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Abstract

Adverse health effects of air pollution attributed mainly to airborne particulate matter have been well documented in the
last couple of decades. Short term exposure, referring to a few hours exposure, to high ambient PM10 concentration is
linked to increased hospitalization rates for cardiovascular events, typically 24 h after air pollution peaks. Particulate matter
exposure is related to pulmonary and cardiovascular diseases, with increased oxidative stress and inflammatory status.
Previously, we have demonstrated that repeated intratracheal instillation of PM10sum in BALB/c mice leads to respiratory
tract inflammation, creating in lung a condition which could potentially evolve in a systemic toxic reaction. Additionally,
plasma membrane and tissue lipids are easily affected by oxidative stress and directly correlated with inflammatory
products. With this aim, in the present investigation using the same model, we analyzed the toxic potential of PM10sum
exposure on lipid plasma membrane composition, lipid peroxidation and the mechanisms of cells protection in multiple
organs such as lung, heart, liver and brain. Obtained results indicated that PM10 exposure led to lung lipid reshaping, in
particular phospholipid and cholesterol content increases; concomitantly, the generation of oxidative stress caused lipid
peroxidation. In liver we found significant changes in lipid content, mainly due to an increase of phosphatidylcholine, and in
total fatty acid composition with a more pronounced level of docosahexaenoic acid; these changes were statistically
correlated to lung molecular markers. Heart and brain were similarly affected; heart was significantly enriched in
triglycerides in half of the PM10sum treated mice. These results demonstrated a direct involvement of PM10sum in affecting
lipid metabolism and oxidative stress in peripheral tissues that might be related to the serious systemic air-pollution effects
on human health.
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Introduction

Recent epidemiological studies indicated how air pollution

becomes a relevant factor in the occurrence of cardiovascular

diseases, demonstrating an association between both long-term

and short-term air pollution exposure and cardiovascular

morbidity and mortality events [1,2]. Short-term exposure,

referring to a few hours exposure, to high ambient PM10 (particles

#10 mm in aerodynamic diameter, comprising coarse, fine and

ultrafine particles) concentration is linked to higher hospitalization

rates for cardiovascular events [2], typically 24 h after air pollution

peaks [1].

Compelling evidences indicated that PM10 causes the most

serious effects on human health because of the broad range of

different toxic substances that particles contain [2,3]. Coarse

particles can contain biogenic materials, such as pollen, endotoxin

and spores [4]; in particular, Gram-negative bacteria were mainly

found in PM10sum, while Gram-positive bacteria were predom-

inant in PM10win [5], thus the LPS amount was greater in

PM10sum (60, 5 EU/mg) than in PM10win (20, 7 EU/mg) [6].

Also transition metals and endotoxins are potential mediators of

PM10 adverse effects, causing reactive oxygen species and

inflammatory mediator production [7,8].

It has been proved that lung inflammation plays a key role in

enhancing the extra-pulmonary translocation of smallest particles,

as confirmed by the evidence that particle translocation is

markedly increased following LPS treatment [9]. Moreover,

ultrafine particles (UFPs #0.1 mm) are able to over-pass the lung

clearance process and enter into the alveolar epithelium [10,11],
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thus increase the possibility of their translocation through the

alveolar blood barrier (ABB) [12,13] and involving UFPs in

cardiopulmonary diseases [14] and induction of neuroinflamma-

tion [15,16].

Furthermore, it must be taken into account the release into

bloodstream of pro-oxidative and pro-inflammatory mediators

produced in lung exposed to PM; these mediators are also

responsible for adverse systemic effects [3,17,18].

Systemic adverse effects could be induced by numerous

chemical species adsorbed onto particles, such as soluble metals

or polycyclic aromatic hydrocarbons (PAHs) [19,20,21].

Because PM-associated water-soluble metals can be leached off

in the lung lining fluid, they are likely to be translocated to the

pulmonary vasculature, heart, and other extra-pulmonary organs

before dilution in the systemic circulation and clearance by liver

[22]. Due to the large surface area, UFPs are able to absorb large

amounts of organic molecules compared to larger particles.

Ambient air particles demonstrated that UFPs have a higher

percentage of both elemental and organic carbon as well as PAHs

so contributing to the generation of reactive oxygen species and

oxidative stress in macrophages and epithelial cells [23].

Consistent with these assumptions, in a previous work [24] we

recently determined that repeated intratracheal instillation of

PM10sum in BALB/c mice leads to the induction of inflammation

in the respiratory tract, creating in lung a condition which could

potentially evolve in a systemic toxic reaction. Indeed, after

PM10sum intratracheal instillation, we demonstrated an increase

in inflammatory and coagulation markers in blood and heart

tissue, and a concomitant increase in markers of brain blood

barrier (BBB) damage as well as oxidative stress in brain

parenchyma [24].

Definitely, PM reach in endotoxin could trigger a local

inflammatory response in the lung, allowing the translocation of

smallest particles as well as of mediators across the ABB into

bloodstream and then causing systemic toxicity. Moreover, it is

likely that, after translocation of smallest particles, both their

organic and metal components can result in systemic oxidative

stress [25,26].

A consequence of oxidative stress is membrane lipid peroxida-

tion, primarily involving polyunsaturated fatty acids. Lipid

peroxidation generates a constellation of products among which

are reactive electrophiles such as epoxides and aldehydes [27,28].

There is increasing evidence that aldehydes are involved in many

pathophysiologic effects associated with oxidative stress in cells and

tissues [26]. Malondialdehyde is a major product of lipid

peroxidation, able to react with nucleic acid bases at physiological

pH to form adducts resulting mutagenic in mammalian cells [29]

and carcinogenic cells [30].

At last, a significant topic poorly investigated is the possible toxic

effects of PM10 on the cell membranes; in particular, the PM10

could mediate reshaping of phospholipid pattern and their fatty

acid composition. Lipids alter the geometric properties of

membranes, interface between the cellular and the extracellular

microenvironment being involved in the signalling process in

response to exogenous stimuli. Cell membrane controls protein

traffic and provides messenger molecules that mediate cell-cell

communication, suggesting that advances in our understanding of

lipid modifications induced by PM could better disclose PM

adverse effects at a molecular level.

Using an in vitro model, Brandenberger et al. [31] demon-

strated that particle exposure induces an increase in plasma

membrane surface area which correlates with the total particle

surface area that cells are exposed to. This increase may be

explained by lipid trafficking to the apical plasma membrane and

may be interpreted as a protective reaction of the cells against

particle induced stress. In according, Beretta et al. [32] found an

increase in phospholipid phosphorous in alveolar cells exposed to

organic extract of tire debris, in a dose dependent manner, but

minor differences in the phospholipid composition.

Starting from these considerations, in the present investigation

the toxic potential of PM10sum on lipid plasma membrane

composition, lipid peroxidation and the mechanisms of cell

protection have been analysed in multiple organs such as lung,

heart, liver and brain of PM10sum exposed BALB/c mice.

In particular, we measured in these organs lipid and fatty acid

content and composition, the lipid oxidation as well as heme

oxygenase-1 (HO-1) and cytochrome 1B1 (Cyp1B1) protein levels,

after the last of three intratracheal instillations of PM10sum. The

activation of HO-1 appears to be an endogenous defensive

mechanism used by cells to reduce inflammation and tissue

damage in injury models, while Cyp1B1 is involved in the

activation of many xenobiotic as well as PAHs metabolism.

Moreover the mRNA levels of Cyp1B1, HMOX, IL-1b, MIP2,

MPO, miR-21 and miR-155 were measured as inflammation

markers in lung and blood. Blood and lung parameters were

correlated to heart, liver and brain lipid changes resulting in

interesting findings.

Materials and Methods

Animals
Male BALB/c mice (7–8 weeks old) were purchased from

Harlan; food and water were administered ad libitum. Mice were

housed in plastic cages under controlled environmental conditions

(temperature 19–21uC, humidity 40–70%, lights on 7 a.m.–7

p.m.). Animal use and care procedures were approved by the

Institutional Animal Care and Use Committee of the University of

Milano Bicocca and complied with guidelines set by Italian

Ministry of Health (DL 116/92); invasive procedures have been

performed under anaesthesia and all efforts were made to

minimize suffering.

PM sources and characterization
Atmospheric PM10sum was collected during summer 2008 in a

Milan urban area as described in previous paper [33]. The

chemical characterization of PM10 collected during summer 2008

doesn’t differ from these of PM10 collected in summer 2006 and

2007 [6]. The procedure of particles recovering is fully described

in [24].

Intratracheal PM10sum instillation
Animal testing was carried out by intratracheally instilling 6

mice for each experimental group. Briefly, BALB/c mice were

anaesthetised with a mixture of 2.5% isoflurane (Flurane) and kept

under anaesthesia for all the durance of the instillation procedure.

Intratracheal instillation with 100 mg of PM10sum in 100 ml of

isotonic saline solution or 100 ml of isotonic saline solution (sham)

has been performed by means of MicroSprayer Aerosolizer system

(MicroSprayer Aerosolizer- Model IA–1C and FMJ-250 High

Pressure Syringe, Penn Century, USA), as described [34,35,36].

The intratracheal instillation was performed on days 0, 3, and 6;

24 h after the last instillation, mice from each experimental group

were euthanized with an anaesthetic mixture overdose (Tileta-

mine/Zolazepam-Xylazine and isoflurane). Experimental doses

and time course have been established in according to [24].

PM10 Affect Tissue Lipid Metabolism in Mice
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Histological analysis
Lung, Heart, Brain and Liver from sham and PM10sum-treated

mice were excised and immediately formalin fixed and processed

for histology as previously described [24].

Samples were qualitatively screened by means of Zeiss Axioplan

microscope equiped with 40x magnification and images were

acquired using Zeiss AxioCam MRc5 digital camera interfaced

with the Axiovision Real 4.6 software.

Lung, liver, brain and heart parenchyma protein analysis
Lung, liver, brain and heart of sham and PM10sum-treated

mice were quickly excised and washed in ice-cold isotonic saline

solution. For the detection and quantification of proteins, organs

were minced at 4uC, suspended in NaCl 0.9%, briefly homoge-

nized for 30 seconds at 11000 rpm with Ultra-Turrax T25 basic

(IKA WERKE) and sonicated for 30 seconds. Samples were

submitted to trichloroacetic acid (TCA) precipitation according to

the procedure described by Farina et al. [36]. The pellets were

suspended in water and protein quantity determined by BCA

method (Sigma Aldrich, USA).

Thereafter, lung, liver, brain and heart homogenates of sham

and PM10sum-treated mice were loaded on SDS-PAGE and

submitted to electrophoresis, followed by Western blot, according

to procedures described already described [36]. Homogenates

were tested with specific antibodies for HO-1 (sc-10789, Santa

Cruz) and Cyp1B1 (sc-32882, Santa Cruz). Then, blots were

incubated for 1.5 h with horseradish peroxidase-conjugated anti-

rabbit IgG (1:5000, Pierce) diluted in PBS-Tween20/milk.

Proteins were detected by ECL using the SuperSignal detection

kit (Pierce, Rockford, IL). Immunoblot bands were analysed and

the optical density (OD) quantified by KODAK (Kodak Image

Station 2000R); all the data have been normalized to b-actin

(A2066, 1:1500, Sigma) and each protein in PM10-treated group

has been normalized to the respective sham group.

Lung and blood molecular analyses
Lung and blood from 5 sham and 5 PM10sum-treated mice

were considered for RNA analysis. Lung were suspended in an

appropriate volume of RNA Later; total RNA extraction of lung

and blood was performed as previously described [24]. RNA

quality was checked by microcapillary electrophoresis with 2100

BioAnalyzer (Agilent Technologies, Santa Clara, CA, USA). Total

RNA integrity was assessed on the basis of the RIN (RNA Integrity

Number) factor and presence of low molecular weight RNA

molecules (including 5S rRNA and small RNAs) was verified.

RNA samples were stored at 280uC until use.

Quantitative PCR (QPCR) reactions for microRNAs was

performed by use of TaqMan MicroRNA Reverse Transcription

(RT) kit (Applied Biosystems, Life Technologies, Inc. Carlsbad,

CA, USA) and of specific miRNA primers provided with TaqMan

microRNA assays, according to the manufacturer’s protocol.

Starting from 10 ng of total RNA for each assay, RT reactions

were performed by means of Applied Biosystems 7900 Thermo-

cycler machine. Quantitative microRNA expression analysis was

carried out for miR-21 (Assay ID, 000397, Applied Biosystems)

normalized against U6snRNA (Assay ID, 001973, Applied

Biosystems) taken as endogenous control. For gene expression

analysis, we performed QPCR starting from 1 mg of total RNA

using the High Capacity cDNA Reverse Transcription kit (Applied

Biosystems) and gene-specific primers provided with TaqMan

Gene Expression Assays. Specifically, QPCR analysis were carried

out for HMOX1 (Assay ID Mm00516005_m1), Cyp1B1 (Assay

ID Mm00487229_m1), IL-1b (Assay ID Mm01336189_m1), MIP-

2 (Assay ID Mm00436450_m1) and MPO (Assay ID

Mm00447886_m1) genes. All data have been normalized versus

glyceraldehyde-3-phosphate dehydrogenase (GAPDH, Assay ID

Mm99999915_g1) gene taken as endogenous control. Reactions

were run in triplicate on the Applied Biosystems 7900 HT Fast

Real-Time PCR System machine. Delta Ct values were calculated

using the SDS software version 2.3 (Applied Biosystems), by

applying automatic baseline and standard threshold settings.

Lipid analysis
Tissues were submitted to lipid extraction with three different

chloroform/methanol mixtures 1:1, 1:2, 2:1 (v/v) and partitioned

chloroform/methanol/water, 47:48:1, v/v/v and then with water.

The organic phase, after partitioning, was dried and resuspended

in chloroform/methanol (2:1) for the analysis of phospholipid (PL),

neutral glycolipid and cholesterol amount. All solvent contained

BHT as antioxidant.

Purification and quantitative analysis of membrane phospho-

lipids and cholesterol was obtained using an HPLC-ELSD system

(Jasco, Japan; Sedex SEDERE, FR) equipped with a LiChrospher

Si 60 column (LiChroCART 250-4, Merck, Darmstadt, Ger-

many).

The chromatographic separation was carried out as previously

described [37]. By means of Evaporative Light Scattering Detector

(ELSD) we detected and quantified separated PL species. After

elution, samples were splitted in two aliquots. The ratio was 1:9,

i.e. one part to the detector and nine parts have been collected by

Gilson Fraction Collector Model 201, in order to separate the

different phospholipid classes for further gas chromatographic

analysis (GC). After separation, each phospholipid class has been

analysed for fatty acid composition by GC in following conditions.

Fatty acid methyl esters were obtained by transesterification

with sodium methoxide in methanol 3.33% w/v and injected into

Agilent (Agilent Technologies 6850 Series II) gas chromatograph,

equipped with a flame ionization detector (FID) under the

following experimental conditions: capillary column: AT Silar

length 30 m, film thickness 0.25 mM. Gas carrier: helium,

temperature Injector 250uC, detector 275uC, oven 50uC for

20 min, rate of 10uC min21 until 200uC for 20 min.

Neutral glycolipids, Triglyceride and Cholesterol were separat-

ed by HP-TLC using silica gel plates (Merck, Darmstadt,

Germany). Chromatography running and quantitative analysis

was performed as previously described [38]. The delipidized pellet

was used to assay protein amount [39].

Statistical analysis
SPSS (IBM) was used as platform for statistical analysis. In

particular, means and standard deviations were initially calculated

and multiple variable two way ANOVA coupled to Bonferroni

assay to determine differences between organ lipids and molecular

markers of treated and untreated mice. Statistical differences with

a p value below 0.05 were considered significant. Related graphs

were drawn with GraphPad Prism 5. Furthermore, Pearson’s

correlations were estimated between lipid and molecular quanti-

tative parameters within each organ as well as between different

organs; Pearson’s correlation coefficients with a p value below 0.05

were considered significant.

For HO-1 and Cyp1B1 western blot analyses in tissues from

sham and PM10sum experimental groups, results have been

expressed as mean 6 standard error (s.e.). Data distribution was

tested by Shapiro-Wilk test; statistical differences were tested

accordingly by non-parametric U Mann-Whitney test. Statistical

differences were considered to be significant at the 95% level (p
value ,0.05).

PM10 Affect Tissue Lipid Metabolism in Mice
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Results

Lung, heart, liver and brain parenchyma histology and
lipid analysis

Lung and heart histological analyses are shown in Figure 1.

Panels A and B report analyses from sham and PM10sum-treated

mice lung respectively. No signs of particle accumulation signs

were determined in lungs; nevertheless, it was possible to observe

inflammatory cell recruitment and alveolar macrophage infiltra-

tion (arrows) in the connective surrounding terminal bronchioles

and proximal alveolar sacs (panel B). Panels C and D report heart

histological images; no clear sign of tissue steatosis or inflammation

was evident in the heart parenchyma. Finally in brain and liver of

treated mice the histological analysis did not show any difference

in comparison to the organs of sham mice (data not shown); no

evidence of reactive gliosis nor cortical laminar hyperintensities

within the neocortex and subcortical white matters was evident in

PM10sum treated mice.

Data of protein, DNA, and lipid subclass amount in different

tissues obtained from sham or PM10sum-treated mice are

represented in Figure 2 as changes relative to mean sham. Table

S1 reports the actual mean amounts of the measured parameters

and the related statistical analysis, while Table S2 reports the

Pearson’s correlation coefficients between lipid and molecular

parameters within each organ.

Obtained results showed that PM10sum exposure led to an

increase in protein amount in all tissues, significantly higher in

lung, brain and heart comparing to sham. As expected, the

phospholipid amount significantly increased in lung after

PM10sum exposure and, surprisingly, this increase was recorded

also in liver. Cholesterol was increased in lung, while the quantity

of neutral glycosphingolipids was significantly increased in the

heart. The analysis of specific lipid classes and correlation

statistical tests led to conclude that the phospholipid increase

was related mainly to phosphatidylcholine (PC) in lung (r = 0.925

p,0.01), while in liver was strictly correlated with both

phosphatidylethanolamine (PE) and PC (r = 0.856 and r = 0.963).

Worth of note is that in lung the increase of PC was statistically

correlated with cholesterol increase (r = 0.942, p,0.01).

Sphingomyelin significantly increased in lung and liver while a

significant decrease was measured in brain. The tiobarbituric

reactive substances (TBARS) levels were measured as lipid

oxidation index. This value is significantly increased only in the

lung of PM10sum-treated mice.

In Figure 3 we reported changes relative to mean sham of total

fatty acids composition in different tissues; percentage fatty acid

composition and related statistical analysis are reported in Table

Figure 1. Histology of lung and heart tissue of sham (A, C) and PM10sum-treated (B, D) mice, 24 h after the third intratracheal
instillation. Each figure represents the status evidenced examining 6 sham and 6 PM10sum-treated mice. A and B bars = 50 mm. C and D bars
= 25 mm. Lung results modified from Farina et al., 2013 [24].
doi:10.1371/journal.pone.0106855.g001
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S1. No significant differences were found in total fatty acid

composition of lung from PM10sum-treated mice, comparing to

sham, even if the content of C22:5 was directly correlated with

TBARS (r = 0.86, p,0.05) while omega-6/omega-3 ratio was

inversely correlated with it (r = 20.845, p,0.05, Table S2).

Conversely, the other tissues showed significant changes in fatty

acid composition after PM10sum exposure. In particular, in both

liver and brain monounsaturated fatty acids decreased, concom-

itantly, omega-3 and polyunsaturated fatty acids, in particular

docosahexaenoic acid (DHA), increased. In liver, a significant

increase of arachidonic acid (AA) was also determined.

HPLTC analysis of neutral lipids, containing cholesterol and

triglycerides (TAG), underlined in 3 out of 6 PM10sum-treated

mice a significantly higher amount of triglycerides (Fig. S1,

Table 1) compared to sham. The level of TAG significantly

correlates in heart with the fatty acid composition (Table S2). For

this reason, we divided into 2 groups the PM10sum-treated mice

hearts: group A with a slight increase of triglyceride amount, and

group B with a high and significant increase of triglycerides. Major

changes in total fatty acid composition were present in hearts from

group B; in fact, due to the high TAG component, the fatty acid

composition was significantly modified, with an increase of

monounsaturated fatty acids and a parallel decrease of omega-3

polyunsaturated fatty acids (PUFAs), in particular DHA. More-

over, a slight decrease of AA was also measured (Table 1).

Fatty acid composition analysis followed HPLC separation of

each phospholipid class from lipid extracts. Brain and liver results

are summarized in supplemental tables (Tables S3–S4), while we

focused our attention on lung and heart phospholipid fatty acid

composition. Concerning lung, PE showed an increase of AA

while phosphatidylserine (PS) fatty acid composition was charac-

terized by significant changes in the major fatty acids resulting in

an increased n-6/n-3 ratio (Table 2). Conversely, all the other

tissues were characterized by an increase of DHA. This increase

was particular evident in all the phospholipids extracted from

heart, but sphingomyelin (SM) (Table 3). In brain (Table S3) PS

Figure 2. Protein, DNA, and lipid subclass changes in lung, liver, heart and brain of PM10sum-treated mice. Data were calculated as
percentage variation relative to mean sham value. Statistical analysis was performed on actual amounts by a two way ANOVA coupled to Bonferroni’s
test. n = 6 for PM10sum and n = 5 for Sham mice. * = p,0.05. Mean data and statistical results reported in Table S1.
doi:10.1371/journal.pone.0106855.g002
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and SM were the major affected phospholipids, while in the liver

(Table S4) the increase of DHA was recorded only in PC.

Lung, heart, liver and brain parenchyma protein analysis
A significant increase in HO-1 level, a protein involved in

inflammation and oxidative stress, was observed in lung and brain

of PM10sum-treated mice, comparing to sham; on the contrary, in

heart and liver HO-1 showed no significant variation (Fig. 4).

The level of Cyp1B1, a cytochrome of the P450 superfamily

involved in the activation of many xenobiotic as well as in PAHs

metabolism, significantly decreased in treated mice lung 24 h after

PM10sum intratracheal instillation, while a significantly increase

was observed in heart of treated mice, comparing to respective

sham. In liver and brain, Cyp1B1 showed no significant variation

(Fig. 4).

Moreover, as previously reported, many other inflammation/

stress proteins were significantly increased in lung, heart, brain

and inflammatory cells were present in blood and bronco alveolar

lavage fluid (BALF) of PM10sum treated mice. In particular we

previously recorded an increase of AMs and PMNs cells, mainly

neutrophils, in BALF and blood of PM10sum treated mice [24].

RNA expression in lung and blood: correlations with
lipids

To follow inflammation markers, in both blood and lung the

gene expression of different markers were measured. HO-1

(HMOX) acts as defense protein and its deficiency leads to

enhanced endothelial cells injury [40]. HO-1 role is to catabolize

the heme group from the cytosol, thus generating CO, biliverdin

Figure 3. Fatty acid composition changes in lung, liver, heart and brain of PM10sum-treated mice. Data were calculated as percentage
variation relative to mean sham value. U.I. = Unsaturation Index (sum of the % unsaturated fatty acids multiplied by their number of double bonds).
Statistical analysis was performed on percentage fatty acid distribution by two way ANOVA coupled to Bonferroni’s test. n = 6 for PM10sum and n = 5
for Sham mice. * = p,0.05. Mean data and statistical results reported in Table S1.
doi:10.1371/journal.pone.0106855.g003
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(converted to bilirubin) and Fe2+ thus playing a protective role

against inflammation and oxidative stress [41].

One of the major markers of inflammation is TNFa, a

pleiotropic cytokine [42], able to induce the release of other

factors such as MIP-2 (IL-8 in humans, MIP-2 in rodents) and

IL1b [43]. In mice the C-X-C chemokine macrophage inflam-

matory protein MIP-2 has been identified as chemoattractant of

neutrophils in vitro and in vivo [44]. Interleukin-1b is a master

cytokine, known to be involved in initiating the innate immune

response in vertebrates and in cytokines expression [45,46].

MPO is an inflammatory marker released by degranulation of

activated neutrophils promoted by IL-1b [47].

The miR-21 is involved in negative regulation of the signaling

pathway of TLR-2 [48] and TLR-4 [49], thus playing a key role in

inflammatory process induced by LPS. Moschos et al. [50] and

Sheedy et al. [49] hypothesized that miR-21 might be involved in

the resolution rather than in the induction of inflammation.

Finally miR-155 is involved in the HMGB1/RAGE signaling

pathway, whose activation lead to the enhanced expression of

cytokines and molecules; thought it plays a role in particle effects,

including the release of proinflammatory cytokines (such as tumor

necrosis factor alpha, interleukin IL-1b, IL-6 and IL-8), adhesion

molecules (i.e. vascular cell adhesion molecule 1 and intercellular

adhesion molecule 1), and coagulation factors (i.e. plasminogen

activator inhibitor-1, tissue-type plasminogen activator and tissue

factor) [51–54].

Gene expression results are reported in Figure 5; data were

normalized to housekeeping genes and reported as dCT. A

significant increase of MIP2 and miR21 was recorded as

inflammatory gene expression in lung, while no statistical

differences were observed in blood.

Correlation analysis between blood and lung molecular and

lipidic parameters coupled to heart, liver and brain data revealed

interesting observations. Obtained results are actually reported in

Figure 6 as a simplified heath matrix.

As observable, inflammation markers measured in blood and

level of proteins in lung highly correlated with tissue lipid

composition in heart. Moreover, the level of AA and gene

expression in lung were directly correlated with liver phospholip-

ids.

Also brain lipids were significantly influenced by lung param-

eters, in particular, the levels of omega-6 and omega-3 polyun-

saturated fatty acids.

Discussion

Epidemiological and experimental studies demonstrated posi-

tive associations between adverse cardiopulmonary effects and

acute and chronic exposure to concentrations of ambient air

pollution currently found in major metropolitan areas [17].

The connection between exposure to PM and harmful

cardiopulmonary effects has been reasonably well established,

while the evidence that the central neuronal system (CNS) may be

another PM target is growing. Indeed, PM might be associated

with cerebrovascular and neurodegenerative diseases [55].

It is known that PM10 exposure increases plasma ET-1 levels

[56], thus mediating systemic endothelial dysfunction. We

demonstrated also PM10sum toxicity on cardiovascular system

Table 1. Triglyceride (TAG) content and total fatty acid composition (%) of Heart from Sham and PM10sum treated mice. PM10
mice were divided into 2 groups: A) with low content of Triglycerides and B) with high content of Triglycerides.

HEART

Fatty Acid Sham PM10-A PM10-B

C16:0 14.1160.83 15.4862.08 20.2361.69*

C16:1 0.5860.46 0.6760.27 2.4161.42*

C18:0 19.8461.45 18.2660.33* 11.7861.45*

C18:1 7.2960.59 8.2462.06 23.4864.05*

C18:2 15.4561.54 15.5760.91 21.4161.62*

C20:3 0.6860.06 0.9360.51 0.5560.15*

C20:4 7.8660.45 7.2160.77 4.3461.02*

C20:5 0.1860.06 0.1860.07 0.1060.03*

C22:5 1.5360.19 1.5560.14 0.7960.25*

C22:6 32.2862.36 31.6160.64 14.5765.29*

Saturated F.A. 33.9562.04 33.7462.33 32.0160.71

Monounsaturated F.A. 7.8760.87 8.9162.06 25.886 5.17*

C18:0/C18:1 2.7460.31 2.3460.59 0.5260.15*

Omega-3 PUFAs 34.2662.43 33.7063.15 15.8465.56*

Omega-6 PUFAs 23.9961.94 23.7061.25 26.2960.66*

v-6/v-3 0.7160.09 0.7160.06 1.8560.74*

U.I. 275.09613.08 270.90619.26 180.07629.06**

TAG (mg/mg w.w.) 2.3961.79 3.9162.45 38.39610.08**

U.I. = Unsaturation Index (sum of the % unsaturated fatty acids multiplied by their number of double bonds).
Mean 6 S.D.
*p,0.05;
**p,0.01 vs. Sham.
doi:10.1371/journal.pone.0106855.t001
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and brain parenchyma after PM10sum instillation, thus confirm-

ing PM systemic effects [24].

Several mechanisms have been proposed to explain the adverse

health effects of particulate pollutants. These include inflamma-

tion, endotoxin effects, stimulation of capsaicin/irritant receptors,

autonomic nervous system activity, pro-coagulant effects, covalent

modification of cellular components and ROS production. Among

these, ROS production and the generation of oxidative stress have

Figure 4. mRNA levels of Cyp1B1, HMOX, IL1b, MIP2, MPO, miR-21 and miR-155 in lung and blood. Data were normalized to
housekeeping gene and expressed as delta CT; values greater or equal to 17 indicates no detectable gene expression. n = 5, * = p,0.05.
doi:10.1371/journal.pone.0106855.g004

Figure 5. Immunoblotting analysis in lung, liver, brain and heart parenchyma from sham and PM10sum-treated mice, 24 h after the
third intratracheal instillation. (A) Western blot analysis of HO-1, Cyp1B1 as optical density (OD) quantified by Kodak Image Station. The proteins
have been normalized to b-actin and each protein in PM10 treated group has been normalized onto respective sham group. (B) Representative
Western blotting showing HO-1, Cyp1B1 and b-actin in lung, liver, brain and heart parenchyma from sham and PM10sum-treated mice, 24 h after the
third intratracheal instillation. All the data are expressed as mean 6 S.E. Sham vs. PM10sum-treated: * = p,0.05.
doi:10.1371/journal.pone.0106855.g005
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received the most attention [57]. Ambient particles contain a large

number of soluble metals including transition metals that are

capable of redox cycling. Evidence is also accumulating to suggest

that organic components carried on the particle surface play an

important role in mediating the toxic effect. For example, PAHs

can induce oxidative stress indirectly, through biotransformation

by cytochrome P450 to generate redox active quinones that act as

catalysts for free radical production [58].

Here, we investigated lipid variations induced in lung paren-

chyma after PM10sum intratracheal instillation in BALB/c mice;

in parallel, we analyzed HO-1 and Cyp1b1 levels. Extra-

pulmonary tissues were also affected by PM10sum exposure; we

were able to measure significantly changes in lipids amount and

protein levels in liver, brain and heart strictly correlated to lung

and blood parameters.

Lung
Lipid modification of lung tissue and surfactant are well

described as primary effects of different particulate matter in

humans and animal models [59,60], while there are scattered data

on other tissue lipid modifications.

As previously described, we found in lung the histological

features and the increase of proteins and lipids related to the

inflammatory process together with the increase of surfactant

stored in type II cells [61]. It seems also important to notice that

the increase of PC, strictly correlated with liver phospholipids,

could be also related to an anti-inflammatory protection system, as

some studies have demonstrated this potential for PC and its

metabolites in various conditions such as oxidative stress and

endotoxin induced injuries [62].

Regarding the increase of cholesterol content, this alteration is

already described by electron microscopy in the lung of heavy

cigarette smokers and it has been hypothesized that cholesterol

may represent a degenerative change in type II pneumocytes [63].

The PM triggers pulmonary oxidative stress and inflammation

by means of heterogeneous and complex mechanisms, with

variable responses according to different properties of PM particles

(e.g. size, charge, chemistry). Our previous work demonstrated the

presence of inflammation, oxidative stress and endothelial

activation in lung of PM10sum-treated mice [24]. Lung oxidative

stress has been confirmed in the current work, by increase of

TBARS and HO-1 levels in PM10sum-treated mice. Consequent

to HO-1 increase, the lung parenchyma of PM10sum-treated mice

showed a decrease in Cyp1B1 levels, due to reduced heme group

bioavailability [64]. Even if the increase of TBARS indicates that

lipid peroxidation might be occurred, with our protocol of

exposure we did not find changes of total fatty acid composition

[65]. On the contrary, when single phospholipid fatty acid

composition was evaluated, we measured a significant increase

of AA in PE and changes in n-6/n-3 fatty acid ratio, indicating in

PI, PS and PC; the decrease of n-3 fatty acids might be related to

TBARS increase in treated mice. It is known that the n-6/n-3 fatty

acid ratio in alveolar cell membranes regulates pro-inflammatory

cytokine release, as n-3 PUFAs are regarded to be anti-

inflammatory while n-6 PUFAs, and particularly AA, are pro-

inflammatory [66].

Moreover, Kampfrath [67] recently reported that chronic

exposure to ambient air-borne PM2.5 increases oxidized phos-

pholipid derivatives of 1-palmitoyl-2-arachidonyl-sn-glycero-3-

phosphoryl-choline in broncoalveolar lavage fluid.

All these results, both lipids and proteins, confirmed the

existence of inflammatory status in the lung of PM10sum treated

mice.

Liver
Liver is the major organ responsible for the detoxification of

chemical compounds and lipid metabolism. It has been suggested

that PM could reach the liver but the hepatic effects would not

necessarily depend on changes in the lung or elsewhere. Instead,

hepatic effects would arise from the direct contact of PM and

resident phagocytic hepatic cells (e.g., Kupffer cells), which are

demonstrated in in vivo exposure experiments [68]. Analyses of

HO-1 and Cyp1B1 expression showed no modification in liver of

PM10sum-treated mice comparing to sham.

Surprisingly, in liver we found significant changes in lipid

content mainly due to an increase of PC and total fatty acid

composition with a more pronounced level of unsaturated fatty

acids, in particular DHA, and an increase of unsaturation index.

The changes of lipids are statistically correlated to molecular

markers expressed in lung such as IL-1b and CYP1B1. These

results might also be related with the presence in PM10sum Milan

particulate of 2,3,7,8-tetrachlorodibenzo-p-diioxin (TCDD), even

if we did not verify its presence. TCDD in fact is able to interact

with aryl hydrocarbon receptor altering hepatic lipid metabolism;

previous results have demonstrated that TCDD is able to

significantly increase liver PUFA content [69]. These data may

represent a preliminary indication that chronic exposure might

induce metabolic liver decompensation ending in nonalcoholic

steatohepatitis (NASH) and insulin resistance [70].

Brain
Recent evidence links air pollution exposure to CNS pathology

and disease [71,72]. Even the mechanisms underlying brain

pathology, induced by air pollution, have to be clarified, there are

some evidence focused on neuroinflammation, oxidative stress,

endothelial and glial activation, and cerebrovascular damage as

possible pathways affecting the BBB [24,73,74].

In the present work, higher HO-1 levels were found in brain of

treated mice, confirming oxidative stress induced by PM10sum.

The brain is believed to be particularly vulnerable to oxidative

stress, in particular neurons, as it contains high concentrations of

PUFAs which are susceptible to lipid peroxidation, consumes

relatively large amounts of oxygen for energy production, and has

lower antioxidant defences compared to other organs [75].

Interestingly, microglia consistently generate ROS when activated

by multiple pro-inflammatory triggers, such as particles [76,77].

Oxidative stress is a common characteristic shared across

numerous neurodegenerative diseases [78–82].

Guo has demonstrated in rats that PM10 induce also brain

inflammation, and our data seem to confirm this hypothesis even if

an increase of n-3 PUFAs, in particular DHA, might indicate that

the organism is fighting inflammation producing pro-resolution

mediators [55]. In fact, the increase of omega-3 PUFAs in brain is

directly correlated with the omega-6/omega-3 ratio in lung.

Furthermore, these data are in agreement with liver results,

indicating that liver PUFAs might be transported to other tissue as

Figure 6. Correlation Heat Map Matrix between Blood and lung parameter couple with liver heart and brain data. Pearson’s
correlations were estimated using SPSS platform and transformed in a color code matrix. Only correlation with an R greater than 0.6 were coded;
positive correlation are indicated with a red scale (red indicates statistical significant ones with p,0.05 or 0.01), while negative correlation are
indicated with a blue scale (dark blue indicates statistical significant ones with p,0.05 or 0.01).
doi:10.1371/journal.pone.0106855.g006

PM10 Affect Tissue Lipid Metabolism in Mice

PLOS ONE | www.plosone.org 12 September 2014 | Volume 9 | Issue 9 | e106855



a refurbishment against tissue damage and inflammation.

Eicosapentaenoic acid and DHA, n-3 fatty acids, are metabolized

to resolvins and protectins, such as neuroprotectin D1, which has

important roles in resolution of inflammation [83].

Heart
During the last decade, further evidence in this direction has

progressively accumulated, so the updated AHA-2010 scientific

statement specifically defined PM exposure as ‘‘a modifiable factor

that contributes to cardiovascular morbidity and mortality’’ [84].

Indeed, it has been shown that short-term (from few hours to

weeks) exposure to PM triggers both fatal and non-fatal

cardiovascular events, while long-term exposure to the same

particles is associated with a greater reduction of life expectancy

[85,86].

Heart parenchyma of PM10sum-treated mice showed an

increase in Cyp1B1 levels as well as endothelial activation, but

no oxidative stress [24]. These results have been confirmed in the

present work: the increase in Cyp1B1 levels, which happens as

HO-1 (not significantly increased) does not consume the heme

pool, suggests a direct translocation of the PAHs component of

PM, or of smallest particles themselves, from lung to heart,

possibly through the pulmonary circulation.

Nevertheless, our data indicate that PM10sum effects lipid

composition in the heart and these changes are strictly correlated

to molecular marker expression in blood. It has been suggested

that myocardial lipid deposition, changes in lipidomic profile and

possible mitochondrial impairment as db/db models of obesity

might seriously impact cardiac function [86]. In particular, we

found, after PM10sum treatment, an increase of triglyceride

amount in 50% of mice after PM10sum treatment. The storage of

triglyceride droplets within cardiomiocytes has been already

described [87]; moreover, abnormal cytoplasmatic structures have

been noticed in cardiac muscle cells of mice exposed to air

pollution, a modification rarely noted in the sham group [88].

However, microscopy analyses did not reveal in heart parenchyma

of group B PM10sum-treated mice any signs of tissue steatosis.

Heart tissues of the group B were also characterized by a

significantly modified total fatty acid composition, with an increase

of monounsaturated fatty acids parallel, concomitantly to a

decrease of omega-3 PUFAs, in particular DHA, and a consequent

increase in n-6/n-3 ratio, that might be related to triglyceride

accumulation.

On the contrary, as in liver and brain, heart phospholipid fatty

acids were characterized by an increase of DHA also in

cardiolipin. The ability of circulating DHA to displace linolenic

acid from cardiolipin was already described [89]. The conse-

quence of these changes might be related to mitochondrial

respiration decrease and an increase of oxidative stress suscepti-

bility [89]. Despite no oxidative stress was detectable in this

experimental time window in heart parenchyma of our PM10sum-

treated mice, the significant increase in Cyp1B1 levels could

represent the first step for the upcoming start of oxidative stress

and inflammation, suggested also by n-6/n-3 ratio.

Conclusions

The association of air pollution with a number of adverse

respiratory and cardiovascular health effects has been well

documented. In fact, the impact of air pollutants on the respiratory

system has been widely and consistently reported in last years and

new epidemiological evidence which links air pollution to

mortality from lung cancer is robust [90].The general consensus

indicates that one of the mechanisms of air pollution-induced

health effects is the oxidative stress whose main target are the

lipids. By the way, membrane fatty acid composition was recently

correlated to longevity [91].

Our results demonstrate that repeated exposure of PM10sum in

BALB/c mice led to lung lipid reshaping, in particular an increase

in phospholipid and cholesterol content; concomitantly, the

generation of oxidative stress causes lipid peroxidation. The

translocation of mediators, cytokines, UFPs, LPS and/or metals

associated to PM10sum from lung to bloodstream might trigger

systemic adverse effects, involving heart, brain and liver that we

report.

In conclusion, recent epidemiological and animal toxicology

studies have raised concerns about the potential impact of air

pollution on peripheral tissues; in this contest, our results

contribute to this vision demonstrating a direct involvement of

PM10sum in affecting lipid metabolism in peripheral tissues.
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