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Abstract 

Iron oxide nanoparticles and nanocomposites:  

a diffractometric study 

 

By  

Paolo Masala 

 

Nanosized magnetic structures are currently key materials for advancements in electronics, 

optoelectronics, magnetic storage, and many bio-inspired applications. What is usually termed 

‘‘nanostructured systems’’ comprises those materials whose properties are determined by particles, 

crystallites, or clusters with characteristic lengths between about 1 and 100 nm. If the grain or 

domain size becomes comparable or smaller to the characteristic length scale of the interaction 

processes controlling a particular property, different effects and unusual chemical and physical 

properties can be expected that are highly attractive in a number of technical applications. In recent 

times, large advancements have been achieved related to the synthesis and characterization of  

well-defined, discrete magnetic nanoparticles for both fundamental and technological purposes. 

However, precise knowledge of the relationships between particle shape and size distribution, 

surface structure, and the resulting magnetic properties of magnetic nanoparticles is still lacking.  

In particular, iron oxide nanoparticles have been the subject of many theoretical and experimental 

studies. 

The goal of this thesis is to provide a crystallographic structural description of the atomic 

rearrangements in superparamagnetic maghemite (γ-Fe2O3) nanoparticles and in magneto-
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plasmonic nano heterostructures formed by metallic gold and magnetite (Fe3O4), looking for a 

relationship between the structure and the properties.  

The thesis is organized in 3 chapters. 

The first chapter is divided in two part: in the first a briefly introduction about nanomaterials is 

presented, in the second one all the used techniques are described. First the main concepts about 

powder diffraction are briefly recalled, then the Pair Distribution Function method is introduced, 

then there is a description of theory about Small angle X-Ray Scattering and finally ESR theory is 

shortly presented. 

In the second chapter all the beamlines of the European Synchrotron Radiation Facility, used for the 

data collection, are described. 

The heart of the thesis consists in the last chapter where all the data and the results about 

nanomaterials (γ-Fe2O3) and nanocomposites (Au-Fe3O4) are shown. In this chapter a thorough 

structural characterization was performed by using X-ray powder diffraction by means of 

conventional Rietveld analysis, Pair Distribution Function and Small Angle X-ray Scattering; in 

addition Electron Spin Resonance spectroscopy was performed on the systems to shed light on their 

magnetic properties. 
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1.1 Nanomaterials and Nanocomposites 

anomaterials are the foundation of nanoscience and nanotechnology and have 

become one of the most important field in a very short period [1]. Materials 

constituted by particles in the range of 1-100 nm are prepared and used since a 

long time, but it is in the last 20 years that it was possible to understand and 

describe their exceptional properties. The small dimensions of the particles make their properties 

different from bulk materials for several reasons. In particular: 

 most atoms lie on the surface;  

 surface free energy has an important role in the thermodynamics of nanoparticles;  

 some assumptions of band theory are no longer valid (e.g. continuity of density of states). 

Furthermore, during last decades there has been an improvement in the miniaturization technique 

and in the engineering of components, with the possibility to obtain components smaller and 

smaller. One of the main reason for this field of research is that materials show different properties 

N 
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when their dimension is below the critical length scale associated with any given properties. These 

scales do not apply only to the external structure of the material but also in the internal structure and 

it is well known that properties of material strongly depend on their microstructure. Microstructure 

includes all aspect of atomic arrangement, compositional inhomogeneity, the amount of the phases 

in the material, the grain size and its distribution and the shape, the concentration and distribution of 

crystal defects as vacancies, dislocation, stacking and twin faults and lattice distortion due to strain. 

Materials with nanoscale size, where most of the grain size is below 100nm, have been classified by 

Siegel [2] with the following classification, which is shown in Fig. 1.1. 

 

Figure 1.1: Siegel's classification: zero-dimensional system (up left), 

one-dimensional system (up right), two-dimensional system (bottom 

left) and three-dimensional system (bottom right). 

 

The first category is zero-dimensional (0D) system, e. g. an isolated nanoparticle embedded into a 

matrix. Objects with alternating coherent domains of nanometer thickness are one-dimensional (1D) 

system (nanotubes, nanowires, nanorods). Films supported on a carrier are the best example for 

two-dimensional (2D) materials. Finally, there are the three-dimensional (3D) systems represented 

by materials with coherently scattering domains of a few nanometers in size. 

Nanocrystalline materials have generated large interest in the last two decades in terms of 

challenges in the fundamental science and for their potential for technological applications [3-5]; 
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catalysts, nanoceramics, and nanocrystalline heat-resisting alloys represent only a small amount of 

materials widely used in different fields of science and technology with industrial interest. Of 

particular interest are the scaling laws related to mechanical, electrical, magnetic and corrosion 

properties. Inter-crystalline region becomes important when the grain size is below 100 nm, often 

resulting in unusual properties at the smallest grain sizes. It is important to note that the strength of 

nanocrystalline materials depends also on the width and the shape of the grain distribution function 

and it is not determined only by the grain size [6]. 

During the last 10 years researchers have begun to explore nanocomposites.  

Nanocomposites are composed by multiple phases, where each phase is selected for a specific goal. 

The researchers have begun to explore heterostructured nanoparticles by integrating multiple 

nanoparticle components assembling into a single nanocomposite [7-11]. Double-components 

systems received much attention because of the improve properties in respect to single constituents 

[11,12], an import advance in nanotechnology and in the comprehension of nanoscale phenomena. 

None of such unusual effects could be otherwise accessed with any of the single components alone 

or their physical mixture counterparts [13,14].  
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 1.2 X-Ray Diffraction 

iffraction techniques are powerful tools to investigate, in a non-destructive 

way, the microstructure of even the smallest engineering components. The 

most common used X-ray diffraction techniques in material science include:  

 

 Bragg diffraction: crystal structure, residual stress, texture, size distribution;  

 Pair Distribution Function: real space arrangement of atoms over a wide r-range;  

 Small-angle scattering: particle shape, size distribution, volume fraction;  

 Quasielastic diffuse scattering: local atomic arrangements in glasses and amorphous 

systems, chemical disorder, strain fields in impurity;  

 Fluorescence: quantitative analysis of elements;  

 Imaging techniques: radiography, topography, tomography, coherent diffraction imaging. 

D 
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In this section we will show the basic concepts related to the X-ray diffraction techniques. We will 

show a general overview on the diffraction theory, present the pair distribution function together 

with the procedure to analyze the total scattering from powder diffraction data and, finally, the 

small angle X-ray scattering and electron spin resonance spectroscopy theory. 

1.2.1 X-Ray Powder Diffraction 

X-Ray Powder Diffraction (XRPD) is nowadays a routine technique for the characterization of 

crystalline materials. It is possible to extract a large amount of structural information with an 

accurate study of the diffraction data, not only the determination and the quantification of the 

crystalline phases. To obtain this kind of information, sometimes given by little modifications in the 

diffraction pattern, such as variations in the peak intensity, peak splitting or little peak growing up 

in the background, high quality data are needed. Therefore, their detection is often precluded using 

laboratory instruments, because of their limited resolution and signal to noise ratio, so that 

synchrotron radiation, which has high brilliance, a small instrumental contribution to peak 

broadening and a high signal to noise ratio, is needed.  

X-Ray Powder Diffraction is based on powdered material and its randomly distribution of the 

crystallites. If this powder is an aggregate of randomly oriented crystallites, the vector   
 , a 

reciprocal lattice point (see section “1.2.2 Reciprocal Space Analysis”), is in all the possible 

orientations with respect to the X-ray beam producing the diffraction cone, as shown in Fig. 1.2. 

This cone represents all the possible directions in which diffraction is observed. 
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Figure 1.2: Diffraction cones produced by a sample in a X-ray diffraction experiment. 

 

Presently, diffraction cones, which contain the structural information, are detected in two different 

ways:  

a) The first one is by using a two-dimensional detector perpendicular to the incident beam. 

We know that the diffraction cones “draw” on the detector a series of rings, the so called Debye 

rings. If the crystallites are really randomly oriented, their distribution will be isotropic and the 

diffracted intensity in each ring will be homogeneous. In this case, a section of the diffraction rings 

can be considered representative of the reflection intensity profile in the reciprocal space.  

b) The second one is by using a point detector. Most of the modern instruments use this 

latter detector geometry to measure the intensity and the position in 2θ of the diffraction pattern. 

The structural investigations can be performed both in the reciprocal space and in the real space. 

The former is the conventional crystallographic method to determine the atomic structure in a 

crystal. The latter is the so called Pair Distribution Function (PDF) method, which describes the 

atomic arrangement looking at the interatomic distances. 

In the next sections a few basics concepts of reciprocal and real space are in depth introduced. 

Sample 

  Debye-Scherrer 

cones 

 
Image Plate 

Detector 
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1.2.2 Reciprocal Space Analysis 

Between the ultraviolet region and the γ-rays region there are X-rays. X-ray are electromagnetic 

radiation with a wavelength (λ) ranged from 0.1-10 Å, which include the typical interatomic 

distances values. For this reason X-rays radiation is the perfect tool to study materials from a 

structural point of view.  

If we place in an electromagnetic field of monochromatic X-ray beam an electron, a particle with 

mass and electric charge, this particle will oscillate with the same frequency of the electric field and 

will start to emit radiation by a scattering process because of the acceleration of the electron, and 

the same occurs in polyelectronic systems like an atom or a sample. 

In Fig. 1.3 a schematic process is shown. 

 

Figure 1.3: Scattering vector. 

 

By defining as k0 and kf the wave-vectors associated to the incoming and diffused photon, the 

difference between the two is given by: 

                     Eq. 1.1 
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A full treatment of the radiation-matter interaction is given, for example, in [1]. Here only some 

useful concepts are introduced.  

According to the approximation of elastic scattering (Thompson scattering), since momentum is 

conserved, the Q vector can be replaced by its modulus:  

                
    

 
         Eq. 1.2 

On the other hand, when the X-rays are scattered inelastically (and incoherently), i. e. losing some 

energy of the incident beam, we have Compton scattering. In this case there is a difference in λ 

between the incident and the scattered radiation because the incident beam transfers a part of its 

energy to the electron during the collision. The Compton formula is: 

    
 

   
                       Eq. 1.3 

where h is the Planck constant, me is the rest mass of the electron, c is the speed of light and 2θ is 

the scattering angle.  

The amplitude of the interference curve given by the scattering from electrons of a single atom  

(normalized in respect to the scattering from a free electron) is generally defined as the atomic 

scattering factor f and we have a fully constructive interference only in the case of Q = 0, then it 

decays by reason of the spatial distribution of the electrons. So, if we have different scattering 

points in an atom, we can easily express the total amplitude of the scattered wave as: 

               

 

   

                Eq. 1.4 

where Aj stands for the amplitude of the wave scattered by the j
th

 point. 

When a continuous distribution of charge density (r) is considered instead of a finite number of 

scattering centers and, now, we can rewrite the previous equation as following : 
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         Eq. 1.5 

Hence, the amplitude F(Q) is the Fourier Transform (FT) of the ρ(r) function and the same is for an 

atom where the atomic scattering factor denoted as f which defines the electron density. An 

analytical description of the scattering factors is given for example in [2].  

The amplitude and the phase of the atomic scattering factor defined above is modified by the so 

called “anomalous scattering” f’ and f” so that f(Q) becomes: 

                                    Eq. 1.6 

f’ and f’’ depend on energy E (not on Q) and they vary steeply when E is close to an absorption 

edge of the atoms involved. 

Suitable values for anomalous scattering are given in [3].  

The observed diffracted intensity depends on the atomic coordinates and is proportional to the 

square modulus of the structure factor F, 

                   Eq. 1.7 

with F(Q) defined as: 

         

     

   

                    Eq. 1.8 

where rj defines the atomic positions and Tj accounts for thermal vibration and every further 

possible delocalization of the electronic cloud. This is true for every set of atoms, even in the 

absence of any symmetry rule. In the case of a crystalline material, the whole crystal can be 

described using the translation of a single unit cell according to linear combinations of the 

translational vectors a, b and c. The edges a, b e c of the unit cell and the angles ,  e  between 

couples of vectors are defined as the cell parameters. As a consequence, the structure factor of 

equation 1.8 can be described as the product of two different summations: 
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                Eq. 1.9 

where Rn = ua + vb + wc, with u, v, w integers. The first one runs over the N atoms j in the unit 

cell, while the second summation stands for the sum over all the cells in the crystal. The condition 

to have a non-null value in the latter summation is that the product is an integer number, and this is 

valid only when Q corresponds to a reciprocal space vector   
 : 

       
        

                                      Eq. 1.10 

where h, k, l are integer numbers. These integers are called the Miller indexes and are used to 

identify the points of the reciprocal lattice as well as the families of crystallographic planes, 

perpendicular to   
  vectors. 

Another method to obtain the diffraction conditions was proposed by W. L. Bragg with the so called 

Bragg equation which can be written as: 

               Eq. 1.11 

In Bragg view, photons of wavelength  are scattered by families of crystallographic planes, 

parallel to each other and separated by constant interplanar distances. In Bragg equation, d is the 

interplanar spacing between two consecutive parallel lattice planes, θ is the angle between the 

incident beam and the family of lattice planes and n is the diffraction order. On the basis of  

equation 1.11 scattering conditions are fulfilled when the path difference between waves reflected 

from successive planes must be an integer multiple of the wavelength of the incident radiation. As 

above reported, each plane is characterized by a tern of Miller indexes (hkl); the hkl plane closest to 

the origin of crystallographic axes crosses the a, b and c axes at 1/h, 1/k and 1/l of their length. In 

Fig. 1.4(a) is shown the unit cell of gold (Face Centered Cubic structure, Fm-3m space group) as 
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well as two [111] planes; in Fig. 1.4(b) is displayed a portion of gold X-ray powder diffraction  

pattern. Numbers into brackets are the miller indexes.  

 

 

 

Figure 1.4(a): Structure of gold cell: yellow 

balls represent gold atoms. Two parallel 

[111] planes are shown. 

  Figure 1.4(b): XRPD pattern of gold. The 

corresponding Miller indexes are indicated.  

 

 

One interesting feature of the XRPD pattern, shown in Fig. 1.4(b) is that the diffracted intensity 

decays with 2θ.  

This effect is originated by the time averaged spatial distribution of electron density. One hand, the 

finite distributed of atomic electron density causes the decay of atomic form factors f at increasing 

2; moreover, in real materials (even at 0 K), atomic vibrations induce a more spread distribution of 

the electronic cloud, thus producing an even faster intensity decay with 2θ. This effect is accounted 

for by the parameter Tj: 

               
    

 
      Eq. 1.12 

formerly introduced in equation 1.8 when defining the structure factor. In equation 1.12 U indicates 

the atomic mean square displacement (msd) around the equilibrium position.  

The mean square displacement is a powerful tool for the study of disordered systems. Basically, in a 

disordered system atoms which occupy the same site in different cells can have different 

(111) (111) 

(220) (200) 
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XRPD 

(511) 
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(420) 
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(400) 
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equilibrium positions, which average to the one of the long range structure. As a consequence, the 

electronic cloud is more dispersed and the effect is, though to a larger extent, the same as a huge 

atomic vibration. It is possible to detect this effect in a diffraction experiment measuring the 

increase of the mean square displacements provoked by disorder in respect to a disorder free 

structure. Thus the thermal parameters can be described as follows [4]: 

                                           Eq. 1.13 

where              indicates the effective amplitude of vibration and             is the additive 

contribution given by static disorder in atomic position. Atomic vibrations reduce the structure 

factor at increasing Q, thus the intensity of a diffraction peak; conversely, there are not effects on its 

width. The width of a diffraction peak, in fact, depends on two main contributions: one due to 

instrumental effects, such as axial divergence, distribution of wavelengths and finite size of the 

beam; another one from the sample, in terms of extended defects, finite grain size, strain effects, 

dislocations, antiphase boundaries and all other defects. All the defects, affecting the profile of a 

diffraction peak, are defined as microstructure [5-6].  

1.1.2.1 Rietveld Method 

It is well know that the Rietveld method [7] is the most used structural refinement procedure for 

3D-ordered crystalline materials using powder diffraction data. In this work, the structural analysis 

of all the powder diffraction patterns was performed using this method. 

The main idea of this method is to represent the profile of the diffraction peak in the XRPD pattern 

using some empirically chosen approximation functions with specified or refined parameters. 

Starting from a given structural model, the peak intensity is varied varying structural parameters. 

The Rietveld method uses a mathematical model, containing both structural and profile parameters, 
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to represent the diffraction pattern. The observed intensity yoi at the angle i
th

 is compared to the 

corresponding calculated as follows: 

              
                   Eq. 1.14 

where S is a scale factor, mk is the multiplicity factor, Lk is the Lorentz-polarization factor, Fk is the 

structure factor for the k reflection, P(2θi - 2θk) is the profile function, where 2θk is the calculated 

Bragg angle corrected for the zero-point shift error, Ok is the correction term for a non-ideal 

crystallites distribution, A is the linear absorption correction coefficient and ybi is the background 

intensity related to the i
th

 intensity. 

The aim of the Rietveld refinement is to minimize the residual M between the calculated and 

observed pattern by a non linear least-squares refinement. The M parameter is defined as: 

               
  Eq. 1.15 

where wi is a weight depending on the standard deviation associated with the peak and with the 

background intensity.  

The agreement between the observations and the calculated pattern can be estimated by several 

indicators. To evaluate the goodness of Rietveld refinement it is possible to consider the profile 

(Rp), the weighted (Rwp) and the Bragg (R) indicators defined as: 

              
       

Eq. 1.16               
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It is important in the Rietveld method, but no only in it, the determination of the profile function 

which can be written as: 

                 Eq. 1.17 

where x = 2θi - 2θk and the f(x) is the specimen function and depends on the specimen characteristic 

such as defects, size, strain, while H(x) is the instrumental function. Many analytical functions are 

used to describe the peak-shape like Gaussian (G(x)), Lorentzian (L(x))  functions or convolution of 

these like Voigt (V) or pseudo-Voigt (pV). The latter, an approximation of Voigt function, is 

commonly used to take into account both the Gaussian and the Lorentzian contribution to the 

diffraction peak.  

In particular the pseudo-Voigt can be written as: 

                         Eq. 1.18 

where 

      
 

       
  

 

  
   

       

 
Eq. 1.19 

      
 

      
   

   

 
      

    

       
    Eq. 1.20 

where FWHM is the so called Full Width Half Maximum, and η (0 ≤ η ≤ 1) is the mixing parameter 

between the gaussian and lorentzian function. 

In the Rietveld method the evolution of the line shape as a function of 2θ is obtained refining 

suitable parameters related to FWHM and η [8]. 
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1.1.2.2 Data Analysis Strategy 

In the XRPD patterns the average crystallographic structure was determined through Rietveld 

method [9], using the software GSAS [8] with the graphical interface EXPGUI [10]. The line 

profile and the background were fitted with pseudo-Voigt functions and Chebyschev polynomials 

accounting for asymmetry correction [11], respectively. Absorption correction, for XRPD data, was 

performed through the Lobanov empirical formula [12]. Anomalous scattering was taken into 

account using the f' and f'' parameters given by [13].  

In the refinements we varied cell parameters, oxygen position and, when it is possible, one average 

isotropic mean square displacement (msd) parameter per phase. 

1.1.2.3 Williamson-Hall Method 

The broadening of the peak in an XRPD pattern is due to instrumental and physical factors. The 

latter depends on the nature and the chemistry of the sample. In particular the diffraction profile can 

be represent as the convolution of different contributes depending on the crystallites size and shape, 

the strain and, in complex case, on the nature and the distribution of defects [14]. In this thesis, the 

analysis is focused in the determination of the crystallites dimension (DV) and the strain (ε) in the 

samples presented. 

The determination of ε and DV is obtain by means of the Williamson-Hall (W-H) method. By using 

a pseudo-Voight function, the method correlates the Full Width Half Maximum of a peak with the 

integral breadth β according to the follow equation: 

    
    

 
           

 

   
         

Eq. 1.21 
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DV and ε parameters can be evaluated using the follow relation [15, 16]: 

                  
 

  
       Eq. 1.22 

According to the equation 1.22, it is possible to extract DV and ε plotting the value β*cos(θ) as a 

function of 4*sin(θ). DV is given by the intercept of the y axis, while the slope of the function gives 

the value of ε. 

To obtain the right value of βpV a correction of the broadening of the peak for the instrumental 

factor is needed. This process is the so called instrumental resolution function. 

1.1.2.3.1 Instrumental Resolution Function 

The instrumental resolution function (IRF) describes the contribution of the broadening of the peak 

due to the instrumental factors in terms of U, V, W, a, b, c as a function of . The parameters are 

obtained using the follow equations: 

     
                               Eq. 1.23 

                          Eq. 1.24 

In order to consider only the instrumental contribute, the IRF is generally achieved collecting an 

XRPD pattern of a sample without structural defects and with large crystallites. In this chapter, for 

example, is presented an instrumental resolution function calculated on CeO2 (Aldrich) at  

= 0.3542. 

In Fig. 1.5(a) the trend of FWHM
2
 as a function of tan(θ) is shown, while the trend of η as a 

function of θ is depicted in Fig. 1.5(b). The FWHM and η values have been obtained fitting each 

peak of Ceria oxide by means of a pseudo-Voight function implemented in the WinPlotr suite of 

programs [17]. 
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By fitting the results in Fig. 1.5(a) and 1.5(b) with the equations 1.23 and 1.24, respectively, we 

obtained U, V, W, a, b ,c values required for the calculation of the IRF as a function of . 

 

 

 

Figure 1.5(a): FWHM2 as a function of tan(θ).  Figure 1.5(b): η as a function of θ. 

 

According to the equation 1.21, now it is possible to subtract, for every sample, the instrumental 

contribution at the FWHM for every peak. Finally, with the correct pV it is possible to plot the data 

in the so called Williamson-Hall plot.  

Fig. 1.6 shows an example of W-H plot. 

 

Figure 1.6: W-H plot of gold sample. 
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1.2.3 Real Space Analysis 

Beside the scattering from an ideally periodic arrangement of atoms which, as previously reported, 

gives rise to the Bragg diffraction, there is also the so called diffuse scattering. Diffuse scattering is 

a coherent and quasielastic form of scattering and it is due to same deviations from the periodicity, 

such as structural disorder or structural modifications with respect to the long range structure, 

present in same material [1]. In the Rietveld analysis every deviation from the periodicity is 

considered as a background feature and no modeling is generally performed. A more efficient 

approach to study the structure of a disorder material is to consider the relative positions of atoms in 

a crystal, instead of the absolute ones. For this reason disorder materials are easier to approach in 

the real space, the space of the interatomic distances with the so called Pair Distribution Function. 

1.2.3.1 Pair Distribution Function 

The Pair Distribution Function (PDF) represents the probability of finding pairs of atoms separated 

by a distance r. See [18] for a complete derivation. 

The PDF is obtained through Sine Fourier transform of the total scattering function, S(Q), obtained 

from a powder diffraction experiment after proper normalization and corrections. The first step is 

the subtraction of the empty capillary and the air contribution, so it is necessary to measure the 

diffraction pattern of the sample holder and of the empty apparatus. The sum of the Bragg peaks, as 

previously described, and the diffuse scattering gives the coherent diffracted Icoh(Q), which is only a 

part of the overall diffracted intensity: 

                                          Eq. 1.25 

where P is the polarization factor, A the absorption coefficient, N a normalization factor, Iinc(Q) is 

the incoherent intensity, Ims(Q) is the multiple scattering contribution. It should be noted that, when 

the measurement is performed at the synchrotron, the polarization factor is very close to the unit. 
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The other corrections are generally performed with tabulated values. There are suitable corrections 

in [19] for the multiple scattering, which occurs when the incident beam is scattered twice or more 

time before reaching the detector. Instead for the incoherent scattering, in case of X-ray scattering, 

it is generally present in the form of Compton scattering and is non-negligible especially when 

working at high energy. Since it increases with Q whilst the coherent intensity decreases, even 

small error in Compton correction can lead to significant errors in the high-Q normalization [20]. 

The theoretical Compton profile can be calculated and subtracted from the measured data. In 

presence of analyzer crystal on the diffracted beam the Compton scattering at high-Q is removed, 

but in the middle-low-Q region this approach is not reliable and in order to remove it the method 

suggested by Ruland can be applied. In this method the Compton intensity is smoothly attenuated 

with increasing Q by applying a monochromator cut-off function Y(Q) with a given window value. 

The incoherent intensity is then calculated by multiplying the Y(Q) with the theoretical Compton 

profile and subtracted from the experimental data.  

Generally other corrections are necessary depending on the instrument set-up, the type of detectors, 

the experimental condition and the probe employed. Now the coherent diffracted intensity, which is 

the results of Bragg and diffuse scattering contributions, needs to be normalized in order to obtain 

the total scattering function, shown in the follow equation:  

       
            

               

       
 Eq. 1.26 

Where                       and                     
  are the square of mean and the 

mean of square scattering lengths weighted over the concentration of the i
th

 atom in the sample.  
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A typical XRPD S(Q) and F(Q) curves and the G(r) calculated of nano-CeO2 sample are shown in 

Fig. 1.7(a), 1.7(b) and 1.7(c), respectively.  

Where the so-called reduced structure F(Q) is derived from S(Q): 

                 Eq. 1.27 

 

  

 

Figure 1.7: a) S(Q), b) F(Q) and c) G(r) curves determined on nano-CeO2 sample. 

 

The form of F(Q) implies that, at high Q values, the dispersion of experimental data around the 

mean value as well as the noise is magnified.  

 

a) b) 

c) 
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In the present thesis, we refer to G(r), defined as the sine Fourier Transform of total scattering 

function S(Q): 

       
 

 
                    
 

 

   
 

 
              
 

 

 Eq. 1.28 

It should be noted that many different formalisms are used to describe the pair distribution function 

and, in general, the distribution of interatomic distances as a function of r; an overview on this 

matter is given by Keen [21]. Each positive G(r) peak indicates r value where the probability of 

finding two atoms separated by a certain distance is greater than that determined by the so called 

number density ρ0, i.e. the number of atoms for Å
3
. Hence, the G(r) gives the probability of finding 

two atoms separated by a distance r averaged over all pairs of atoms in the sample. In this context, 

the structure of the material is studied in terms of interatomic distances and, since no periodicity is 

assumed, both the long range structure and the local deviations with respect to this average structure 

can be explored.  

The integration of the equation 1.28 should obtained in an infinite range of Q, but this is impossible 

and the upper limit of the integration is the maximum value of Q (Qmax) experimentally reached. It 

depends on the incident wavelength and the maximum 2θ value investigated during the data 

collection of the experiment. Collecting data up to a certain Qmax is equivalent to multiply S(Q) by a 

step function [=1 for Q<Qmax; = 0 for Q>Qmax], that in real space produces the convolution of G(r) 

with a broadening function, given by: 

            

  
 Eq. 1.29 

corresponding to the Fourier Transform of the step function [10].  
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The finite value of Qmax induces peak broadening and the appearance of spurious oscillations in 

G(r) with wavelength ~ 
  

    
, the so called termination ripples, which are evident, especially, at low 

r (see Fig. 1.8). 

 

Figure 1.8: G(r) of gold with Qmax = 20 Å
-1

. Termination ripples, especially at low r, 

are evident. 

 

At high enough Qmax values the truncation induced broadening becomes negligible with respect to 

the thermal broadening. Increasing Qmax also reduces the intensity of the termination ripples (see 

Fig. 1.9). 

Often it is reported in the literature that suitable G(r) functions are obtained when Qmax values 

exceed ~25-30 Å
-1

 in order to minimize the termination effects. However, the correct Q range to 

investigate depends also on the sample nature, the temperature and on the instrument set-up. Surely, 

collecting data with a limited Q range the G(r) peaks could be affected by an additional broadening, 
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which will reduce the resolution in the real space and will change the peak positions. Thus, 

collecting data at Qmax as high as possible seems to be mandatory to obtaining good G(r) curves.  

In Fig. 1.9 XRPD G(r) curves calculated at different Qmax are shown. The green curve refers to a 

PDF obtainable using a laboratory diffractometer equipped with a Cu anode, which can reaches 

Qmax = 8 Å
-1

. Modern improvements in laboratory diffractometers give the possibility to mount Mo, 

or even Ag anode, which allows to access higher Qmax, around 16 Å
-1

. The Ag anode G(r) curve is 

depicted in black. But to obtain higher Qmax we need synchrotron facility, and the red curve 

represented the PDF curve with a Qmax = 25 Å
-1

. All the G(r) curves shown in this thesis are 

collected by ourselves at the European Synchrotron Radiation Facility (ESRF). Obviously, some 

ripples are again present, but they are considerably reduced. To eliminate almost entirely the 

termination ripples we need to reach Qmax = 50 Å
-1

, the blue curve. 

 

Figure 1.9: Calculated G(r) for gold with different Qmax. The Qmax values indicated 

are in Å
-1

 units. 

 



27 

 

However, we have to remind that the atomic form factors f decay at increasing Q; as a consequence 

high-Q values can be noise. Fourier transforming a F(Q) function up to Q values, where 

corresponding to low the intensity-noise ratio introduces spurious oscillations which hinder a 

correct interpretation of the experimental data. To overcome this problem usually patterns are 

measured for longer time in the high 2θ ranges; however, due to the finite counting time available to 

collect diffraction pattern Qmax is a compromise between two necessity: minimize truncation error 

and noise. 

Toby and Egami [10, 13] provided an experimental rule to evaluate the suitable Qmax values: 

termination effects are negligible when Qmax is greater then 
 

      
, where  msd  is the average 

mean square displacement. The presence of ripples can also arise by a non-correct high-Q 

normalization, as shown by [20].  

As for the data presented in this thesis, full structure profile refinements are carried out using PDF 

data. The PDF of a given structure can be calculated using the relation: 

      
 

 
    

    
    

         

  

        Eq. 1.30 

with the sum running over the atoms i and j separated by a distance rij. The equation 1.30 does not 

account for atomic vibrations. For this goal, the delta term can be replaced by a modified Gaussian 

function [22]: 

        
 

         
     

       
 

    
    

        
     

   
   Eq. 1.31 

where        is related to the msd of atoms i and j. In some cases the 1
st
 neighbors pairs are 

subjected to correlated motion, which produces a sharpening of some peaks in the low-r region. 

This effect is detailed in [23]. 



28 

 

The observed G(r) can be then fitted against the calculated G(r) (G
c
(r)) by applying suitable 

symmetry constrains and varying cell parameters, atomic positions and thermal parameters. The 

degree of accuracy of the PDF refinement can be assesses by agreement factor of type: 

    
           

   

        
 

 

   

  Eq. 1.32 

where wi = 1/σ2(ri) and σ ri) is the standard deviation at a distance ri. 

In the equation 1.30 all G(r) curves have a negative slope in the limit, while, in the limit of large r, 

they tend to zero. Thanks to the damping of the amplitude of the oscillations we have a direct 

measure of the structural coherence of the sample. For example, when dealing with nanoparticles, 

for interatomic distances larger than the size of the particle, the coherence is lost and the G(r) will 

fall to zero. It should be noted that the damping is influenced also by the instrumental resolution. In 

fact, the lower the instrumental resolution, the faster the G(r) amplitude decays with r. But, 

generally, the diffractometers resolution are known, and they show a constant Q/Q resolution, 

which can be easily modeled [18]. 

1.2.3.2 Data Analysis Strategy 

XRPD real space data reported in this thesis were processed using the PDFGetX3 software [24] and 

were corrected for background, sample self-absorption, multiple and Compton scattering. For each 

sample, empty container and sample environment contributions were subtracted from raw data, 

taking into account attenuation effects [25] as well as the incoherent-scattering contribution.  

We modeled the experimental G(r) function by means of the Real Space Rietveld method [18]. For 

this purpose we used the software PDFGUI [26]. As done with the Rietveld method in the 

reciprocal space analysis section, some parameters of a structural model are refined against the 
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experimental G(r) curve. The quality of the fit is defined by the agreement factor written in the 

equation 1.32. 

After the modeling, we continued the data analysis with the direct analysis. In this analysis, each 

G(r) peak is fitted, after proper baseline subtraction, with a Gaussian in order to determine its peak 

position, its width and its area. 
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1.3 Small-Angle X-ray Scattering (SAXS) 

he Small-Angle X-ray Scattering (SAXS) is a powerful technique for studying 

nanostructures and nanostructured materials with characteristic length scales 

ranging from 1 up to 100 nm. It is possible to determine with a quantitative SAXS 

analysis crucial information such as the average size, size distribution and shape of 

the particles of the studied material.  

The most important SAXS equations are described in detail in this chapter. For a fulfill discussion 

about the scattering theory the reader is referred to the textbook [1]. 

1.3.1 Introduction 

SAXS equations are derived from the scattering theory using the following approximations: (1) the 

system is statistically isotropic and (2) there exist no long-range order. According to restrictions (1) 

and (2) the intensity can be written as: 

 

T 
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                  Eq. 1.33 

where γ(r) is the probability of finding a point within a particle at distance r from a given point (in 

the same particle) and it is equal to zero at r ≥ D, where D is the larger distance between two point 

within the same nanoparticle. 

The intensity is related to the volume and the shape of the scattering object. So that, via SAXS, it is 

possible to obtain the shape of the scattering object by inverse Fourier Transform of the measured 

intensity. 

Equation 1.33 applies in case of a single scattering particle, but, obviously, real systems are more 

complex and include a huge number of particles. In the case of a dilute solution, the total diffraction 

pattern is simply the sum of the intensity scattered by individual particles. But, if we increase the 

concentration, interparticle interference becomes not negligible. This interference is due to the 

impenetrability of the particles and to the electrostatic Coulomb force.  

A system of volume V with N similar particles is the simplest case. By increasing the concentration, 

the interparticle interference for each particle becomes stronger. The scattered intensity from all the 

particles can be written as: 

     

  
  

 

 
 
  

  
  

 

 
           

     
 

 
           

 

 

   

 

   

                

 

   

  Eq. 1.34 

where rk and rj are the centers of mass of particle k and j, respectively, and d/d is the differential 

scattering cross section defined as: 

  

  
  

                               

               
  Eq. 1.35 

But for monodispersed spherical particles we have f(Q) = fk(Q) = fj(Q). According to this, the 

previous equation can be rewritten as: 
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                        Eq. 1.36 

In equation 1.36 the scattered intensity is composed of two parts: the first one is the interparticle 

interference factor, called the form factor P(Q); the second one arises from the interparticle 

interference and is called structure factor S(Q). Equation 1.36 can be rewritten as: 

     

  
  

 

 
 
  

  
                         Eq. 1.37 

this equation represents the most general form of the SAXS equations. 

In the next section the Guinier approximation is presented. 

1.3.2 Guinier Approximation 

If we take a SAXS pattern, we can divide it in two regions: the low-Q and the high-Q region (see 

Fig. 1.10). 

 

Figure 1.10: a) the low-Q and b) the high-Q region of a SAXS pattern. 

 

a) b) 
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At very low-Q values, the diffraction data are insensitive to details at atomic or molecular level. In a 

system of (ideally identical) particles without long-range order, it is possible to obtain their particle 

dimension throughout the Guinier equation, which can be derived as follows: 

        

  
    

    

 
  
    

   
            Eq. 1.38 

Combining the equation 1.33 and 1.38 as: 

              
    

 

 
           Eq. 1.39 

where I(0) is: 

                           Eq. 1.40 

and the gyration radius Rg is: 

  
   

 
 
           

          
            Eq. 1.41 

Now it is possible to describe the scattering curve at low-Q values using the so called Guinier 

equation: 

              
      

 

 
           Eq. 1.42 

It is important to fulfill the terms of the restrictions (1) and (2), by remembering that the Guinier 

approximation is only valid for dilute solution of monodispersed objects and not valid for 

concentrated or polydispersed systems. 
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1.3.3 Shape, Size and Size-Distribution Function 

The quantitative analysis of SAXS patterns provides information about the object shape and the 

size-distribution function of the sample (not only on the average nanoparticles size). 

According to equation 1.37, the SAXS intensity can be described as the product between the form 

and the structure factors. In a dilute solution S(Q) is equal to one and can be neglected. 

Instead, according to equation 1.33 the scattering cross-section is related to the object shape via the 

function γ(r):  

  

  
           

     

  
  

 

 

         Eq. 1.43 

In this chapter we will focus only on the classic spherical shape. We describe this shape because it 

is the easiest example to understand and to explain the information contained in a SAXS intensity 

profile. 

Equation 1.43 can be analytically solved and it is equal to the Rayleigh function: 

  

  
                              

                

     
 
 

 Eq. 1.44 

where N is the number of spheres in solution, ρ
2
 is the electron density difference between the 

spherical objects and the solvent and R is the radius of the spheres. 

Terms between squared bracket are the sphere form factor Psph(Q,R) and Q is the module of the 

scattering vector. 

In Fig. 1.11 the intensity for different values of R are shown. Looking at the plots some 

observations can be made: i) for monodispersed spherical objects, the form factor is characterized 

by a series of minima with I(q) = 0 and ii) the position of these minima shift toward smaller Q 

values by increasing R. 
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Figure 1.11: Semilogarithmic plot of the form factor for spheres with different radius R. 

 

Let us consider an ensemble of spherical objects but with size polydispersity. Its SAXS pattern can 

be imagined as the sum of spheres with different R (see Fig. 1.12). 

 

Figure 1.12: Simulated intensity (continuous line) for a mixture of 10 spheres: three 

of radius 2.8 nm, five of 3 nm and two of 3.2 nm. Intensity for a single sphere of 3 

nm (broken line). 
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It should be note that the minima are smeared out in the scattered intensity and the higher the 

polydispersity, the less marked the minima. 

Moreover, it should be notice that in equation 1.44, the intensity is weighted for the V
2
 term, which 

means that the objects with larger dimension will contribute more to the total measure intensity. 

Let us consider, now, an ensemble of particles with a continuous size distribution described by the 

function DN(R). The measured intensity is given by the sum over all the contribution from the 

different size, the probability of which is described by DN(R): 

  

  
                  

         
 

 

         Eq. 1.45 

In most of the practical cases the Gaussian distribution is used as “probability function” DN:  

       
 

    
    

       

   
  

         Eq. 1.46 

where    is the mean sphere radius value and σ is the standard deviation. 

As alternative are also used the Schultz and the Weibull distribution which are reported in equations 

1.47 and 1.48 respectively. 

        
   

  
 
   

         
   

  
   

 

      
 

         Eq. 1.47 

where z is the parameter related to the width of the distribution and: 

       
  

 
 
 

  
 
   

    
 

  
 
 

         Eq. 1.48 

here, β is the parameter related to the distribution. 

The Gaussian function is the most used due to its simplicity; the Schultz distribution is able to 

describe the polydispersity in microemulsion droplets [2], while the Weibull distribution works 

better for alloy and system with hard-sphere interaction potential [3-5]. The advantage of using the 
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last two distributions is that they can account for asymmetry in the shape of the size-distribution 

function, which is often the case in real systems. 

1.3.4 The Structure Factor 

Only in few cases it is possible to calculate an analytical expression for the structure factor S(Q). 

For a homogeneous and isotropic system of spherical particles, the static structure factor is: 

        
 

  
                     

   

  
             

       

  
  

 

 

 Eq. 1.49 

It should be noted that the static structure factor is related to the pair distribution function G(r) via 

Fourier Transform. This equation gives the link between the static structure factor S(Q) measured in 

a scattering experiment and the pair distribution function G(r) representing the description of the 

microstructure of the system. 
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1.4 Electron Spin Resonance (ESR) 

Spectroscopy 

his chapter is an introduction to the basic theory of Electron Spin Resonance 

(ESR) spectroscopy [1].  

During the early part of this century, when scientists began to apply the principles 

of quantum mechanics to describe atoms or molecules, they found that a molecule 

or an atom has discrete states, each with a corresponding energy. Spectroscopy is the measurement 

and interpretation of the energy differences between the atomic or molecular states. With 

knowledge of these energy differences, you gain insight into the identity, structure and dynamics of 

the sample under study. 

We can measure these energy differences, E, because of an important relationship between E and 

the absorption of electromagnetic radiation. According to Planck’s law, electromagnetic radiation 

will be absorbed if: 

      Eq. 1.50 

Where h is Planck’s constant and   is the frequency of the radiation 

T 
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Figure 1.13: Transition associated with the absorption of electromagnetic energy. 

 

The absorption of energy causes a transition from the lower energy state to the higher energy state 

(see Fig. 1.13). In conventional spectroscopy,   is varied and the frequencies at which absorption 

occurs correspond to the energy differences of the states. Typically, the frequencies vary from the 

megahertz range for NMR, trough visible light, to ultraviolet light and X-rays. For an ESR 

experiment radiation in the gigahertz range is needed. 

The energy differences we study in ESR spectroscopy are predominately due to the interaction of 

unpaired electrons in the sample with a magnetic field produced by a magnet in the laboratory. This 

effect is called the Zeeman effect. Because the electron has a magnetic moment, it acts like a 

compass or a bar magnet when it is placed in a magnetic field, B0. It will have a state of lowest 

energy when the moment of the electron, , is aligned with the magnetic field and a state of highest 

energy when  is aligned against the magnetic field (see Fig. 1.14). 

The two states are labeled by the projection of the electron spin, Ms, on the direction of the 

magnetic field. Because the electron is a spin ½ particle, the parallel state is designated as Ms = - ½ 

and the antiparallel state is Ms = + ½. 
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Figure 1.14: Minimum and maximum energy orientations of  with respect to the magnetic field B0. 

 

For quantum mechanics, we obtain the most basic equations of ESR: 

             
 

 
       

Eq. 1.51 

and 

              Eq. 1.52 

g is the g-factor, which is a proportionality constant approximately equal to 2 for most sample, but 

varies depending on the electronic configuration of the radical or ion. B is the Bohr magneton, 

which is the natural unit of electronic magnetic moment. 

Following equations 1.51 and 1.52 it is possible to assert that: 

 The two spin states have the same energy in the absence of a magnetic field. 

 The energies of the two spin states diverge linearly as the magnetic field increases. 

The variation of the spin state energies as a function of the applied magnetic field is shown in Fig. 

1.15. 

Since we can change the energy differences between the two spin states by varying the magnetic 

field strength, we have two alternative way to obtain spectra. We could apply a constant magnetic 
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field and scan the frequency of the electromagnetic radiation as in conventional spectroscopy. 

Alternatively, we could keep the electromagnetic radiation frequency constant and scan the 

magnetic field (see Fig. 1.15).  

 

Figure 1.15: Variation of the spin state energies as a function of the applied magnetic field. 

 

A peak in the absorption will occur when the magnetic field “tunes” the two spin states so that their 

energy difference matches the energy of the radiation. This field is called the “field for resonance”. 

By owing to the limitations of microwave electronics, the latter method offers superior 

performance. 

The “field for resonance” is not a unique fingerprint for identification of a compound because 

spectra can be acquired at several different frequencies. The g-factor,    
  

   
, being independent 

of the microwave frequency, is much better for that purpose. Notice that high values of g occur at 

low magnetic fields and vice versa. 

Measurements of g-factors can give us some useful information; however, it does not tell us much 

about the molecular structure of our sample. Fortunately, the unpaired electron, which gives us the 

ESR spectrum, is very sensitive to its local surroundings. The nuclei of the atoms in a molecule or 

complex often have a magnetic moment, which produces a local magnetic field at the electron. The 

interaction between the electron and the nuclei is called the hyperfine interaction. It gives us a 
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wealth of information about the sample such as the identity and the number of atoms which make 

up a molecule or complex as well as their distances from the unpaired electron. 

 

Figure 1.16: Local magnetic field at the electron, BI, due to a nearby nucleus. 

 

In Fig. 1.16 the origin of the hyperfine interaction is shown. The magnetic moment of the nucleus 

acts like a bar magnet and produces a magnetic field at the electron, BI. This magnetic field opposes 

or adds to the magnetic field from the laboratory magnet, depending on the alignment of the 

moment of the nucleus. When BI adds to the magnetic field, we need a smaller applied magnetic 

field and therefore the field for resonance is lowered by BI. The opposite is true when BI opposes 

the applied field. 

 

Figure 1.17: Splitting in an ESR signal due to the local magnetic field of a nearby nucleus. 
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For a spin ½ nucleus such as a hydrogen nucleus, we observe that our single ESR absorption signal 

splits into two signals which are each BI away from the original signal (see Fig. 1.17). 

If there is a second nucleus, each of the signals is further split into a pair, resulting in four signals. 

For N spin ½ nuclei, we will generally observe 2
N
 ESR signals. As the number of nuclei gets larger, 

the number of signals increases exponentially. Sometimes there are so many signals that they 

overlap and we only observe one broad signal. 

So far, we have concerned ourselves with where the ESR signal is, but the size of the signal is also 

important if we want to measure the concentration of the ESR active species in the sample. In the 

language of spectroscopy, the size of a signal is defined as the integrated intensity, i.e. the area 

beneath the absorption curve (see Fig. 1.18). The integrated intensity of an ESR signal is 

proportional to the concentration. 

 

Figure 1.18: Integrated intensity of absorption signals. Both signals have the same intensity. 

 

Signal intensities do not depend solely on concentrations. They also depend on the microwave 

power. If you do not use too much microwave power, the signal intensity grows as the square root 

of the power. At higher levels, the signal diminishes as well as broadens with increasing microwave 

power levels. This effect is called saturation, if you want to measure accurate line-widths, line-

shapes, and closely spaced hyperfine splitting, you should avoid saturation by using low microwave 

power. A quick means of checking for the absence of saturation is to decrease the microwave power 

and verify that the signal intensity also decrease by the square root of the microwave power [2]. 
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2.1 ID22 

D22 is the high resolution powder diffraction beamline of the European Synchrotron 

Radiation Facility (ESRF) of Grenoble in France (1). The ID22 diffractometer works in a 

Debye-Scherrer geometry. The powdered samples are loaded in glass, or kapton 

capillaries, mounted on the axis of the diffractometer and spun to improve powder 

randomization. The X-rays are supplied by means of three 11-mm-gap ex-vacuum ondulators of the 

synchrotron which cover the entire energy range from 5 keV to 60 keV with a λ which can be 

varied between 2.48 Å and 0.21 Å. The wavelength can be selected using a double-crystal Si 

monochromator. In particular a Si (111) crystals for the standard operation mode and Si (311) 

crystals used for application for which an higher energy resolution is needed. The first 

monochromator crystal is side cooled by copper blocks through which liquid nitrogen flows. The 

second crystal is cooled by thermally conducting braids that link to the first crystal. The dimension 

of the beam is regulated by some slits, typically the size is 0.5 – 2.5 mm (horizontal) and 0.1 – 1.5 

mm (vertical). Usually a sufficient amount of sample illuminated by a large beam is needed in order 

to obtain good data. For this reason the monochromatic beam from the source passes unperturbed to 

I 
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the sample without focusing. The diffractometer, shown in Fig 2.1(a), mounts a bank of nine 

detectors, each one preceded by a Si(111) analyzer crystal, which covered 16° in 2θ to measure the 

diffracted intensity as a function of 2θ.  

A standard material (generally Si standard NIST 640c) is measured to for different calibrations 

needed i.e. to settle out accurately the wavelength, the efficiency of the detectors, their position and 

the zero error. The use of an analyzer crystal eliminate fluorescence radiations; moreover it renders 

the positions of diffraction peaks immune to aberrations and increases the accuracy and precision 

for determining the position of powder diffraction peak. Finally, with a perfect setup of the 

instruments and thanks to the high resolution, to the high statistic and to the good collimation of the 

beam is possible to obtain diffraction peaks with the right position and with a narrow instrumental 

contribution to their FWHM (Full Width Half Maximum) (see Fig. 2.1(b)).  

 

 

Figure 2.1: (a) Powder diffractometer at ID22. (b) Angular dependence of FWHM related to diffraction 

peaks of Si standard sample. 

 



51 

 

This makes ID22 particularly apt to both size and strain and Rietveld analysis: the peak overlap is 

extremely reduced and it is possible to detect peak splits otherwise impossible to resolve with a lab 

diffractometer and even most of the synchrotron radiation and neutron powder diffraction beamline. 

Thus at ID22 it is possible to study both the reciprocal and the real space arrangement of atoms over 

a wide r-range. 
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2.2 ID15 

D15 beamline is composed by two different hutches: ID15A and ID15B [1]. The two 

hutches are dedicated to applications using very high energy x-ray radiation up to several 

hundred keV. ID15A has two experimental setups: energy dispersive diffraction (EDD) 

and high energy micro-diffraction (HEMD) setup. ID15B holds the angular dispersive 

diffraction (ADD) setup using large area detector and high resolution Compton spectrometer. In 

addition, a high pressure high temperature gas loading system, combining SXRD and MS, is 

available for gas/solid and liquid/solid catalyzed reactions. 

The beamline gives the possibility to exploit the properties of very hard x-rays and for this goal 

their characteristics are large penetration depth and large Ewald sphere. 

The X-ray optics and beamline layout, shown in Fig. 2.2, are designed to operate two independent 

branches simultaneously. ID15A and ID15B share the equipment, and have always been operated 

more as a single entity than as isolated facilities. 

I 

http://www.mf.mpg.de/en/abteilungen/dosch/hemd/index.shtml
http://www.esrf.eu/UsersAndScience/Experiments/StructMaterials/ID15/Technical_overview/high-temperature-gas-loading-system-for-catalyzed-gas-solid-or-liquid-solid-reactions
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Figure 2.2: Layout of the beamline: ID15A can take white or monochromatic radiation and ID15B takes 

monochromatic radiation (30, 60 or 90 keV). 

 

The ID15 insertion straight section holds a 7 pole 1.84T asymmetric multipole wiggler (AMPW) 

and an in-vacuum ondulator (U22). The critical energy of AMPW is 44 keV, and the useful 

spectrum extends up to 500 keV. Below 120 keV U22 gives a superior flux (see Fig. 2.3). The 

wiggler gives circularly polarized radiation off-axis so that elastic and inelastic magnetic scattering 

experiments are feasible. The beamline operate usually between 70 and 400 keV, which contrasts 

sharply with conventional X-ray terminology (home diffractometers), where anything greater than 

20 keV is considered exotically high. The X-ray energies below 30 keV are not available at ID15. 

 

Figure 2.3: The fluxes of the AMPW (blue) and U22 (green) at the orbit 

through (1x1)mm
2
 pinhole at 60 m distance. 
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In the present thesis, data have been collected at ID15B. This hutch of ID15 was originally a single-

purpose beamline dedicated to high resolution inelastic X-ray scattering, but now it is also designed 

for diffraction experiments. In this beamline there are two different setups as shown in Fig. 2.4. 

 

Figure 2.4: The different setups: high resolution Compton setup (HRC) and 2D-diffraction setup (2D-D). 

 

ID15B is a side-station, i.e. it cannot receive the white beam. It receives monochromatic beam from 

an horizontally focusing monochromator located in Optics Hutch 1, 10 m upstream of the 

experimental hutch. The scattering angle for the monochromator is almost fixed (10% tunebility) by 

the beamline geometry. This determines the range of available energies. In-vacuum monochromator 

tank holds three monochromators providing 30, 60 or 90 keV radiation. The first two are 40cm long 

bent Bragg crystals and the third one is a bent Laue-crystal. 

The two different setups have different purposes and characteristics and the first is the high 

resolution Compton spectrometer, while the second is the 2D-Diffraction setup. 

As for the Compton spectrometer we know that Compton scattered X-rays from a material provide 

information about the electron momentum distribution. Within the impulse approximation the 

energy of scattered X-rays is simply determined by the energy of the incident X-rays, the scattering 

angle and the primary electron momentum. The energy spectrum provides the momentum densities 

projected on the direction of the momentum transfer.  

As mentioned before the ID15B end-station was reconstructed to have place for a diffraction setup. 

An important and useful characteristic of this setup is the presence of an area detectors by 
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measuring complete scattering pattern. The 2D-detector and sample towers are on penta-pod optical 

table (see Fig. 2.5).  

 

Figure 2.5: 2D-Diffraction setup on penta-pod table. In this experimental configuration the 

detector stage holds Mar133 CCD-detector and sample stage holds ETMT-rig. Al-plate 

before the detector cuts low energy fluorescence background and holds the beam-stop. 

 

The setup can be used on studies of many materials: amorphous, liquids, powders and single 

crystals. The sample stage is such that several different sample environments can be interchanged 

depending upon experimental needs. The detector stage, which is translatable along the beam 

direction in order to cover a range of momentum transfers to match experimental needs, can carry a 

variety of 2D detectors (MARCCD133, MARCCD165, MARIP345, Pixium, and the image-

intensifier).  

References 

[1] M. Di Michiel, J.M. Merino, D. Fernandez-Carreiras, T. Buslaps, V Honkimaki, P. Falus, T. 

Martins and O. Svensson, Rev. Sci. Instrum., 2005, 76, 043702 



57 

 

2.3 BM26 

he Dutch-Belgian beamline (DUBBLE) is a beamline of the European 

Synchrotron Radiation Facility (ESRF) in Grenoble [1]. DUBBLE has been 

designed to be used for four experimental techniques: small- and wide-angle X-

ray scattering (SAXS/WAXS), interface diffraction (ID), X-ray absorption 

spectroscopy (XAS) and high-resolution powder diffraction (HRPD).  

The ESRF bending magnets start with 6 mrad having a magnetic field of 0.4 T (soft edge, with a 

critical energy of 9.8 keV) and continue with 0.8 T (hard edge, critical energy 19.6 keV). So, we 

have two different hutches: one with the soft (S) and the other with hard (H) branch. XAS and 

HRPD are located in the S-hutch, while SAXS/WAXS and ID occupy the H-hutch. 

In the present thesis all the SAXS measurements were performed in the H-hutch, the so called 

BM26B beamline.  

This beamline is specialized in time-resolved small- and wide-angle X-ray scattering and is 

especially equipped to handle complicated sample environments. 

T 
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In the H-branch the main optical components are a double-crystal monochromator, followed by a 

focusing mirror. Instead in the S-branch there are two additional components, a collimating mirror 

in front of the monochromator. This mirror enhances both the energy resolution for XAS and the 

angular resolution for HRPD. The focal length of all focusing elements is variable.  

The energy spectrum of the ESRF is very hard and thus the rejection of higher-order harmonics is 

an important issue.  

The monochromators use either Si(111) or Si(311) crystals. For the H-branch there are Si and Pt as 

mirror coatings and an angle of incidence of 2.8 mrad. This configuration leads to a calculated total 

flux and harmonic fraction as shown in Fig. 2.6.  

  

Figure 2.6: Calculated flux (left) and harmonic contents (right) of the H-branch assuming a 100 mA beam 

current and an Si(111) monochromator. The two choices for the mirror coating are shown. 

 

It is possible to cover two different energy range with different mirrors; with Pt coating the energy 

range is 11-30 keV, while with Si the usable energy range is 5-11 keV. In addition to the mirrors 

and monochromators, the beamlines have the usual slits equipped with phosphor screens, filters and 

beam-position monitors. The two beamlines can operate independently. 

The monochromators are based on a commercial platform that delivers an accurate and stable 

rotating disc inside a vacuum vessel. The water cooling, in this case, is sufficient for the power load 

from an ESRF bending magnet. The first crystal is placed in the centre of the monochromator. The 

focusing second crystal and its bender are based on an ESRF design.  
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The mirrors are made from Si boules and have a surface area of 1200 * 130 mm. The large width is 

required to have adjacent strips of bare Si and with Pt coating that each accept 2 mrad of radiation. 

The bender uses transducers to convert the displacements of stepper motors into a constant bending 

force (ESRF design). The mirror and bender are mounted onto a heavy granite block that decouples 

the mirror from the vessel. Bellows plus linear translation stages allow a complete alignment of the 

mirror, including the 60 mm sideways translation to put either the Si or Pt coating into the beam. 

The mirror tilt angle is read using a commercial sensor [2].  

The beam size can be tuned from few millimeters down to about 300 x 300 micrometers in standard 

configurations. Post-focusing systems are available in order to achieve a smaller beam size. The 

experimental hutch contains the SAXS camera with a maximal and minimal camera length of 7 and 

1.3 m, respectively. This allows simultaneous SAXS/WAXS measurements with a time resolution 

down to a few msec/frame. 

In this thesis only the SAXS/WAXS equipment was employed. The SAXS/WAXS equipment, that 

is located in the H-hutch, is shown in Fig. 2.7.  

The SAXS/WAXS station has been designed in such a way that it is possible to mount and interface 

relatively large equipment. In fact, it is designed with a maximum of flexibility and it is made up of 

two parts. The first one contains the sample environment and the WAXS detector, while the SAXS 

detector is mounted on the second part. 

The two parts are connected by a vacuum pipe of variable length. Changing of the SAXS camera 

length is very easy because both parts are mounted using an alignment rail that covers the entire 

range (1±7 m) of the camera, while the sample position remains fixed. This is useful when 

complicated sample environments are used. The mounting of the SAXS and WAXS detectors is 

such that they can be used simultaneously and that they can have an overlapping angular range. On 

the sample stage additional equipment can be mounted for sample environment control. 

http://www.esrf.eu/UsersAndScience/Experiments/CRG/BM26/SaxsWaxs/micro-focus-setup
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Figure 2.7: Beamline BM26 at the European Synchrotron Radiation Facility. 

 

To reduce the parasitic scatter which determines the minimum observable scattering angle (and thus 

the maximum distance), three slit sets are used with a total separation of 12 m. Due to the large 

difference in beam divergence and beam size between the horizontal and vertical directions, there is 

a large difference in the resolution along those directions. Using the full beam, the maximum 

observable distances are 100 and 1000 Å along the horizontal and vertical directions, respectively. 

With reduced flux, these values can be improved considerably. As Fig. 2.6 shows, the 

SAXS/WAXS equipment can make use of a wide spectral range.  

As to the SAXS detector, SAXS images are collected using a Pilatus 1M detector (169mm x 

179mm active area). The minimum value attainable with 7m sample-to-detector distance (maximum 

distance used in our experiment) and a photon wavelength of 1.54 Å is about 0.0175 nm
-1

 

(equivalent to a real-space d = 500 nm). 
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3.1 Nanocrystalline Maghemite (γ-Fe2O3) 

ven before the advent of “nanoscale science” and “nanotechnology” as recognized 

fields of science and engineering, small particles, colloids, and high-surface-area 

materials have been critical in applications ranging from catalysis to waste 

management. The high surface-to-volume ratio in nanomaterials makes them 

much more reactive toward their surroundings than bulk materials. When particles are so small such 

perturbed regions are dominant, and the very notions of “phase” and “surface” become murky. 

These structural complexities also make it difficult to compare the results of theory and experiment. 

The scientific community has long realized that control of the complexity of surfaces and interfaces 

at the nanoscale is critical for their function in applications ranging from catalysis of organic 

reactions in zeolite pores [1] to water splitting by transition-metal oxide catalysts [2], to gas sensors 

[3], and to cancer therapy [4].  

In particular, magnetic particles with size in the nanometers scale are now of interest because of 

their many technological applications and unique magnetic properties which differ considerably 

from bulk materials. Magnetic ultrafine particles are applied in ferrofluids, refrigeration systems, 

E 
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etc, and they have potential applications to storage devices, medical imaging and catalysis. The 

interesting magnetic properties of nanostructured materials are due to finite size effects and high 

surface/volume ratio [5, 6], thus making the study of the interrelation between microstructure and 

magnetism very appealing. In this sense, very different magnetic properties have been observed 

with materials having similar grain sizes but produced by different methods [6-8] and, therefore, 

having different microstructures. As a consequence of that, there is a great variety of data in the 

literature about the properties of well-characterized γ-Fe2O3 nanoparticles.  

In particular, because of their promising applications in biomedicine [9, 10], many research 

activities are currently focused in understanding and improving the magnetic properties of iron 

oxide nanoparticles. For magnetic materials, it is well known that saturation magnetization values 

are impacted by the size reduction at the nanometer scale [11]. However, different magnetic 

characteristics are often reported for a same particle size depending on the synthesis procedure 

used. A few studies have already addressed the correlations between the synthesis parameters and 

the magnetic properties of iron oxide particles [12, 13], but correlations with their crystal structure 

and microstructure are still scarce [14-16]. Furthermore, it still remain hard to find a process or 

environment in which iron oxides do not participate. From the surface of Mars to the depths of 

Earth, from old rusting factories to high-tech magnetic recording devices, from pigeon brains to 

drug delivery systems, iron oxides are ubiquitous.  

In this thesis, the nanocrystalline material γ-Fe2O3/PMA (PMA = poly(methylacrylate)) was 

synthesized by the microwave plasma techniques in collaboration with the Karlsruhe University. 

For this study the attention is focused on the complete structural characterization by means of the 

reciprocal and real space analysis of synchrotron radiation XRPD data and via ESR study. 
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3.1.1 Synthesis 

The nanocrystalline powder γ-Fe2O3/PMA was synthesized by the microwave plasma techniques by 

D.V. Szabò and coworkers [5]. The precursor chemicals for the core (Fe(CO)5) and the coating 

(methylacrylic acid (MA), C5H8O2) are injected into a constant flow of oxygen and carrier gas (Ar, 

20% O2). The presence of the coating is necessary to prevent an interaction among the clusters. The 

γ-Fe2O3 core is synthesized in a reaction zone heated by a microwave plasma. The apparatus is 

schematically reported in Fig. 3.1. The methylacrylic acid is applied in a second reaction zone and 

polymerizes on the surface of the ferrite particles.  

 

Figure 3.1: Scheme of the apparatus for the microwave 

plasma. 

 

It should be noted that, for the structural characterizations described below, uncoated maghemite 

nanoparticles were used, to maximize the -Fe2O3 volume.  

3.1.2 Experimental Section 

Five nano-maghemite samples, with size in a range between 2 and 50 nm, were investigated. Two 

of them were commercial samples (from Aldrich and Iolitec), and, as it will be shown below, their 

particle dimension were ~50 nm and ~12 nm, respectively. Three maghemite samples labeled C177,  



68 

 

C178 and C179 were synthesized using the microwave plasma techniques described above, and 

their particle dimensions were of ~2, ~5 nm and ~19 nm, respectively. 

As to the structural investigation, XRPD patterns were collected both at ID22 and at ID15 beamline. 

In addition an ESR study was performed on the maghemite samples in order to investigate their 

magnetic properties.  

Here follows the list of the experiments and of the pertinent experimental conditions related to all 

the samples investigated in this chapter:  

 In the ID22 experiment the samples were investigated at λ = 0.4000 Å covering a wave-

vector Q region up to Qmax ~ 25.7 Å
-1

, at Room Temperature. Measurements lasted about 8 

hours for each sample, at Room Temperature. Kapton capillaries (1.5 or 2.0 mm diameter) 

were used.  

 In the ID15 experiment the samples were investigated at λ = 0.142 covering a wave-vector 

Q region up to Qmax ~ 30 Å
-1

, at four different temperatures (T = 120, 180, 240, 295). 

Measurements lasted about 30 minutes for each temperature. Quartz capillaries (1.5 mm 

diameter) were mounted on a brass pinhole on the goniometer head of the diffractometer. 

The latter span during the acquisitions to increase powder randomization.  

 In the EPR experiment the magnetic properties of C177, C178, Iolitec and Aldrich samples  

have been investigated as a function of T in the 120  T  420 K interval. 

 

As for the diffractometric experiment, data collected at ID22 have been analyzed both in the 

reciprocal and real space while the ones collected at ID15 only PDF real space analysis has been 

performed. In fact, to reach a Qmax suitable for a PDF a short sample-detector distance was used at 

the expense of reciprocal space resolution. 
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As for the diffractometric experiment, it should be noted the huge difference in time for the 

collection of data in the two beamlines. This difference is due to the presence, at ID15, of an image 

plate detector (2D camera) placed perpendicular to the incident beam. In this way, the angular 

resolution can be tuned by acting on the sample to detector distance: by placing the camera far away 

from the sample, the resolution is increased at the expense of the maximum 2θ, that is Qmax, on the 

other hand, by moving the camera close to the sample, at the expense of the angular resolution, data 

up to Qmax ~30 Å
-1

 can be readily recorded in few seconds acquisition times. Unfortunately in this 

case, because of the nanometric dimension of the sample particles, the reached Qmax is lower than 

the usual value obtained at these beamlines and the reduction of Qmax (down to about Qmax ~ 23.5  

Å
-1

) was necessary to increase the signal/noise ratio, and then, to study the data at the same 

conditions. 

3.1.3 Structure 

An accurate structural and microstructural investigation of the above described γ-Fe2O3 samples by 

means of high resolution X-ray powder diffraction was performed at the ID22 beamline at ESRF 

with incident wavelength  = 0.4000(1) Å.  

The structure of γ-Fe2O3 is closely related to the one of magnetite (Fe3O4) which has the inverse 

spinel structure. The last is displayed in Fig. 3.2.  

Fe3O4 belongs the well known AB2X4 spinel structure, that is to the cubic system, space group  

Fd-3m. In this structure X forms the cubic close packed structure; A and B ions occupy 1/8 of the 

tetrahedral interstitial and one half of the octahedral sites respectively.  
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Figure 3.2: Structure of magnetite. Green spheres represent tetrahedral and 

octahedral iron ions while red spheres represent oxygen ions. The connectivity of 

tetrahedron and octahedron is highlighted. 

 

In the structure of the iron oxide ions occupy both A and B positions, so that two non equivalent Fe 

sites are present: in Fe1 site, at 1/8, 1/8, 1/8, iron is in a tetrahedral environment (the A position) 

while in Fe2 site at ½, ½, ½, it is in a octahedral environment (the B position); oxygen ions occupy 

only one non equivalent position at x, x, x, with x ~ ¼ (the X position, hereafter the O1 site). We 

point out that the position in the unit cell for the Fe1, Fe2 and O1 sites described above come from 

our (non-unique) cell origin choice on the inversion center –3m put, on an octahedral vacancy. 

Space group Fd-3m allows an alternative cell origin choice at -43 . In this case Fe1 site is at 0, 0, 0, 

Fe2 is at 5/8, 5/8, 5/8 and O1 is at x, x, x, with x ~ 3/8. For an exhaustive discussion on spinel 

structure, see [17]. 

In the figure above is shown the unit cell of magnetite as well as the coordination polyhedrons of 

iron ions. Tetrahedron and octahedron are connected by corners, while couples of octahedral are 
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joined by edges. No contacts among tetrahedron are allowed in spinel structure. 

The structure of maghemite is strictly related with the one of magnetite but differs from the latter by 

the presence of octahedral iron vacancies. In fact, the formula of maghemite can be rewritten as 

Fe8VFe_octO12, where VFe_oct is a vacancy of octahedral iron. In respect to magnetite, in maghemite 

1/6 of octahedral iron sites are empty. The progressive ordering of iron vacancy causes a symmetry 

decrease, which can be represented by the following group-subgroup relations: 

 

Fd-3m → (F4132) → P4332 → P41212 (c’=3a) 

 

When vacancies form and (partially) order the structure is primitive cubic, P4332 space group; in 

this structure octahedral iron ions occupy two non equivalent sites of 12 and 4 multiplicity, the 

latter is partially empty (occupational factor  0.333) [18, 19]. In the following, we will refer to this 

phase as “disordered maghemite”. XRPD patterns of magnetite and “disordered maghemite” are 

very close to each other but they differ in cell parameter (a=8.397 Å and a=8.346 respectively) and 

for the presence of superstructure peaks in the latter due to the different extinction rules of the 

involved space groups. Four different crystallographic sites exist for oxygen ions [20, 21]. Further 

iron vacancies ordering causes the tripling of the c axis (c~3a,) and a transition to the tetragonal 

P41212 space group [22].  

We will refer to this phase as to “ordered maghemite”. In ordered maghemite there are three 

different fully occupied tetrahedral Fe sites and six different fully occupied octahedral Fe sites. An 

additional octahedral site, which position can be derived following the group subgroup 

relationships, is empty. Oxygen ions are distributed in twelve different crystallographic sites. 

In both maghemite phases connectivity among Fe coordination polyhedron does not change in 

respect to magnetite. Details on the atomic positions in the two maghemite phases are described in 
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the references listed above. In respect to “disordered maghemite” in the pattern of the order phase 

additional superstructure peaks appear. 

3.1.4 Reciprocal Space Analysis 

The experimental patterns of Aldrich (black curve), C179 (pink curve), Iolitec (red curve), C178 

(green curve) and C177(blue curve) samples are shown in Fig. 3.3. From the bottom to the top of 

Fig. 3.3 a progressive increase of the widths of Bragg reflection is observed suggesting a 

progressive decrease of the particle size. The size and strain analysis of the pattern will be shown 

below, using a CeO2 standard sample to settle on the instrumental line profile broadening 

parameters.  

 
Fig. 3.3: XRPD patterns of Aldrich (black curve), C179 (pink curve), Iolitec (red curve), 

C178 (green curve) and C177(blue curve) samples. 
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The average crystallographic structure was determined through Rietveld method varying in the 

refinement the cell parameter and using wherever it was possible one average mean square 

displacement (msd) for each element: one for cations (Fe) and another one for anions (O).  

The ordered maghemite P41212 phase is recognizable only in the Aldrich sample, where 

superstructure peaks typical of this phase are detectable.  

For the other samples (Iolitec, C177, C178 and C179), superstructure peaks were not detected. 

There are two possible reasons: 1) the broadening of the peaks, due to the nanometric size, hides the 

superstructure peaks or 2) the ordered phase did not occur when the particle size becomes too small.  

Fig. 3.4 shows the experimental patterns (black crosses) of Aldrich sample (Fig. 3.4(a)), Iolitec 

sample (Fig. 3.4(b)), C179 (Fig. 3.4(c)) and C178 (Fig. 3.4(d)), and C177 (Fig. 3.4(e)) together 

with their best fits (red curves).  The results of the refinements are reported in Tab. 3.1 

Phase Parameter Aldrich Iolitec C-179 C-178 C-177 

γ-Fe2O3 
(maghemite) 

Space Group P41212 P4332 P4332 P4332 P4332 

a /  Å 8.346(1) 8.3531(3) 8.3597(4) 8.3439(11) 8.3464(44) 

c /  Å 25.0269(1) - - - - 

msd  (Fe) / Å
2
 0.00112(14) 0.00778(9) 0.00447(2) 0.00476(4) 0.00141(5) 

msd  (O) / Å
2
 0.00834(44) 0.1501(2) 0.00834(7) 0.00476(4) 0.00141(5) 

Fraction Fe(8c) 

(tetrahedral) 

- 0.9458(1) 0.9093(5) 0.841(4) 0.8766(5) 

Fraction Fe(12d) 

(octahedral) 

- 0.9523(1) 1 1 1 

Fraction Fe(4b) 

(octahedral) 

- 0.586(3) 0.5163(7) 0.653(7) 0.5818(8) 

% Weight 96(0.1) 100 86.6(3) 87.2(1) 80.8(6) 

Dv / nm (W-H) 54.6(5.0) 11.3(1.0) 16.8(1.8) 3.8(1) 2.3(1) 

(W-H) 0.0022(5) 0.0084(3) 0.0089(5) 0.0084(6) 0.0095(9) 

-Fe2O3 
(hematite) 

Space Group R-3cH - R-3cH R-3cH R-3cH 

% Weight 4(0.4) - 3.8(6) 12.8(7) 19.2(9) 

Fe3O4 
(magnetite) 

Space Group - - Fd-3m - - 

% Weight - - 9.6(5) - - 

G.o.f. R (F
2
) 0.0448 0.0369 0.0463 0.0734 0.0070 

Table 3.1: Rietveld refinement and WH parameters. As to Aldrich sample occupational factors are in line 

with the structure described in section “3.1.3 Structure”: one of the octahedral Fe site is empty while the 

remain sites are fully. 
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Figure 3.4: Rietveld refinements for Aldrich (a), Iolitec (b), C179 (c), C178 (d) and C177 (e) samples. 

Experimental pattern (black crosses), fit (red curves) and differential (blue line) are reported.  

In the insets the high 2 range is highlighted. 

 

a) 

e) 

b) 

d) c) 
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Beside an -Fe2O3 hematite impurity (4% weight fraction/WF), the pattern in Fig. 3.4(a) can be 

fitted using the P41212 space group; attempts to vary the occupational factors of Fe sites in respect 

to the “ordered maghemite” phase described above, did not bring to any improvement of the fit.  

All the other investigated samples have been fitted using the “disordered maghemite” cubic phase 

(space group P4332). See Figures Fig. 3.4(b) - 3.4(e). 

In Fig. 3.5  is shown a small angular range of the patterns pertinent to Aldrich (a) and Iolitec (b) 

samples. The superstructure peaks, related to the iron vacancy ordering and c axis tripling are 

detected only in the Aldrich sample. 

 

 

 

Figure 3.5(a): 2range from 6 to 10 ofAldrich 

sample. The superstructure peak are highlighted 

by the arrows. 

 Figure 3.5(b): 2range from 6 to 10 ofIolitec 

sample. 

 

The patterns in Fig. 3.4(b), relative to Iolitec sample, is single phase; in all the synthesized samples, 

besides the maghemite phase, the presence of hematite is observed: C179 ( 4% WF), C178 ( 13% 

WF) and C177 ( 19% WF). The C179 sample contains also a magnetite impurity ( 10% WF). It 

should be noted that for the synthesized samples (C177, C178, C179) the amount of hematite 

increases by decreasing the particle size (see Tab. 3.2). 

 

 

a) b) 
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 C179 C178 C177 

% of Hematite (R-3cH) 3.8 12.8 19.2 

Particle Size / nm ~19 ~5 ~2 

Table 3.2: Percentage of Hematite as a function of particle size. 

 

During the refinements the occupational factors of iron sites were allowed to vary taking fixed the 

stoichiometry (Fe2O3). In the Iolitec sample a small decrease of both octahedral 12d and tetrahedral 

8c sites are observed while the Fe 4b octahedral site increases its occupational factor. In the 

synthesized samples attempts to vary the occupation of Fe(12d) site do not bring to fit improvement 

while a noticeable decrease of the tetrahedral Fe(8c) site is apparent. However, we must underline 

that the excessive broadening of the reflection peaks for the samples with the smallest particle size 

damps the accuracy of the refinement. As it will be shown in the following section, the PDF 

analysis of the same data will supply more reliable results.   

 

Figure 3.6: C178 pattern: total (black curve), γ-Fe2O3, space group P4332(red curve) 

and hematite, space group R-3cH (blue curve). 
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The size and strain analysis of the samples was carried out using the Williamson-Hall method as 

discussed in section “1.1.2.3 Williamson-Hall Method”. 

Since most of the samples are not single phase, the integral breadth of maghemite peaks was 

evaluated after subtracting the unwanted peaks of other phases from the experimental pattern. 

Let us consider the C178 as an example, shown in Fig. 3.6. The W-H analysis was performed on the 

red curve, that is obtained by subtracting the calculated Hematite phase (blue curve) to the 

experimental pattern (black curve). The Williamson-Hall results are reported in Tab. 3.3. 

Sample Dimension (Dv) /nm Strain (ε) 

Aldrich 54.6(5.0) 0.0022(3) 

Iolitec 11.3(1.0) 0.0084(4) 

C179 16.8(1.8) 0.0089(3) 

C178 3.8(1) 0.0084(6) 

C177 2.3(1) 0.0095(7) 

Table 3.3: Williamson-Hall results for all samples. 

 

In the Fig. 3.7 Williamson-Hall plot of C179 is reported as an example. 

 

Figure 3.7: Williamson-Hall plot of C179. 
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3.1.5 Real Space Analysis 

As to structural analysis, the Rietveld method could be inaccurate in this case due to the excessive 

broadness of the diffraction peaks induced by the nanostructure of the samples. For this reason we 

used the Pair Distribution Function (PDF/G(r)) analysis, performed at ID22 and ID15 beamlines, to 

gain insight into the local structure [23]. Being a Fourier transform of the total scattering function 

S(Q), which contains contribution from both Bragg peaks and diffuse scattering, the PDF(r) probes 

also the local atomic arrangements.  

As to the ID22 measurements, the G(r) functions were processed using the software PDFGetX3 

[24]. We obtained the experimental G(r) curves after background subtraction and multiple and 

Compton scattering correction. Fits were performed by means of the so called Real Space Rietveld 

analysis using the software PDFgui [25]. 

Fig. 3.8 shows the experimental G(r) functions for the five samples considered. The decreasing of 

the particle size is evident in the damping of the G(r) functions, which starts at lower r values 

reducing the particle dimension. 

 

Fig. 3.8: G(r) of Aldrich (black curve) , C179 (pink curve), Iolitec (red curve), C178 

(green curve) and C177(blue curve) samples. 
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Figure 3.9: PDF refinements for Aldrich (a), Iolitec (b), C179 (c), C178 (d) and C177 (e) samples. 

Experimental pattern (black symbols), fit (red curves) and differential (green line) are reported. 

 

  
a) b) 

 
c) 

 
d) 

 
e) 
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In Fig. 3.9 the experimental G(r) functions (black symbols) of Aldrich samples (Fig. 3.9(a)), Iolitec 

samples (Fig. 3.9(b)), C179 (Fig. 3.9(c)), C178 (Fig. 3.9(d)) and C177 (Fig. 3.9(e)) are shown 

together with the best fits (red lines) and residuals (green lines). For the fits we used the same 

structure models (ordered or disordered maghemite, depending on the sample) of the Reciprocal 

Space Rietveld refinement varying the same parameters.   

The average crystallite diameters DV were determined also in the real space, evaluating the damping 

of G(r) oscillations with the interatomic distance r [26]. It should be noted that also the instrumental 

peak broadening produce the damping of G(r) peaks. It is the case, for instance, of the data 

collected at ID15 beamline. However, thanks to the high-Q resolution of the ID22 beamline, the 

instrumental effect is negligible and the particle size can be accurately determined.  

Tab. 3.4 compares the DV values obtained with the PDF refinements and the W-H method. 

Particle size comparison 

Sample Dv / nm

 W – H  PDF  

Aldrich 55(5) 50(4) 

Iolitec 11(1) 13(1) 

C179 17(2) 12(2) 

C178 3.8(1) 5.4(8) 

C177 2.3(1) 2.4(3) 

Table 3.4: Particle size comparison. 

 

As before stated we used the Pair Distribution Function analysis to gain insight into the local 

structure. To this purpose we used the G(r) functions obtained at ID15 at four different temperatures 

(120, 180, 240 and 295 K). Unfortunately, we cannot compare the C179 sample to the other ones 
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because of the presence of magnetite in this specimen; the close correlation between magnetite and 

maghemite structures make difficult to discern the contributions of the two phases in the G(r) peaks. 

In Fig. 3.10 are shown the experimental G(r) functions for Aldrich (a), Iolitec (b), C178 (c) and 

C177 (d) samples collected at the above listed temperatures. The G(r) peaks seem to have scarce 

dependence on T: only small broadening is apparent by increasing temperature.  

 

  

  

Figure 3.10: G(r) functions of Aldrich (a), Iolitec (b), C178 (C) and C177 (d) samples at 120K (black 

curves), 180 K (blue curves), 240 K (red curves) and 295 K (green curves). 

 

In Fig. 3.11(a) is shown the short range G(r) functions at 120 K for Aldrich (green curve,  DV  50 

nm),  Iolitec (red curve, DV  15 nm), C178 (blue curve, DV  5 nm) and C177 (black curve, DV  2 

nm) samples. The intensity of the peak at  2 Å, which corresponds to the shortest Fe-O distances, 
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is almost equal for all the samples. As expected, by increasing the interatomic distances, the 

amplitude of the G(r) peaks decreases more rapidly for samples with the smallest crystallite 

dimensions. However, this effect is not “monotonic”. In Fig. 3.11(b) and 3.11(c) are shown as 

examples, two small portions of the experimental G(r) functions.  

 

 

Figure 3.11: G(r) functions of Aldrich sample (black curve), Iolitec 

sample (red curve), the C178 (green curve) and the C177 (blue curve). 

 

The amplitude of the peaks at  3 Å shown in Fig. 3.11(b) does not change much by changing DV, 

while the one pertinent to peaks at  3.5 Å decreases steeply for samples C178 and C177. At the 

same time, the peaks width seems to increase. In Fig. 3.11(c) we can note that the peak amplitude is 
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proportional to crystallite dimension for peaks at  5.1, 5.4 and 5.9 Å while the opposite stands at 

6.2 Å. Even in this r range the peak width seems to increase by decreasing DV.   

To fully understand the findings described above it is useful to break the total G(r) function into the 

so called partial G(r)s which are the contribution of the different atomic couples to the total G(r). In 

particular, in Fig. 3.12(a) are shown the calculated partial and total functions for magnetite. Fe1 and 

Fe2 in the legend are tetrahedral and octahedral iron ions respectively. In Fig. 3.12(b) are shown the 

same functions for disordered maghemite. The latter case is more complex as a consequence of the 

symmetry decrease which in turn causes the split of octahedral iron site into two non equivalent 

ones. In the following we will discuss the contribution of tetrahedral (hereafter Fe1) and octahedral 

(hereafter Fe2) iron ions to the different G(r) peaks, which are easily recognizable in Fig. 3.12(a). 

However, we have to take in mind that this is a simplification in respect to the more complex 

structure of maghemite described in the right hand side of the same figure. 

 

  

Figure 3.12: Partial PDFs of magnetite phase, space group  Fd-3m (a), and maghemite phase, space group 

P4332 (b). 

 

Let us focus on the 2.5  r  4.0 Å of Fig. 3.11(b). The peak at  3 Å is due to Fe2-Fe2 and O-O 

contributions, while the one at  3.5 Å contains also contribution of Fe1 ions.  

a) b) 
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We performed the so called direct analysis of all the G(r) functions shown in Fig. 3.11 in the  

2.5  r  4.0 Å range, fitting each of the two peaks using a Gaussian function. In Fig. 3.13 are 

reported the Full Width at Half Maximum (FWHM) for the peaks at  3.0 Å (left) and  3.5 Å (right).  

  

Figure 3.13: FWHM values of the peaks at  3.0 Å (left) and  3.5 Å (right) for Aldrich (black circles), 

Iolitec (red squares), C178 (green diamonds) and C177 (blue triangles) samples. 

 

FWHM values increase smoothly by increasing temperature as a consequence of thermal vibration. 

This is consistent with the small broadening of G(r) peaks above noted. More interestingly, taking 

fixed T, FWHM increases by decreasing DV (see Fig. 3.14, for T=120 K). 

  

Figure 3.14: FWHM values of the peaks at  3.0 Å (left) and  3.5 Å (right) at 120 K as a function of 

crystallite dimension. 

 



85 

 

This effect is small for the peak at  3.0 Å (3-4%) but is about 30% for the one at  3.5 Å if we 

compare the Aldrich and C177 samples. Since at fixed T the vibrational contribution atomic mean 

square displacement should be similar for all the samples, this suggests that “static disorder” exist in 

the smallest nanoparticles, especially when distances involving Fe1 ions are considered. Moreover, 

the intensity of the peak at  3.5 Å decreases by decreasing DV.  

The data at 120 K have been analyzed using the so called Real Space Rietveld method. 

Experimental G(r) functions have been fitted in the 1.7  r  10 Å interval against structural model 

of “disordered maghemite” [18]. The results of the fit are shown in Fig. 3.15(a) (Aldrich sample), 

Fig. 3.15(b) (Iolitec), Fig. 3.15(c) and Fig. 3.15(d) (C178) and Fig. 3.15(e) and Fig. 3.15(f) (C177).  

The structural model fits well the experimental G(r) functions for Aldrich and Iolitec samples while 

a poorer accord is obtained for C178 and C177 samples.  

In a succeeding refinement the occupational factor (o.f.) of tetrahedral and of partially occupied 

octahedral sites have been varied taking fixed the Fe2O3 stoichiometry. While for Aldrich and 

Iolitec samples the o.f. of tetragonal iron site remained unaffected, the same o.f. decreased to  0.91 

and  0.82 for C178 and C177 sample respectively, bringing also to an improvement of the fit 

quality.  

 

 

 

Figure 3.15(a): PDF fit of Aldrich sample using 

the occupational parameters from [18]. 
 Figure 3.15(b): PDF fit of Iolitec sample using the 

occupational parameters from [18]. 

 

a) b) Rw = 0.105 Rw = 0.094 
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Figure 3.15(c): PDF fit of C178 sample using the 

occupational parameters from [18]. 
 Figure 3.15(d): PDF fit of C178 sample varying 

the parameters related to the tetrahedral/octahedral 

Fe occupation. 

 

 

 

 

Figure 3.15(e): PDF fit of C177 sample using the 

occupational parameters from [18]. 
 Figure 3.15(f): PDF fit of C177 sample varying 

the parameters related to the tetrahedral/octahedral 

Fe occupation. 

 

Fig. 3.15(d) and Fig. 3.15(f) report the fits for the two samples. It should be noted that attempts to 

vary the o.f. of the fully occupied octahedral iron site did not bring to any fit improvement. 

Thus, combining the reciprocal space and real space results we can note that the main effect of 

nano-structuring on the structure of -Fe2O3 is the progressive  disordering of iron vacancies.  

In particular, the Aldrich sample (50 nm) retains the tetragonal “ordered maghemite” structure; 

decreasing DV to 12 nm (Iolitec sample) the cubic “disordered maghemite” structure emerges, with 

c) d) 

e) f) Rw = 0.228 Rw = 0.197 

Rw = 0.110 Rw = 0.101 
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one partially and randomly occupied octahedral iron site; in the C178 (5.4 nm) and C177 (2.4 nm) 

samples, iron vacancies are shared by both octahedral and tetrahedral iron sites and the o.f. of the 

latter decreases by decreasing DV.   

3.1.6 ESR Analysis 

In the ESR analysis only three sample were investigated: Aldrich, C178 and C177 sample. 

The ESR spectra of Aldrich sample was formed of a broad band with a profile changing with 

temperature (Fig. 3.16).  

 

 

 

Figure 3.16(a): EPR spectra of Aldrich sample in 

warming. 

 Figure 3.15(b): EPR spectra of Aldrich sample 

in cooling. 

 

The left part of this pattern was shifting toward lower magnetic field values with decreasing 

temperature in the range 120 K < T < 300 K. This can be attributed to the fact that at lower 

temperature the anisotropy field Ha affects more markedly the resonance field profile, while at 

higher temperature Ha is almost completely cancelled by the thermal fluctuations [27].  

Both left and right part of the spectrum were shifting toward the central field at higher temperatures, 

suggesting that also spin exchange phenomena were becoming active, causing a symmetric 

narrowing of the spectral profile. However, the whole ESR pattern seems composed of many 

different contributions, so that a more detailed interpretation seems very difficult with this sample. 

a) b) 
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A more clear situation was noticed with C178 (Fig. 3.17) and C177 (Fig. 3.18) superparamagnetic 

samples. Indeed, their ESR pattern is composed of a single nearly Lorentzian-shaped line 

broadening with decreasing temperature.  

 

 

 

Figure 3.17(a): ESR spectrum of C178 sample in 

warming. 

 Figure 3.17(b): ESR spectrum of C178 sample 

in cooling. 

 

 

 

 

Figure 3.18(a): ESR spectrum of C177 sample in 

warming. 

 Figure 3.18(b): ESR spectrum of C177 sample 

in cooling. 

 

Similar situations were reported in [28] with superparamagnetic particles with diameters ranging 

between 16 and 23 nm, i.e. by far larger than those here examined. A model was there proposed 

assuming that at enough high temperature the anisotropy energy of those samples was much smaller 

than kT, so that the thermal motion was able to wash out the anisotropic internal field Ha.  However, 

a deeper analysis of the spectra here reported in the Fig. 3.17 and 3.18 indicates that, with 

a) b) 

a) b) 
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decreasing temperature, in the low temperature range the line broadening is essentially attributable 

to a shift toward lower fields of the left part of the spectrum. This effect is more accentuated with 

the smaller (C177) particles than with the larger (C178) ones. By contrast, at higher temperature 

both the spectral lobes merge toward the central field with increasing temperature. This suggests 

that two different phenomena cause the ESR line narrowing with increasing temperature also with 

these two samples, as already above suggested for the larger Aldrich sample. 

Indeed, the shift at low temperature of the left spectral portion can be mainly attributed to the fact 

that the anisotropy field Ha is not completely washed out and that it becomes increasingly more 

effective at lower temperature [27], whereas at higher temperature it would be almost completely 

cancelled by the thermal fluctuations. By contrast, at higher temperature the exchange phenomena 

would become more active, causing a line narrowing.  

By keeping in mind these considerations, we report in Fig. 3.19 the plot of the ESR line width of 

these two samples as a function of the detection temperature. 

 

Figure 3.19: Peak to peak line width (DHpp) of C177 (full circles) and 

C178 (empty circles). 
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We have tried to apply here the model adopted in [28], by plotting the peak-to-peak ESR line width 

of these two samples as a function of 1000/T (K
-1

). However we obtained reliable results for the 

5nm particles only, C178 sample. In this case, the best-fitting straight line ΔH = α + β/T was 

characterized by the parameters α = 0.01828 (Tesla) and β = 12.408 (Tesla K). Conversely, for 

C177 sample, α = -0.06448 (Tesla) and β = 32.449 (Tesla K). 

The following equation has been also proposed in [28]: 

   
 

  
         Eq. 3.1 

where V is the volume of the particles and 

   
      
      

         Eq. 3.2 

with H0 = spectral central field ≅ 0.33 tesla, μ0 = 4π*10
-7

 (tesla m s C
-1

), kB = 1.3806488*10
-23

(JK
-1

) 

and MS is the saturation magnetization equal to 35 Gg
-1

 detected on the same sample by 

magnetization measurements [29].  

In the case of C178 sample, the calculated nanoparticle diameter on the basis of equations (1) and 

(2) is very close to the experimental one (5 nm) while in the case of C177 a negative meaningless 

volume of the nanoparticle would be obtained due to the negative value of . This indicates that the 

model reported in [28] is adequate for the former sample, but no more for the latter. The larger line 

broadening occurring with the DV  2 nm sample at low temperature indicates the presence of a new 

contribution to its internal magnetic field, which was negligible with the DV  5 nm sample. 

On the other hand, the internal anisotropic magnetic field is given by [27, 30] 

    
  

  
         Eq. 3.3 
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where the anisotropy constant K is given by [31] 

      
   
 

         Eq. 3.4 

in which KC is the "core" anisotropy constant and KS is the "surface" anisotropy constant. The 

surface contribution has a negligible effect on Ha with large enough particles, as here with those 

with DV  5 nm, but it can increase the Ha anisotropic field even of a pair of order of magnitude 

when the particles are very small, as the DV  2 nm particles here investigated [31].  

In the latter case, the thermal energy kT becomes inadequate to overcome completely the anisotropy 

energy so that the ESR line is not Lorentzian-shaped and its first derivative has a broader left lobe, 

as above reported.  

As reported above, the most important structural effect of size reduction is the progressive increase 

of tetrahedral iron vacancies concentration. At the same time, ESR measurements show that the 

surface anisotropy constant becomes more and more important.  

We suggest that iron tetrahedral vacancies lay mainly on the surface and that the variations in 

exchange phenomena related to defects formation cause the different magnetic behavior of C177 

and C178 samples. Further investigations are necessary to shed light on this subject. 
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3.2 (MP-NHs) Magneto-Plasmonic 

Nano-Heterostructures 

anocrystals (NCs, i.e. below 100 nm) are at the current forefront of 

nanoscience, serving both as model systems for authenticating the basic laws of 

nanoscale solids and as key elements for realizing innovative devices, 

fabricating mesoscopic materials, and achieving outstanding functional 

properties. NCs exhibit order-of-magnitude enhanced and even unprecedented properties, not 

otherwise observable for their bulk counterparts, which systematically depend on their composition, 

size, and shape. Well known examples include general alterations in thermodynamic (e.g., melting 

point decrease, structural metastability) and catalytic properties due to the dominance of surface 

states, as well as significant changes in electronic band structure for semiconductors (e.g., 

alterations in band-gap width and energy level spacing at the band-edge) and noble metals (e.g., the 

emergence of intense surface plasmon oscillations) due charge carrier confinement. Current 

research on NCs is now being oriented towards development of "smarter" multifunctional 

N 
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nanostructures able to perform several tasks simultaneously, on one side, and to exhibit abnormal 

properties with switchable behavior, on the other side [1-3].  

During the last decade, researchers have begun to explore heterostructured nanoparticles by 

integrating multiple nanoparticle components assembling into a single nanoparticle (NP) (into a 

single nanosystem) [4-8]. Within this class of materials metal oxide magnetic nanoparticles are 

particularly intriguing as exhibit magneto-optical response and spectra that critically depend on the 

complex chemical and structural properties. On the other hand metallic nanoparticles can present a 

weak enhanced magneto-optical response in the UV-Vis due to plasmonic excitations.  

For this reason development of a novel concept of advanced nanostructured material is based on a 

proper combination of magneto-optically active and plasmonic inorganic components tailored at the 

nanoscale. This approach will deliver a new class of multifunctional magneto-plasmonic nano-

heterostructures (MP-NHs) whose the properties can be controlled in more than one way, an 

opportunity prohibited to conventional single-component nanomaterials. Double-components 

system received much attention because of the improve properties in respect to single constituents 

[8-10]. In fact, traditional "nanocomposite" systems obtained by combining two or more different 

nanoparticles via bridging molecules or embedding organic/inorganic matrices often suffer from 

poor stability, degradation of the native responses of the components, and irreproducible 

performances. For this reason an alternative approach to smart nanomaterials concerns creation of 

multi-component NC-based heterostructures, in which two or more domains of different inorganic 

materials are permanently interconnected through direct epitaxial interfaces in controlled three-

dimensional spatial arrangements. In particular many efforts have been spent in the design of 

magneto-plasmonic nano-heterostructure, made of plasmonic metals and magnetic materials, 

because they have unique properties which are expected to arise from interactions between the 

electromagnetic field associated with the plasmon resonance of the noble metal component and the 
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spontaneous magnetic polarization of the magnetic component involved. None of such unusual 

effects could be otherwise accessed with any of the single components alone or their physical 

mixture counterparts [10,11]. In nanostructures made of noble metals, especially Au and Ag, 

intense localized surface plasmon resonance leads to peculiar optical properties such as size-,  

shape-, and medium- dependent enhanced light absorption. Moreover, their magneto-optical (MO) 

properties seem to depend on size, shape and connectivity of the nano-heterostructures (NHs). 

Magnetic transition metals, such as Fe, Ni, and Co, also exhibit plasmonic as well as magneto-

optical effects, but in such materials the plasmon resonance is damped due to their large optical 

absorption coefficients and its influence on the MO phenomena are typically negligible. Suitable 

combinations of transition metals or transition metal compounds and noble metals can be expected 

to enhance the MO effects due to the strong electro-magnetic field localization that arises from the 

surface plasmon excitation in the noble metal. Development of magneto-plasmonic nano-

heterostructures (MP-NHs) in which plasmonic metals and magnetic materials are epitaxially 

coupled has been to date restricted to a small selection of material combinations and topologies. For 

this reason the systems reported in this thesis are composed by iron oxides (magnetite, Fe3O4), 

whose magnetic properties are well known, for the magnetic part and Au, which shows surface 

plasmon phenomena and optical activity, for the plasmonic counterpart [12]. Examples include 

mainly core@shell systems of Au@Fe3O4 [7,13-15] and fewer prototypes of heterodimers made of 

Au-Fe3O4 [13,14], in which nearly spherical material sections share small interfacial junctions. The 

interplay of magneto-optical and plasmonic activities is ultimately expected to pave the way to 

novel applications in several fields, and in particular, the coexistence of Au and Fe3O4 nanoparticles 

allows simultaneous use of MP-NHs for optical imaging, MRI, biomedical applications, potential 

contrast agents, high density magnetic recording, controlled drug delivery, biological targeting or 

separation, catalysis and others [5,16,17]. 
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Despite the intense experimental effort to produce nanocomposites with tailored physical properties, 

surprisingly, there are few works with an extended structural characterization of this system which 

allows to observe structural deviations in these nano-heterostructures in respect to single 

components and bulk materials. In most research papers on these systems only diffraction data from 

home diffractometers are supplied which often don’t hallow to discern even the correct iron oxide 

phase without ambiguity, because of the close relationships between the structure of magnetite 

(Fe3O4) and maghemite (-Fe2O3) phases [18]. 

We have started a complete structural characterization of MP-NHs, because, in our opinion, it is 

fundamental to interpret correctly the physical properties of these nanocomposites, in particular the 

differences in respect to the separated bulk/nano-phase [19]. To reach this goal, high resolution 

synchrotron radiation X-Ray Powder Diffraction (SR-XRPD), Small Angle X-Ray Scattering 

(SAXS). Electron Spin Resonance (ESR) spectroscopy has supplied important complementary 

information.  

In this thesis we will present two different investigations: 

i) the microstructure of nanocomposites during Fe3O4 shell/dimer formation has been studied by 

means of SAXS measurement and ESR spectroscopy 

ii) the structure of core@shell (hereafter CS) and heterodimer (hereafter HD) Fe3O4-Au MP-NHs as 

well as of the Au seeds used to produce them has been investigated by means of XRPD. Data were 

analyzed both in the reciprocal space and real space exploiting both the Rietveld and Pair 

Distribution Function (PDF) methods which supply complementary information on the structure 

and microstructure of these materials. 
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3.2.1 Synthesis 

The synthetic strategy provides a scheme of "growth for insemination" two-stage, which consists in 

heating a mixture of a solvent (octadecene), appropriate surfactants (oleyl amine, oleic acid), 

calibrated amounts of Fe(CO)5, and preformed nanocrystals of Au (synthesized by reduction of 

HAuCl4 in oleyl amine at 100-150 °C) with the function of seeds of nucleation. The technique 

realizes the selective deposition of FexOy on Au seeds following the pyrolysis of complexes based 

oleate iron, which are generated by heating the above mixture at temperatures of 270-320 °C [13]. 

3.2.2 Experimental Section 

All XRPD patterns were recorded at the ID22 and BM26B beamlines of the ESRF as reported 

below. The ID22 measurements were collected to obtain Rietveld and PDF data and they are 

performed both at room temperature. The SAXS experiment, instead, was performed at the BM26B 

beamline to study size and shape of the particles and to understand the mechanism of formation of 

the nano hetero-structures.  

We recall here that a PDF data collection at ID22 is performed by summing different scans, 

recording for much longer times the intensity at high angle to increase statistic significance. 

Conversely, to get reliable data for Rietveld analysis one scan is usually enough. A PDF data 

collection thus involves also the recording of high quality data for reciprocal space analysis. During 

each experiment, the empty capillary and the contribution of the air in the empty set up were 

measured in the same Q range in order to properly subtract the background for PDF analysis.  

Here follows the list of the experimental conditions related to all the samples investigated in this 

chapter. 
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The Qmax reported below correspond to the highest 2θ value recorded. The actual Qmax employed for 

processing PDF was reduced to Qmax = 25 Å
-1

 to increase the signal to noise ratio. 

 In the diffraction experiment (Rietveld and PDF) the samples were investigated at  

λ = 0.3542 Å in the angular range 0< 2θ <110°, covering a wave-vector Q region up to  

Qmax ~ 29.4 Å
-1

, at Room Temperature. Measurements lasted about 8 hours for each sample. 

Kapton capillaries (0.7 mm diameter) were used.  

 In the SAXS experiment the samples were analyzed with two different setups to investigate 

two different parts of the pattern. All the measurements were performed at room temperature 

and they lasted few minutes for every pattern. Glass capillaries (2.0 mm diameters) were 

used. 

 In the ESR experiment the magnetic properties have been investigated. The measurements 

were performed on the samples as a function of time and temperature. 

 

In the first experiment we measured three samples: a core@shell sample (hereafter CS), where the 

core is the noble metal Gold and the shell, the magnetic counterpart, is iron oxide in magnetite 

phase (Fe3O4); an heterodimer sample (hereafter HD), where gold and magnetite are shared in a 

small interfacial junctions; and a nanometric gold sample, the same gold used in the hetero system 

core@shell and heterodimer. 

As to the BM26B measurements two series of samples were prepared starting from the same 

synthesis route described before, used for the previous samples, but, in this case, some aliquots have 

been extracted at different time during the synthesis and quenched to room temperature to stop the 

reaction.  

The aliquots are listed in Tab. 3.5 together with the sample taking times and temperatures. The 

same series of samples were studied by means of ESR. 
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N° Aliquot Time Temp.  Structure  N° Aliquot Time Temp. Structure 

Aliquot 0 0 120°C Seeds  Aliquot 0 0 120°C Seeds 

Aliquot 1  2’ 150°C Seeds  Aliquot 1  n. a. 150°C Seeds 

Aliquot 2 4’14’’ 190°C Seeds  Aliquot 2 3’13’’ 180°C Seeds 

Aliquot 3 n. a. 240°C Seeds  Aliquot 3 4’20’’ 200°C Seeds 

Aliquot 4 7’ 280°C Seeds  Aliquot 4 n. a. 240°C Seeds 

Aliquot 5 9’40’’ 293°C Seeds  Aliquot 5 5’13’’ 260°C Seeds 

Aliquot 6 13’ 300°C Seeds  Aliquot 6 6’15’’ 280°C Seeds 

Aliquot 7 17’ 300°C Seeds  Aliquot 7 7’16’’ 300°C Seeds 

Aliquot 8 25’ 300°C Seeds  Aliquot 8 10’25’’ 300°C Seeds 

Aliquot 9 30’ 300°C HD  Aliquot 9 17’26’’ 300°C CS 

Aliquot 10 35’ 300°C HD  Aliquot 10 25’40’’ 300°C CS 

Aliquot 11 40’ 300°C HD  Aliquot 11 33’30’’ 300°C CS 

Aliquot 12 45’ 300°C HD  Aliquot 12 49’40’ 300°C CS 

Aliquot 13 54’ 300°C HD      

Table 3.5: Synthesis steps for series 1 (on the left) and Series 2 (on the right). 

 

3.2.3 Study of Nanoparticles Synthesis 

3.2.3.1 SAXS Experiment 

As reported above, aliquots of reaction suspension have been extracted at different times during the 

synthesis and quenched to room temperature to stop the reaction. Sample taking times and pertinent 

temperatures for all the aliquots are listed in Tab. 3.5. 

Fig. 3.20 shows TEM images performed on selected samples. We chose an aliquot before and an 

aliquot after the heterostructure formation, as examples. In Fig. 3.20 only two TEM images per 

series is shown: aliquots 2 and 13 (Fig. 3.20(a) and (c)) and aliquots 1 and 10 (Fig. 3.20(b) and (d)) 
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for HD and CS series, respectively. As shown by TEM images we can define series 1 and series 2 

as formed by heterodimer (hereafter HD series) and core@shell (hereafter CS series) structure, 

respectively. 

 

 

 

Figure 3.20(a): TEM image of aliquot 2 (gold 

seeds) of HD series. 

 Figure 3.20(b): TEM image of aliquot 1 (gold 

seeds) of CS series. 

   

 

 

 

Figure 3.20(c): TEM image of aliquot 13 (HD) of 

HD series. 

 Figure 3.20(d): TEM image of aliquot 10 (CS) of 

CS series. 

 

Being our SAXS experiment performed on different steps of the synthesis, it is possible to observe 

the evolution of the samples, during the reaction, from single gold seed to heterostructures plotting  

I *Q
2 

as a function of Q. 

In Fig. 3.21 aliquot 13 in HD series is reported, as an example, to show the different parts of the 

patterns related to the different features of the samples. 
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Figure 3.21: plot I* Q
2 
Vs. Q. 

 

The position of the most intense peak at Q  0.5 ( a) zone in Fig. 3.21) gives us an evaluation of the 

particle size (the bigger is the Q value the smaller is the particle size) and of particle size trend 

versus time; the presence and the higher angle intensity oscillations at Q  1.2 (b) zone in Fig. 3.21) 

is an indication of heterostructure formation. 

In Fig. 3.22, the aliquots with the presence of heterostructures in HD series (Fig. 3.22(a)) and CS 

series (Fig. 3.22(b)) are reported. 

 

 

 

Figure 3.22(a): Evolution of HD series. Data 

were scaled to show the synthesis in progressive 

order. 

 Figure 3.22(b): Evolution of CS series. Data 

were scaled to show the synthesis in progressive 

order. 

b) a) 
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In Fig. 3.22(a) the increase of the particle size from aliquot 9 to 11 is evident, while there is a little 

decrease in the last two steps. Conversely, in Fig. 3.22(b) from aliquot 9 to 12 we have a 

progressive increase of particle dimension according to the previous analysis (see above). As for the 

heterostructure formation the presence of satellite peaks is clear in the aliquot 13 in HD series and 

in aliquot 10, 11 and 12 in CS series, suggesting how the complete formation of nanocomposites 

involves only the last steps of the synthesis and it is more evident in core@shell samples. 

The different behavior detected above should be strictly related to the different sample typologies. 

In the heterodimer case, by increasing time, the form of the particle does not change, while the 

number of constituted heterodimer increases. Conversely in the core@shell series, there is an 

increase of the Fe3O4 shell dimension with time up to the complete formation of the nanocomposite. 

Fig. 3.23 shows some particulars of TEM images of aliquots 10 of CS series where some 

core@shell heterostructures present an incomplete shell. 

   

Figure 3.23: Incomplete Fe3O4 shell formation in the aliquot 10 in CS series.  

 

For each series we selected three aliquots, one for gold seeds and two for heterostructures to 

perform SAXS analysis. 

We selected in HD series (Fig. 3.24(a)) aliquots 2, 11 and 13, while in HD series (Fig. 3.24(b)) we 

selected aliquots 1, 10 and 12. 

The pertinent SAXS patterns are shown in Fig. 3.24. 
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Figure 3.24(a): SAXS patterns for HD series: 

aliquot 2 (black curve), aliquot 11 (red curve) and 

aliquot 13 (blue curve). 

 Figure 3.24(b): SAXS patterns for CS series: 

aliquot 1 (black curve), aliquot 10 (red curve) and 

aliquot 12 (blue curve). 

 

There is a clear difference between the scattering produced by the Au seeds and the one produced 

by the heterostructures. The Au seed scattering curves from the two different series are very similar 

and show a distinct feature in log-log plots around Q = 0.7-0.8 nm
-1

. This feature is due to both the 

form and structure factor of the Au spherical seed objects of dimension ~ 4.4 nm. On the contrary, 

the scattering curves from aliquots taken at larger reaction times show an increased intensity at low 

Q values, indicating scattering from objects with larger volume. The flat portion at low angles 

indicates that the structure factor contribution is negligible (no spatial interaction between 

particles). Moreover, the oscillations in the middle angle range denote that the system has limited 

polydispersity. 

3.2.3.1.1 Guinier Analysis 

In order to obtain an evaluation of the total particle diameter (Dv) we performed the Guinier 

analysis in the region (Rg* Q < 1) according to the equation 1.41, where Rg is the gyration radius.  
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Rg* Q < 1 defines the maximum Q value below which the Guinier law is valid. For a spherical 

object, the mean radius (R) of the particle is: 

  
   

 

 
    Eq. 3.6 

To perform the Guinier analysis a flat Q region is needed; for this reason only few samples can be 

investigated with this method in particular aliquots 11, 12 and 13 for HD series and aliquots 10, 11 

and 12 for CS series. 

  

 

Figure 3.25: Guinier plots for HD series: a) aliquot 11, b) aliquot 12, c) aliquot 13.  

 

In Fig. 3.25 Guinier plots for the first series are reported, while in Tab. 3.2 the results are shown. 

a) b) 

c) 
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 DV total 

Aliquot 11 14.20(4) nm 

Aliquot 12 14.28(3) nm 

Aliquot 13 13.76(2) nm 

Table 3.6: Guinier results: mean diameters DV 

are reported. 

 

Probably the obtained values for the HD series are underestimate because of the sphere 

approximation. In HD series, the heterodimer samples have not a spherical shape and the obtained 

gyration radius Rg is not exact. In Fig. 3.26 Guinier plots for the second series are reported. 

  

 

Figure 3.26: Guinier plots for CS series: a) aliquot 10, b) aliquot 11, c) aliquot 12.  

a) b) 

c) 
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In Tab. 3.7 the Guinier analysis results of CS series are shown. 

 DV total 

Aliquot 11 18.42(4) nm 

Aliquot 12 21.21(5) nm 

Aliquot 13 23.04(5) nm 

Table 3.7: Guinier results: mean diameters DV 

are reported. 

 

The second series, related to core@shell sample, shows an increasing trend with regard to the mean 

diameter of the particle, with a value about 20 nm. 

3.2.3.1.2 Modeling 

Modeling starts with the aliquots with only gold seeds to find a gold radius value to keep fixed for 

the other refinements. 

In Fig. 3.27 we show the fits for the aliquot 2 in HD series (Fig. 3.27(a)) and for the aliquot 1 in CS 

series (Fig. 3.27(b)). 

Due to the presence of two minima in the SAXS pattern for the first sample (Fig. 3.27(a)), two 

different populations of spheres are necessary in the refinement. Conversely, the presence of only 

one minimum in the SAXS pattern of the (Fig. 3.27(b)) indicates a monodispersion of gold seeds 

and a model with only one population of spheres allows to obtain a good refinement. For both 

samples we observed a gold radius about 4.4 nm, and this value was fixed for the other fits in order 

to obtain the iron oxide radius values. In HD series, since the presence of two populations of gold 
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seeds, the 4.4 value is related to the biggest one, but for the second population the gold radius value 

is about 4, very similar to 4.4 nm. 

 

 

 

Figure 3.27(a): Aliquot 2, HD series. Raw data 

(black line), fit (red line), sphere1 (green line), 

sphere2 (yellow line) and background (blue line). 

 Figure 3.27(b): Aliquot 1, CS series. Raw data 

(black line), fit (red line), sphere 1 (green line) and 

background (blue line). 

 

Then the refinements were performed on the heterostructures applying two different strategies and 

two different models to fit data of aliquots 11 and 13 for HD series and aliquots 10 and 12 for CS 

series. 

As for the strategies, we fitted our data using both a monodispersed system (DBS – double shell 

system not interacting or interacting) and a polydispersed one (DBC – interacting or polydispersed 

core double shell), implemented in [20]. In both cases we kept fix the gold radius to the value 

obtained by the seeds (~ 4.4 nm). 

In Tab. 3.8 iron oxide radius values for all the samples are reported and Fig. 3.28 shows their 

experimental data with their best fits. 
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HD series Aliquot 11 Aliquot 13  CS series Aliquot 10 Aliquot 12 

Fe3O4 radius in 

monodispersed 

system 

5.7(1) nm 5.7(6) nm Fe3O4 radius in 

monodispersed 

system 

5.6(6) nm 6.6(2) nm 

Fe3O4 radius in 

polydispersed 

system 

4.4(1) nm 5.0(3) nm Fe3O4 radius in 

polydispersed 

system 

7.5(4) nm 7.7(5) nm 

Table 3.8: Fe3O4 radius for monodispersed and polydispersed systems. 

 

 

 

 

Figure 3.28(a): HD series, aliquot 11 in 

monodispersed system. 
 Figure 3.28(b): HD series, aliquot 11 in 

polydispersed system. 

   

 

 

 

Figure 3.28(c): HD series, aliquot 13 in 

monodispersed system. 
 Figure 3.28(d): HD series, aliquot 13 in 

polydispersed system. 

   

b) a) 

d) c) 
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Figure 3.28(e): CS series, aliquot 10 in 

monodispersed system. 
 Figure 3.28(f): CS series, aliquot 10 in 

polydispersed system. 

 

 

  

 

 

 

Figure 3.28(g): CS series, aliquot 12 in 

monodispersed system. 
 Figure 3.28(h): CS series, aliquot 12 in 

polydispersed system. 

 

 

As for models, we used: i) two spheres model with two different spheres in contact (Fig. 3.29(a)) 

and ii) a core@shell model (Fig. 3.29(b)). As in the SAXS experiment we record the intensity 

averaged over all the possible orientation of the particles, it is possible to use of the core@shell 

model also for the heterodimer sample, as a first approximation.  

 

f) e) 

h) g) 
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Figure 3.29(a): two spheres model.  Figure 3.29(b): core@shell model. 

 

Fig. 3.30 shows the fits obtained using the monodispersed approach, the best strategy, for both 

models (core@shell and two spheres) for the aliquot 13 of HD series. Both models are able to 

describe the cluster structure with good accuracy. In this case, the core@shell model works better as 

expected.  

 

Figure 3.30: monodispersed system comparison for the two models.  

 

However, the structural parameters calculated using the two models are quite similar and they are 

shown in Tab. 3.9. 

HD series, 

Aliquot 13 

Fe3O4 

radius 

Au radius  HD series, 

Aliquot 11 

Fe3O4 

radius 

Au radius 

core@shell 

model 

5.7(6) nm 5.0(3) nm core@shell 

model 

5.7(1) nm 4.4(2) nm 

two spheres 

model 

5.0(2) nm 4.1(3) nm two spheres 

model 

6.1(3) nm 4.1(4) nm 

Table 3.9: Fe3O4 radius for monodispersed and polydispersed systems in core@shell and two spheres 

model. 

Au Fe3O4 

Fe3O4 

 Au Fe3O4 
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3.2.3.2 ESR Analysis 

In Fig. 3.31 the ESR spectrum of the HD sample is shown.  

 

Figure 3.31: ESR spectra of HD series. X, Y and Z are related to the different 

features of ESR signal. 

 

The spectrum is composed of three components. The most intense A and B features are 

characterized by nearly the same g  2 value but they have different spectral profile, the former 

being by far broader and more intense than the latter. The line C has a very low intensity and is 

detected at half the magnetic resonance field of the previous two features. The A line seems the 

most sensitive to the sample preparation time, as its intensity increases with it more markedly than 

the intensity of the other lines. Moreover, the A left peak moves towards higher field values with 

increasing temperature, as shown in Fig. 3.32. 

A 

B C 
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Figure 3.32(a): Aliquot 13, HD series. ESR 

signals as a function of temperature. 
 Figure 3.32(b): Aliquot 13, HD series. Line 

positions, related to ESR signals, as a function of 

temperature. 

 

In Fig. 3.33 the ESR spectrum of the CS sample is shown.  

 

Figure 3.33: ESR spectra of CS series. 
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The ESR spectrum of the CS sample is completely different from that above discussed in Fig. 3.31. 

Indeed, after some preparation time, this sample shows a single, nearly symmetric line, broadening 

and moving towards lower field values at further delayed times and then splitting into two 

asymmetric features. The nearly symmetric broadens with increasing the detection temperature are 

shown for example in Fig. 3.34 for aliquot 10.  

 

Figure 3.34: Aliquot 10, CS series. Broadening of the peak (Hpp) as a function of T. 

 

The ESR pattern of the HD sample is rather similar to that reported [21] with spinel-like iron oxide 

magnetic nanoparticles of 3.5 and 8 nm. A-like bands have been there attributed to particles 

characterized by bigger magnetic anisotropy with respect to those which cause the narrower B line. 

The latter particles could be smaller with respect to the former, and/or oriented with the easy axis 

making an angle close to the “magic angle” of 54.74° with the external magnetic field, so to 

minimize the broadening contribution due to the second-order Zero Field Splitting anisotropy field. 

An alternative explanation for the narrow B line is there proposed, attributing its appearance to the 

magnetic decoupling between the surface and the core of the MNPs. On the other hand, the broader 

A line narrows with increasing temperature because its left lobe moves towards higher field values 
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(see Fig. 3.32), suggesting that the large width of this ESR band is really due to the anisotropy field 

of the MNPs, becoming less effective at higher temperature. Finally, the C low-intensity band is 

attributed to the formally forbidden M =  2 transition due to mixing of the M =  1 states, 

perhaps occurring in distorted octahedral coordination sites [22]. Quite interestingly, it has been 

also reported [21] that the sharp signal B is due to MNPs with approximately the same orientation at 

which the M =  2 appears, and quantum-mechanical considerations have been there proposed. 

But the most interesting consideration is that the anisotropy field of the MNPs are not affected by 

the delayed preparation time. Indeed, samples analyzed after increasing preparation times have ESR 

spectra of increasing intensity, as expected, but with the same width (see Fig. 3.31). This means that 

these samples contain an increased concentration of MNPs, but that the size of the last does not 

increase with time. In fact, an increased size of the MNPs would lead to a larger anisotropy field 

and therefore to a broader ESR feature. 

Conversely, the changes of the ESR spectral profile above reported for CS (see Fig. 3.33) indicates 

that its anisotropy field changes with the time delayed during the sample preparation. In particular, 

the intense nearly symmetric ESR line of aliquots 10 and 11 can be attributed to the formation of 

small (single magnetic domain) superparamagnetic particles as in [23]. This is confirmed by the fact 

that the ESR line of aliquot 11 is a bit broader than aliquot 10. Indeed, thermal motions are a bit less 

effectual in mediating the magnetic anisotropies with larger superparamagnetic particles [24]. 

Furthermore, the ESR line-width of the superparamagnetic particles narrows with increasing 

temperature [23, 24], as also here reported in Fig. 3.34 for the aliquot 10 of CS series. At last, when 

the CS particles becomes too large to be single-domain, they become ferromagnetic, with a 

significant magnetic anisotropy as for the aliquot 12 of CS, analogously to what reported in 

literature [22, 25] for similar systems.  
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3.2.4 Structural Study 

3.2.4.1 Reciprocal Space Analysis 

Au nanoparticles and NHs have been characterized with Transmission Electronic Microscopy and 

Visible light Absorption Spectroscopy to confirm the configuration core@shell or heterodimer. Fig. 

3.35(a), (c) and (e) (left) show the TEM images pertinent to Au nanoparticles, HD and CS 

nanocomposites respectively. On the right hand side of the same figure the UV-Vis spectra for the 

same samples are displayed. The TEM image show that Au nanoparticles are almost spherical. In 

the pertinent UV-Vis spectrum the plasmonic band is apparent at about 540 nm. We recall that 

plasmons are surface fluctuations of the free electron density in metals. The TEM image of Fig. 

3.35 shows small dark Au spheres and big gray Fe3O4 nanoparticles connected by small surfaces 

typical of HD configuration. Since the Au nanoparticles are only partially surrounded by Fe3O4 the 

plasmon band is still present in the UV-Vis spectrum. In the TEM image of CS sample the Au dark 

spheres are embedded in the big gray Fe3O4 ones. Since no free Au surface is present, the plasmon 

resonance peak is absent in the CS spectrum (see Fig. 3.35, right). 

 

 

 

Figure 3.35(a): TEM image Au nanoparticles 

sample. 
 Figure 3.35(b): Absorption spectrum of Au 

nanoparticles sample. 

   

b) 

a) 
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Figure 3.35(c): TEM image of heterodimer 

sample. 
 Figure 3.35(d): Absorption spectrum of heterodimer 

sample. 

   

 

 

 

Figure 3.35(e): TEM image of core@shell 

sample. 
 Figure 3.35(f): Absorption spectrum of core@shell 

sample. 

 

PDF quality synchrotron radiation powder diffraction patterns have been collected on the above 

samples. Data have been analyzed using the Rietveld method, the Williamson-Hall method and the 

PDF analysis.  

The average crystallographic structure was determined through Rietveld method varying in each 

refinement the cell parameter, the oxygen position and using an average isotropic mean square 

displacement (msd).  

A biphasic system is observed both in core@shell and heterodimer samples. In particular, the Fe3O4 

magnetite phase, and the metallic gold phases are present, both displaying space group Fm-3m. 

c) 

e) 

 d) 

 
f) 
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Fig. 3.36 shows the experimental patterns (black crosses) of Au seeds nanoparticles (Fig. 3.36(a)) 

and Fe3O4-Au nanocomposites in CS (Fig. 3.36(b)) and HD (Fig. 3.36(c)) configuration together 

with their best fits (red curves). Results of the refinements are reported in Tab. 3.10.  

 

  

 

Figure 3.36: Rietveld refinements for Au (Fig. X1a), heterodimer (Fig. X1b) and core@shell (Fig. X1c). 

Experimental pattern (black crosses), fit (red curves) and differential (blue line) are reported. In the insets 

the high 2 range is highlighted. 

 

The pattern in Fig. 3.36(a) can be fitted using a cubic face centered Au phase, space group Fm-3m. 

The patterns in Fig. 3.36(b) and 3.36(c) are fitted using the Au phase and a spinel-like Fe3O4 

magnetite phase, space group Fd-3m.  

a) 

c) 

b) 



118 

 

As to the iron oxide phase, the high-Q resolution and to the high statistics obtained at the ID22 

beamline allow to establish the presence of only Fe3O4 magnetite phase in both samples; in fact, the 

presence of -Fe2O3 can be excluded on the basis of the absence of superstructure peaks typical of 

maghemite phase and of the experimental cell constants (see Tab. 3.10). In particular, the cell 

constant of CS sample (a=8.3902) is slightly larger of the HD sample one (a=8.3844). 

Phase Parameter Au nanoparticles heterodimer core@shell 

Au Space Group Fm-3m Fm-3m Fm-3m 

a / Å 4.0770(3) 4.0672(4) 4.0545(6) 

msd / Å
2
 0.0045 (2) 0.0049(2) 0.0056 (1) 

% Weight 100 27.3(2) 22.5(5) 

Dv / nm (W-H) 6.5(1.0)  6.4(1.5)  6.2(1.0)  

(W-H) 4.1(4)e-2  4.8(7)e-2  3.2(5)e-2  

Fe3O4 Space Group  Fd-3m Fd-3m 

a / Å  8.3844(2) 8.3902(2) 

x(O)  0.2565(2) 0.2565(2) 

msd (Fe) / Å
2 

  0.0058 (2) 0.0058(1) 

msd (O) / Å
2
  0.0026 (5) 0.0033(4) 

% Weight 0 72.7(9) 77.5(6) 

Dv / nm (W-H)  19.7(7)  15.6(5)  

(W-H)  1.3(4)e-3  3.4(5)e-3  

G.o.f. R (F
2
) 0.0202 0.0264 0.0263 

Table 3.10: Rietveld refinement and WH parameters. 

 

As to the Au phase, the cell parameter of seeds nanoparticles (4.077 Å) is close to metallic gold 

materials one (a=4.078 Å) [26, 27] while a contraction is well apparent for nanocomposites, which 

is more evident for the CS sample (~0.6%) with respect to HD one (~0.3%).  

The size and strain analysis of the samples was carried out using the Williamson-Hall method. The 

pertinent plots are shown in Fig. 3.37, while the results are displayed in Tab. 3.10. The diffraction 

peaks have been fitted using pseudo-Voigt function and the instrumental contribution to peaks 

broadening has been determined using a CeO2 standard and subtracted to the experimental width. 
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Figure 3.37: Williamson–Hall plot analysis for Au (a), HD (b) and CS (c) samples. Full and empty symbols 

refer to Au and Fe3O4 phases, respectively. 

 

For all the samples DV for the Au phase is about ~6 nm, while DV is ~19 and ~16 Å for magnetite in 

HD and CS configuration respectively. The gold phase seems to be mainly affected by strain in 

respect to magnetite: 3-5·10
-2

 for the former and 1-3·10
-3

 for the latter.  

Focusing on Au phase, the above results can be understood in the framework of both homogeneous 

strain (HS) and inhomogeneous strain (IHS), where HS causes a uniform shift (contraction) of the 

cell parameters in the nanocomposite samples, in respect to Au nanoparticles, while IHS is related to 

the dispersion of cell constants, seems to be similar for the three samples [28]. 

b) 

c) 

a) 
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3.2.4.2 Real Space Analysis 

The experimental G(r) functions for the three samples considered are shown in Fig. 3.38 (black 

symbols) together with the best fits (red lines) and residuals (blue lines) of the PDF fits. The insets 

report the low r region of the same PDF functions. 

 

  

 

Figure 3.38: PDF refinements for Au (Fig. X2a), heterodimer (Fig. X2b) and core@shell (Fig. X2c). 

Experimental pattern (black circles), fit (red curves) and differential (blue line) are reported. In the three 

insets the 1.5 < r < 10 Å range is shown. 

 

The PDF fits were performed using the same gold and magnetite phases described above for the 

reciprocal space analysis. In each refinement, cell parameter(s) and msd parameters were varied as 

well as the scale factors and the envelope parameter. The latter takes into account the damping of 

b) 

c) 

a) 
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the G(r) peaks arising from the limited coherence length of the nanocrystals. The size values 

obtained by this approach, and shown in Tab. 3.11, are comparable to those found through the WH 

method. The structural parameters obtained fitting the G(r) curves in the r ranges displayed in Fig. 

3.38 are shown in Tab. 3.11.  

Phase Parameter Au nanoparticles heterodimer core@shell 

Au Space Group Fm-3m Fm-3m Fm-3m 

a / Å 4.0751(12) 4.0697(1) 4.0600(5)  

msd / Å
2
 0.00863(48)  0.01004(21) 0.00917(18)  

Mass fraction 100 0.3671(36) 0.3025(33)  

Dv 4.8(3)  5.1(1) 4.8(7)  

Fe3O4 Space Group  Fd-3m Fd-3m 

a / Å  8.3851(2) 8.3904(2)  

msd (Fe1) / Å
2 
  0.00519(25)  0.00450(26)  

msd (Fe2) / Å
2 
  0.00815(24)  0.00800(26)  

msd (O) / Å
2
  0.01634(96)  0.01493(97)  

Mass fraction  0.6329(36)  0.6975(33)  

Dv  22.6(3.1)  17.7(3.2)  

G.o.f. Rw 0.2446 0.2054 0.2304 

Table 3.11: PDF fit parameters. 

 

As a general comment we observe that the Au and magnetite structural models fit well the 

experimental G(r)s. This suggests that nanostructuring and nanocomposite formation do not induce 

significant changes in any of the two phases. As to the Au seed, we can note that the Au cell 

constant reported in Tab. 3.11 (a4.075 Å) is in line with the results of Page et al. [27] (a4.076 Å) 

for nanoparticles of similar dimension (diameter 4 nm). 

As to NHs samples, in accord to the reciprocal space analysis, the Fe3O4 phase in CS sample 

expands in respect to the HD one and, compared to Au seeds the gold phase is observed to contract 

in nanocomposites, especially in CS configuration (see Tab. 3.11).  

To map the coherence domain of Au-Au bonds contraction, fits were performed also in small (each 

5 Å wide) different r ranges to check for the possible presence of short range disorder. To avoid 
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over-parameterization the weight fractions and the envelope parameters have been fixed to the 

values of Tab. 3.11.  

 
 

Figure 3.39: Left: Au cell parameters a as a function of r. The r values are the centroids of the fitting 

intervals. Right: width of G(r) peaks Vs. r. In both panels the black, red and blue symbols refer to Au seeds, 

HD and CS samples respectively. 

 

Fig. 3.39 shows the Au cell parameters a obtained as a function of r. The r values are the centroids 

of the fitting intervals. At very low r values, for all the samples, a is smaller than the one obtained 

with the fit in a wide r range. However, at increasing r, a cell constants rich rapidly the values 

displayed in Tab. 3.11. 

Tab. 3.11 also shows that msd values for gold in both nanocomposites are larger with respect to Au 

seeds. In the G(r) curves the msd values, due to both thermal vibration and disorder, causes the 

broadening of the G(r) peaks as a consequence of broader bond length distribution.  

Experimental G(r) peaks pertinent to Au-Au distances have been also fitted using Gaussian 

Functions after baseline subtraction as described in [26, 29]. Fig. 3.39 (right panel) reports the full 

width at half maximum of peaks for gold seeds nanoparticles (blue circles), heterodimer (red 

circles) and core@shell (black circles) as a function of r. The width of Au nanoparticles is smaller 
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than for CS and HD samples, especially at very low r values, suggesting that a wider distribution of 

interatomic distances is present.  

All the above results can be visualized comparing the G(r) functions of the three samples (see Fig. 

3.40).  

In the left hand side panel are shown low-r portions of PDFs for all the samples. In the case of NHs 

the fitted Fe3O4 contribute has been subtracted to the experimental G(r)s obtaining “differential” 

G(r)Au in order to highlight the Au contribution. At the left side of the break in Fig. 3.40 it is 

possible to note the broadening of the first neighbour Au-Au peaks pertinent to NHs in respect to 

Au seeds; at the right side, the same effect goes along with the shift of G(r) peaks pertinent to CS 

and HD samples towards smaller r values in respect to Au. 

Focusing on the Fe3O4 phase, in the upper panel of Fig. 3.40 is shown, as an example, the 74r78 

Å interval of the G(r)s pertinent to the two nanocomposites (HD red curve, CS blue curve); at these 

high-r values, r range where the contribution of Au is negligible, the rigid shifts of the CS sample 

peaks towards high r values in respect to the HD sample is apparent.  

  

Figure 3.40: Left: short r range portions of the xperimental G(r) curve of Au seeds and of the “differential” 

ones of HD and CS samples obtained subtracting the calculated Fe3O4 contributions. Right: Portion of the 

xperimental G(r) curves of HD and CS samples. In both panels the black, red and blue curves refer to Au 

seeds, HD and CS samples respectively. 
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3.2.5 Discussion 

In Au seeds, the peak width is 0.15 Å for the next neighbour (NN) Au-Au distance and it increases 

rapidly at increasing r reaching a plateau (width 0.22-0.23 Å) for distances larger than 5 Å. This is 

consistent with Au-Au motion correlation at very low distances. In the NHs case, the peak width for 

the Au-Au NN distance is 0.20 Å. Since all the measurements have been performed at the same 

temperature, this suggests that a larger distribution of Au-Au distances (disorder) is present in these 

samples. By increasing r, the peak width increases too, but at a smaller extent in respect to Au 

seeds. However, as testified by the average cell constant values reported in Tab. 3.11, the average 

Au-Au distances are shorter than in Au seeds. Besides, The r-series PDF analysis showed a 

contraction of the Au cell constants (which is related to the position of Au-Au G(r) peaks) at low r 

values, but they increase rapidly and, reach the “average” values for r5-6 Å (see Fig. 3.39).  

Both the peak enlargement and the cell contraction at low interatomic distances suggest that, in NH 

materials, “zones” with different equilibrium Au-Au interatomic distances exists and that the 

coherence length of these “zones” is very short (about 5 Å). Moreover both the effects should be 

considered a feature induced on gold by the Fe3O4 counterpart. In fact, the cell contraction is more 

evident in the CS sample where the Au/Fe3O4 surface is bigger.  

The Au cell contraction can be considered as a chemical pressure effect induced on Au by the Fe3O4 

shell. Several papers [30, 31], measured the Au cell parameters as a function of P. In particular, on 

the basis of the data interpolation of [31] it was possible to estimate, an “average” chemical 

pressure on gold of 3 and 1.5 GPa in CS and HD, respectively, while it is about 0 for the gold 

“naked” seed, see Fig. 3.41 and Tab. 3.12.  
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a (Au) (Å) Pressure (GPa) 

4.0770 0.3 

4.0674 1.4 

4.0672 1.5  

4.0590 2.5 

4.0545 3.1 

4.0288 6.8 

4.0115 9.5 

4.0042 10.7 

3.9895 13.2 

3.9651 17.8 

3.9264 26 
 

Figure 3.41: Plot of data interpolation of [30].  Table 3.12: Results of data 

interpolation of [30]. 

 

However, on the basis of the width of the NN Au-Au peak in NHs, it is worth supposing that in CS 

and HD samples the compressive strain is not uniform but is larger at the interface than in the inner 

part of the gold nanoparticle; since for spherical particles of 5 nm in diameter about 40% of Au 

atoms are within 4-5 Å from the surface (the coherence length of the strain-inhomogeneity on the 

basis of Fig. 3.39) the chemical pressure induced on gold by Au-Fe3O4 interface should be almost 

doubled (5-7 GPa) in respect to the average one. 

 As to the magnetite shell, it is possible to note in Cs sample, in respect to the HD one, the 

concomitant increase of  (3.4*10
-3

 vs. 1.7*10
-3

) and cell parameter (~0.07%), which suggest that 

the interphase surface induces strain also in this phase; however in Fe3O4 the strain effect seems to 

be less evident because of the much smaller percentage of Fe and O ions at the interphase surface. 

Thus, our SR-XRPD study in the reciprocal and real space has revealed that in Au-Fe3O4 nano-

hetero-structure the main effect of the Au-Fe3O4 interface formation s to induce compressive strain 

on metallic gold and tensile strain on magnetite. Obviously, our investigation cannot supply a 

detailed description of the (possible) structure reconstruction at the interface since XRPD is a bulk 

technique and, especially for the Fe3O4 phase, only a small percentage of atom are nearby interface. 
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However, in the case of Au, it is possible to infer that strain is not uniform within the nanoparticle 

and the surface should experience a chemical pressure which is higher than in the core of Au 

nanoparticles.  

This suggests that iron oxide grows epitaxially on gold and the mismatch between the two phases 

induces big strain on both of them, and in particular on gold. How shown by the results presented in 

this chapter, this strain is bigger in core@shell structure where the contact surface area between iron 

oxide and gold, in respect to the heterodimer one, is bigger. 

The epitaxially growth and the consequent strain induced by it could be the reason why the coupling 

of two different phase can bring to unique physical properties non accessed with any of the single 

components alone. 
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