GPD2
ARS-BFGL-NGS-17824	rs41664795	4	II8169220	4.2E-04	INSIGI
ARS-BFGL-NGS-II655I	rsIIO675288	I2	I2446625	9.8E-04	DGKH
ARS-BFGL-NGS-II9102	rs109324940	14	70003286	3.0E-04	PTDSSI
ARS-BFGL-NGS-44706	rs41781II8	I5	76438547	4.8E-04	DGKZ
Hapmap42977-BTA-55653	rs41640777	16	1784252	$7.2 \mathrm{E}-04$	ETNK2
BTB-01631910	rs 42743382	I8	64045527	I.0E-03	MBOAT7
ARS-BFGL-NGS-100532	rs109873397	I8	63878550	7.8E-04	PLA2GI5
UA-IFASA-7338	rs 41636041	19	8200102	1.7E-04	DGKE
ARS-BFGL-NGS-14867	rsIIOO36994	19	7940557	6.9E-04	DGKE
ARS-BFGL-NGS-II4182	rsIIO697583	19	I4008574	3.0E-04	ACACA
ARS-BFGL-NGS-101807	rsI09477972	19	30413271	$2.5 \mathrm{E}-04$	ADPRM
ARS-BFGL-NGS-101953	rs41913537	19	35191657	5.6E-04	PEMT/SREBFI
ARS-BFGL-NGS-2812I	rs 43729464	19	42227236	$5.0 \mathrm{E}-04$	STAT5A
ARS-BFGL-NGS-2725	rsII0970486	23	24904300	7.4E-04	ELOVL5
UA-IFASA-6229	rs41626402	23	31485437	I.IE-03	BTNIAI
ARS-BFGL-NGS-35579	rsIIOO35524	26	26058953	6.9E-04	ECHSI
VA					
BTA-13765-no-ts	rs29018723	I5	56548395	3.1E-05	MOGAT2/DGAT2
ARS-BFGL-NGS-94026	rsIIIOIO2II	27	37145353	$6.0 \mathrm{E}-05$	AGPAT6
$\underline{D^{9} D}$					
ARS-BFGL-NGS-1049I4	rs109526874	5	II95I2385	1.7E-05	CPTIB/CHKB

Table 6. SNPs significant between IO and 20\% PFP threshold located within I Mbp from genes encoding for enzymes with an important role in fat and fatty acid metabolism. Gene and SNPs location (near gene) as in the Bos_taurus_UMD_3.I assembly; gene symbol as in GenBank.

Illumina SNP name	Genbank SNP code	Bta	SNP position	P -value	Gene symbol
CLA					
ARS-BFGL-NGS-19572	rsIIO857438	I	97420045	1.7E-03	PLDI
BTA-31262-no-rs	rs41629000	2	128889674	3.9E-03	LYPLAZ
BTA-72579-no-ts	rs41591617	4	22706540	4.9E-03	DGK4
Hapmap 27013-BTA-158242	rs108938799	4	23543662	3.8E-03	DGK4
ARS-BFGL-NGS-II2658	rs 109311371	4	98486908	1.8E-03	DGKI
ARS-BFGL-NGS-7597	rs 110528559	4	101758469	3.5E-03	DGKI
ARS-BFGL-NGS-30174	${ }_{\text {rs } 110294118 ~}^{\text {d }}$	4	117100753	1.5E-03	INSIGI
ARS-BFGL-NGS-15520	rs109546807	5	65986618	2.1E-03	CHPTI
ARS-BFGL-NGS-24122	rsIIOI83937	5	65228699	4.0E-03	CHPTI
Hapmap59389-rs29023212	rs29023212	5	88978964	6.5E-03	ETNKI
BTA-I07103-no-rs	rs41615970	5	88659509	3.6E-03	ETNK2
ARS-BFGL-NGS-115195	${ }_{\text {rs } 109444154 ~}^{\text {d }}$	5	119235517	1.7E-03	CHKB/CPTIB
Hapmap48480-BTA-80747	rs41568613	7	13526016	6.0E-03	GCDH
ARS-BFGL-NGS-70183	rsi09815065	7	17913294	4.1E-03	PNPLAG
ARS-BFGL-NGS-52642	${ }_{\text {rs } 1095221 I 7 ~}^{7}$	8	25958375	2.6E-03	PLIN2
BTB-00415258	rs43621939	10	28680745	6.2E-03	LPCAT4
BTB-0042477I	rs 43626465	10	52558914	2.3E-03	LIPC
Hapmap41972-BTA-79298	rs41654582	10	85547284	5.4E-03	ACOT4/ACOT2
ARS-BFGL-NGS-II6336	rs 110826199	10	86126108	5.0E-03	ACOT4/ACOT2
ARS-BFGL-NGS-108846	rsI10842319	10	86155673	2.5E-03	ACOT4/ACOT2
ARS-BFGL-NGS-II3057	rs IIOIO3846	II	2603799	5.9E-03	GPAT2
Hapmap38795-BTA-97039	rs41616215	II	48179532	6.6E-03	FABPI
ARS-BFGL-NGS-22048	rs 109927983	II	69884769	3.5E-03	LPCATI
Hapmap53580-rs29012667	rs29012667	I2	12041734	1.5E-03	DGKH
ARS-BFGL-NGS-II4368	${ }_{\text {rs } 111008377 ~}^{\text {l }}$	13	65817864	3.8E-03	ACSS2
ARS-BFGL-NGS-101653	${ }_{\text {rs }} 109661298$	I4	2319504	5.9E-03	DGATI
ARS-BFGL-NGS-108612	rs 109758686	I4	45945108	3.2E-03	FABP5
Hapmap44329-BTA-98197	rs41664749	15	18924675	5.0E-03	ACATI
ARS-BFGL-NGS-II8I49	sI09438582	15	28646485	2.4E-03	APOAI
Hapmap42192-BTA-37799	rs41632633	15	78966608	5.0E-03	NRIH3
Hapmap52389-ts29027509	rs29027509	16	68785131	1.7E-03	PLA2G4A
Hapmap46938-BTA-II4095	rs41565443	16	69795545	6.0E-03	PLA2G4A

Hapmap23161-BTA-I62019	rs IIO655056	18	27281676	$5.2 \mathrm{E}-03$	GOT2
Hapmap38205-BTA-I7257	rs41574731	18	23559322	$4.2 \mathrm{E}-03$	LPCAT2
ARS-BFGL-NGS-100532	rs109873397	18	63878550	1.7E-03	PLA2GI5
ARS-BFGL-NGS-II3896	rsI09284305	18	64231273	$3.6 \mathrm{E}-03$	MBOAT7
ARS-BFGL-NGS-31543	rsII0960592	19	28545943	4.IE-03	ACADVL
ARS-BFGL-NGS-II9468	rs 42882121	19	28342107	I.3E-03	ACADVL
ARS-BFGL-NGS-31404	rsIIO66054I	19	30783257	$5.4 \mathrm{E}-03$	ADPRM
ARS-BFGL-NGS-105181	rsI09678934	19	37670702	$2.0 \mathrm{E}-03$	PHOSPHOI
BTA-45324-no-rs	rs41644849	19	37817322	$2.7 \mathrm{E}-03$	PHOSPHOI
ARS-BFGL-NGS-II2209	rsIIO497942	19	37994541	$4.4 \mathrm{E}-03$	PHOSPHOI
ARS-BFGL-NGS-39738	rsIIO510166	19	38059659	$4.7 \mathrm{E}-03$	PHOSPHOI
ARS-BFGL-NGS-22409	rsI09036II8	19	43295532	$4.6 \mathrm{E}-03$	STAT5A
BTA-IO8326-no-rs	rs41569897	19	43804606	5.4E-03	STAT5A
ARS-BFGL-NGS-109613	rsI09581848	19	51299813	$4.2 \mathrm{E}-03$	FASN/PCYT2
Hapmap49546-BTA-25249	rs41574666	23	49260004	4.IE-03	ECI2
BTB-00938770	rs42099589	26	3282117 I	$3.9 \mathrm{E}-03$	GPAM / ACSL5
ARS-BFGL-NGS-62648	rsIIOO39409	26	4280717 I	$5.9 \mathrm{E}-03$	$A C A D S B$
ARS-BFGL-NGS-72832	rs42II6262	27	I46I557I	$4.2 \mathrm{E}-03$	ACSLI
VA				1.0E+00	
Hapmap61072-rs29024053	rs29024053	4	23915993	$3.3 \mathrm{E}-04$	DGK4
ARS-BFGL-NGS-87919	rsI09197682	8	63383924	5.9E-04	ALDHIBI
Hapmap57042-rs29016514	rs29016514	17	64950742	$2.2 \mathrm{E}-04$	PLA2GIB / ALDH2
BTB-00750203	rs41911936	19	38268968	4.2E-04	PHOSPHOI
ARS-BFGL-NGS-35579	rsIIOO35524	26	26058953	I.4E-04	ECHSI
$\underline{D^{9} D}$					
BTA-85566-no-rs	rs43743037	5	66040455	1.4E-03	CHPTI
BTB-OI858480	rs42971522	5	88249394	1.7E-03	ETNKI
ARS-BFGL-NGS-99043	rsII0908109	13	71301458	$3.6 \mathrm{E}-04$	LIPIN3
ARB-BFGL-NGS-50023		I4	18597213	8.IE-04	ACATI
ARS-BFGL-NGS-II9102	rsI09324940	I4	70003286	$6.5 \mathrm{E}-05$	PTDSSI
Hapmap57042-rs29016514	rs29016514	17	64950742	8.9E-05	ALDH2 / PLA2GIB
ARS-BFGL-BAC-36625	rsIIO325149	17	64982245	$7.8 \mathrm{E}-04$	ALDH2/ PLA2GIB
ARS-BFGL-NGS-II2123	rs41852678	17	65771136	I.0E-03	$A C A C B$
ARS-BFGL-NGS-102695	rs41852077	17	66790999	4.0E-04	$A C A C B$
ARS-BFGL-NGS-I12916	rsI09578063	19	26398385	$5.9 \mathrm{E}-04$	PLD2/ACADVL
ARS-BFGL-NGS-46832	rs4192I756	19	55721945	I.4E-03	ACOXI
ARS-BFGL-NGS-72I	rs109731156	23	49061686	$9.8 \mathrm{E}-04$	ECI2
BTA-91041-no-rs	rs41659095	26	32792279	$9.8 \mathrm{E}-04$	GPAM/ASCL5
BTA-II6005-no-rs	rs41613328	28	2869287	$5.6 \mathrm{E}-04$	GNPAT
Hapmap49856-BTA-108815	rs41615922	28	3998395	$6.9 \mathrm{E}-04$	$G N P A T$

Figure I. Role of rumen biohydrogenation and tissue D9D in the production of cis-9 trans-II conjugated linoleic acid in milk fat and in different tissues. Adapted from Bauman \& Lock (2006).

Figure 2. Quantile-quantile plots of the observed distribution of the p-value at marker level for CLA, VA and D9D

Figure 3. Quantile-quantile plots of SNPs at marker level for CLA, VA and D9D comparing the association statistics expected under the null hypothesis of no association.

Figure 4. The location of SNPs associated with CLA VA and D9D shown as a Manhattan plot. Odd-numbered chromosomes are shown in orange; even-numbered chromosomes are shown in black. The horizontal blue and dashed line represent the 5% proportion of false positives (PFP) threshold; the horizontal red and dotted line represent the I0\% PFP threshold and the horizontal green and solid line represent the 20% PFP threshold.

Figure 5. Association regions for CLA in all chromosomes

Figure 6. Association regions for VA in all chromosomes

Figure 7. Association regions for D9D in all chromosomes

Figure 8. Metabolic lipid pathways in which genes are involved according to KEGG database

2

GENOME-WIDE ASSOCIATION STUDY FOR SOMATIC CELL SCORE IN VALDOSTANA RED PIE CATTLE BREED USING POOLED DNA

BMC Genetics, 15:106 doi:IO.II86/sI2863-0I4-0106-7

GENOME-WIDE ASSOCIATION STUDY FOR SOMATIC CELL SCORE IN VALDOSTANA RED PIED CATTLE BREED USING POOLED DNA

Maria G. Strillacci*, Erika Frigo ${ }^{*}$, Fausta Schiavini*\#, Antonia B. Samoré*, Fabiola Canavesi*, Mario Vevey§, Maria C. Cozzi**, Morris Soller \dagger, Ehud Lipkin \dagger, Alessandro Bagnato*\#
*Department of Health, Animal Science and Food Safety (VESPA), University of Milan, Via Celoria IO, 20I33, Milan, Italy.
\#Genomic and Bioinformatics Platform, University of Milan, c/o Fondazione Filarete, Viale Ortles 20, 20100 Milano, Italy
\dagger Department of Genetics. The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
§Associazione Nazionale Allevatori Bovini di Razza Valdostana (A.N.A.Bo.Ra.Va.), Fraz. Favret, 5 IIO20 Gressan (AO), Italy

2.I. ABSTRACT

Background: Mastitis is a major disease of dairy cattle occurring in response to environmental exposure to infective agents with a great economic impact on dairy industry. Somatic cell count (SCC) and its log transformation in somatic cell score (SCS) are traits that have been used as indirect measures of resistance to mastitis for decades in selective breeding. A selective DNA pooling (SDP) approach was applied to identify Quantitative Trait Loci (QTL) for SCS in Valdostana Red Pied cattle using the Illumina Bovine HD BeadChip. Results: A total of I7I SNPs reached the genome-wide significance for association with SCS. Fifty-two SNPs were annotated within genes, some of those involved in the immune response to mastitis. On BTAs I, 2, 3, 4, 9, I3, I5, I7, 2I and 22 the largest number of markers in association to the trait was found. These regions identified novel genomic regions related to mastitis (I-Mb SNP windows) and confirmed those already mapped. The largest number of significant SNPs exceeding the threshold for genome-wide significant signal was found on BTA I5, located at $50.43-5 \mathrm{I} .63 \mathrm{Mb}$.

Conclusions: The genomic regions identified in this study contribute to a better understanding of the genetic control of the mastitis immune response in cattle and may allow the inclusion of more detailed QTL information in selection programs.

2.2. BACKGROUND

Mastitis is one of the most frequent inflammatory disease with a significant economic implication for the dairy herds and the resistance to this pathology may be improved by breeding.
The development of mastitis is the result of the interaction among three components: the individual genotype, the pathogens (ordinarily classified in contagious and environmental bacteria) and the environment (hygiene, housing, climate, milking machines, feeding) [I].
The resistance to an infection disease or the absence of susceptibility may be defined as the immune response ability (immuno-competence capability) of an animal, to avoid the pathogens replication after the establishment of an infection. This implies that animals tend to vary in their genetic potential for immuno-competence [2]. The genetic resistance or the genetic susceptibility to mastitis involves interlinked biological mechanisms that activate and regulate the different levels of the immune response, as a consequence of the differences existing in the response to mastitis involving several pathogens [3]. A better understanding of the immune system and of the metabolic pathways involved in the response to various pathogens of resistant and susceptible animals may be used as complementary approach for the disease control.
The discovery of millions of SNP markers in animal genomes forming dense marker panels, and the concomitant decrease in genotyping costs have allowed the performing of genome-wide association studies (GWAS) [4]. The availability of SNP dense genotypes have increased the power of the identification of QTL related to the traits of interest [5], allowing more accurate breeding values estimation with the use of genomic selection methodology and helping the understanding of the genetic control of the traits of
interest [6]. Because of the established knowledge of the positive genetic correlation between clinical mastitis and SCS ranging from 0.6 to 0.8 [I], SCC is one of the traits used as an indirect measure of mastitis resistance/susceptibility in breeding programs in cattle and sheep. Many GWAS have detected QTL for SCC in cattle on BTAs $5,6,8$, II, I7, I8, 20 and 23 in cosmopolite improved dairy cattle breeds [I-7].
The high costs of screening large populations for marker allele frequencies can be decreased using the SDP approach, genotyping pooled DNA samples from selected individuals at each of the two phenotypic extremes of the trait distribution [8]. Equal amounts of DNA are pooled from individuals in the extreme tails, and pools are then genotyped to estimate allele frequency differences for each SNP among high and low tail pools. The significant identified candidate SNPs are then used for confirmatory association studies [9].
The aim of this study was to identify QTL associated with SCS as an indicator of mastitis. We performed a GWA study for SCS in the Valdostana Red Pied cattle, with a selective DNA pooling analysis, using the Illumina BovineHD Bead chip.

2.3. RESULTS AND DISCUSSION

Among the 2,4I7 bulls with DP-EBV values, 275 had semen samples available in the Valdostana Red Pied bio-bank that encompassed in total 373 sires samples spanning across generations.
The Valdostana Red Pied population counting at present about I I,000 milking cows did not undergo focussed selection for milk production only and no gene introgression from other populations have ever occurred. The breed is strongly adapted to harsh alpine environment because breed natural adaptation and because has been selected to maintain pasture capability (summer pasture is the common farming system), longevity, functionality and fertility. Thus, the population is somehow a unique genetic resource to map mastitis resistance, a trait related to adaptation, functionality and longevity. The study used all the sire samples available in the Valdostana Red Pied bio-bank thus highlighting the overall observable variability for
productive and functional traits in this breed. The smaller number of sire available for the study respect to mapping in cosmopolitan population, may limit the capacity to disclose QTL for mastitis resistance. Nevertheless the experimental design here used and the genetic makeup of the population allowed to identify several new QTL and confirm regions identified in the Italian and Swiss Brown population [10], another breed originating from alpine region, now strongly selected for milk production.
Descriptive statistics for the DP-EBVs and the size of the pools for each tail are reported in Table I.
The initial dataset included 721,644 SNPs. After editing, the association analysis were performed with 655,665 SNPs for SCS DPEBV.
Figure I shows the Q-Q plot of SNPs at marker level (p-values). Deviations from the identity line showed the amount of false positive tests resulted from the analysis of the data. Figure 2 showed the Manhattan plot of genome-wide associations for SCS trait.
A total of I7I significant SNPs in 24 chromosomes were identified above the Bonferroni genome-wide threshold of 0.05. The Additional file I showed the list of the I7I significant SNPs identified. The SNPs location and the gene annotation were reported for both the UMD3.I and Btau4.6.I assembly. Table in Additional file I included the indication of QTL, amongst the ones here disclosed, reported in the online AnimalQTLdb (http://www.animalgenome.org/cgibin/QTLdb/index) for clinical mastitis, SCC and SCS.

Intragenic $S N P s$

Among the I7I significant markers, 52 SNPs were annotated within 36 genes (Table 2). In Table 2 the significant intragenic SNPs and their corresponding annotated genes in the Btau 4.6.I assembly are reported.
The BovineHD090001996I (rsI364I3030) SNP was associated to the VNNI (vanin I) on BTA9, the BovineHDI500008I35 (rsI34980659) SNP was associated to the THYI (Thy-I cell surface antigen) located on BTA I5 and the BovineHD2I0000I405 (rsI339929I4) SNP was associated to the IGFIR (insulin-like
growth factor I receptor), located on BTA 2I.
Also the BovineHDI500008366 (rs4I754552) and the BovineHDI500008367 (rsII026936I) SNPs were located respectively at $594,104 \mathrm{bp}$ and $60 \mathrm{I}, 630 \mathrm{bp}$ from THYI on BTAI5.
THYI is one of the genes differentially expressed between control quarters from cows infected with E. coli and S. aureus pathogens [II]. Also Moyes et al., 2009 [I2] reported the THYI upregulation in S. uberis intramammary infections.
Sugimoto and Sugimoto, 20I2 [I3] provided evidence that the IGFIR is involved in innate immunity through autophagy (general term for the degradation of cytoplasmic components within lysosomes, [I4]) in bovine. In Bos taurus, in fact a polymorphism in the 5 'UTR region of IGFIR (BTA 2I) was associated to mastitis incidence, determining the inhibition of autophagy in response to S . Agalactiae invasion.
Nearby Genes SNPs
The BovineHD0900019716 (rsI09049649), the BovineHD4I00007550 (rs4I662465) and the Hapmap49339-BTA-84IIO (rs4I662464) SNPs were mapped near the VNNI (vanin I) and the VNN2 (vanin 2) located on BTA 9 respectively at 73.37 Mb and 73.39 Mb . On the same BTA 9, the BovineHD09000I996I (rsI364I3030) SNP were close to VNN2. Jiang et al., 2012 [I5] reported that VNNI and VNN2 are related to resistance to bovine mastitis, being ranked among the 160 most mastitis relevant genes.
On BTA I9, at 55 Mb , SOCS3 (suppressor of cytokine signalling 3) was found at $673,863 \mathrm{bp}$ upstream the BovineHDI9000I5066 (rsI32720248) SNP. This gene, important for the mammary tissue homeostasis, encodes an intracellular inhibitor of cytokine signaling, thus playing an important role in the initial steps of the recognition of pathogen-associated molecular pattern (PAMP) of the innate immune cells. This leads to the activation and initiation of the innate and the adaptive immune responses. Heeg and Dalpke, 2003 [I6] and Brenaut et al., 2014 [I7] found the SOCS3 gene among the 39 differentially expressed genes in milk fat globules of goats in response
to an experimental intramammary infection with S. aureus.
The gene encoding for the serine dehydratase (SDS) on BTAI7 was located 4I6,6I9 bp upstream of the BovineHDI7000I8352 (rsI35I57738) SNP. This gene is included in the glycine, serine and threonine metabolism, as reported by [I8]. These authors demonstrated that the serine dehydratase is one of the enzymes that changed significantly in bovine affected to mastitis.
Four SNPs on BTA9 (BovineHD09000I996I (rsI364I3030), BovineHD09000I97I6 (rsI09049649), BovineHD4I00007550 (rs4I662465) and Hapmap49339-BTA-84IIO (rs4I662464)) mapped near CTGF (connective tissue growth factor). The ZNFXI (XI-type zinc finger-containing) on BTAI3 was close to four SNPs (BovineHD4I000I0442 (rs4I634068), BovineHDI300022626 (rsI37320993), BovineHDI300022630 (rsI09I23247) and BovineHDI300022672 (rs4I7I0487)). The TRIM2I (tripartite motif containing 2I) was located $444,354 \mathrm{Mb}$ upstream the strongest association chromosome region identified in BTA I5 (Table 3). The CXCL2 (Chemokine (C-X-C motif) ligand 2) and the CXCLIO (Chemokine (C-X-C motif) ligand IO) on BTA6 were significantly associated to the BovineHD0600025253 (rs426I5I60) SNP.
The genes above mentioned near to significant SNPs (ZNFXI, CTGF, TRIM2I, CXCL2 and CXCLIO) are significantly differentially expressed by the bovine mammary epithelial cells stimulated with E. coli crude lipopolysaccharide [I9].
Jensen et al., 2013 [IO] studied and compared the transcriptional responses of uninfected mammary gland quarters adjacent to quarters infected with E. coli and S. aureus in Holstein cows. The CXCL2 resulted to be one of the genes differentially expressed between control quarters infected with both the pathogens, while the CXCLIO resulted to be one of the genes differentially expressed in control quarters from animals infected with S. aureus for 24 and 72 hours. The BovineHD2200003506 (rsII082II86) SNP on BTA 22 mapped close to the MYD88 (myeloid differentiation primaryresponse gene 88) at 11.72 Mb which plays a functional role in transducing pro-inflammatory molecule lipopolysaccharide (LPS) that
are responsible for the majority of acute clinical cases of mastitis [20]. Chromosome regions associated to SCS and clinical mastitis Table 3 reported a list of the chromosome regions defined by at least three SNPs that were strongly associated to SCS. The highest number of significant SNPs (I4) exceeding the significant threshold for genome-wide significance signal was found on BTA I5 (located at $50.43-5 \mathrm{I} .63 \mathrm{Mb})$. On the same BTAI5, also two smaller peaks consisting of three SNPs located at 28.39-28.99 and 5 SNPs located at $31.28-32.02 \mathrm{Mb}$ were identified. These regions are located in QTL that were mapped, respectively, for clinical mastitis using a linkage analysis [2I] and for SCS [22]. The region located at 50.4351.63 Mb on BTAI5 has not been reported before in cattle breeds (http://www.animalgenome.org/cgi-bin/QTLdb/index), thus identifying a supposed candidate chromosome region associated to SCS. The chromosome region on BTA9 (72.78-72.80 Mb) mapped in a QTL region previously identified for the general disease resistance (including clinical mastitis) and for SCS [23]
Lund et al., 2008 [2I] found a QTL region associated to SCS located at $32.62-43.3 \mathrm{I} \mathrm{Mb}$ on BTA 22. In our study, three significant SNPs were in this region.
Sahana et al., 2013 [24] in a study on the confirmation and finemapping of clinical mastitis and SCS QTL in Nordic Holstein cattle using BovineSNP50 BeadChip found the highest number of significant associations on BTA6 identifying a QTL region for clinical mastitis at $83.37-88.89 \mathrm{Mb}$ (UMD3.I assembly). This result was also confirmed in a recent study in German Holstein cattle [25]. In our study, two significant SNPs (BovineHD0600023I79 (rsI333I9I55) and BovineHD0600023I85 (rsI36907262)) were found respectively at 84.25 and 84.26 Mb on BTA6 (UMD3.I assembly; Btau4.6.I assembly position was not available), being mapped within the QTL region described by the authors previously cited (see Additional file I).

Annotation

Among the 36 genes listed in Table 2, the annotation data were available for 23 genes reported in the Additional file 2. This lists the
biological processes (BP), the cellular components (CC), the molecular function (MF) and the metabolic pathways (KEGG) obtained with the annotation analyses performed with DAVID online Database.
The literature brings evidence that some of the genes reported in Table 2 map in QTL associated to traits of economic importance in bovine (http://www.animalgenome.org/cgi-bin/QTLdb/BT/index) as showed in Additional file 3. Those mapping in QTL already associated to clinical mastitis and SCS reported in the QTLdb were only 4: the PLXNA4 (plexin A4) on BTA4, the THYI (Thy-I cell surface antigen) on BTAI5 and the SHISA9 (known as CKAMP44, shisa homolog 9) on BTA 25, the FAMI9AI (family with sequence similarity I9 (chemokine (C-C motif)-like), member AI) on BTA22 associated with SCS. This study thus highlighted possible QTL related to mastitis resistance in the other I9 genes annotated and considered in the GO analysis.

2.4. CONCLUSIONS

This is the first mapping for SCS in Valdostana Red Pied population, an autochthonous alpine dual purpose cattle breed whose selection is mainly focused on milk quality, meat production and functionality.

This study brings evidence of significant associations between SCS and SNP markers on several chromosomes in known and newly disclosed QTL regions. Some genes involved in mastitis resistance or variation of SCS content were in QTL on BTAs 9, I3, I5, I7, I9, 2I, 22. In particular, the strongest associations were highlighted on BTA I5 with a total of 24 significant SNPs distributed in three regions.
The detection of genomic regions will help to understand which potential candidate genes may be responsible for the genetic variation in mastitis resistance/susceptibility, a trait of primary importance in dairy cattle breeding and farming.

2.5. METHODS

Sampling

The Valdostana Red Pied cattle is the most common autochthonous dual purpose breed in the region Val d'Aosta (I3,000 animals in 20I3, almost all of them registered in the Herd Book), coming from the red pied cattle and dating back to the end of the fifth century. The National Association of Valdostana Breeders (A.N.A.Bo.Ra.Va.) provided semen samples for 373 bulls and 725,337 test day records from milk routine recording from 45,410 cows.
The daily SCC were transformed into SCS [26]. Genetic parameters and estimated breeding values (EBVs) were calculated with a test day repeatability model on first parity cows. The model of analysis considered the fixed effects of days in milk (10 classes of 30 days each), herd-test day effect (32,870 levels), month of calving and age at calving (I2 classes). Additive genetic and permanent environmental effects were considered as random. Three generations of ancestors were used for each individual extracting information from the National Herd Book for a total of 35,803 animals. Variance component estimations were calculated based on 258,680 test day records with the software VCE [27] and individual EBVs were obtained with the package BLUPF90 [28]. Deregressed proofs (DPEBV) were calculated for 2,4I7 bulls according to [29].

Pool constitution

The bull families structure was verified in terms of number of sons per bull, in order to avoid overrepresentation of a single sire. Only I bull had 6 sons, 4 bulls had 5 sons, 3 bulls had 4 sons and the rest of bulls had 3 or less sons. The sires were ranked according to DP-EBVs for SCS: the top 20% and bottom 20% sires were identified for the constitution of independent pools within tail of the DP-EBV distribution. In order to obtain two independent groups of different animals within tail with comparable phenotypic value, the selected samples for each tail were clustered (even and odds numbers) into 2 sub-pools.

A total of 79 samples were selected for the pools constitution as follows: 2 independent pools of 20 individuals each in the high tail and 2 independent pools of 20 and I9 individuals each in the low tail. Furthermore, for each pool, 2 DNA duplicate-pools were independently constructed from identical samples. Thus, a total of 4 pools per tail were produced.

DNA extraction and genotyping

Bulls DNA was extracted from semen samples using the ZR Genomic DNA TM Tissue MiniPrep (Zymo). The quality control was performed on each sample to verify the DNA integrity on Invitrogen E-Gel I\% Agarose Gel. The GloMax®-Multi Detection System instrument using the Quant-iT ${ }^{\text {TM }}$ dsDNA Broad-Range (BR) Assay Kit (Life Technologies), determined the initial DNA concentrations. The DNA concentration for a single sample was evaluated three times and each read was verified twice (e.g. 2 instrument runs). Samples having concentration diverging $\pm \mathrm{I}$ SD from the mean value were not included in the pools. Samples of DNA were normalized to a concentration of $10 \mathrm{ng} / \mathrm{ul}$ which was reconfirmed with the same methods above described. DNA pools were constructed by taking equivalent amounts of DNA from each sample.
The final pools were concentrated to $50 \mathrm{ng} / \mathrm{ul}$, as required for the Illumina array protocol. Each sub-pool was genotyped 3 times on different chips (array replicates). In all, 24 different chip positions on 3 microarrays were used for the pooled genotyping. Genotyping was performed using the Illumina BovineHD BeadChip (777,962 SNPs) according to the Infinium protocol. SNPs positions were accordingly to the UMB 3.I bovine assembly.

Statistical analysis of pools

Pools were analysed according to the SDP approach. The B-allele frequencies being a good estimator of the allele frequency of the individuals in a pool for each array replicate [30], were used in the analyses after obtaining them from the self-normalization algorithm of Illumina BeadStudio software ${ }^{\circledR}$.

The multiple marker test
A pipeline in R software (http://www.r-project.org/) was adapted from [3I] and [32] to perform a multiple marker test. The test statistic used for each SNP was:

$$
\text { Ztest }=\text { Dtest } / \mathrm{SD}(\text { Dnull })
$$

where Dtest is the difference of the B-allele frequencies means among tails; Dnull is the difference of the B-allele frequencies means within tails. The test statistic was distributed as $\chi 2$ with one degree of freedom under the null hypothesis of equal allele frequencies. Quality control
We performed the analysis after excluding the 1% of SNPs that showed the highest variability as indicated by the size of the mean measures from the replicate array within tail [9]. In addition, the monomorphic SNPs were deleted from the dataset. AndersonDarling, Shapiro-Wilk and Kolmogorov-Smirnov normality tests were performed on the Dnull distribution [33-34-35]
The distribution of the p -values using the quantile-quantile ($\mathrm{Q}-\mathrm{Q}$) plot was examined to estimate the number and the magnitude of the observed associations between genotyped SNPs and DP-EBVs, compared to the statistics expected under the null hypothesis of no association.
Using the $-\log I 0$ of the linkage test p -values for each SNP, a Manhattan plot was created. Manhattan plot is a SNP set out across the chromosomes for left to the right, and the heights correspond to the strength of the associations of the trait.
Bonferroni correction for multiple testing was applied in the analysis. The genome-wide significance threshold was set as a corrected p-value ≤ 0.05, which equated to a nominal p -value of approximately 7.62 x I0-8.

Annotation

The annotation analysis of significant SNPs was performed using UCSC, NCBI ENSEMBL and the Bovine SNP Annotation Tool
(Snat) (http://animalgenetics.cau.edu.cn/snat/dbSNP.html), integrating the information from a variety of public bioinformatics databases (NCBI Entrez Gene, UniProt, Gene Ontology (GO), KEGG PATHWAY and AnimalQTLdb [36]). The Illumina BovineHD SNPs positions were converted from Bos_taurus_UMD_3.I to Btau_4.6.I assembly using the Batch Coordinate Conversion option in UCSC database as required by Snat tools. UCSC and NCBI databases were used to annotate those SNPs not included in Snat and to verify which of the significant SNPs were close (within I Mb [3I], [37]) to functional genes. GO and pathway analyses were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.7.

Acknowledgments: This study was funded by EC-FP7/2007-20I3, agreement n²22664, "Quantomics". Authors gratefully acknowledge A.N.A.Bo.Ra.Va. for the availability of semen samples and phenotypes

REFERENCES

I. Sender G, Korwin-Kossakowska A, Pawlik A, Galal Abdel Hameed K, Oprządek J: Genetic basis of mastitis resistance in dairy cattle a review. Ann Anim Sci 20I3, 13:663-673.
2. Knap PW, Bishop SC: Relationships between genetic change and infectious disease in domestic livestock. Br Soc Anim Sci 2000, 6580.
3. Schukken YH, Günther J, Fitzpatrick J, Fontaine MC, Goetze L, Holst O, Leigh J, Petzl W, Schuberth HJ, Sipka A, Smith DG, Quesnell R, Watts J, Yancey R, Zerbe H, Gurjar A, Zadoks RN, Seyfert HM, members of the Pfizer mastitis research consortium: Host-response patterns of intramammary infections in dairy cows. Vet Immunol Immunopathol 20I I, I44(3-4):270-89.
4. Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME: Invited review: Genomic selection in dairy cattle: progress and challenges. J Dairy Sci 2009, 92(2):433-443.
5. Meuwissen TH, Solberg TR, Shepherd R, Woolliams J: A fast algorithm for BayesB type of prediction of genome-wide estimates of genetic value. Genet Sel Evol 2009, 5:4I-42.
6. Pryce JE, Bolormaa S, Chamberlain AJ, Bowman PJ, Savin K, Goddard ME, Hayes BJ: A validated genome-wide association study in 2 dairy cattle breeds for milk production and fertility traits using variable length haplotypes. J Daity Sci 2010, 93(7):333I-3345.
7. Meredith B, Lynn D, Berry D, Kearney F, Bradkey D, Finlay E, Fahey A: A genome-wide association study for somatic cell score using the illumine high density bovine beadchip identifies several novel QTL potentially related to mastitis susceptibility. Front Genet 20I3, 4:229.
8. Darvasi A, Soller M: Selective DNA pooling for determination of linkage between a molecular marker and a quantitative trait locus. Genetics I994, I38:I365-I373.
9. Janicki PK, Vealey R, Liu J, Escajeda J, Postula M, Welker K: Genome-wide association study using pooled DNA to identify candidate markers mediating susceptibility to postoperative nausea and vomiting. Anesthesiology 20I I, II5(I):54-64.

IO. Bagnato A, Soller M, Lipkin E, Samoré AB, Velayutham D, Schiavini F, Rossoni A, Dolezal MA: Genome Wide Association Analysis in Italian Brown Swiss for Somatic Cell Count [abstract]. Program and Book of Abstract $4^{\text {th }}$ International Conference on Quantitative Genetics: Understanding Variation in Complex Trait 20I2, 234-235.
II. Jensen K, Günther J, Talbot R, Petzl W, Zerbe H, Schuberth HJ, Seyfert HM, Glass EJ: Escherichia coli- and Staphylococcus aureusinduced mastitis differentially modulate transcriptional responses in neighbouring uninfected bovine mammary gland quarters. $B M C$ Genomics 2013, 16:14-36.
I2. Moyes KM, Drackley JK, Morin DE, Loor JJ: Greater expression of TLR2, TLR4, and IL6 due to negative energy balance is associated with lower expression of HLA-DRA and HLA-A in bovine blood neutrophils after intramammary mastitis challenge with Streptococcus uberis. Funct Integr Genomics 2010, I0(I):53-6I.
I3. Sugimoto M, Sugimoto Y: Variant in the 5' untranslated region of insulin-like growth factor I receptor is associated with susceptibility to mastitis in cattle. G3 (Bethesda) 20I2, 2(9):I077-I084.
I4. Mizushima N: Autophagy: process and function. Genes Dev 2007, 2I(22):286I-2873.
I5. Jiang L, Sørensen P, Thomsen B, Edwards SM, Skarman A, Røntved CM, Lund MS, Workman CT: Gene prioritization for livestock diseases by data integration. Physiol Genomics 20I2, 44(5): 305317.

I6. Heeg, K, Dalpke A: TLR-induced negative regulatory circuits: role of suppressor of cytokine signaling (SOCS) proteins in innate immunity. Vaccine 2003, 2I(Suppl 2): S6I-67.
I7. Brenaut P, Lefêvre L, Rau A, Laloë D, Pisoni G, Moroni P, Bevilacqua C, Martin P: Contribution of mammary epithelial cells to the immune response during early stages of a bacterial infection to Staphylococcus aureus. Vet Res 20I4, 45:16.
I8. Wang C, Wang J, Ju Z, Zhai R, Zhou L, Li Q, Li J, Li R, Huang J, Zhong J: Reconstruction of metabolic network in the bovine mammary gland tissue. Mol Biol Rep 2012, 39(7):73II-73I8.

I9. Gilbert FB, Cunha P, Jensen K, Glass EJ, Foucras G, Robert-Granié C, Rupp R, Rainard P: Differential response of bovine mammary epithelial cells to Staphylococcus aureus or Escherichia coli agonists of the innate immune system. Vet Res 20I3, 44:40.
20. Cates EA, Connor EE, Mosser DM, Bannerman DD: Functional characterization of bovine TIRAP and MyD88 in mediating bacterial lipopolysaccharide-induced endothelial NF-kappaB activation and apoptosis. Comp Immunol Microbiol Infect Dis 2009, 32(6):477-490.
2I. Lund MS, Guldbrandtsen B, Buitenhuis AJ, Thomsen B, Bendixen C: Detection of quantitative trait loci in Danish Holstein cattle affecting clinical mastitis, somatic cell score, udder conformation traits, and assessment of associated effects on milk yield. J. Dairy $S_{C i}$ 2008, 9I:4028-4036.
22. Rupp R, Boichard D: Genetics of resistance to mastitis in dairy cattle. Vet. Res 2003, 34:67I-688.
23. Holmberg M, Andersson-Eklund L: Quantitative Trait Loci Affecting Health Traits in Swedish Dairy Cattle. J Dairy Sci 2004, 87:2653-2659.
24. Sahana G, Guldbrandtsen B, Thomsen B, Lund MS: Confirmation and fine-mapping of clinical mastitis and somatic cell score QTL in Nordic Holstein cattle. Anim Genet 2013, 44(6):620-626.
25. Abdel-Shafy H, Bortfeldt RH, Reissmann M, Brockmann GA: Short communication: Validation of somatic cell score-associated loci identified in a genome-wide association study in German Holstein cattle. J Dairy Sci 20I4, 97(4):248I-2486.
26. Wiggans GR, Shook GE: A lactation measure of somatic cell count. J Daity Sci 1987, 70(I2):2666-2672.
27. Gilmour AR, Gogel BJ, Cullis BR, Thompson R: ASReml User Guide Release 3.0. VSN Int. Ltd. Hemel Hempstead. UK 2009.
28. Mistzal I, Tsuruta S, Strabel T, Auvray B, Druet T, Lee D: BLUPF90 and related programs (BGF90). [http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=2807.pdf].
29. VanRaden PM, Wiggans GR: Derivation, calculation, and use of national animal model information. J Dairy Sci 1991, 74(8):27372746.
30. Janicki PK, Liu J: Accuracy of allele frequency estimates in pool DNA analyzed by high-density Illumina Human 610-Quad microarray. The Internet Journal of Genomics and Proteomics 2009, 5:I.
3I. Strillacci MG, Frigo E, Canavesi F, Ungar Y, Schiavini F, Zaniboni L, Reghenzani L, Cozzi MC, Samoré AB, Kashi Y, Shimoni E, TalStein R, Soller M, Lipkin E, Bagnato A: QTL mapping for conjugated linoleic acid, vaccenic acid and Δ^{9}-desaturase in Italian Brown Swiss dairy cattle using selective DNA pooling. Anim Gen, in press.
32. Bagnato A, Schiavini F, Rossoni A, Maltecca C, Dolezal M, Medugorac I, Sölkner J, Russo V, Fontanesi L, Friedmann A, Soller M, Lipkin E: Quantitative trait loci affecting milk yield and protein percent in a three-country Brown Swiss population. I Dairy Sci 2008, 9I: 767-783.
33. Stephens MA: Tests based on EDF statistics. In Goodness-of-Fit Techniques. Edited by Marcel Dekker New York; 1986:97-193.
34. Royston P: A remark on Algorithm AS I8I: The W test for normality. In Applied Statistics. Edited by Wiley for the Royal Statistical Society; 1995, 44:547-55I.
35. Marsaglia G, Tsang WW, Jingbo W: Evaluating Kolmogorov's distribution. Journal of Statistical Software 2003, 8:I-4.
36. Jiang J, Jiang L, Zhou B, Fu W, Liu JF, Zhang Q: Snat: a SNP annotation tool for bovine by integrating various sources of genomic information. BMC Genetics:85.
37. Pant SD, Schenkel FS, Verschoor CP, You Q, Kelton DF, Moore SS, Karrow NA: A principal component regression based genome wide analysis approach reveals the presence of a novel QTL on BTA7 for MAP resistance in holstein cattle. Genomics 2010, 95(3):I76-I82.

Table I. Details for DP-EBVs mean and SD values for low and high tail pools.

POOL	N° OF SAMPLES	DP-EBV MEAN	MEAN SD	DP-EBV REL MEAN	POOL	N° OF SAMPLES	DP-EBV MEAN	MEAN SD	DP-EBV REL MEAN
Low tail_I	20	-1.151	0.324	0.535	High tail_I	20	I.257	0.395	
Low tail_2	19	-1.080	0.251	0.600	High tail_2	20	I.134	0.285	

Table 2. Significant intragenic SNPs above the Bonferroni genome-wide threshold of 0.05.

ILLUMINA SNP NAME	GENBANK SNP CODE	P -Value	BTA	$\begin{gathered} \text { SNP } \\ \text { LOCATION } \end{gathered}$	$\begin{gathered} \text { GENE } \\ \text { SYMBOL } \end{gathered}$
BovineHDOIOOOO7623	rs 137585939	4.43E-08	I	26254309	ROBOI
BovineHDOIOOO40084	rs 43273786	5.4IE-08	I	I4I228619	NEKII
BovineHD0200004154	rsIIO997154	$3.76 \mathrm{E}-08$	2	I5I42I89	SSFA 2
BovineHD0300000560	rsIIO459674	inf	3	2612333	TADAI
BovineHD0300002104	rsII0093914	1.87E-08	3	7276675	DDR2
BovineHD0300018913	rs42371455	1.87E-09	3	66866123	LPHN2
BovineHD0300023699	rsI35870054	$8.96 \mathrm{E}-\mathrm{IO}$	3	87296944	ALG6
BovineHDO400026934	rsI09307332	$4.69 \mathrm{E}-08$	4	98543003	PLXNA4
BovineHD0500003126	rs 134685896	$3.26 \mathrm{E}-\mathrm{IO}$	5	I2834395	ACSS3
BovineHD0700010213	rs 133885406	$4.73 \mathrm{E}-08$	7	33526558	HSDI7B4
BovineHD090001996I	rs 136413030	$3.70 \mathrm{E}-08$	9	73355572	VNNI
BovineHDI000004333	rs 43612234	$5.32 \mathrm{E}-\mathrm{IO}$	10	I2722576	MEGFII
BovineHDIOOOOO9424	rs 43623003	$6.65 \mathrm{E}-08$	10	28079552	MIR 2284Z-I
BovineHDIOOOOO9428	rs 110034517	$5.56 \mathrm{E}-09$	10	28102288	MIR 2284Z-I
BovineHDIOOOOI7503	rs42486408	I.I6E-09	10	60793897	TRPM7
BovineHDII00003814	rsI09489659	5.53E-I2	II	II771322	CCT7
BovineHDI300006368	rsI09943824	I.I2E-08	13	20845530	PLXDC2
BovineHDI300022672	rs41710487	$4.53 \mathrm{E}-10$	I3	78416778	KCNBI
BovineHDI500008135	rs 134980659	$6.49 \mathrm{E}-08$	I5	28399876	THYI
Hapmap40064-BTA-36665	rs41631137	$4.65 \mathrm{E}-\mathrm{I} 2$	15	33953859	PIK3C2A
BovineHDI500015036	rs41769292	5.15E-09	15	50730325	NUP98
BovineHDI500015037	rs 134338365	$2.50 \mathrm{E}-\mathrm{IO}$	I5	50733648	NUP98
BTB-00604170	rs41769258	$5.84 \mathrm{E}-\mathrm{IO}$	15	50753778	NUP98
BovineHDI500015042	rs41769237	$3.41 \mathrm{E}-10$	15	50765770	NUP98
BovineHDI500015044	rsI09649273	$6.55 \mathrm{E}-08$	I5	5076986 I	NUP98
BovineHDI500015047	rs41768429	$7.66 \mathrm{E}-\mathrm{I} 2$	I5	50774198	NUP98
BovineHDI500015049	rs41768423	I.42E-08	I5	50780537	NUP98
BovineHDI500015051	rs41768414	$6.94 \mathrm{E}-\mathrm{II}$	I5	50784307	NUP98
BovineHDI500015054	rs41768364	7.I2E-08	I5	50792403	NUP98
BovineHDI500015055	rsI09966062	1.99E-08	I5	5079568 I	NUP98
BovineHDI500015056	rs41768379	$9.17 \mathrm{E}-\mathrm{I} 3$	I5	50799229	NUP98
BovineHD4I000I2071	rsI36525289	7.93E-09	I5	51638163	PDE2A
BTA-I8IO5-no-rs	rsI09715014	$4.33 \mathrm{E}-09$	15	62952170	CCDC73
BovineHDI600009946	rs41798963	$4.62 \mathrm{E}-08$	16	31290905	CEPI70
BovineHDI600021693	rs41819133	7.33E-08	16	71743691	CAMKIG
BovineHDI700002750	rsIIO828704	I.IIE-09	17	I0472292	NR3C2

BovineHDI700018352	rs135157738	$2.29 \mathrm{E}-09$	17	64466089	RPH3A
BovineHDI700019237	rsIIO644998	$2.43 \mathrm{E}-\mathrm{IO}$	17	67344705	COROIC
BovineHDI700019238	rsI34453I7I	I.90E-09	I7	67347843	COROIC
BovineHDI70002072I	rs109085689	4.6IE-08	I7	72364594	MTMR3
BovineHDI700021131	rs 135044766	$4.88 \mathrm{E}-08$	I7	73638738	DEPDC5
BovineHDI700021132	rsI35814317	7.10E-08	17	73640453	DEPDC5
BovineHDI900006167	rsI34967563	7.0IE-IO	19	20731168	SSH2
BovineHD4IOOOI4346	rs29017164	$2.41 \mathrm{E}-\mathrm{I} 3$	19	57590345	ATPSH
BovineHD2I0000I405	rsI33992914	6.47E-08	2 I	6826694	IGFIR
ARS-BFGL-NGS-10830	rsI090142II	1.74E-09	2 I	I4303664	SLCO3AI
BovineHD2200009526	rsIIOO64285	8.84E-09	22	33753508	FAMI9AI
BovineHD2200009645	rsI35018045	$3.20 \mathrm{E}-08$	22	34006051	FAMI9AI
BovineHD2200009658	rs 133223316	$5.38 \mathrm{E}-09$	22	34051778	FAMI9AI
BovineHD2300014695	rsIIO724706	$4.60 \mathrm{E}-09$	23	50469508	TUBB2B
BovineHD2500003334	rs42064606	1.77E-08	25	I3011549	SHISA9
BovineHD2500003336	rs 109087355	$2.45 \mathrm{E}-09$	25	I301728I	SHISA9

Genes and SNPs location as in the Btau4.6.I assembly; gene symbol as in GenBank.

Table 3. List of chromosome regions strongly associated to SCS.

BTA	START*	END*	$\begin{aligned} & \hline \text { LENGHT } \\ & (\mathrm{BP}) \\ & \hline \end{aligned}$	N. SNPs	GENBANK SNP CODE
I	2162546I	21632949	7488	3	rsIIOI4I424; rs42365792; rs 42367069
I	27814460	28017039	202579	7	$\begin{gathered} \text { rsI35454I83; rsIIOI74548; rsI34436790; rsI3637I716; rsIIIOOI290; } \\ \text { rs4I586446; rsIIOOO2I82 } \end{gathered}$
2	II7668432	118739748	1071316	9	rsI34I03593; rsI09545959; rsI3362I389; rsI35143470; rsI36343471; rsI09908642; rsI33815275; rsI35205101; rs 43320680
3	6388643	6396280	7637	3	rs IIO787209; rs42458782; rsI32773940
4	117852857	118898784	1045927	4	rs I33335423; rs 43417362; rsI33867064; rs I36879377
9	72784616	72804256	19640	4	rs41662464; rsI09049649; rs41662465; rs 136413030
13	78273095	78416778	I43683	4	rs41634068; rs 137320993; rs 109123247; rs41710487
15	28399876	28999494	599618	3	rs I34980659; rs4I754552; rs I 1026936I
15	31285729	32027462	741733	5	$\begin{aligned} & \text { rsI35835073; rs29018094; rsII0325464; rs43299708; rs43299703 } \\ & \text { rs I37687321; rsI08941833; rs4I769292; rsI34338365; rs4I769258; } \end{aligned}$
15	50438721	51638163	II99442	I4	rs4I769237; rsI09649273; rs4I768429; rs41768423; rs4I7684I4; rs 41768364; rsI09966062; rs41768379; rsI36525289
17	67344705	67375670	30965	3	rs I IO644998; rs I34453171; rs41850009
$2 \mathrm{I}^{\text {\# }}$	60154246	60175026	20780	4	rs29018575; rs42236250; rs42236274; rs109897238
22	33753508	34051778	298270	3	rsIIOO64285; rs I35018045; rs 333223316

Start. End ${ }^{*}$: candidate region start and end (bp)
\# Start and End position referred to Btau4.6.I assembl

FRigure I. Q-Q plot of SNPs at marker level (p-values).

Figure 2. Manhattan plot of genome-wide associations for SCS in Valdostana Red Pied breed. The red line represents the Bonferroni correction threshold.

Chromosome

Additional file

Additional file I. List of the significant SNPs identified in the Valdostana Red Pied breed.

ILLUMINA SNP NAME	GENBANK SNP CODE	P-VALUE	BTA	$\begin{gathered} \text { SNP } \\ \text { LOCATION } \\ \text { UMD3.I } \\ \hline \end{gathered}$	$\begin{gathered} \text { SNP } \\ \text { LOCATION } \\ \text { Btau4.6.I } \\ \hline \end{gathered}$	$\begin{gathered} \text { GENE } \\ \text { SYMBOL } \\ \text { (UMD3.I) } \end{gathered}$	GENE SYMBOL (Btau4.6.I)	QTL ID	QTL TRAIT	QTL REGION
BovineHDOIOOOO2474	rsI37725625	5,70E-08	I	7719210	7578168					
BovineHDOIOOOO2486	rs 134021632	I,85E-09	I	7758076	7617863					
BovineHDOIOOOO6355	rsIIOI41424	3,18E-08	I	21392476	2 I 62546 I					
BTB-OI2IOO76	rs42365792	6,15E-08	I	21393283	21626268					
BovineHDOIOOOO6362	rs42367069	2,47E-08	I	21400228	21632949					
BovineHDOIOOOO7623	rs 137585939	4,43E-08	I	25854635	26254309	ROBOI	ROBOI			
BovineHDOI00008100	rs 135454183	2,27E-09	I	2726709 I	27814460					
BovineHDOI00008178	rsIIOI74548	3,08E-08	I	27457470	28007458					
BovineHDOIOOOO8181	rs 134436790	2,7IE-08	I	27461010	28011000					
BovineHDOIOOOO8I82	rs136371716	4,69E-08	I	27462684	28012675					
BovineHDOIOOOO8183	rsIIIOOI290	5,40E-09	I	27463446	28013437					
Hapmap50048-BTA-59263	rs41586446	5,03E-08	I	27465349	28015340					
BovineHDOIOOOO8I85	rsIIOOO2182	I,44E-08	I	27467048	28017039					
BovineHDOIOOOIO452	rsI34558019	4,74E-08	I	3651914 I	37345318					
BovineHDOIOOOI6492	rsIIO467395	2,67E-08	I	5829253 I	58471459					
BovineHDOIOO047III	rs137083739	3,35E-II	I	9379383 I	NA					
BovineHDOIOO035049	rs137041533	3,2IE-I4	I	I24I42939	I25505033					
BovineHDOIOOO40084	rs43273786	5,4IE-08	I	I40263787	I4I2286I9	NEKII	NEKII			
BovineHD020000344I	rs 133588497	I,94E-I2	2	I2207I27	I2523892					
BovineHD0200004154	rsII0997154	3,76E-08	2	I4690055	I5I42I89		SSFA 2			
BovineHD0200006189	rsI36280214	6,02E-09	2	21674287	22305417					
BovineHD02000I2099	rs 43305393	2,78E-08	2	41699309	42800586	SPI4OL				
BovineHDO200014323	rsI3590100I	3,93E-08	2	49678936	5106758I					
BovineHDO200032375	rsI34103593	6,77E-08	2	II2544408	II7668432					
BovineHDO20003259I	rsI09545959	4,53E-08	2	II3I84258	II8307083					
BovineHD0200032593	rsI33621389	2,45E-II	2	II3I88017	II83II005					
BovineHDO200032594	rs 135143470	3,26E-IO	2	II3I88626	II83II6I4					
BovineHDO200032600	rsI3634347I	4,86E-08	2	II3I93549	II83I6537					
BovineHD0200032602	rsI09908642	I,32E-I2	2	II3I95734	II83I8722					
BovineHDO200032671	rs 133815275	3,72E-IO	2	II3394404	II8520597					
BovineHD0200032675	rsI3520510I	3,25E-08	2	II340637I	II8532566					
BovineHDO200032735	rs43320680	I,42E-08	2	II36I0357	II8739748					

BovineHD0200034409	rs 135912109	I,54E-08	2	II9I824I4	I23878559					
BovineHDO200036972	rsI09385272	8,78E-09	2	I2736I853	I32282060	ZNF683				
BovineHD0200037360	rsIIIOI4754	6,28E-09	2	I2862610I	I33678668					
BovineHD0200039687	rsI32819804	6,52E-08	2	I35577686	I40889824					
BovineHD0300000560	rsIIO459674	inf	3	2093487	26 I 2333	TADAI	TADAI			
BovineHD030000I752	rsIIO787209	3,92E-I3	3	5676318	6388643					
BovineHD030000I754	rs42458782	I,39E-II	3	5680627	63927 I5					
BovineHD030000I755	rs 132773940	I,I7E-I4	3	568419I	6396280					
BovineHD0300002104	rsII0093914	I,87E-08	3	6699584	7276675	DDR 2	DDR 2			
BovineHD0300018913	rs42371455	I,87E-09	3	63185254	66866 I23	LPHN2	LPHN2			
BovineHD0300023699	rsI35870054	8,96E-I0	3	82527720	87296944	ALG6	ALG6			
BovineHD0300024738	rs 43353415	I,69E-08	3	86546042	NA					
BovineHD0400026934	rsI09307332	4,69E-08	4	96635633	98543003	PLXNA4	PLXNA4	2491	clinical mastitis	7542I999-99603227
BovineHDO400032670	rs43422436	3,65E-08	4	II3410262	II6268808					
BovineHDO400032690	rs 43415893	I,33E-08	4	II349I345	II634788I					
BovineHD0400033263	rsI33335423	2,23E-08	4	II4993038	II7852857					
BovineHDO400033469	rs 43417362	3,67E-09	4	II5498539	II8340933					
BovineHD0400033488	rsI33867064	6,78E-08	4	II55632I5	II8405576					
BovineHD0400033665	rsI36879377	4,03E-08	4	II6067636	II8898784					
BovineHD0500001585	rsI09553703	2,37E-09	5	5913578	6327862			I742	SCC	6023I04-8023I04
BovineHD0500003106	rsI36127388	I,68E-II	5	I0759058	NA	ACSS3				
BovineHD0500003126	rsI34685896	3,26E-I0	5	I0792875	I2834395	ACSS3	ACSS3			
BovineHD0500003925	rsI34449483	5,04E-08	5	I3065I6I	I5I64797					
BovineHD0500020666	rs 137104148	I,29E-08	5	72963752	77528326					
BovineHD0500031184	rsI32800543	5,80E-08	5	I0830022I	II4I22I59					
BovineHD0500034148	rsI34479470	4,52E-I4	5	II7557538	NA					
BovineHD0500034150	rsI36956586	4,93E-08	5	II756842I	NA					
BovineHD0600005426	rsI37467024	9,44E-09	6	I9542495	19696350					
BovineHD0600013116	rsI33682920	2,I5E-08	6	47890814	47615237					
BovineHD0600015748	rsI35342305	I,72E-08	6	57562332	58114205	C6H4orfI9				
BovineHD0600023179	rsI33319155	2,20E-08	6	84252180	NA					
BovineHD0600023185	rsI36907262	5,88E-09	6	84265468	NA					
BovineHD0600025253	rs 42615160	I,I4E-08	6	91964609	93410115					
BovineHD0700003681	rsI09949034	3,03E-08	7	I40I0306	III60093					
ARS-BFGL-NGS-II2444	$N A$	I,75E-08	7	23275178	NA					
BovineHD0700008448	rsI37545102	3,92E-08	7	30002652	27548813					
BovineHD07000I0213	rsI33885406	4,73E-08	7	35679243	33526558	HSDI7B4	HSDI7B4			
BovineHD0800002755	rsI35037740	5,95E-I0	8	8560601	8576004					

BovineHD0800007500	rs 42215668	6,20E-08	8	2478249 I	26295529					
BovineHD0800029893	rs 136410732	I,27E-09	8	IOI005762	I04278477					
BovineHD0800029896	rs 42501093	4,IIE-IO	8	101009106	I0428I820					
BovineHD09000I0437	rs42575049	2,86E-08	9	375149II	39325613					
Hapmap49339-BTA-84110	rs41662464	I,58E-08	9	71162153	72804256	$V N N I$		1745	clinical mastitis	49477988-76680782
BovineHD09000I9716	rsI09049649	4,62E-09	9	71163463	72784616			I745	clinical mastitis	49477988-76680782
BovineHD4100007550	rs41662465	I,60E-II	9	71181789	72802946			1745	clinical mastitis	49477988-76680782
BovineHD09000I996I	rsI36413030	3,70E-08	9	71844127	73355572		$V N N I$	I745	clinical mastitis	49477988-76680782
BovineHDIOOOOOOIOI	rsI35481686	6,36E-09	IO	46 I 04 I	NA					
BovineHDIOOOOO4333	rs43612234	5,32E-I0	IO	I2893029	I2722576	MEGFII	MEGFII			
BovineHDIOOOOO9424	rs 43623003	6,65E-08	10	28732407	28079552		MIR 2284Z-I			
BovineHDIOOOOO9428	rsIIOO34517	5,56E-09	IO	28741867	28102288		MIR2284Z-I			
BovineHDIOOOOI7503	rs 42486408	I,I6E-09	IO	59867344	60793897	TRPM7	TRPM7			
BovineHDII00003814	rsI09489659	5,53E-I2	II	II292682	II77I322		CCT7	1693	SCC	5506264-25860118
BovineHDII00003818	rsI34575850	5,33E-08	II	II300974	II87I895			1693	SCC	5506264-25860II8
BovineHDIIOOOO4129	rsI09878012	5,46E-08	II	I2535496	I3127338			1693	SCC	5506264-25860II8
BovineHDIIOOOI 4224	rsI34822269	3,49E-08	II	48432001	50274524	REEPI				
BovineHDIIOOOI6327	rsI34809352	3,75E-08	II	55905582	57584I7I					
BovineHDI200020095	rsI34063113	6,89E-08	I2	72740699	NA					
BovineHDI300006368	rsI09943824	I,I2E-08	I3	21852047	20845530	PLXDC2	PLXDC2			
BovineHD4IOOOIO442	rs41634068	3,19E-08	I3	78137874	78273095					
BovineHDI300022626	rsI37320993	2,38E-09	I3	78145838	78280335					
BovineHDI300022630	rsI09123247	I,54E-08	I3	78163033	7829753 I					
BovineHDI300022672	rs41710487	4,53E-IO	I3	78282460	78416778	KCNBI	KCNBI			
BovineHDI50000I239	rs425954II	5,49E-08	I5	5I53883	3849717					
BovineHD1500007318	rsI36596272	2,37E-I0	I5	27339214	25223587			4985	clinical mastitis	I3868104-294903I7
BovineHDI500007427	rsI34799988	4,88E-08	I5	2767081 I	25558182			4985	clinical mastitis	I3868I04-294903I7
BovineHDI500008135	rsI34980659	6,49E-08	I5	30514604	28399876	THYI	THYI	4985	clinical mastitis	I3868I04-294903I7
BovineHDI500008366	rs41754552	4,32E-08	I5	3 II 05 IOI	28993968			4985	clinical mastitis	I3868I04-294903I7
BovineHDI500008367	rsIIO26936I	I,02E-08	I5	31II062I	28999494			4985	clinical mastitis	I3868I04-294903I7
BovineHDI500009024	rsI35835073	7,58E-I0	I5	33313379	31285729					
BovineHD4I000II940	rs29018094	7,59E-09	I5	33419454	3I391827			2778	SCS	3I5I5378-335I5378
BovineHDI500009068	rsIIO325464	6,90E-I I	I5	33465218	3I43755I			2778	SCS	3I5I5378-335I5378
BovineHDI50000922I	rs43299708	8,37E-09	I5	34029055	32026910			2778	SCS	3I5I5378-335I5378
BovineHDI500009222	rs43299703	3,60E-08	I5	34029604	32027462			2778	SCS	3I5I5378-335I5378
Hapmap40064-BTA-36665	rs41631137	4,65E-I2	I5	35873422	33953859	PIK3C2A	PIK3C2A			
BovineHDI5000II688	rsI37114551	2,IOE-08	I5	42159894	40426557					
BovineHDI5000I4997	rsI3768732I	6,46E-08	I5	51975II3	5043872 I	STIMI				

BovineHDI500025874	rs108941833	2,54E-08	I5	52094874	50717333					
BovineHDI500015036	rs4I769292	5,I5E-09	I5	52107961	50730325	NUP98	NUP98			
BovineHDI500015037	rs 134338365	2,50E-I0	I5	52111223	50733648	NUP98	NUP98			
BTB-00604170	rs4I769258	5,84E-I0	I5	52131353	50753778	NUP98	NUP98			
BovineHDI500015042	rs4I769237	3,4IE-I0	I5	52143337	50765770	NUP98	NUP98			
BovineHDI500015044	rsI09649273	6,55E-08	I5	52147428	5076986 I	NUP98	NUP98			
BovineHDI500015047	rs41768429	7,66E-I2	I5	52151765	50774198	NUP98	NUP98			
BovineHDI500015049	rs41768423	I,42E-08	I5	52158101	50780537	NUP98	NUP98			
BovineHDI500015051	rs41768414	6,94E-I I	I5	5216I87I	50784307	NUP98	NUP98			
BovineHDI500015054	rs4I768364	7,I2E-08	I5	52169973	50792403	NUP98	NUP98			
BovineHDI500015055	rsI09966062	I,99E-08	I5	5217325 I	5079568 I	NUP98	NUP98			
BovineHDI500015056	rs4I768379	9,17E-I3	I5	52176798	50799229	NUP98	NUP98			
BovineHD4I0001207I	rs 136525289	7,93E-09	I5	52993385	51638163		PDE2A			
BovineHDI500015732	rs4I769333	I,36E-09	I5	544628 I I	53189677					
BovineHDI500017243	rs42595490	2,68E-09	I5	59908603	58736392					
BovineHDI5000I7244	rs42595494	I,23E-09	I5	59913013	58740802					
BTA-I8IO5-no-rs	rsI09715014	4,33E-09	I5	64168198	62952170	CCDC73	CCDC73			
BovineHDI600009946	rs41798963	4,62E-08	I6	34743597	3I290905	CEPI7O	CEPI7O			
BovineHDI600021693	rs41819133	7,33E-08	I6	7562 I260	7I74369I	CAMKIG	CAMKIG			
BovineHDI700002750	rsIIO828704	I,IIE-09	I7	9808520	10472292	NR3C2	NR3C2			
BovineHDI700007360	rsI34414083	2,0IE-08	I7	26106136	27406155					
BovineHD4IOOOI3230	$N A$	5,7IE-08	I7	62982492	62982492	RBMI9				
BovineHDI7000I8352	rs 135157738	2,29E-09	I7	63725088	64466089	RPH3A	RPH3A			
BovineHDI700019237	rsIIO644998	2,43E-I0	I7	66513466	67344705	COROIC	COROIC			
BovineHDI700019238	rsI34453I7I	I,90E-09	I7	66516604	67347843	COROIC	COROIC			
BovineHDI700019246	rs41850009	2,3IE-08	I7	66544435	67375670					
BovineHDI700020540	rs41851405	2,73E-08	17	70548656	71645885					
BovineHDI70002072I	rsI09085689	4,6IE-08	I7	71240044	72364594	MTMR3	MTMR3			
BovineHDI70002113I	rs 135044766	4,88E-08	17	72513026	73638738	DEPDC5	DEPDC5			
BovineHDI700021132	rs 135814317	7,10E-08	I7	725I474I	73640453	DEPDC5	DEPDC5			
BovineHDI900000597	rsI32787142	4,23E-I0	19	2604934	I497II9					
BovineHDI900006167	rsI34967563	7,01E-I0	19	21492405	20731168		SSH2			
BovineHDI90001053I	rs41916837	4,57E-08	19	36316508	36523730					
BovineHDI900015066	rsI32720248	4,52E-08	19	53803085	54329700					
BovineHDI900015929	rs 133890886	I,85E-08	19	56365338	57026445					
BovineHD4IOOOI4346	rs29017164	2,4IE-I3	19	57020892	57590345		ATPSH			
BovineHD2IOOOOI405	rsI339929I4	6,47E-08	2I	6826694	6826694		IGFIR			
ARS-BFGL-NGS-10830	rsI090142II	I,74E-09	2 I	I5345488	I4303664	SLCO3AI	SLCO3AI	545 I	clinical mastitis	8909340-26I79970

BovineHD2IOOOIO844 BovineHD4IOOOI5306 BovineHD2IOOOI 7446 BovineHD2IOOOI745I ARS-BFGL-NGS-42I78 BovineHD2200003506 BovineHD2200009526 BovineHD2200009645 BovineHD2200009658 BovineHD22000I055I BovineHD22000I799I BovineHD2300003999 BTA-55613-no-rs BovineHD23000I4695 BovineHD2500003334 BovineHD2500003336 BovineHD2500005013 BovineHD2500005088 BovineHD2600004216 BovineHD2600009267 BovineHD270000I072 BovineHD270000I075 BovineHD2700002962 BovineHD2900004558 ARS-BFGL-NGS-97397

rsIIOO71682	I,85E-08	2I	36898862	36616455
rs29018575	I,84E-08	2 I	60154246	NA
rs42236250	I,88E-I0	2I	60156822	NA
rs42236274	5,70E-09	2 I	60173163	NA
rsI09897238	4,46E-09	2I	60175026	NA
rsII0821I86	2,89E-08	22	II932652	I20I4326
rsIIOO64285	8,84E-09	22	33187687	33753508
rsI350I8045	3,20E-08	22	33440399	3400605 I
rsI33223316	5,38E-09	22	33487012	34051778
rsII0495093	I,27E-09	22	37118913	37824479
rs 133442856	4,16E-09	22	47632083	47969909
rsI09020826	I,85E-08	23	I565I922	I6I46305
rs41640755	8,70E-09	23	I5656I40	I6I50523
rsil0724706	4,60E-09	23	50379740	50469508
rs42064606	I,77E-08	25	II926465	I30II549
rsI09087355	2,45E-09	25	II932I9I	I30I728I
rsIIO718749	2,72E-09	25	I7747440	I8806275
rsIIO865743	I,24E-I0	25	I805916I	I9II5600
rsI09614481	2,00E-08	26	I6809329	I745I400
rs 132886180	9,62E-09	26	34258305	34514978
rsIIOOOI968	6,84E-09	27	32 II 2 I 4	4392694
rsI09557235	5,64E-09	27	3215100	4396580
rsII0992741	2,77E-II	27	9887995	II837558
rs 133088106	3,2IE-08	29	I5410280	I6I5I57I
rsIIO652594	I,3IE-09	29	I6353986	I7429138

FAMI9AI	FAMI9AI	4987	SCS	32628727-43319438
FAMI9AI	FAMI9AI	4987	SCS	32628727-433I9438
FAMI9AI	FAMI9AI	4987	SCS	32628727-433I9438
		4987	SCS	32628727-433I9438
TUBB2B	TUBB2B			
SHISA9	SHISA9	I75I	clinical mastitis	0-I7024I7I
SHISA9	SHISA9	I75I	clinical mastitis	0-I7024I7I
SORBSI		2689	SCS	0-2I72909I
		2712	SCC	4223574-I I98250I
		27 I 2	SCC	4223574-II98250I
		2712	SCC	4223574-I I98250I
		I3249	SCS	I6253597-I8253597

Additional file 2. List biological processes, cellular components, molecular function and metabolic pathways obtained with the annotation analyses performed with DAVID on line Database

\begin{tabular}{|c|c|c|}
\hline GENE SYMBOL (GENE FULL NAME \& GO and KEGG ANNOTATION \& LIST OF BIOLOGICAL PROCESSES (BP), CELLULAR COMPONENTS (CC), MOLECULAR FUNCTION (MF) AND METABOLIC PATHWAYS (KEGG)

\hline ATP5H (ATP synthase, $\mathrm{H}+$ transporting, mitochondrial F0 complex, subunit d) \& GOTERM_BP_FAT

GOTERM_CC_FAT

GOTERM_MF_FAT

KEGG_PATHWAY \& | generation of precursor metabolites and energy, oxidative phosphorylation, purine nucleotide metabolic, purine nucleotide biosynthetic, ATP biosynthetic, phosphorus metabolic, phosphate metabolic, ion transport, cation transport, hydrogen transport, nucleoside triphosphate metabolic, nucleoside triphosphate biosynthetic, purine nucleoside triphosphate metabolic, purine nucleoside triphosphate biosynthetic, purine ribonucleotide metabolic, purine ribonucleotide biosynthetic, nucleotide biosynthetic, ribonucleoside triphosphate metabolic, ribonucleoside triphosphate biosynthetic, purine ribonucleoside triphosphate metabolic, purine ribonucleoside triphosphate biosynthetic, ribonucleotide metabolic, ribonucleotide biosynthetic, monovalent inorganic cation transport, energy coupled proton transport, down electrochemical gradient, ATP synthesis coupled proton transport, proton transport, phosphorylation, ion transmembrane transport, nucleobase, nucleoside and nucleotide biosynthetic, nucleobase, nucleoside, nucleotide and nucleic acid biosynthetic, nitrogen compound biosynthetic, ATP metabolic, transmembrane transport mitochondrial proton-transporting ATP synthase complex, coupling factor $\mathrm{F}(\mathrm{o})$, mitochondrion, mitochondrial envelope, mitochondrial inner membrane, mitochondrial proton-transporting ATP synthase complex, proton-transporting two-sector ATPase complex, organelle inner membrane, organelle membrane, mitochondrial membrane, organelle envelope, envelope, proton-transporting two-sector ATPase complex, proton-transporting domain, mitochondrial part, mitochondrial membrane part, proton-transporting ATP synthase complex, proton-transporting ATP synthase complex, coupling factor $\mathrm{F}(\mathrm{o})$ |
| :--- |
| monovalent inorganic cation transmembrane transporter activity, hydrogen ion transmembrane transporter activity, inorganic cation transmembrane transporter activity Oxidative phosphorylation, Alzheimer's disease, Parkinson's disease, Huntington's disease |

\hline DEPDC5 (DEP domain containing 5) \& GOTERM_BP_FAT \& intracellular signaling cascade

\hline
\end{tabular}

$\left.\begin{array}{cccccc:c}\hline \begin{array}{c}\text { NEKII (NIMA (never } \\ \text { in mitosis gene a)-- } \\ \text { related kinase II) }\end{array} & \text { GOTERM_BP_FAT } & \begin{array}{l}\text { protein amino acid phosphorylation, phosphorus metabolic, phosphate metabolic, } \\ \text { phosphorylation }\end{array} \\ & \text { GOTERM_MF_FAT } \\ \text { nucleotide binding, nucleoside binding, purine nucleoside binding, protein kinase activity, protein } \\ \text { serine/threonine kinase activity, ATP binding, purine nucleotide binding, adenyl nucleotide } \\ \text { binding, ribonucleotide binding, purine ribonucleotide binding, adenyl ribonucleotide binding }\end{array}\right]$
photoreceptor cell differentiation, retinal cone cell development, focal adhesion formation, blood vessel morphogenesis, positive regulation of response to stimulus, eye morphogenesis, camera-type eye morphogenesis, neuron development, regulation of neurogenesis, negative regulation of neurogenesis, regulation of axonogenesis, negative regulation of axonogenesis, positive regulation of immune response, antigen receptor-mediated signaling pathway, T cell receptor signaling pathway, regulation of antigen receptor-mediated signaling pathway, regulation of T cell receptor signaling pathway, negative regulation of antigen receptor-mediated signaling pathway, negative regulation of T cell receptor signaling pathway, regulation of T cell activation, regulation of cell activation, positive regulation of cell activation, positive regulation of T cell activation, positive regulation of transport, negative regulation of cellular component organization, regulation of phosphorus metabolic, regulation of lymphocyte activation, positive regulation of lymphocyte activation, regulation of cell motion, negative regulation of cell motion, regulation of release of sequestered calcium ion into cytosol, positive regulation of release of sequestered calcium ion into cytosol, regulation of hydrolase activity, regulation of transferase activity, positive regulation of hydrolase activity, negative regulation of transferase activity, regulation of calcium ion transport, positive regulation of calcium ion transport, regulation of nervous system development, retina development in camera-type eye, retina morphogenesis in camera-type eye, camera-type eye photoreceptor cell differentiation, regulation of cell development endoplasmic reticulum, plasma membrane, external side of plasma membrane, cell surface, dendrite, growth cone, site of polarized growth, intrinsic to membrane, anchored to membrane,
GOTERM_CC_FAT intrinsic to plasma membrane, intrinsic to external side of plasma membrane, anchored to external side of plasma membrane, cell projection, neuron projection, plasma membrane part, membrane raft, anchored to plasma membrane
small GTPase regulator activity, GTPase activator activity, Ras GTPase activator activity, Rho

GOTERM_MF_FAT

 GTPase activator activity, integrin binding, phospholipid binding, enzyme activator activity, lipid binding, GTPase regulator activity, protein complex binding, GPI anchor binding, phosphoinositide binding, nucleoside-triphosphatase regulator activityKEGG_PATHWAY Leukocyte transendothelial migration
ACSS3 (acyl-CoA GOTERM_CC_FAT mitochondrion
$\left.\begin{array}{cll}\begin{array}{c}\text { synthetase short-chain } \\ \text { family member 3) }\end{array} & \text { GOTERM_MF_FAT } & \begin{array}{l}\text { nucleotide binding, nucleoside binding, purine nucleoside binding, acetate-CoA ligase activity, } \\ \text { ATP binding, CoA-ligase activity, ligase activity, forming carbon-sulfur bonds, acid-thiol ligase } \\ \text { activity, purine nucleotide binding, adenyl nucleotide binding, ribonucleotide binding, purine } \\ \text { ribonucleotide binding, adenyl ribonucleotide binding } \\ \text { Propanoate metabolism }\end{array} \\ \hline \begin{array}{c}\text { ALG6 (asparagine-linked } \\ \text { glycosylation 6, alpha- } \\ \text { I,3-glucosyltransferase } \\ \text { homolog (S. cerevisiae)) }\end{array} & \text { KEGG_PATHWAY } & \text { GEGG_PATHWAY }\end{array} \begin{array}{l}\text { GOTERM_CC_FAT }\end{array} \begin{array}{l}\text { endoplasmic reticulum, endoplasmic reticulum membrane, endomembrane system, organelle } \\ \text { membrane, nuclear envelope-endoplasmic reticulum network, endoplasmic reticulum part } \\ \text { N-Glycan biosynthesis }\end{array}\right]$

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
HSDI7B4 \\
(hydroxysteroid (17beta) dehydrogenase 4)
\end{tabular} \& GOTERM_BP_FAT

GOTERM_CC_FAT
KEGG_PATHWAY \& very-long-chain fatty acid metabolic, reproductive developmental, fatty acid metabolic, fatty acid beta-oxidation, sex differentiation, gonad development, male gonad development, fatty acid catabolic, lipid catabolic, organic acid catabolic, fatty acid oxidation, lipid modification, lipid oxidation, cellular lipid catabolic, development of primary sexual characteristics, carboxylic acid catabolic, development of primary male sexual characteristics, male sex differentiation, reproductive structure development, reproductive cellular, oxidation reduction, Sertoli cell differentiation, Sertoli cell development mitochondrion, peroxisome, microbody Primary bile acid biosynthesis

\hline IGFIR (insulin-like growth factor I receptor) \& GOTERM_BP_FAT

GOTERM_CC_FAT

GOTERM_MF_FAT \& | reproductive developmental, regulation of DNA replication, protein complex assembly, protein amino acid phosphorylation, phosphorus metabolic, phosphate metabolic, immune response, cell surface receptor linked signal transduction, enzyme linked receptor protein signaling pathway, transmembrane receptor protein tyrosine kinase signaling pathway, intracellular signaling cascade, sex determination, positive regulation of biosynthetic, positive regulation of macromolecule biosynthetic, positive regulation of macromolecule metabolic, phosphorylation, second-messengermediated signaling, male sex determination, regulation of cell migration, positive regulation of cell migration, mammary gland development, positive regulation of cellular biosynthetic, regulation of locomotion, positive regulation of locomotion, macromolecular complex subunit organization, positive regulation of DNA replication, positive regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic, protein amino acid autophosphorylation, insulin-like growth factor receptor signaling pathway, phosphoinositide-mediated signaling, gland development, regulation of DNA metabolic, positive regulation of DNA metabolic, positive regulation of nitrogen compound metabolic, protein oligomerization, protein tetramerization, regulation of cell motion, positive regulation of cell motion, macromolecular complex assembly, protein complex biogenesis cell fraction, membrane fraction, insoluble fraction, microsome, integral to membrane, intrinsic to membrane, vesicular fraction |
| :--- |
| nucleotide binding, nucleoside binding, purine nucleoside binding, protein kinase activity, protein tyrosine kinase activity, transmembrane receptor protein tyrosine kinase activity, insulin receptor binding, insulin-like growth factor binding, ATP binding, peptide hormone binding, purine |

\hline
\end{tabular}

nucleotide binding, growth factor binding, enzyme binding, kinase binding, adenyl nucleotide binding, insulin-like growth factor I binding, protein complex binding, ribonucleotide binding, purine ribonucleotide binding, adenyl ribonucleotide binding, peptide binding, hormone binding, identical protein binding, phosphoinositide 3-kinase binding, insulin binding, insulin receptor substrate binding
Oocyte meiosis, Endocytosis, Focal adhesion, Adherens junction, Long-term depression, Progesterone-mediated oocyte maturation, Pathways in cancer, Colorectal cancer, Glioma, Prostate cancer, Melanoma
cell surface receptor linked signal transduction, G-protein coupled receptor protein signaling pathway, neuropeptide signaling pathway
plasma membrane, integral to membrane, intrinsic to membrane
sugar binding, carbohydrate binding
MTMR3 (myotubularin GOTERM_BP_FAT phosphorus metabolic, phosphate metabolic, dephosphorylation
related protein 3) GOTERM_MF_FAT
regulation of nucleotide metabolic, purine nucleotide metabolic, purine nucleotide catabolic, nucleoside monophosphate metabolic, nucleoside monophosphate catabolic, purine nucleoside monophosphate metabolic, purine nucleoside monophosphate catabolic, purine ribonucleotide metabolic, purine ribonucleotide catabolic, ribonucleoside monophosphate catabolic, ribonucleoside monophosphate metabolic, nucleotide catabolic, purine ribonucleoside monophosphate metabolic, purine ribonucleoside monophosphate catabolic, ribonucleotide metabolic, ribonucleotide catabolic, regulation of cyclic nucleotide metabolic, regulation of cAMP metabolic, nucleobase, nucleoside, nucleotide and nucleic acid catabolic, nucleobase, nucleoside and nucleotide catabolic, nitrogen compound catabolic, GMP metabolic, GMP catabolic, heterocycle catabolic,
GOTERM_CC_FAT
extrinsic to membrane
nucleotide binding, nucleoside binding, purine nucleoside binding, cyclic-nucleotide phosphodiesterase activity, 3^{\prime} '5'-cyclic-nucleotide phosphodiesterase activity, phosphoric diester hydrolase activity, purine nucleotide binding, guanyl nucleotide binding, GMP binding, cyclic nucleotide binding, cGMP binding, ribonucleotide binding, purine ribonucleotide binding, guanyl

	KEGG_PATHWAY	ribonucleotide binding Purine metabolism	
PLXNA4 (plexin A4)	KEGG_PATHWAY	Axon guidance	
KCNBI (potassium voltage-gated channel, Shab-related subfamily, member I)	KEGG_PATHWAY	Taste transduction	
	GOTERM_BP_FAT	intracellular protein transport, protein localization, protein transport, cellular protein localization, establishment of protein localization, intracellular transport, cellular macromolecule localization plasma membrane, synaptic vesicle, cytoplasmic membrane-bounded vesicle, cell junction, coated vesicle, clathrin-coated vesicle, cytoplasmic vesicle, vesicle, membrane-bounded vesicle, synapse part, plasma membrane part, synapse	
RPH3A (rabphilin 3A small GTPase regulator activity, zinc ion binding, Ras GTPase binding, Rab GTPase binding, enzyme binding, GTPase regulator activity, small GTPase binding, ion binding, cation binding,	GOTERM_CC_FAT		
metal ion binding, transition metal ion binding, GTPase binding, nucleoside-triphosphatase			
regulator activity			

```
SLCO3AI (solute
carrier organic anion
transporter family,
    member 3AI)
```


TRPM7 (transient receptor potential cation channel, subfamily M ,

 member 7)GOTERM_BP_FAT ion transport
GOTERM_CC_FAT

GOTERM_BP_FAT

GOTERM_MF_FAT
integral to membrane, intrinsic to membrane
protein amino acid phosphorylation, phosphorus metabolic, phosphate metabolic, ion transport, phosphorylation, transmembrane transport nucleotide binding, nucleoside binding, purine nucleoside binding, protein kinase activity, protein serine/threonine kinase activity, ion channel activity, ATP binding, channel activity, purine nucleotide binding, passive transmembrane transporter activity, substrate specific channel activity, adenyl nucleotide binding, ribonucleotide binding, purine ribonucleotide binding, adenyl ribonucleotide binding
acute inflammatory response, chronic inflammatory response, positive regulation of immune system, regulation of leukocyte activation, positive regulation of leukocyte activation, cellular amino acid derivative metabolic, coenzyme metabolic, anti-apoptosis, defense response, inflammatory response, immune response, cell adhesion, response to wounding, regulation of cell death, pantothenate metabolic, cell-cell adhesion, biological adhesion, regulation of T cell differentiation in the thymus, positive regulation of T cell differentiation in the thymus, regulation

VNNI (vanin I)

GOTERM_BP_FAT of apoptosis, negative regulation of apoptosis, regulation of programmed cell death, negative regulation of programmed cell death, innate immune response, regulation of T cell differentiation, positive regulation of T cell differentiation, positive regulation of cell differentiation, regulation of lymphocyte differentiation, positive regulation of lymphocyte differentiation, regulation of T cell activation, regulation of cell activation, positive regulation of cell activation, positive regulation of T cell activation, positive regulation of developmental, cofactor metabolic, regulation of lymphocyte activation, positive regulation of lymphocyte activation, negative regulation of cell death
GOTERM_CC_FAT
GOTERM_MF_FAT
KEGG_PATHWAY Pantothenate and CoA biosynthesis

Additional file 3. List of the genes mapping in QTL associated to traits of economic importance in bovine

$\begin{gathered} \text { GENE } \\ \text { SYMBOL } \end{gathered}$	FULL GENE NAME	QTL REGIONS AND ASSOCIATED		
		ID	TRAIT	QTL region
NR3C2	nuclear receptor subfamily 3 , group C, member 2	1356	Fat percentage	ChrI7:0-2890I254
		10534	Final packed red blood cell volume	ChrI7:6750519-3230106I
		10533	PCV variance	ChrI7:6750519-3230106I
		10532	PCVF minus PCVM	ChrI7:67505I9-3230106I
		1053I	PCVI minus PCVF	ChrI7:67505I9-3230106I
		10536	Percentage decrease in PCV up to day 100 after challenge	ChrI7:67505I9-3230106I
		10535	Percentage decrease in PCV up to day I50 after challenge	ChrI7:6750519-3230106I
		4484	Post-weaning average daily gain	ChrI7:6750519-23354294
		4376	Residual feed intake	Chri7:10037387-I2037387
COROIC	coronin, actin binding protein,IC	I 105I	Calving ease (maternal)	ChrI7:54265266-72227I02
		11386	Dystocia (maternal)	ChrI7:63940959-72227102
		11052	Fat thickness at the I2th rib	ChrI7:63940959-72227102
		256I	Milk fat percentage	Chrl7:42508177-72227102
		11326	Milk fat yield (EBV)	Chrl7:63940959-72227102
		2556	Milk protein yield	Chrl7:42508177-72227102
		2679	Milk protein yield	Chrl7:64476592-72227102
		2560	Milk yield	Chrl7:42508177-72227102
		11327	Milk yield (EBV)	Chrl7:63940959-72227102
		11360	Stillbirth (maternal)	Chrl7:63940959-72227102
		5014	Veterinary treatments	Chrl7:63940959-72227102
NEKII	NIMA (never in mitosis gene a)-related kinase I I	10647	Body weight (weaning)	ChrI:I33500304-I56647I38
		1450	Chest width	ChrI:I22708689-I5I4685I6
PLXDC2	plexin domain containing 2	10937	Body weight (weaning)	ChrI3:4537163-28I46I35
		10938	Carcass weight	Chrl3:15494818-28146135
		10936	Fat thickness at the I2th rib	ChrI3:4537163-28I46I35
		2720	Milk protein percentage	ChrI3:15832550-28I46I35
		10939	Weaning weight-maternal milk	ChrI3:I54948I8-28I46I35

TADAIL	Transcriptional adapter I-like protein	1300	Body weight (birth)	Chr3:0-7545339
		I0678-79-8I	Body weight (birth)	Chr3:0-I5421599
		I2I43	Body weight (slaughter)	Chr3:0-5753088
		10685	Body weight (weaning)	Chr3:0-I9119323
		10677	Carcass weight	Chr3:0-23673607
		I2144	Carcass weight	Chr3:0-5753088
		1325	Fat thickness	Chr3:0-24894464
		13158	Fat thickness at the I2th rib	Chr3:0-I6258580
		6053	Interval to first estrus after calving (EBV)	Chr3:0-21939455
		13157	Longissimus muscle area	Chr3:0-I6258580
		2442-3	Milk fat percentage	Chr3:0-I9119323
		2655	Milk fat yield	Chr3:0-I5320965
		2656	Milk protein percentage	Chr3:0-I5320965
		I3224-5-6	Milk protein yield	Chr3:0-II862259
		13222-3	Milk yield	Chr3:0-I1862259
		5663	Non-return rate (direct)	Chr3:974625-30143223
		5325	Residual feed intake	Chr3:0-I9119323
		533 I	Residual feed intake	Chr3:0-I4976489
		10680	Ribeye area	Chr3:0-I5421599
LPHN2	Latrophilin-2 Precursor	10693	Body weight (birth)	Chr3:57075548-73870850
		10692	Body weight (yearling)	Chr3:57075548-73870850
		1069 I	Height (mature)	Chr3:57075548-73870850
PLXNA4	plexin A4	49 I	Clinical mastitis	Chr4:7542I999-99603227
		10515	Parasites mean of natural logarithm	Chr4:98555994-II9913949
		4485	Post-weaning average daily gain	Chr4:98555994-108527288
		4972	Udder depth	Chr4:77210987-99603227
THYI	Thy-I cell surface antigen	I3502-3-4	Body length	ChrI5:27792116-29792116
		I3504	Body length	ChrI5:27792116-29792116
		13498	Body weight (6 months)	ChrI5:27792116-29792116
		10986	Body weight (birth)	ChrI5:I3868104-29490317
		10989	Body weight (yearling)	ChrI5:13868104-29490317
		13505	Chest girth	ChrI5:27792116-29792116

		$\begin{aligned} & \text { I586 } \\ & \text { I587 } \end{aligned}$	Udder height Udder width	ChrI3:5991494I-80170380 ChrI3:5991494I-80I70380
TRPM7	transient receptor potential cation channel, subfamily M, member 7	10875	Height (yearling)	ChrI0:56559463-78264482
		I0219	Milk fat yield (daughter deviation)	ChrI0:47964403-76680782
		4826	Tenderness score	ChrI0:55424742-78024227
PIK3C2A	phosphoinositide-3-kinase, class 2 , alpha polypeptide	4836	Myofibrillar fragmentation index	ChrI5:294903I7-40147387
ROBOI	roundabout, axon guidance receptor, homolog I (Drosophila)	I0635	Body weight (birth)	ChrI:II538282-31377557
		10633	Calving ease (direct)	ChrI:II $538282-31377557$
		10634	Calving ease (maternal)	Chri:II 538282-31377557
		10637	Height (mature)	ChrI:II 538282-31377557
		10636	Marbling score (EBV)	ChrI:II 538282-3I377557
		2500	Milk protein yield	ChrI:26284167-33876I50
		2501	Milk yield	ChrI:26284167-33876150
		1674	Udder cleft	ChrI:20124367-33876I50
SHISA9	(CKAMP44) shisa homolog 9	II20I	Body weight (birth)	Chr25:792I46-I3184868
		1307	Body weight (yearling)	Chr25:792I46-I3449134
		11207	Body weight (yearling)	Chr25:0-25073950
		1751	Clinical mastitis	Chr25:0-17024I7I
		11377	Dystocia (maternal)	Chr25:0-I3184868
		2607	Milk protein percentage	Chr25:792I46-I3449134
		6134	Milk protein yield (EBV)	Chr25:0-2324II44

PART B

Genome scan for the CNVs discovery in dairy cattle

B.I Copy number variation

Copy number variation (CNV) is a class of genetic variation where DNA segments of 0.5 or more kilobase (kb) are present at a variable copy number in comparison with a reference genome. Classes of CNVs include insertions, deletions and duplications (Feuk et al., 2006). Different phenotypic features can occur by genetic variants (for size and form) and can be explained by modification of gene expression (by action on transcription, splicing, or translation and stability) and/or by the alteration of protein structure. Usually, CNVs may encompass parts of genes or, in the case of larger variants, include several known genes (Wain et al., 2009).
Because genomic disorders can be caused by de-novo deletions, insertions, or other chromosomal rearrangements, the CNVs contribute to the non-heritable components of a disease risk, although evidence suggests that common CNVs are inherited and therefore caused by ancestral structural mutations (McCarroll et al., 2008).

B.I.I Biological impact of copy number variation in bovine

The determination of CNVs is very important for the evaluation of genomic traits in several species because they are among the major sources for the genetic variation (mainly in complex traits), influencing gene expression (gene dosage), phenotypic variation, adaptation and the development of diseases (Metzger et al. 20I3).
The improvement of the SNP array permitted to detect CNVs by high-throughput genotyping on different bovine species (Bos taurus and Bos indicus).
The Table B.I shows the list of CNV studies in bovine population. Table B. 2 Reports the list of diseases and development of abnormalities identified in bovine population caused by CNV presence.

Table B.I List of CNVs studies in bovine population (total breeds sampling, platform and technologies applied, total number of CNVRs identified, total CNVRs length (Mb) and $\%$ of CNVRs coverage on the genome).

Number of samples	Breed	Number of CNVR	Size range CNVR (kb)	CNRV in Mb (\% coverage)	Methods employed to detect CNVR	References

Table B. 2 Examples of phenotypes produced by CNVs in domestic animals (modified from Clop et al., 20I2)

Phenotype	Type of mutation	References
Anhidrotic ectodermaldysplasia Renal tubular dysplasia	Deletion of $37 \mathrm{~kb}($ exons $\mathrm{I}-4)$ or 56 kb (exons $\mathrm{I}-4$ and 2 I bp of exon 5) in the $C L D N I 6$ gene	Ohba et al. (2000) and Hirano et al. (2000)
Osteopetrosis	A 2.8-kb deletion at the $S L C 4 A 2$ gene that encompasses exon 2	Meyers et al. (20IO)
Abortions and stillbirths	A IIO-kb deletion involving the loss of exons 3 and 4 of the	MIMTI gene

B. 2 Identification methods of Copy Number Variants

The methods used for CNVs detection can be summarized as following:

- Fluorescent in situ hybridization technique (FISH). The FISH experiment allows to identify CNVs as microscopically visible alterations (Wain et al., 2009). The technique consists in the use of labeled probes of specific DNA sequences that are hybridized to the complementary sequences on the DNA target. The hybridized and tagged with fluorochromes probes are directly visualized under a microscope ${ }^{4}$.
- Comparative genomic hybridization array (aCGH). Using this technique, test and reference DNA samples are labeled differentially with fluorochromes Cy 3 (green) and Cy 5 (red) respectively, and together hybridized to a set of probes which are imprinted on a microarray (long oligonucleotides or BAC clones).
The amount of red and green fluorescence on each probe are measured and the ratio of intensities of the two fluorochromes is analyzed with an analytical computer software, to infer the relative copy numbers of each specific DNA sequence ${ }^{5}$.
- Quantitative PCR (qPCR). Using this approach, the quantity of a DNA segment is directly measured using locus-specific PCR primers. The copy numbers of target segments are estimated on the measured quantities from a test and a reference sample.
The qPCR technique is locus-specific and therefore cannot be applied to genome-wide detection. A drawback of the qPCR is the low throughput when great amounts of CNVs need to be validated (Wain et al., 2009).
- Next Generation Sequencing (NGS). NGS allows the detection of multiple types of structural variation with a single sequencing trial.

[^2]NGS based CNV detection methods can be categorized into five different strategies ${ }^{6}$.

- SNP Microarray. Similarly to CGH platform, the SNP microarray platforms are based on hybridization.

B.2.I Illumina Infinium II Whole Genome Genotyping

 AssayThe Infinium II Whole Genome Genotyping Assay is able to analyse a huge number of SNPs across the whole genome for each sample, using a single bead type and double color channel approach. The Figure B.I shows the Infinium assay protocol ${ }^{7}$.

Figure B.I. Principle of Infinium II assay for whole genome genotyping

B.2.2 GenomeStudio Genotyping module

The GenomeStudio Genotyping module ${ }^{8}$ is used to analyze data generated by the Illumina Infinium II Genotyping Assay. This module uses algorithms to execute primary data analysis, e.g. raw data normalization (which is needed in order to compare different samples), genotype calling and clustering. With the normalization step the signal intensities from A and B alleles for a specific locus are transformed into X norm and Y norm. Normalized allele specific intensities are

[^3]transformed in a coordinate plot of combined overall SNP intensity value $(\mathrm{R})(\mathrm{R}=\mathrm{X}$ norm +Y norm $)$, and in an allelic intensity ratio, (theta) $\left(\theta=2 / \pi^{*} \arctan (\mathrm{Y}\right.$ norm $/ \mathrm{X}$ norm $\left.)\right)$ (Peiffer et al., 2006). Canonical clusters of normalized transformed signal intensities are established for each SNP during the array development preferentially on a large number of individual representing several population or species. The canonical (circular) clusters are three and colored in red, purple and blue, representing the AA, $A B$, and $B B$ genotypes, respectively. To create these canonical clusters, R and θ values of each SNP marker, per sample, are

Figure B. 2 SNP graph example illustrating the typical red, purple, and blue clusters used (Figure B.2). In a genotyping assay, a genotype for a SNP is successfully called when the signal intensities of the sample fall within one of the three clusters for the specific SNP. Instead, when signal intensities fall outside the clusters, no genotype or allele can be associated.
To detect the CNV s, the $\log \mathrm{R}$ ratio (LRR) and the B allele frequency (BAF) from GenomeStudio software are used.
The LRR value represents the total signal intensity of the probe and BAF value is the allelic balance. LRR of signal intensities is calculated as:

$$
\log 2 \text { (Rsubject/Rexpected) }
$$

where Rsubject is the observed total signal intensity for SNP for each individual and Rexpected is the interpolation of the midpoints of two neighbouring canonical clusters.

[^4]BAF is an estimate of the relative frequency of allele B at a locus for an individual, ranging from zero to one (" 0.5 " indicates a heterozygous genotype, whereas " 0 " and "I" corresponds to the homozygous genotype AA and BB , respectively).
The allele frequency is obtained by linear interpolation with D_{I} and D_{2} lines for an observed θ value of a sample that is localized between two clusters (Figure B.3). In particular, BAF is calculated with respect to known allele frequencies assigned to each canonical cluster (BAFcc: 0 , 0.5 , I) as:

$$
B A F=\frac{D_{1}}{D_{2}} * B A F_{c c}
$$

where D_{I} is the distance of an observed theta value to the midpoint of the closest cluster solution. θ values between neighbouring canonical cluster solutions are interpolated and the distance between them is measured as D_{2} (Pfeiffer et al. 2006).

B. 3 CNV detection Algorithms based on SNP array data

Several CNV detection algorithms aim to identify genomic CNVs comparing the LRR of a reference genome to the LRRs of the genotyped samples. PennCNV and Golden Helix (variation Suite 7.6.4) are some of the software that can be used for the detection of the CNVs.

B.3.I PennCNV software

PennCNV is an open source software for CNV detection from SNP genotyping arrays. PennCNV uses a hidden Markov model (HMM) that integrates multiple sources of information to infer CNV calls for genotyped samples. The HMM is a statistical technique that assumes that the distribution of an observed intensities data point depends on an unobserved (hidden) copy number state at each locus, where the elements of the hidden states follow a Markov process.

PennCNV software incorporates different information (LRR and BAF) for each SNPs into the HMM, in order to detect CNV and to differentiate copy number neutral (LOH) regions from normal state regions. Both the LRR and BAF values can be displayed given an appropriate clustering file with canonical cluster positions for each SNP (Figure B.3). The distance among neighbouring SNPs determines the probability of having a copy number state change. Each SNP has two alleles referred to the A and B alleles, thus the term "population frequency of B allele" is used to differentiate it from the BAF term that measures the allelic intensity ratio. Six hidden states are identified as reported in Table B. 3 (Wang et from Genomestudio al., 2007).

Table B. 3 Hidden states and their corresponding copy number and description as modelled in PennCNV software.

HIDDEN STATE	TOTAL COPY NUMBER	DESCRIPTION FOR AUTOSOMES	CNV GENOTYPES
I	0	homozygous deletion	Null
2	I	heterozygous deletion	A, B
3	2	normal state	AA, AB, BB
4	2	copy neutral with LOH	AA, BB
5	3	heterozygous duplication	AAA, AAB, ABB, BBB
6	4	homozygous duplication	AAAA, AAAB, AABB, ABBB, BBBB

A flowchart outlining the procedure for CNV calling from genotyping data in PennCNV software is represented in Figure B.4.

Figure B. 4 Flowchart that represents CNV calling from genotyping data by PennCNV software (When genotype data are available for family members, the pedigree information can be incorporated to model CNV events more accurately)

B.3.2 Copy Number Module (CNAM) of Golden Helix SNP software and variation Suite 7.6.4 (SVS7)

The Golden Helix software ${ }^{10}$, and in particular it's CNV package, offers the possibility to process raw intensity data, to identify regions of copy number variation, and to visualize copy number data.
The CNAM algorithm delineates CNV boundaries even at a single probe level, with controllable sensitivity and false discovery rate.
The procedure for CNV calling from genotyping data in SVS7 is summarized as following:

- Process raw data and generate \log ratios. The LRR, also called "Log2 ratio", is the commonly used measurement to determine copy number status. For the LRR determination, a reference panel is required to determine the "normal" or baseline intensity expected at each marker.

[^5]- Quality assurance. This is the most important step in copy number analysis to reduce the false positive and not replicable association findings. This software offers several types of quality filters:
\checkmark the derivative log ratio spread (DLRS): DLRS is a measurement of point to point consistency or noisiness in LRR data. This value is correlated with low quality SNP call rates and over/under abundance of identified copy number segments. Samples with higher values of DLRS tend to have poor signal-to-noise properties and accurate CNV detection is often difficult for these samples.
\checkmark Genomic waves detection in log ratio data: Genomic waves are phenomena occurring when the LRR data appear to have a longrange wave pattern after plotted in genomic space. Waviness seems to be correlated with the GC content of the probes themselves in addition to the GC content of the region around the probes. The approach used in S7S removes samples with extreme wave factors.
\checkmark Principal component analysis (PCA): this procedure is needed to detect the presence of batch effects and other technical artefacts for the LRR data correction before the CNV detection.
- Detect of CNVs. S7S provides two segmentation algorithms to CVN detection. The univariate method, which is suitable for detecting rare and/or large CNVs, considers only one sample at a time; contrariwise, the multivariate method uses all samples simultaneously and is ideal for detecting small, common CNVs. The objective in this step is to determine regions in the genome where a given sample's mean $L R R$ value differs from the reference. These regions are referred to CNVs. A mean LRR around zero indicates that a sample has the same number of copies as the reference. A LRR segment mean above zero typically means that there is a copy number gain, and a LRR segment mean below zero means that there is a copy number loss.

References

\checkmark Alkan C., Coe B.P., Eichler E.E., 20II. Genome structural variation discovery and genotyping. Nature reviews. Genetics, I2, 363-376.
\checkmark Bae, J. S., Cheong, H. S., Kim, L. H., Gung, S. N., Park, T. J., Chun, J. Y., Kim, J. Y., Pasaje, C. F., Lee, J. S., Shin, H. D., 20IO. Identification of copy number variations and common deletion polymorphisms in cattle. BMC Genomics. I I:232
\checkmark Diskin, S. J., Li M., Hou, C., Yang, S., Glessner, J., Hakonarson, H., Bucan, M., Maris, J. M., Wang, K., 2008. Adjustment of genomic waves in signal intensities from whole-genome SNP genotyping platforms. Nuc. Acid. Res. 36:I9 eI26
\checkmark Drögemüller C.I., Distl O., Leeb T., 200I. Partial deletion of the bovine EDI gene causes anhidrotic ectodermal dysplasia in cattle. Genome Res. II(I0):1699-705.
\checkmark Fadista, J., Thomsen, B., Holm, L. E., Bendixen, B. M. C., 20I0. Copy Number Variation in the Bovine Genome. Genomics. I I:284
\checkmark Feuk L., Carson, A. R. \& Scherer, S.W., 2006. Structural variation in the human genome. Nature Rev. Genet. 7, 85-97.
\checkmark Flisikowski, K., Venhoranta, H., Nowacka-Woszuk, J., McKay, S. D., Flyckt, A., Taponen, J., Schnabel, R., Schwarzenbacher, H., Szczerbal, I., Lohi, H., Fries, R., Taylor, J. F., Switonski, M., and Andersson, M., 20I0. A novel mutation in the maternally imprinted PEG3 domain results in a loss of MIMTI expression and causes abortions and stillbirths in cattle (Bos taurus). PLoS ONE 5, eI5I I6
\checkmark Hirano T., Kobayashi N., Itoh T., Takasuga A., Nakamaru T., Hirotsune S. \& Sugimoto Y., 2000. Null mutation of PCLN-I/ Claudin-I6 results in bovine chronic interstitial nephritis. Genome Research IO, 659-63
\checkmark Hou, Y., Liu, G. E., Bickhart, D. M., Cardone, M. F., Wang, K., Kim, E., Matukumalli, L. K., Ventura, M., Song, J., VanRaden, P. M., Sonstegard, T. S., Van Tassell, C. P., 20I I. Genomic characteristics of cattle copy number variations. BMC Genomics. I2:I27.
\checkmark Hou Y., Bickhart D.M., Hvinden M.L., Li C., Song J., Boichard D.A., Fritz S., Eggen A., DeNise S., Wiggans G.R., Sonstegard T.S., Van Tassell C.P., Liu G.E., 20I2. Fine mapping of copy number variations on two cattle genome assemblies using high density SNP array. BMC Genomics 6;13:376
\checkmark Jiang, L., Jiang, J., Yang, J., Liu, X., Wang, J., Wang, H., Ding, X., Liu, J., Zhang, Q., 20I3. Genome-wide detection of copy number variations using high-density SNP genotyping platforms in Holsteins. BMC Genomics 27;14:I3I.
\checkmark Liu, G. E., Hou, Y., Zhu, B., Cardone, M. F., Jiang, L., Cellamare, A., Mitra, A., Alexander, L. J., Coutinho, L. L., Dell'Aquila, M. E., Gasbarre, L. C., Lacalandra, G., Li, R. W., Matukumalli, L.K., Nonneman, D., Regitano, L. C., Smith, T. P., Song, J., Sonstegard, T. S, Van Tassell, C. P., Ventura M., Eichler, E. E., McDaneld, T. G., Keele, J. W., 2010. Analysis of copy number variations among diverse cattle breeds. Genome Res. 20:693-703.
\checkmark Lupski, J.R. \& Stankiewicz, P., 2005. Genomic disorders: molecular mechanisms for rearrangements and conveyed phenotypes. PLoS Genet. I, e49
\checkmark Meyers, S. N., McDaneld, T. G., Swist, S. L., Marron, B. M, Steffen, D. J., O'Toole, D., O'Connell, J. R., Beever, J. E, Sonstegard, T. S, Smith, T. P., 20I0. A deletion mutation in bovine SLC4A2 is associated with osteopetrosis in Red Angus cattle. BMC Genomics. 27;II:337.
\checkmark Metzger J, Philipp U, Lopes MS, da Camara Machado A, Michela Felicetti M, Silvestrelli M and Dist O (20I3). Analysis of copy number variants by three detection algorithms and their association with body size in horses. BMC Genomics. I4: 487.
\checkmark Ohba Y., Kitagawa H., Kitoh K., Sasaki Y., Takami M., Shinkai Y., Kunieda T., 2000. A deletion of the paracellin-I gene is responsible for renal tubular dysplasia in cattle. Genomics 68: 229-236.
\checkmark Peiffer D.A., Le J.M., Steemers F.J., Chang W., Jenniges T., Garcia F., Haden K., Li J., Shaw C.A., Belmont J., Cheung S.W., Shen R.M.,

Barker D.L., Gunderson K.L., 2006. High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping. Genome Res., I6, II36-48.
\checkmark Seroussi, E., Glick, G., Shirak, A., Yakobson, E., Weller, J. I., Ezra, E., Zeron, Y., 2010. Analysis of copy loss and gain variations in Holstein cattle autosomes using BeadChip SNPs. BMC genomics. II: 673
\checkmark Wain, L. V., Armour, J. A. L., Tobin, M. D., 2009. Genomic copy number variation, human health, and disease. Lancet. 374:340-50.
\checkmark Wang, K., Li, M., Hadley, D., Liu, R., Glessner, J., Grant, S. F., Hakonarson, H., Bucan, M., 2007. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res. I7:I665-I674.
\checkmark Zhao M., Wang Q., Wang Q., Jia P., Zhao Z., 20I3.Computational tools for copy number variation (CNV) detection using nextgeneration sequencing data: features and perspectives. BMC Bioinformatics I4 Suppl. II.

3

IDENTIFICATION AND
VALIDATION OF COPY NUMBER VARIANTS IN ITALIAN BROWN SWISS
DAIRY CATTLE USING ILLUMINA BOVINE SNP50
BEADCHIP

Submitted: Animal genetics

Short comunication

IDENTIFICATION AND VALIDATION OF COPY NUMBER VARIANTS IN ITALIAN BROWN SWISS DAIRY CATTLE USING ILLUMINA BOVINE SNP50 BEADCHIP

A. Bagnato*§, M. G. Strillacci*, L. Pellegrino*, F. Schiavini*, E. Frigo*, A. Rossoni^, L. Fontanesi§, M.A. Dolezal \dagger

* Department of Health, Animal Science and Food Safety (VESPA), University of Milan, Via Celoria I0, 20I33, Milan, Italy \dagger Institut für Populationsgenetik Veterinärmedizinische, University Wien, Josef Baumann Gasse I, I2IO Wien, Austria
§Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
^ Associazione Nazionale Allevatori Razza Bruna, Loc. Ferlina 204, 370 I2 Bussolengo (VR), Italy

3.I Abstract

The aim of this study was to obtain a copy number variation (CNV) genome map in 65 I bulls of the Italian Brown Swiss breed using the Illumina Bovine SNP50 BeadChip data. Hidden Markov Model (HMM) of PennCNV and SVS7 software (Golden Helix) were used for the identification of the CNVs and Copy Number Variation Regions (CNVRs). A total of 5,099 and I,289 CNVs were identified using PennCNV and SVS7 software, respectively. These were grouped at the population level into I,IOI (220 losses, 774 gains, I07 complex) and 277 (I85 losses, 56 gains and 36 complex) CNVRs, covering 682 $\mathrm{Mb}(27.14 \%)$ and 33.7 Mb ($\mathrm{I} .35 \%$) of the autosome, respectively. Ten of the selected CNVRs were experimentally validated with qPCR and the proportions of confirmed positive samples for each region varied from 50% to 100%. The GO and pathway analyses identified genes (false discovery rate corrected) in the CNVRs related to biological processes, cellular component, molecular function and metabolic pathways.

Although there is variability in the CNVRs detection across methods, platforms, this study allowed the identification CNVRs in Italian Brown Swiss, overlapping those already detected in other breeds and finding additional ones.

The understanding of the genetic variation in livestock species, such as cattle, is crucial to associate genomic regions to the traits of interest. Copy Number Variations (CNVs) are classes of polymorphic DNA regions including deletions, duplications and insertions of DNA fragments from at least 0.5 kb to several Mb , that are copy number variable when compared with a reference genome (Jiang et al. 2013). The CNVs are important sources of genetic diversity providing structural genomic information comparable to single nucleotide polymorphism (SNP) data; they influence gene expression, phenotypic variation, environmental adaptability and disease susceptibility (Wang et al. 2012).
The development of SNP arrays allowed the identification of CNVs by high-throughput genotyping on different types of cattle breeds. CNV loci were identified in several indicine and taurine breeds, and CNV maps of the bovine genome, using SNP, Next Generation Sequencing (NGS), CGH arrays, were reported (Matukumalli et al. 2009; Bae et al. 2010; Fadista et al. 2010; Hou et al. 2012; Bickhart et al., 20I2). In cattle, Meyers et al. (20I0) identified the association between CNV in a deletion state in SLC4A2 gene and the osteoporosis in Red Angus cows. Additionally, it has been reported that a Copy Number Variation Region (CNVR) located on BTAI8 is associated with the index of total merit and protein production, fat production and herd life in Holstein cattle (Seroussi et al. 20I0).
Several CNV detection algorithms based on SNP data array are available. Winchester et al. (2009), Pinto et al. (201I) and Tsuang et al. (20I0) recommended the use of a minimum of two algorithms for the identification of CNV s in order to reduce the false discovery rates. The aim of this study was to obtain a consensus CNV genome map in
the Italian Brown Swiss cattle based on the Illumina Bovine SNP50 BeadChip and two SNP based CNV calling algorithms.
The Italian Brown Cattle Breeders Association (A.N.A.R.B.) provided commercial semen samples for I,342 bulls (born between I95I and 2005). Genomic DNA was extracted from semen using the $Z R$ Genomic DNA ${ }^{\text {TM }}$ Tissue MiniPrep (Zymo, Irvine, CA, U.S.A.). Sample DNA was quantified using NanoQuant Infinite ${ }^{\circledR}$ m200 (Tecan, Männedorf, Switzerland) and diluted to $50 \mathrm{ng} / \mu \mathrm{l}$ as required to apply the Illumina Infinium protocol. DNA samples were genotyped using Illumina Bovine SNP50 BeadChip (Illumina Inc., San Diego, USA) interrogating 54,00I polymorphic SNPs with an average probe spacing of 51.5 kb and a median spacing of 37.3 kb . In this study, the UMD3.I assembly was used as the reference genome.
All SNPs were clustered and genotyped using the Illumina BeadStudio software V.2.0 (Illumina Inc.). Samples that showed a call rate below 98\% were excluded for the CNVs detection. The signal intensity data of $\log R$ Ratio (LRR) and B allele frequency (BAF) were exported from Illumina BeadStudio software. The overall distribution of derivative log ratio spread (DLRS) values was used in the SVS7 software to identify and filter outlier samples as described by Pinto et al. (20II).
Principal component analysis (PCA) for LRR was performed using the SVS7 software to detect the presence of batch effects and correct the signal intensity values accordingly.
A total of 69I bulls were discarded from the dataset after the application of the DLRS filter and the wave factor corrections, reducing the number of bull sample to be analysed to 65I.
Individual-based CNV calling was performed by PennCNV (http://www.openbioinformatics.org/pennenv/) for all autosomes, using the default parameters of the Hidden Markov Model (HMM) To reduce the false discover rate in CNVs calling we used high quality samples with a standard deviation (SD) of LRR <0.30 and with default set of BAF drift as 0.0I. Samples whose absolute wave factor exceeded a threshold of 0.05, as suggested by Diskin et al. (2008), were
excluded from the analysis. Genomic waves were calculated as GC content of the I Mb genomic region surrounding each marker (500 kb each side). In addition, we deleted the CNVs which overlapped at least IO\% of telomere length (the first and last 500 kb of each autosome were considered representing the telomeres).
A total of 5,099 CNV events were detected using PennCNV, that were located in all 29 autosomes with a mean size of 350 kb ($\pm \mathrm{I} 65.259$) ranging from 40.4 kb to 4.46 Mb (median $=230 \mathrm{~kb}$). The predicted status for the CNVs was: for homozygous deletion, no. 97 (2%); heterozygous deletion, no. 2,086 (4I\%); for, heterozygous duplication, no. 2,915 (57\%); homozygous duplication, no. I.
The CNV identification was also carried out by Copy Number Analysis Module (CNAM) of SVS7 software (Golden Helix Inc.), with a univariate analysis. The criteria considered for the analysis were: univariate outlier removal, a maximum of 10 per I0,000 markers, with a minimum of I marker per segment, and 2,000 permutations per segment pair p-value cut-off of 0.005 . A total of $1,289 \mathrm{CNVs}$ calls have been identified by SVS7 in all the 29 autosomes, which encompassed 762 (59\%) losses and 527 (4I\%) gains. The length of the CNVs ranged from II. 3 kb to I .4 Mb with median and average values equal to 45 kb and 88.9 kb , respectively. Table I showed the descriptive statistics of the identified CNV length using PennCNV and SVS7 software.
CNVRs were defined as in Redon et al. (2006) with the BedTools software (Quinlan \& Hall, 20I0) for each of the two software.
A total of I,IOI CNVRs were mapped with the PennCNV. Among these 220 were in homozygous or heterozygous deletion state, 774 were in homozygous or heterozygous duplication state and 107 represented complex regions. The total length of the sequence covered by the CNVRs was 682 Mb , which corresponded to the 27.14% of the bovine autosomal genome in the Brown Swiss breed. The percentage by chromosome of sequence covered by CNVRs ranged from I6.59 (BTA I2) to $50 . \mathrm{I} 4 \%$ (BTA I9).

The CNVs calls identified with SVS7 were summarized at population level according to Redon's approach, resulting into 277 (I85 losses, 56 gains and 36 complex) CNVRs. The total length of the sequence covered by the CNVRs was 33.7 I Mb (I.35\%) of the bovine autosomes. The percentage by chromosome of sequence covered by CNVRs ranged from 0.I2\% (BTA IO) to 3.5% (BTA I2). Differences in relative abundance of CNVRs may be due to the use of different algorithms for their detection.
A consensus was then performed between the two software using the approach suggested by Wain et al. (2009) using the BedTools software. A total of I50 consensus regions were generated with a total length of I7.I Mb (0.68 \% of the autosomes), as shown in Table SI. The comparison between the CNVRs detected in this study by Wain's approach and in literature was reported in Figure I, confirming both the existence of high variability in CNVRs detection across platforms, methods, cattle breeds and sub-species and the overlapping of the regions detected in this study with other CNVRs dataset cattle studies. Quantitative PCR (qPCR) experiments were performed to validate the CNVRs among those identified. Eleven CNVRs were selected for the validation; three of those were in common between PennCNV and SVS7 detection, six and two of those were randomly chosen among the CNVRs identified with PennCNV and SVS7 software, respectively. Table S 2 reports the primer list for the eleven regions that were selected for the validation. Ten CNVRs (9I\%) were confirmed by qPCR experiments. Additionally, the proportions of confirmed positive CNV in each sample varied from 50% to 100% in each of the confirmed CNVRs; however, the average of false negative rate was equal to 25%. Jiang et al. (20I3) reported similar values rates in Holstein breed.
The full Ensembl v76 gene set for the autosomal chromosomes was downloaded
(http://www.ensembl.org/biomart/martview/76dIcab099658c68bde $77 f 7 \mathrm{daf55II7e}$). A gene ontology (GO) and pathways analyses using the DAVID Bioinformatics Resources 6.7 (http://david.abcc.ncifcrf.gov/) was performed (using the high
classification stringency option and the FDR correction) to identify molecular function, biological processes, cellular component and pathway for the genes included in the CNVRs consensus (Tables S3, S4). Among the identified genes, in Table 2 we highlighted those showing differential expression of association with quantitative traits in cattle in literature.
However, some of the CNVRs detected in this study are located in gene-poor regions.
Modern studies have highlighted the genome-wide distribution of CNVs in regions covering noncoding sequences, thus affecting the regulation of distant target genes. Further studied are envisaged to clarify this suggested impact of CNVs in noncoding regions (Liu et al., 20I3). In this study, the first on this breed and on a such a large number of individuals, we detected CNVs in the Italian Brown Swiss cattle population based on whole genome SNP genotyping data, using two algorithms for mapping the CNVs, with the aim to reduce the high error rate commonly recognised in copy number discovery.
The results will enrich the bovine CNV map in the cattle genome providing new information for association studies with traits of economic and healthy interest.

Acknowledgement. This study funded by EC-FP7/2007-20I3, agreement n ${ }^{\circ} 222664$, "Quantomics".

REFERENCES

Anton I., Kovács K., Fésüs L., Várhegyi J., Lehel L., Hajda Z., Polgár J.P., Szabó F. \& Zsolnai A. (2008) Effect of DGATI, leptin and TG gene polymorphisms on some milk production traits in different dairy cattle breeds in Hungary. Acta Veterinaria Hungarica 56, I8I-6.

Bae J.S., Cheong H.S., Kim L.H., Gung S. N., Park T.J., Chun J.Y., Kim J.Y., Pasaje C.F., Lee J.S. \& Shin H.D. (2010) Identification of copy number variations and common deletion polymorphisms in cattle. BMC Genomics. II:232.

Bai H., Sakurai T., Someya Y., Konno T., Ideta A., Aoyagi Y. \& Imakawa K. (20II) Regulation of trophoblast-specific factors by GATA2 and GATA3 in bovine trophoblast CT-I cells. The Journal of Reproduction and Development 57(4):5I8-525.

Diskin S.J., Li M. Hou C., Yang S., Glessner J., Hakonarson H., Bucan M., Maris J.M. \& Wang K. (2008). Adjustment of genomic waves in signal intensities from whole-genome SNP genotyping platforms. Nucleic Acids Research 36(I9): eI26.

Fadista J., Thomsen B., Holm L.E. \& Bendixen B.M.C. (2010) Copy Number Variation in the Bovine Genome. Genomics I I:284

Fontanesi L., Beretti F., Riggio V., Gómez González E., Dall'Olio S., Davoli R., Russo V. \& Portolano B. (2009) Copy number variation and missense mutations of the agouti signaling protein (ASIP) gene in goat breeds with different coat colors. Cytogenetic and Genome Research I26:333-347

Fortes M.R., Curi R.A., Chardulo L.A., Silveira A.C., Assumpção M.E., Visintin J.A. \& de Oliveira H.N.(2009) Bovine gene polymorphisms related to fat deposition and meat tenderness. Genetics and Molecular Biology 32, I, 75-82.

He X., Chu M.X., Qiao L., He J.N., Wang P.Q., Feng T., Di R., Cao G.L., Fang L. \& An Y.F. (20I2) Polymorphisms of STAT5A gene and their association with milk production traits in Holstein cows. Molecular Biology Reports 39(3):290I-2907

Hou Y., Liu G.E., Bickhart D.M., Cardone M.F., Wang K., Kim E., Matukumalli L.K., Ventura M., Song J., VanRaden P. M., Sonstegard T.S. \& Van Tassell, C. P. (20II) Genomic characteristics of cattle copy number variations. BMC Genomics I2:I27.

Huang Y.Z., Zhang E.P., Chen H., Wang J., Li Z.J., Huai Y.T., Ma L., Lan X.Y., Ren G., Lei C.Z., Fang X.T., Wang J.Q. (2010) Novel I2bp deletion in the coding region of the bovine NPMI gene affects growth traits. Journal of Applied Genetics 5I(2):199-202.

Jiang L., Jiang J., Yang J., Liu X., Wang J., Wang H., Ding X., Liu J. \& Zhang Q. (20I3) Genome-wide detection of copy number variations using high-density SNP genotyping platforms in Holsteins. BMC Genomics I4:I3I.

Khatib H., Monson R.L., Schutzkus V., Kohl D.M., Rosa G.J. \& Rutledge J.J. (2008) Mutations in the STAT5A gene are associated with embryonic survival and milk composition in cattle. Journal of Dairy Science 9I(2):784-793.

Lewandowska-Sabat A.M., Boman G.M., Downing, A., Talbot R., Storset A.K. \& Olsaker I. (20I3) The early phase transcriptome of bovine monocyte-derived macrophages infected with Staphylococcus aureus in vitro. BMC Genomics I4:89I.

Li C., Sun D., Zhang S., Wang S., Wu X., Zhang Q., Liu L., Li Y. \& Qiao L. (20I4) Genome Wide Association Study Identifies 20 Novel Promising Genes Associated with Milk Fatty Acid Traits in Chinese Holstein. PLoS ONE 9(5):e96I86

Liu G.E., Hou Y., Zhu B., Cardone M.F., Jiang L., Cellamare A., Mitra A., Alexander L.J., Coutinho L L., Dell'Aquila M.E., Gasbarre L.C., Lacalandra G., Li R.W., Matukumalli L.K., Nonneman D., Regitano L.C., Smith T.P., Song J., Sonstegard T.S, Van Tassell C.P., Ventura M., Eichler E.E., McDaneld T.G. \& Keele J.W. (20I0) Analysis of copy number variations among diverse cattle breeds. Genome Research 20:693-703.

Meyers S.N., McDaneld T.G., Swist S.L., Marron B.M, Steffen D.J., O'Toole D., O'Connell J.R., Beever J.E, Sonstegard T.S \& Smith T.P. (2010) A deletion mutation in bovine SLC4A2 is associated with osteopetrosis in Red Angus cattle. BMC Genomics I I:337.

Ozawa M., Sakatani M., Yao J., Shanker S., Yu F., Yamashita R., Wakabayashi S., Nakai K., Dobbs K.B., Sudano M.J., Farmerie W.G. \& Hansen P.J. (20I2) Global gene expression of the inner cell mass and trophectoderm of the bovine blastocyst. BMC Developmental Biology 6;12:33.

Pinto D., Darvishi K., Shi X., Rajan D., Rigler D., Fitzgerald T., Lionel A.C., Thiruvahindrapuram B., Macdonald J.R., Mills R., Prasad A., Noonan K., Gribble S., Prigmore E., Donahoe P.K., Smith R.S., Park JH., Hurles, M.E., Carter N.P., Lee C., Scherer S.W. \& Feuk L. (20II) Comprehensive assessment of array-based platforms and calling algorithms for detection of copy number variants. Nature Biotechnology 29(6):512-520.

Quinlan A.R. \& Hall I.M. (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):84I-842.

Redon R., Ishikawa S., Fitch K.R., Feuk L., Perry G.H., Andrews T.D., Fiegler H., Shapero M.H., Carson A.R. \& Chen W. (2006) Global variation in copy number in the human genome. Nature 444: 444-454

Ren G., Liu J.X., Li F., Lan X.Y., Li M.J., Zhang Z.Y. \& Chen H. (20II) A novel missense mutation of bovine lipase maturation factor I (LMFI) gene and its association with growth traits. African Journal of Biotechnology IO(39):7562-7566.

Seroussi E., Glick G., Shirak A., Yakobson E., Well, J.I., Ezra E. \& Zeron, Y. (2010) Analysis of copy loss and gain variations in Holstein cattle autosomes using BeadChip SNPs. BMC Genomics. II: 673

Tsuang D.W., Millard S.P., Ely B., Chi P., Wang K., Raskind W.H., Kim S., Brkanac Z. \& Yu C.E. (20I0) The effect of algorithms on copy number variant detection. PLoS One 5:eI4456.

Wain L. V., Armour J.A.L. \& Tobin M.D. (2009) Genomic copy number variation, human health, and disease. Lancet 374:340-50.

Wang H., Jiang L., Liu X., Yang J., Wei J., Xu J., Zhang Q. \& Liu J.F. (20I3) A post-GWAS replication study confirming the PTK2 gene associated with milk production traits in Chinese Holstein. PLoS One 8(I2):e83625

Wang K., Li M., Hadley D., Liu R., Glessner J., Grant S.F., Hakonarson H., \& Bucan M. (2007) PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Research I7:I665-I674.
White H.M., Koser S.L. \& Donkin S.S. (20I I) Differential regulation of bovine pyruvate carboxylase promoters by fatty acids and peroxisome proliferator-activated receptor- α agonist. Journal of Dairy Science 94(7):3428-36.

Winchester L., Yau C. \& Ragoussis J. (2009) Comparing CNV detection methods for SNP arrays. Briefings in Functional Genomic and Proteomic. 8(5):353-66.

Wright D., Boije H., Meadows J.R., Bed'hom B., Gourichon D., Vieaud A., Tixier-Boichard M., Rubin C. J, Imsland F., Hallböök F. \& Andersson L. (2009) Copy number variation in intron I of SOX5 causes the Pea-comb phenotype in chickens. PLoS Genetics. 5(6):eI0005I2

Zhang B., Peñagaricano F., Driver A., Chen H. \& Khatib H. (20II) Differential expression of heat shock protein genes and their splice variants in bovine preimplantation embryos. Journal of Dairy Science 94(8):4I74-4I82.

Zhang X., Wang C., Zhang Y., Ju Z., Qi C., Wang X., Huang J., Zhang S., Li J., Zhong J. \& Shi F. (20I4) Association between an alternative promoter polymorphism and sperm deformity rate is due to modulation of the expression of KATNALI transcripts in Chinese Holstein bulls. Animal Genetics 45(5):64I-5I

Table I Descriptive statistics for CNVs identified with PennCNV software ($0=$ homozygous deletion, I heterozygous deletion, 3 heterozygous duplication, and 4 homozygous duplication) and SVS7 softwares.

Copy	Number of	Mean	Median	Total Length	Min	Max
PennCNV						
0	97	311345	245646	30200500	46665	1053143
I	2086	159066	134534	33I7II379	40374	1688267
3	2915	488559	385138	I423739019	41449	4457756
4	I	511301	5II30I	5II30I	511301	511301
SVS7						
Loss	762	94830	57612	72260727	II315	I44075I
Gain	527	80324	37591	42330968	20342	770044

Table 2 Genes mapping in CNVRs with differential expression or association with cattle quatitative traits reported in literarture.

Bta	CNVRs Consensus		Genes in Consensus				References
3	7957960	7983149	7928113	7944607	ENSBTAG0000002I842	FCGR2B	Lewandowska-Sabat et al., 2013
5	116895329	II7247824	117151549	117233112	ENSBTAG00000008063	PPARA	White et al., 2011
I2	30418611	30646042	30519852	30558210	ENSBTAG00000009340	KATNALI	Zang et al., 2014
I2	13179696	13204137	13183734	I3266310	ENSBTAG00000034785	DNAJCI5	Zang et al., 201 I
I4	3885798	4017201	3870893	4065010	ENSBTAG00000009578	PTK2	Wang et al., 2013
I4	9300228	9345140	9262251	9508938	ENSBTAG00000007823	TG	Fortes et al., 2009 Anton et al., 2008
19	42976859	43170256	43056660	43132624	ENSBTAG0000002I523	STAT3	Ozawa et al., 201 I
19	42976859	43170256	42960226	4299667 I	ENSBTAG000000I0125	STAT5B	He et al., 2011
19	42976859	43170256	43033597	43054075	ENSBTAG00000009496	STAT5A	Khatib et al., 2008 X et al., 2012
20	2880532	3189118	3111198	3123860	ENSBTAG00000015316	NPMI	Huang et al., 2010
22	59951940	60243916	60016985	60024586	ENSBTAG00000019707	GATA2	Bai et al., 201 I
25	60924 I	983759	724446	775899	ENSBTAG00000019745	LMFI	Gang et al., 201 I
26	25828973	25982293	25856475	25865594	ENSBTAG000000I7710	ECHSI	Li et al., 2014

Figure I Comparisons between the I50 CNVRs (consensus between the two softwares) identified in this study and other existing cattle CNVRs datasets.

Supporting information

Table SI List of the copy number variant region (CNVRs) identified using PennCNV and SVS7 softwares and the consensus CNVRs (PennCNV/SVS7) generated according to Wain et al. (2009).

pennCNV (CNVRs)			lenght	pennCNV (CNVRs)			lenght
chrI	I35995I	I603944	243993	chrII	67498 III	68298497	800386
chrI	I62547I	2013659	388188	chrII	73934314	74197538	263224
chrI	4727II8	5010974	283856	chrII	75295616	76060924	765308
chrI	5319965	5741816	42 I 85 I	chrII	77235847	79314962	2079115
chrI	I2889396	I3019983	I30587	chrII	80450475	80839258	388783
chrI	I7021I38	I7I60556	I39418	chrII	82833655	82959206	I2555I
chrI	I8I70722	I8980052	809330	chrII	87 I 24625	8937191I	2247286
chrI	I9829I43	20192420	363277	chrII	89552045	89680768	I28723
chrI	27357510	27761036	403526	chrII	90738123	90911719	I73596
chrI	28034525	28216247	I8I722	chrII	91961667	92500678	53901 I
chrI	413154I8	4I465449	I5003 I	chrII	92963716	9305054 I	86825
chrI	43317853	4386 I 492	543639	chrII	93546324	936 I 2322	65998
chrI	46321775	46648008	326233	chrII	946406 I	94837245	I96634
chrI	4738930 I	49230292	I84099I	chrII	95150490	99180813	4030323
chrI	5219170I	52316632	I2493I	chrII	99497380	99738023	240643
chrI	56505444	56901848	396404	chrII	99774304	I048568I5	50825II
chrI	60753573	61329180	575607	chrII	I05593624	I06825407	I23I783
chrI	66188527	66630647	442 I 20	chrI2	2058297	2273370	215073
chrI	68066718	69250962	II84244	chrI2	2814820	3705325	890505
chrI	7 I 229187	71623173	393986	chrI2	9079069	9165632	86563
chrI	72573950	73640200	1066250	chrI2	I3I40896	I3273888	I32992
chrI	80875014	80974985	9997 I	chrI2	I5726574	I6098884	372310
chrI	81018906	81160609	I41703	chrI2	I8472407	I85849I3	I 12506
chrI	82059960	82468782	408822	chrI2	2007912I	20402284	323163
chrI	8303092 I	83672872	64195 I	chrI2	20510073	20800774	290701
chrI	88086502	88262684	I76182	chrI2	21073393	2I441958	368565
chr I	9103I267	91358383	327116	chrI2	22664255	22863845	I99590
chrI	9295847 I	93279488	321017	chrI2	25I4I005	25255436	II443I
chrI	95793312	95910972	II7660	chrI2	27006686	27133552	I26866
chrI	97276664	97484342	207678	chrI2	29520358	29778424	258066
chrI	IOII03098	IOI366448	263350	chrI2	30099199	3 I 555734	I456535
chr I	IOI403755	IOI664632	260877	chrI2	31639399	3I848902	209503
chrI	IOI773849	I020567I0	28286 I	chrI2	34480373	3463567 I	I55298
chrI	103728420	I03926075	197655	chrI2	35189028	35703502	5 I 4474
chrI	I0484236I	I05264358	421997	chrI2	41384223	41479027	94804
chrI	106228836	I0629598I	67 I 45	chrI2	45002070	45573176	57 II 06
chrI	I065I2965	I06824629	3 II 664	chrI2	4730040 I	47528422	22802 I
chrI	107094743	I07I72243	77500	chrI2	48758328	4942 I2I5	662887
chr I	I08I54057	I08782509	628452	chrI2	50125707	50324576	I98869
chrI	109649036	I09869888	220852	chrI2	52546816	52663318	II6502
chrI	II363I332	II37808II	I49479	chrI2	55097796	55674695	576899
chrI	II494554I	II5I852I5	239674	chrI2	55867003	5620408 I	337078
chrI	II5389278	II545674I	67463	chrI2	56367819	56695055	327236
chrI	II76I9160	II8226740	607580	chrI2	57077252	57211328	I34076
chrI	II8532290	II8882592	350302	chrI2	57931622	58461348	529726
chrI	I209I5343	I2I00390I	88558	chrI2	63969950	6415226 I	I823II
chrI	I23921894	I24I96948	275054	chrI2	64384089	64761912	377823
chrI	I26070556	I26846004	775448	chrI2	66068259	66877440	80918 I
chrI	I2749I286	I27749327	25804 I	chrI2	69969069	70092297	I23228

chrI	I2832090I	I29505485	II84584	chrI2	77109094	77347204	238110
chrI	I3I423039	I323I2674	889635	chrI2	78099072	782I257I	II3499
chrI	I32497074	132647596	150522	chrI2	78276736	78750520	473784
chrI	I35194234	I36476I95	I28196I	chrI2	81184160	81586853	402693
chrI	I38583I83	I38832098	248915	chrI2	83477477	83777475	299998
chrI	I39409I22	I39590378	181256	chrI2	87579030	87891233	3 I 2203
chrI	I41903958	I452800I5	3376057	chrI2	88638167	90826206	2188039
chrI	I45470565	I46632014	II6I449	chrI3	I247948	I9I2749	66480I
chrI	I46862570	I47076679	2I4109	chrI3	2823073	532489 I	2501818
chrI	14712I098	I47195759	7466 I	chrI3	9I3964I	927607I	I36430
chrI	I4725549I	I48388848	II33357	chrI3	9424085	I0663054	I238969
chrI	I486843I8	I48841496	157178	chrI3	I2587622	I27590I4	I71392
chrI	I4910I763	I49335782	234019	chrI3	I3067288	I3907892	840604
chrI	I49969397	I5057436I	604964	chrI3	I43563I4	I45091I0	I52796
chr I	I509005I7	I5I929994	1029477	chrI3	I4585745	I5088689	502944
chrI	152I8952I	I5522472I	3035200	chrI3	15923779	16424596	500817
chrI	I5565402I	I56710174	1056153	chrI3	18657767	I9388240	730473
chrI	157039952	I57328I69	288217	chrI3	21363395	21676028	312633
chr2	904065	I247436	34337 I	chrI3	25212012	2581892I	606909
chr2	I795004	I982I97	187193	chrI3	30108205	30337948	229743
chr2	4087 I 23	4165880	78757	chrI3	31580781	31876709	295928
chr2	4587203	5601419	IOI42I6	chrI3	33141153	34047662	906509
chr2	6645590	6831955	186365	chrI3	34808642	35I4833I	339689
chr2	8788219	9040720	252501	chrI3	35563916	35875350	31I434
chr2	I2533969	I2632490	9852I	chrI3	36079542	36576754	4972 I 2
chr2	I2789975	I2954788	164813	chrI3	36730055	37334004	603949
chr2	14496313	I4565726	69413	chrI3	38086947	38618369	531422
chr2	15972368	I6087638	II5270	chrI3	38943133	41366870	2423737
chr2	17627839	17830735	202896	chrI3	41414256	44168398	2754142
chr2	23334606	23405887	7 I 281	chrI3	44847602	45158832	311230
chr2	25359234	25826013	466779	chrI3	45381514	4768009 I	2298577
chr2	26781358	28215944	I434586	chrI3	51732402	52065761	333359
chr2	28376835	28573158	196323	chrI3	53890455	54829615	939160
chr2	32056065	32376219	320154	chrI3	55288364	56292896	1004532
chr2	39976359	4002 I5I2	45 I 53	chrI3	58836000	59223837	387837
chr2	52966242	53016506	50264	chrI3	60468277	60781323	313046
chr2	55118828	5556654 I	447713	chrI3	6I426I48	61782627	356479
chr2	56123710	56267092	I43382	chrI3	62534909	63500701	965792
chr2	5650454 I	56636575	I32034	chrI3	66774859	68766380	I99152I
chr2	57260012	57449775	189763	chrI3	69042 I43	69187742	I45599
chr2	59569007	59927024	358017	chrI3	70860749	71713558	852809
chr2	63411488	64300614	889126	chrI3	71860088	73230677	I370589
chr2	65044427	65249007	204580	chrI3	73478012	73681829	203817
chr2	6546939 I	65700940	231549	chrI3	73746516	73866335	II9819
chr2	70665916	70895063	229147	chrI3	74078322	74436097	357775
chr2	70978502	71382630	404I28	chrI3	76330479	76932968	602489
chr2	71848377	73436684	1588307	chrI3	77022083	77956325	934242
chr2	76112733	76563133	450400	chrI3	78148257	78501277	353020
chr2	79017908	794I433I	396423	chrI3	78705310	79775537	1070227
chr2	82707674	82808175	I0050I	chrI3	79866776	82559505	2692729
chr2	83008944	83050544	41600	chrI3	83520405	83662585	I42180
chr2	90155450	90355514	200064	chrI4	I435005	36645II	2229506
chr2	93065483	93172942	107459	chrI4	3885798	6371334	2485536
chr2	103864593	I04026376	161783	chrI4	6850767	8264685	I413918
chr2	I0566669I	105958636	291945	chrI4	8385937	10549180	2163243
chr2	106526130	108549488	2023358	chrI4	10586742	I2151878	1565136
chr2	109740844	110393192	652348	chrI4	I3146789	13680187	533398
chr2	II25I5240	I I2756530	241290	chrI4	I7322658	I7457836	I35178

chr2	II41I2I97	II43I7194	204997	chrI4	I767440I	18296407	622006
chr2	115475433	II6087072	611639	chrI4	20089569	20635979	546410
chr2	119450394	I2025I367	800973	chrI4	21037828	22226073	II88245
chr2	I22409628	I24922I35	2512507	chrI4	24482969	24787245	304276
chr2	I25653839	I25716884	63045	chrI4	25254540	25501417	246877
chr2	I26957475	I27860492	903017	chrI4	27669598	27875890	206292
chr2	I2825I33I	I28695085	443754	chrI4	34046332	34189618	I43286
chr2	128947842	I3282I698	3873856	chrI4	35554436	35744766	190330
chr2	I3292I343	I33258339	336996	chrI4	38344250	38789482	445232
chr2	133504852	I3653II59	3026307	chrI4	3920I27I	39907342	70607 I
chr3	970386	I22344I	253055	chrI4	40484309	40646356	I62047
chr3	3050190	3320855	270665	chrI4	46959846	47 I 41282	181436
chr3	5505466	5552259	46793	chrI4	48614875	48929525	3I4650
chr3	6900453	7052779	152326	chrI4	50323759	50680387	356628
chr 3	7866803	8021336	154533	chrI4	51457342	5I540635	83293
chr3	9579325	9751086	I7I76I	chrI4	53415847	54164119	748272
chr3	I363559I	I3842528	206937	chrI4	56053388	57510609	I45722I
chr3	I3974787	I432I565	346778	chrI4	58262807	58740723	477916
chr3	I4791163	I7319185	2528022	chrI4	60333729	61100170	76644I
chr3	2I37193I	22326368	954437	chrI4	61792567	6I965465	172898
chr 3	23409559	23534653	125094	chrI4	63431800	63695912	264112
chr3	26394698	26438136	43438	chrI4	65147770	65511994	364224
chr3	26738133	28I4469I	I406558	chrI4	69028708	70003286	974578
chr 3	29187683	29381184	I93501	chrI4	70358208	70763413	405205
chr3	29852694	30194236	341542	chrI4	77123730	77222049	98319
chr3	30963937	31131027	167090	chrI4	77900043	78092917	192874
chr3	31331920	31750523	418603	chrI4	79178022	79486476	308454
chr 3	33276539	34344799	1068260	chrI4	80475984	8I4I45I5	93853I
chr3	35046094	35317787	271693	chrI4	83306326	83504134	197808
chr3	39097420	3914393I	465II	chrI4	83685686	83773615	87929
chr3	39456939	39599273	I42334	chrI5	I492400	I6768II	I844II
chr 3	40263643	40364628	100985	chrI5	500I246	5134162	132916
chr3	40903270	41432313	529043	chrI5	I2027285	I2520480	493195
chr3	42791404	42893462	102058	chrI5	I3154168	I3226449	7228 I
chr3	495447 I 2	49766904	222192	chrI5	I5595454	I6042857	447403
chr 3	51I26976	52402934	I275958	chrI5	16937958	I7080803	I42845
chr 3	69716313	6996801 I	251698	chrI5	2I325465	22026329	700864
chr 3	75364755	75413638	48883	chrI5	231884I5	2344897I	260556
chr3	76367708	7682II9I	453483	chrI5	24673090	249302 I 2	257122
chr3	77923168	78108702	185534	chrI5	25535567	2571931I	183744
chr3	78971559	79333053	36I494	chrI5	25925175	26790090	864915
chr3	79353705	79581142	227437	chrI5	29305818	29448587	I42769
chr3	79652820	79777779	124959	chrI5	305732 I0	31873933	I300723
chr3	80889108	81630254	741I46	chrI5	32044715	32395964	351249
chr3	82623974	82677195	5322I	chrI5	33565804	33698965	I33I6I
chr3	85100892	85450050	349158	chrI5	34171356	35252207	I08085I
chr 3	85629524	85860004	230480	chrI5	37027165	37107956	80791
chr3	86762502	87293789	53 I 287	chrI5	37 I 4943 I	38251520	1102089
chr3	87904203	88170287	266084	chrI5	41707747	41971248	263501
chr3	91703200	93847303	2I44103	chrI5	43308530	43652444	343914
chr3	94758229	94980177	221948	chrI5	44417808	4458466I	166853
chr 3	97132442	97923006	790564	chrI5	45634800	46058920	424I20
chr 3	98123394	99655499	I532105	chrI5	46906029	47196374	290345
chr3	100442675	100982336	53966 I	chrI5	52590087	53166998	57691I
chr3	IOI253585	IOI377479	123894	chrI5	53250782	53459520	208738
chr3	101785952	IOI942771	I56819	chrI5	54617640	54939673	322033
chr3	10302I43I	103358134	336703	chrI5	57260972	57592823	33I85I
chr 3	104093652	104249570	155918	chrI5	58628094	59434020	805926

chr3	1047I695I	105536719	819768	chrI5	61958209	62309986	351777
chr3	107362756	I08033653	670897	chrI5	65590902	66483616	892714
chr 3	108257297	IIO293079	2035782	chrI5	67185489	68123068	937579
chr3	III2I4429	III54760I	333172	chrI5	75482866	76166896	684030
chr3	II2203165	II2286655	83490	chrI5	76265233	76598267	333034
chr 3	II327I662	II 4220425	948763	chrI5	77046320	77451913	405593
chr3	II445I860	II523633I	78447I	chrI5	78230054	78401390	I71336
chr3	115630359	II8715700	308534I	chrI5	78544866	7868153I	I36665
chr3	118934229	II91I3936	179707	chrI5	81335502	82335513	I00001I
chr3	I20191150	I20860510	669360	chrI6	900145	II04865	204720
chr 4	4258236	53 I 2990	1054754	chrI6	2134973	3621602	I486629
chr4	6248795	6337362	88567	chrI6	398782I	4610955	623134
chr 4	7779209	8466I9I	686982	chrI6	6I46432	6494072	347640
chr 4	10528978	I0933419	40444I	chrI6	8486467	8769236	282769
chr 4	10967124	II215149	248025	chrI6	9883787	I080539 I	92 I 604
chr4	15645 I 22	I5947178	302056	chrI6	I2I30589	I2365230	23464I
chr 4	I8447308	18689580	242272	chrI6	I36952II	I4500474	805263
chr 4	25373005	25646689	273684	chrI6	24241296	24401108	I598I2
chr 4	28413603	29123987	710384	chrI6	27248557	27432134	183577
chr 4	29449548	29602230	152682	chrI6	29441057	29661958	22090I
chr 4	34794353	34856797	62444	chrI6	30466202	30885863	41966I
chr 4	36408463	36928225	519762	chri6	3234197I	32837610	495639
chr 4	37145925	37631099	485174	chrI6	45083406	45425579	342173
chr 4	38166835	38548833	381998	chrI6	46069918	46213318	I43400
chr 4	41556810	41657868	101058	chrI6	46509837	48879755	2369918
chr 4	44792807	45202155	409348	chrI6	49355913	4949133I	I35418
chr 4	45835326	45904319	68993	chrI6	50281187	52535473	2254286
chr4	47137606	47396270	258664	chrI6	6686325 I	67192692	32944 I
chr 4	4782159 I	47949379	I27788	chrI6	68014396	68455943	441547
chr 4	48615363	4872607 I	110708	chrI6	69911268	71125864	I214596
chr 4	50300237	5054793I	247694	chrI6	71349209	74046418	2697209
chr 4	55594630	55687238	92608	chrI6	75305757	76681045	1375288
chr 4	58512174	58998553	486379	chrI6	77098989	78356180	I257191
chr 4	60521073	60917347	396274	chrI6	78939515	79896422	956907
chr 4	6342071 I	63674872	254I6I	chrI6	80351106	8092480I	573695
chr 4	66583105	66978951	395846	chrI7	I04I832	2084655	1042823
chr 4	6894206 I	69220543	278482	chrI7	2881443	3228062	346619
chr 4	69955754	70729858	774104	chrI7	42I794I	4675045	457104
chr 4	70839756	70931951	92 I 95	chrI7	5792606	6436523	643917
chr 4	72920828	73085109	I6428I	chrI7	8776227	9027765	251538
chr 4	73699663	73791282	91619	chrI7	9206816	9558819	352003
chr 4	73861517	7426677 I	405254	chrI7	IOI40780	10557794	417014
chr 4	76868216	77839843	971627	chrI7	III69306	II231535	62229
chr	78440044	78523846	83802	chrI7	I4357I24	I4596438	239314
chr 4	80154498	8040750 I	253003	chrI7	I675855I	I6985065	226514
chr 4	83897939	84274238	376299	chrI7	18186024	I9008492	822468
chr 4	85983005	86286457	303452	chrI7	19109434	19315294	205860
chr 4	86324014	86480802	156788	chrI7	23322903	23431642	108739
chr 4	92235197	92436001	200804	chrI7	24320366	24539327	218961
chr 4	93211337	93739544	528207	chrI7	27416064	27516228	100164
chr 4	94760042	94973039	2I2997	chrI7	30676454	30949325	272871
chr 4	9533647 I	95465677	I29206	chrI7	31310645	31790508	479863
chr 4	96034920	97 I 28968	1094048	chrI7	32731007	3296404 I	233034
chr 4	99542 I 42	99635737	93595	chrI7	39963957	40071626	107669
chr 4	100289958	101072503	782545	chrI7	42425636	42688661	263025
chr 4	103231866	I03687583	455717	chrI7	444I303I	44616245	2032I4
chr 4	106276208	106404042	127834	chrI7	45356254	46814289	I458035
chr 4	106885171	107060437	175266	chrI7	47170772	4827627I	II05499

chr4	107416505	107732347	315842	chrI7	48479069	48788398	309329
chr 4	108867683	I08974924	I0724I	chrI7	49531815	49828442	296627
chr4	III7887I2	II36I4764	1826052	chrI7	53180044	5405229I	872247
chr 4	II43967I3	II4688732	292019	chrI7	54312738	54945167	632429
chr 4	II57I366I	II64853II	771650	chrI7	55366744	55658355	2916II
chr 4	II7I70573	I20412745	3242172	chrI7	55713369	55941040	22767 I
chr5	3180610	3434356	253746	chrI7	56963536	57203284	239748
chr5	10969920	II526654	556734	chrI7	59778912	60165864	386952
chr5	II647027	11800467	I53440	chrI7	60418182	60746006	327824
chr5	19128124	19594448	466324	chrI7	62070942	63480469	I409527
chr5	22943453	23171537	228084	chrI7	63515768	63753770	238002
chr5	27973786	28024945	51159	chrI7	64912981	68253146	3340165
chr5	33953799	34325053	37 I 254	chrI7	68468706	69360236	891530
chr5	34371932	34446901	74969	chrI7	70290307	72741339	2451032
chr5	34896625	35300909	404284	chrI7	72987826	74598498	1610672
chr5	42 I 66749	42436216	269467	chrI8	I094I50	I751859	657709
chr5	46132243	46306149	173906	chrI8	I875406	2793266	917860
chr5	51I41012	51604559	463547	chrI8	4899308	6776532	1877224
chr5	60556520	60711494	154974	chrI8	34379769	35085008	705239
chr5	65922088	66577741	655653	chrI8	35971459	36040190	6873 I
chr5	69351812	69571158	2I9346	chrI8	39793889	42I36II3	2342224
chr5	69856333	70258225	401892	chrI8	42638878	42826428	187550
chr5	72938296	73334655	396359	chrI8	43327273	44064689	737416
chr5	73976636	74593114	616478	chrI8	45870264	46373028	502764
chr5	747783 I 3	7492 I8I9	I43506	chrI8	46552279	46972002	419723
chr5	75002613	75627333	624720	chrI8	47259533	47443804	I8427I
chr5	76599679	76659850	6017 I	chrI8	47627016	47983685	356669
chr5	76724602	77702287	977685	chrI8	48960277	4916727I	206994
chr5	85160180	85672503	5 I 2323	chrI8	5132165I	52024379	702728
chr5	95459836	95666368	206532	chrI8	5266464 I	52739093	74452
chr5	96623157	97593586	970429	chrI8	53132012	53224638	92626
chr5	97828652	987534 I 4	924762	chrI8	5397086 I	54765715	794854
chr5	103539042	104230386	691344	chrI8	55309510	55892476	582966
chr5	105275043	105387546	II2503	chrI8	56121920	56319394	197474
chr5	106713645	I0770499I	991346	chrI8	56364657	58090087	1725430
chr5	107840177	107984945	I44768	chrI8	610952 I 4	61597742	502528
chr5	108811739	III9306I6	3118877	chrI8	61920892	62751093	83020I
chr5	113250833	II3874I3I	623298	chrI8	6302907 I	64901743	1872672
chr5	114543256	II4859696	316440	chrI9	I664089	1903390	239301
chr5	115010779	II7247824	2237045	chrI9	2484709	3247474	762765
chr5	II7738204	I20783915	30457II	chrI9	5057128	5718616	661488
chr6	496589	643965	I47376	chrI9	6822436	7273862	451426
chr6	II252I3	I641898	516685	chrI9	8052 I 63	9417473	I365310
chr6	2245446	2642053	396607	chrI9	II049355	I2032389	983034
chr6	7363787	7902806	539019	chrI9	I349203I	I363462I	I42590
chr6	9914189	10295237	381048	chrI9	I4274648	I7923922	3649274
chr6	10424905	II363207	938302	chrI9	20439349	20635700	19635I
chr6	I2558447	I284657I	288124	chrI9	2I3884I5	21733030	344615
chr6	I3211945	I3417489	205544	chrI9	22038801	23650335	1611534
chr6	I34755I2	I3610388	I34876	chrI9	24917540	26039760	II22220
chr6	I4851230	15252879	401649	chrI9	2752979 I	27602402	72611
chr6	I5580216	I580884I	228625	chrI9	30220186	30572014	351828
chr6	17282916	I7563402	280486	chrI9	30834957	31226718	39176I
chr6	19769454	I9996I75	22672 I	chrI9	3353349 I	33811153	277662
chr6	20924952	2II26480	201528	chrI9	3437154 I	36710214	2338673
chr6	23148412	23217855	69443	chrI9	37732974	38018129	285155
chr6	24184712	24764626	579914	chrI9	42089455	4235269I	263236
chr6	25033485	25356965	323480	chrI9	42393606	43170256	776650

chr6	2547494 I	25925916	450975	chrI9	43295532	43441993	I4646I
chr6	30694723	31067604	37288 I	chrI9	43610147	46202442	2592295
chr6	39069719	39753141	683422	chr 19	46396064	46770465	374401
chr6	40893067	42446118	I55305I	chrI9	47270773	4772548 I	454708
chr6	42493184	42866573	373389	chrI9	48368103	48449016	809 I 3
chr6	43037439	43614199	576760	chr 19	48630588	48801884	I7I296
chr6	44305092	44894050	588958	chr 19	49727374	49826620	99246
chr6	45479538	46178717	699179	chr 19	50087148	50567992	480844
chr6	4697086 I	47188068	217207	chrI9	51148913	52911677	1762764
chr6	56952870	57139728	186858	chr 19	53038373	59742080	6703707
chr6	6065415 I	6II32085	477934	chrI9	59817808	61550668	1732860
chr6	63996365	64542255	545890	chrI9	61753819	62986532	I232713
chr6	66307093	66594604	28751 I	chr20	808587	86 I 460	52873
chr6	66747934	66802712	54778	chr20	1627053	2585844	95879I
chr6	69979797	70123449	I43652	chr 20	2880532	5096097	2215565
chr6	76696893	76754229	57336	chr20	5478758	6029026	550268
chr6	77228984	77520815	29183I	chr 20	6360647	6416157	55510
chr6	79766485	79817258	50773	chr20	7327625	7409378	81753
chr6	79942163	79982917	40754	chr20	8164878	8539206	374328
chr6	81467492	81604925	137433	chr20	8636338	9028I3I	391793
chr6	82 I 28469	82480772	352303	chr20	9919863	10295382	375519
chr6	84819700	84996399	176699	chr20	10738152	10871544	133392
chr 6	91984771	92242383	257612	chr 20	I7710059	I7946080	23602 I
chr6	94562464	95080255	5I779I	chr 20	18099389	19040448	941059
chr6	9819872I	98363600	164879	chr20	23843046	23886196	43 I 50
chr6	99187864	99408048	220184	chr 20	28186842	28463308	276466
chr6	100428424	100827998	399574	chr20	2968498 I	30161777	476796
chr6	100903198	IOI297489	39429 I	chr20	37066726	37374576	307850
chr6	101357896	10166I0II	303115	chr20	37777328	38606353	829025
chr6	IOI7496I5	IOI983370	233755	chr 20	40728408	41777888	1049480
chr6	I0445360I	105309108	855507	chr 20	42696358	43004103	307745
chr6	106I97672	II0591345	4393673	chr 20	48715588	49251437	535849
chr6	110697360	IIIIIO390	413030	chr 20	50128719	50347483	218764
chr6	II3I57379	II3606872	449493	chr 20	51044020	5I205535	I6I5I5
chr6	II4747565	II5490762	743197	chr 20	5281614I	53333822	5I768I
chr6	II70I323I	II7148273	I35042	chr20	53798275	54060327	262052
chr6	II8004635	II8986727	982092	chr20	55865295	56I9629I	330996
chr7	II27439	200877 I	881332	chr 20	566626 I2	57263704	601092
chr7	2565484	6669157	4103673	chr 20	58071204	59109201	1037997
chr7	7822III	7910128	88017	chr 20	60902173	60954990	52817
chr7	7986664	83I55I2	328848	chr 20	62247834	62736738	488904
chr7	13279972	I382359I	543619	chr 20	63356077	63771728	41565I
chr7	I4330447	I4434623	104176	chr 20	64754802	65099050	344248
chr7	I749048I	I8476I20	985639	chr 20	6571552I	67038772	I32325I
chr7	18707985	I884526I	137276	chr 20	67462559	6835568 I	893122
chr7	18910887	19084659	173772	chr20	6902032 I	69504928	484607
chr7	19352717	21347602	1994885	chr 20	69554351	71535445	1981094
chr7	21462645	23074262	1611617	chr2I	2749974	3027827	277853
chr7	24233634	24778430	544796	chr2I	7022598	851933I	1496733
chr7	24946051	25232158	286107	chr2I	I078880I	11360403	571602
chr7	2698429 I	27258897	274606	chr2I	I3052680	I3I10087	57407
chr7	27973088	28567404	594316	chr2I	14362108	I4654478	292370
chr7	33658873	34011987	353II4	chr2I	I4723518	I5659059	93554 I
chr7	34534432	34709657	175225	chr2I	I905I950	22397530	3345580
chr7	35003374	3558134 I	577967	chr2I	22520337	23220048	69971 I
chr7	37537822	38075277	537455	chr2I	26116828	26715346	598518
chr7	38613662	39679687	1066025	chr2I	26936862	28283039	I346177
chr7	3986883 I	41875877	2007046	chr2I	28387366	28612871	225505

chr7	42788788	43479777	690989	chr2I	28675178	29923689	I2485II
chr7	44490836	44901489	410653	chr2I	30608016	30908358	300342
chr7	45097887	46109256	IOII369	chr2I	33327048	35267234	1940186
chr7	46293900	47213804	919904	chr2I	35777432	36083384	305952
chr7	47954688	48218360	263672	chr2I	37293354	37705700	4 I 2346
chr7	49999470	50541246	541776	chr2I	42389217	42835553	446336
chr7	53736537	54081460	344923	chr2I	46018333	46063657	45324
chr7	55434939	55655916	220977	chr2I	47963417	48099076	I35659
chr7	57357439	57641183	283744	chr2I	49439452	49533074	93622
chr7	59766632	60012102	245470	chr2I	49594234	50244378	650144
chr7	60628965	6I330104	701139	chr2I	52139183	52608666	469483
chr7	61879960	61992242	II2282	chr2I	56118709	56785345	666636
chr7	62400698	62978076	577378	chr2I	57156944	58442333	I285389
chr7	63255889	63778905	523016	chr2I	58944572	59248804	304232
chr7	64766846	65245810	478964	chr2I	59787612	60553762	766150
chr7	66061402	66450039	388637	chr2I	61094140	63286443	2192303
chr7	66951622	67774508	822886	chr2I	65272069	67220188	1948119
chr7	68382283	6886166 I	479378	chr2I	67593887	69554017	1960130
chr7	72264142	72424026	159884	chr2I	70089833	71136925	1047092
chr7	74320957	74632687	3II730	chr22	63238 I	1428683	796302
chr7	78762342	78987067	224725	chr22	2808095	3126680	318585
chr7	81863002	82943896	1080894	chr22	5022403	5353497	331094
chr7	84971705	8507104I	99336	chr 22	6814022	7263366	449344
chr7	8538785I	8557965I	191800	chr22	7623264	88382 II	I2I4947
chr7	86669785	86879535	209750	chr 22	9918880	II246732	I327852
chr7	87700528	87790787	90259	chr 22	II756783	I322379I	I467008
chr7	88192479	88268249	75770	chr 22	I4086186	I4300175	213989
chr7	91670145	91974966	30482 I	chr22	I45I4444	I5I77059	662615
chr7	95531504	95600027	68523	chr22	I5589177	I5974506	385329
chr7	97691853	98013150	321297	chr22	16219978	16342830	I22852
chr7	103159234	103375625	21639I	chr 22	16437316	16727330	290014
chr7	10473072I	105465008	734287	chr 22	17882779	18494857	612078
chr7	108096309	108307729	211420	chr22	19409002	19588936	179934
chr7	I08685I33	109268080	582947	chr 22	20826586	20920119	93533
chr7	I0999I7II	I 10422232	43052I	chr22	21963292	22075972	II2680
chr7	III25994I	III891998	632057	chr22	2326897 I	23458863	189892
chr8	494866	1047065	552199	chr22	23834157	24538255	704098
chr8	I208626	1745249	536623	chr22	29101885	29655985	554100
chr8	83406 I 2	8725932	385320	chr22	32990568	33583017	592449
chr8	10320524	II500414	1179890	chr22	35771697	36047120	275423
chr8	2I220037	2I52583I	305794	chr22	37590098	38303302	713204
chr8	23493443	24103669	610226	chr22	39545402	39702951	I57549
chr8	27557552	27831038	273486	chr 22	4016793I	41573980	I406049
chr8	27908523	28559343	650820	chr22	42177755	42616545	438790
chr8	2872656 I	29068846	342285	chr22	42791065	44030499	I239434
chr8	32611423	3274904 I	I37618	chr22	46902036	48406016	I503980
chr8	33668705	33771490	102785	chr22	50705290	52187729	I482439
chr8	34584476	35464882	880406	chr22	527062 I 3	53254546	548333
chr8	40470452	4II7306I	702609	chr22	54440045	6104070I	6600656
chr8	41930432	42545530	6 I 5098	chr 23	25702 II	3664434	1094223
chr8	47092657	47224522	I31865	chr23	4083573	4455923	372350
chr8	47540190	47898948	358758	chr23	4622 I46	4737838	II5692
chr8	48914474	49550836	636362	chr23	478175I	5233255	451504
chr8	50626573	50938776	312203	chr 23	6948746	8124702	II75956
chr8	52557297	53980316	I423019	chr23	9951185	10240332	289147
chr8	54402516	5489463 I	492115	chr23	10526857	II25I946	725089
chr8	55084725	55239532	I54807	chr23	I2910040	I3I55828	245788
chr8	56512655	56625850	113195	chr 23	I3770707	I3866915	96208

chr8	58505244	58729476	224232	chr23	I4063300	I4981935	918635
chr8	58926246	59487308	561062	chr23	I6601543	20402236	3800693
chr8	59541510	6007 I 322	529812	chr23	22716563	23507190	790627
chr8	60589007	61042106	453099	chr23	24803563	25507676	704113
chr8	61877938	62108589	23065 I	chr 23	27174246	27583474	409228
chr8	62469487	62575787	106300	chr23	27776075	28311070	534995
chr8	63435892	63956656	520764	chr 23	37292633	37692330	399697
chr8	65228923	65659020	430097	chr 23	4018268 I	42669248	2486567
chr8	65960156	66134324	174168	chr 23	45009074	45666148	657074
chr8	66721299	67180774	459475	chr23	46578332	5I938I6I	5359829
chr8	68168243	68442169	273926	chr24	541784	1094942	553158
chr8	68689710	68850097	160387	chr 24	I450456	2859956	1409500
chr8	69285264	69622989	337725	chr24	3237803	5054955	1817152
chr8	71263375	71627282	363907	chr 24	582840 I	604756 I	219160
chr8	7323893 I	73435613	196682	chr24	7322657	7943787	621130
chr8	76005495	76281603	276108	chr 24	II753230	II888700	135470
chr8	76530816	76620508	89692	chr24	I2775555	I291686I	I41306
chr8	79314073	79817203	503130	chr24	I4841074	I5259118	418044
chr8	80944503	81334383	389880	chr24	I73I7994	I7513135	195I4I
chr8	82099108	82223990	124882	chr 24	I92677II	19370939	103228
chr8	8478038I	84896726	116345	chr 24	21571435	22300490	729055
chr8	85645138	86810388	1165250	chr24	24302542	24582206	279664
chr8	88545459	89313850	76839 I	chr 24	28175885	28218879	42994
chr8	89619126	90249304	630178	chr24	2840045 I	28546447	I45996
chr8	90412852	91278924	866072	chr24	28853585	29405619	552034
chr8	94115663	94386951	27 I 288	chr24	32346216	34201179	1854963
chr8	94579362	95277410	698048	chr24	34621317	36201079	1579762
chr8	96266647	96712245	445598	chr24	36301805	36566389	264584
chr8	97543154	98056575	5I342I	chr 24	39320770	39365195	44425
chr8	IO087305I	IOI206057	333006	chr24	4I2897II	4I540027	250316
chr8	IOI446930	IOI529840	82910	chr 24	42296195	43402173	1105978
chr8	I02608032	10318809I	580059	chr 24	4523924I	47323079	2083838
chr8	I04220II7	105033919	813802	chr 24	47722933	47797164	7423 I
chr8	I05486423	106196262	709839	chr24	48140670	4822648I	8581I
chr8	107107709	107324529	216820	chr 24	48528178	48999628	471450
chr8	108492195	108868929	376734	chr24	49755342	50568228	812886
chr8	I 10455623	IIII80295	724672	chr24	52047342	52165674	118332
chr8	111668506	III71397I	45465	chr24	53328928	53576672	247744
chr8	II2020602	II2966306	945704	chr24	55570429	55980406	409977
chr9	19263I4	2284075	357761	chr 24	56379984	56564480	184496
chr9	2434402	2728202	293800	chr24	56834044	56889750	55706
chr9	2779925	3115242	335317	chr 24	57257505	59703255	2445750
chr9	4050528	4476378	425850	chr24	60394194	62191687	I797493
chr9	8858542	9018195	159653	chr 25	472458	5156189	468373 I
chr9	10343I45	10765698	422553	chr 25	5662943	751588I	1852938
chr9	16768069	I7298279	530210	chr 25	9252279	10305794	1053515
chr9	18790503	18862613	72110	chr 25	I2965823	I3824693	858870
chr9	22281170	22396640	II5470	chr 25	I42I6892	I4569665	352773
chr9	25 I 26494	25185694	59200	chr25	I5006757	I5I200II	II3254
chr9	26179360	26847057	667697	chr25	I5365566	I601766I	652095
chr9	28887462	29029183	I4I72I	chr25	I7363060	I7742193	379133
chr9	31510537	32049723	539186	chr 25	I7891876	18206998	315122
chr9	32343804	32549297	205493	chr 25	18372002	18448555	76553
chr9	34681064	34802818	I2I754	chr 25	22566179	23040867	474688
chr9	50378425	50694137	315712	chr25	25405137	26380285	975148
chr9	55532332	55630797	98465	chr 25	30183716	30269233	85517
chr9	5696685I	57069740	102889	chr 25	32823036	33108530	285494
chr9	60280329	61209187	928858	chr25	33412423	341I2565	700142

chr9	6528495 I	65672050	387099	chr25	34565592	36514994	1949402
chr9	70248005	70491698	243693	chr25	36980815	38698430	I7I76I5
chr9	73259605	74512290	I252685	chr25	38856905	39921068	1064163
chr9	7677681 I	77070363	293552	chr25	40827689	42364359	I536670
chr9	81195326	81277154	81828	chr26	2452597	2687667	235070
chr9	83692030	83837068	145038	chr26	3524I6I	3618349	94188
chr9	86288986	86971466	682480	chr26	4204767	4731392	526625
chr9	87008260	87254861	24660 I	chr26	5258082	5526925	268843
chr9	88342363	88714313	371950	chr26	8695518	8887209	I9I69I
chr9	89847787	90002616	I54829	chr26	10689379	I099572I	306342
chr9	90807695	90924836	II7I4I	chr26	16862899	16973274	110375
chr9	90996268	91158204	161936	chr26	17815724	18967997	II52273
chr9	95127819	95952795	824976	chr26	19323674	19657939	334265
chr9	96131728	97191669	105994I	chr26	20012464	20560149	547685
chr9	97260495	99334002	2073507	chr26	2282627 I	23603307	777036
chr9	100022759	101470808	I448049	chr26	24401843	24507253	105410
chr9	I02546533	105462864	29I633I	chr26	25501890	26 I 24236	622346
chri0	2244249	2361595	II7346	chr26	27213271	27343629	I30358
chrio	32295 I5	3343140	II3625	chr26	2872372I	28784693	60972
chrio	441558I	4534148	118567	chr26	3289281 I	33337772	44496I
chri0	4742 I 49	5598788	856639	chr26	33716256	34460340	744084
chri0	5767015	6724993	957978	chr26	36631883	37018466	386583
chri0	8132805	8394690	261885	chr26	37203584	37579568	375984
chri0	8675II9	8898592	223473	chr26	38980475	3912I205	I40730
chrio	9558767	10846884	I288117	chr26	40903566	41183634	280068
chrio	II654004	II707725	5372 I	chr26	4127I740	41762178	490438
chrio	II998905	I2386269	387364	chr26	41956I2I	45302252	3346131
chri0	I2486527	I3040I45	553618	chr26	45642I2I	45954628	3 I 2507
chrio	1505I277	16162053	1110776	chr26	46187669	46366100	I7843I
chri0	16460889	17625573	1164684	chr26	4667356 I	47837750	II64189
chri0	18041832	18772359	730527	chr26	48007359	50273965	2266606
chri0	20322987	20721372	398385	chr27	703314	967098	263784
chri0	21571180	22339193	768013	chr27	2248130	2472812	224682
chrio	26406685	2676785 I	361166	chr27	4357162	5000552	643390
chri0	28070182	28397659	327477	chr27	6866166	6955584	89418
chrio	28508237	28703125	194888	chr27	8781446	8848885	67439
chri0	35828 I26	3641934I	591215	chr27	I2842240	15044426	2202186
chri0	36946284	37133985	I87701	chr27	15794249	16296679	502430
chri0	4I38923I	4I5I424I	I25010	chr27	18710877	I9195734	484857
chri0	44694452	45506957	8I2505	chr27	20559148	21676934	III7786
chrio	46486647	46802 I59	3155I2	chr27	22922395	23I44459	222064
chri0	47309 I22	48110941	801819	chr27	25295935	25728096	432161
chrio	48837583	49981642	II44059	chr27	27804403	28148660	344257
chri0	50213424	51383075	II6965I	chr27	29009479	29300595	291116
chrio	51502722	51803725	301003	chr27	31000749	32184354	I183605
chri0	52933550	53318692	385142	chr27	32488843	3267145I	182608
chri0	56285758	57193699	90794 I	chr27	32724283	32889433	I65I50
chri0	58028735	58318595	289860	chr27	33400664	3378832 I	387657
chrio	67290043	67694539	404496	chr27	34036869	34166163	I29294
chri0	68324855	6857079 I	245936	chr27	35024154	35734689	710535
chrio	68963110	69107598	I44488	chr27	35900786	36285734	384948
chrio	69311079	69658256	347177	chr27	3634269 I	36592652	249961
chri0	70894537	71359437	464900	chr27	36935085	37479272	544187
chrio	72658520	72846830	I88310	chr27	3810979I	3968823 I	1578440
chri0	73798107	73979984	181877	chr27	40210986	4104998I	838995
chri0	76604316	76779458	I75I42	chr27	42055498	44148168	2092670
chri0	78044879	78549784	504905	chr 28	5123022	596503 I	842009
chrIO	80910I2I	81113308	203187	chr 28	6334557	6547497	2I2940

chrIO	81788224	82290325	502101	chr28	66263 I9	I0044965	3418646
chriO	8324 I 282	83389165	I47883	chr28	I3424880	I4091432	666552
chriO	84096660	84899748	803088	chr28	I6783056	I7374797	59174 I
chriO	84951492	85085819	I34327	chr 28	21762976	21872563	109587
chriO	86036359	86214669	I78310	chr28	23969284	24I753I3	206029
chriO	86868858	87139659	270801	chr28	25899333	28205509	2306176
chrIO	8768472 I	88133750	449029	chr28	31130099	31197813	67714
chriO	88673513	89365394	69188 I	chr28	33240420	354I230I	2I7I88I
chriO	89717052	91982227	2265175	chr28	35668756	36300699	631943
chriO	92695820	93019985	324165	chr28	36504079	37052366	548287
chriO	98420963	98817467	396504	chr28	37272033	37433520	I6I487
chrIO	99103087	99542820	439733	chr 28	38961890	40191764	I229874
chriO	100804186	IOII3068I	326495	chr28	40957698	41239838	282140
chrIO	IOI52I757	1022I0987	689230	chr28	4255 I 27	4283I28I	280154
chrIO	IO254495I	I03699875	II54924	chr28	43088798	43877796	788998
chrII	740136	I920092	II79956	chr28	44056044	44153620	97576
chrII	2603799	3192673	588874	chr29	2522803	3074352	551549
chrII	5539221	6243988	704767	chr29	5348843	5452376	103533
chrII	6701679	6777332	75653	chr29	9020167	9454029	433862
chrII	719027 I	7585747	395476	chr29	9850630	I0393660	543030
chrII	8149768	87I3I34	563366	chr29	I0872370	II753300	880930
chrII	9153560	9473 I 58	319598	chr29	II988I63	I224I827	253664
chrII	I027I653	I0800426	528773	chr29	I6I3I653	I7796803	I665150
chrII	I5788936	I5919622	I30686	chr29	I9200818	20I46I3I	945313
chrII	20755386	20960589	205203	chr29	252196I2	26293574	1073962
chrII	22558808	23085190	526382	chr29	28523337	29768788	I24545I
chrII	24354910	26162970	I808060	chr29	30428085	30638566	21048I
chrII	2798953 I	28207767	218236	chr29	30827166	31693910	866744
chrII	28992259	29367145	374886	chr29	31899837	32238809	338972
chrII	30651364	31130270	478906	chr29	32516455	32944239	427784
chrII	3II736I3	3I259588	85975	chr29	33249348	34118132	868784
chrII	367 I 347 I	37261133	547662	chr29	35051920	36669359	I6I7439
chrII	38733905	39104584	370679	chr29	3676 I05I	38015000	I253949
chrII	46307696	47430509	II228I3	chr29	39930095	4I26480I	I334706
chrII	51963535	52677772	7 I 4237	chr29	4 I 552472	4I66436I	I II889
chrII	54193489	54246625	53136	chr29	42620218	45023665	2403447
chrII	6012832 I	60572203	443882	chr29	45817015	50999092	5182077
chrII	63686208	64313748	627540				

SVS7 (CNVRs)			$\begin{aligned} & \hline \text { lenght } \\ & \hline 21796 \\ & \hline \end{aligned}$	SVS7 (CNVRs)			$\begin{gathered} \hline \text { lenght } \\ \hline 460833 \end{gathered}$
chrI	4626587	4648383		chrI4	800827 I2	80543545	
chrI	52748123	52772080	23957	chrI5	47780178	4781977I	39593
chrI	64501909	64525174	23265	chrI5	76438547	76466667	28 I 20
chrI	9106662I	91435586	368965	chrI5	80369812	81139855	770043
chrI	I23825385	I2392I894	96509	chrI6	4158997	4233985	74988
chrI	I44134237	I44190645	56408	chrI6	8317477	8582055	264578
chrI	I46587678	I466320I4	44336	chrI6	9171622	926715I	95529
chr I	I558358I6	I55955828	I200I2	chrI6	9670453	9729773	59320
chr2	5757355	5802738	45383	chrI6	I5I542I2	I5362423	2082II
chr2	I4525350	I4565726	40376	chrI6	22272329	22302686	30357
chr2	27489458	27724930	235472	chrI6	29441057	29636822	195765
chr2	28215944	28246133	30189	chrI6	36768083	36817218	49135
chr2	32108568	32154806	46238	chrI6	41I3I268	41194530	63262
chr2	39976359	39999947	23588	chrI6	49355913	49455109	99196
chr2	57373897	57416172	42275	chrI6	68811897	68889225	77328
chr2	5877204I	59143632	37159I	chrI6	70906202	71125864	219662
chr2	83029887	83050544	20657	chrI7	8170089	829715I	127062
chr2	110311653	I10353I89	41536	chrI7	20275502	20484740	209238

chr2	I24137395	I2420442I	67026	chrI7	27459029	27491589	32560
chr3	7957960	7983149	25189	chrI7	32762909	3296404 I	201132
chr3	33514564	33741850	227286	chrI7	39963957	40071626	107669
chr3	39097420	39118317	20897	chrI7	42425636	42661925	236289
chr3	40977107	41079360	102253	chrI7	55713369	55764236	50867
chr3	6840296I	68432 I45	29184	chrI8	3080400	3II4628	34228
chr3	81379707	8141I04I	31334	chrI8	35971459	36107915	I36456
chr3	91910014	92190368	280354	chrI8	42659289	42826428	167139
chr3	100468099	I00493684	25585	chrI8	50388296	50465387	7709 I
chr3	105715727	105739637	23910	chrI8	51571629	5 I 592949	21320
chr3	115888900	II5937988	49088	chrI8	53I32012	53195763	63751
chr3	116781408	II6801749	2034I	chrI8	60978019	6I05459I	76572
chr4	6248795	6337362	88567	chrI8	610952I4	61156737	6 I 523
chr4	10401625	10450547	48922	chrI8	61438125	61920892	482767
chr 4	II472235	II5009II	28676	chrI8	63119361	63167945	48584
chr 4	I7902915	I7978432	75517	chrI9	6709868	6768232	58364
chr 4	22093546	22180214	86668	chrI9	II86365I	II970132	I0648I
chr 4	24087424	24150445	6302 I	chrI9	34836416	34905583	69167
chr4	2838491 I	28413603	28692	chrI9	3558508 I	35619269	34188
chr 4	4I444423	41657868	213445	chrI9	38519698	38546855	27157
chr 4	66781385	66830563	49178	chrI9	4235269 I	42423488	70797
chr 4	69158293	69220543	62250	chrI9	42976859	43170256	193397
chr 4	73699663	73791282	91619	chrI9	46655940	46723662	67722
chr 4	78440044	78523846	83802	chrI9	5033602 I	50395622	5960I
chr 4	81497187	81554820	57633	chrI9	51767413	51842198	74785
chr4	8681I243	86948025	136782	chrI9	52175916	52264019	88103
chr 4	89850655	89921990	71335	chrI9	54306610	54446207	139597
chr 4	99574406	9969148I	II7075	chrI9	55379112	55527962	148850
chr4	106980782	107007048	26266	chrI9	56072306	56202223	129917
chr 4	108168742	108198485	29743	chrI9	56754737	56837932	83 I 95
chr4	108867683	108904498	36815	chr20	I74II45	I792368	51223
chr 4	III990062	II2I643I4	174252	chr20	2880532	3189118	308586
chr4	I18608842	118655986	47144	chr20	6360647	6385223	24576
chr5	3068469 I	30838906	I542I5	chr20	21018903	21048672	29769
chr5	4627954I	46306149	26608	chr20	33773531	33817557	44026
chr5	58847022	58966295	I19273	chr20	34241862	34264853	2299 I
chr5	II4543256	II4698428	155172	chr20	34953795	34981347	27552
chr5	116895329	118329917	I434588	chr20	41239866	4I28992I	50055
chr5	II9729902	II9949553	21965I	chr20	45052283	45369517	317234
chr6	5025746	5086 I 36	60390	chr20	60902 I73	60928704	26531
chr6	9736332	9981135	244803	chr20	64185456	64376028	190572
chr6	I2648459	I270360I	55142	chr2I	54186710	54208626	21916
chr6	22613578	22672648	59070	chr2I	70089833	71210609	II20776
chr6	40107367	40208497	101130	chr 22	I2869969	12948282	78313
chr6	509813I2	51007189	25877	chr 22	162I9978	16407075	187097
chr6	53428838	53449439	2060I	chr 22	19409002	19588936	179934
chr6	6829I35I	68332579	41228	chr 22	2143I682	2I455286	23604
chr6	8I55I479	81604925	53446	chr22	25I4I85I	25321072	I7922I
chr6	90966250	90989420	23170	chr 22	26527854	26604789	76935
chr6	100620998	100709082	88084	chr 22	26865100	26924506	59406
chr6	I04493834	104587477	93643	chr 22	31649896	31675722	25826
chr6	II70I323I	II7148273	I35042	chr 22	36527685	36548339	20654
chr7	I293067	I3533I7	60250	chr 22	39545402	39657636	II2234
chr7	2597655	2680354	82699	chr 22	44430993	44595995	165002
chr7	22524899	22681472	156573	chr22	47510478	47537080	26602
chr7	42788788	43132401	343613	chr 22	48858472	49131324	272852
chr7	43709405	43808593	99188	chr22	54028803	54183730	154927
chr7	76886696	77011685	I24989	chr22	57098389	57111693	I3304

chr7	7808I5II	78307528	226017	chr 22	59951940	60243916	291976
chr7	87158251	87359924	201673	chr 22	60435042	60508872	73830
chr8	9133270	915622I	2295I	chr 23	25250595	25339818	89223
chr8	I5417359	I5441189	23830	chr 23	28503248	28563533	60285
chr8	I5665796	I577392I	108125	chr24	I027534	II37518	109984
chr8	20018829	2006786I	49032	chr24	332I96I	3342966	21005
chr8	29068846	29100768	31922	chr 24	21071943	2II29533	57590
chr8	33356720	33747904	391184	chr24	24499452	24582206	82754
chr8	34898163	34920926	22763	chr 24	28060569	28083770	23201
chr8	43628838	43779600	150762	chr 24	28175885	28196203	20318
chr8	73715997	73829090	II3093	chr24	38640377	38694114	53737
chr8	87038169	87141059	102890	chr24	39320770	39365195	44425
chr8	94115663	94973599	857936	chr24	53328928	5343418I	105253
chr8	105683974	105695288	II3I4	chr 25	60924 I	983759	374518
chr9	4239500	4439872	200372	chr 25	7952738	7992272	39534
chr9	68973776	69002105	28329	chr 25	I21904I4	I22I794I	27527
chr9	102258435	102271805	13370	chr25	I601766I	16048464	30803
chri0	5437359	5540505	103I46	chr 25	18206998	18372002	165004
chri0	39823420	39846476	23056	chr 25	I9082329	19145490	63161
chrII	I4979948	I5029477	49529	chr 25	22238007	22320002	81995
chrII	I6425876	I65I466I	88785	chr 25	24125205	24228117	IO29I2
chrI I	33642979	33682867	39888	chr 25	3798832 I	38142895	154574
chrII	46657176	46701073	43897	chr 25	39286957	39424763	I37806
chrI I	72555948	72598008	42060	chr 25	39544407	39570754	26347
chrI I	84899274	84947879	48605	chr 25	39785037	39844749	597 I 2
chrI I	88028793	88377200	348407	chr26	5258082	5288263	30181
chr I I	93445185	93587894	142709	chr26	5472360	550427 I	31911
chrII	I0I7501I3	101802657	52544	chr26	I2I36498	I2236803	100305
chrII	105699664	105778702	79038	chr26	19686897	19942669	255772
chrI2	I3I79696	I3204I37	2444I	chr26	21902497	21955I37	52640
chr I2	20129895	20402284	272389	chr26	25828973	25982293	153320
chrI2	304I86II	30646042	22743 I	chr26	28303383	28398156	94773
chrI2	41384223	41479027	94804	chr26	39655739	39681664	25925
chrI2	43601825	43638160	36335	chr26	48693316	48713332	20016
chrI2	50385487	50451289	65802	chr26	49027625	49090826	63201
chrI2	55867003	55931940	64937	chr27	4544917	4773381	228464
chrI2	57931622	58461348	529726	chr27	6922514	7188361	265847
chrI2	59437039	59609816	172777	chr27	873044I	8827679	97238
chrI2	67538730	67564989	26259	chr27	909603 I	9191858	95827
chr I2	7064967 I	7209042 I	I440750	chr27	I22825I8	I2330184	47666
chrI2	782I2571	7823549I	22920	chr27	I8036224	18164172	I27948
chrI2	82159124	82199690	40566	chr27	33813284	33845584	32300
chrI2	82450106	82661747	21164I	chr27	38025744	38233675	20793 I
chr I3	5594384	5623697	293 I 3	chr27	43237090	43260976	23886
chrI3	5804337 I	58070117	26746	chr 28	2313753	2638563	324810
chrI3	65965727	66336246	370519	chr28	6334557	6547497	212940
chrI3	70496054	70523797	27743	chr 28	I27I7523	12973750	256227
chrI3	80026050	80144645	118595	chr28	I3713042	I3894573	I8153I
chrI4	2721633	2803998	82365	chr 28	21982457	22I4805I	165594
chrI4	3765019	401720I	252182	chr 28	26994978	27072I2I	77 I 43
chrI4	6778397	6850767	72370	chr 28	37514643	37624697	110054
chrI4	8064004	8113083	49079	chr28	38026506	38074472	47966
chrI4	8499902	8551460	51558	chr 28	44030986	44056044	25058
chrI4	9300228	9345 I 40	449 I 2	chr29	7401774	7480356	78582
chrI4	2011961I	20157384	37773	chr29	19618823	19701179	82356
chrI4	30449596	30595032	I45436	chr29	2I93057I	21987I20	56549
chrI4	50955416	50996515	41099	chr29	27184360	27465875	281515
chrI4	51285167	5I430094	144927	chr29	28192104	28248785	56681

135

chrI4	53415847	53436763	20916	chr29	33329702	33353664	23962
chrI4	54023420	54 I 23 I 46	99726	chr29	35136093	35 I 69599	33506
chrI4	7557I250	76043 I 48	47 I 898	chr29	412 I 2959	4126480 I	5 I 842
chrI4	762I7573	76269650	52077	chr29	48I78I5I	48252404	74253
chrI4	79I78022	7932270 I	I44679				

CNVRS Consensus (pennCNV/SVS7)			lenght	CNVRS Consensus (pennCNV/SVS7)			lenght
chrI	9106662I	91358383	291762	chrI5	76438547	76466667	28 I 20
chrI	I44134237	I44190645	56408	chrI6	4158997	4233985	74988
chrI	I46587678	I46632014	44336	chrI6	8486467	8582055	95588
chrI	I558358I6	I55955828	I200I2	chrI6	29441057	29636822	195765
chr2	I 4525350	I4565726	40376	chrI6	49355913	49455109	99196
chr2	27489458	27724930	235472	chrI6	70906202	71125864	219662
chr2	32108568	32154806	46238	chrI7	27459029	27491589	32560
chr2	39976359	39999947	23588	chrI7	32762909	3296404 I	201132
chr2	57373897	57416172	42275	chr 17	39963957	40071626	107669
chr2	83029887	83050544	20657	chrI7	42425636	42661925	236289
chr2	II03II653	II0353189	41536	chrI7	55713369	55764236	50867
chr2	I24137395	I2420442I	67026	chrI8	35971459	36040190	6873 I
chr3	7957960	7983149	25189	chrI8	42659289	42826428	167139
chr 3	33514564	33741850	227286	chrI8	51571629	51592949	21320
chr3	39097420	39118317	20897	chrI8	53132012	53195763	63751
chr3	40977107	41079360	102253	chrI8	61095214	61156737	61523
chr3	81379707	814II04I	31334	chrI8	6I438I25	61597742	I59617
chr3	91910014	92190368	280354	chrI8	63119361	63167945	48584
chr3	I00468099	I00493684	25585	chrI9	II86365I	II970132	I0648I
chr3	II5888900	II5937988	49088	chrI9	3558508 I	35619269	34188
chr3	II6781408	II6801749	2034 I	chrI9	34836416	34905583	69167
chr4	6248795	6337362	88567	chri9	42393606	42423488	29882
chr4	41556810	41657868	I0I058	chrI9	42976859	43170256	I93397
chr4	66781385	66830563	49178	chrI9	46655940	46723662	67722
chr4	69158293	69220543	62250	chr I9	50336021	50395622	59601
chr4	73699663	73791282	91619	chrI9	52175916	52264019	88103
chr4	99574406	99635737	6133 I	chrI9	51767413	51842198	74785
chr4	I06980782	107007048	26266	chr I9	56754737	56837932	83195
chr4	I08867683	108904498	36815	chrI9	54306610	54446207	I39597
chr4	III990062	II2I643I4	I74252	chrI9	55379112	55527962	I48850
chr4	II8608842	II8655986	47 I 44	chrI9	56072306	56202223	I29917
chr5	4627954 I	46306149	26608	chr20	I74II45	1792368	51223
chr5	II4543256	II 4698428	I55I72	chr20	2880532	3189118	308586
chr5	II6895329	II7247824	352495	chr20	6360647	6385223	24576
chr5	II9729902	II9949553	2I965I	chr 20	41239866	4I28992I	50055
chr5	II7738204	II8329917	591713	chr 20	60902173	60928704	2653 I
chr6	9914189	9981135	66946	chr2I	70089833	71136925	1047092
chr6	I2648459	I270360I	55142	chr 22	I2869969	I2948282	78313
chr6	81551479	81604925	53446	chr 22	I6219978	I6342830	I22852
chr6	100620998	100709082	88084	chr 22	19409002	19588936	I79934
chr6	I04493834	I04587477	93643	chr 22	39545402	39657636	II2234
chr6	II70I323I	II7I48273	I35042	chr 22	47510478	47537080	26602
chr7	I293067	1353317	60250	chr 22	57098389	57111693	I3304
chr7	2597655	2680354	82699	chr 22	60435042	60508872	73830
chr7	22524899	22681472	I56573	chr 22	59951940	60243916	291976
chr7	42788788	43I3240I	343613	chr 23	25250595	25339818	89223
chr8	33668705	33747904	79199	chr 24	1027534	1094942	67408
chr8	34898163	34920926	22763	chr 24	332196I	3342966	21005
chr8	94115663	94386951	27 I 288	chr 24	24499452	24582206	82754
chr8	94579362	94973599	394237	chr 24	28175885	28196203	203 I 8
chr8	I05683974	I05695288	II3I4	chr 24	39320770	39365195	44425
chr9	4239500	4439872	200372	chr 24	53328928	5343418 I	105253
chrIO	5437359	5540505	103146	chr 25	60924 I	983759	374518
chrII	46657176	46701073	43897	chr 25	3798832 I	38142895	I54574
chrII	88028793	88377200	348407	chr 25	39544407	39570754	26347
chrII	93546324	93587894	41570	chr 25	39785037	39844749	59712
chrII	I0I750113	I01802657	52544	chr 25	39286957	39424763	I37806
chrII	105699664	105778702	79038	chr 26	5258082	5288263	30181
chrI2	I3I79696	I3204137	2444 I	chr26	5472360	550427 I	31911

chrI2	20129895	20402284	272389	chr 26	25828973	25982293	I53320
chrI2	304I86II	30646042	22743 I	chr 26	48693316	48713332	20016
chrI2	41384223	41479027	94804	chr 26	49027625	49090826	63201
chrI2	55867003	55931940	64937	chr 27	4544917	4773381	228464
chrI2	57931622	58461348	529726	chr 27	6922514	6955584	33070
chrI3	80026050	80144645	II8595	chr 27	8781446	8827679	46233
chrI4	2721633	2803998	82365	chr 27	3810979I	38233675	I23884
chrI4	3885798	40I720I	I3I403	chr 27	43237090	43260976	23886
chrI4	8064004	8113083	49079	chr 28	6334557	6547497	212940
chrI4	8499902	8551460	51558	chr 28	I3713042	I3894573	18153I
chrI4	9300228	9345140	44912	chr 28	26994978	2707212I	77143
chrI4	20II96II	20157384	37773	chr 29	19618823	19701179	82356
chrI4	53415847	53436763	20916	chr 29	33329702	33353664	23962
chrI4	54023420	54123I46	99726	chr 29	35136093	35169599	33506
chrI4	79178022	79322701	I44679	chr 29	4I2I2959	4126480I	51842
chrI4	80475984	80543545	6756 I	chr29	4817815I	48252404	74253

Table S2 Summary of the results of the qPCR analysis of the eleven CNVRs selected after the consensus analysis in the Italian Brown Swiss breed.

BTA	PRIMER (FORWARD)	PRIMER (REVERSE)	PROBE	START*	END*	LENGHT	$\begin{aligned} & \text { PENN CNV } \\ & \text { STATE } \end{aligned}$	$\begin{aligned} & \text { CNAMCNY } \\ & \text { STATE } \end{aligned}$	NUMBEROF SAMPLES	$\begin{aligned} & \text { CONFIRMED CC } \\ & \text { SAMPLES } \end{aligned}$	$\begin{aligned} & \text { CONFIRMED } \\ & \text { RATE } \end{aligned}$	validated	$\begin{gathered} \text { GENE } \\ \text { (Btau4.6.1) } \end{gathered}$
2	TGCATGCACACAGGAATGTTAC	TGCCCCTAAGAAGGAGTCGTT	ACTCTGTTCAGCCCTTC	63870167	64073748	203581	GAIN		11	8	0,73	YES	MGAT5
3	GACTAATGGCAAGAGCCGTGTA	AGGCAGGAACAGAAGGAGGAA	TGAGCATGTCACTITAA	7957198	7966700	9502	GAIN	GAIN	3	2	0,67	YES	FCGR2B
4	GCCCGGCGGACACTAAG	CCAGCATTATGTCCTTCATCAACA	TCAGGAAGCTGTGGCCA	6228016	6450000	221984	GAIN		11	11	1,00	YES	-
4	TCCTGCCCAGATACCATATCCTT	CGAGGCAAGCTCTACAGGAAA	TGGCATTCAAATCAC	73686740	73785101	98361	Loss	Loss	10	9	0,90	YES	ZNF804B
5	GGAGATAGGATAGAAAGAAATGGAGAAC	ATGGGAGTGATGGAAAATTGAAG	CACTCTTAAATTCCC	58965609	59140571	174962	Loss		10	7	0,70	YES	LOC787945
12	GGACAGTCACCTCAGGATGCA	TTGCCACAAGTGAGGCTTCTC	AACGGTCACCTAAGAGACA	58071208	58427000	355792	Loss	Loss	11	1	0,09	No	-
12	GCCTGGTGTTGTCATGATGAA	CCCGTACACTGACACCAAAGTG	TTITGCGCTTGAAGCAG	67534765	67579929	45164		Loss	11	10	0,91	YES	-
13	TGCGAAATTCTGGAAGAGGAA	GGGTGCCTGGTGCAATTC	CCTGAGGACATGAAGTT	53931895	53983934	52039	GAIN		5	3	0,60	YES	SIRPB1
19	CAGTGAGCCAAAAGCCAATCC	AATCCAACTTGCCGGCTAGTATT	CCTCCACAGGAATC	2585940	2607218	21278	LOSS		12	9	0,75	YES	-
28	ACATTCAGGCTGCCATTTTGT	GAGGCGGGATGTCACAGAAA	TCCAATATCGTCAACCATT	2553716	2635632	81916		Loss	12	6	0,50	YES	ORSAS1
29	CACGGGCGCACCACTT	CCCCCGATGAATGGCTATC	AGCTCCCTGCTCGAC	5414600	5444000	29400	GAIN		10	9	0,90	YES	-
REF_BTF3	GCTGAGACAAAGCAACTGACAGA	TCGGCACCAAGCTGGTTTA	TGCTCCCCAGCATC										

The BTF3 gene was selected as a reference location for all the qPCR experiments (Bae et al. 20I0). Primers for the selected target regions and for the reference gene were designed with the Primer Express ${ }^{\circledR}$ Software v3.0.I (Life Technologies ${ }^{\mathrm{TM}}$, Milano, Italy) using the MGB quantification parameters. All the qPCR experiments were run in quadruple using the qPCR protocol described by TaqMan® Copy Number Assays kit (Life Tecnologies ${ }^{\text {TM }}$) on 7500 Fast Real-time PCR System instrument (Applied Biosystems, Life Technologies ${ }^{\text {TM }}$). The samples for each qPCR experiment were randomly selected with or without CNVs for each CNVR. The analysis of the crossing thresholds (Ct) for each samples tested was carried out using CopyCaller ${ }^{\mathrm{TM}}$ software (Applied Biosystems). The validated CNVRs positions were converted from Bos_taurus_UMD3.I to Btau_4.6.I assembly using the Batch Coordinate Conversion option in UCSC database (https://genome.ucsc.edu/) in order to identify potential candidate CNV genes for complex traits.

Table S3 Annotation of copy number variant regions (CNVRs).

CNVRS_pennCNV			CNVRS_SVS7		CNVRS_Consensus		$\begin{aligned} & \hline \text { CNVRs } \\ & \text { State } \end{aligned}$	Gene included in CNVRs_Cconsensus			
chrI	I4I903958	I452800I5	I44I34237	I44I90645	I44I34237	I44I90645	gain/loss	I44I76745	I44I800II	ENSBTAG000000308I4	TFF2
chr I	I5565402I	I567I0I74	I558358I6	I55955828	I55835816	I55955828	gain/loss	I55833805	I5618592I	ENSBTAG0000003058I	TBCID5
chr2	I44963I3	I4565726	I4525350	I4565726	I4525350	I4565726	loss	I4502890	I4623643	ENSBTAG00000044009	PPPIRIC
chr2	26781358	282I5944	27489458	27724930	27489458	27724930	gain/loss	27629813	27629887	ENSBTAG00000044462	bta-mir-2353
								27407917	27758923	ENSBTAG00000044I79	CERS6
chr2	39976359	4002 I 5I2	39976359	39999947	39976359	39999947	loss	39999717	40017015	ENSBTAG00000003650	NR4A2
chr2	I09740844	II0393I92	II03II653	II0353189	II03II653	II0353189	gain/loss	IIO25I546	II0405363	ENSBTAG000000I0030	EPHA4
chr3	7866803	8021336	7957960	7983149	7957960	7983149	gain	7928113	7944607	ENSBTAG0000002I842	FCGR2B
chr3	33276539	34344799	33514564	33741850	335 I 4564	33741850	gain/loss	33702816	33702894	ENSBTAG00000044953	bta-mir-24I3
								33607139	33621030	ENSBTAG00000000283	CSFI
								33513768	3355628 I	ENSBTAG000000I8893	AHCYLI
chr3	39097420	3914393 I	39097420	39118317	39097420	39118317	loss	39113552	39114954	ENSBTAG000000I5I80	none
chr3	91703200	93847303	91910014	92190368	919100I4	92190368	gain/loss	91901853	91911965	ENSBTAG000000I324I	BSND
								91919532	91925379	ENSBTAG00000046583	TMEM6I
								91994928	91995058	ENSBTAG00000042369	SNORA8
								92098624	9210005 I	ENSBTAG000000403I3	PARS2
								9202381 I	92054136	ENSBTAG000000I7I45	CIorfl77
								92059023	92083335	ENSBTAG000000I7I32	TTC22
								92106927	92132082	ENSBTAG000000I593I	TTC4
								9I98I6I9	92014282	ENSBTAG000000004688	DHCR 24
								92136670	92190804	ENSBTAG00000030623	none
								92136706	92165969	ENSBTAG00000044I4I	HEATR8
chr3	I00442675	100982336	I00468099	100493684	100468099	I00493684	gain/loss	I00472063	100495789	ENSBTAG000000I3322	POMGNTI
								IOO472499	I00483275	ENSBTAG00000024I44	LURAPI
chr3	II5630359	II87I5700	II5888900	II5937988	II5888900	II5937988	gain/loss	II5843770	II6226449	ENSBTAG000000I6504	none
			II6781408	II680I749							
chr4	66583105	6697895 I	66781385	66830563	66781385	66830563	gain	66785266	66851245	ENSBTAG000000I6223	SCRNI
chr4	73699663	73791282	73699663	73791282	73699663	73791282	loss	73326980	7389704 I	ENSBTAG00000046430	ZNF804B
chr4	99542 I42	99635737	99574406	9969 I48I	99574406	99635737	loss	99475015	99580189	ENSBTAG000000I3953	CALDI
								99591042	99690829	ENSBTAG000000I3976	AGBL3
chr4	I06885I7I	I07060437	I06980782	107007048	106980782	I07007048	gain/loss	I069898I6	I06993917	ENSBTAG000000I55I0	none
								I06996940	I07013515	ENSBTAG00000024219	TRPV6
			III990062	II2I643I4	III990062	II2I643I4	gain/loss	II 2048065	II20482I7	ENSBTAG00000047873	none
						139					

chr4	117170573	I204I2745	I18608842	118655986				II2I26680	II2I26805	ENSBTAG0000004587I	none
chr5	II4543256	II4859696	II4543256	II4698428	II4543256	114698428	gain/loss	II4576427	II4588012	ENSBTAG000000024I3	MCAT
								II4596006	II4608640	ENSBTAG000000I8073	TSPO
								1I4610664	II4627819	ENSBTAG00000001708	TTLLI2
								II4644629	II4767260	ENSBTAG000000II275	SCUBEI
chr5	115010779	II7247824	II6895329	118329917	II6895329	II7247824	gain/loss	II7II9385	117119458	ENSBTAG00000029772	bta-let-7a-3
								II7II9640	II7119712	ENSBTAG00000045309	bta-mir-2443
								II7I20188	II7I20270	ENSBTAG000000364I7	bta-mir-3596
								116959716	116966318	ENSBTAG00000009532	WNT7B
								II7240033	II7248391	ENSBTAG00000008065	CDPFI
								116756235	116897163	ENSBTAG0000000935I	ATXNIO
								II7151549	II7233II2	ENSBTAG00000008063	PPARA
			II6895329	118329917	II7738204	118329917	gain/loss	117743264	II7758670	ENSBTAG00000005595	TRMU
								II7975282	118012354	ENSBTAG0000002I803	GRAMD4
								118023267	118036020	ENSBTAG00000046654	CERK
								II7677522	II7738845	ENSBTAG00000007102	GTSEI
								II776482I	II78532I4	ENSBTAG00000008036	CELSRI
								II8086468	118343833	ENSBTAG000000I2291	TBCID22A
chr5	II7738204	I20783915	II9729902	II9949553	I19729902	II9949553	gain/loss	II982I435	II9829363	ENSBTAG000000I9574	MAPKI2
								119771356	I19791795	ENSBTAG00000000647	SELO
								II98I4028	I19819426	ENSBTAG0000001 1000	HDACIO
								II9832293	II9837I0I	ENSBTAG00000030182	MAPKII
								II9840726	II9854I20	ENSBTAG000000I4966	PLXNB2
								II9874457	119885052	ENSBTAG00000024756	DENND6B
								II9791795	I19813398	ENSBTAG00000000650	TUBGCP6
								II9926286	120029002	ENSBTAG000000I8660	PPP6R2
chr6	81467492	81604925	81551479	81604925	81551479	81604925	gain/loss	81511554	81653990	ENSBTAG00000024826	TECRL
chr7	II27439	200877I	I293067	I3533I7	I293067	1353317	loss	I3I7088	I334619	ENSBTAG000000I5602	C7H5orf45
								1334566	I34605I	ENSBTAG000000I559I	SQSTMI
								I273635	1313897	ENSBTAG000000I56II	TBCID9B
chr7	2565484	6669157	2597655	2680354	2597655	2680354	gain/loss	2586101	2598115	ENSBTAG00000001604	none
								2600732	2618482	ENSBTAG00000040028	MGCI66429
chr7	21462645	23074262	22524899	22681472	22524899	22681472	gain/loss	22533096	22537819	ENSBTAG0000000452I	
								22569683	22574912	ENSBTAG000000I6477	CI9orf35
								22577243	22580777	ENSBTAG000000I8522	OAZI
								22519686	22532977	ENSBTAG00000004524	SPPL2B
								22560008	22561849	ENSBTAG000000I6478	LINGO3
								22629692	22680307	ENSBTAG00000009996	DOTIL

chr7	42788788	43479777	42788788	43132401	42788788	43I3240I	gain/loss	42787986	42788915	ENSBTAG00000007557	OR2AK2
								42811931	42813032	ENSBTAG00000047016	none
								42833645	42834607	ENSBTAG000000464I7	none
								42868129	42869064	ENSBTAG0000002724I	none
								42890345	42891283	ENSBTAG00000045733	none
								42913832	42914770	ENSBTAG00000046474	none
								42947455	42948392	ENSBTAG00000046042	none
								43044539	43045551	ENSBTAG00000040033	OR2AJI
								43101693	43102628	ENSBTAG00000030725	none
								43119732	43120670	ENSBTAG00000047180	none
chr8	94115663	94386951	94115663	94973599	94115663	94386951	loss	94230962	94231065	ENSBTAG00000042843	U6
								94205191	94210057	ENSBTAG000000I5608	CYLC2
chriI	46307696	47430509	46657176	46701073	46657176	46701073	gain/loss	46699166	46706152	ENSBTAG000000I9665	ILIRN
chril	87124625	8937191I	88028793	88377200	88028793	88377200	gain/loss	88012967	88104077	ENSBTAG00000002329	ASAP2
chr I I	93546324	93612322	93445185	93587894	93546324	93587894	gain/loss	93563425	935644II	ENSBTAG00000038726	none
								93584334	93585269	ENSBTAG00000037542	none
chri I	99774304	104856815	I0I750113	101802657	IOI7501I3	101802657	gain/loss	101728372	I01793685	ENSBTAG0000002079I	RAPGEFI
chrII	105593624	106825407	105699664	105778702	105699664	105778702	gain/loss	105698II4	105702610	ENSBTAG00000030246	ENTPD8
								105702496	105711512	ENSBTAG000000I2I2I	NOXAI
								10572896I	105770612	ENSBTAG00000023788	EXD3
chrI2	I3I40896	13273888	I3179696	13204137	I3I79696	13204137	gain/loss	I3183734	I3266310	ENSBTAG00000034785	DNAJCI5
chrI2	30099199	31555734	304186II	30646042	304I86II	30646042	gain	30587084	30587189	ENSBTAG00000045239	SNORA70
								30519852	30558210	ENSBTAG00000009340	KATNALI
chrI2	57931622	58461348	57931622	58461348	57931622	58461348	loss	58187519	58187639	ENSBTAG00000045992	none
chrI3	79866776	82559505	80026050	80144645	80026050	80144645	gain/loss	8001560I	80114072	ENSBTAG000000I8270	NFATC2
chrI4	1435005	36645 II	2721633	2803998	2721633	2803998	gain/loss	2755206	2762197	ENSBTAG00000000158	LY6K
								2770551	2775678	ENSBTAG00000037824	none
								2715416	2742638	ENSBTAG00000004595	GML
								2801383	2803020	ENSBTAG00000034498	LY6D
chr I4	3885798	6371334	3765019	4017201	3885798	401720I	gain/loss	3870893	4065010	ENSBTAG00000009578	PTK2
chr I4	6850767	8264685	8064004	8113083	8064004	8113083	gain/loss	8080292	808036 I	ENSBTAG00000029987	bta-mir-30d
								808472I	8084808	ENSBTAG00000029972	bta-mir-30b
chr I4	8385937	10549180	9300228	9345I40	9300228	9345I40	gain/loss	9334778	937128I	ENSBTAG00000007828	SLA
								9262251	9508938	ENSBTAG00000007823	TG
chr I4	53415847	54164119	54023420	54I23I46	54023420	54123146	loss	53901591	54429251	ENSBTAG0000003828I	CSMD3
chr I4	79178022	79486476	79178022	79322701	79178022	79322701	gain/loss	792967 I 3	79298474	ENSBTAG0000000285I	none
chrI6	398782 I	4610955	4158997	4233985	4158997	4233985	gain/loss	4221210	424262 I	ENSBTAG000000I0432	EIF2D
								4144349	42 I 8744	ENSBTAG000000I0427	RASSF5

chrI6	29441057	29661958	29441057	29636822
chrI6	49355913	4949I33I	49355913	49455I09
chrI6	6991I268	7II25864	70906202	71125864
chri7	32731007	3296404 I	32762909	3296404 I
chrI7	557I3369	55941040	55713369	55764236
chrI8	35971459	36040190	35971459	36107915
chrI8	42638878	42826428	42659289	42826428
chrI8	5I32I65I	52024379	5I571629	5I592949
chrI8	531320I2	53224638	531320I2	53195763
chrI8	6I0952I4	61597742	6I438I25	6I920892
chrI8	6302907 I	64901743	63II936I	63167945
chrI9	IIO49355	I2032389	II86365I	II970132
chrI9	3437 I54I	367102 I 4	3558508 I	35619269
			34836416	34905583
chri9	42393606	43170256	4235269 I	42423488
chri9	46396064	46770465	46655940	46723662

29441057	29636822	gain/loss
49355913	49455109	loss
70906202	7II25864	gain/loss
32762909	3296404 I	gain/loss
55713369	55764236	loss
35971459	36040190	gain/loss
42659289	42826428	gain/loss
5157I629	5I592949	gain/loss
531320I2	53195763	loss
61095214	6II56737	gain/loss
63 II936I	63167945	gain/loss
II86365I	II970132	gain/loss
3558508 I	35619269	gain/loss
34836416	34905583	gain/loss
42393606	42423488	gain/loss
42976859	43170256	gain/loss

29552I52	29561665	ENSBTAG00000033322	SRP9
29624572	29655286	ENSBTAG00000002854	TMEM63A
29585792	29624037	ENSBTAG00000000I40	EPHXI
29238992	2944279 I	ENSBTAG000000I6I85	ENAH
49429155	49429874	ENSBTAG00000046062	none
49447984	49564506	ENSBTAG0000002I9I9	NAVI
71019535	7I024I4I	ENSBTAG00000004790	UBE2T
710777I7	71077907	ENSBTAG00000033994	U2
70925149	70928253	ENSBTAG00000047073	none
70932238	7I0I627I	ENSBTAG00000004789	LGR6
71062I32	71137463	ENSBTAG000000II772	PPPIRI2B
70902206	70917245	ENSBTAG000000030I6	PTPN7
327 I 27 I 2	32889849	ENSBTAG00000003345	FAT4
55707870	55719927	ENSBTAG00000004I75	HPD
55727012	55747669	ENSBTAG00000004I72	SETDIB
55759606	5577301 I	ENSBTAG00000032534	RHOF
36008030	36029234	ENSBTAG00000007488	ZFP90
42749252	42750804	ENSBTAG00000003856	none
5I520760	51578983	ENSBTAG000000II723	GRIK5
5I587793	51603479	ENSBTAG000000I8635	ATPIA3
53I5442I	53158137	ENSBTAG000000I3702	ZNF296
53129172	53I537I4	ENSBTAG000000I3697	CLASRP
53160659	53167519	ENSBTAG000000I0668	GEMIN7
53169569	53207223	ENSBTAG000000I8834	PPPIR37
6II45844	6II45922	ENSBTAG00000036392	bta-mir-37I
6I091348	6II43063	ENSBTAG00000038I49	NLRPI2
63119873	63 I24888	ENSBTAG00000045989	CDC42EP5
63146729	63 I 544 I 2	ENSBTAG000000I9547	none
II865527	II891936	ENSBTAG00000009968	TBX4
II943I85	II95I4II	ENSBTAG000000I4278	TBX2
35557245	35646258	ENSBTAG000000I0534	M-RIP
3483296 I	34860869	ENSBTAG00000003705	FAM83G
34878438	34899068	ENSBTAG000000I4858	PRPSAP2
34817325	34872403	ENSBTAG00000003700	SLC5AI0
424I34I3	424I82I5	ENSBTAG00000047I65	KRT9
43033597	43054075	ENSBTAG00000009496	STAT5A
43I48013	43162165	ENSBTAG00000039684	PTRF
43056660	43 I32624	ENSBTAG0000002I523	STAT3

								653105	660655	ENSBTAG00000033580	MSLNL
chr 25	36980815	38698430	3798832 I	38142895	3798832 I	38142895	gain	38041960	38053172	ENSBTAG00000045896	NPTX2
chr 25	38856905	39921068	39286957	39424763	39544407	39570754	gain/loss	395657 II	39589412	ENSBTAG000000I2049	WIPI2
			39785037	39844749	39785037	39844749	gain/loss	39840013	39840088	ENSBTAG00000047050	bta-mir-2890
								39761774	39816244	ENSBTAG000000I93I0	FOXKI
			39286957	39424763	39286957	39424763	gain/loss	39292721	39302192	ENSBTAG00000003I9I	FSCNI
								3930865 I	39309366	ENSBTAG0000004778I	none
								39343633	39347044	ENSBTAG00000026I99	АСТВ
								39359290	39376730	ENSBTAG000000I0264	FBXLI8
chr26	5258082	5526925	5472360	550427 I	5258082	5288263	loss	5017714	5578654	ENSBTAG00000045905	PCDHI5
					5472360	550427 I	loss	5017714	5578654	ENSBTAG00000045905	PCDHI5
chr26	25501890	26 I 24236	25828973	25982293	25828973	25982293	gain/loss	25856475	25865594	ENSBTAG000000I7710	ECHSI
								25872737	25875735	ENSBTAG000000057I5	FUOM
								25881752	25885322	ENSBTAG000000I37I7	PRAPI
								25928928	25930145	ENSBTAG00000046499	none
								25938I8I	25941636	ENSBTAG000000I2416	ZNF5II
								25828813	25855778	ENSBTAG000000I832I	PAOX
								25893499	2590442 I	ENSBTAG0000000079I	CALY
								25960809	25972557	ENSBTAG00000023832	ADAM8
								25944197	25958640	ENSBTAG00000006395	TUBGCP2
chr27	4357162	5000552	45449 I7	477338 I	45449 I7	477338 I	gain	4677302	4677407	ENSBTAG00000043496	U6
								4766514	4783646	ENSBTAG00000007473	XKR5
								4313369	4554747	ENSBTAG000000II032	MCPHI
								4679600	4727246	ENSBTAG00000004922	AGPAT5
chr 28	6334557	6547497	6334557	6547497	6334557	6547497	gain/loss	6492389	6559855	ENSBTAG000000045I5	KCNKI
					26994978	27072121	gain/loss	26985668	27080093	ENSBTAG0000002II77	ADAMTSI4
chr29	35051920	36669359	35136093	35169599	35136093	35169599	gain	35154689	35575203	ENSBTAG000000I0032	NTM
chr29	45817015	50999092	48I78I5I	48252404	48I78I5I	48252404	gain/loss	48167168	48194210	ENSBTAG0000000607I	CTTN
								48217044	48378574	ENSBTAG00000003I7I	SHANK2

Table S4 Go and pathways analyses performed using DAVID on line database with high classification stringency option and the FDR correction (sheet I: gene clustered_DAVID; sheet 2: genes not clustered_DAVID).
sheet I: gene clustered

Category	ID	Term	P-Value	FDR
Annotation Cluster I	Enrichment Score: 2,73			
	GO:0043434	response to peptide hormone stimulus	I, $22 \mathrm{E}+\mathrm{I} 2$	I.9E-I
GOTERM_BP_FAT	GO:0032870	cellular response to hormone stimulus	I, 40E+I2	2.IE-I
	GO:0009719	response to endogenous stimulus	2,67E+II	4.IE-I
	GO:0009725	response to hormone stimulus	I,46E-03	2.2E0
	bta0522I	Acute myeloid leukemia	3,29E-03	3.5E0
KEGG_PATHWAY	bta05220	Chronic myeloid leukemia	5,08E-02	4.3EI
	bta04630	Jak-STAT signaling pathway	6,72E-02	5.3EI
AKTI, GRB2, STAT5A, STATSB, NR4A2, STAT3				
Annotation Cluster 2	Enrichment Score: 2,68			
	GO:0060397	JAK-STAT cascade involved in growth hormone signaling pathway	2,57E+I2	3.9E-I
	GO:0060396	growth hormone receptor signaling pathway	8,45E+II	I.3E0
GOTERM_BP_FAT	GO:0060416	response to growth hormone stimulus	8,45E+II	I.3E0
	GO:0007259	JAK-STAT cascade	3,69E-03	5.5E0
	GO:00400I4	regulation of multicellular organism growth	5,23E-03	7.7E0
	GO:001922I	cytokine-mediated signaling pathway	2,25E-02	2.9EI
	STAT5A, CSFI, STAT5B, STAT3			
Annotation Cluster 3	Enrichment Score: 1,69			
	GO:0045I37	development of primary sexual characteristics	6,92E-03	I.0EI
	GO:0003006	reproductive developmental process	I, 22E-02	I.7EI
GOTERM_BP_FAT	GO:0007548	sex differentiation	I,45E-02	2.0EI
	GO:004666I	male sex differentiation	2,08E-02	2.7EI
	GO:0008406	gonad development	4,87E-02	5.3EI
	GO:0048608	reproductive structure development	6,08E-02	6.2EI

Annotation Cluster 4

GOTERM_BP_FAT

GOTERM_BP_FAT

Enrichment Score: 160
regulation of small GTPase mediated signal

GO:005I056	transduction	$4,08 \mathrm{E}-03$	6.0 EO
GO:0030695	GTPase regulator activity	$4,38 \mathrm{E}-02$	4.4 EI
GO:0005083	small GTPase regulator activity	$4,52 \mathrm{E}-02$	4.5 EI
GO:0060589	nucleoside-triphosphatase regulator activity	$4,92 \mathrm{E}-02$	4.7 EI

CSFI, TBCID5, ASAP2, MGCI66429, RAPGEFI, TBCID22A, TBCID9B

	GO:0030I55	regulation of cell adhesion	I,I7E-0I	8.5EI
	GO:0008284	positive regulation of cell proliferation positive regulation of multicellular organismal	I,7IE-0I	9.4EI
	GO:005I240	process	2,53E-01	9.9EI
	MET	, , STAT5A, CSFI, STATSB, STAT3		
Annotation Cluster 6		Enrichment Score: 1,40		
	GO:0032318	regulation of Ras GTPase activity	I,38E-02	I.9EI
	GO:0043087	regulation of GTPase activity	2,08E-02	2.7EI
	GO:0008047	enzyme activator activity	3,23E-02	3.4EI
	GO:00323I3	regulation of Rab GTPase activity	3,56E-02	4.2EI
AT	GO:0032483	regulation of Rab protein signal transduction	3,56E-02	4.2EI
AT	GO:0005097	Rab GTPase activator activity	3,67E-02	3.8EI
	GO:0005083	small GTPase regulator activity	4,52E-02	4.5EI
	GO:0005096	GTPase activator activity	5,53E-02	5.2EI
	GO:0005099	Ras GTPase activator activity	6,16E-02	5.6EI
	GO:005I336	regulation of hydrolase activity	I,42E-0I	9.0EI
	TBCID5, ASAP	MGCI66429, TBCID22A, TBCID9B, NOXAI		
Annotation Cluster 7		Enrichment Score: I,II		
	GO:0006468	protein amino acid phosphorylation	5,68E-02	5.9EI
GOTERM BP FAT	GO:0006796	phosphate metabolic process	7,7IE-02	7.IEI
GOTERM_BP_FAT	GO:0006793	phosphorus metabolic process	7,7IE-02	7.IEI
	GO:0016310	phosphorylation	I,I2E-01	8.4EI
PTPN7, A	EPHA4, PTK2,	PPKI2, PTPRG, STAT5A, STAT5B, MAPKII,	EGG, AATK	
Annotation Cluster 8		Enrichment Score: I,03I		
	GO:0008344	adult locomotory behavior	2,25E-02	2.9EI
GOTERM BP FAT	GO:0030534	adult behavior	6,84E-02	6.6EI
GOTERM_BP_PAT	GO:0007610	behavior	2,04E-01	9.7EI
	GO:0007626	locomotory behavior	2,39E-0I	9.8EI
		HA4, ATPIA3, NR4A2, STAT3		
Annotation Cluster 9		Enrichment Score: 1,03		
	GO:0017076	purine nucleotide binding	6,80E-02	5.9EI
	GO:000I883	purine nucleoside binding	7,18E-02	6.IEI
	GO:000I882	nucleoside binding	7,46E-02	6.3EI
	GO:0032555	purine ribonucleotide binding	8,30E-02	6.7EI
GOTERM_MF_FAT	GO:0032553	ribonucleotide binding	8,30E-02	6.7 EI
	GO:0000I66	nucleotide binding	9,38E-02	7.2EI
	GO:0030554	adenyl nucleotide binding	I,I7E-01	8.0EI
	GO:0005524	ATP binding	I,38E-0I	8.5EI
	GO:0032559	adenyl ribonucleotide binding	I,45E-01	8.6EI
ACTB, PGSI, ADSSLI	DIB, TDRD9,	PIA3, MAPKII, PDE6G, TPKI, AKTI, EPHA4	AVI, MAPK	PARS2
	ENTPD8, RUV	I, EEFSEC, RHOF, UBE2T, DHCR24, AATK		
Annotation Cluster 10		Enrichment Score: 0,97		
	GO:0032989	cellular component morphogenesis	2,99E-02	3.7EI
	GO:0000904	cell morphogenesis involved in differentiation	3,39E-02	4.IEI
	GO:0000902	cell morphogenesis	7,64E-02	7.0EI
	GO:0007409	axonogenesis	9,60E-02	7.9EI
	GO:0030182	neuron differentiation	I,03E-01	8.IEI
	GO:00488I2	neuron projection morphogenesis	I,05E-0I	8.IEI
GOTERM_BP_FAT		cell morphogenesis involved in neuron		
	GO:0048667	differentiation	I,I7E-0I	8.5EI
	GO:0048858	cell projection morphogenesis	I,23E-01	8.6EI
	GO:0032990	cell part morphogenesis	I,42E-0I	9.0EI
	GO:0031I75	neuron projection development	I,48E-0I	9.IEI
	GO:0048666	neuron development	2,39E-01	9.8EI
	GO:0006928	cell motion	4,03E-0I	I.0E2
	ACTB,	HA4, PTK2, NR4A2, NFATCI, STAT3		
Annotation Cluster II		Enrichment Score: 0,83		
	GO:00064I7	regulation of translation	8,74E-02	7.5EI
GOTERM_BP_FAT	GO:0010608	posttranscriptional regulation of gene expression	I,85E-01	9.6EI
	GO:0032268	regulation of cellular protein metabolic process	2,00E-0I	9.7EI

Annotation Cluster I2

	GO:0005856	cytoskeleton	3,83E-02	3.5 EI
GOTERM_CC_FAT	GO:0043228	non-membrane-bounded organelle	$3, \mathrm{I} 2 \mathrm{E}-01$	9.8 EI
	GO:0043232	intracellular non-membrane-bounded organelle	3,I2E-0I	9.8 EI

AKTI, ACTB, FGFI8, CYLC2, PTK2, TUBGCP6, EXOC7, CALDI, NPMI, TEKT4, TUBGCP2, RHOF

Annotation Cluster I3

GOTERM_BP_FAT

Annotation Cluster I4

KEGG_PATHWAY
GOTERM_MF_FAT
Annotation Cluster I5

GOTERM_BP_FAT

Annotation Cluster I6

Annotation Cluster I7

GOTERM_MF_FAT

GOTERM_BP_FAT

Enrichment Score: 0,76

GO:0009I65	nucleotide biosynthetic process nucleobase, nucleoside, nucleotide and nucleic acid biosynthetic process	I,65E-0I	9.4 EI
GO:0034654	I,8IE-0I	9.5 EI	
nucleobase, nucleoside and nucleotide	I,8IE-0I	9.5 EI	

ADSSLI, ENTPD8, ATPIA3, PRPSAP2
Enrichment Score: 0,70

bta04664	Fc epsilon RI signaling pathway	$4,92 \mathrm{E}-02$	4.2 EI
bta049I4	Progesterone-mediated oocyte maturation	$2,34 \mathrm{E}-0 \mathrm{I}$	9.5 EI
bta04620	Toll-like receptor signaling pathway	$2,89 \mathrm{E}-0 \mathrm{I}$	9.8 EI
GO:0004674	protein serine/threonine kinase activity	$4,78 \mathrm{E}-0 \mathrm{I}$	I.0E2

Enrichment Score: 0,66

GO:0043066	negative regulation of apoptosis	I,56E-0I	9.2 EI
GO:0043069	negative regulation of programmed cell death	I,60E-0I	9.3 EI
GO:0060548	negative regulation of cell death	I,60E-0I	9.3 EI
GO:004298I	regulation of apoptosis	$2,96 \mathrm{E}-0 \mathrm{I}$	I.0E2
GO:0043067	regulation of programmed cell death	$3,03 \mathrm{E}-0 \mathrm{I}$	I.0E2
GO:00I094I	regulation of cell death	$3,05 \mathrm{E}-0 \mathrm{I}$	I.0E2

MSX2, SIVAI, STAT5A, STAT5B, NR $4 A 2$
Enrichment Score: 0,62

GO:00192I6	regulation of lipid metabolic process	4,87E-02	5.3EI
GO:0010628	positive regulation of gene expression	I,4IE-0I	9.0EI
	positive regulation of transcription from RNA		
GO:0045944	polymerase II promoter	I,58E-0I	9.3EI
GO:005I254	positive regulation of RNA metabolic process	2,17E-0I	9.8EI
	positive regulation of transcription, DNA-		
GO:0045893	dependent	2,I7E-0I	9.8EI
GO:004594I	positive regulation of transcription	2,99E-0I	I.OE2
	positive regulation of nucleobase, nucleoside,		
GO:0045935	nucleotide and nucleic acid metabolic process positive regulation of nitrogen compound	3,6IE-0I	I.OE2
GO:005II73	metabolic process	3,79E-01	I.OE2
	positive regulation of macromolecule biosynthetic		
GO:0010557	process	4,04E-0I	I.OE2
GO:003I328	positive regulation of cellular biosynthetic process	4,32E-0I	I.OE2
GO:000989I	positive regulation of biosynthetic process	$4,39 \mathrm{E}-0 \mathrm{I}$	I.OE2
PPARA, STAT5A, CSFI, STAT5B, NR4A2			
Enrichment Score: 0,49			
GO:0003700	transcription factor activity	I,24E-0I	8.2EI
GO:0030528	transcription regulator activity	3,35E-0I	9.9EI
GO:0006355	regulation of transcription, DNA-dependent	3,9IE-0I	I.0E2
GO:005I252	regulation of RNA metabolic process	4,IIE-0I	I.OE2
GO:0045449	regulation of transcription	5,34E-0I	I.OE2

MSX2, PPARA, TRMU, ZFP9O, STAT5A, TBX4, STAT5B, NARFL, HDACIO, NR4A2, STAT3, NFATCI
Annotation Cluster 18

GOTERM_CC_FAT	GO:003198I	nuclear lumen	4,50E-0I	I.0E2
	GO:0070013	intracellular organelle lumen	5,03E-01	I.0E2
	GO:0043233	organelle lumen	5,04E-01	I.0E2
	GO:003I974	membrane-enclosed lumen	5,4IE-OI	I.0E2
ACTB, FGFI8, NPMI, HDACIO, ECHSI, GEMIN7				
Annotation Cluster 19		Enrichment		
GOTERM_BP_FAT	GO:00I0558	negative regulation of macrom	5,2IE-OI	I.0E2

		process		
	GO:003I327	negative regulation of cellular biosynthetic process	5,30E-0I	I.0E2
	GO:0009890	negative regulation of biosynthetic process	5,47E-0I	I.0E2
	GO:0010605	negative regulation of macromolecule metabolic process	6,40E-0I	I.0E2
		PPARA, HDACIO, SRP9		
Annotation Cluster 20	Enrichment Score: 0,25			
	GO:0046872	metal ion binding	5,35E-0I	I.0E2
GOTERM_MF_FAT	GO:0043I69	cation binding	5,6IE-0I	I.0E2
	GO:0043167	ion binding	5,82E-0I	I.0E2
PPARA, NPLOC4, ADSSLI, TRMU, STAT5A, ZNF296, SCUBEI, STAT5B, ASAP2, NR4A2, CELSRI, KCNKI, STAT3, PRPSAP2, POMGNTI, SQSTMI, ZFP90, ENTPD8, HAGHL, ADAM8, SLC5AIO, TBCID9B, HPD				
Annotation Cluster 2I	Enrichment Score: 0,24			
	GO:003256I	guanyl ribonucleotide binding	5,08E-0I	I.0E2
GOTERM_MF_FAT	GO:001900I	guanyl nucleotide binding	5,15E-0I	I.0E2
	GO:0005525	GTP binding	7,44E-0I	I.0E2
	ADSSLI, EEFSEC, PDE6G, RHOF			
Annotation Cluster 22	Enrichment Score: 0,19			
	GO:0006886	intracellular protein transport	5,6IE-0I	I.0E2
	GO:00346I3	cellular protein localization	5,98E-01	I.0E2
	GO:0070727	cellular macromolecule localization	6,00E-0I	I.0E2
GOTERM_BP_FAT	GO:0008I04	protein localization	6,04E-0I	I.0E2
	GO:001503I	protein transport	7,33E-0I	I.0E2
	GO:0045I84	establishment of protein localization	7,35E-0I	I.0E2
	GO:0046907	intracellular transport	7,43E-0I	I.0E2
	RANBPI7, LMFI, SEC6IAI, SRP9, DHCR 24			
Annotation Cluster 23	GO:0005216 ion channel activity Enrichment Score: 0,I4			
			7,IIE-0I	I.0E2
GOTERM_MF_FAT	GO:0022838	substrate specific channel activity	7,I7E-0I	I.0E2
	GO:0015267	channel activity	7,24E-0I	I.0E2
	GO:0022803	passive transmembrane transporter activity GRIK5, CACNAIH, KCNKI	7,24E-0I	I.0E2

sheet 2: genes not clustered

Category	Term		Genes	FDR	P-Value
	GO:0009719	response to endogenous stimulus	AKTI, GRB2, STAT5A, STAT5B, NR4A2, STAT3	2,70E-04	2,67E+II
	GO:0010033	response to organic substance	MSX2, AKTI, GRB2, STAT5A, STAT5B, NR4A2, EPHXI, STAT3	I,90E-03	I,92E-03
	GO:005I056	regulation of small GTPase mediated signal transduction	CSFI, TBCID5, ASAP2, MGCI66429, RAPGEFI, TBCID22A, TBCID9B	4,I0E-03	4,08E-03
	GO:0040014	regulation of multicellular organism growth	STAT5A, CSFI, STAT5B, STAT3	5,20E-03	5,23E-03
	GO:0046578	regulation of Ras protein signal transduction	CSFI, TBCID5, ASAP2, MGCI66429, TBCID22A, TBCID9B	6,30E-03	6,34E-03
	GO:0045I37	development of primary sexual characteristics	FOXJI, STAT5A, STAT5B, DHCR24	6,90E-03	6,92E-03
	GO:0007167	enzyme linked receptor protein signaling pathway	MSX2, EPHA4, GRB2, STAT5A, STAT5B, STAT3	9,20E-03	9,23E-03
	GO:0007169	transmembrane receptor protein tyrosine kinase signaling pathway	EPHA4, GRB2, STAT5A, STAT5B, STAT3	I,I0E-02	I,06E-02
	GO:0003006	reproductive developmental process	FOXJI, STAT5A, CSFI, STAT5B, DHCR24	I,20E-02	I,22E-02
	GO:0007243	protein kinase cascade	GRB2, STAT5A, STAT5B, PDE6G, STAT3	I,40E-02	I,40E-02
	GO:0007548	sex differentiation	FOXJI, STAT5A, STAT5B, DHCR24	I,50E-02	I,45E-02
	GO:0000226	microtubule cytoskeleton organization	PTK2, TUBGCP6, TEKT4, TUBGCP2	I,80E-02	I,83E-02
	GO:0007010	cytoskeleton organization	ACTB, PTK2, TUBGCP6, TEKT4, TUBGCP2, RHOF	2,00E-02	I,97E-02
	GO:004666I	male sex differentiation	STAT5A, STAT5B, DHCR24	2,10E-02	2,08E-02
	GO:0030030	cell projection organization	EPHA4, PTK2, BAIAP2, NR4A2, TEKT4	2,20E-02	2,17E-02
	GO:0032989	cellular component morphogenesis	ACTB, EPHA4, PTK2, NR4A2, NFATCI	3,00E-02	2,99E-02
	GO:0000904	cell morphogenesis involved in differentiation	EPHA4, PTK2, NR4A2, NFATCI	3,40E-02	3,39E-02
GOTERM_BP_FAT	GO:0045596	negative regulation of cell differentiation	PPARA, PTK2, STAT5A, STAT5B	3,50E-02	3,50E-02
	GO:0040008	regulation of growth	PTK2, STAT5A, CSFI, STAT5B, STAT3	3,70E-02	3,72E-02
	GO:0006575	cellular amino acid derivative metabolic process	PAOX, STAT5A, STAT5B, NR4A2	4,40E-02	4,35E-02
	GO:0008406	gonad development	FOXJI, STAT5A, STAT5B	4,90E-02	4,87E-02
	GO:0019216	regulation of lipid metabolic process	PPARA, STAT5A, STAT5B	4,90E-02	4,87E-02
	GO:0045597	positive regulation of cell differentiation	METRN, STAT5A, CSFI, STAT5B	5,00E-02	5,02E-02
	GO:0006468	protein amino acid phosphorylation	AKTI, EPHA4, PTK2, MAPKI2, STAT5A, STAT5B, MAPKII, PDE6G, AATK	5,70E-02	5,68E-02
	GO:0048608	reproductive structure development	FOXJI, STAT5A, STAT5B	6,10E-02	6,08E-02
	GO:004427I	nitrogen compound biosynthetic process	TPKI, ADSSLI, ENTPD8, ATPIA3, NR4A2, PRPSAP2	7,60E-02	7,64E-02
	GO:0000902	cell morphogenesis	EPHA4, PTK2, NR4A2, NFATCI	7,60E-02	7,64E-02
	GO:0008544	epidermis development	AKTI, PPARA, DHCR24	7,60E-02	7,64E-02
	GO:0006793	phosphorus metabolic process	PTPN7, AKTI, EPHA4, PTK2, MAPKI2, PTPRG, STAT5A, STAT5B, MAPKII, PDE6G, AATK	7,70E-02	7,7IE-02
	GO:0006796	phosphate metabolic process	PTPN7, AKTI, EPHA4, PTK2, MAPKI2, PTPRG, STAT5A, STAT5B, MAPKII, PDE6G, AATK	7,70E-02	7,7IE-02
	GO:0006357	regulation of transcription from RNA polymerase II promoter	PPARA, STAT5A, STAT5B, HDACI0, NR4A2, STAT3	8,10E-02	8,06E-02
	GO:0007398	ectoderm development	AKTI, PPARA, DHCR24	8,50E-02	8,46E-02
	GO:0006790	sulfur metabolic process	TPKI, STAT5A, STAT5B	8,50E-02	8,46E-02

GO:0006417	regulation of translation
GO:0051094	positive regulation of developmental process
GO:000663I	fatty acid metabolic process
GO:0030182	neuron differentiation
GO:0016310	phosphorylation
GO:0007017	microtubule-based process
GO:0010628	positive regulation of gene expression
GO:00I0604	positive regulation of macromolecule metabolic process
GO:0008284	positive regulation of cell proliferation
GO:0010608	posttranscriptional regulation of gene expression
GO:0032268	regulation of cellular protein metabolic process
GO:0007610	behavior
GO:0032940	secretion by cell
GO:0009100	glycoprotein metabolic process
GO:0042I27	regulation of cell proliferation
GO:0046903	secretion
GO:0009967	positive regulation of signal transduction
GO:0010647	positive regulation of cell communication
GO:0006355	regulation of transcription, DNA-dependent
GO:0048609	reproductive process in a multicellular organism
GO:0032504	multicellular organism reproduction
GO:0043085	positive regulation of catalytic activity
GO:005I252	regulation of RNA metabolic process
GO:0042592	homeostatic process
GO:0044093	positive regulation of molecular function
GO:0006350	transcription
GO:0007242	intracellular signaling cascade
GO:00068II	ion transport
GO:0045449	regulation of transcription
GO:0015672	monovalent inorganic cation transport
GO:0008104	protein localization
GO:00068I2	cation transport
GO:0016192	vesicle-mediated transport
GO:0050877	neurological system process
GO:0007166	cell surface receptor linked signal transduction
GO:00I503I	protein transport

AKTI, EEFSEC, SRP9	8,70E-02	8,74E-02
METRN, STAT5A, CSFI, STAT5B	8,90E-02	8,86E-02
PPARA, STAT5A, STAT5B, ECHSI	9,00E-02	9,04E-02
EPHA4, PTK2, NR4A2, STAT3	I,00E-0I	I,03E-01
AKTI, EPHA4, PTK2, MAPKI2, STAT5A, STAT5B, MAPKII, PDE6G, AATK	I,IOE-0I	I,I2E-0I
PTK2, TUBGCP6, TEKT4, TUBGCP2	I,30E-0I	I,28E-01
PPARA, STAT5A, CSFI, STAT5B, NR4A2	I,40E-0I	I,4IE-0I
AKTI, PPARA, STAT5A, CSFI, STAT5B, NR4A2	I,60E-0I	I,56E-01
FGFI8, STAT5A, CSFI, STAT5B	I,70E-01	I,7IE-01
AKTI, EEFSEC, SRP9	I,80E-0I	I,85E-01
AKTI, CSFI, EEFSEC, SRP9	2,00E-01	2,00E-01
EPHA4, ATPIA3, NR4A2, STAT3	2,00E-0I	2,04E-01
EXOC7, LMFI, SCRNI	2,20E-0I	2,19E-0I
POMGNTI, RPNI, DHCR24	2,30E-0I	2,29E-01
MSX2, FGFI8, STAT5A, CSFI, STAT5B	2,50E-0I	2,55E-01
EXOC7, LMFI, SCRNI	3,10E-0I	3,05E-01
FGFI8, CSFI, PDE6G	3,20E-0I	3,I9E-01
FGFI8, CSFI, PDE6G	3,40E-0I	3,40E-0I
MSX2, PPARA, ZFP90, STAT5A, TBX4, STAT5B, HDACIO, NR4A2, STAT3, NFATCI	3,90E-0I	3,9IE-0I
CYLC2, STAT5A, STAT5B	4,00E-0I	4,00E-01
CYLC2, STAT5A, STAT5B	4,00E-0I	4,00E-01
CSFI, NR4A2, PDE6G	4,IOE-OI	4,07E-01
MSX2, PPARA, ZFP90, STAT5A, TBX4, STAT5B, HDACIO, NR4A2, STAT3, NFATCI	4,10E-0I	4,IIE-0I
STAT5A, CSFI, STAT5B, NARFL, STAT3	4,20E-0I	4,20E-0I
CSFI, NR4A2, PDE6G	4,90E-0I	4,86E-0I
PPARA, STAT5A, STAT5B, NR4A2, STAT3, NFATCI	4,90E-0I	4,89E-01
GRB2, STAT5A, STAT5B, PDE6G, RHOF, STAT3	5,00E-01	5,00E-01
ATPIA3, GRIK5, CACNAIH, KCNKI, SLC5AI0, NFATCI	5,20E-0I	5,23E-0I
MSX2, PPARA, TRMU, ZFP90, STAT5A, TBX4, STAT5B, NARFL, HDACIO, NR4A2, STAT3, NFATCI	5,30E-0I	5,34E-01
ATPIA3, KCNKI, SLC5AI0	5,80E-01	5,82E-01
RANBPI7, LMFI, SEC6IAI, SRP9, DHCR24	6,00E-0I	6,04E-01
ATPIA3, KCNKI, SLC5AI0, NFATCI	6,50E-0I	6,54E-01
CALY, EXOC7, SCRNI	6,90E-0I	6,9IE-01
PTK2, ATPIA3, PDE6G	7,00E-0I	6,99E-01
CALY, GRB2, STAT5A, STAT5B, ATPIA3, GPRI32, CELSRI, STAT3, MSX2, EPHA4, SSTR5, WNT7B, GRM7	7,20E-0I	7,2IE-0I
RANBPI7, LMFI, SEC6IAI, SRP9	7,30E-0I	33E-0I

	GO:0045I84	establishment of protein localization	RANBPI7, LMFI, SEC6IAI, SRP9	7,30E-0I	7,35E-0I
	GO:003000I	metal ion transport	KCNKI, SLC5AI0, NFATCI	7,50E-0I	7,5IE-01
	GO:0009057	macromolecule catabolic process	AKTI, UBE2T, DHCR24	8,20E-0I	8,15E-01
	GO:0055085	transmembrane transport	CACNAIH, SLC5AI0, SEC6IAI	8,80E-0I	8,84E-01
	GO:0006508	proteolysis	ADAM8, UBE2T, DHCR24	9,80E-0I	9,82E-0I
	GO:0007186	G-protein coupled receptor protein signaling pathway	SSTR5, CALY, GRM7, GPRI32, CELSRI	I, $00 \mathrm{E}+00$	9,97E-01
GOTERM_CC_FAT	GO:003I252	cell leading edge	AKTI, CTTN, PTK2, BAIAP2	6,60E-03	6,59E-03
	GO:0005938	cell cortex	ACTB, CTTN, EXOC7, CALDI	2,IOE-02	2,13E-02
	GO:0030027	lamellipodium	AKTI, CTTN, PTK2	2,40E-02	2,39E-02
	GO:0042995	cell projection	AKTI, CTTN, PTK2, BAIAP2, FSCNI, TEKT4	3,30E-02	3,27E-02
	GO:0005856	cytoskeleton	AKTI, ACTB, CYLC2, PTK2, TUBGCP6, EXOC7, CALDI, TEKT4, TUBGCP2, RHOF	3,80E-02	3,83E-02
	GO:0044448	cell cortex part	ACTB, EXOC7, CALDI	5,70E-02	5,66E-02
	GO:0005819	spindle	AKTI, TUBGCP6, TUBGCP2	8,80E-02	8,84E-02
	GO:00I5630	microtubule cytoskeleton	AKTI, TUBGCP6, EXOC7, TEKT4, TUBGCP2	I,00E-0I	9,98E-02
	GO:0044430	cytoskeletal part	AKTI, CYLC2, TUBGCP6, EXOC7, CALDI, TEKT4, TUBGCP2	I,00E-0I	I,03E-01
	GO:0005815	microtubule organizing center	TUBGCP6, EXOC7, TUBGCP2	I,50E-0I	I,54E-01
	GO:004847I	perinuclear region of cytoplasm	CYLC2, ATXNIO, CSFI	2,IOE-0I	2,06E-0I
	GO:0043228	non-membrane-bounded organelle	AKTI, ACTB, FGFI8, CYLC2, PTK2, TUBGCP6, EXOC7, CALDI, NPMI, TEKT4, TUBGCP2, RHOF	3,IOE-0I	3,12E-01
	GO:0043232	intracellular non-membrane-bounded organelle	AKTI, ACTB, FGFI8, CYLC2, PTK2, TUBGCP6, EXOC7, CALDI, NPMI, TEKT4, TUBGCP2, RHOF	3,IOE-0I	3,12E-0I
	GO:0005654	nucleoplasm	ACTB, NPMI, HDACIO, GEMIN7	3,70E-0I	3,66E-0I
	GO:003I98I	nuclear lumen	ACTB, FGFI8, NPMI, HDACIO, GEMIN7	4,50E-0I	4,50E-0I
	GO:00I2505	endomembrane system	POMGNTI, GRB2, SCRNI, SEC6IAI	4,60E-0I	4,62E-0I
	GO:0005886	plasma membrane	AKTI, PTK2, CALY, CALDI, FSCNI, ENTPD8, GRIK5, CELSRI, RHOF, NTM, STAT3	4,90E-0I	4,89E-0I
	GO:004445I	nucleoplasm part	ACTB, HDACIO, GEMIN7	5,50E-0I	5,49E-0I
	GO:0000267	cell fraction	ACTB, CALDI, ENTPD8	5,70E-0I	5,73E-0I
	GO:0005783	endoplasmic reticulum	PGSI, LMFI, RPNI, SEC6IAI	7,00E-0I	6,98E-0I
	GO:0005739	mitochondrion	PGSI, TRMU, TSPO, AGPAT5, ECHSI, MP68	7,IOE-0I	7,14E-0I
	GO:0031090	organelle membrane	POMGNTI, GRB2, SCRNI, SEC6IAI	8,20E-0I	8,22E-0I
	GO:0005576	extracellular region	TG, FGFI8, WNT7B, METRN, FOXJI, ILIRN	8,60E-0I	8,6IE-0I
	GO:003I224	intrinsic to membrane	TSPO, CALY, CSFI, LMFI, SPPL2B, GRIK5, ATPIA3, GPRI32, KCNKI, EPHA4, SSTR5, POMGNTI, TSPANI0, TECRL, GRM7, ENTPD8, RPNI, CACNAIH, SLC5AIO, SEC6IAI, NTM, AATK	8,80E-0I	8,85E-0I
	GO:00I602I	integral to membrane	TSPO, CALY, CSFI, LMFI, SPPL2B, ATPIA3, GRIK5, GPRI32, KCNKI, EPHA4, SSTR5, POMGNTI, TSPANI0, TECRL, GRM7, ENTPD8, RPNI, CACNAIH, SLC5AIO, SEC6IAI, AATK	9,00E-0I	8,98E-0I
	GO:0044459	plasma membrane part	PTK2, CALY, GRIK5, RHOF	9,40E-0I	9,37E-0I
GOTERM_MF_FAT	GO:0008047	enzyme activator activity	NOXAI, TBCID5, ASAP2, TBCID22A, TBCID9B	3,20E-02	3,23E-02
	GO:0030695	GTPase regulator activity	TBCID5, ASAP2, MGCI66429, RAPGEFI, TBCID22A, TBCID9B	4,40E-02	4,38E-02

GO:0005083	small GTPase regulator activity
GO:0060589	nucleoside-triphosphatase regulator activity
GO:0019904	protein domain specific binding
GO:0017076	purine nucleotide binding
GO:000I883	purine nucleoside binding
GO:000I882	nucleoside binding
GO:0032553	ribonucleotide binding
GO:0032555	purine ribonucleotide binding
GO:0000I66	nucleotide binding
GO:0030554	adenyl nucleotide binding
GO:0003700	transcription factor activity
GO:0005524	ATP binding
GO:0032559	adenyl ribonucleotide binding
GO:0008083	growth factor activity
GO:0016563	transcription activator activity
GO:0030528	transcription regulator activity
GO:0005509	calcium ion binding
GO:0016879	ligase activity, forming carbon-nitrogen bonds
GO:0019899	enzyme binding
GO:0004674	protein serine/threonine kinase activity
GO:003256I	guanyl ribonucleotide binding
GO:00I900I	guanyl nucleotide binding
GO:0004672	protein kinase activity
GO:0043565	sequence-specific DNA binding
GO:0046983	protein dimerization activity
GO:0008092	cytoskeletal protein binding
GO:0003723	RNA binding
GO:0003677	DNA binding

TBCID5, ASAP2, MGCI66429, TBCID22A, TBCID9B
TBCID5, ASAP2, MGCI66429, RAPGEFI, TBCID22A TBCID9B
PTK2, GRB2, SQSTMI, BAIAP2
ACTB, PGSI, ADSSLI, TDRD9, ATPIA3, MAPKII, PDE6G, TPKI, AKTI, EPHA4, MAPKI2, PARS2, ENTPD8, RUVBLI, EEFSEC, RHOF, UBE2T, DHCR24, AATK
ACTB, PGSI, TDRD9, ATPIA3, MAPKII, PDE6G, TPKI, AKTI, EPHA4,
MAPKI2, PARS2, ENTPD8, RUVBLI, UBE2T, DHCR24, AATK
ACTB, PGSI, TDRD9, ATPIA3, MAPKII, PDE6G, TPKI, AKTI, EPHA4,
MAPKI2, PARS2, ENTPD8, RUVBLI, UBE2T, DHCR24, AATK
ACTB, PGSI, ADSSLI, TDRD9, ATPIA3, MAPKII, PDE6G, TPKI, AKTI,
EPHA4, MAPKI2, PARS2, ENTPD8, RUVBLI, EEFSEC, RHOF, UBE2T,
AATK
ACTB, PGSI, ADSSLI, TDRD9, ATPIA3, MAPKII, PDE6G, TPKI, AKTI,
EPHA4, MAPKI2, PARS2, ENTPD8, RUVBLI, EEFSEC, RHOF, UBE2T, AATK
ACTB, PGSI, ADSSLI, SETDIB, TDRD9, ATPIA3, MAPKII, PDE6G, TPKI,
AKTI, EPHA4, NAVI, MAPKI2, PARS2, ENTPD8, RUVBLI, EEFSEC,
RHOF, UBE2T, DHCR24, AATK
ACTB, PGSI, TDRD9, ATPIA3, MAPKII, TPKI, AKTI, EPHA4, MAPKI2, PARS2, ENTPD8, RUVBLI, UBE2T, DHCR24, AATK
MSX2, PPARA, STAT5A, TBX4, STAT5B, NR4A2, STAT3, NFATCI
ACTB, PGSI, TDRD9, ATPIA3, MAPKII, TPKI, AKTI, EPHA4, MAPKI2
PARS2, ENTPD8, RUVBLI, UBE2T, AATK
ACTB, PGSI, TDRD9, ATPIA3, MAPKII, TPKI, AKTI, EPHA4, MAPKI2
PARS2, ENTPD8, RUVBLI, UBE2T, AATK
FGFI8, FOXJI, CSFI
PPARA, NR4A2, STAT3
MSX2, PPARA, STAT5A, TBX4, STAT5B, HDACI0, NR4A2, STAT3,
NFATCI
STAT5A, SCUBEI, ENTPD8, STAT5B, CELSRI, STAT3, TBCID9B
ADSSLI, UBE2T, TTLLI2
SQSTMI, HDACIO, STAT3
AKTI, MAPKI2, MAPKII, AATK
ADSSLI, EEFSEC, PDE6G, RHOF
ADSSLI, EEFSEC PDE6G, RHOF
AKTI, EPHA4, MAPKI2, MAPKII, AATK
MSX2, PPARA, NR4A2, NFATCI
CSFI, NR4A2, STAT3
BAIAP2, CALDI, FSCNI
NPMI, RPUSDI, EEFSEC, SRP9
MSX2, PPARA, TRMU, STAT5A, TBX4, STAT5B, NR4A2, SOX8, STAT3, NFATCI

4,50E-02	4,52E-02
4,90E-02	$4,92 \mathrm{E}-02$
6,30E-02	6,27E-02
6,80E-02	6,80E-02
7,20E-02	7,I8E-02
7,50E-02	7,46E-02
8,30E-02	8,30E-02
8,30E-02	8,30E-02
9,40E-02	9,38E-02
I,20E-0I	I,I7E-01
I,20E-0I	I,24E-0I
I,40E-0I	I,38E-0I
I,40E-0I	I,45E-0I
2,I0E-0I	2,07E-01
2,60E-0I	2,65E-0I
3,30E-0I	3,35E-0I
3,60E-0I	3,57E-01
3,90E-01	$3,89 \mathrm{E}-01$
4,70E-0I	4,65E-0I
4,80E-0I	4,78E-01
5,10E-01	5,08E-01
5,10E-01	5,I5E-01
5,50E-01	5,49E-0I
5,60E-01	5,62E-01
6,00E-0I	6,02E-0I
6,00E-0I	6,02E-01
6,20E-0I	6,18E-01
6,30E-0I	6,25E-0I

	GO:0042802	identical protein binding	ACTB, PTPRG, CSFI	6,70e-01	6,72E-01
	GO:0005525	GTP binding	ADSSLI, EEFSEC, RHOF	7,40E-01	7,44E-01
	GO:0008270	zinc ion binding	PPARA, NPLOC4, TRMU, SQSTMI, ZFP90, ZNF296, NR4A2, ASAP2, HAGHL, ADAM8	9,00E-01	8,99E-0I
	GO:0046914	transition metal ion binding	PPARA, NPLOC4, TRMU, POMGNTI, SQSTMI, ZFP90, ZNF296, NR4A2, ASAP2, HAGHL, ADAM8, HPD	9,30E-01	9,30E-01
KEGG_PATHWAY	bta04370	VEGF signaling pathway	AKTI, PTK2, MAPKI2, MAPKII, NFATC2, NFATCI	I,30E-03	I,30E-03
	bta4660	T cell receptor signaling pathway	AKTI, MAPKI2, GRB2, MAPKII, NFATC2, NFATCI	6,40E-03	6,37E-03
	bta04012	ErbB signaling pathway	AKTI, PTK2, GRB2, STAT5A, STAT5B	I,IOE-02	I,14E-02
	bta5200	Pathways in cancer	AKTI, FGFI8, WNT7B, PTK2, RASSF5, GRB2, STAT5A, STAT5B, STAT3	2,00E-02	1,97E-02
	bta040I0	MAPK signaling pathway	PTPN7, AKTI, FGFI8, MAPKI2, GRB2, CACNAIH, MAPKII, NFATC2	2,50E-02	2,49E-02
	bta04670	Leukocyte transendothelial migration	ACTB, PTK2, RASSF5, MAPKI2, MAPKII	3,70E-02	3,73E-02
	bta04360	Axon guidance	EPHA4, PTK2, PLXNB2, NFATC2, NFATCI	3,90E-02	3,94E-02
	bta04662	B cell receptor signaling pathway	AKTI, GRB2, NFATC2, NFATCI	4,30E-02	4,27E-02
	bta04062	Chemokine signaling pathway	AKTI, PTK2, GRB2, STAT5B, GNGI3, STAT3	4,30E-02	4,32E-02
	bta4722	Neurotrophin signaling pathway	AKTI, MAPKI2, GRB2, MAPKII, RAPGEFI	4,40E-02	4,39E-02
	bta04664	Fc epsilon RI signaling pathway	AKTI, MAPKI2, GRB2, MAPKII	4,90E-02	4,92E-02
	bta05220	Chronic myeloid leukemia	AKTI, GRB2, STAT5A, STAT5B	5,10E-02	5,08E-02
	bta05223	Non-small cell lung cancer	AKTI, RASSF5, GRB2	I,IOE-01	I,IOE-0I
	bta45i0	Focal adhesion	AKTI, ACTB, PTK2, GRB2, RAPGEFI	I,50E-01	I,50E-01
	bta04920	Adipocytokine signaling pathway	AKTI, PPARA, STAT3	1,60E-01	I,59E-01
	bta04530	Tight junction	AKTI, ACTB, EPB4IL3, CTTN	I,60E-01	1,60E-01
	bta048I0	Regulation of actin cytoskeleton	ACTB, FGFI8, ENAH, PTK2, BAIAP2	1,70E-01	1,67E-01
	bta052II	Renal cell carcinoma	AKTI, GRB2, RAPGEFI	1,70E-01	1,68E-01
	bta04910	Insulin signaling pathway	AKTI, EXOC7, GRB2, RAPGEFI	1,70E-01	I,68E-01
	bta04310	Wnt signaling pathway	WNT7B, RUVBLI, NFATC2, NFATCI	2,20E-01	2,17E-01
	bta04914	Progesterone-mediated oocyte maturation	AKTI, MAPKI2, MAPKII	2,30E-01	2,34E-01
	bta04912	GnRH signaling pathway	MAPKI2, GRB2, MAPKII	2,70E-01	2,68E-01
	bta4620	Toll-like receptor signaling pathway	AKTI, MAPKI2, MAPKII	2,90E-0I	2,89E-01
	bta04650	Natural killer cell mediated cytotoxicity	GRB2, NFATC2, NFATCI	3,30E-0I	3,35E-01
	bta00230	Purine metabolism	ADSSLI, ENTPD8, PDE6G	5,10E-01	5,08E-01
	bta04080	Neuroactive ligand-receptor interaction	SSTR 5, TSPO, GRM7, GRIK5	5,IOE-01	5,14E-01

4

GENERAL

DISCUSSION

The aim of the animal genetic improvement in livestock production is to change genetic frequency of genes related to traits of economic interest in order to maximize their phenotypic amount and thus the revenue for the farmer.
In the last decades, selection objectives aimed at optimization of qualitative-quantitative aspects of milk production and functional characterists (e.g. longevity, fertility, mastitis resistance).
In particular, the marker-assisted selection (MAS) approach involves selecting individuals based on their genotype at specific loci. This approach is known to be particularly beneficial when the traits of interest are difficult or expensive to measure (Boichard et al., 2006). Genomic selection (GS), defined by Meuwissen (2007) as MAS on a genome-wide scale, is a new and important tool for the genetic improvement of livestock that allows to estimate direct genomic values (DGV) of candidates using dense marker maps without need to record the phenotypic performances of the animals (Meuwissen et al., 200I).
The QTL involved in susceptibility/resistance to infectious diseases and in the productive traits variations, are characterized by genetic heterogeneity and multifactorial inheritance, involving gene polymorphisms from different alternative pathways. With the accessibility of the single nucleotide polymorphism (SNP) array, the linkage analysis and the genome-wide association study (GWAS) has been frequently used to study the genetic component of complex trait, and using the data from the same SNP array, the Ccpy number variations (CNVs) can be identified.
In the studies included in this PhD thesis, using a selective DNA pooling approach, the first QTL mapping were performed for CLA, VA, D9D and for SCS, in Italian Brown Swiss and in Valdostana Red Pied cattle populations, resulting in the identification of various
genomic regions associated with the traits. These genomic regions will help to understand which potential candidate genes may be responsible for the genetic variation in milk fat composition and in mastitis resistance/susceptibility.
In addition, the thesis include a genome scan study performed in bulls of Italian Brown Swiss breed, for the identification of CNVs, providing a rich source of additional genetic variation in this breed. The studies included in this PhD thesis integrate the knowledge available about QTL association with fatty acids and resistance to mastitis, and their possible use in MAS and in GS. In addition, the CNVs identified in this study, will enrich the bovine CNV map in the cattle genome, providing new information for association studies with traits of economic and healthy interest.

The results were shared with the respective Breeders Associations allowing the results of these studies to be applied in ongoing selection process in the populations.

The information delivered to the scientific community allow a step forward in the advancement of the state of the art and constitute a solid base for additional scientific research in structural variantion studies in cattle (CNV) and association analysis for health and productive traits (SCC and FA).

REFERENCES

Boichard D., Fritz S., Rossignol M.N., Guillaume F., Colleau J.J., Druet T. (2006). Implementation of marker-assisted selection: practical lessons from dairy cattle. 8th World Congress on Genetics Applied to Livestock Production, August I3-I8, Belo Horizonte, MG, Brazil

Gaspa G. (2010). Use of genomic information in the genetic evaluation of livestock. Doctoral Thesis

Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics I57:I8I9-I829.

Meuwissen T., 2007 Genomic selection: marker assisted selection on a genome wide scale. Journal of Animal Breeding and Genetics I24: 32I-322.

Schiavini F. (2010) Mapping QTL in the Brown Swiss Dairy Cattle Breed for Milk Quality Traits. Doctoral Thesis.

5
 INTERNATIONAL AND

NATIONAL CONFERENCES

Abstracts of poster presentations

5.I. ASPA 20th CONGRESS, BOLOGNA, June II-I3, 2013

5.I.I. Abstract number: P-065

QUANTITATIVE TRAIT LOCI MAPPING FOR MILK FATTY ACIDS IN ITALIAN BROWN SWISS DAIRY CATTLE BREED

Alessandro Bagnato ${ }^{1}$, Erika Frigo ${ }^{1}$, Fabiola Canavesi ${ }^{1}$, Fausta Schiavini ${ }^{1}$, Morris Soller ${ }^{2}$, Ehud Lipkin ${ }^{2}$, Ruth Tal-Stein ${ }^{2}$, Yechezkel Kashi ${ }^{3}$, Eyal Shimoni ${ }^{3}$, Yael Ungar ${ }^{3}$, Maria Giuseppina Strillacci ${ }^{1}$
${ }^{1}$ Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, Università di Milano, Italy; ${ }^{2}$ Department of Genetics. The Hebrew University of Jerusalem, Israel; ${ }^{3}$ Faculty of Biotechnology \& Food Engineering, Technion-Israel, Institute of Technology, Technion City, 32000 Haifa, Israel.

The detection of genomic regions affecting complex traits has leaded the interest in using large panels of single nucleotide polymorphisms (SNPs) to identify quantitative trait loci (QTL). Selective DNA pooling strategy is a method to reduce costs in genomic studies by genotyping pooled DNA samples from selected individuals at each of the two phenotypic extremes. The identification of genomic regions responsible for genetic variation in milk fat composition may help to understand the biological pathways involved in fatty acid synthesis. In this study, a selective DNA pooling approach in Italian Brown Swiss cattle was applied to identify QTLs for $\Delta 9$-Desaturase (D9D), conjugated linoleic and vaccenic (CLA and VA) acids. A total of I20 daughters for each of the five selected families (60 animals with higher residual values and 60 animal with lower residual values) were pooled and genotyped using Illumina Bovine SNP50 BeadChip. In this study, the generation of B-allele frequency was performed
automatically using the self-normalization algorithm of Illumina BeadStudio software. Statistical analysis was performed with respect to SNPs for which the sires were heterozygous. Using the R software a procedure has been implemented in order to perform a single marker sire test. A multiple testing correction was applied using the proportion of false positives (PFP) among all positive test results. Association tests were carried out in order to identify genes with an important role in pathways for milk fat and fatty acids metabolism. Several chromosome regions were significantly associated with the traits studied, being some of these regions harboring genes known to be involved in fat synthesis as reported in literature.

5.I.2. Abstract number: P-048
 SOME OF THE MAIN RESULTS OF QUANTOMICS EU PROJECT: CNV DETECTION AND GWA ANALYSIS IN THE ITALIAN BROWN SWISS DAIRY CATTLE.

Laura Pellegrino*, Marlies A. Dolezal*, Christian Maltecca\#, Dinesh Velayutham ${ }^{*}$, Maria Giuseppina Strillacci*, Erika Frigo*, Karin Schlangen*, Antonia B. Samoré*, Fausta Schiavini*, Enrico Santus ${ }^{\circ}$, Chris Warkup^, Alessandro Bagnato *
*Dept. VESPA, Università degli Studi di Milano, Milan, Italy. \#NC State University, Raleigh, NC, USA; ${ }^{\circ}$ ANARB, Verona, Italy; ${ }^{\wedge}$ Biosciences KTN, Edinburgh, UK.

Amongst Quantomics results here we present identified QTL regions for mastitis resistance and a medium resolution map of CNVRs obtained in the Italian Brown Swiss. A total number of I,489 bulls were genotyped on Illumina's BovineSNP50 BeadChip on UMD3.I autosomes and a subset of 1,342 bulls were used for CNV detection. Among these, I92 bulls were genotyped on Illumina's HD chip (777k) and utilized for GWA analysis jointly with the remaining bulls which genotypes were imputed to Illumina's HD chip interrogating 735,238 loci. PennCNV and SVS7 software were used
for CNVs detection for a total of 46,728 loci. We corrected for GC score and wave factor and employed PCA for SVS7 to correct for technical background noise to reduce false positive calls. PennCNV and SVS7 CNVs results were summarized into I,IOI (220 losses, 774 gains, 107 complex), and 277 (I85 losses, 56 gains and 36 complex) CNVRs on 65 I bulls, respectively. The consensus between the CNV scans was obtained using the Redon et al. (2006), and Wain et al. (2009) approaches, covering I $46 \mathrm{Mb}(5.88 \%)$ and I7.I $\mathrm{Mb}(0.68 \%)$, respectively. CNVRs were annotated with the bovine Ensembl gene set v69 and tested for enrichment of GO terms using DAVID database. Consensus CNVRs were enriched for proteincoding genes. GO analysis identified genes in the CNVRs related to cytoplasm, intercellular part, cellular processes, cytoplasmic part, and intracellular organelles. For the GWA analysis, after data filtering, a total of 35,566 SNPs were retained for with MAF >0.02, call rate >0.90 at SNP and bull level. Stratification in the population was corrected for PCA. Success of correction for stratification was empirically assessed based on Q-Q plots of expected versus observed P-values. We employed single SNP regression and multiple SNP regression in sliding windows of three to five SNPs. Significance was declared employing a false discovery rate approach. Several QTL regions were found across the genome. The most interesting regions were located on BTAI, BTA4, BTA7, BTAI3, BTAI6, BTA20, BTA2I and BTA27. Acknowledgement. This study was funded by EC-FP7/2007-2013, agreement n ${ }^{\circ} 222664$, "Quantomics".

5.2. $64^{\text {th }}$ ANNUAL MEETING OF THE EUROPEAN FEDERATION OF ANIMAL SCIENCE (EAAP). NANTES 26-30 August 2013

5.2.I. Abstract number: 17437

A MEDIUM RESOLUTION SNP ARRAY BASED CNV SCAN IN ITALIAN BROWN SWISS DAIRY CATTLE
L. Pellegrino ${ }^{1}$, M.A. Dolezal ${ }^{1}$, C. Maltecca², D. Velayutham ${ }^{1}$, M.G. Strillacci ${ }^{1}$, E. Frigo ${ }^{1}$, K. Schlangen ${ }^{1}$, A.B. Samoré́, F. Schiavini ${ }^{1}$, E. Santus ${ }^{3}$, C. Warkup ${ }^{4}$, A. Bagnato ${ }^{1}$
${ }^{1}$ University of Milan, Via Celoria I0, 20133 Milano, Italy; ${ }^{2}$ North Carolina State University, Box 762I, NC 27695-762I, Raleigh, USA; ${ }^{3}$ ANARB, Loc. Ferlina, 370I2, Bussolengo (VR), Italy; ${ }^{4}$ Biosciences KTN, Easter Bush, Midlothian, EH25 9RG, Roslin, United Kingdom.

Recent reports indicate copy number variations (CNVs) to be functionally significant. This study presents a medium resolution map of CNV regions (CNVRs) in the Italian Brown Swiss dairy cattle, from - to this day - the largest CNV genome scan in any cattle breed. We genotyped I, 489 bulls and after quality filtering on males we called CNVs with PennCNV and with "Copy Number Analysis Module" (CNAM) of SVS7 software (Goldenhelix) for a total of 46,728 loci anchored on the UMD3.I assembly on 983 and 56I bulls respectively. We corrected for sequence composition flanking each SNP and employed principal component analysis for CNAM to correct for technical background noise to reduce false positive calls. PennCNV and SVS7 identified a total of 4,50I and I,289 CNVs segregating in 983 and 559 bulls respectively. These were summarized at the population level into 483 (40I losses, 6 I gains, 21 complex) and 277 (I85 losses, 56 gains and 36 complex) CNVRs, covering

II4 Mb (4.59\%) and 33.7 Mb (1.35\%) of the autosome, respectively. We then obtained the consensus between the two CNV scans using the approaches suggested by Redon et al. (2006), union set, and by Wain et al. (2009), intersection, covering 37.7 Mb ($\mathrm{I} .5 \mathrm{I} \%$.) and 13.4 Mb (0.54%), respectively. CNVRs were annotated with the bovine Ensembl gene set v69 and tested for enrichment of GO terms using DAVID database. Consensus CNVRs are enriched for protein-coding genes and genes involved in MHC class II protein complex and VEGF signalling pathway. Acknowledgement: This study funded by EC-FP7, agreement n²22664, "Quantomics".

5.2.2. Abstract number: 17542
 MAPPING QTL FOR FATTY ACIDS IN ITALIAN BROWN SWISS BREED USING A SELECTIVE DNA POOLING

M.G. Strillacci ${ }^{1}$, E. Frigo 1, F. Canavesi ${ }^{1}$, F. Schiavini ${ }^{1}$, M. Soller ${ }^{2}$, E. Lipkin², R. Tal-Stein ${ }^{2}$, Y. Kashi', E. Shimoni ${ }^{3}$, Y. Ungar ${ }^{3}$, A. Bagnato ${ }^{1}$
${ }^{1}$ Facoltà di Medicina Veterinaria, Università di Milano, Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e Sicurezza Alimentare, Via Celoria IO, Milano, 20I33, Italy; ${ }^{2}$ The Hebrew University of Jerusalem, Department of Genetics, Jerusalem, 91904 , Israel; ${ }^{3}$ Faculty of Biotechnology \& Food Engineering, Technion-Israel, Institute of Technology, Technion City , 32000 Haifa, Israel.

A selective DNA pooling approach in a daughter design was applied to perform a GWA in Italian Brown Swiss cattle, to identify QTLs for $\Delta 9$ desaturase (D9D), conjugated linoleic and vaccenic (CLA and VA) acids. A total of I20 daughters for each of five selected families (60 animals with higher residual values and 60 with lower residual values) were pooled. DNA samples, extracted from sire's semen and milk pools were genotyped using Illumina Bovine SNP50 BeadChip. Statistical analysis was performed with respect to SNPs for which
sires were heterozygous. Using the R software a procedure was implemented to perform a single and multiple marker sire test. A multiple testing correction was applied using the proportion of false positives among all positive test results. Association tests were carried out to identify genes with an important role in pathways for milk fat and fatty acids metabolism. Above all, BTA I9 showed a highly significant association with CLA, VA and D9D. A large number of regions were significantly associated with the studied traits. Some of these regions harboring genes known to be involved in fat synthesis as reported in literature. The feasibility and the effectiveness of a selective DNA pooling approach using Bovine SNP50 BeadChip for the identification of QTLs was underlined in this study. Acknowledgement: This study was part of QuaLAT project financially supported by Regione Lombardia.

5.3. INTERNATIONAL PLANT \& ANIMAL GENOME XXII. SAN DIEGO, CA, USA. January I0-I4, 2014

5.3.I. Abstract number: P540
 GENOME WIDE ASSOCIATION ANALYSIS ON IMPUTED
 HIGH-DENSITY SNP GENOTYPES IN THE ITALIAN AND SWISS BROWN SWISS DAIRY CATTLE POPULATION FOR MILK SOMATIC CELL COUNT

Marlies A. Dolezal (Università degli Studi di Milano), Birgit Gredler (Qualitas $A G$), Attilio Rossoni (ANARB - Associazione Nazionale Allevatori di Razza Bruna), Franz R. (Seefried Qualitas $A G$), Fausta Schiavini (Università degli Studi di Milano), Maria Strillacci (Università degli Studi di Milano), Hossein Jorjani (Interbull Centre), Enrico Santus (ANARB - Associazione Nazionale Allevatori di Razza Bruna), Alessandro Bagnato (Università degli Studi di Milano)

Mastitis is one of the most costly diseases in dairy cattle and a huge concern to animal welfare. Milk Somatic Cell Count (MSCC) is an indirect measure widely used for years to select individuals to reduce mastitis susceptibility in dairy cattle. The purpose of this study was to identify regions underlying phenotypic variation for mastitis resistance in the Brown Swiss dairy cattle population. We report on a whole genome association study on a total of 2,979 mainly Italian-, Swissand US-Brown Swiss bulls imputed from Illumina's Bovine 50k vI and v2 SNP chip with FImpute to Illumina's 777 k chip for $628,4 \mathrm{I} 5$ SNPs with MAF $>0.5 \%$ anchored on the UMD3.I autosome. Association testing with MSCC-EBVs for 2,834 bulls with EBV reliability greater than 0.3 provided by Interbull, was performed for 604,568 SNPs with MAF $>2 \%$ employing EMMAX as implemented in SVS7.7.8. Stratification was controlled by fitting a genomic relationship matrix, calculated as suggested by VanRaden based on all genome wide SNPs in the model. Success of stratification correction was empirically assessed via quantile-quantile plots. Significance was declared employing a false discovery rate approach. Several QTL regions were found across the genome. The most interesting regions were located on BTA6, BTAIO, BTAI3 and BTAI9. We thank Braunvieh Schweiz and ANARB for providing genotypes and Genotype pool Germany-Austria, Beltsville Agricultural Research Centre and LowInputBreeds, FP7 - project KBBE 222632 for providing genotypes used for imputation. This study was supported by the FP7 project QUANTOMICS contract n. 222664-2.

Acknowledgement
 Grazie al Professor Alessandro Bagnato

[^0]: ${ }^{1}$ Examples of Livestock animal QTL databases: AnimalQTLdb (http://www.animalgenome.org); Bovine QTL Viewer (http://genomes.sapac.edu.au/bovineqtl/); cgQTL database: QTL for milk production traits in cattle identified from expression experiments
 (http:// cowry.agri.huji.ac.il/QTLMAP/qtlmap.htm).
 ${ }^{2}$ (http://www.animalgenome.org/cgi-bin/QTLdb/BT/index).

[^1]: ${ }^{3}$ Haplotype consists of two or more SNP in close proximity, which tend to be inherited together with high probability (Abdel-Shafy et al, 2014)

[^2]: ${ }^{4}$ http://www.cs.cmu.edu/ $\sim_{\text {sssykim }}$ /teaching/sI3/slides/Lecture_SVI.pdf
 ${ }^{5}$ http://cgimatba.com/array-cgh-technology/

[^3]: ${ }^{6}$ Five approaches to detect CNVs from NGS short reads. A. Paired-end mapping (PEM) strategy detects CNVs through discordantly mapped reads. A discordant mapping is produced if the distance between two ends of a read pair is significantly different from the average insert size. B. Split read (SR)-based methods use incompletely mapped read from each read pair to identify small CNVs. C. Read depth (RD)-based approach detects CNV by counting the number of reads mapped to each genomic region. D. Assembly (AS)-based approach detects CNVs by mapping contigs to the reference genome. E. Combinatorial approach combines RD and PEM information to detect CNVs (Zhao et al. 2013)
 http:// www.molmed.medsci.uu.se/SNP+SEQ+Technology+Platform/Genotyping/SNP_methods_and _references/Illumina_Infinium_assay/
 ${ }^{8} h t t p: / /$ res.illumina.com/documents/products/datasheets/datasheet_genomestudio_software.pdf

[^4]: ${ }^{9}$ Figure from: http://dnatech.genomecenter.ucdavis.edu/illumina.html

[^5]: ${ }^{10}$ (Golden Helix, Bozeman, MT, www.goldenhelix.com)

