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Abstract

Renal Cell Carcinoma (RCC) is typically asymptomatic and surgery usually increases patient’s lifespan only for early stage
tumours. Moreover, solid renal masses cannot be confidently differentiated from RCC. Therefore, markers to distinguish
malignant kidney tumours and for their detection are needed. Two different peptide signatures were obtained by a MALDI-
TOF profiling approach based on urine pre-purification by C8 magnetic beads. One cluster of 12 signals could differentiate
malignant tumours (n = 137) from benign renal masses and controls (n = 153) with sensitivity of 76% and specificity of 87%
in the validation set. A second cluster of 12 signals distinguished clear cell RCC (n = 118) from controls (n = 137) with
sensitivity and specificity values of 84% and 91%, respectively. Most of the peptide signals used in the two models were
observed at higher abundance in patient urines and could be identified as fragments of proteins involved in tumour
pathogenesis and progression. Among them: the Meprin 1a with a pro-angiogenic activity, the Probable G-protein coupled
receptor 162, belonging to the GPCRs family and known to be associated with several key functions in cancer, the
Osteopontin that strongly correlates to tumour stages and invasiveness, the Phosphorylase b kinase regulatory subunit
alpha and the SeCreted and TransMembrane protein 1.
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Introduction

Biomarkers able to characterize and predict multifactorial

diseases, such as cancer, are still one of the most important targets

for all the ‘‘omics’’ investigations.

These clinically oriented studies have also been successfully

performed in the peripheral fluids, taking advantage of non- or

very low-invasive collection methods. In particular, the urinary

low-molecular-weight proteome, also termed urinary peptidome

[1,2], represents an important source of information for biomarker

discovery.

The analysis of the urinary peptidome should be most

applicable to renal diseases, given that urine should contain a

higher amount of molecules, including these naturally occurring

polypeptides, with an altered concentration deriving directly from

kidney. In particular, Renal cell carcinoma (RCC) needs markers

for detection, prognosis and therapeutic targeting [3]. Whereas

RCC includes an heterogeneous group of tumours with variable

clinical outcomes, that range from indolent to explicitly malignant

[4], the most common histological type is represented by clear cell

RCC (ccRCC), and comprises approximately 60% of all renal

tumours [5].

RCC is the third most frequent malignancy of the genitourinary

tract accounting for about 90% of all renal malignancies and the

most fatal urological cancer, causing approximately 2% of all

cancer deaths [6]. It is noteworthy that this carcinoma is one of the

human cancers with an increasing incidence. Currently, as RCC is

typically asymptomatic, most cases are frequently detected as an

incidental renal mass, imaging the abdomen for other reasons such

as during the work-up of acute renal failure [5]. About 30% of

RCC patients will present metastases at the time of the diagnosis,

many others will develop metastasis after surgical resection and for
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these patients the prognosis is dismal. Indeed, treatment of

metastatic RCC remains highly challenging since its progression-

free survival is very poor among these patients [3]. Traditionally

RCC is known to be refractory to chemotherapy and to

radiotherapy. Surgical removal of the tumour is considered the

only effective treatment and, where feasible, may result in

remission in up to 40–60% of cases [7].

Management of RCC is benefiting from the increasing role of

small tumour masses detection, greater understanding of the

metabolic pathways involved, new targeted medical treatments for

metastatic RCC, and evolving surgical and minimally invasive

image-guided treatment techniques [8]. Although in the absence

of biomarkers, renal imaging is most often recommended by

advocates of screening, a confident histological classification and

diagnosis with this technique is not always feasible, especially for

some ambiguous cystic and solid renal lesions [9]. Therefore, early

diagnosis could highly improve survival rates for patients with

renal cancer and also for those with localized tumours. Moreover,

welfare will benefit from a test able to distinguish small kidney

malignant masses from benign lesions driving the patient to low or

high intense follow-up.

The present work is focused on the application of a single-step

purification using C8 functionalized magnetic beads (C8-MB)

followed by MALDI-TOF analysis and nLC-ESI-MS/MS to

explore possible urinary peptide signatures of patients affected by

ccRCC, by other kidney tumours and control subjects.

Materials and Methods

Chemicals and standards
Profiling Kit 1000 C8-MB, a-cyano-4-hydroxycinnamic acid

(CHCA), Protein Calibration Standard I (ProtMix I) and Peptide

Calibration Standard II (PepMix II) were supplied by Bruker

Daltonics GmbH (Bremen, Germany).

Urine collection and handling procedure
Urine samples were collected from patients the day before

surgery and from healthy volunteers at ‘‘Ospedale Maggiore

Policlinico’’ Foundation (Milan, Italy), San Gerardo Hospital

(Monza, Italy) and Desio Hospital (Desio, Italy). All subjects had

signed an informed consent prior to sample donation. Study

protocols and procedures were approved by the local ethic

committee (U.O. Comitato di Etica e Sperimentazione Farmaci

Direzione Scientifica Fondazione IRCCS Ca’Granda Ospedale

Maggiore Policlinico, Milano and Comitato Etico Azienda

Ospedaliera San Gerardo, Monza) and analysis were carried out

in agreement with the Declaration of Helsinki. Second morning

midstream urine was collected in sterile urine tubes (Anicrin s.r.l.,

Italy) [10].

As concerning the MB protocol, the binding, washing and

desorption steps of the beads were based on the manufacturer

instructions and slightly modified, as previously reported (see

supplemental material S1) [11]. In particular, 40 mL of urine of

each subject was used both for MALDI-TOF profiling and the

preparation of two urine pools (n = 80 each) used for peptide

identification. The two pools from ccRCC patients or control

subjects urine were manually purified with magnetic beads.

MALDI-TOF peptide profiling
Fractionated samples were analysed in linear mode (MALDI-

LM) and reflector mode (MALDI-RM) using an UltrafleXtre-

meTM MALDI-TOF/TOF instrument (Bruker Daltonics, Ger-

many) as previously described and reported in supplemental

materials S1 [11]. Spectra processing was based on baseline

subtraction and realignment using a subset of seven frequent

common peaks (at m/z-values 1162, 1511, 1681, 1895, 1912,

2236, and 3373) for liner mode with a peak tolerance of

1000 ppm. An internal calibration was also performed on reflector

data using four peaks (at m/z-values 1680.93, 1912.06, 2040.17

and 2659.32) with a tolerance in peak assignment of 100 ppm

except for the last one that was 200 ppm.

ClinProToolsTM software v. 2.2 (Bruker Daltonics, Germany)

was used for multiple spectra comparison after their normaliza-

tion. Data selection was performed with: resolution value of 800,

‘‘Convex Hull’’ baseline correction with a baseline flatness of 0.80,

null or not recalibratable spectra exclusion. The mean spectrum

obtained from each subject data set was used for the statistical

elaboration.

List of peaks (m/z) with their area (as a measure of compound

abundance) was obtained with a S/N threshold of 3 and peak

areas were calculated using zero level integration type on the total

average spectrum for the statistical analysis.

Mean area values, before and after spectra processing, of all

clusters signals for each sample groups are reported in Table S1.

Peptide identification by MALDI-TOF/TOF
For peptide identification, LIFT-TOF/TOF spectra were

acquired using the UltrafleXtremeTM MALDI-TOF/TOF mass

spectrometer without additional collision gas. Analyses were

performed using appropriate acquisition settings as previously

reported [11]. MS/MS data were processed using FlexAnalysisTM

software v. 3.3 (Bruker Daltonics, Germany). Database searching

was performed by an in-house Mascot search engine (Version:

2.4.1) with the same parameters already described [11].

Expression profile analysis and statistical analysis
Statistical analysis was conducted following the sequence of

processes as reported in Figure S1 and specified in its caption.

Briefly, to apply the correct statistical procedure we first evaluated

the assumption of normality and the homogeneity of variance,

then appropriate parametric or non-parametric tests were used for

case/control comparisons and correlations. Discriminant models

were built using Rapid Miner (RaM) [12–14] workflow based on

SVM algorithm (Figure S2 and its caption). The performances of

our inference process are given through indices which are broadly

applied to measure the classification performance of an inference

system; i.e., sensitivity, specificity, positive (PPV) and negative

predictive values (NPV) [15]. The receiver operating characteristic

curve analysis (ROC) and area under the curve (AUC) were also

evaluated as previously described [16].

Peptide identification by nLC-ESI-MS/MS
Endogenous peptides in the enriched fractions obtained by MB

purification of urine pools from controls (n = 80) and ccRCC

patients (n = 80) were identified by nLC-ESI-MS/MS. Briefly,

purified samples were desalted using ZiptipTM m-C18 Pipette Tips

(Millipore Corp, Bedford, MA) as already reported [11]. Desalted

fractions were injected into Dionex UltiMate 3000 rapid

separation (RS) LC nano system (Thermo Scientific, Germany)

coupled online with an Impact HDTM mass spectrometer (Bruker

Daltonics, Germany).

Peptides were first loaded onto a m-precolumn (Dionex, Acclaim

PepMap 100 C18, cartridge, 300 mm i.d.65 mm, 5 mm), followed

by separation on the analytical 50cm nano column (Dionex,

0.075 mm ID, Acclaim PepMap100, C18, 2 mm). Multistep

360 min gradients with a ramp from 4 to 35% in 245 min of

mobile phase B (0.1% FA/80% CHCN) were used. The mass
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spectrometer was operated in the data-dependent-acquisition

mode.

Raw MS/MS data were lock-mass corrected, deconvoluted and

converted to XML peak lists and processed using an in-house

Mascot search engine (v2.4.1). Peptide identification details are

provided in Supplemental Materials S1. Briefly, database search-

ing was restricted to human Swiss-Prot (accessed Apr 2014,

544,996 sequences; 193,815,432 residues). No enzyme and any

fixed modification was set in search parameters. Mass tolerances

for all identifications were generally fixed at 20–5 ppm MS and

0.5–0.05 Da MS/MS. Acetyl (N-term) was set as variable

modification in Mascot search parameters. Mascot thresholds

score for homology and identity and decoy database were used as

peptide level filters of peptide significance (False Discovery Rate ,

1%).

Results

Clinical data and study design
Urine collected from 137 healthy subjects (Ctrls) (81 men, 56

women), 118 clear cell RCC (ccRCC) (73 men, 45 women), 35

other different histological subtypes (non-ccRCC), (22 men, 13

women) (16 benign renal masses and 19 malignant non-ccRCC)

patients were used in the present study. Fisher test did not reveal

any gender dependence in the studied cohort. Mean age for

controls was 48.7 with a range of 24–79 years, while 64.53 for

patients with a range of 33–88 years. Patients were classified

according to the 2009 TNM (tumour-node-metastasis) system

classification and their clinical characteristics are described in

Table 1 [17]. Histological analysis was performed on patients

based upon the Fuhrman grading system, sarcomatoid and cystic

differentiation, tumour necrosis, microvascularity and urinary

infiltration. Tumour patients underwent surgical excision of the

renal lesion.

Protein profiles and cluster analysis
Aiming to perform a profiling analysis of the urinary peptidome

and build statistical patterns of potential discriminant biomarkers,

group comparisons were evaluated.

About 202 peaks common to the three groups have been

detected in MALDI-TOF averaged peptide profiles of controls,

ccRCC and non-ccRCC patients after C8-MB sample pre-

purification. Ion signals correlating with the age (Spearman test)

were not considered in the subsequent elaborations [18].

Discriminant pattern recognition was performed using SVM

algorithm supplied by RaM software. Initially, the entire cohort of

patients was divided into malignant tumours (n = 137) and benign

renal masses plus healthy subjects (n = 153) and a discriminant

cluster of twelve peptides (linear mode m/z-values 1116, 1670,

2216, 2528, 2661, 3162, 3443, 5032, 5532, 6130, 6786 and 10654)

was built with 78% and 88% of specificity and sensitivity,

respectively, (Table 2A).

Based on the recommendations for biomarker discovery and

qualification in clinical proteomics [19], the model was subse-

quently evaluated in an independent set of 61 (benign and

controls) and 55 (malignancies) subjects (Table 2B). The cluster

of 12 signals allowed us to discriminate the benign/controls from

malignant tumours with 87% and 76% of specificity and sensitivity

respectively, and an AUC of 0.89 (Figure S3), confirming its high

diagnostic accuracy according to the criteria suggested by Swets

[20]. Peaks selected by SVM to build the discriminant clusters

have not necessarily to be statistically different in the group

comparisons. They are selected through a forward selection

scheme with SVM as inference procedures which, in turn, follows

a different way to select discriminative features. Statistical analysis

showed that eight of these peaks (at m/z-values 1116, 1670, 2216,

2528, 2661, 3162, 3443 and 5532) had a higher urinary

concentration (p,0.05) while three (at m/z-values 5032, 6130

and 6786) had a lower urinary abundance (p,0.05) in malignant

kidney tumour patients compared to controls and subjects with

benign renal masses (Table 3 and Figure S4).

In addition, using an interactive analysis, a different case/

control classification task was also performed for Ctrls versus

ccRCC. Classification performances in training and validation test

are reported in Table 4. All controls and ccRCC patients were

used for feature selection and cross-validation procedures and a

cluster of twelve peptides (linear mode m/z-values 1670, 1727,

2192, 3005, 3252, 3636, 4623, 5432, 5532, 5964, 6062 and 6175)

was selected by a statistical analysis of MALDI-TOF spectra.

Performance of the model resulted in a specificity of 90% and in a

sensitivity of 82% (Table 4A). This good diagnostic capability was

proved by a validation on the second independent set of data (53

Ctrls and 49 ccRCC patients), confirming the specificity of 91%

and a sensitivity of 84% (Table 4B). Four ions (at m/z-values

4623, 5432, 6062 and 6175) were observed to be in lower

concentration (p,0.05) in ccRCC patients, and other four (at m/z-

values 1670, 1727, 3636 and 5532) showed an increased

abundance (p,0.05) (Table 5 and Figure S5). The AUC of

the model was 0.96 (Figure S6), pointing towards an accurate test

[20].

Endogenous peptide identification
The identification of urinary endogenous peptides correspond-

ing to signals included in the two discriminative models was

obtained by nLC-ESI-MS/MS analysis of C8-MB enriched

fractions (two pools of 80 controls and 80 patients). Alignment of

the m/z-values determined by MALDI-LM with those from LC-

ESI was based on the mass spectra acquired by MALDI-RM of

the C8-MB fractions. The mass measurement errors (MMEs) of

assigned peptides measured by MALDI-RM and by MALDI-LM

varied from 253 to 72 ppm and 2297 to 77 ppm, respectively.

The differences between mass measurements in ESI and MALDI-

RM mode varied from 279 to 50 ppm. Seven MALDI-LM

signals were assigned to eight different protein fragments

(Table 6).

The identity of the peptide giving rise to the MALDI-LM signal

at m/z 2192, included in the model, could not be unambiguously

obtained (Table 6). The specific contributes to the MALDI-LM

peak of the two peptides at m/z 2190.765 (GP162) and at m/z

2190.778 (KPB1), identified by LC-ESI, were prevented from

being distinguished due to the low molecular mass differences

between the two amino acid sequences coupled with the resolution

power of MALDI-RM (Table 6).

The identity of one signal present in MALDI-LM spectra

corresponding to m/z-value 2661, assigned to a fragment of FIBA,

was further confirmed by MALDI-TOF/TOF (Mascot score

exceeding the significant threshold of identity, score = 166, p,

0.05).

Discussion

To date, thousands of different proteins/peptides have been

sequenced in human urine, providing a greater insight into the

urinary content and suggesting more exhaustive disease-specific

researches for their potential use in clinical practice. Biomarker

discovery studies are widely performed on urine samples, with the

aim of developing a non-invasive diagnostic tool for prostate

Urinary Peptidome of RCC
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cancer [21], diabetic nephropathy [22], chronic kidney disease

[23] as well as for RCC [3,10,24].

Thus far, many studies performed using Western blot analysis

have reported several proteins with an altered urinary concentra-

tion in RCC patients, relative to control subjects, with potential

diagnostic/prognostic capabilities. An over-concentration of the

urinary nuclear matrix protein 22 was found in 23 of 35 RCC

patients compared to 30 patients with kidney stone and renal cystis

used as controls [25]. The urinary 14-3-3 protein alpha/beta has

also been shown to be in a higher concentration in RCC patient

urine compared to that from healthy volunteers samples [26]. The

diagnostic capability of this protein resulted in an AUC of 0.88.

Two other proteins, Aquaporin-1 and Peirilin-2, were observed to

be at higher levels in the urine of 63 RCC patients versus 43

healthy subjects [27]. The sensitivity and specificity values were in

the range of 90–100% for both these proteins. The urinary

concentration of these proteins returned to levels similar to those

found in controls 2–4 weeks after surgery. KIM-1, a biomarker for

the detection of proximal tubules epithelial cells after ischemic or

toxic injury in humans, has also been shown to be increased in the

urine of RCC patients [28]. However, none of these results have

been validated in an independent cohort of patients.

Highly sensitive profiling studies require a combination of MS

and separation technologies based on different types of chroma-

tography. Recently, Frantzi et al. have described a model of 86

signals detected in the urine of healthy subjects and RCC patients

by CE-MS with a sensitivity and specificity of 80% and 87%,

respectively [29]. They could identify 40 of these markers and

Table 1. Patients clinical characteristics according to the 2009 TNM (tumour-node metastasis) system classification.

N6 of PATIENTS

ALL 153

Mean 6 SD age at diagnosis 64.53610.97

Median age at diagnosis (range) 33–88

GENDER

Males 95

Females 58

STAGING

Primary Tumor (T)

pT1 91

pT2 26

pT3 12

pT4 0

unknown 8

Regional lymph nodes (N)

NX 77

N0 40

N1 1

unknown 19

GRADE

G1 7

G2 86

G3 24

G4 3

unknown 17

HISTOLOGY

Clear cell RCC 118

Papillary RCC 9

Chromophobe 5

Oncocytoma* 8

Angiomyolipoma* 5

Other subtypes** 8

TUMOR TYPE

Malignant 137

Benign 16

* = benign renal masses
** = 5 malignant subtypes and 3 benign renal masses
doi:10.1371/journal.pone.0106684.t001
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most of them were fragments of collagen, fibrinogen and Na/k-

transporting ATPase. The authors suggest that these markers are

the consequence of different proteases specific to RCC, of changes

in proteolytic activity in the microenvironment of the kidney

tumours, and of kidney damage.

Successful discoveries of peptide signatures through MALDI

MS profiling have been reported for various human diseases

comprising of kidney pathologies [10]. In these studies urine

samples were pre-fractionated before MS-analysis through differ-

ent approaches [30] or beads [31–34].

Aiming to detect clusters of ions with diagnostic capability in

RCC, urinary protein profiles were investigated by several groups

using SELDI technology. Rogers et al. were able to build a neural-

network model with a sensitivity and a specificity of 98.3–100%.

These performances declined to 41–77% when tested in an

independent set of samples [30]. Later, Wu et al. also built a

cluster with four differentially represented peptides showing a

sensitivity and specificity of 80%–89.6% in the training phase, that

decreased to 67.8–81.5% in the validation phase [35]. However,

none of these groups were able to provide the identity of their

markers. Recently Alves et al. [36] could cluster RCC patients and

controls using a SELDI-TOF approach. They were also able to

provide the identity of several protein signals by SDS-PAGE

followed by LC-ESI but no information about the diagnostic

capability of the outcomes was given. We have previously reported

in a pilot study the possibility to discriminate kidney tumours (34

clear cell RCC, 4 papillary RCC and 1 mixed RCC+papillary)

from controls based on urinary signature [10]. However, due to

the low and not homogenous groups of patients and controls,

results have to be confirmed on a wider and more appropriate

dataset. Moreover, the possibility to differentiate malignant from

benign renal masses has not be considered.

Therefore, in this study we have investigated the urinary low

molecular weight proteome in a larger cohort of healthy volunteers

(n = 137), ccRCC (n = 118), and of 35 non-ccRCC patients using a

pre-purification procedure based on C8 functionalized magnetic

beads in combination with MALDI-TOF analysis. About sixty

percent of the enrolled patients and controls were used in the

training phase of the SVM and the remaining subjects for the

independent test evaluation of the models. Patterns of urinary

Table 2. Performances of the cluster of twelve signals to discriminate malignant tumours from benign renal masses or controls
(False = Benign or controls; True = Malignant) with k-fold = 10 cross-validation (A) and of the model, originated in the training
phase using about 60% of the data, in validation test using the other about 40% of the studied subjects (B).

A true False true True class precision

pred. False 120 17 87.6%a

pred. True 33 120 78.4%b

Spec., Sens. 78.40% 87.60%

B true False true True class precision

pred. False 53 13 80.3%a

pred. True 8 42 84.0%b

Spec., Sens. 86.90% 76.40%

Spec. = Specificity; Sens. = Sensitivity; pred. = Prediction; Class precision: a = Negative Predictive Value and b = Positive Predictive Value; Precision = Relative number
of correctly classified examples among all examples classified as positive i.e. precision = (Positives Correctly Classified)/(Total Predicted Positives). Note that the Total
Predicted Positives is the sum of True Positives and False Positives. This is the same for the Negative Predictive Value. True True = True positive; true False = True
negative
doi:10.1371/journal.pone.0106684.t002

Table 3. Urinary relative concentration (malignant/benign+ctrl) and p-value of the twelve ions included in the model able to
distinguish benign renal masses or controls from malignant kidney tumours.

Ions (m/z) p-value Urinary concentration

1116 ,0.001 Up

1670 ,0.001 Up

2216 ,0.05 Up

2528 ,0.001 Up

2661 ,0.001 Up

3162 ,0.001 Up

3443 ,0.001 Up

5032 ,0.001 Down

5532 ,0.05 Up

6130 ,0.001 Down

6786 ,0.001 Down

10654 . 0.05 n.s.

n.s. = not statistically different.
doi:10.1371/journal.pone.0106684.t003
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peptide markers able to distinguish RCC from controls and to

significantly differentiate kidney cancer from benign lesions were

searched.

In biomarker discovery and classification field, the size of the

model is a crucial aspect [37]. The model should be built avoiding

over-fitting but preserving generalization, in terms of capability to

correctly classify new subjects. In this study we limited the clusters

to no more than 20 features [37].

Initially we focused on the possibility to distinguish benign renal

masses or healthy subjects from malignant tumours and a classifier

with twelve urinary peptides with an AUC of 0.89 was generated.

Then, we afforded the possibility to discriminate ccRCC patients

from healthy subjects and a classifier with twelve peptides was

selected with good discriminating capability that were confirmed

in an independent cohort of subjects with an AUC of 0.96.

Identity of seven of the ions included in the clusters were obtained

by MALDI-TOF/TOF and by nLC-ESI-MS/MS analysis. Most

of them were different from those identified by CE-MS and used

in the model by Frantzi et al. [29] and, interestingly, most of them

were correlated to the presence of a tumour mass. This is not

surprising since the data on urinary peptidome delivered from

different pre-fractionation of sample and from a different

chromatographic separation provide complementary information

[38].

Hereby we describe two patterns of twelve urinary peptides with

a high discrimination power obtained by an SVM-based statistical

approach. Seven of these signals were most likely identified.

In particular, two ions at m/z 1670 and 2216 observed in

MALDI-LM spectra were identified as fragments of the human

glycoprotein uromodulin (UMOD/THP) and they were present in

higher concentration in patients affected by both ccRCC and

other malignant kidney tumours. The urinary excretion of

UMOD has been studied in various physio-pathological states,

but its precise biological role is still undefined. Clinical relevance of

this protein has been described in several pathologies and THP

mutations have been associated with chronic kidney disease,

altered glomerular filtration rate and decreased urinary excretion

[39]. Furthermore, decreased UMOD expression has been

observed in end-stage renal disease, in kidney neoplasms [40,41]

and in cysts from autosomal dominant polycystic kidney disease

Table 4. Performances of the cluster of twelve signals to discriminate ccRCC patients from controls (False = Controls; True =
ccRCC) with k-fold = 10 cross-validation (A) and of the model, originated in the training phase using about 60% of the data, in
validation test using the other about 40% of the studied subjects (B).

A true False true True class precision

pred. False 123 21 85.42%a

pred. True 14 97 87.39%b

Spec., Sens. 89.78% 82.20%

B true false true true class precision

pred. false 48 8 85.71%a

pred. true 5 41 89.13%b

Spec., Sens. 90.57% 83.67%

Spec. = Specificity; Sens. = Sensitivity; pred. = Prediction; Class precision: a = Negative Predictive Value and b = Positive Predictive Value. Precision = Relative
number of correctly classified examples among all examples classified as positive i.e. precision = (Positives Correctly Classified)/(Total Predicted Positives). Note that the
Total Predicted Positives is the sum of True Positives and False Positives. This is the same as the Negative Predictive Value.
True True = True positive; true False = True negative.
doi:10.1371/journal.pone.0106684.t004

Table 5. Urinary relative concentration (ccRCC/ctrl) and p-value of the twelve ions included in the model able to distinguish
controls from ccRCC.

Ions (m/z) p-value Urinary concentration

1670 ,0.001 Up

1727 ,0.001 Up

2192 . 0.05 n.s.

3005 . 0.05 n.s.

3252 . 0.05 n.s.

3636 ,0.001 Up

4623 ,0.001 Down

5432 ,0.001 Down

5532 ,0.05 Up

5964 . 0.05 n.s.

6062 ,0.001 Down

6175 ,0.001 Down

n.s. = not statistically different.
doi:10.1371/journal.pone.0106684.t005
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[42]. Moreover it was also reported with a lower abundance in

other pathologies like renal calculi disease [43], IgA nephropathy

[44] or diabetic nephropathy [45]. The relative concentration of

two urinary UMOD fragments, at m/z 1912 and 1824, included in

a discriminant model able to distinguish RCC patients from

controls in our previous pilot study [10], was confirmed by our

findings (data not shown). In a peptidome profiling study on urine

samples from healthy subjects exposed to high altitude hypoxia

another UMOD peptide, Val592IDQSRVLNLGPITArg606, a few

amino acids shorter than fragments identified in this study, was

also detected as altered in urinary levels [34].

The ion at m/z 2659 was identified as a fragment of fibrinogen

alpha chain (FIBA) and was found highly represented in the urine

of patients with cancer compared to healthy subjects. This peptide

was also identified by Siwy J et al. [46] but not included in their

discriminative model for RCC [29].

However, particular significance could be ascribed to those

proteins, showing a strong correlation with tumour development

and progression. A fragment of MEP1A (m/z 1727), a zinc-

dependent metalloproteinases abundantly expressed in the apical

membranes of renal proximal tubules was observed as over

represented in ccRCC urine [47,48]. It has been recently reported

that MEP1A enzyme exhibits a broad expression pattern,

implicating functions in angiogenesis, cancer, inflammation and

fibrosis [49–52]. Interestingly, a relevant pro-angiogenic activity

has been described for this meprin [53,54] with a molecular

mechanism based on proteolytic activation of pro-angiogenic

growth factors, such as VEGF-A [55–57]. Moreover, meprin a is

reported to be expressed in several different tumours, as in breast

and colorectal carcinomas [58,59] and probably associated to the

transition to malignant stages of colorectal carcinoma [54].

However, its onco-expression is likely to be specific between

different cancers, e.g. with quite low levels in ovarian cancer

compared with gastrointestinal carcinomas [60]. Finally, there is

data indicating that meprins are involved in a complex with

hypoxia-inducible factor-1a (HIF-1a) proposing a possible partic-

ipation of these proteins in oxygen sensing mechanisms and in the

response of the kidney proximal tubule cells to hypoxia process

[61].

Two different amino acid sequences have been recognized to

give rise to the ccRCC discriminant signal observed at m/z 2192

in MALDI-LM spectra: a fragment of Probable G-protein coupled

receptor 162 (GP162) and a sequence derived from Phosphorylase

b kinase regulatory subunit alpha, skeletal muscle isoform (KPB1).

The first protein (GP162), is an orphan receptor assigned to G

protein coupled receptors (GPCRs) family involved in signal

transmission [62]. GPCRs are associated with several functions

largely correlated to cancer such as cell proliferation, angiogenesis,

tumour progression and development [63]. Many GPCRs are

over-expressed in various cancer types and they are constitutively

active in malignant cells causing an aberrant response to various

signals [63]. The protein Phosphorylase b kinase regulatory

subunit a is a key regulatory enzyme of glycogen metabolism [64].

Glycogen can be broken down rapidly when glucose is needed,

and Phosphorylase b kinase switches on another enzyme called

glycogen phosphorylase b by converting it into the more active

form, glycogen phosphorylase a. Alteration of KPB1 seems to be

associated with muscle phosphorylase b kinase (PHK) deficiency, a

rare disorder caused by mutations in the gene coding for this

protein [65]. To our knowledge, whereas this protein certainly

plays an important role in providing energy for cells, there is no

evidence in literature that may explain a possible association with

cancer.

A fragment of OSTP (m/z 2528) was found in higher

concentration in urine of malignant tumour patients. Several

studies have shown its abundance both in tumour and tumour

microenvironment cells [66]. In particular, a significant cytoplas-

mic staining has been reported for a variety of cancer tissues,

including renal carcinomas, while a low staining has been shown

for breast and skin cancers [67]. It was proposed a correlation

between tissue and plasma/serum levels of Osteopontin and

prognosis in a huge number of cancers. In particular, Coppola et
al. have suggested a possible role of Osteopontin in tumour

progression as they found a high expression of OSTP in 72% of

tissue samples of RCC patients analysed by immunohistochemistry

and these results correlated with tumour stage [67]. In addition,

Ramankulov et al. analysed plasma of RCC patients at different

stages and metastatic grades by an enzyme immunometric assay

and they described high levels of this protein in plasma of patients

with RCC with regional lymph nodes and its expression reached

the highest values in patients with distant metastases [68]. Ye et al.
analysed urine samples of postmenopausal women with ovarian

cancer and benign conditions and from nonsurgical controls by

SELDI-TOF MS and two-dimensional gel electrophoresis and

they identified some fragments of Osteopontin strongly correlated

to tumour stages and invasiveness, suggesting their use as urine

biomarkers, in particular for patient prognosis and tumour

metastatic power [69]. Furthermore, the high expression of

Osteopontin and CD44 in tissue samples of ccRCC seems to

correlate with poor prognosis [70].

A fragment of the extracellular domain of SeCreted and

TransMembrane protein 1 (SCTM1) (m/z 1116) was at a higher

intensity in the urine of patients affected by kidney malignant

tumours. The SECTM1 protein level was observed to be increased

in many tumours, including breast cancer, leukemia cell lines and

melanoma [71]. Kuk et al. have included SCTM1 among a panel

of 52 possible candidate biomarkers for ovarian cancer [72].

In conclusion, the discriminant models described in this study

might be useful in distinguishing renal masses which can’t be

confidently defined using radiology alone and, as it stands, still

need a confirmatory biopsy. In compromised patients, kidney

biopsies can be technically challenging and hazardous. These

patients would benefit from our findings, avoiding this invasive

procedure in order to attain a correct diagnosis. Moreover, the

urinary proteomic signals typical of kidney cancer could also be

extremely useful for the evaluation of the vitality of cancer cells,

during and after target therapies, to estimate the response to the

treatment. Urine markers could also help to detect initial relapses

in partially resected kidneys that are often very hard to diagnose as

current imaging techniques are unable to easily distinguish

between a surgical modification of the parenchyma, due to a

inhomogeneous scar, or an initial disease recurrence. Further-

more, urinary markers could easily assess the residual vitality of the

tumour after minimally invasive techniques, such as ablation with

percutaneous radio-frequency, cryotherapy, microwave and high-

intensity focused US (HIFU), which are suggested as treatments in

selected patients with a genetic predisposition to multiple tumours,

with a solitary kidney, with bilateral tumours or elderly patients.

Since further research is needed in order to determine the

oncological success rate of these procedures and due to the efforts

related to the follow-up, urinary markers may be used to survey

these patients.

Supporting Information

Figure S1 Scheme of the statistical analysis using R and
RapidMiner. Differentially represented signals are detected
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(block 5) according to the standard assumptions for parametric

models (block 3). RapidMiner (RaM) was applied (block 6) for

forecasting a suitable predictive cluster of signals. The conceptual

sequence of operational steps applied in RaM is given in Figure

S2.

(TIF)

Figure S2 RapidMiner workflow. A: Data is retrieved by the

‘‘Input’’ operator and the feature selection is performed (‘‘Forward

Selection operator’’). B: Feature selection encapsulates a cross

validation process (‘‘Cross Validation operator’’) to select the most

performing set of features. C: Cross Validation operator

encapsulated a k-fold cross validation process. First a classifier is

built describing a predetermined set of data classes. Then, the

model (a trained SVM) is used for testing new classification

examples. The first inner operator (‘‘SVM’’) realizes the first step

(Training). The second inner operator (‘‘Apply Model’’) realizes

the second step. Finally, the predictive accuracy of the classifier is

estimated by the ‘‘Performance’’ operator (Testing). Blocks 4 and 5

in panel A are given to provide ROC curve analysis (e.g. see

Figure S3 for malignant vs benign plus controls and Figure S6 for

controls vs ccRCC).

(TIF)

Figure S3 ROC curve analysis of the model discrimina-
tion performance when applied to an independent
cohort of subjects (malignant vs benign/ctrl). ROC

curves are calculated by first ordering the classified examples by

confidence. Afterwards all the examples are taken into account

with decreasing confidence to plot the false positive rate on the x-

axis and the true positive rate on the y-axis. The threshold (blue

line) refers to the confidence value of the prediction, i.e. if the

confidence of the example to be positive is greater than the

threshold, the example will be classified as positive, if the

confidence is below the threshold, it will be classified as negative.

(TIF)

Figure S4 Box-plot of the eleven ions included in the
model able to distinguish benign or controls from
malignant tumours and statistically different (p,0.05)

in the two groups (see Table 3). Y-axis refers to
arbitrary intensity.

(TIF)

Figure S5 Box-plot of the eight ions included in the
model able to distinguish controls from ccRCC and
statistically different (p,0.05) in the two groups (see
Table 5). Y-axis refers to arbitrary intensity.

(TIF)

Figure S6 ROC curve analysis of the model discrimina-
tion performance when applied to an independent
cohort of subjects (controls vs ccRCC). The threshold (blue

line) refers to the confidence value of the prediction, i.e. if the

confidence of the example to be positive is greater than the

threshold, the example will be classified as positive, if the

confidence is below the threshold, it will be classified as negative.

(TIF)

Table S1 Mean area values of the signals included in
the two clusters discriminating malignant tumours from
benign renal masses plus controls (A) and ccRCC from
controls (B) calculated from raw data before and after
spectra elaboration.

(DOCX)

Materials S1 Details of the experimental protocols.

(DOCX)
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