
 

Parameterization of training images for aquifer 3D facies 

modeling integrating geological interpretations and statistical 

inference 

Sanjeev Kumar Jha1,*, Alessandro Comunian1,2, Gregoire Mariethoz1,3,4, Bryce F. J. Kelly1 

1The University of New South Wales, Connected Waters Initiative Research Center, National 

Center for Groundwater Research and Training, Sydney, Australia. 

2Dipartimento di Scienze della Terra “A.Desio”, Università degli Studi di Milano, Italy. 

3ETH Zurich, Geological Institute, Zurich, Switzerland.  

4University of Lausanne, Institute of Earth Surface Dynamics, Lausanne, Switzerland. 

  

Email s.jha@unsw.edu.au.  

*corresponding author  

  

Abstract  

We develop a stochastic approach to construct channelized 3D geological models constrained  

to borehole measurements as well as geological interpretation. The methodology is based on  

simple 2D geologist-provided sketches of fluvial depositional elements, which are extruded  

in the 3rd dimension. Multiple-point geostatistics (MPS) is used to impair horizontal  

variability to the structures by introducing geometrical transformation parameters. The  

sketches provided by the geologist are used as elementary training images, whose statistical  

information is expanded through randomized transformations. We demonstrate the  

applicability of the approach by applying it to modeling a fluvial valley filling sequence in  

the Maules Creek catchment, Australia. The facies models are constrained to borehole logs,  

spatial information borrowed from an analogue and local orientations derived from the  
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present-day stream networks. The connectivity in the 3D facies models is evaluated using  

statistical measures and transport simulations. Comparison with a statistically equivalent  

variogram-based model shows that our approach is more suited for building 3D facies models  

that contain structures specific to the channelized environment and which have a significant  

influence on the transport processes.  

  

Introduction  

High-resolution 3D geological models are important tools for the detailed  

interpretation of subsurface structures [Raiber et al., 2012], for determining the hydrological  

interaction between the surface water bodies and aquifers, or for modeling groundwater  

contaminant transport [Wycisk et al., 2009] and density-driven flow [Kerrou and Renard,  

2010]. Geological models can be constructed by integrating borehole facies logs with  

geophysical data sets, such as seismic cross-sections, structural data from geological maps  

and topographical information from digital elevation models [Maxelon and Mancktelow,  

2005; Maxelon et al., 2009; Wang and Huang, 2011; Wu et al., 2005]. In this paper, we focus  

on the construction of stochastic facies models of fluvial valley filling sediments based on  

borehole data. There are two dominant approaches to stochastic facies modeling: (i) cell- 

based geostatistical modeling; and (ii) object-based stochastic modeling. Although being  

widely used, object-based methods [Deutsch and Wang, 1996; Holden et al., 1998] can be  

difficult to condition to a large number of well log data. Furthermore, in the case of  

channelized structures, object-based models often generate long and continuous channels,  

whereas a typical alluvium aquifer is not as continuous, presenting channels interrupted by  

erosion and redeposition processes and by the formation of oxbows. Moreover, object-based  

models are restricted to a limited number of geometric shapes, and therefore may not be able  
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to reproduce certain geological settings [Comunian et al., 2011; Feyen and Caers, 2006; 

Michael et al., 2010].  

Sequential indicator simulation (SIS), part of the kriging algorithm family, is the most 

popular cell-based geostatistical method for categorical variables [Deutsch, 2002]. It builds 

on variogram models that conveniently allow describing the spatial structure with a limited 

number of parameters [Emery and Parra, 2013]. However, the convenience achieved by 

these parametric approaches comes at the price of a limited representation of complex 

heterogeneity [Schlüter and Vogel, 2011; Western et al., 2001; Zinn and Harvey, 2003]. A 

classical justification is that in percolation theory, breakthrough can be achieved in random 

3D media even with low percolation thresholds [Allard et al., 2011], therefore it has been 

argued that a detailed characterization of the connectivity is not critical, and that natural 

spatial heterogeneity can be adequately represented with a small number of parameters. This 

argument has however been strongly challenged by geologists because a realistic 

representation of geological structures can behave very differently than idealized random 

media [Neuweiler and Vogel, 2007; Zinn and Harvey, 2003], with for example very thin 

elongated hydraulically conductive features can result in lateral and vertical hydraulic 

connectivity and preferential flow within a sedimentary sequence even if its overall 

proportion is much lower than the percolation threshold [Huysmans and Dassargues, 2012]. 

Moreover, a practical difficulty is that it can be very difficult to model the horizontal 

variogram characteristics based only on sparse borehole data, resulting in considerable 

uncertainty on the spatial structure.  

Multiple-point geostatistics (MPS) was introduced to overcome the limitations of 

traditional geostatistical approaches [Caers and Zhang, 2005; Guardiano and Srivastava, 

1993] and has been proven to be a powerful tool for modeling subsurface heterogeneities 

[Zhou et al., 2012]. The key concept of MPS is to use a training image (TI), which constitutes 
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a prior description of the architectural features expected in a given sedimentological setting.  

In 2D studies, the training images are borrowed from available outcrop analogues [Bayer et  

al., 2011] or remote sensing images [Ge and Bai, 2011; He et al., 2013; Jha et al., 2013; Le  

Coz et al., 2011; Wojcik et al., 2009]. In the absence of extensive remote sensing information,  

method have been proposed to select an appropriate TI from a group of potential TIs by  

comparing the spatial statistics of local conditioning data with those of the proposed TIs  

[Boisvert et al., 2007; de Iaco and Maggio, 2011; Perez et al., 2014], or by integrating  

indirect data through an inverse problem [Khodabakhshi and Jafarpour, 2013; Suzuki and  

Caers, 2006]. However, in most geological applications there are insufficient data (only  

borehole logs located far apart) to infer an appropriate TI that is representative of the area of  

interest. In 3D, the selection of the TI is more challenging, let alone the construction of a set  

of 3D TIs to choose from. Le Coz et al. [2011] used a set of two-dimensional training images  

and derived the necessary statistics separately in the horizontal and vertical directions for  

modeling the facies heterogeneity. Comunian et al. [2012] developed a workflow to obtain  

3D MPS simulations by constructing the 3D model slice-by-slice using horizontal and  

vertical 2D training images. The assumption is that the 2D vertical and horizontal training  

images are fully representative of the 3D heterogeneity along any plane.   

Although conceptually simple, manually building a 3D TI based on geologists’ and  

reservoir modelers’ prior knowledge would be a lengthy geomodeling exercise. [Comunian et  

al., 2014] used process-imitating methods to simulate 3D TIs for MPS simulations of an  

alluvium basin and reported that finding suitable parameters for reproducing the statistical  

features of available data set is not a straightforward task. Mariethoz and Kelly [2011]  

introduced the concept of elementary training images, which are simple and easy to create.  

Transform-invariant distances are used to extend the possible structures that can be produced  

from such a training image. This is achieved by adjusting geometrical transformation  
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parameters that define the search geometry. Modifying the rotation and affinity parameters  

enables the expansion of the suite of available patterns within a TI. When both rotation and 

affinity are applied simultaneously, the MPS simulation is able to generate shapes that 

resemble connected and elongated geological structures, while honoring the original sparse 

data set. In this study, we explore in detail how a parameterized training image can be used to 

obtain a 3D facies model in a fluvial valley filling sequence, which is a practical innovation 

over Mariethoz and Kelly [2011] and an alternative to[Comunian et al., 2014]. This study 

demonstrates the applicability of the approach for real-world cases and provides 

methodological guidelines by (i) investigating ways to obtain elementary training images 

based on geologists’ expertise; (ii) inferring the transformation parameters from an analogue; 

and (iii) combining information from different sources (boreholes, analogues, local 

orientations). 

 

Methodology 

Our methodology for generating a 3D facies model is based on the Direct Sampling 

(DS) algorithm, a multiple-point simulation tool that uses a training image, a simulation grid 

and conditioning data as input. Comprehensive details on the DS algorithm are presented in 

Mariethoz et al. [2010]. A brief description of the DS algorithm is presented in Section A.1 

of Appendix A. Section A.2 of Appendix A summarizes how rotation and affinity 

transformations are applied during the DS simulation to create new patterns not available in 

the training image. Provided the training image represents general characteristics of a given 

geological setting (facies proportions, elementary architectural shapes), it is possible to build 

very different models that respect these essential characteristics. Furthermore, it is also 

possible to include non-stationarity in the orientation of the geological structures by 
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employing locally varying transformation parameters in the simulation domain (see Section 

A.3 of Appendix A). 

 

2.1 From 2D to 3D training image using extrusion and affine transformation 

The methodology presented in this section is illustrated through a simple example. A 

geological sketch depicting the position of the channel is shown in Figure 1a. The 2D sketch 

can be drawn manually using an image editing software (e.g., Microsoft Paintbrush) or using 

any commercial software for computer-aided design (CAD). A 3D training image is created 

from this 2D sketch by extruding the cross-sectional shapes in the third dimension (Figure 

1b). This is accomplished by stacking horizontally the 2D training image. As a result, the 

features that are drawn in 2D become elongated bodies. If the 2D sketch is made of simple 

shapes that can be represented analytically, such as in Figure 1a, one can also use an object-

based model to obtain the 3D training image (e.g. TiGenerator, [Maharaja and Journel, 

2005]). The extrusion approach requires more user input, but can create extruded channels 

training image from any non-parametric channel shape. The resulting 3D training image, 

which has straight channels, is not yet an accurate representation of geological structures, but 

it represents a notion of the horizontal connectivity that is expected in channelized 

formations. Since naturally occurring channels are seldom straight, the transform-invariant 

distances will later be used in the simulation to impair a meandering behavior to these 

structures. 

Figure 1c to 1f represent the output from a single realization of DS with different 

transformation parameters. In Figures 1c and 1d, rotation tolerance of o54=ε and o80  around 

the Z-axis have been used. The rotated channels result in new geological structures as shown 

in Figures 1c and 1d. In Figures 1e and 1f, affinity parameters of 2 and 0.5 are used in the Z-

direction resulting into connectivity structures that are thicker and thinner in the resulting 
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simulation. By using both rotation around the Z-axis and affinity in the Z-direction, various 

kinds of geological structures can be obtained.  

 

2.2 Workflow for obtaining 3D facies models from elementary sketches 

Our workflow for generating 3D facies models consists of four main steps: (i) 

selection; (ii) extrusion; (iii) inference; and (iv) modeling. Figure 2 shows the workflow 

illustrating these steps.  

Step I (selection): A set of 2D sketches is drawn, which are candidate training images 

provided by one or several geologists. The proportion of each facies, known from the 

boreholes, is kept identical in all sketches. The transition probabilities between facies are 

compared between the hand-drawn sketches and that of borehole logs. The transition 

probability is a conditional probability of having a type of facies (0 or 1) at any point given 

that a similar or different facies (0 or 1) is present at another location separated by a lag 

distance [Carle and Fogg, 1996]. This comparison, along with geological interpretation and 

expertise, is used for determining which sketch to select as most representative of the 

formation to be modeled. It is worth pointing out that instead of transition probability, an 

indicator variogram could have been used at this stage to select the training image.  

Step II (extrusion): The selected sketch is extruded in the 3rd dimension to form a 3D 

training image. An alternative to the extrusion could be used to produce a 3D elementary TI 

using an object-based model, provided that the shape of the channels can be accurately 

described by objects parameters.  

Step III (inference): Unconditional DS simulations are performed by changing the 

orientation and affinity parameters. The method of transform-invariant distances creates new 

patterns. Among these new patterns, by interaction and overlapping, cross-cutting of channels 
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are created. Supplementary Figure S1 demonstrates that the transform-invariant distances 

create cross-cutting channels even when the training image is only made of parallel channels.  

Step IV (modeling): Conditional multiple-point simulations are generated with the 

selected training image (or an object-based training image equivalent when applicable) and 

the inferred transformation parameters.  

 

2.3 Additional remarks 

The extruded sketches (step II) could be in some cases obtained using object-based 

models. However, parameterizing the objects based on sparse boreholes can be challenging, 

even if analogues are available. For example, to obtain meandering channels in TiGenerator, 

the one needs to define: a) Type of geobodies (Sinusoid, Ellipsoid, half Ellipsoid, Cuboid, or 

user defined), number of geobodies, number of facies and their proportions. b) Depending 

upon the type of geobodies selected, the channel properties have to be defined. For example, 

in the case of sinusoids, length, width, thickness, orientation, amplitude and wavelength 

needs to be provided as input. Shapes of higher complexity can have more parameters. c) 

Interaction rules have to define whether channels can cross each other and erode or overlap. 

In our approach, only the borehole data and geological expertise is used through 2D sketches, 

without extensive parameterization.  

The proposed workflow has the advantage of dealing with any complexity in the 

shapes of 2D TIs. For example, if the expected geology consists of sinuous channels with 

low-permeable (or high-permeable) discontinuous sheets at the bottom of each channel, our 

methodology would be very easy to put in place. To demonstrate the approach, a 2D TI is 

shown in the Figure 3a. The 2D TI is extruded and a rotation tolerance (ε) of 600 is applied to 

obtain a realization shown in Figure 3b. Obtaining such a model using an object-based 
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approach would require a high level of complexity of the objects, such as for example in the 

FLUVSIM code [Deutsch and Tran, 2002].  

For step III, as an alternative to the sensitivity analysis, an optimization algorithm or a 

Markov chain Monte Carlo (MCMC) sampler could be used to determine the transformation 

parameters and their uncertainty. 

 

Case study 

3.1. Study area and available data 

The proposed workflow is applied to the Maules Creek catchment located in western 

New South Wales, Australia (Figure 4). It is a sub-catchment of the Namoi catchment that 

has a surface area of 1500 km2..The upper and lower reaches of the creek are largely 

ephemeral and the middle reach is perennial. Surface water and groundwater interactions 

have been extensively studied at Maules Creek [Andersen and Acworth, 2009; Giambastiani 

et al., 2012; McCallum et al., 2012]. The geology of the catchment is complex. The modern 

day sediment distribution within the catchment is controlled by the westerly following waters 

coming from the Nandewar Range via a series of small creeks (including Bibbla, Horsearm, 

Middle, and Maules Creeks) and on the western side the northerly flowing Namoi River. 

Based on the palaeovalley shape, a similar combination of westerly flowing creeks feeding 

into a major northerly flowing river existed in the past. Based on this information, in our 

modeling approach we assume that the paleo-orientation of the system is identical to the 

orientation that is observed today.  

It is common throughout the Namoi to divide the valley filling sequence into the 

unconfined Narrabri Formation (approximately 30 m thick) and an underlying semi-confined 

Gunnedah Formation [Gates, 1980; Williams et al., 1987]. However, within the Maules 

Creek catchment there is little hydrological evidence to support such a division. Within the 
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valley filling sequence there is a clear trend from a wet, high-energy Neogene environment at 

depth, to the modern semi-arid environment. Over time there has been a trend towards 

decreasing sand and gravel deposition [Kelly et al., 2014]. There is an increase in the clay and 

silt content with the onset of aridity at the Pliocene/Pleistocene boundary (located 

approximately 30 to 40 meters below the ground surface in the vicinity of the Namoi River). 

The upper 6 meters of the sedimentary sequence consist predominantly of Vertosols. These 

soils have formed from a combination of fluvial and wind-blown clays and silts. There are 

402 lithological logs available in the catchment, where lithofacies have been divided into two 

classes: clay and silt (low hydraulic conductivity, hereafter called clay) and sand and gravel 

(high hydraulic conductivity, hereafter called sand). The digital elevation model and locations 

of boreholes are shown in Figures 4b and 4c.  

 

3.2. Selection of 2D hand-drawn sketches 

The 2D sketch is a representation of sedimentary architectural features, which are 

deemed present according to a geological interpretation of the fluvial setting. This knowledge 

is established from field mapping or collated case studies [Gibling, 2006]. For this paper, 10 

sketches with 60 × 60 pixels of size 20m × 1m in X and Z directions are considered, as 

shown in Figure 5. These sketches are saved as binary images with black and white colors 

representing clay and sand facies. Different types of in-filled channel and sheet bodies are 

generated to represent the expected sand elements. TI-1 and TI-6 consist of wide and deep 

channels; TI-2 to TI -4, TI -7 and TI-10 contain a mixture of wide, deep and shallow 

channels; most of the sand bodies in TI-5 are shallow and wide; TI -8 and TI -9 represent 

narrow and deep sand filled channels. At this stage, the 2D sketches are drawn considering 

the fraction of facies in the borehole data, which is 50% sand and 50% clay. The global 
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proportion of sand is kept identical in all sketches. In this example, facies 0 is clay and silt 

and the facies 1 represents sand or gravel. 

To sort the most relevant scenarios for the case study considered, the vertical 

transition probabilities (TP) of these sketches are compared with that of borehole data. The 

resulting plots are shown in Figure 6. The TP represent how one type of facies is in contact 

with other type. The TP of clay over clay is represented as TP-00 and TP of sand over sand is 

represented as TP-11. The plots of TP-00 and TP-11 corresponding to selected training 

images are shown in Figures 6a and 6b respectively. The plots of TP01 and TP10 are not 

shown because they are the complement of TP00 and TP11. From the TP curves, it is clear 

that TI-7 and TI-9 have similar TPs as that obtained in the borehole data. This comparison 

allows considering the opinion of an expert geologist to complement statistical measures. 

This point will be further developed in the following sections. We select sketches TI-7 and 

TI-9 for further analysis. These will be referred to as training images in the following 

sections. 

 

3.3 TI extrusion 

3D training images consisting of 60×50×60 pixels in X, Y and Z-directions 

respectively are created from previously selected 2D sketches (TI-7 and TI-9 consisting of 60 

× 60 pixels) by extruding them in the Y-direction. The resulting structures (Figure 7) show a 

high degree of connectivity in the Y-direction. The figure has been vertically exaggerated by 

a factor 5 for better visualization. Figure 7a represents a scenario with fewer wide and deep 

channels. Figure 7b shows channels that are narrower and deeper with some degree of 

connection between the different channels. Note that both TIs have similar TP curves (Figure 

6) and facies proportions. TI-9 is however selected for further simulation in preference to TI-
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7, because it corresponds more the geological setting described in the previous section, in 

particular the smaller size of the sand bodies is more consistent with field-based observations.  

 

3.4 Inference of the transformation parameters 

The transition probabilities discussed in the previous section gave a measure of how 

facies are arranged in the vertical direction only. The boreholes density is not sufficient to 

provide information about the horizontal connectivity, or to measure the spatial correlation 

using variograms. Instead of using direct measurements, an analogue (presented in Figure 8) 

is borrowed from a fluvial setting analogous to the higher energy/wetter climate that was 

present when most of the valley filling sequence was deposited within the Maules-Creek 

catchment. Here the analogue is a representation of the geology that used to infer the 

transformation parameters such that its horizontal connectivity can be embedded in the final 

3D facies models. The connectivity function of Pardo-Igúzquiza and Dowd [2003] is 

computed on the analogue, which is the probability of a cell with a particular facies being 

connected to another cell of the same facies as a function of their separation distance h.  

We use unconditional simulation for the inference of the transformation parameters. 

The unconditional simulations are carried out in a small 3D domain, and used to compare the 

resulting statistics with the statistics observed in the borehole data and the geological 

analogue. A sensitivity analysis is performed on a domain of size 60×100×60 grid nodes in 

the X, Y and Z-directions respectively. The maximum search distances are defined as 

30×30×30. Based on the practical guide of Meerschman et al. [2013] to performing DS 

simulation, the maximum number of neighbors used in the simulation is set to 30, the 

distance threshold is set to 0.1 and maximum fraction of the TI to scan as 0.5. The 

implementation then find neighborhoods made of a maximum of 30 pixels, as long as they 

are less distant than the maximum search distance. For the unconditional simulations, the 
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overall rotation of the patterns α  is kept fixed at 0 degrees in X, Y, and Z directions, meaning 

that the general orientation of the structures is kept identical as in the extruded training 

image. To impart sinuosity, a rotation tolerance of 120 degrees around the Z axis is allowed. 

This tolerance value of 120 degrees is selected based on observation of the meander angles in 

the analogue. It means that even if we use a training image which contains straight channels, 

the DS algorithm will search for a pattern in the training image with a flexibility on the 

orientation provided by the tolerance value, i.e. patterns are searched up to a rotation around 

the vertical axis, as long as this rotation is in the range [-120 120] degrees. Therefore, the 

training images with straight channels represented in Figure 7 is enriched with patterns 

rotated in all the directions considered, which can potentially represent meandering channels. 

The parameters used in unconditional simulation are listed in Table 1.  

We tested the effect of affinity by assigning its values in the X and Y directions 

ranging from 0.1 to 1.0, with a constant value of 1.0 in the Z-direction. The result is that all 

structures are stretched or expanded by this factor. A sensitivity analysis on the affinity 

parameters is performed by running DS simulations using the previously selected 3D training 

image (TI-9 extruded) and by applying 100 combinations for the values of affinity in X and Y 

directions. For each combination of rotation, affinity in X and Y-directions, DS simulation is 

run for 5 realizations. We summarize the results of this sensitivity analysis in Figure 9 by 

presenting the average RMSE values of connectivity in X and Y directions. In Figure 9, the 

horizontal and vertical axes represent the affinity parameters in X and Y directions, and the 

color represents the RMSE values. The figures in the first row represent RMSE values 

corresponding to the connectivity of facies 0 in the X and Y directions respectively. The 

RMSE values are computed between the average probability of connection obtained from 5 

realizations of DS simulations, and the probability of connection observed in the analogue. 

Similar results for facies 1 are presented in the second row. The figures in the third row show 
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the average values of RMSE presented in Figures 9a and 9c; and 9b and 9d respectively. Note 

that the magnitude of the error values shown in color bars is different in each figure. 

The objective here is to find a combination of Affinity along X axis and Affinity 

along Y axis for which the RMSE values are minimal in all the Figures 9a to 9f. By 

comparing Figures 9e and 9f, it can be concluded that the optimal parameters correspond to a 

value of affinity 0.3 in X and 0.4 in Y, evident from Figure 9g. The outputs from 2 

realizations of DS simulation, using the selected combination of affinity values, are presented 

in Figure 10. The figure has been vertically exaggerated by a factor 5 for better visualization.  

The selected transformation parameters are further validated against the analogue. To 

this end, the connectivity functions of an unconditional model are computed on 2D horizontal 

planes. Such 2D horizontal connectivity properties can be compared to the 2D analogue. 

There are 60 layers in the model resulting in as many connectivity functions in Figure 11. 

The probability of connection of facies 0 and 1 in X and Y-directions in the analogue (in blue 

and cyan dots respectively) are also shown. It is observed that the connectivity functions of 

the analogue are better reproduced in the X direction than in the Y direction. In the Y 

direction, the probability of connection obtained from the analogue deviates after the lag-

distance of 5. We attribute this discrepancy to the non-stationarity of the analogue. In the next 

section we will see that it can be reduced by providing a locally-varying orientation map in 

the DS simulation. 

 

3.5 Conditional simulation and results 

In this section, we present the details of conditional DS simulation performed over a 

sub-region of the Maules-Creek catchment. The parameters determined in the sensitivity 

analysis are used. These parameters are listed in Table 2. The simulation domain is 4.24 km 

by 6.32 km and divided into 212×316×94 grid nodes, each cell measuring 20×20×1 m. The 
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same training image as in the sensitivity analysis is used (Figure 7b). Additional information, 

such as borehole logs and orientation of the existing stream networks in the study area, are 

used to locally constrain the model simulation. There are 29 boreholes logs with 1540 facies 

data within the simulation domain. The global orientation of the existing streams in the 

Maules-Creek catchment is estimated by manually selecting 10 points along the streams and 

determining the channel direction. Figure 12a shows the study area with the stream network. 

An inverse-square-distance interpolation is applied based on the 10 digitized points, resulting 

in the angle map shown in Figure 12c (identical angles along the vertical). 

One realization of the resulting model is shown in Figure 13. The figure has been 

vertically exaggerated by a factor 10 for better visualization. The simulation output is 

validated against four criteria: (i) comparing the proportion of facies in the simulation output 

with that calculated from borehole data; (ii) visual inspection; (iii) comparing connectivity 

measures of results from DS simulations and those from the analogue; (iv) comparing the 

flow and transport features with a statistically equivalent Gaussian random field.  

The overall proportion of facies is very close to the target of 50% in all realizations. 

For visual inspection of the results, 2D images showing the meandering structures of six 

layers (layer 1, 20, 40, 60, 80, 94) are presented in Figure 14. In the iamge, black and grey 

pixels corresponds to clay and sand respectively. In all the layers sand channels are oriented 

towards the north-east, and some channels are joining from east to west reflecting that the 

general orientation set as a conditioning in the simulation is honored. The connectivity 

functions of each of the 94 horizontal layers in a realization are presented in Figure 15 and 

compared with the connectivity in the analogue (Figure 8). The comparison indicates that the 

simulated meandering patterns are similar to those present in the analogue. By comparing 

Figure 11 and Figure 15, it can be seen that although the same transformation parameters are 



16 
 

used in both cases, additional local information provided in the conditioning data have 

improved the model results. 

For further validation, the transport properties of 3D facies models obtained from DS 

simulations are compared with a statistically equivalent model obtained with a traditional 

variogram-based approach. For flow and transport computations, a subdomain of size 

212×316×30 is considered, each cell having a size of 20m×20m×1m. Sequential indicator 

simulation (SIS) is performed using variogram parameters obtained from the results of the 

DS simulations. The variogram parameters in X, Y and Z directions are listed in Table 3 and 

one realization of SIS is shown in Figure 16. The Groundwater Finite Element code 

[Cornaton, 2007] is used with fixed head boundary conditions prescribed on the sides of the 

domain (at Y=0 and Y=6320 m) and a concentration of 1 of a conservative tracer is 

prescribed at the inlet of the system (at Y=0). Table 4 shows the values used for hydraulic 

conductivity and porosity of both facies, and dispersivity in X, Y and Z directions. The 

evolution of the outflow concentration over a period of 200 days is recorded. Figure 17 shows 

the contaminant distribution after 5, 10, 15, and 30 days, in both DS and SIS models. By 

comparing Figures 17a and 17e, it is observed that in the DS models a significant 

concentration has already reached the other side of the domain. In the SIS model however, 

the contaminant had reached a significant concentration only up to 1000 m in the domain. 

This observation is also valid for other time intervals, where higher concentrations are 

systematically observed with the DS model.  

The breakthrough curves (BTC), integrated on different 2D planes perpendicular to 

the flow direction at a distance of Y=1000, 2000, 3000, 4000, 5000 and 6000m, are shown in 

Figure 18. Each curve in shows the evolution of concentration at one node in a particular 

section. A broken line is drawn in at day 5 for easy comparison of the arrival times. The 

importance of modeling heterogeneity using conditional DS simulation is clearly visible by 



17 
 

comparing the BTCs obtained from DS and SIS simulations. Again, the SIS model tends to 

systematically underestimate the contaminant arrival. The solute generally moves faster in 

DS models than in the SIS model, and the spread of the BTCs also vary between the different 

sections. While for the initial parts of the domain (Y=1000 m), the BTCs of DS and SIS are 

mostly overlapping, marked differences are observed further downstream. SIS shows more 

tailing in the concentration, which is a typical sign of lack of connectivity throughout the 

domain, because the contaminant gets trapped in low conductivity zones and takes time to be 

washed away. These observations, together with the analysis of Figure 17, confirm that SIS 

does not create the preferential flow paths that are typical of channel-type formations, 

whereas DS is able to create such preferential flow. This is the case despite the fact that the 

proportion of the conductive facies (50%), as well as the variographic properties, are identical 

in both models.  

An interesting observation is that the spatial features and the connectivity properties 

can play an important role, strongly influencing the hydraulic properties even when the 

proportion of the conductive facies is higher than typical percolation thresholds (i.e. about 0.3 

for random binary media). To investigate this further, we run our model with similar settings 

except that the proportion of sand is now 30% in both DS and SIS models (see Figure S3). 

The variogram parameters used for SIS shown in Table S1. The same phenomenon of 

systematic faster contaminant arrival is also observed in this case (Figure S4), indicating that 

the higher connectivity is not only a percolation effect due to the relatively high proportion of 

channels in the Maules Creek formation, but it is due to the fundamental connectivity 

properties that are embedded in the training image through the extrusion process. 
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Conclusion 

In this paper we presented a methodology to generate channel-type alluvial aquifer 

formations based on simple 2D training images that are extruded in the 3rd dimension. The 

workflow consists of four steps: (i) selection, (ii) extrusion, (iii) inference and (iv) modeling. 

A 2D training image is selected based on the data statistics and available expert geological 

knowledge, representing the facies proportions and the subsurface features that a geologist 

might expect. Transform-invariant distances are then used with these elementary training 

images to imprint horizontal variability such as meandering properties. In the final modeling 

stage, borehole data and overall orientation of the field data are used to constrain the multiple 

realizations of the 3D facies model. 

Our approach allows integrating two levels of information regarding orientation. The 

first level is a deterministic orientation component, which is inferred from the main 

orientation of the channels observed on the modeled site. Around this main direction, the 

transform-invariant distances are used to impose a randomized orientation component to 

generate sinuous channels. The transform-invariant distance can be controlled by continuous 

parameters (tolerances on angles and transformations). This allows adjusting the type, shape 

and spatial behavior of the channels.  

Our approach shows potential for building 3D geological models of channelized 

structures bsed on prior knowledge. The method was applied to the Maules Creek valley 

filling fluvial sequence in Australia, for which we have moderate borehole control and good 

geological knowledge of the depositional processes active at the time of aggradation. We 

demonstrated the value of the outlined workflow by contrasting contaminant movement 

through 3D facies models built using our new approach and a traditional SIS model. We have 

demonstrated the need to replicate both the facies proportions and the sediment architecture 

where estimates of residence time and contaminant breakthrough are required.  
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Figure captions 

 

Figure 1. Demonstration of the object modelling methodology using different transform-
invariant distance parameters. R refers to rotation around Z-axis and A refers to affinity in Z-
direction. (a) 2D sketch. (b) 3D training image obtained from extruding 2D sketch. (c-f) 
correspond to single realizations obtained from Direct Sampling (DS) with transformation 
parameters. The vertical aspect ratio in the 2D training image and 3D models are different to 
enhance the visualization in the 3D models. 

 

Figure 2. Workflow used in 3D geological facies modeling using DS. It consists of four parts: 
Selection, Extrusion, Inference and Modeling. 

 

Figure 3. Demonstration of the high level of structural complexity that can be result from our 
workflow. (a) 2D sketch that is then extruded and used for simulation. (b) One resulting 
realization based on transform-invariant distances. 2D sketch is taken from [Lee and Mukerji, 
2012]. 

 

Figure 4. (a) Map showing the location of study area. (b) Digital elevation model; and (c) 
location of borehole data in the Maules Creek catchment. 

 

Figure 5. Possible training images, drawn with an image editing software (Microsoft 
Paintbrush), showing various types of sand channels in colour. The fraction of colored pixels 
in each image is 50%. The fraction of facies 1 in the borehole data is 0.503. In the heading, 
TI indicates training image followed by a reference number. The number of grids in TI are 
60×60 with size 20m×1m. Training images have been exaggerated for better visualization. 

 

Figure 6. Comparison of probability of transition of facies clay to clay (00 in a) and sand to 
sand (11 in b) in all Tis and borehole data. The transition probability of TI-7 and TI-9 are 
closest to the borehole data. 

 

Figure 7. 3D training images obtained by extruding selected 2D sketches from TI-7 and TI-9. 
The number of grids in the 3D training images are 60×50×60 with sizes 20m×20m×1m in X, 
Y and Z-directions respectively. The sketches and training images have been exaggerated for 
better visualization. 
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Figure 8. An image of a meandering river system. This is used as an analogue for comparing 
the connectivity of DS outputs. (Source: 
http://www.fas.org/irp/imint/docs/rst/Sect17/Sect17_4.html) 

 

Figure 9. Sensitivity analysis of the value of the affinity in X and Y directions. a) RMSE of 
the connectivity function of facies 0 (RMSE_0) in X-direction; b) RMSE of the connectivity 
function of facies 0 in Y direction; c) RMSE of the connectivity function of facies 1 
(RMSE_1) in X-direction; d) RMSE of the connectivity function of facies 1 in Y-direction; e) 
average RMSE of the connectivity function of both the facies (Mean_RMSE_01) in X-
direction; f) average RMSE of the connectivity function of both the facies in Y-direction; g) 
average RMSE of the connectivity function of both the facies in both X and Y-directions 
(Mean_RMSE_01_XY). RMSE refers to root-mean-square-error between the DS output and 
the analogue. The colour bar shows the RMSE values. 

 

Figure 10. Realizations of unconditional DS simulation using Affinity along X-direction as 
0.3, and Affinity along Y-direction is 0.4. The figure has been exaggerated by 5 times in the 
vertical direction for better visualization. The number of grids in the simulation are 
60×100×60 with sizes 20m×20m×1m in X, Y, and Z-directions respectively. 

 

Figure 11. Comparison of connectivity plots for an unconditional realization of DS 
simulation and analogue in (a) X and (b) Y-directions. The dots indicate connectivity of 
facies 0 and 1 in the analogue. 

 

Figure 12. Map showing the existing streams in the Maules-Creek catchment; a) Image of the 
study area; b) enlarged view with streams delineated in green color; c) Interpolated map used 
in the conditional simulation. The angles are referenced from east = 0o. 

 

Figure 13. A conditional realization of the Maules-Creek catchment 3D facies model. The 
figure has been exaggerated by 10 times in the vertical direction for better visualization. In 
the simulation, borehole data and channel orientation have been used as conditioning data. 
The number of grids in the simulation are 212×316×94 with sizes 20m×20m×1m in X, Y, 
and Z-directions respectively. 
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Figure 14. 2D images of various layers of a realization of the Maules-Creek catchment 3D 
facies model obtained from conditional DS simulation. 

 

Figure 15. Connectivity plots of various layers of a conditional realization of the Maules-
Creek catchment 3D facies model obtained from conditional DS simulation and analogue in 
(a) X- and (b) Y-directions. The dots indicate connectivity of facies 0 and 1 in the analogue. 

 

Figure 16. A conditional realization obtained from SIS. The figure has been exaggerated by 
10 times in the vertical direction for better visualization. In the simulation, borehole data have 
been used as conditioning data. The number of grids in the simulation is 212×316×30 with 
sizes 20m×20m×1m in X, Y, and Z-directions respectively. 

 

Figure 17. The relative concentration in the 3D simulation obtained from DS (top row) and 
SIS (bottom row) after (a) 5 days; (b) 10 days; (c) 15 days; and (d) 30 days. 

 

Figure 18. Comparison of breakthrough curves at each point at six XZ planes of 3D 
simulation obtained from DS simulations and SIS at a distance (a) 1,000m; (b) 2,000m; (c) 
3,000m; (d) 4,000m; (e) 5,000m; and (f) 6,000m in y direction away from the injection 
section. 

 

Figure S 1. Demonstration of resulting cross-cutting of channels by applying transformation 
parameters. (a) A training image with straight channels; (b) and (c) show realizations of 
unconditional DS simulation with different rotation tolerance. 

 

Figure S 2. Samples of 3D TI obtained from DS simulations (a) to (d) and from Object-based 
simulations (e) to (h). In both approaches similar parameters are used. 

 

Figure S 3. A realization of unconditional SIS (a) and DS simulations (b). The figures have 
been exaggerated by 10 times in the vertical direction for better visualization. In the 
simulation, no conditioning data have been used. The number of grids in the simulation is 
212×316×30 with sizes 20m×20m×1m in X, Y, and Z-directions respectively. 

 

Figure S 4. Comparison of breakthrough curves at each point at six XZ planes of 3D 
simulation obtained from unconditional DS simulations and SIS at a distance (a) 1,000m; (b) 
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2,000m; (c) 3,000m; (d) 4,000m; (e) 5,000m; and (f) 6,000m in y direction away from the 
injection section. 

 

Figure A 1. Rotation and affinity transformation applied to Nx. (a) Original neighborhood 
Nx. (b-e) correspond to resulting transformed patterns. R refers to rotation around the Z-axis 
and A refers to affinity along the X-direction. Adapted from Mariethoz and Kelly [2011]. 
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Table captions 

Table 1. Values of parameters used in unconditional DS simulations 

 

Table 2. Values of parameters used in conditional DS simulations 

 

Table 3. Variogram parameters used in SIS. 

 

Table 4. Values of flow and transport parameters used in the Groundwater code. 

 

Table S 1. Variogram parameters used in SIS with 30% sand. 
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A.1 Description of the DS algorithm 

In DS simulation, for each simulation grid node, the training image is sampled to find 

a representative of the expected pattern conditioned to the values of other neighboring nodes. 

The algorithm can be applied to both categorical and continuous variables. For categorical 

variables, the algorithm works as follows: let )(xZ  be a spatially correlated variable of 

interest; x  is a location in the simulation grid, and y is a location in the training image; both 

x  and y are n-dimensional vectors containing the coordinates of a point in the Cartesian 

coordinate system. The simulation begins at a random location x . A neighborhood is defined 

around x  with N  being the ensemble of n closest informed voxels, defined as data event 

)](,...),1([ nZZ hxhxxN ++= ; where n1 h,...,h are the lags between the location x  and its 

neighbors. The aim of the simulation is to find a voxel with a similar neighborhood 

)](,...),([ 1 nZZ hyhyNy ++=  in the training image. This is accomplished by defining a 

mismatch or distance between the data events xN and yN as [ ]yd NN ,x , which is defined as 
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Once d is under an acceptable threshold t, the value of the node in the training image

)y(Z is assigned to the location x  in the simulation grid. In this study, the method is applied 

for binary variables only but Eq. (1) is valid for any number of facies.  

  



32 
 

A.2 Application of transform-invariant distances 

The application of transform-invariant distances allows one to calculate ( )[ ]yx N,NpTd , 

where pT represents the geometric transformation applied to the neighborhood of each 

simulation grid using two parameters, rotation and affinity. For the rotation transformation, a 

random value of the rotation angle is chosen in the range [ ]ba, , and the neighborhood xN  is 

rotated by that angle centered on the location x. Similarly for the affinity transformation, the 

affinity ratio is randomly chosen and used to expand or contract the neighborhood. Figure A1 

illustrates a few examples of rotation and affinity transformations applied to a simple 

neighborhood xN . The flexibility in the selection of the rotation and affinity parameters, 

within a defined range, allows to considered in the simulation a wider range of patterns than 

is available in the training image. The rotation and affinity transformations can be used 

simultaneously to obtain more diverse patterns. It should be noted here that the 

transformation parameters are continuous, allowing one to incur gradual changes in the 

spatial structure obtained in the simulations. 

The simulation continues by sampling another random value of the transformation 

parameter in the range [ ]ba,  and calculating the distance d  between a neighborhood yN  in 

the training image and a transformed neighborhood xN . When d < t, the transformed pattern 

( )xNpT  is considered equivalent to yN  and the corresponding value )y(Z  is assigned to )x(Z . 

Besides such constraint on the patterns (textural constraints), local constraints are considered 

when there are conditioning data available.  
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A.3 Non-stationary transformation parameters  

In the case of known orientation of the structures at discrete locations ix , the range of 

rotation angles [ ]ba,  can be obtained by assigning the median value α and a tolerance ε  

leading to parameters varying between ( ) ( )iia xx= εα − , and ( ) ( )iia xx= εα + . Since the 

parameters ( )xα and ( )xε  can vary spatially, they can be interpolated based on the locations 

where the orientation is known. In this case we use an inverse square distance interpolation of 

the angles to obtain the median orientation ( )xα : 

( ) ( )
( ) ,
x

x
x ∑∑i

j
j

ii

w

w αα =           (2) 

where 
2

1

i

iw
xx −

= .  

The tolerance ( )xε  is determined as a function of the distance to the closest point 

where the orientation is known. 

( ) ( )
max

minarg
εε

S
ix-x

x =                     (3)

 
where and S is the domain size. 

 

 



 

 

 



 
 

 

 



 
 

 

 

 



 
 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 



 
 

 



 
 



 
 

 



 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 
 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1. Values of parameters used in unconditional DS simulations. 

DS parameters Values 

Number of grid nodes 60×100×60 in X, Y, and Z-directions 

Grid size 20m × 20m ×1m in X, Y, and Z-directions 

Maximum number of neighbouring 
pixels 

30×30×30 in X, Y, and Z-directions 

Distance threshold 0.1 

Maximum fraction of the TI to scan 0.5 

Affinity  0.1 to 1 in X, and Y-directions; 1 in Z-direction, 

no tolerance in any direction.  

Rotation 0° in X, Y, and Z-directions. 1200 tolerance in 
Z-direction only.  

 



Table 2. Values of parameters used in conditional DS simulations. 

DS parameters Values 

Number of grid nodes 212×316×94 in X, Y, and Z-directions 

Grid size 20m ×20m ×1m in X, Y, and Z-directions 

Maximum number of neighbouring pixels 30×30×30 in X, Y, and Z-directions 

Distance threshold 0.1 

Maximum fraction of the TI to scan 0.5 

Affinity  0.3 in X, and 0.4 in Y-direction; 1 in Z- 

direction, no tolerance in any direction.  

Rotation 00 in X, Y, and Z-directions. 1200 tolerance 
in Z-direction only.  

Conditioning data Orientation map and borehole logs 

 

 

 

 



Table 3. Variogram parameters used in SIS. 

 X-direction Y-direction Z-direction 

Nugget 0 0 0 

Sill 0.25 0.25 0.25 

Range 104m 100m 10m 

 

 

 

 

 

 

 



Table 4. Values of flow and transport parameters used in the Groundwater code. 

Parameters Values 

Hydraulic conductivity Kxx = Kyy = Kzz = 10-7m/s for clay, and 10-3m/s for sand 

Drainage porosity 0.01 for clay and 0.25 for sand 

Dispersivity 2m in X, 20m in Y, and 1m in Z direction. 
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