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1 Introduction

Nowdays, collaborative tagging systems have become ubiquitous tools that allow users
to add contents to the web, annotate them using tags, and share them. This creates
complex networks of users, resources and tags which are commonly referred to as
folksonomies. According to the degree of user collaboration, folksonomies are classified
in two main categories: broad and narrow [1]. In broad folksonomies, e.g., del.icio.us1,
multiple users tag the same resources with a variety of terms; in narrow folksonomies,
the tagging activity is mainly performed by the content creators. Image folksonomies
like Flickr2 belong to the latter category.

Tags simplify resource retrieval and browsing. Additionally, tagging allows users
to annotate the same resources with several terms, which enables multifaceted orga-
nization. However, tagging suffers from several intrinsic issues: Mathes [2] points to
two main issues of user-supplied tags: ambiguity and lack of synonym control, which
is also known as redundancy [3]. Tag ambiguity arises when the same tag is used
to indicate different meanings. Typical examples are word-sense ambiguity (e.g. the
word ”palm” in different context) and language ambiguity (e.g. ”Gift” means poison
in German and present in English) (for further details refer to [4]). On the other hand,
tag redundancy emerges when different tags are used to describe the same thing. For
instance using different syntactic forms to express the same thing (e.g. ”New York”
vs. ”New-York”) is very common among taggers.

To overcome these problems, researches worked on techniques for identifying related
tags in folksonomies (e.g. [5, 6, 7]). The proposed solutions help to identify redundant
tags and to resolve tag ambiguity by providing the needed context through groups of
related tags.

Here a clarification is in order, about the use of the terms similarity and related-
ness. Semantic similarity and semantic relatedness are two linked concepts but are not
synonyms. The authors of [8] point out that semantic relatedness is a more general
concept than semantic similarity: similar entities are semantically related via their
similarity (”auto”-”car”), but non-similar entities may also be semantically related
by meronymy (”hand”-”palm”), antinomy (”left”-”right”), rather than just frequent
association. Applications typically require relatedness rather than similarity: for ex-
ample, ”leaf” and ”hand” are cues which can be used to disambiguation of the term
”palm”.

Hereafter the term dissimilarity will be used as the opposite of relatedness.
Most research contributions adopt an existing tag-to-tag dissimilarity metrics, cre-

ates a tag dissimilarity matrix and then build over it a clustering algorithm: tags
belonging to the same cluster will be assumed to correspond to the same meaning;
distinct research contributions differ typically in the characteristics of the proposed
clustering algorithm and in their performance measured for instance in terms of com-
putational efficiency or in terms of the quality of the results.

So far, less research has focused on the dissimilarity measure used to create the tag
dissimilarity matrix. Most approaches follow a simple procedure for creating the tag
1www.delicious.com (Accessed: 17/1/2014)
2www.flickr.com (Accessed: 17/1/2014)
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dissimilarity matrix based on the cosine similarity of tag co-occurrence vectors. Despite
the efficiency of the cosine method, we believe that more sophisticated dissimilarity
metrics can significatively improve the tag clustering algorithms’ quality of results.

The present paper investigates the effect of different (dis)similarity measures on
identifying related tags in folksonomies. A key point of our method is a specific tag
representation: we represent tags as empirical probability distribution. A tag empirical
probability distribution is defined by the co-occurrence of the tag with other ”special”
tags, identified as features in the folksonomy.

In synthesis the method consists of the following steps: given a folksonomy in a
typical representation of objects-tag associations

• First we determine the tags of the feature set, to this purpose we introduce a
method based on the idea of Laplacian score for feature selection [9].

• Next, related tags are identified by calculating the distance between the cor-
responding probability distributions. For this purpose, we propose a new dis-
similarity metrics based on the well-known Jensen-Shannon Divergence (JSD).
The new metrics, called Adapted Jensen-Shannon Divergence (AJSD), takes into
account the statistical fluctuations present in the empirical probability distribu-
tions and is more robust w.r.t. statistical noise than the bare JSD of the two
empirical probability distributions.

• Finally we apply a standard clustering algorithm.

We experimentally evaluated the proposed approach and compared it to a com-
mon method for tag relatedness based on the cosine similarity. The results show the
advantage of our approach.

The rest of the paper is organized as follows. In Section 2, the related work is
reviewed. In Section 3 folksonomies are defined and the different options for building
a tag’s context are discussed. Our solution is presented in detail in Section 4 and the
experimental evaluation is described in section 5. Section 6 concludes the paper and
discusses the future work.

2 Related work

The definition of a tag relatedness metrics is an essential component for applications
that depend on mining knowledge from collective user annotations. Conventionally, a
tag relatedness metrics is used to create the tag dissimilarity matrix, which is used in
a next step as input for a clustering algorithm to identify related tag groups.

The work [5] proposes a tag relatedness measure which is based on tag co-occurrence
counts. In that approach, the co-occurrence of each tag pair is computed and a cut-
off threshold is used to decide whether two tags are related. The cut-off threshold is
determined using the first and the second derivatives of the tag co-occurrence curve.
Finally, tag clusters are built by providing the computed tag similarity matrix as input
to a spectral bisection clustering algorithm.
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Gemmell and coauthors [6, 10] propose an agglomerative approach for tag clustering.
For that purpose, they presente a tag relatedness measure based on the idea of term
frequency-inverse document frequency (TF-IDF): in their approach the resources take
the role of documents while the tags take the role of terms: each tag is represented
as a vector of tag-frequency-inverse resource frequency and the similarity between two
tags is defined by the cosine similarity between the tag vectors.

For their tag clustering approach, the authors of [11] propose a tag relatedness
measure based on tag co-occurrence counts. First, the tags are organized in a co-
occurrence matrix with the columns and the rows corresponding to the tags. The
entries of the matrix represent the number of times two tags were used together to
annotate the same resource. Next, each tag is represented by a co-occurrence vector
and the similarity between two tags is calculated by applying the cosine measure on
the corresponding vectors.

Simpson and coauthors [12] propose a tag relatedness approach which uses the Jac-
card measure to normalize tag co-occurrences. The tags are then organized in a co-
occurrence graph, which is then fed to an iterative divisive clustering algorithm to
identify clusters of related tags.

The tag relatedness measure presented in [7] is based on a graph-theoretical metrics.
Tags are organized in a graph with the edges weighted according to the structural
similarity between the nodes: tags that have a large number of common neighbors are
considered related.

Weinberger and coauthors [4] propose a statistical approach for identifying ambigu-
ous tags based on the Kullback-Leibler (KL) divergence. For this purpose, a represen-
tation for each tag is created based on the co-occurrence with top frequent tags in the
folksonomy.

All the above works start by exploiting tag co-occurrence counts to define their tag
relatedness metrics. Subsequently, either a simple threshold for tag co-occurrences
[5, 12] or the cosine measure are used to identify similar tags [6, 10, 11]. The present
work with respect to the literature brings original contributions in mainly two respects:

• although we use the same representation for tags as probability distributions as
done in [4], our method deals also with statistical fluctuations in the created prob-
ability distributions and propose extension for the well-known Jensen-Shannon
Divergence;

• to best of our knowledge, this work is the first to deal with the problem of
feature selection for building tag co-occurrence vectors: we propose a solution
based on the method of Laplacian score for feature selection and demonstrate
its advantage for tag relatedness measures.
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3 Folksonomies and Tag Relatedness

A folksonomy F can be defined as a tuple F = {T,U,R,A} [13] where T is the set
of tags contributed by a set of users U to annotate a set of resources R, while A is
a ternary assignment relation, i.e. A ⊆ U × T × R: a triple (t, u, r) ∈ A captures the
fact that a tag t has been used by user u to tag the resource r. We say that two tags
t1, t2 ∈ T co-occur if they are used by one or more users to describe the same resource
r ∈ R.

3.1 Vector representations for a tag

By counting co-occurrences with the other tags we can define for each tag an histogram
of empirical frequencies, and use the corresponding vector v(t) as a representation of
the tag itself: in this way the tag becomes a vector of the real space |T |, indicated in
short by T . This representation of a tag is called tag-context.

More formally, in the T representation each tag t ∈ T is defined as a vector v(t) ∈
T , so that the entries t of the vector v(t) correspond to the set of unique tags in the

folksonomy and the value of each entry correspond to the measure of co-occurrence of
t with the tag associated with that entry: this measure can be given in the form of a
count or of a frequency (i.e. count of co-occurrences over total count of occurrences).
Notice that in the latter case the vector v(t) is an empirical probability distribution ;
this fact will be used later, during the definition of the tag dissimilarity.

Indeed, this idea can be generalized also to the other dimensions of the folksonomy:
a tag can be represented as a vector in one of three possible real vector spaces: T ,

U and R, or in a combination of them [14].
The second kind of tag representation, U , is called user-context. The entries of the

tag vectors v(t) ∈ U correspond to the unique users in the folksonomy. The value of
an entry related to a user u ∈ U indicates how often u has used t in his annotation
activity.

The third kind of tag representation, R, is the resource-context. The entries of the
tag vector v(t) ∈ R correspond to the unique resources in the folksonomy. The value
of an entry related to a resource r ∈ R corresponds to the number of times in which t
was used to annotate r.

In the present paper we will use only the tag-context, for reasons which will be
clarified hereafter.

3.2 Standard definitions of tag relatedness

Approaches for tag relatedness use one (or more) of the above mentioned vector space
representations to characterize the related tags. This is done by generating the chosen
vector representation of the two tags in all the possible, or relevant, tag pairs and then
calculating the cosine similarity of each pair.

Hence for two tags t1, t2 ∈ T , which are represented by the vectors v(t1) and v(t2),
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in a vector representation, the relatedness, sim(t1, t2), can be defined by:

sim(t1, t2) = cos(v(t1), v(t2)) =
v(t1) ∙ v(t2)

||v(t1)|| ∙ ||v(t2)||
(1)

The importance of each of the mentioned vector space representations for identifying
related tags differs according to the type of the folksonomy, i.e., narrow or broad. In
this paper, we focus on image folksonomies which are usually narrow folksonomies.
Hence, user-context have a limited value in identifying related tags due to the low user
interaction. As for the resource-context, there are two reasons which make it unsuitable
for identifying related tags in image folksonomies. First, in image folksonomies it
is unlikely that the same tag will be applied multiple times to describe the same
photo. Second, whereas with textual resources further occurrences of the tags can be
acquired by analyzing the associated textual context for images there is not in general
an associated textual context. For those reasons, in this work we restrict to tag-context.
Tag-context provides however rather rich information about the pattern of tag usage
in the folksonomies.

In the next sections, we present our approach for identifying related tags by analyz-
ing their co-occurrence patterns in the corresponding folksonomies. We also provide
experimental evaluation using as a reference a widely used approach based on the
cosine similarity of tag co-occurrence vectors.

4 Tag Relatedness Approach

We propose a tag relatedness approach using the tag-context representation.
Fig. 4 provides a generic description of the procedure we follow to identify related

tags. We start from a folksonomy, represented by the included tags and the associated
resources. Next, feature selection is applied to extract a set of important tags, called
feature set. In order to isolate the feature set, we propose a feature selection approach
based on the Laplacian score (LS) method [9]. After that, for each unique tag in the
folksonomy a probability distribution is created based on the co-occurrence of that
tag with the elements of the feature set. Finally, the relatedness between two tags
is determined based on the dissimilarity between their probability distributions. To
calculate this dissimilarity, we propose a new metric, called Adapted Jensen-Shannon
Divergence (AJSD), based on the well-known Jensen-Shannon Divergence (JSD) [15],
but adapted so as to make it robust w.r.t. statistical fluctuations present in the
empirical probability distributions.

We expose the details of each phase in the upcoming subsections.

4.1 Feature Selection for Tag Relatedness

Identifying related tags in a folksonomy is an all-pairs-similarity-search problem (APSS)
[16] since each tag has to be compared to all other tags in the folksonomy. Given the
set of |T | tags and considering that each tag is represented by a d dimensional vector,
the naive approach would compute the similarity between all tag pairs in O(|T |2 ∙ |d|)
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Figure 1: The work-flow of the proposed tag relatedness approach
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time. In the case of tag-context approach where d = |T | the algorithm will have a
complexity O(|T |3). For large folksonomies, performing such computations is imprac-
tical. However, the computational cost can be reduced if the tags are represented in
reduced vector space, i.e, F where F ⊂ T and |F| � |T |. Of course, in this case, the
challenge is to provide a feature selection approach which can maintain, if not improve,
the quality of the tag relatedness measure.

A simple approach to build the feature set F , is to select a subset of the most frequent
tags in the folksonomy (e.g. [14, 4]). This technique has some effectiveness, but a main
issue: the most frequent tags may have almost uniform co-occurrence patterns with
most other tags in the folksonomy; in this case, all tags would be considered related
to each other. Hence, a more sophisticated approach for identifying F is required.

A possible solution for this challenge is provided by the Laplacian Score feature
selection method [9]. LS is a technique based on a graph-theoretical metrics, for
identifying good features for clustering problems: this makes it suitable also for tag
relatedness approaches, which aim eventually at finding clusters, i.e., groups of related
tags.

4.1.1 The Laplacian Score technique

The Laplacian Score (LS) technique for feature selection is based on Laplacian Eigen-
maps [17] and Locality Preserving Projections [9] techniques. Those techniques allow
to represent a dataset, whose points are characterized by a high dimensionality, by
means of a lower dimensional representation, implicitly based on a low dimensional
sub manifold of the whole space: those techniques postulate that such a manifold exist
and that it can be represented efficiently in terms of a small subset of the data-points
(those will be the selected features).

This schema fits the problem at hand: the keywords are the points of our dataset;
they are represented initially by high-dimensional vectors (the co-occurrence frequency
histograms with all the other keywords). The results of the application of the method
described hereafter confirm ex-post the soundness of the assumptions.

To compute the LS of a dataset, the data-points are first organized in a weighted
undirected graph, in which nodes correspond to data points and an edge is drawn
between two nodes if they are close to one another according to some predefined
similarity measure (such as the cosine measure); edges are weighted proportionally
to the similarity between the connected data points. The Laplacian (matrix) L of
such a graph is a square matrix defined by the difference of the degree matrix and
the adjacency matrix (see below) of the graph: intuitively, the Laplacian matrix is
a discrete analog of the Laplacian operator in multi-variable calculus and serves a
similar purpose by measuring to what extent a graph differs at one vertex from its
values at nearby vertices. Thanks to such a measure, one can define the Laplacian
score for each individual vertex (the less it differs from the neighbors the higher its
score) and consequently choose those points who turn out to have the highest scores,
as representative features.

The feature selection algorithm and estimation for the solution of the objective
function are summarized in the following steps (more details can be found in [9]):
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1. For the set of n data points a k-nearest-neighbor graph is generated. In that
graph, an edge between two data points xi and xj is drawn if the points are close
to each other, i.e., if xi belongs to the set of k nearest neighbors of xj and vice
versa.

2. The edges between close nodes are then weighted according to a similarity func-
tion. To calculate the similarity, there are several options: common measures are
the cosine similarity (Equation 1) and the Gaussian similarity which is defined
as:

Sij = e−
‖xi−xj‖2

2u (2)

where xi, xj are two data points and u is a free parameter that can be determined
experimentally. Pairwise similarities of the data points are then combined into
a similarity matrix S.

3. For a feature f , defined as a vector over the data points, let:

f̃ = f −
fT D

T D
(3)

where = [1...1]T and D = diag(S ), i.e. D is a diagonal matrix in which each
diagonal entry dii corresponds to the sum of the entries of the column i in the
similarity matrix S.

4. Let L = D − S be the Laplacian matrix of the similarity graph [18]. The Lapla-
cian Score of the feature f is then computed as:

L(f) =
f̃T Lf̃

f̃T Df̃
(4)

5. The final feature set F contains those features with a Laplacian Score greater
than a predefined threshold θ:

F = { f | L(f) > θ } (5)

In our case, the data points as well as the features correspond to the tags of the
folksonomy. That is, each tag in the tag-context representation, i.e, v(t) ∈ T defines
a data point as well as a feature vector at the same time.

4.1.2 An illustrative example

To clarify how the Laplacian score algorithm can be applied to select important features
in a folksonomy, consider the tag co-occurrence matrix shown in Figure 2. The column
and the rows of the matrix corresponds to the tags while the entries correspond to the
co-occurrence counts of the tag pairs, as observed in the folksonomy. The co-occurrence
of a tag with itself is set to zero. In this example the tags ”France” and ”Paris” occur
most. Furthermore, both tags show uniform occurrence patterns with the other tags.
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France Paris Tower Eiffel Sky City

France 0 30 30 30 30 30
Paris 30 0 20 20 20 20
Tower 30 20 0 20 5 5
Eiffel 30 20 20 0 10 10
Sky 30 20 5 10 0 5
City 30 20 5 10 5 0











Figure 2: A sample tag co-occurrence matrix
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Figure 3: Similarity graph for the data points corresponding to the rows of the matrix
shown in Figure 2. The nodes corresponds to the tags with edges weighted
using the cosine similarity

Although the data point set and the feature set contain identical elements, for sake
of clarity, here we make a distinction between them by denoting the data points by xi

and the features by fi.
Data points, as well as features, can be derived directly from the rows and columns

of the co-occurrence matrix, respectively. For example the data-point vector corre-
sponding to the tag ”France” is given by xFrance = (0, 30, 30, 30, 30, 30), while the
feature vector corresponding to the tag Tower is given by fTower = (30, 20, 0, 20, 5, 5)T .

In the next step, we create a weighted nearest-neighbor graph for data-points (step
1 and 2 of the algorithm). Due the small number of data points, we use a complete
graph (instead of a nearest-neighbor graph) and chose the cosine similarity to weight
the edges (Fig. 3). Next, the graph is mapped into a similarity matrix S. Additionally,
the diagonal matrix D as well as the Laplacian of the graph L are calculated (Fig. 4).
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S =











0 0.72 0.53 0.62 0.47 0.47
0.72 0 0.72 0.78 0.68 0.68
0.53 0.72 0 0.77 0.96 0.96
0.62 0.78 0.77 0 0.87 0.87
0.47 0.68 0.96 0.87 0 0.98
0.47 0.68 0.96 0.87 0.98 0











D =











2.81 0 0 0 0 0
0 3.58 0 0 0 0
0 0 3.93 0 0 0
0 0 0 3.91 0 0
0 0 0 0 3.97 0
0 0 0 0 0 3.97











L = D − S =











2.81 −0.72 −0.53 −0.62 −0.47 −0.47
−0.72 3.58 −0.72 −0.78 −0.68 −0.68
−0.53 −0.72 3.93 −0.77 −0.96 −0.96
−0.62 −0.78 −0.77 3.91 −0.87 −0.87
−0.47 −0.68 −0.96 −0.87 3.97 −0.98
−0.47 −0.68 −0.96 −0.87 −0.98 3.97











Figure 4: The similarity matrix S, the diagonal matrix D and the Laplacian matrix L
as generated from the nearest neighbor graph of Figure 3
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Feature Laplacian Score
fSky -0.07
fCity -0.07
fTower -0.09
fFrance -0.14
fEiffel -0.16
fParis -0.23

Table 1: The feature vectors ordered according to their importance (Laplacian score)
from most to least important

Now, we have all the needed information which enables us to calculate the Laplacian
score for the features (tags) of our example according to equation (4). Table 1 shows
the features and the corresponding LS scores in increasing order of importance. As
we can see, the features ”City” and ”Sky” are considered more important by the LS
algorithm than ”France” and ”Paris”. This is because, the tags ”Paris” and ”France”
have uniform co-occurrence patterns with all other tags, consequently, their influence
on identifying groups of related data points is negligible or even biasing.

It is important to mention that the presented example is not representative enough,
however, it gives an idea about the way in which the Laplacian score algorithm can be
applied so as to discover important tags in folksonomies. Furthermore, it shows a main
characteristic of the LS algorithm, namely its ability to determine the importance of
the tags independently of their frequency of occurrence as well as to discover features
of uniform co-occurrence patterns and reducing their importance.

4.2 Tag Probability Distribution

In this processing phase, each tag in the folksonomy is given a representation in terms of
an empirical probability distribution. For this purpose, we quantify the co-occurrences
of a given tag with each of the elements of the feature set. Recall the notation of the
folksonomy F = {T,U,R,A} and let < : T → ℘(R) be a function from the set of tags
to the power set of the resource set, that maps a given tag to the set of resources which
are annotated with it. That means, for a tag t ∈ T we have:

<(t) = { r | r ∈ R ∧ ∃u ∈ U ∧ ∃(u, t, r) ∈ A } (6)

The measure of co-occurrence of two tags can defined by the function C : T × T → ,
given by:

C(ti, tj) = |<(ti) ∩ <(tj)| (7)

Equation (7) means that the measure C(ti, tj) of co-occurrence of two tags corresponds
to the number of resources which are annotated by both of them.

To create an empirical probability distribution for a tag t, the co-occurrences of t
with each feature f ∈ F are counted so as to obtain a histogram in the variable f .
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Figure 5: Empirical probability distributions of four tags (River, Thames, Big and
Ben) which were used to annotate images taken in London. Each distri-
bution consists of several histogram channels corresponding to the elements
of a feature set (x-axis). The value of a histogram channel is given by the
normalized co-occurrence of each of the four tags with the corresponding
element from the feature set

Then, by normalizing this histogram, with the total number of co-occurrences of t with
the elements of the set F , a vector representing the empirical co-occurrence probability
distribution P (f |t) for the tag t with the elements f ∈ F is obtained:

P (f |t) =
C(t, f)

∑
f∈F C(t, f)

(8)

where C is the tag-to-tag co-occurrence function given in equation (7). Each entry f
of the vector P ( f | t ) corresponds to the set of unique tags in the folksonomy which
have been designated as features in the previous phase – the feature tags – while the
value P ( f | t ) of each entry corresponds to the measure of co-occurrence of t with the
feature tag associated with that entry; The empirical probability distribution of the
tag t over the complete set of features F can be denoted in short by P (F|t). Figure 5
shows sample segments of the empirical probability distributions corresponding to the
tags ”River”, ”Thames”, ”Big” and ”Ben”, which have been used to annotate photos
taken in the city of London. The x-axis corresponds to the elements of the feature set,
which, in this example, consists of a subset of the most frequent tags in the associated
folksonomy. Each feature is represented by a histogram channel while the value of
the channel (y-axis) corresponds to the normalized co-occurrence counts – equation
(8) – with each of the four tags. Note that, the tags ”Big” and ”Ben” show a similar
co-occurrence behavior. The same holds also for the tags ”River” and ”Thames”.
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4.3 Dissimilarity Metrics

At this point of the procedure, in order to determine if two tags are related, the dissim-
ilarity between their corresponding empirical co-occurrence probability distributions
must be computed. In the literature, the Jensen-Shannon Divergence (JSD) [15] is a
widely used metrics which has shown to outperform other measures [19]. It is based
on Kullback-Leibler Divergence (KLD) [20], however, it is symmetric and has always
a finite value.

Since the presented tag probability distributions are created from samples (ideally
drawn from the true distribution), and are necessarily affected by statistical fluctua-
tions, we propose an extension of the standard JSD measure, called Adapted Jensen-
Shannon Divergence (AJSD), based on a Maximum Likelihood estimate of the JSD
which both takes into account fluctuations and provides a measure of the statistical
error of the results.

Before introducing the new metric, we review the KLD and JSD approaches to calcu-
late the distance between probability distribution. Let us consider two tags t1, t2 ∈ T
and the corresponding empirical co-occurrence probability distributions P (F | t1 ) and
P (F | t2 ) over the feature set F = {f1, ..., fm}. We can simplify the notation – by
omitting at the same time the feature sets from the arguments – as follows: P (F) ≡
P (F | t1 ) and Q(F) ≡ P (F | t2 ); the values of P and Q at a specific feature f ∈ F ,
will hereafter be represented simply by P (f) and Q(f), respectively.

The most typical metrics for dissimilarity between two probability distributions is
the Kullback-Leiber divergence DKL, defined as follows:

DKL(P ||Q) =
∑

f∈F

P (f) log
P (f)
Q(f)

(9)

Notice that the expression DKL(P ||Q) is asymmetric in its arguments, i.e in general
DKL(P ||Q) 6= DKL(Q||P ). This problem can be solved by adopting, as a definition of
divergence, a symmetrized version of the previous expression:

DSKL(P ||Q) =
1
2






∑

f∈F

P (f) log
P (f)
Q(f)

+
∑

f∈F

Q(f) log
Q(f)
P (f)





(10)

However the KL divergences become infinite as soon as either P or Q vanish in one
point of the support set, due to the denominators in the logarithm arguments of the
two terms. This problem can be fixed by using the Jensen-Shannon (JS) Divergence,
which is given by the following equation

DJS(P ||Q) =
1
2

∑

f∈F

(

P (f) log
2P (f)

P (f) + Q(f)
+ Q(f) log

2Q(f)
P (f) + Q(f)

)

(11)

which differs from the SKL divergence of equation (10) in that the denominator of
the logarithm’s argument consists now in the arithmetic average P (f)+Q(f)

2 of the two
functions.
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4.3.1 Adapted Jensen-Shannon Divergence (AJSD)

If, as in our case, the probabilities P and Q are not available, we have an estimate
of them through a finite sample represented in the form of a histogram for P and a
histogram for Q. In this case the divergence computed on the histograms is a random
variable. This variable, under appropriate assumptions, can be used to compute an
estimate of the divergence between P and Q using error propagation under a Maximum
Likelihood (ML) approach, as illustrated hereafter.

For P and Q consider that the channels at a point (feature) f of the corresponding
histograms are characterized by the number of co-occurrences with f , denoted as kf

and hf respectively. We define the following measured frequencies where:

xf ≡ kf/n yf ≡ hf/m (12)

Here, n =
∑

f kf and m =
∑

f hf are the sum of counts for the first and second
histogram, respectively. When the number of co-occurrences is high enough (large
n and m), the quantities xf and yf can be considered to have normal distributions
around the true probabilities P (f) and Q(f) respectively. Consequently, the measured
JSD, denoted as d, can be considered as a stochastic variable defined as a function of
the two normal variables xf and yf . By substituting xf and yf in Equation 11 we get:

d =
1
2

∑

f∈F

(

xf log
2xf

xf + yf
+ yf log

2yf

xf + yf

)

(13)

The value of this expression does not correspond, in general, to the maximum likelihood
(ML) estimate of JSD since the variances of the terms in the sum are unequal. In
order to find the maximum likelihood estimate d̂ of the divergence, we need to proceed
through error propagation as in the following steps:

1. Thanks to the normality condition stated above, the ML estimate of P (f) cor-
responds to xf = kf/n with the variance given in a first approximation by
σ2

P (f) = kf/n2. Similarly, the ML estimate of Q(f) is yf = hf/m with the

variance given by σ2
Q(f) = hf/m2.

2. We represent the individual addendum term in the sum expression of equation
(13) as a random variable zf :

zf ≡ xf log
2xf

xf + yf
+ yf log

2yf

xf + yf
(14)

If the two variables xf and yf are independent, the variance propagation at the
first order is given by:

σ2(zf ) '

(
∂zf

∂xf

)2

σ2(xf ) +

(
∂zf

∂yf

)2

σ2(yf ) (15)

' log2 2xf

xf + yf
σ2(xf ) + log2 2yf

xf + yf
σ2(yf ) (16)
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The variance σ2(zf ) can be easily calculated by substituting the quantities of
step 1 in the equation (16).

3. Define the (statistical) precision wf (to be used later as a weight) as: wf ∼ 1
σ2(zf ) .

Then, the maximum likelihood estimate of the quantity d of equation (13) is given
by the following weighted sum:

d̂ =

∑
f wfzf
∑

f wf
≡ DAJSD(P ||Q) (17)

With the variance given by:

σ2(d̂) =
1

∑
f wf

(18)

We use d̂ as Adapted Jensen-Shannon Divergence (AJSD). Note that, due to the
statistical fluctuations in the samples, AJSD gives, in general, values greater than zero
even when two samples are taken from the same distribution, i.e. even when the true
divergence is zero. However, by weighting the terms according to their (statistical)
precision, the scores produced by AJSD are expected to provide better estimate of the
divergence than JSD does (see next section).

5 Evaluation

5.1 Dataset

To evaluate the performance of the proposed tag relatedness approach we performed
several experiments on a folksonomy extracted from Flickr. The folksonomy corre-
sponds to images taken in the area of London3. To avoid bulk tagging we restricted
the dataset to one image per user. The final dataset contains around 54,000 images
with 4,776 unique tags occurring more than 10 times and a total of 544,000 tag as-
signments.

5.2 Qualitative Insight

For each of the 4,776 unique tags in the dataset, we identified its most related tags.
Table 2 shows sample tags (first column) with the corresponding related tags ordered
according to their degree of relatedness from left to right. The related tags are obtained
by the cosine (COS), JSD and AJSD measures, respectively, and by using the top 2000
Laplacian features. First, one can notice the overlap among the groups of related tags
corresponding to the same initial tag. That is, because the tag relatedness measures use
the same context, namely the tag-context. Second, we have recognized that, in general,
the groups of related tags which are identified by AJSD have a higher cardinality than

3Dataset and code: https://sites.google.com/site/hmsinfo2013/home/software
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Initial Tag Method Related Tags

Airport

COS Heathrow, KLM, duty, check, airports, runway
JSD Heathrow, runway, African, international, ramp
AJSD Heathrow, ramp, departures, president, restaurants

Car

COS automobile, Citroen, driving, rolls, pit, wreck
JSD cars, classic, motor, Sunday, Ford, Mini, BMW, driving
AJSD cars, classic, Sunday, Ford, Mini, BMW, driving, Cater-

ham, pit

Garden

COS Covent, jardin, ING
JSD flower, gardens, rose, Covent, jardin
AJSD flower, gardens, Covent, jardin, pots, Nicholson, rocks

Thames

COS path, Kingston, river, mud, embankment, Sunbury, shore
JSD river, path, Kingston, riverside, Greenwich, ship, embank-

ment
AJSD river, water, riverside, path, Kingston, Greenwich, embank-

ment

Music

COS musician, bands, records, fighting, acoustic
JSD concert, rock, stage, festival, pop, jazz, song, records
AJSD concert, rock, festival, stage, pop, jazz, Simon, song

Olympics

COS triathlon, men’s
JSD Olympic, men’s, arena, venue, women’s, athlete
AJSD Olympic, men’s, center, athlete, women’s, venue, game,

triathlon

Table 2: Sample tags with the corresponding most related tags

their counterparts which are identified using JSD and the cosine approaches (e.g. Car,
Garden in Table 2). The reason for this is that AJSD generates non-zero similarity
even if the two tags have different sample distributions (section 4.3.1).

To investigate the effect of feature selection, we applied the Laplacian score method
on the dataset to identify the most important tags. To generate the tag graph we
set the number of nearest neighbors to 10 and used the Gaussian similarity function
with t = 1. Fig. 6 shows a plot of the top tags according to LS against the number of
occurrences of the tag (frequency). Additionally, the plot illustrates the most frequent
tags in the folksonomy (italic). According to LS, the importance of a tag is determined
according to its graph-preserving power and not according to its frequency. For ex-
ample a tag like potter which is much less frequent than the tag england has a higher
Laplacian score, thus, considered as more important. This can be explained since the
folksonomy contains images taken in London, thus, it is very likely that most images
will be tagged with the word england disregarding their contents. Correspondingly,
england should have a kind of uniform co-occurrence with all other tags in the folk-
sonomy. Therefore, it is less discriminative (has a low LS) than a more specific tag
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Figure 6: Tags importance (Laplacian Score) vs. tag frequency

like potter which expected to have non-uniform tag co-occurrence distribution.

5.3 Semantic Grounding using WordNet

To provide a quantitative evaluation, we performed additional experiments using
WordNet4. WordNet has been used by several works as a tool for semantically ground-
ing tag relatedness measures [14, 21, 22]. The goal is to assess how a given tag relat-
edness measure approximates a reference measure. For our study, we used the Jinag
& Conrath (JCN) distance measure as a reference since it showed a high correlation
with human judgment [23]. Initially, a gold standard dataset was created by extracting
most similar tag pairs from our dataset according to WordNet and by applying JCN
measure. After that, the relatedness between the tag pairs of the gold standard is
calculated according to our tag relatedness approach as well as the cosine method. To
evaluate the effectiveness of LS feature selection, we performed several experiments us-
ing different thresholds on the number of top LS features. Furthermore, we compared
the performance of LS to frequency based features selection (FRQ).

The performance of the tag relatedness measures is determined according to the
average JCN distance over the collection of most related tag pairs as identified by each
of the investigated methods. Figure 7 shows the average JCN distance for the most
similar tag pairs (y-axis). The x-axis corresponds to the number of the features. The
compared methods include the three measures JSD, AJSD and Cosine (COS) combined
with the two features selections approaches, namely the Laplacian score (LS) and the

4http://wordnet.princeton.edu/ (Accessed: 17/1/2014)
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frequency based approach (FRQ) which identifies the features by simply selecting the
top N most frequent tags. The number of tag pairs which have correspondences in
WordNet varies according to the applied similarity method. The average number of
recognized WordNet pairs is 975 per method with a standard deviation of 81,6. The
standard error in estimating the average JCN distance depends also on the similarity
method. However, we observed close values in the range [0.15,0.19].

LS leads to lower average JCN distance than FRQ for all similarity measures and
disregarding the number of features (Figure 7). Moreover, LS enables reducing the
dimension of co-occurrence vector/probability distribution while preserving the quality
of the identified similar tag pairs. For instance, a minimum JCN distance can be
achieved when the top 1,500 Laplacian features (around 31% of total unique tags)
are used to perform the calculation. Finally, regarding the distance measures, AJSD
produces shorter JCN distances than JSD which in turn performs better than the
cosine measure (Figure 7).

Since the distributional properties of the investigated measures can be different, we
followed the evaluation method described in [22]. Thereby, the performance of two tag
relatedness measure can be compared according to how they rank the most similar tag
pairs generated by each of them. To do this, the correlation between the rankings of
each tag relatedness approach and the corresponding rankings of the reference measure
(here JCN) is calculated. A suitable measure is provided by Kendall τ rank correlation
coefficient.

Figure 8 shows that the performance of the tag relatedness measures based on
Kendall correlation is in correspondence with our observations when JCN is used for
the evaluation. AJSD combined with LS provides a higher correlation with WordNet
than JSD and COS . By Using AJSD, we can even reduce the dimension of the prob-
ability distribution to 80% (the top 1,000 LS tags) while getting the best correlation
with WordNet. Moreover, the frequency features selection have a much negative im-
pact on the cosine approach. COS-FRQ is negatively correlated with WordNet as long
as the number of features is below 3,000. In contrast, LS leads to a positive correlation
factor in all cases.

6 Conclusion
In this paper we introduced a tag relatedness approach based on the representation
of the tag data in terms of co-occurrence vectors, which differs form the current ap-
proaches in terms of two elements: 1) we used the Laplacian Score feature selec-
tion in order to reduce the dimension of the representation and had each tag corre-
spond to a histogram with a limited number of channels 2) we compared the different
tags/histograms by a metrics derived as a maximum likelihood estimate of the Jensen-
Shannon Divergence.

As a reference for validation we used the WordNet dataset and the Jinag and Conrath
distance (JCN). Our adapted JSD metrics (AJSD) displays a better performance of
the original JSD metrics: it discovers tag pairs of smaller WordNet (JCN) distances
and of higher correlation with WordNet. Furthermore, both AJSD and JSD perform
better than the cosine measure.
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In future work, we will work on improving the performance of our approach by deter-
mining the best parameter values for the Laplacian Score. Also, we aim at evaluating
the performance of our approach by integrating it into a tag recommendation system.
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