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Several studies have emphasnzed the posswihty of enhanmng nu- [

tritional properties of cereal by-products through biotechnological
processes. Bran fermentation positively affects the bioavailability

of several functional compounds. Moreover, bran fermentation
could increase water-extractable arahmoxylans (WE,AX), com-

pounds with positive effects on glucose metabolism and prebiotic
properties. This study was aimed at increasing the am ‘
bioactive compounds through a sourdoughlike fermentation
ess. Wheat bran fermentations were conducted through continuous
propagation by back—sloppmg of fermented bran

until a stable microbiota was astabhshed reaching h
lactic acid bacteria and yeasts (10° and 107 CFU/g, respect

At each refreshment step, bactenal strams ‘were 1sa1atcd clustered,

Several studies indicate that diets high in whole grain work as
protective factors against chronic diseases (Gil et al 2011; Qing
Ye et al 2012; McKeown et al 2013). These effects are likely re-
lated, at least in part, to their high content of fiber and bioactive
compounds, with antioxidants and anticarcinogenic properties,
mainly present in bran and germ of cereal grains (Fardet 2010;
Okarter and Liu 2010). Removal of these fractions during milling
to improve the shelf life of flour results in severe depletion of
fiber and bioactive compounds. The loss of about 58% of fiber,
83% of magnesium, 61% of folate, and 79% of vitamin E has
been shown in comparing the contents of important nutrients in
wholemeal flour and white flour (Truswell 2002). The aleurone
layer (the outermost layer of the endosperm) has been shown to
contain many of these functional compounds (Brouns et al 2012),
but it is partially eliminated in wheat flour milling and is a by-
product mostly used for animal feed. The increasing demand for
functional foods and the possibility of taking advantage of agro-
industrial by-products have attracted great interest in using bran-
enriched products. Doing so should lead to a greater value for
wheat industries, reducing their environmental impact and getting
an economic return. The main reasons behind the low utilization
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rate of wheat bran in the baking industry are the gritty texture,
bitter and pungent flavor, and coarse mouthfeel of bread caused by
bran. However, the fermentation of cereal bran, such as wheat and
rye, has shown to be an interesting pretreatment to improve tech-
nological, sensorial, and nutritional properties of bran-enriched
products (Katina et al 2007, 2012; Poutanen et al 2009; Coda et al
2014) as well as to degrade antinutritive factors such as phytic acid
to increase mineral bioavailability (Lopez et al 2000). Bioproc-
essing of wheat bran with enzymes and microbes has been used to
improve loaf volume, crumb structure, and shelf life of bread sup-
plemented with fermented bran (Salmenkallio-Marttila et al 2001;
Coda et al 2014). Moreover, Katina et al (2012) showed that yeast
fermentation of wheat bran from peeled kernels increased the
level of folates (+40%), free phenolic acids (+500%), and soluble
arabinoxylans (AX) (+60%). Many of the observed changes dur-
ing fermentation (e.g., dietary fiber solubilization) can be ex-
plained by the contribution of endogenous or microbial enzymes,
especially xylanases (Katina et al 2007; Poutanen et al 2009).
From a nutritional point of view, AX and compounds resulting
from their hydrolysis, such as AX oligosaccharides (AXOS) and
xylooligosaccharides, deserve particular attention. AX represent
the major component of the dietary fiber fraction of cereal grains
and are mainly found in the outer tissues of the wheat caryopsis
as a water-unextractable fraction (WUAX), whereas most water-
extractable AX (WEAX) are distributed in the endosperm. AX
consist of a linear backbone of xylose residues, unsubstituted or
mono- or disubstituted with residues of arabinose. AX also con-
tain large amounts of ferulic acid and other phenolic compounds
covalently linked to them (Saeed et al 2011). These compounds
have different physicochemical and functional properties depend-
ing on their solubility and structural characteristics. Because of
their ability to induce viscosity, WEAX are able to delay the rate
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of digestion and absorption of carbohydrates, leading to positive
effects on the postprandial glycemic and insulinemic responses
(Lu et al 2000, 2004; Mohlig et al 2005). A European Food Safety
Authority panel reported a cause-and-effect relationship between
the consumption of AX produced from wheat endosperm and a
reduction in postprandial glycemic response (EFSA 2011). More-
over, the soluble oligosaccharides (AXOS and xylooligosaccha-
rides) resulting from hydrolysis of bran WUAX have a potential
prebiotic effect and anticarcinogenic, antioxidant, and hypocho-
lesterolemic properties (Broekaert et al 2011; Francois et al 2012).

The aim of the current study was to improve the amount of bioac-
tive compounds of wheat bran through a sourdoughlike fermentation
process to use the fermented bran as a functional ingredient. The
outer layers of grain are rich in dietary fiber, phytochemicals, vita-
mins, minerals, and endogenous enzymes. Therefore, bran fermenta-
tion could be an interesting tool to enhance the bioavailability of
these functional compounds and, thus, improve the nutritional qual-
ity of the wheat bran. In particular, this study was performed to de-
termine the effect of fermentation on fiber solubilization, mainly on
the AX fraction, and on the amount of other bioactive compounds,
such as ferulic acid and phytic acid. Moreover, the microbes in-
volved in bran fermentation were isolated, clustered, and identified
for future study regarding their potential use as starter cultures to
increase the amount of bran bioactive compounds.

MATERIALS AND METHODS

Fermentation Process and Sampling. Spontaneous fermenta-
tions (without microbial starters) were developed from commercial
native wheat bran (raw, untreated) (mean particle size 475-633
um, Molino Quaglia, Vighizzolo D’Este, Italy) by mixing 28%
bran and 72% water in a large beaker (2,000 mL) and covering it
with aluminum foil. The fermentation process was performed as a
traditional type I sourdough, characterized by low incubation
temperatures and daily refreshments to keep the microorganisms
in an active state (Meroth et al 2003; De Vuyst and Neysens
2005). Fermentation batches were produced in triplicate, at 18°C,
through continuous propagation by back-slopping of the fer-
mented bran until a stable microbiota was established (13 days).
At every refreshment step (once a day), the fermented bran was
used as a 10% inoculum for the subsequent fermentation cycle.
Fresh samples were taken from unfermented and fermented bran
for microbiological analyses. In addition, samples were frozen for
later measurements of pH, total titratable acidity (TTA), and lactic
acid and for the quantification of bioactive compounds (dietary
fiber, WEAX, free ferulic acid [FFA], and phytic acid).

Microbial Quantification and Isolation. Lactic acid bacteria
(LAB), yeasts, and contaminant bacteria were quantified. A sam-
ple of 10 g was homogenized for 10 min with 90 mL of sterile
saline—tryptone diluent (containing, per liter, 8.5 g of NaCl and
1.0 g of tryptone, pH 6.0) in a BagMixer 400 stomacher (Inter-
science, Saint-Nom-la-Bretéche, France), serially diluted 1:10
with quarter-strength Ringer’s solution and plated on different
media. LAB were determined on MRSS5 agar (all ingredients were
provided by Oxoid, Basingstoke, U.K.) containing 0.001% cyclo-
heximide (Oxoid) to prevent fungal overgrowth. Plates were incu-
bated anaerobically at 30°C for 72 h. Yeasts and molds were de-
termined on Rose Bengal Chloramphenicol (RBC) agar (Biolife,
Milan, Italy). Plates were incubated aerobically at 25°C for five
days. Contaminant bacteria were determined on casein-peptone
soymeal-peptone agar (Merck KGaA, Darmstadt, Germany), and
plates were incubated aerobically at 30°C for two days. At each
refreshment step of one batch of sourdoughlike fermentation,
between 10 and 15 colonies of all morphologies were picked from
MRS5 and RBC plates and streaked out several times on their
respective agar plates to ensure their purity. After microscopic and
morphological examination, among a total of 165 isolates, 98
LAB and 13 yeasts were obtained and further characterized.

Molecular Characterization of LAB Strains by Randomly
Amplified Polymorphic DNA-Polymerase Chain Reaction
(RAPD-PCR) Analysis. RAPD-PCR profiles were used to per-
form a first strain differentiation and to explore the genetic diver-
sity of LAB isolated from the fermented bran. Total genomic
DNA from the strains was extracted with a microlysis kit (Labo-
gen, Rho, Italy) following the manufacturer’s instructions. RAPD-
PCR reactions were performed with primer M13 (5-GAGGGT
GGCGGTTCT-3’, Huey and Hall 1989). Amplification conditions,
as well as electrophoresis and analysis of the amplification prod-
ucts, were as previously described by Andrighetto et al (2002) and
Morandi et al (2006). Grouping of the RAPD-PCR profiles was
obtained with the BioNumeric 5.0 software package (Applied
Maths, Kortrijk, Belgium) following the unweighted pair-group
method with arithmetic averages cluster analysis. The value for
the repeatability of the RAPD-PCR assay, DNA extraction, and
running conditions, evaluated by analysis of repeated DNA ex-
tracts of the type strains, was 95%.

Molecular Identification of the LAB and Yeast Strains. For
the LAB, a fragment of =800 bp of the 16S rRNA gene was am-
plified by PCR with the primers pSFPL (AGTTTGATCCTGGCT
CAG) and p806R (GGACTACCAGGGTATCTAAT) (Hosseini et
al 2009). For the isolated yeasts, a fragment of =500-1,300 bp of
the D1/D2 domain of the 26S rDNA gene was amplified by PCR
with the primers NL-1 (5-GCATATCAATAAGCGGAGGAAAAG)
and NL-4 (5-GGTCCGTGTTTCAAGACGG) (Kurtzman and
Robnett 1997). PCR reaction was performed in a 25 pL total vol-
ume containing 2 units of Tag DNA polymerase (Finnzymes,
Espoo, Finland), 0.5 UM of each primer, 200 uM of each dNTP,
1.5mM MgCl,, and 50-100 ng of genomic DNA. PCR amplifica-
tions were performed with a Mastercycler thermal cycler (Eppen-
dorf, Hamburg, Germany). The PCR parameters were as follows:
initial denaturation at 94°C for 5 min; 30 cycles of 94°C for
1 min, 56°C for 1 min, and 72°C for 1 min; and a final extension
at 72°C for 7 min. The amplified PCR products were visualized
by 1% agarose gel electrophoresis stained with SYBR Safe DNA
gel stain (Thermo Fisher Scientific, Waltham, MA, U.S.A.). The
gels were photographed under ultraviolet light with a UV trans-
illuminator. Amplicons were sent for sequencing to Macrogene
Europe (Amsterdam, The Netherlands).

Sequence alignment was carried out with ClustalW software.
The BLAST algorithm was used to determine the most related
sequence relatives in the National Center for Biotechnology In-
formation nucleotide sequence database (www.ncbi.nlm.nih.gov/
BLAST).

pH, TTA, and Lactic Acid. pH and TTA were determined on
10 g of fermented bran suspended in 100 mL of distilled water.
For the determination of TTA, this suspension was titrated with
0.1M NaOH to a final pH of 8.5, detected by a pH meter (PHM
250, Radiometer, Copenhagen, Denmark); TTA was expressed as
milliliters of 0.IM NaOH needed to achieve the final pH of 8.5.
All samples were analyzed in duplicate. Lactic acid was deter-
mined by HPLC with refractive index detection as described by
Lefebvre et al (2002).

Chemical Analysis. Analysis of moisture, ash, lipids, and pro-
teins was carried out following AACC International Approved
Methods 44-15.02, 08-01.01, 30-10.01, and 46-12.01, respectively.
Sugars were assessed by high-performance anion-exchange liquid
chromatography with pulsed amperometric detection (HPAEC-
PAD) (Rocklin and Pohl 1983). Briefly, 1 g of the sample was ex-
tracted with 200 mL of distilled water at 60°C for 60 min (Zygmunt
et al 1982); the extract solution was analyzed with an HPAEC-
PAD equipped with a CarboPac PA1 (4 x 250 mm) column plus a
CarboPac PA1 (4 x 50 mm) guard column (Dionex, Sunnyvale,
CA, U.S.A.) and an ED50 pulsed amperometric detector (Dionex).
Starch content was calculated by difference (100 — amount of all
the other chemical components). Soluble and insoluble dietary
fiber was evaluated by the enzymatic—gravimetric procedure
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(AOAC International Method 991.43, which corresponds to
AACCI Approved Method 32-07.01). Total AX and WEAX in
native bran and fermented bran were determined by HPAEC-PAD
as described by Saulnier and Quemener (2009) with some modifi-
cation, after hydrolysis with trifluoroacetic acid (TFA) (Courtin et
al 2000; Gebruers et al 2008). For total AX levels, native bran or
fermented bran samples (150 mg) were hydrolyzed in 5 mL of 2M
TFA for 60 min at 110°C. For WEAX evaluation, extracts were
prepared by suspending the samples (2 g) in 10 mL of deionized
water, shaking for 60 min at 7°C, and centrifuging (10,000 x g, 10
min, 4°C). To the aqueous extracts, 2.5 mL of 4M TFA was added,
and the solution was heated for 60 min at 110°C. The hydrolyzed
samples were analyzed by an HPAEC system equipped with Car-
boPac PA1 (4 x 250 mm) column plus a CarboPac PA1 guard col-
umn (4 x 50 mm) (Dionex), a ternary pump (SP8800, Spectra
Physics, Santa Clara, CA, U.S.A.), and an ED50 pulsed ampero-
metric detector (Dionex). A gradient elution with a flow rate of
1 mL/min was used: 0 min (96% H,0, 4% 250mM NaOH), 4 min
(100% H,0, 0% 250mM NaOH), 22 min (20% H,0, 80% 250mM
NaOH), 32 min (96% H,0, 4% 250mM NaOH), and hold up to 41
min. Moreover, a 300mM NaOH postcolumn with a flow rate of
0.6 mL/min was added. Pulsed amperometric detection was car-
ried out with the following pulse potentials and durations: Eox =
+0.1V (tOX =013 S), EDET =+0.6 V (tDET =01 S), and ERED =-0.8V
(trep = 0.3 s). AX content was then defined as 0.88 times the sum
of the monosaccharide xylose and arabinose concentrations.

The FFA content was determined as described by Bartolomé
and Gomez-Cordovés (1999), with some modifications. After ad-
dition of internal standard (d3-hydroxycinnamic acid), samples
were extracted for 10 min with 80% ethanol (v/v) in an ultrasonic
bath. After centrifugation (20,000 x g, 15 min), the supernatant
was collected, evaporated to dryness, acidified with 1M HCI, and
extracted two times with ethyl acetate. The organic solutions were
combined and dried under N,. Sample derivatization was con-
ducted for 1 h at 70°C with N,O-bis(trimethylsilyl)trifluoro-
acetamide with 1% trimethylchlorosilane (1% BSFTA-TMCS,
Supelco, Bellafonte, PA, U.S.A.). The analytical quantification of
FFA was performed by isotope-dilution gas chromatography—
mass spectrometry (GC-MS), by means of a GC (GC-17A, Shi-
madzu, Tokyo, Japan) interfaced with a single-quadrupole MS
(MS-QP5050, Shimadzu). GC separation was performed on a
DB-5-MS capillary column (30 m, 0.25 mm i.d., 0.25 um film
thickness, J&W Scientific, Folsom, CA, U.S.A.). The analysis of
phytic acid was performed by HPLC with spectrophotometric
detection as described by Oberleas and Harland (2007). All anal-
yses were performed in triplicate.

Statistical Analysis. Results are expressed on a dry weight ba-
sis as mean * standard deviation. One-way ANOVA was used to

test the statistical differences in WEAX content between the dif-
ferent refreshment steps. When the difference among the samples
in ANOVA was statistically significant, pairwise comparisons of
these samples were analyzed with Tukey’s test. A paired Student’s
t test was used to compare values of FFA and phytic acid levels
before and after sourdoughlike fermentation. Data were processed
by GraphPad Prism version 5.00 for Windows (GraphPad Soft-
ware, San Diego CA, U.S.A., www.graphpad.com).

RESULTS AND DISCUSSION

Microbial Counts. At the start of the sourdoughlike fermenta-
tion process, low counts (<10° CFU/g) were found for both LAB
and yeast populations. However, LAB rapidly increased after the
first day of bran fermentation, reaching levels of 10° CFU/g. Yeast
population developed more slowly than LAB and fluctuated dur-
ing the first four days of fermentation. Their counts stabilized at a
level of 107 CFU/g after eight refreshments. The contaminants
disappeared after five days of fermentation (Table I).

Molecular Characterization of Microbial Strains. For strain
identification, we used a polyphasic approach. First, RAPD-PCR
was performed on all strains to explore the genetic diversity, and
the resulting fingerprints were compared with a user-generated
BioNumerics database for a preliminary identification. This iden-
tification was then confirmed by DNA sequence analysis.

Figure 1 shows the different banding patterns of the 73 cocci.
The strains fell into two main clusters corresponding to Pediococ-
cus and Leuconostoc genera. Among the Leuconostoc cluster,
there were Leuconostoc mesenteroides and Leuconostoc citreum
strains. Intraspecific comparison accomplished by RAPD-PCR
profiles revealed a high biodiversity among the strains. Figure 2
shows the RAPD-PCR banding patterns of 25 rod-shaped strains.
Almost all the strains were grouped according to species except
for two Lactobacillus plantarum strains that did not fall in the
cluster of L. plantarum. A quite high degree of DNA polymor-
phism was detected in Lactobacillus brevis, for which the similar-
ity levels reached only 50% for some of the strains.

Growth rate and yield of microorganisms are governed by a
multitude of ecological factors such as temperature, ionic
strength, dough yield, and microbial products (lactate, acetate,
CO,, and ethanol), as well as factors resulting from substrates
present in the cereal fraction and from enzymatic reactions
(Ginzle et al 1998; Meroth et al 2003). Table II shows the endog-
enous LAB and yeast development during several refreshments of
the sourdoughlike fermentation of wheat bran. Ln. mesenteroides,
Lactobacillus curvatus, and P. pentosaceus were found from the
first step of the process as bran endogenous bacteria and domi-
nated until the end of the fermentation. Ln. citreum could be de-

TABLE I
Microbial Counts, pH, Total Titratable Acidity (TTA), Lactic Acid, and WEAX in the Different Refreshment Steps
of Sourdoughlike Fermentation of Wheat Bran”

Refreshment Step (days) Contaminants Yeast LAB pH TTA Lactic Acid WEAX

0 5.8 4.8 4.8 6.6 £0.1 2.9:£:0.1 0.02 £0.02 0.5%0.0a

1 7.4 5.4 8.2 6.5+ 0.1 46+0.2 ND 1.7£0.2b
2 72 4.0 9.5 43+0.1 149+1.1 ND 1.8+£0.1b

3 6.5 24 9.7 42+0.1 175403 ND 27+ 0%ce
4 35 34 9.7 4.1%+0.1 18.0+£0.9 ND 3.0+£0.2cd
5 <2.0 3.6 9.6 4210.1 17502 ND 3.0+ 0.3cd
6 <2.0 4.6 9.7 4.1+0.1 183+ 0.4 ND 2.9 £0.1cde
7 <2.0 52 9.7 4.1£0.1 18.5/:0:7 ND 2.9+0.1cde
8 <2.0 S.7 9.6 4.110.1 18.8+0.8 ND 2.8 + 0.0cde
9 <2.0 6.9 9.6 4.1£0.1 18.8+0.8 ND 3.0+ 0.1cde
10 <2.0 7l 9.5 4.1+0.1 18.0£0.7 ND 2:6'%0.2¢ce
11 <20 7.0 9.6 4.1+0.1 18.6+£0.5 ND 3.2+04d
12 <2.0 7.1 9.6 4.1+0.1 18.8+0.4 ND 3.0:£0/3cde
13 <2.0 7.1 9.6 4.1%0.1 18.9+0.7 5.8+04 2.6 +0.4e

zLAB = lactic acid bacteria; WEAX = water-extractable arabinoxylan. Microbial counts are measured in log CFU/g. TTA is measured in milliliters of 0.1M
NaOH per 10 g. Lactic acid and WEAX are reported as % db. ND = not determined. Data not sharing the same letters are significantly different (P < 0.05).
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Fig. 1. Unweighted pair-group method with arithmetic averages—based dendrogram derived from the combined randomly amplified
polymorphic DNA-polymerase chain reaction profiles generated with primer M13 of cocci strains isolated from fermented bran at each
refreshment step.
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tected as an endogenous species until the 10th refreshment, but it
disappeared at the end of fermentation. On the other hand, L.
plantarum dominated at the end of fermentation. Lactobacillus
sakei subsp. sakei and L. brevis were detectable after four and
seven days of fermentation, respectively. Regarding the yeast,
Pichia fermentans was the only species detected, and it was de-
tectable from the beginning up to the end of fermentation.

Pichia ssp. yeasts are frequently associated with positive con-
tributions to aroma thanks to the production of volatile com-
pounds, mainly ethyl acetate, and glycosidase and xylosidase
enzymes (Manzanares et al 1999).

Characterization of Native Bran and Fermented Bran. pH
and TTA. Spontaneous bran fermentation of native bran resulted
in an intensive acidification, likely related to the growth of LAB.
As reported in Table I, pH values decreased from 6.6 to 4.1 during
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Fig. 2. Unweighted pair-group method with arithmetic averages—
based dendrogram derived from the combined randomly amplified
polymorphic DNA-polymerase chain reaction profiles generated with
primer M13 of Lactobacillus strains isolated from fermented bran at
each refreshment step.

bran fermentation. In particular, pH did not change significantly
during the first 24 h of fermentation, but after the first back-slop-
ping the pH dropped quickly, reaching approximately pH 4.1, a
value maintained during the following days (days 3-13). As ex-
pected, an inverse relation between pH and TTA values was ob-
served: TTA increased from 2.9 to 18.9 mL of NaOH/10 g, values
likely related to the parallel accumulation of lactic acid.

Chemical Composition. At the end of the process (refreshment
day 13), fermented bran contained slightly higher amounts of pro-
tein and lipid and lower amounts of carbohydrates compared with
native bran (Table III). In particular, the estimated amount of starch
was reduced by about 5%. As expected, the fermentation resulted in
a decrease of the total content of sugars, and in particular of sucrose
and raffinose, most likely because of microbial metabolism. These
results are in accordance with a previous work on wheat germ fer-
mentation (Rizzello et al 2010). On the other hand, the fermentation
process seemed to promote an increase in total dietary fiber, an
effect probably related to microbial exo-polysaccharide production
(Hassan et al 2008; Ginzle 2014; Gobbetti et al 2014). Moreover,
soluble-to-insoluble fiber ratio increased =20% (0.084 and 0.103 in
native and fermented bran, respectively) after fermentation. These
aspects could be of great interest from a nutritional point of view,
because of the positive effect of soluble fiber on health and well-
being (Anderson et al 2009). Soluble dietary fiber could increase
the viscosity of digesta and slow down the digestive and absorptive
processes of nutrients in the small intestine. This mechanism may
explain the possible effects on carbohydrate metabolism, which
could lead to a positive influence on postprandial glycemic and
insulinemic responses. Moreover, in the stomach, viscosity con-
tributes to the delay of gastric emptying, thus promoting satiety
(Dikeman and Fahey 2006).

Effect of Sourdoughlike Fermentation on AX and Bioactive
Compounds. Regarding AX, the results obtained clearly illus-
trated that bran fermentation contributed to fiber solubilization
(Table III) and especially to the conversion of WUAX to WEAX,
in accordance with data reported by Katina et al (2012). As shown
in Table I, the amount of WEAX already significantly (P < 0.001)
increased from 0.5 to 1.7 g/100 g after the first refreshment step,
reaching levels of 2.6 g/100 g at the end of fermentation.

The percentage of WEAX in relation to total AX in native bran
was 3.5%, and it reached a level of 14.3% in fermented bran. Fi-
ber solubilization could be explained by the activity of endoge-
nous or microbial enzymes such as xylanases (Katina et al 2006).
Madrigal et al (2013) showed xylanase activity in a P. fermentans
strain. In this work, this same species of yeast was detected in all
refreshment steps; thus, the increase in evaluated WEAX levels
could likely be related, at least in part, to the enzymatic activity of
this yeast. Endoxylanases cleave B-1,4-glycosyl linkages within
the poly-B-1,4-xylose backbone of WEAX as well as WUAX,
therefore leading to partial solubilization of WUAX and to frag-
mentation of AX into readily soluble AXOS fragments (Dornez et
al 2008). Several studies demonstrated that the extensive fermen-
tation of AX resulted in WEAX, AXOS, or both with potential
prebiotic effect (Broekaert et al 2011; Damen 2011). However,

TABLE I1
Bacteria Development During Sourdoughlike Fermentation (13 Refreshments) of Wheat Bran®

Bacteria : 0 1 2 3 4 S 6 7 8 9 10 11 12 13
Leuconostoc citreum X X X X X % X X X
Leuconostoc mesenteroides subsp. mesenteroides % X X X X X X X X X X X X X
Lactobacillus sakei subsp. sakei X X X X X X x X X X
Lactobacillus curvatus X X X X X X X X X < X X X X
Lactobacillus plantarum X X X X X
Lactobacillus brevis X X X X X X X
Pediococcus pentosaceus 3 X X X X X X X X X X X X X
Pichia fermentans X X X X X X X X X X X X X

* Detected bacteria are marked with an x.
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the physiological impact of AX consumption strongly depended
on their structures and properties, because different types of AX
have different impacts on the intestinal microbial population
(Damen 2011). Further studies are needed to verify if and how
AX modifications occurring during fermentation affect bran pre-
biotic properties.

Clear differences in arabinose-to-xylose ratio in WEAX, an in-
dicator of the average degree of arabinose substitution (avDAS),
were found. The avDAS in fermented bran was 0.65, significantly
(P < 0.01) lower than that evaluated in native bran (0.88). The
ayDAS of the WEAX was significantly reduced after bran fer-
mentation, indicating that WEAX in fermented bran were less
substituted with arabinose than those from native bran. This result
is interesting because AX fractions with a low avDAS seem to be
more easily degradable by intestinal microbiota (Karppinen et al
2001; Grootaert et al 2009; Damen 2011; Brouns et al 2012).

The cell wall structures of wheat kernels are insoluble partially
because of phenolic compounds, especially phenolic acids, which
form cross-links between polysaccharides and lignin (Faulds and
Williamson 1999). In particular, ferulic acid, which is the most
abundant phenolic compound in grain, and dimers of this acid
(diferulates) have an important role in the structural properties of
aleurone fiber. These compounds are responsible for the cross-
links between cell wall polysaccharides, and in particular ferulic
acid is esterified to cell wall AX at the C5 position of arabinose
residues (Klepacka and Fornal 2006). Bran cell wall structure is
degraded by endogenous and microbial endoxylanases that are
activated or produced during fermentation. Moreover, other de-
grading enzymes such as arabinofuranosidases, feruloyl esterases,
acetyl esterases, and o-glucuronidases remove arabinose, ferulic

TABLE III
Chemical Composition (Mean + Standard Deviation) of Native Bran
and Fermented Bran (Refreshment 13 Days)*

Components Native Bran Fermented Bran
Ash 8§3+0.1 5:6.£ 0.1
Proteins 19.2+0.1 20.7 0.1
Lipids 5.6 0.7 7.0+£04
Carbohydrates 26.0 18.8
Starch 21.1 15.4
Glucose 1.1+£02 2.5+0.0
Fructose 0.8+0.1 0.8+0.1
Raffinose 1.0£0.0 nd
Sucrose 1.8%0.1 nd
Maltose 0.1£0.1 nd
Total fiber 439+0.3 475203
Soluble fiber 3402 44+0.1

z Chemical composition is reported as % db; nd = not detectable.

-k
(3]
2}

(P < 0.001)

*kk

=T
o
1

Free ferulic acid (mg/100g db)

Fermented bran

1
Native bran

Fig. 3. Free ferulic acid content (mg/100 g db) in native and fermented
bran.

acid, acetic acid, and (4-0-methyl)glucuronic acid side chains
from the xylan backbone, respectively (Grootaert et al 2007).
Therefore, the fermentation process, through fiber degradation
and solubilization, increased the availability of FFA, which has
well-known antioxidant properties (Katapodis et al 2003; Fang et
al 2012). Figure 3 shows the levels of FFA detected in bran before
and after fermentation. The concentrations of FFA in native and
fermented bran were 1.99 and 11.38 mg/100 g, respectively, an
increase of 82%. Ferulic acid accumulation and its bioconversion
to other phenolic derivatives can occur during the growth of LAB,
owing to ferulic acid esterase and ferulic acid decarboxylase ac-
tivities. This phenomenon was earlier detected in some LAB spe-
cies involved in sourdoughlike fermentation, such as L. brevis, L.
plantarum, and Pediococcus sp. (Kaur et al 2013). Moreover,
according to Lioger et al (2007), the fermentation process de-
graded antinutritive factors, such as phytic acid, that were unde-
tectable in fermented bran (Fig. 4), likely through the activation
of microbial and endogenous phytases, which could lead to an
increased mineral bioavailability (Lopez et al 2000; Lioger et al
2007). Although most phytate-degrading LAB act on calcium
phytate, the most abundant phytate present in cereal and legume-
based foods, some Pediococcus pentosaceus strains have been
reported to be able to degrade both sodium and calcium phytate
(Raghavendra and Halami 2009). In contrast, L. plantarum is able
to produce nonspecific acid phosphatase, and it showed much less
specificity toward sodium phytate (Zamudio et al 2001). Phytate-
degrading ability is strictly pH-dependent, and the optimum pH
for plant phytases is approximately 5 (Greiner and Konietzny
2006). The observed reduction in phytate content in the fermented
bran might, therefore, result from an activation of endogenous
bran phytases as a consequence of a fall in pH during fermenta-
tion.

CONCLUSIONS

The current study supports the hypothesis that a sourdoughlike
fermentation process is an efficient means to increase the amount
of bioactive compounds of wheat bran. This ancient process, tra-
ditionally used as a form of dough leavening, has been exploited
in an innovative way to ferment the outer layers of the wheat cary-
opsis. Results suggest that fermentation, through the activation
and production of endogenous and microbial enzymes, increases
the amount of soluble fiber, WEAX, and FFA and decreases the
content of phytic acid in wheat bran. The identification of the
bacteria involved in sourdoughlike fermentation is the first step
toward selecting starter cultures according to their functional prop-
erties to conduct “tailored” bran fermentation processes. Further
studies have already been done for the characterization of the
isolated bacteria and for understanding their role in the nutritional
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enhancement of fermented bran. These studies provide additional
information for the future purpose of adding fermented bran as a
functional ingredient for bran-enriched products.
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