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Abstract. Soft matter is studied with a large portfolio of methods. Light scattering and video
microscopy are the most employed at optical wavelengths. Light scattering provides ensemble-
averaged information on soft matter in the reciprocal space. The wave-vectors probed correspond
to length scales ranging from a few nanometers to fractions of millimetre. Microscopy probes the
sample directly in the real space, by offering a unique access to the local properties. However,
optical resolution issues limit the access to length scales smaller than approximately 200 nm. We
describe recent work that bridges the gap between scattering and microscopy. Several apparently
unrelated techniques are found to share a simple basic idea: the correlation properties of the
sample can be characterised in the reciprocal space via spatial Fourier analysis of images collected
in the real space. We describe the main features of such Digital Fourier Microscopy (DFM), by
providing examples of several possible experimental implementations of it, some of which not yet
realised in practice. We also provide an overview of experimental results obtained with DFM for
the study of the dynamics of soft materials. Finally, we outline possible future developments of
DFM that would ease its adoption as a standard laboratory method.
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1. Introduction

Soft matter is a broad field encompassing a large variety of systems ubiquitous in our everyday
life [1]. Typical examples are hair gel, paint, lipstick, mayonnaise, hair mousse, shampoo, and talc
powder. Each of these complex fluids represents a class with some characteristic features. Polymers
make up hair gels, paint is an example of colloid and lipstick may bear a liquid crystalline order.
Mayonnaise is an emulsion, hair mousse is a foam, shampoos are complex surfactant solutions
and talc powder is a granular material. All these systems share a sort of intermediate behaviour
between liquids and solids and the interactions holding them together are of the order of k

B

T .
Such interactions are way weaker than those characterising liquids (typically a few tens of k

B

T )
but yet they determine and control the structure and dynamics of soft matter systems. In addition,
they provide at the same time a certain degree of ’softness’ i.e. a large responsiveness to external
perturbations. Indeed, a rough estimate of the elastic modulus of soft materials is given by

G ⇠ k

B

T

a

3

(1)

where a is some typical characteristic length of the soft material, whose order of magnitude
lies typically in the range [10nm, 100µm]. This gives rise to an elastic modulus of the order
G ⇠ [nPa, kPa], which is way smaller than the ones characterising typical solids (G ⇠ 10 � 1000

GPa), accounting for the softness of these materials. The study of materials with length scales
varying in such a wide range requires the combination of several experimental methods, including
microscopy and scattering with radiation of different kind and wavelength, the most relevant being
light, neutrons, and x-rays [2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

Even with this large availability of tools, optical methods remain of paramount importance
both in real and reciprocal space. In the past, light scattering has been the traditional choice
for quantitative studies of the structural and dynamical properties of soft materials [10], even
though in the last years there has been a steadily growing use of microscopy techniques [5].
Historically, scattering and microscopy have been long thought of as very distinct tools. Light
scattering can access large regions of the sample probing time scales down to the nanosecond. In
addition, it benefits from the possibility of ensemble averages over a large number of scatterers and
it provides easy access to three dimensional statistical properties of the sample. On the other hand,
microscopy provides an invaluable map of the sample in the real space and allows an easier probe
of heterogeneous samples, in particular when discriminating sub-populations of differently-featured
entities is important.

Technological advances leading to better computer performances and improved charge-
coupled device (CCD) or complementary-metal-oxide-semiconductor (CMOS) cameras - in terms of
resolution, acquisition speed and noise properties - have recently enabled the practical possibility of
using imaging devices in scattering experiments. Initially, cameras have been successfully employed
in far-field scattering experiments, both for static [12] and dynamic [13] applications, for which they
immediately proved to be a reasonable alternative to other detectors. The comparative slowness
and increased noise of cameras with respect to photomultiplier tubes and avalanche photodiodes
turned out to be compensated by the possibility of performing multi-speckle detection on different
camera pixels, with obvious advantages for nonergodic samples.

More recently M. Giglio and coworkers [14, 15] dropped the idea of having the camera in
the far field of the scattering sample and collected images in its close proximity (the so called
near field or deep Fresnel regime [16]), but still at some minimum distance from it to ensure the
presence of speckles [17]. In the deep Fresnel regime, the speckle size does not change with the
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distance from the sample as a consequence of the conservation of the angular spectrum of light upon
propagation [18, 19, 20]. In addition, under the hypothesis that the scattering object is weak, the
image intensity is de facto a coherent hologram of the sample, with the real part of the scattered
field encoded in the image intensity. As a consequence, the Fourier power spectrum of the near field
images provides directly the scattering intensity I(Q) as a function of the scattering wave-vector
Q, multiplied by a transfer function that accounts for the details of the experimental setup [16].
Whenever the transfer function can be neglected or independently measured it is thus possible to
perform static light scattering (SLS) experiments at small scattering angles by studying images
collected in the deep Fresnel regime. This heterodyne near field scattering (HNFS), as named by
its proposers, is strongly connected to the so called quantitative shadowgraphy [21, 22], a technique
that was developed a few years before for the quantitative study of instabilities and non-equilibrium
fluctuations in fluids. The strong link between the two methods was realised only later, when it was
understood that shadowgraphy and HNFS, rather then being two distinct methods, are actually
the limit of the same technique for small and large distances (or wave-vectors), respectively [23].
The transfer function of HNFS is only affected by the numerical aperture of the collection optics
and by the coherence of light, whereas shadowgraphy suffers from additional oscillations due to the
Talbot effect [16].

A few years later, both methods were indeed simultaneously extended to extract also the system
dynamics [24, 25, 26, 27] from the analysis of images acquired at different times. This analysis
provides information similar to that obtained with Dynamic Light Scattering (DLS) [4], once again
in the small-angle regime. Measuring the dynamics is easier than measuring I(Q), because it is not
necessary to determine the time-independent transfer function. The method works also with hard
x-rays where the dynamics of a colloidal suspension was determined by Fourier analysis of deep
Fresnel images [28], without need of pinholes or other devices usually employed for increasing the
coherence of synchrotron radiation. Another step forward was accomplished in Ref. [29], where a
commercial microscope equipped with a halogen lamp was used to collect images in the mid-plane
of a thin capillary containing a dilute colloidal suspension. The resulting Differential Dynamic
Microscopy (DDM), in contrast with shadowgraphy and HNFS, does not use any specialised source
or setup and operates inside the sample, where in most cases no speckles can be even observed.
The results in Ref. [29] proved indeed that DDM was capable of providing high-quality studies of
the dynamics both for large particles, whose motion could be easily followed with particle tracking,
and for sub-diffraction scatterers, which can not be individually resolved with visible light.

Closely connected to all the above methods is also the so called Fourier Transform Light
Scattering (FTLS) in which, under some hypothesis about the sample, the optical phase and
amplitude of a coherent image field are quantified and propagated numerically to the scattering
plane for performing both SLS and DLS [30].

Related but independent work was made in the biophysical community where, starting from
ideas closer to fluorescence correlation spectroscopy (FCS) [31] than to DLS, it was shown that the
typical FCS real space analysis of number fluctuations in a small volume [32] could be replaced by a
dynamic analysis of Fourier transformed microscope images with the aim of extracting simultaneous
information on the sample dynamics at various length scales [33]. The principle of the method differs
from the one of scattering based techniques in that the intensity signal is due to fluorescence which
notoriously leads to incoherent imaging.

At first, the fact that incoherent, coherent, or partially coherent methods based on either
scattering or fluorescence give the same result may seem accidental. However, it is possible to
show - and we will do it in more detail in this review article - that under rather general but still
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somehow restrictive conditions [34], the analysis of microscope images in the Fourier space - from
here on Digital Fourier Microscopy (DFM) - of a sample can provide quantitative information about
its structure and dynamics similar to the one obtained in SLS and DLS experiments. The reader
should be aware that the term microscopy is used here in a very broad sense because it includes
many situations where, due to defocusing [35], speckles [17] or other effects the image of the sample
does not seem to bear any resemblance with the sample itself.

It is worth concluding this Introduction by mentioning that DFM is not the only approach
that exploits imaging to characterise soft matter samples. Indeed, in the last few years other non-
Fourier methods have been proposed, such as for instance Photon Correlation Imaging [36] or Echo
Speckle Imaging [37], whose focus is the space-resolved characterisation of soft matter dynamics
with simultaneous high temporal and spatial resolution. The reader interested in a review of such
methods in connection to the ones treated here should refer to Ref. [16].

2. Theory of Digital Fourier Microscopy

An equivalent description of the dynamics of soft matter samples can be either given in the real
space or in the reciprocal space. The real space approach is apparently more convenient because
it is naturally and more directly related to our everyday experience. If we focus for instance on
a colloidal suspension of particles, the success of a real space approach depends crucially on the
fact that the particles can be individually and unambiguously tracked for the whole duration of
the experiment. This requirement is very difficult to satisfy for particles that are much smaller
than the wavelength of light because their contrast decreases quite rapidly with their size (for
instance the scattering cross section scales with the square of the particle volume) and also because
they generally move fast. In addition, when the particles’ concentration gets larger, it becomes
increasingly difficult to perform an accurate tracking. If the sample is not made of particles but is
instead composed of small molecules, tracking with visible light becomes practically impossible. In
all cases for which tracking is possible, one can extract various quantities characterising the motion
of individual particles [38] with obvious advantages over far-field scattering techniques in all those
cases where the sample is polydisperse or inhomogeneous. However, whenever the dynamics of the
system under study is described in real space by linear partial differential equations, the reciprocal
space description allows transforming the partial differential equations into algebraic equations and
gives direct access to the eigenmodes of the system [2, 4]. This property increases the appeal of the
reciprocal space approach also when there is the possibility of tracking the particles in real space.

In this review article we describe a family of apparently unrelated techniques that have been
developed during the last years and that are characterised by the same basic idea: by collecting a
stack of microscope images of the sample and performing a temporal analysis of the spatially Fourier
transformed images, information can be extracted that is equivalent to the one obtained in static
and dynamic light scattering experiments. This is the principle of DFM, as it will be described in
more detail in the following paragraphs.

2.1. The sample

For definiteness we assume that the spatio-temporal behaviour of the sample can be described
by a time-dependent scalar field c(X, t), where X is a three-dimensional (3D) space coordinate.
Such scalar field c(X, t) can be thought of as a generalised density. This description is suitable
for continuous variables such as for instance the concentration of one component in a binary fluid



Fourier Microscopy for Soft Matter 5

or a given vectorial component of the director in a fluctuating nematic liquid crystal. The same
formalism can be also used to describe a set of N discrete particles in a volume V for which c(X, t)

can be identified with the particle number density

c(X, t) =

X

n=1,..,N

�(X�X

n

(t)). (2)

For more complex cases where the description of the system requires a vector field (e.g.
velocity), a tensor field (e.g. dielectric tensor or stress tensor) or more than one scalar field (e.g.
concentrations in a multicomponent system) the generalisation of such description should be quite
straightforward.

Crucial features of the space-time behaviour for a translationally invariant system are captured
by the space-time correlation function

C(�X, �t) = hc(X + �X, t + �t)c(X, t)i (3)

or equivalently by the van Hove correlation function

G(�X, �t) =

1

hci hc(X + �X, t + �t)c(X, t)i (4)

where the symbol h⇤i is used here either as a temporal average or as ensemble average under the
assumption that the system of interest is ergodic [2, 4]. In general, the van Hove correlation function
can be written as the sum of a “self” part G

s

(�X, �t) and a “distinct” one G

d

(�X, �t), where the
self part describes the probability (density) for a particle to make a displacement �X in the time
interval �t and the distinct part accounts for interparticle correlations. If a system of statistically
independent particles is considered G(�X, �t) = G

s

(�X, �t).
In the literature several other functions that describe the correlation properties of the sample

in the reciprocal space have been introduced, especially in connection with static and dynamic
scattering experiments. If we indicate the 3D Fourier transform operation with the symbol ˆ⇤ and
we define N =

´
d

3

Xc (X, t), we can introduce the intermediate scattering function

F (Q, �t) =

1

N

hĉ(Q, t + �t)ĉ

⇤
(Q, t)i =

ˆ

G(Q, �t) (5)

or its normalised version

f(Q, �t) =

F (Q, �t)

F (Q, 0)

. (6)

Another function often found in the literature is the structure function

D(Q, �t) =

1

N

⌦|ĉ(Q, t + �t) � ĉ(Q, t)|2↵ = 2

n

ˆ

G(Q, 0) �<
h

ˆ

G(Q, �t)

io

(7)

or its normalised version

d(Q, �t) =

D(Q, �t)

D(Q, +1)

= 1 �< [f(Q, �t)] (8)

where < [a] denotes the real part of a. In terms of the above defined intermediate scattering function
the well known dynamic structure factor

S(Q, !) =

1

2⇡

ˆ
dte

�j!t

F (Q, �t) (9)
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Brownian
�(Q) = D

0

Q

2

Uniform velocity V

0

�(Q) = Q ·V
0

Velocity distribution P (V )

G(�X, �t)

exp

✓
� |�X|2

4D0t

◆

(4⇡D�t)

3
2

�(�X�V

0

�t)

1

�t

P (|�X|/�t)

F (Q, �t) e

��(Q)�t

e

j�(Q)�t

4⇡

´1
0

dV V

2

P (V )

h

sin(QV �t)

QV �t

i

D(Q, �t) 2

⇥

1 � e

��(Q)�t

⇤

2 [1 � cos (�(Q)�t)] 2 [1 � F (Q, �t)]

S(Q, !)

1

⇡

�(Q)

�

2
(Q)+!

2 � (! � �(Q)) 2⇡

´
!

/q

0

dV V

2

P (V )

Table 1. Van Hove correlation function G(�X,�t), intermediate scattering function F (Q,�t),
structure function D(Q,�t) and dynamic structure factor S(Q,!) calculated for three simple
systems of particles: independent particles in Brownian motion with diffusion coefficient D0;
particles translating with uniform velocity V0; particles moving with an isotropic velocity
distribution P (V ).

and static structure factor

S(Q) =

ˆ
S(Q, !)d! = F (Q, 0) (10)

are defined.
In Table 1 we report the relevant expressions for some of the above-defined correlation

functions relative to three paradigmatic dynamic systems. The three columns describe a system
of independent particles of arbitrary size in Brownian motion with diffusion coefficient D

0

(first
column), in uniform motion with velocity V

0

(second column) and in motion with an isotropic
velocity distribution P (V ) (third column).

2.2. Scattering

Light scattering is the ideal probe of the sample correlation properties in the reciprocal space. In
light scattering experiments a light beam (ideally a plane wave with wave-vector ~

k

i

) is impinging
on a sample of interest, considered here for simplicity non-magnetic, non-conducting and non-
absorbing. In general, as the plane wave progresses through the sample, both the amplitude and
the phase of its electric field change as a consequence of local spatio-temporal variations �✏(X, t) of
the sample dielectric constant ✏(X, t) = ✏

0

+ �✏(X, t). Here ✏

0

is the average dielectric constant and
n =

p
✏

0

the corresponding refractive index. For a weakly scattering object the first-order Born
approximation is usually made, according to which the illuminating beam propagates unchanged
within the sample and is diffracted à la Bragg by three-dimensional gratings originated by the
Fourier components �✏̂(Q, t) =

´
�✏(X, t)e

iQ·X
d

3

X of the refractive index variations.
For each scattering wave vector Q and far away from the sample (Fig. 1a), the scattered light

emerges as a plane wave traveling with wave-vector k
s

such that Q = k

i

�k

s

. For elastic scattering
processes (k

i

= k

s

.

= k), the wave-vector Q is linked to a well prescribed scattering angle ✓, as
measured with respect to the propagation direction of the transmitted beam (Fig. 1b) and one has

Q = 2k sin(

✓

2

). (11)

For each angle ✓, the amplitude of the electric field of the scattered plane wave is directly
proportional to the Fourier component �✏̂(Q, t) [39, 40]. However, at optical frequencies detectors
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Figure 1. (a) Sketch of a typical far field scattering experiment with the detector placed far
away from the sample. (b) Wave-vectors involved in the scattering process with Q = (q, q

z

). (c)
Sketch of a typical DFM experiment. Light impinging on the sample is scattered at various angles
and is collected by the objective lens. 2D microscope images of the sample are Fourier analysed
and information equivalent to a traditional far-field scattering experiment (a) is recovered. A
generic scattered ray (wave propagating) with polar angle ✓ and azimuthal angle � (dashed line),
which corresponds to the point (✓,�) in the far-field scattering pattern (a), is collected by the
lens in a DFM experiment (c) and contributes to the image. The contribution of each scattered
ray (wave) can be isolated by means of a two dimensional Fourier analysis, which is based on the
two-dimensional projection q of the wave vector Q transferred during the scattering process (b).

are sensitive to the light intensity
I(Q,t) / |�✏̂(Q, t)|2 (12)

and thus only the Fourier power spectrum |�✏̂(Q, t)|2 of the dielectric constant variations can be
probed with scattering experiments.

Usually, in static light scattering (SLS) experiments the time-averaged intensity
I(Q) = hI(Q, t)i

t

(13)
is studied as a function of the scattering wave vector Q, whereas dynaƒmic light scattering (DLS)
probes, for one or more scattering wave vectors Q, the temporal autocorrelation of the scattering
intensity

G

I

(Q, �t) = hI(Q, t + �t)I(Q, t)i
t

(14)



Fourier Microscopy for Soft Matter 8

Figure 2. Pictorial representation of a linear space invariant imaging system. Each thin slice of
a 3D sample is imaged onto the (x, y) plane as a convolution integral of the density distribution
c(x, z, t) with the z-dependent kernel K(x, z). All such contributions add up to produce the image
intensity i(x, y), as described by Eq.16.

or its normalised version

g

I

(Q, �t) =

hI(Q, t + �t)I(Q, t)i
t

hI(Q, t)i2
t

. (15)

SLS and DLS experiments can thus provide information about the spatio-temporal features of the
variations of the dielectric constant �✏(X, t) - and in turn of the density c(X, t) - within the sample.

2.3. Imaging

The basic idea of DFM can be captured by relying on the intriguing analogy presented in Fig. 1.
In DFM one collects microscopy images of the sample, instead of measuring the scattering intensity
in the far field. Independent on the imaging being based on scattering or fluorescence or on some
other mechanism, we will show that the analysis of the correlation properties of the images in the
reciprocal space provides information about the correlation properties of the sample analogous to
that extracted by light scattering. This analogy is based on some very general assumptions about
the imaging process that are discussed below.

2.3.1. Linear space invariant (LSI) imaging of 3D samples It has been demonstrated in Ref. [34]
that DFM works whenever the imaging process is such that a LSI relation holds between the time-
dependent image intensity distribution i(x, t) and the sample density c(x,z, t) i.e. when the image
can be written as a convolution integral of the form:

i(x, t) = i

0

+

ˆ
dz

ˆ
d

2

x

0
K(x� x

0
, z)c(x, z, t) (16)

where K(x, z) is a generalised 3D point-spread function (PSF), i

0

is a nearly uniform
background contribution which is assumed to be independent of the sample and where X = (x, z).
Eq. 16 should be understood as a sufficient but not necessary condition for the validity of the DFM
approach and until now it has been satisfied, to the best of our knowledge, for all the existing DFM
methods. Starting from Eq. 16 we obtain the 2D Fourier transform of the image intensity

ˆ

i(q, t) = i

0

�(q) +

ˆ
dq

z

ˆ

K(q, q

z

)ĉ(q, q

z

, t) (17)
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a b c 

Figure 3. Bright field images of an aqueous suspension (volume fraction � = 0.01) of 100

nm polystyrene nanoparticles confined in a 100 µm thick capillary. In order to isolate the
fluctuating part, a background contribution obtained by averaging over 1000 independent images,
was subtracted to each image. In each panel, an image obtained with magnification M and
numerical aperture NA is shown: a) M = 5, NA = 0.15, b) M = 20, NA = 0.45, c) M = 40,
NA = 0.6. To compare the size of the speckles obtained with different magnification, panels a)
and b) were additionally magnified by a factor eight and two, respectively, so that the side of each
panel corresponds to about 75 µm in real space. As a consequence of the increased numerical
aperture of the objective, the speckle size decreases markedly from a) to c), which can be also
appreciated in the insets, where the two-dimensional autocorrelation of the corresponding images
are shown.

where ˆ

K(q, q

z

) is a the 3D generalised transfer function, i.e. the 3D Fourier transform of the
generalised PSF and where Q = (q, q

z

) (Figure 1c). In Eq. 17 we have used the same symbol ˆ⇤
for both the 2D and the 3D Fourier transforms of real space quantities. This choice will be pursued
also in the following and the relevant dimensionality can be inferred by inspection of the argument:
Q = (q, q

z

) is used for 3D functions and q for 2D ones.
In Eq. 16 we have assumed that the magnification M for the optical system is unit or,

equivalently, that the image coordinate x has been rescaled in order to account for the system
magnification: x ! x/M . It is also worth pointing out that, in general, the validity of Eqs. 16
and 17 is not compromised by the presence of optical aberrations. In fact, many (even though not
all) deviations from an ideal imaging process usually considered as aberrations (e.g. defocusing,
astigmatism, spherical aberration) preserve the linear-space invariant relation between the object
and image defined by Eq. 16. Their effect can be thus incorporated in the generalised PSF K(x, z).

In contrast with several forms of modern microscopy that are interested in the morphological
details of small objects, DFM experiments are not based on the image being a good reproduction
of the object from an aesthetical point of view. Indeed, in many cases for which the DFM approach
allows an accurate measurement of the dynamics of the sample, it is absolutely impossible to retrieve
the positions or even the shape or size of the original constituents from the intensity distribution
of the images. A striking example is provided in Figure 3, where three bright-field images of a
concentrated suspension of sub-micron particles obtained with three different numerical apertures
(NA) are shown, after being rescaled to account for the different magnification of the objective.
In this case the sample, which is made of colloidal particles of 100 nm (diameter) suspended in
water, is prepared at a volume fraction that causes the typical inter-particle distance to be much
shorter than the characteristic lateral dimension of the PSF. As a consequence, the intensity in each
point of the image is determined by the superposition of the contributions from a large number of
particles, which originates images with a speckled appearance, the speckle size being determined
only by the width of the PSF. Such inability of resolving the individual particles does not affect
the performances of DFM, as it will be shown in the following (see for instance Fig. 8).
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2.3.2. Dynamic imaging of 3D samples Eq. 16 provides the link between the image intensity and
the generalised density. With Eq. 16 in mind it is thus possible to define, in analogy with Eqs. 5
and 9, the image intermediate scattering function

F

i

(q, �t)

.

=

D

ˆ

i(q, t + �t)

ˆ

i

⇤
(q, t)

E

(18)

and its normalised version

f

i

(q, �t)

.

=

F

i

(q, �t)

F

i

(q, 0)

(19)

Analogous definitions can be given for the image structure function D

i

(q, �t)

.

=

D

|ˆi(q, t + �t) �ˆ

i(q, t)|2
E

and its normalised version d

i

(q, �t)

.

=

D

i

(q,�t)

D

i

(q,0)

, for the image dynamic

structure factor S

i

(q, !)

.

=

´
dte

�j!t

F

i

(q, t) and for the image static structure factor S

i

(q) =´
S

i

(q, !)d! = F

i

(q, 0).

We stress that all the characteristic functions defined on the images depend on the 2D wave-
vector q, whereas the corresponding functions characterising the density depend on the 3D wave-
vector Q. Substitution of Eq. 16 in Eqs. 18 and 19 provides

F

i

(q, �t) = N

ˆ
dq

z

| ˆ

K(q, q

z

)|2F (q, q

z

, �t) (20)

f

i

(q, �t) =

´
dq

z

| ˆ

K(q, q

z

)|2F (q, q

z

, �t)´
dq

z

| ˆ

K(q, q

z

)|2F (q, q

z

, 0)

. (21)

It appears that in general, as a consequence of the 3D nature of the imaging process, there is
not a direct proportionality between f

i

(q, �t) and f(q, �t) and the dynamics at a given wave-vector
q is potentially affected also by the axial dynamics associated with q

z

.

2D sample It is interesting to notice that the proportionality between f

i

(q, �t) and f(q, �t) is
recovered for a 2D sample for which Eqs. 20 and 21 simplify to

F

i

(q, �t) = N | ˆ

K(q)|2F (q, 0, �t) (22)

f

i

(q, �t) = f(q, 0, �t). (23)

Eq. 23 implies that the image normalised structure function actually coincides with the
normalised structure function of the sample density, which is the ideal working condition for DFM,
in which the details of the imaging process become irrelevant.

Can the axial dynamics be tamed? Luckily, as shown in Ref. [34], in many cases of practical
relevance it is possible to recover the proportionality between the image and the sample intermediate
scattering functions also for 3D samples, at least in a given wave-vector range. From Eq. 20 it
appears that the image intermediate scattering function at a given q is obtained as a weighted
average of contributions from a whole interval of 3D wave-vectors Q = (q, q

z

), having the same
transverse component q and different q

z

. The range of axial wave-vectors q

z

giving a significant
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contribution can be estimated by evaluating the axial width of the convolution kernel
�

�

�

ˆ

K(q, q

z

)
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=
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)
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�

2

. (24)

If the transverse dynamics associated to the q

z

-values in the interval |q
z

| . �q(q) is significantly
slower than the corresponding transverse dynamics (associated with q), i.e if

F (q, q

z

, �t) ' F (q, 0, �t) (25)

then the validity of Eqs. 22 and 23 is recovered, at least approximately, even in this case. Since
in most cases the characteristic correlation time is a decreasing function of q, a criterion for the
validity of Eqs. 22 and 23 can be given in the form

|F (q, �q, �t)/F (q, 0, �t) � 1| ⌧ 1. (26)

It has been shown in Ref. [34] that for bright-field DFM of freely diffusing particles, the
condition for image formation is more severe than the inequality in Eq. 26, which implies that
for all those q for which there is signal in the images, the dynamics can be safely assessed. In
the next section several examples of generalised PSF are given for which a 2D image processing
provides information about the 3D sample dynamics. A notable case for which the effect of the axial
dynamics becomes evident in DFM experiments also for freely diffusing particles is represented by
the confocal microscope [41].

2.4. Experimental realisations of DFM

Two representative experimental setups suitable for performing DFM are reported in Figs. 4 and
5, where a typical bench-top “microscope” and a commercial one are sketched.

An optical arrangement very similar to the one shown in Fig. 4 is shared by all the seminal
experiments in which DFM was first attempted. A typical signature is the of use an illumination
with high spatial coherence (ideally a single transverse mode) from a narrow-banded light source
(usually a fibre-coupled led or laser). This kind of set-up is particularly flexible: for example it is
quite straightforward to insert suitable filters (items a-d in position 6 in Fig. 4) in the back focal
plane of the objective lens and rapidly switch from bright-field [14] to phase contrast, dark-field
[15] or Schlieren [42] detection . Moreover, in absence of mechanical constraints, it is quite simple
to translate the camera along the optical axis even very far away from the plane conjugate with the
sample, as it is usually done in shadowgraphy [43].

Although much less flexible, an unmodified, commercial microscope (Figure 5), is typically
much easier to handle than a custom, bench-top instrument. Moreover, it displays a number of
very interesting features even from a purely optical point of view: tuneable spatial and temporal
coherence of the illumination beam; calibrated and aberrations-corrected objectives in a wide
range of magnifications and numerical apertures; very stable, pre-aligned optical path; simplified
adjustment procedures, just to mention a few examples. For this set-up it is also possible to
switch from bright-field mode to advanced imaging modalities such as for instance phase-contrast
or dark-field by placing pairs of suitably shaped conjugated apertures in the front focal plane of
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3 4 5 6 7 8 

a b c 
d 

d 

2 8’ 1 

Figure 4. Sketch of a typical bench-top microscope. The red continuous lines indicate the image
forming light path and the green dashed lines the illumination light path. 1-fibre-coupled laser
or led source; 2-fibre tip; 3-collimation lens; 4-object plane (sample), 5-objective lens, 6-objective
back focal plane where the following objects can be placed: (a) nothing for bright-field (b) phase
retarding plate in the focal point for phase contrast (c) beam stop in the focal point for dark-
field (d) knife-edge for Schlieren; 7-relay lens; 8-image plane (camera sensor); 8’-defocused image
plane.

1 2 3 4 5 6 7 8 9 1
0 

11 

a b c a b c 

Figure 5. Sketch of a typical commercial microscope in Koehler configuration. The red
continuous lines indicate the image forming light path and the green dashed lines the illumination
light path. 1-incoherent light source (lamp filament); 2-collector lens; 3-field diaphragm; 4-field
lens; 5-condenser lens front focal plane where the following objects can be placed: (a) aperture
diaphragm for bright-field (b) phase contrast ring (c) dark-field light stop; 6-condenser lens; 7-
object plane (sample); 8-objective lens; 9-objective back focal plane where the following objects
must be placed, according to the choice made in 5: (a) nothing for bright field (b) phase retarding
ring for phase contrast (c) nothing for dark-field (low NA objective); 10-relay lens; 11-image plane
(camera sensor).
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the condenser (items a-c in position 5 in Fig. 5) and in the back focal plane of the objective (items
a-c in position 9 in Fig. 5).

In the remaining part of this section several examples of microscopy experiments are presented,
all compatible with both the described set-ups and fulfilling the requirements for the validity of Eq.
16.

2.4.1. Scattering-based microscopy In microscopy observations of weakly scattering or weakly
absorbing objects the optical signal associated to the fluctuating density c is due to the induced
variation in the complex refractive index of the sample. If E

0

is the scalar field incident on the
sample and E

t

is the transmitted field we can write the total field after the sample as E = E

t

+E

s

,
where E

s

is the scattered field. The object is weak if |E
s

| ⌧ |E
0

| i.e. if I

t

' I

0

, where I

t,0

= |E
t,0

|2.
This is the so called heterodyne regime where, momentarily neglecting the effect of the collection
optics, the intensity distribution in the image plane is given by

i(x, t) / |E(x, t)|2 ' |E
t

|2 + 2<(E

⇤
t

E

s

) (27)

It is obvious that the heterodyne condition is not compatible with methods that get rid of the
transmitted beam such as dark field microscopy or polarised microscopy with crossed polarisers. In
those cases, the I

s

= |E
s

|2 term, neglected in Eq. 27, becomes the only contribution to the image
intensity (see paragraph 2.4.3 for a brief discussion of such cases).

Bright-field microscopy Immediately after the sample, the scattered field can be written as
E

s

= (�

A

+ j�

P

)E

0

. Here �

A

and �

P

represent the phase and amplitude modulations introduced
by the sample on the impinging wave front, respectively. The transmitted field coincides with
the incident field E

t

' E

0

. For a 2D sample, the phase and amplitude modulations of the field
are actually produced by inhomogeneities of the real and imaginary part of the sample refractive
index, respectively. The image intensity turns out to be proportional to the amplitude modulation
�

A

introduced by the sample i / I

0

(1 + 2�

A

). When both the 3D structure of the sample and
defocusing are taken into account, the relationship becomes in general more complicated and phase
modulations become also visible, which is actually the same principle of shadowgraphy. A detailed
model of the PSF of a bright field microscope, derived following Refs. [45, 44], can be found in Ref.
[34] where an analytical expression for the transfer function of a bright-field microscope is obtained
in the form

ˆ

K(q, q

z

) = T (q, q

z

) ± T (q,�q

z

) (28)

with the plus (minus) sign describing amplitude (phase) objects. The function T is given by
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z
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where q̄
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. The parameters

�

c

and �

o

account for the numerical apertures of the condenser and the objective, respectively,
and their actual relation with the nominal numerical aperture values given by the microscope
producer can be determined in various ways. For instance, for the data in Fig. 8, calibration with
a known sample provided �

o

= 0.5 NA

obj

, where the nominal numerical aperture of the objective
was NA

obj

= 0.85. As an alternative it is possible to compare the Gaussian modulation transfer
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function used in Ref. [34] with the more realistic modulation transfer function used by microscope
producers, which corresponds to an optical system with a uniformly illuminated circular aperture.
A numerical comparison of the two expressions provides �

o

= 0.54 NA

obj

, in good agreement with
the estimate obtained by calibration. Similar considerations hold for the numerical aperture of the
condenser �

c

. The other parameters of interest in Eq. 29 are the average wavelength �

0

, the average
incident wave-vector k

0

= 2⇡/�

0

, the wavelength spread of the source ��, and a time-independent
amplitude C [34].

Phase contrast microscopy In phase contrast microscopy the transmitted beam is attenuated by
a factor � and a phase retardation of ⇡/2 is introduced i.e. E

t

= j�E

0

. This is usually achieved
in the bench-top microscope by placing a mask in the back focus of the objective lens (see Fig. 4).
In a commercial microscope the same result is obtained by placing in the back focal plane of the
objective an annular mask, conjugated with an annular aperture placed in the front focal plane of
the condenser lens (see Fig. 5). In this case, the image intensity turns out to be proportional to the
phase modulation �

P

introduced by the sample: i / I

0

(� + 2�

P

). An explicit expression for the
PSF of a phase contrast microscope can be derived with approaches similar to the one presented in
Ref. [46].

2.4.2. Fluorescence-based microscopy In fluorescence experiments the density c can be identified
with the concentration of fluorophores leading to the fluorescence signal. Since emission from
different points of the sample is an uncorrelated process and no phase relationship holds between
the emitted waves, the contributions from distinct points to the image intensity distribution sum
up on an incoherent (intensity) basis. Generally speaking, this simple additivity rule ensures that
the condition expressed by Eq. 16 is fulfilled. We note that K(x, z) can be identified in this case
with the standard definition of the 3D incoherent optical point spread function [40].

Wide-field microscopy In a typical wide-field fluorescence microscope the sample is illuminated
by an excitation beam according to a scheme similar to that shown in Fig. 5. At a variance with
bright-field techniques, a suitable dichroic filter is placed in the collection arm in order to get rid
of the excitation beam and to collect only the fluorescent emission from the sample. The PSF of a
wide-field microscope is often described by a Gaussian-Lorentzian model [34]

K(x, z) =

exp

⇣

� 2|x|2
w0(1+(z/z0)

2
)

⌘

1 + (z/z

0

)

2

(30)

where n is the refractive index, � an average wavelength and, in analogy with a Gaussian beam,
z

0

= ⇡nw

2

0

/� is the Rayleigh range and w

0

the beam waist. As observed in Ref. [34], as far as the
Stokes shift (i.e. the difference between excitation and emission wavelength) is neglected, the PSF
of a wide-field fluorescence microscope can be equally obtained as the fully incoherent limit of the
bright field microscope PSF.

Confocal fluorescence microscope In a wide-field microscope the overall intensity of the excitation
beam is substantially constant along the optical axis. For thick samples this leads to a strong
diffused background due to the fluorescent emission from out-of-focus planes. By contrast, in a
confocal microscope a stronger rejection of the out-of-plane contributions is achieved by confocal
imaging [6]. Quite independently of the specific solution used to obtain confocality (e.g. laser
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scanning or Nipkow disk [6]), the confocal PSF is satisfactorily approximated with a Gaussian-
Lorentzian model, valid for a point-like pinhole of negligible size under the paraxial approximation
[41]:

K(x, z) =

2

4

exp

⇣

� 2|x|2
w0(1+(z/z0)

2
)

⌘

1 + (z/z

0

)

2

3

5

2

(31)

where z

0

, w

0

, n and � are defined as in the previous paragraph. The optical sectioning capability
of the confocal microscope is due to the rapid decay of K(x, z) as a function of z. In particular,
the total intensity associated to a point-like fluorescing particle decreases with the distance z of the
particle from the focal plane as

´
d

2

xK(x, z) ⇠ (z/z

0

)

�2. The existence of a well defined optical
section strongly influences the image intermediate scattering function which, for small wave-vectors
is typically dominated by the fluctuation along the axial direction [41, 33]. An explicit expression
for the image intermediate scattering function in a confocal microscope for a system of Brownian
particles can be found in Ref. [33].

TIRF microscopy Similar arguments hold also for total internal reflection fluorescence (TIRF)
microscopy. In this case only a thin region of the sample is illuminated by the evanescent wave
produced by an excitation beam impinging on the interface between sample and the confining slide
under total internal reflection conditions [47]. The PSF of a TIRF microscope is often assumed to
take the factorised form:

K(x, z) = K

2D

(x)K

z

(z) (32)

where K

2D

(x) is a 2D PSF (typically modelled as a Gaussian function) and where

K

z

(z) = exp(�z/d

p

) (33)

roughly corresponds to the evanescent wave intensity profile. Here d

p

= �/(4⇡

q

n

2

1

sin

2

✓

1

� n

2

2

) is
the corresponding penetration length, � is the excitation wavelength, ✓

1

is the angle of incidence
of the excitation beam and n

1

and n

2

are the refractive indices of the substrate and of the sample,
respectively [48].

2.4.3. Non-LSI systems The basic idea underlying DFM is very simple: as far as the dynamics
is concerned, since the Fourier domain correlation properties of the images are identical to the
corresponding correlation properties of the sample (see Eq. 22), one can substantially forget about
any details of the imaging process and work on the images “as if they were the sample”. Indeed, as
pointed out in the previous paragraph, this is true only if the imaging process is such to preserve
linearity and space invariance between the sample density and image intensity. In the following a few
examples of common microscopy configurations where this property no longer holds are presented.

Dark-field microscopy A prototypical example where the linearity between sample and image
fluctuations can be lost is dark-field microscopy. In a dark-field configuration, the illumination
beam transmitted by sample is blocked by a spatial filter in the collection optics in such a way
that only the light scattered from the sample is collected and can contribute to the image intensity.
This corresponds to a homodyne detection scheme, with the intensity on the image plane being
proportional to the square amplitude of the scattered field i / |E|2. Conceptually, the simplest
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implementation of a dark-field microscope is the one reported in Figure 4 with mask c). The
collimated illumination beam transmitted by the sample is focused by the objective lens onto an
opaque disk located in the objective back focal point [15]. In a commercial microscope, one of the
simplest dark-field configurations (typically used in combination with a low-power objective) can be
obtained as described in Figure 5 with the pair of masks c). The sample is illuminated with a hollow
light cone whose internal angular aperture is larger than the acceptance angle of the objective. In
this condition the transmitted illumination beam is not collected by the objective lens and the only
contribution to the image intensity comes from the light scattered by the sample.

Under such circumstances, if a system of scattering particles is considered, the electric field on
the image plane is obtained as the superposition of fields E

n

scattered by the individual particles.
This leads to an intensity distribution i / P

n

I

n

+

P

n1 6=n2
E

n1E
⇤
n2

, where I

n

represents the
intensity scattering pattern of the n-th particle. It is clear that, while the first term on the left
hand side preserves a linear space invariant relation with the particles distribution, the second term
introduces in the image a second order contribution. Simple considerations suggest that the last
term, which accounts for the interference between the waves scattered by two different particles,
becomes negligible if the typical inter-particle distance is larger than the transverse field correlation
length ⇠

T

⇠ �/NA

c

(and of the axial correlation length ⇠

A

⇠ �/NA

2

c

), where NA

c

the is numerical
aperture of illumination. In this case there is no fixed phase relationship between the two scattered
waves and terms like E

n1E
⇤
n2

with n

1

6= n

2

vanish. Our conclusion is that, if the optical coherence
of the illuminating light is low enough, LSI holds in this case too and dark-field microscopy can
be used for quantitative DFM of systems of particles that are not too dense. To the best of or
knowledge, this has not yet been verified experimentally.

Homodyne polarised light microscopy Similar considerations hold also for the case of polarised
light microscopy, when the fluctuations of a birefringent sample (like a nematic liquid crystal or a
dense suspension of anisotropic particles) are observed between crossed polarisers [8]. Even in this
case, if the average optic axis of the sample is aligned along or perpendicularly to the axes of the
polarising elements, there is no transmitted beam and the optical signal is quadratic in the local
deformation of the alignment. We note that by careful choice of the orientation of the polarising
elements it is still possible to recover the heterodyne regime also in this case [49, 50], as it will be
discussed in more detail in Section 3.

2.5. The structure of a DFM experiment

The core of a typical DFM experiment consists in the acquisition of a stack of images, usually with
a fixed frame rate �

0

= 1/�t

0

. Fourier domain correlations between the images are then computed
and averaged, in order to obtain an estimate of (for instance) the image intermediate scattering
function F

i

(q, �t). The relevant dynamic parameters of the sample are then obtained by fitting
F

i

(q, �t) with a suitable model function.

Setting up the microscope and the camera The overall q-range where a meaningful information
can be obtained from a DFM experiment is determined by variety of factors. In principle, the
lowest q-value that can be investigated is dictated by the image size as q

0

= 2⇡M/(N

0

d

pix

), where
d

pix

is the pixel size, M is the magnification and N

0

is the number of rows (or columns) in the
image, supposed square. In practice, at the smallest q the system is often very slow and within
the experimental duration it is sometimes not possible to observe a complete decorrelation, which
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prevents a statistically accurate determination of the dynamics. Moreover, in many cases of interest
(such as bright-field microscopy of phase objects [34]), the low-q signal is strongly depressed by the
convergence to zero of the transfer function for q ! 0 and distinguishing the signal from the camera
noise can become statistically demanding.

At large q the theoretical upper limit q

max

= ⇡M/d

pix

holds, according to the Nyquist criterion.
In practice, a most stringent bound can be imposed by i) the sampling interval �t

0

between the
images, which determines the fastest correlation time ⌧(q) that can be reliably measured, ii) the
large-q cut-off typically introduced in the transfer function by the finite numerical aperture of the
collection optics and the limited coherence of illumination iii) the large-q cut-off possibly introduced
by the form factor of the particles [41], in analogy with far-field scattering.

We note that the different relevant experimental parameters that determine the accessible q-
range are far from being independent. For example, a high frame rate, which is needed to capture
high-q fast dynamics, typically requires short exposure times, which in turn lead to a low number
of collected photons and thus to a degraded signal to noise ratio, which is particularly tedious close
to the upper limit of accessible q-range, where the signal vanishes due to the above-cited effects.
On the other hand, trying to compensate this effect by increasing the amount of light impinging on
the sample via an increase of the condenser aperture, would also accelerate the high-q decay of the
transfer function and, in general, it is not obviously beneficial.

Generally speaking, the optimal settings (in terms of objective magnification, coherence of
illumination, image size, frame rate, exposure time, duration of the acquisition, ...) for a given
DFM experiment are the result of an accurate tradeoff between competing needs.

There are a number of strategies that can be adopted in order to improve the quality of
DFM data, in particular in view of overcoming practical instrumental limitations (in the maximum
frame rate of the camera, in the maximum number of images that can be acquired/saved, ...).
For example acquiring different stacks under the same conditions but with different frame rates,
adopting acquisition schemes with variable time delay between the images (multi-tau schemes), or
adopting a variable exposure time approach [51] can be all beneficial.

Data processing Once an image stack has been saved, a series of steps brings to the final result i.e.
a quantification of the correlation properties of the sample via the computation of the Fourier
domain correlation between the images. Once again (see also Sect. 2.3) we stress that the
information about the sample that can be extracted from the analysis of the correlation of the
image intensity in the Fourier space is substantially independent on the specific representation
(intermediate scattering function, structure function, dynamic structure factor, ...) or algorithm
(differential/non-differential, time-domain based/frequency-domain based) used for the analysis.
In practice, the choice of a specific algorithm or representation is dictated by a variety of factors
among which we cite the possibility to establish a direct comparison with an available theoretical
prediction, the computational speed/efficiency, the presence of specific forms of noise (periodic/non-
stationary), the amplitude of the signal. For instance, a differential approach [52, 27, 29] and the
related structure function are proven to be particularly robust in presence of high mean photon
counts [53] or of a systematic time-dependent additive disturbance [54]. The differential approach
is also suitable in all those cases for which the individual images contain a strongly non uniform
static background contribution i

0

(x) that introduces in Eq.17 a q-dependent term. By contrast, if
one is interested in estimating also the background contribution i

0

(x) it might be more convenient
to use a non differential algorithm.

For the analysis of DFM data, Fourier transforming each image is needed. This is conveniently
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Figure 6. Typical data processing schemes for DFM experiments in time domain. A sequence
of N

t

images is acquired with a fixed frame rate �0 = 1/�t0. (a) For each �t the image
intermediate scattering function F (q,�t) is calculated as follows. Two images separated by �t
are considered and their Fourier cross-spectrum is calculated. This operation is repeated for all
the pairs separated by the same �t and the average cross-spectrum provides an estimate for
F (q,�t). For a fixed q = (q

x

, q
y

), F (q,�t) is in general a decreasing function of �t described
by Eq. 36. (b) For each �t the image structure function D(q,�t) is calculated as follows. Two
images separated by �t are considered and their Fourier transforms are subtracted. The squared
amplitude of the result is then calculated. This operation is repeated for all the pairs separated
by the same �t and the average value provides an estimate for D(q,�t). For a fixed q = (q

x

, q
y

),
D(q,�t) is in general an increasing function of �t described by Eq. 37.
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done by Fast Fourier Transform (FFT) of the pixel matrix i

n1n2 :
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2

integers. The following steps depend on the choice of the
specific representation of the image correlation. For instance, if the image intermediate scattering
function representation is chosen, its best estimate ¯

F

i

(q, �t) (�t = m�t

0

, with m integer), can be
obtained as an average over all pairs of images separated by �t:
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) (35)

where N

t

is the total number of images of the stack. The operation described in Eq. 35 is
typically performed as a matrix operation, i.e. by calculating the same time average simultaneously
for all the values of q (Figure 6a). We note that this is often a highly redundant operation, which
is known as greedy sampling [55]. Indeed, since each Fourier component of the image decorrelates
with a q-dependent characteristic time ⌧(q), the actual number of statistically independent samples
in the sum on the right hand side of Eq. 35 is in general different for different values of q. This
implies that all the q whose characteristic time exceeds the �t of interest do not benefit from
averaging over all the possible pairs separated by �t and the same accuracy could be attained by
averaging over a significantly smaller number of images. As discussed in Section 4, the optimisation
of this computational step is crucial when a fast analysis is needed [56, 41].

The last step consists in the comparison between the obtained image intermediate scattering
function and a model for both the generalised PSF and the sample intermediate scattering function
F (Q, �t) = S(Q)f(Q, �t). If the optical system is such that Eq. 22 holds for the q-range of
interest, we obtain

F

i

(q, �t) = A(q)f(q, �t) + B(q)�

�t,0

+ C(q) (36)

where �

�t,0

is the Kronecker delta, A(q) = N

�

�
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ˆ
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�
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2

S(q), B(q) accounts for the camera noise

and C(q) =

�

�

�

ˆ

i

0

(q)

�

�

�

2

.
Similar procedures can be followed for other representations of the image correlation such as

the image structure function D

i

(q, �t) or the dynamic structure factor S

i

(q, !). For instance, an
expression equivalent to Eq. 36 for the image structure function is given by

D

i

(q, �t) = 2A(q) [1 � f(q, �t)] + 2B(q). (37)
It is worth mentioning that passing from the raw images to the desired correlator in the

Fourier space does not necessitate or even necessarily benefit from any additional pre-processing of
the raw images, such as for instance background correction, image flattening, smoothing, denoising,
stack alignment, etc. By contrast, some of these operations that are useful and have a simple
interpretation in the real space might have a disastrous effect in the Fourier space. By contrast,
simple pre-processing such image cropping or pixel binning may be helpful in reducing the overall
computational speed of the code. It is known that the computational complexity of the 2D FFT
is O(N

2

0

log N

0

), for images made up of N

0

⇥ N

0

pixels, where N

0

= 2

j with j integer. If N

0

can
not be obtained as a power-of-two number or is too large, it is thus possible to combine cropping
and binning (with obvious consequences on the accessible q-range) to obtain a final image that is
optimised in pixel size and number.
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3. Applications

In the previous section we have tried to present in a more ordered and systematic ways several
apparently unrelated methods and approaches that have been introduced during the years by
various investigators, interested in a variety of systems. In this section, we will present a focussed
selection of the most relevant soft matter systems, whose dynamics has been profitably studied by
means of DFM. In doing so, where possible, we will try to be respectful of the historical order of
the introduced developments and to describe the distinctive features and range of action of each
method.

3.1. Dynamics in the presence of long-range correlations in molecular and macromolecular systems

3.1.1. Equilibrium fluctuations Optical inhomogeneities at the molecular level cause measurable
light scattering. In the most common case, such inhomogeneities are due to equilibrium fluctuations
of the refractive index caused by fluctuations in one or more characteristic variables describing the
sample, typical examples being temperature or concentration. The light scattered by a molecular
medium is, with a few exceptions, very weak and, despite the progresses in camera technology, it is
still practically impossible to perform camera based scattering experiments on molecular systems
in equilibrium conditions. A notable exception is represented by molecular scattering close to a
critical point or to a phase transition, for which the amplitude of the fluctuations can become so
large to be easily seen in microscopy images of the sample. Another molecular system for which
fluctuations have a rather large amplitude due to the softness of the system itself is a layer of
suitably aligned liquid crystals. The director fluctuations originate intensity fluctuations that can
be easily visualised in real space by means of depolarised microscopy and recorded with a camera for
subsequent analysis. This idea was originally used in Ref. [57] where the orientational fluctuations
in a smectic liquid crystal were successfully observed with a camera. From the series of images
obtained, first the spatial Fourier transformation of each image was computed and then the time
correlation function at each wave-vector was calculated. From a fitting of the exponentially decaying
time correlation function the ratio of the splay elastic constant to the splay viscosity was obtained
but the twist and bend ratios could not be estimated. A similar procedure was followed by the
same Authors in Ref. [58] for nematic liquid crystals. The Authors were able to extract a twist
viscoelastic ratio in agreement with previous depolarised DLS measurements, but no information
about the bend and splay viscoelastic ratios could be retrieved. Only very recently [50] it was
demonstrated that the use of DDM with polarising elements permits the full characterisation of all
three LC viscoelastic ratios in suitably aligned nematics and the unique space-resolving capacities of
the proposed method were exploited also to investigate nematics in the presence of spatial disorder,
where traditional light scattering fails. Such findings demonstrate that the DFM approach can
provide a space-resolved probe of the local sample properties, which is very promising for the study
of other optically anisotropic soft materials.

3.1.2. Non-equilibrium fluctuations Large amplitude fluctuations are also observed in molecular
systems kept outside of equilibrium by macroscopic external gradients of temperature or
concentration. Under such circumstances, equilibrium velocity fluctuations couple with the imposed
gradient and cause non-equilibrium fluctuations in the corresponding variable [59].

In some conditions, when the externally applied temperature or concentration gradient
overcomes a fixed threshold, the non-equilibrium fluctuations are amplified instead of relaxing back
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by heat or mass diffusion and well known hydrodynamic instabilities such as Rayleigh-Bénard or
Soret-driven convection set in [60]. Immediately below the threshold, non-equilibrium fluctuations
are largely amplified and DFM methods based on quantitative shadowgraphy [21, 22] have been
used profitably for the characterisation of such fluctuations in a single component fluid [21] and
in a mixture [61]. For a single component fluid close to the onset of Rayleigh-Bénard convection
the dynamics of the fluctuations was also studied [62]. As of today, no experimental measurement
of the pre-transitional fluctuations in soft matter systems has been made available, even though a
large signal should be expected in light of recent results with colloidal samples [63].

The presence of an instability threshold places an upper limit to the amplitude of the non-
equilibrium fluctuations, which increases with the value of the external gradient. A way to bypass
this limitation and obtain a larger signal is to operate under gravitationally stable conditions,
which allows to apply arbitrarily large gradients. A gravitationally stable configuration is obtained
for instance by heating a single component fluid from above (for temperature fluctuations) or
by creating a sharp interface between two different fluids (for concentration fluctuations), with
the denser fluid at the bottom. In the latter case, it is well known that a carefully prepared
sharp interface between miscible fluids becomes progressively smeared in time because of diffusion.
However, it has been shown only recently that this apparently quiet remixing is accompanied by
giant concentration fluctuations, whose size on Earth is limited only by gravity [64]. On Earth,
the amplitude and the dynamics of such fluctuations have been successfully characterised with
traditional scattering [64] but for this kind of systems shadowgraphy has been proven to outperform
traditional scattering both for static [65] and dynamic [66] scattering measurements.

For this reason, shadowgraphy was also chosen for performing non-equilibrium experiments
in space, where the microgravity conditions provided the ideal environment for obtaining fully
developed concentration fluctuations in a macromolecular system [67, 68]. The study of these
fluctuations was justified by its potential impact on the understanding of the growth of materials
in space, in particular for protein crystals [69] for which it is suspected that the non-equilibrium
fluctuations may be responsible of imperfect crystallisation in microgravity [68]. Images of the
concentration fluctuations obtained in microgravity, limited only by the size of the container, are
shown in Fig. 7 for a dilute polymer solution of polystyrene in toluene subjected to a Soret-
induced concentration gradient that increases in time. It is evident that the fluctuations in space
are way larger in amplitude than those observed under the same conditions on Earth (see caption
for additional details).

The unique visualisation opportunity offered by imaging methods compared with traditional
scattering did not come at the expenses of quantitativeness. Indeed, by DFM analysis it was possible
to extract the amplitude (only after suitable calibration of the transfer function with known colloidal
particles) and the characteristic time of the fluctuations (see Fig. 7), which confirmed theoretical
expectations for long-ranged, long-lived non-equilibrium fluctuations enhanced by the absence of
gravity [59].

3.2. Dynamics of colloidal systems

A dilute colloidal suspension of noninteracting spherical particles represents the ideal benchmark
system for testing the capabilities and the performances of a novel scattering technique. This is
mainly due to the availability in the market of well characterised, mono-disperse spheres of various
materials in different dispersing media but also to the fact that there are well confirmed theoretical
predictions for the static and dynamic scattering from such a suspension. So, it is not surprising
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A

B C

Figure 7. Non-equilibrium fluctuations in a polymer solution of polystyrene in toluene. (A)
False-colour shadowgraph images of non-equilibrium fluctuations in microgravity (a-d) and on
Earth (e-h). Images were taken 0, 400, 800, and 1,600 s (left to right) after the imposition
of a 17.40 K temperature difference that creates non-equilibrium concentration fluctuations due
to Soret effect. The side of each image corresponds to 5 mm. Colours map the deviation of
the intensity of shadowgraph images with respect to the time-averaged intensity. (B) Mean-
squared amplitude of non-equilibrium concentration fluctuations in microgravity for three sample
subjected to the presence of temperature differences of 4.35 K (black circles), 8.70 K (blue circles)
and 17.40 K (red circles). (C) Relaxation time of non-equilibrium concentration fluctuations as
a function of wave-vector. The black data correspond to a temperature difference of 4.35 K,
the blue data to 8.70 K and the red ones to 17.40 K. The solid line represents the diffusive
time ⌧

c

= 1/(D0q2) as estimated from literature data for the diffusion coefficient D0. Reprinted
(adapted) with permission from Ref. [68]. Copyright (2011) Nature Publishing group.
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a

b

Figure 8. Experimental results of DFM experiments performed in on a dilute colloidal suspension
of a 73 nm (diameter) polystyrene particles in water. (a) Experimentally determined characteristic
decay time ⌧ plotted against the wave-vector q. Open (black) circles are data obtained with bright-
field DDM. Close (red) circles are DLS data. The continuous line in the graph is the theoretical
estimate corresponding to D0 = 6.0 µm2/s. (b) Experimentally determined A(q) and B(q) (see
Eq.37) plotted against the wave-vector q. The dashed line is a fit of the data with a model based
on Eq. 29. Reprinted figures with permission from Ref. [34]. Copyright (2011) by the American
Physical Society.

that many of the DFM experimental methods - for both scattering-based and fluorescence-based
DFM - have been initially validated with a dilute suspensions.

We show in Fig. 8 the results of a bright-field DDM experiment on a colloidal suspension of
polystyrene particles with diameter equal to 73 nm, confined in a capillary tube with rectangular
section of thickness 100 µm. Measurements were taken with a commercial microscope set-up, as
specified in Ref. [34]. The signal from the particles (empty symbols) is well above the noise (full
symbols) (Fig. 8b) and the typical range in which the correlation time could be estimated amounts
to about a factor of 20 in q (Fig. 8a), which should not be meant as a general limit of the approach
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Figure 9. Diffusion coefficients measured in Ref. [70] by using b-DDM (red full diamonds),
f-DDM (blue full circles) and DLS (black open squares) for aqueous suspensions of nanoparticles
with diameters (from top to bottom) 100 nm, 200 nm and 400 nm

but rather as the outcome of the typical experimental parameters employed here. In the accessible
q-range, scattering from the particles is featureless and we can interpret the curve in Fig. 8b as an
experimental measurement of the transfer function for this microscope set-up [34].

An interesting comparison between bright-field DDM (b-DDM), fluorescence-based DDM (f-
DDM) and DLS was performed in Ref. [70]. Colloidal dispersions of particles with diameter 100,
200 and 400 nm were prepared at different volume fractions (10

�6

, 10

�5

, 10

�4) and studied with
the three techniques.

The results (Fig. 9) show that, within the experimental errors, all the measurements for the
dynamics are in excellent agreement, confirming thereby that DFM approaches based on different
imaging processes are substantially equivalent. It should be however noted that the results obtained
for the statics in b-DDM and in f-DDM are different, due to the expected differences in the transfer
function of the two techniques. While the transfer function for b-DDM presents the same features
of the one shown in Fig. 8, the transfer function for f-DDM does not exhibit the drop of signal at
small q, as expected from theory (see Section 2.3 and Ref.[34]).

One of the interesting possibilities offered by DFM - especially with the structure function
approach - is the capability of subtracting unwanted static features from the sample image. This
feature was exploited in Ref. [71], where the diffusive dynamics of colloidal particles was studied in
a landscape made of micro-fabricated arrays of nano-posts of diameter 500 nm, spaced by 1.2-10 µ

m on a square lattice.
Measurements were performed by DDM and showed that, as the spacing between posts was

decreased, the dynamics of the nanoparticles slowed (Figure 10) and was increasingly better
represented by a stretched exponential rather than a simple exponential. Such findings suggest
that further increasing the confinement could lead to either dynamic heterogeneity or possibly even
vitrification. In the same article it was also shown that the diffusion coefficients extracted from video
particle tracking were in excellent agreement with those obtained from the DDM measurement on
400 nm particles, confirming that the two analyses of the microscopy data probed the same diffusive
behaviour.

However, we note that while single particle tracking probes the self diffusion of particles, all
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a 

d 

Figure 10. DDM experiments on confined colloidal particles. (a) Cylindrical post arrays filled
with a polystyrene nanoparticle suspension. (b, c) Scanning electron micrographs of posts of
diameter d

p

= 500 nm, (b) height H = 10 µm and spacing S = 6 µm, and (c) height H = 11.9
µm and spacing S = 1.6 µm. (d) Relaxation time ⌧(q) as a function of wave-vector q for 400

nm nanoparticles diffusing in the bulk (black squares) and in post arrays with S = 4 µm (orange
diamonds); S = 1.8 µm (olive right triangles); and S = 1.2 µm (navy stars). The inset shows that
⌧(q) scales as q�2 over the range of wave-vectors from q = 6 to 8 µm�1. The error bars for ⌧(q)
are smaller than the symbols. Reprinted (adapted) with permission from Ref. [71]. Copyright
(2013) American Chemical Society.
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Figure 11. Diffusion coefficients of colloidal suspensions of 440 nm (diameter) particles as a
function of the volume fraction � of the particles (unpublished results). For each �, the same
phase-contrast movie is analysed by both DDM and SPT and the short-time diffusion coefficient is
extracted. Collective diffusion coefficients D

c

(�) obtained with DDM are plotted as blue squares,
whereas self diffusion coefficients D

s

(�) obtained with SPT are reported as red circles. The blue
dotted line is the theoretical prediction for the short-time collective diffusion coefficient of hard
spheres D

c

(�) = D0(1 + 1.45�). The red dashed line is the theoretical prediction for the short-
time self diffusion coefficient of hard spheres D

s

(�) = D0(1� 1.831�). The continuous blue line
is a linear fit of the DDM data that provides the best estimate D

c

(�) = D0(1+5.6�). In all cases
the single particle diffusion coefficient was D0 = 1.083 µm2/s.

DFM methods are mostly sensitive to collective diffusion i.e. to the way a sinusoidal modulation of
the density relaxes back by diffusion. Only for very dilute samples the collective diffusion coefficient
D

c

and the self-diffusion coefficient D

s

become identical with the Stokes-Einstein prediction D

0

for
a single particle. For interacting particles they are expected to be markedly different, as a result of
the interactions.

This can be appreciated in Fig. 11, where we report unpublished results of experiments
performed at various volume fractions � on colloidal suspensions of charged polystyrene particles
with nominal diameter 440 nm. The same movies were analysed with both phase-contrast DDM
and single-particle tracking (SPT). For dilute samples the two methods give the same result but,
with increasing volume fraction, the inter-particle repulsive interactions are expected to speed-up
collective diffusion and slow down self-diffusion. However, SPT experiments above � = 3 ⇥ 10

�3

were made difficult by the particle crowding and no reliable estimate for D

c

could be extracted. By
contrast, with DDM it was possible to extract D

c

for samples that were one order of magnitude
more concentrated. As it can be appreciated in Fig. 11, SPT does not provide evidence that
the sample behaves differently from a suspension of hard-spheres for which it is expected that
D

s

(�) = D

0

(1 � 1.831�). On the contrary, DDM results rule out this possibility because the
data are clearly incompatible with the theoretical prediction D

c

(�) = D

0

(1 + 1.45�). A linear
fit with D

c

(�) = D

0

(1 + ��) provides the estimate � = 5.6 ± 0.3 for the interaction parameter,
which is greater than 1.45. as expected for repulsive interactions between charged particles [72].
This example shows the high potential of DFM methods in crowded environments, where tracking
becomes extremely difficult if not impossible.

Another interesting application of DFM is the study of the dynamics of anisotropic colloids.
In this respect we mention the DFM experiments performed in Ref. [49] on optically anisotropic
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Figure 12. Results of DDM experiments on silica-coated spindle-type hematite particles in the
presence of a magnetic field B. (a) A single particle with definition of semiaxes and corresponding
translational diffusion coefficients. (b) Ensemble of partially aligned particles with definition
of effective diffusion coefficients parallel and perpendicular to the applied magnetic field B. (c)
Measured effective diffusion along the field direction (green triangles) Dk

eff

(B) and perpendicular
to the field (red squares) D?

eff

(B). The lines are the results of fitting the data with a theoretical
model described in Ref. [74]. The inset shows the same data in semilogarithmic representation.
Reprinted (adapted) with permission from Ref.[74]. Copyright (2012) American Chemical Society.

PTFE and on rod-like iron oxide colloidal particles. By placing the sample between two polarisers
whose main axes were reciprocally oriented at an appropriate angle to ensure that the measurements
were performed in the heterodyne regime, the translational and rotational diffusion coefficient of
the particles were determined. Interestingly, the measurements were performed with a slow camera
by varying the exposure time and keeping the delay between the images fixed [51]. This method is
the q-resolved generalisation of the so called speckle visibility spectroscopy [73].

DFM methods are ideal also for the study of anisotropic colloids under external fields, as
shown in Ref. [74]. A dilute aqueous suspension of anisotropic magnetic particles was studied in
the presence and in the absence of a magnetic field.

The particles were silica-coated spindle-shaped hematite particles with semiaxes a = 175 nm

and b = 51.9 nm, respectively, which align perpendicular to an applied magnetic field B (Figure
12). Measuring at wave-vectors such that qa < 1, the Authors ensured that the dynamics was
dominated by translational rather than rotational diffusion. Without applied magnetic field, the
particles were randomly orientated with isotropic dynamics, whereas with the field the measured
translational diffusion was found to decrease in the direction parallel to the magnetic field and
increase perpendicular to it (Figure 12). From a measurement of the diffusion along these two
directions as a function of magnetic field the Authors extracted the orientational order parameter
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of the system, a quantity normally extracted from static measurements. We will see in he next
paragraph another application of this method to magnetic field sensitive bacteria.

A last application of DFM methods that is worth mentioning for its relevance in basic and
applied science is the characterisation of colloidal aggregation. DDM has been used profitably
to follow the kinetics of an aggregation process induced by destabilising a colloidal suspension
of 73 nm (diameter) particles [75]. Despite the sub-diffraction size of the colloidal particles, the
process could be monitored and the hydrodynamic radius of the aggregates was obtained in a
time-resolved fashion. The power law growth of the gyration radius as a function of time allowed
extracting a fractal dimension of 1.85, compatible with a diffusion limited aggregation process.
Similar studies were performed with HNFS in space for aggregation of colloids induced by critical
Casimir forces [76]. In that case also the gyration radius could be extracted owing to a calibration
of the instrumental transfer function, following the procedure in Ref. [68]. The good results
obtained proved that HNFS was an ideal tool for static and dynamic measurements of aggregation
of nanoparticles in space.

3.3. Motility of microorganisms

DFM has been repeatedly used for characterising the motility of a population of microorganisms.
Compared to tracking, it delivers motility parameters with high throughput in a few minutes. With
respect to DLS, it offers access more readily to the larger length scales for the microorganisms’
motility. As of today, several experiments have been performed with bacterial suspensions
(Escherichia Coli [77, 78, 79, 80], Bacillus Subtilis [41] and Magnetospirillium gryphiswaldense [81])
and with a suspension of the alga Chlamydomonas reinhardtii [78]. In all these cases, accessing
large length scales is fundamental for capturing the dynamic properties of the microorganisms and
is extremely difficult with traditional DLS.

Peritrichously flagellated bacteria such as E. Coli and B. Subtilis, swim by alternating smooth
runs (with flagellar motors spinning counterclockwise) with reorienting tumbles (with clockwise
spinning). A ballistic run phase takes place approximately at constant speed v

0

and tumbling events
occur with a fixed rate and cause a full randomisation of the direction of motion of the bacteria. In
this case, the simplest model for the intermediate scattering function F (Q, �t) at short times and
small Q is that of a 3D ballistic swimming, characterised by F (Q, �t) = sin(QV

0

�t)/QV

0

�t (see
Table 1, column three). For long times, the behaviour becomes diffusive with an effective diffusion
coefficient D and F (Q, �t) = exp(�DQ

2

�t) (see Table 1, column one). Experiments with DFM
provide unique access to the small q regime, indispensable for probing unambiguously the bacterial
swimming [77]. Experiments on dilute bacterial suspensions [77, 78] assumed a non-tumbling model
with Schulz distribution for the bacteria velocity and extracted the average swimming speed v̄, the
variance �

2 of the distribution, the motile cell fraction ↵ and the diffusion coefficient D. An example
of results obtained with wild-type bacteria is reported in Figure 13.

It can be noticed that the average swimming speed in Fig. 13 exhibits a slight decrease towards
low q, which according to later molecular dynamics simulations [82] seems to be attributable to the
effect of tumbling, neglected in the analysis of the experimental data.

Experiments on more concentrated suspensions were made possible by the use of confocal
microscopy [41] and showed that, for dense bacteria in the bulk, the data (Figure 14) were well
fitted to a compressed exponential F

i

(q, �t) = exp

⇥�(qv

0

�t)

1.35

⇤

, similar to ageing gels and
glasses [83]. By contrast, bacteria swimming near the coverslip did not exhibit a well-defined
velocity distribution. It would be interesting to compare the experimental results in Ref. [41] with
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scaling and DðqÞ is noisy (grey curves, Fig. 1; crosses,
Fig. 1 inset).

We next studied motile cells. The measured DICFs
(Fig. 2, [19]) were again fitted to Eq. (6), now using the
full fðq; !Þ in Eq. (7) and a Schulz PðvÞ, Eqs. (8) and (9). A
selection of the reconstructed ISFs is shown in Fig. 2
(points), where we also superimpose the calculated ISFs
(curves). The ISFs display a characteristic shape, espe-
cially at low q: a fast decay dominated by swimming
followed by a slower decay dominated by diffusion.

All fit parameters characterizing swimming are shown in
Fig. 3 [21]. The noise increases at low q, primarily because
the long-time, diffusive part of fðq; !Þ has not reached zero
in our time window at these q, Fig. 2, rendering it harder
to determine the diffusivity accurately: the low-q noise is
particularly evident in the fitted DðqÞ, Fig. 3. But to within
experimental uncertainties all parameters in Fig. 3 are
essentially q independent at least for q * 1 "m#1 [22],
suggesting that our model is able to capture essential
aspects of the dynamics of a mixed population of non-
motile and motile E. coli. Averaging yields !v ¼ 13:7%
0:1 "ms#1 and !# ¼ 7:0% 0:1 "ms#1, with error bars
reflecting estimated residual q dependencies. Changing
AðqÞ and BðqÞ by using a 20& objective (which is sub-
optimal for our experiment) produced the same fitted
motility parameters in the relevant q range.

Our derivation of Eq. (6) assumes that the decorrelation
of fðq; !Þ caused by the change in intensity of a swimmer’s
image due to its motion along the optic (z) axis can be
neglected. While wild-type E. coli AB1157 tumbles be-
tween ‘‘runs’’ and the swim path between tumbles is
slightly curved, Eq. (7) neglects these effects. We tested
these assumptions by analyzing simulated images.

We carried out Brownian dynamics simulations of non-
interacting point particles at a number density and in a
geometry directly comparable to our experiments. A frac-
tion $ of the particles had a drift speed drawn from a
Schulz distribution. From these simulations, we con-
structed a sequence of 2D pixellated ‘‘images’’ with the
same field of view as in experiments. All particles in a slice

of thickness d centered at z ¼ 0 contribute to the image.
A particle at (x, y, z) is ‘‘smeared’’ into an ‘‘image’’
covering the pixel containing (x, y) and its 8 neighboring
pixels. The contrast of the image, c, depends on z. We
experimentally determined d and cðzÞ. The measured cðzÞ
could be fitted by a symmetric quadratic that dropped to
background noise outside a ' 40 "m slice.
As input, we used !v ¼ 13:7 "ms#1, # ¼ 7:0 "ms#1,

$ ¼ 0:577 and D ¼ 0:543 "m2=s (cf. Fig. 3). Fitting
DICFs calculated from simulated ‘‘images’’ (Fig. 3a,
[19]) gave q-independent outputs (Fig. 3b, [19]): !v ¼
13:8% 0:1, !# ¼ 7:2% 0:2, !$ ¼ 0:58% 0:01 and !D ¼
0:55% 0:02 (where the uncertainties are standard devia-
tions), agreeing with inputs. Thus, at d ¼ 40 "m depth
of field, the intensity decorrelation due to z motion has
negligible effect, presumably because it is much slower
than the decorrelation due to swimming and diffusion.
However, if we scale cðzÞ to smaller depths of field, the
fitting beings to fail at d ' 10 "m (data not shown): at this
small focus depth, a small z movement produces a large
intensity variation, invalidating our analysis.
DDM determines the (inverse) time it takes a cell

to traverse (2%=q; i.e., it measures ‘‘linear speeds.’’
Tumbling or curvature lowers the measured speed, espe-
cially at lower q. Our experimental vðqÞ, Fig. 3, indeed
shows a slight decrease towards low q. As expected, how-
ever, the vðqÞ recovered from analyzing simulated straight
swimmers (Fig. 3, [19]) show no such dependence. More
detailed analysis of the measured vðqÞ may therefore yield
further information about tumbling and curvature.
We next mixed suspensions of bacteria with known $

with nonmotile cells to create samples with 0 ) $ ) 0:8.
DDM shows that D increases with $, Fig. 4. Since the
fitting of D from Eq. (7) is largely determined by non-
swimmer diffusion; Fig. 4 shows that swimmers enhance
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Figure 13. Results of DDM experiments on a dilute suspension of wild-type Escherichia Coli.
The extracted parameters of the bacterial motion are (from top to bottom): the average swimming
speed ¯V and the standard deviation � of the Schulz distribution of swimming speeds, the motile
fraction ↵ and the diffusion coefficient D. Reprinted figure with permission from Ref. [77].
Copyright (2011) by the American Physical Society.

recent theoretical results in Ref. [84], where a very useful analytic expression for F (Q, �t) was
provided and numerical results are obtained for the motion of bacteria close to surfaces.

Finally, DDM was also used to measure the swimming speed distribution and the oscillatory
dynamics for C. reinhardtii [78] and for determining, by using the same analysis performed for
anisotropic colloids under magnetic field discussed above, the magnetic moment of the magnetic
field sensitive Magnetospirillium gryphiswaldense [81].

3.4. Cell motility

As far as cells are concerned, the most impressive DFM experiment is the one described in Ref.
[85]. The Authors studied the dynamics of monolayers of epithelial Madin-Darby canine kidney
(MDCK) cells on a substrate by characterising the cell motion over hours during the growth of the
confluent cells and the corresponding increase of the cell density. As the density increased, cellular
displacement was progressively inhibited, without any particular hint of structural spatial ordering.
However, dynamic heterogeneity was increasingly more evident as time passed, with a sort of micro-
phase separation between fast and slow cells. The intriguing analogy to dynamic heterogeneities
found in colloidal systems as they approach a glass transition was particularly evident in the dynamic
structure factors of the confluent cell layer (Fig. 15) that exhibited soft modes typical of jammed
packing.

To describe the data, the Authors used the damped harmonic oscillator (DHO) model, in
which the dynamic structure factor S(q.!) is written as the sum of a Rayleigh contribution, which
quantifies diffusion, and a Brillouin one that mirrors the elastic response to density fluctuations



Fourier Microscopy for Soft Matter 30

F i
(q
,Δ
t)

the ConDDM data and PY calculation, as shown with open
symbols in Fig. 3(a).

Simultaneously determining the DLS-like dynamic
!ðqÞ (Fig. 2) and SLS-like static SðqÞ [Fig. 3(a)] provides
a tantalizing new way to measure hydrodynamics directly,
with no additional data. For diffusing spheres, gðq;"tÞ is an
exponential at any # for "t less than the Brownian time
!B # 4a2=D0 [7]; gsðq;"tÞffiexp½&"t=!sðqÞ', where
!sðqÞ¼ðD0q

2Þ&1SðqÞ=HðqÞ, and the hydrodynamic factor
HðqÞ characterizes hydrodynamic interactions among par-
ticles [7,8]. We find that HðqÞ remains below 1 and de-
creases with increasing #, expected for hard spheres [7]
and consistent with previous x-ray photon correlation spec-
troscopy measurements [8], as shown with open symbols in
Fig. 3(b). We compare our HðqÞ data with theoretical
predictions for hard spheres [9], marked with curves in
Fig. 3(b), which are all in excellent agreement with our
experimental data. Previous HðqÞ estimates derived from
light scattering assume a theoretical PðqÞ [7]; by contrast,
our purely experimental technique makes no such assump-
tions. Moreover, the quantitative agreement between ex-
perimental and theoretical SðqÞ and HðqÞ persists through
the entire q range and will do so as long as ah ) "z
(Supplemental Material [10]); this agreement is especially
striking at low q, inaccessible to light scattering, and
high #, not probed easily with fluorescence correlation
spectroscopy.

The confocal pinhole’s rejection of out-of-plane light
permits observation deep in the bulk of fluorescent
samples, even when they scatter light; therefore,
ConDDM might provide new capabilities to make these
light-scattering-like measurements in dense samples that
scatter light multiply, not possible with DDM or traditional
light scattering. To test this, we create a colloidal suspen-
sion with different solvents (1:3 dodecane:tetrachloroethy-
lene) that closely matches the particles’ density, but with
n ¼ 1:47 so strongly mismatches their refractive index that
suspensions at # ¼ 0:25 are macroscopically opaque.
Here, particles near the coverslip can be resolved individu-
ally; those greater than 30 $m away are indistinguishable
from the noise, as shown in the inset in Fig. 3(c). Using
ConDDM, we measure SðqÞ and HðqÞ 10 $m from the
coverslip. Our measured SðqÞ is excellent; the PY predic-
tion again conforms closely to the data, as shown with solid
curves and symbols in Fig. 3(c). By contrast, particles deep
in the sample cannot be resolved above the noise; there-
fore, SðqÞ from 3D particle positions fails completely, as
shown with the dashed curve in Fig. 3(c).

Probing deeply within multiply scattering, dense
samples could allow ConDDM to characterize systems
that change too rapidly for traditional microscopy-based
object tracking [6] and are too dense for DLS and DDM.
We explore this capability in swimming bacteria, which
have been characterized on the microscopic level with
many techniques [11,12] including DDM [6] but only in

2D or in dilute concentrations. To our knowledge, no study
has investigated rapid dynamics of bacteria at higher
density [12–14] free to swim in 3D, with sufficiently
high resolution to resolve individual organisms. To inves-
tigate such behavior, we image dense, macroscopically
opaque suspensions of Bacillus subtilis, a flagellated bac-
terium, collecting images of 256* 128 pixels at 100.0 fps
with the point-scanning confocal at various depths from the
coverslip; we maintain the sample at 37 +C. Near the
coverslip, we observe that bacteria move in a 2D plane,
their long axes aligned parallel to the coverslip, shown in
the inset in Fig. 4(a). Here, each calculated gðq;"tÞ is not
exponential, as for diffusing particles, but has a different
functional form for each value of q, as shown in Fig. 4(a);
there is no universal scaling, and !ðqÞ does not follow a
simple power law but is instead a sigmoidal curve, shown
with open circles in Fig. 2.
By contrast, deeper within the bulk of the sample,

the bacteria do not swim within a single plane, and their
axes appear to be distributed randomly, shown in the inset in
Fig. 4(b). We again find that gðq;"tÞ is not simply expo-
nential. However, unlike the surface-constrained bacteria,
those swimming in the bulk have dynamics that, surpris-
ingly, can be scaled onto a single master curve, shown with
the solid curve in Fig. 4(b): These gðq;"tÞ follow a
compressed-exponential form, gðq;"tÞ¼ exp½&ðqv0"tÞ%',
where % ¼ 1:35 for all depths greater than 4 $m from the
coverslip; intriguingly, a similar exponent is observed in

FIG. 4 (color online). (a) gðq"tÞ and x̂-ŷ image (inset) for
bacteria swimming at the coverslip, for 43 values of q in the
range 0:2< q< 4 $m&1, each plotted with different symbols,
as a function of rescaled time delay q"t. (b) gðq"tÞ for bacteria
swimming deep in the bulk, 16 $m from the coverslip, in the
same q range as in (a); here, data from all 43 values of q
(symbols) scale onto a single master (solid black) curve of
the form exp½&ðqv0"tÞ1:35', with v0 ¼ 39:6, 0:3 $m=s.
(Inset) x̂-ŷ image of bacteria deep in the bulk, 8 $m from the
coverslip. (c) Population velocity distribution Pðv=v0Þ for the
bacteria in (b).
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Figure 14. Experimental results obtained with confocal DDM of dense bacteria (Bacillus
subtilis) (a) F

i

(q,�t) and image (inset) for bacteria swimming at the coverslip, for 43 values
of q in the range 0.2 < q < 4 µm�1, each plotted with different symbols, as a function of rescaled
time delay q�t. (b) F

i

(q,�t) for bacteria swimming deep in the bulk, 16 µm from the coverslip,
in the same q range as in (a); here, data from all 43 values of q (symbols) scale onto a single
master (solid black) curve of the form exp

⇥
�(qv0�t)1.35

⇤
, with v0 = 39.6 ± 0.3 µm/s. (Inset)

image of bacteria deep in the bulk, 8 µm from the coverslip. (c) Population velocity distribution
P (v/v0) for the bacteria in (b). Reprinted figure with permission from Ref. [41]. Copyright
(2012) by the American Physical Society.

(Figure 15B). The width of the central Rayleigh peak is given by �

0

(q) = D

0

q

2, and the diffusivity
D

0

extracted from the experimental data as a function of the cell occupancy is shown in Figure
15D. Analysis of the Brillouin peaks in S(q.!) yields the dispersion relation ⌦(q) of the cell motion
at each cell density, from which the density of states is extracted (Figure 15C). Results for D

0

suggest that cells behave as moderately fragile glasses, whereas the analysis of the density of states
identifies two density dependent peaks, reminiscent of boson peaks in supercooled fluids, where they
are originated from damped oscillations of long lived molecular structures.

3.5. Intra-cellular processes

To our knowledge, the first DFM studies of transport phenomena in cells was reported in Ref. [33],
where k-space image correlation spectroscopy (kICS) was used to measure the transport dynamics
of a5-integrin/enhanced green fluorescent protein constructs in a transfected CHO epithelial cell.
The measurements, performed in total internal reflection fluorescence (TIRF) microscopy provided
a proof that, even in the presence of photobleaching, DFM methods can provide accurate results.
Indeed, an effective diffusivity coefficient D

eff

= 0.0096± 0.0002 µm

2

/s and a photobleaching rate
K = 0.008 ± 0.001 s

�1 were independently extracted from the measurements.
Some results on cellular processes were also obtained by the already introduced FTLS. Dynamic

FTLS measurements were performed on the fluctuating membranes of red blood cells. The power
spectrum was found to follow power laws with different exponents in time for all scattering wave-
vectors and the cells are found to be more compliant at longer spatial wavelengths [30]. FTLS
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Velocimetry (PIV)-like analysis that measures a displacement
field between images in time. Each image is divided into 1,024
subregions, and the peak position of the 2D spatial autocorrela-
tion function of each subregion at successive time points pro-
duces a displacement vector for each subregion across the entire
image. Short-time, subcellular motions add random fluctuations
to the frame-by-frame displacement field, dðr;tÞ, and the displa-
cement autocorrelation function exhibits a rapid decay at short
times, and a plateau at lag times between 100 and 200 min. Thus,
before breaking the displacement field into groups of length
200 min, we use a running boxcar-average of 100 min over the
full dataset, determining a well defined migration velocity field
in space and time, vðr;tÞ. We observe that cells within the conflu-
ent layer are confined by their neighbors and move with a nearly
constant velocity over time scales of hundreds of minutes
(Fig. S1).

The resulting migration velocity fields are spatially heteroge-
neous, exhibiting a variation in magnitude from region to region.
There is no apparent structural heterogeneity in cell density that
correlates with cell motion, suggesting that the large scale hetero-
geneities in the migration velocity field are dynamic in nature
(Fig. S2). To characterize the spatial extent of the area containing
these dynamic heterogeneities, ξh, we employ a method similar to

that used in dense colloidal systems: we identify the fastest 20%
of all migration velocity vectors at each time point and calculate
the average area of the subregions that contain the selected
vectors and are contiguous; this determines ξh in each 200 min
dataset (Fig. 1B). The cell density increases with time; concomi-
tantly the dynamic heterogeneities grow in spatial extent. At the
lowest cell densities the dynamic heterogeneity comprises an area
of about ten cells; however there is a marked increase in this
size scale as the cell density increases. The size of the dynamic
heterogeneities saturates at a spatial extent of an area of about
30 cell bodies, but decreases again beyond a cell density of
approximately 2;800 mm−2 (Fig. 1C).

To quantify the migration rate, we calculate the speed from
the averaged-velocity fields, v ¼ hjvðr;tÞjir;t, where angle brackets
indicate an average over the position of the velocity vectors, r,
throughout the entire field of view, and an average over time,
t, throughout each 200 min period. Although ξh grows with
density, v decreases, shown in Fig. 1D. This combination of grow-
ing dynamic heterogeneities and slowing migration speed with
increasing cell density is strikingly reminiscent of the nature of
the relaxations observed in supercooled fluids approaching the
glass transition, suggesting the possibility of an analogy between
cell motion within a confluent layer and the crowding within a
particulate system approaching a glass transition with increasing
density (12, 13).

The Dynamic Structure Factor of Confluent Cell Motion. To further
explore possible analogies between glass-forming systems and
collective migration within confluent cell layers, we search for
other signatures of the glass transition by measuring the dynamic
structure factor, Sðq;ωÞ of the confluent cell layer. The dynamic
structure factor is traditionally measured with inelastic neutron,
X-ray, or light scattering methods, and we adapt a similar method
for the analysis of time-lapse images of cell motion; this provides
dynamical information over a wide range of wavelengths and fre-
quencies. Formally, the dynamic structure factor is the modulus-
squared of the time and space Fourier transform of a dynamic
variable such as electron density or neutron density (14). By
analogy, we use the image intensity to determine Sðq;ωÞ of the
cell layer; this characterizes dynamic fluctuations in cell shape
at short wavelengths, and also in cell density at long wavelengths.
We assume the sample is isotropic, and orientationally average
to determine Sðq;ωÞ; an example is shown in Fig. 2A.

To describe the data, we use the damped harmonic oscillator
(DHO) model, often employed to measure the dynamics of fluids
and disordered materials,

Sðq;ωÞ
SðqÞ

¼ I0ðqÞ
1
2Γ0ðqÞ

ω2 þ ð12Γ0ðqÞÞ2
þ IðqÞ ΩðqÞΓ2ðqÞ

½ω2 −Ω2ðqÞ&2 þ ω2Γ2ðqÞ
:

[1]

Fig. 1. MDCK cells within a confluent monolayer migrate in a spatially
heterogeneous manner (A, B). The average area of contiguous regions of
the fastest velocity vectors defines ξh, the area of dynamic heterogeneities
(B, white regions). As cell density rises, ξh grows from an area of about 10 cell
bodies to 30 cell bodies (C, inset: ξh in μm2). The average migration speed of
cells within the entire field of view, v, decreases with increasing cell density
(D). (Scale bar, 100μm.).

Fig. 2. The dynamic structure factor Sðq;ωÞ of themigrating cell monolayer is calculated to quantify cooperative and self motions over a broad range of length
scales and time scales (A). An example slice through Sðq;ωÞ at q ¼ 0.8 rad μm−1 shows that the spectral line shape is well described by the DHOmodel, consisting
of a diffusive Rayleigh peak (red line) and a Brillouin peak (blue line) (B). The spectrum of diffusing particles is dramatically different than the DHO spectrum, as
seen on a log - log plot (C, diffusing particle data: empty black square, red line: Rayleigh peak fit, cell data: filled black circle, blue line: DHO fit).
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The first term is a Rayleigh peak, with amplitude I0ðqÞ, and
width Γ0ðqÞ, and quantifies self-diffusivity. The second term is a
Brillouin peak, with amplitude IðqÞ, width ΓðqÞ, and peak position
ΩðqÞ, and reflects an elastic response to density fluctuations
(15). Both terms are essential to describe the cell data, as show
in Figs. 2 B and C. To confirm the essential requirement of the
Brillouin peak to describe the data for confluent cell layers, we
compare these data to that obtained from simulations of particles
undergoing diffusive motion, which can be accurately described
by the first term alone; the fit to the diffusive motion yields the
correct diffusion coefficient, provided the data are corrected by
the experimental resolution, given by the reciprocal of the experi-
mental duration as shown in Fig. S3. We therefore correct the
measured width of all data by 2π∕ð3.33 hÞ ¼ 1.88 h−1.

Non-Arrhenius Self-Diffusivity within the Monolayer. The width of
the central peak provides a probe of the short-time random fluc-
tuations of the cell motion. We find that Γ0ðqÞ ∼ q2, allowing us to
extract a diffusion coefficient by averaging over the high q-range,
D0 ¼ hq−2Γ0ðqÞiq, which is well defined at all cell densities. Inter-
estingly, we find that D0 decreases with increasing cell density, as
shown in Fig. 3A and (inset). We calculate an average speed over
a short duration, τ, from

ffiffiffiffiffiffiffiffiffiffiffi
D0∕τ

p
, and compare this to the average

speed from the PIVanalysis; for all τ within the range 100 ≤ τ ≤
200 min : we find that the migration distance is larger than the
diffusion distance at all cell densities measured. Surprisingly,
however, extrapolating to somewhat larger cell densities suggests
that these lengths converge, whereupon self-diffusive motion
overtakes cooperative migration, as shown in Fig. 3B. This con-
vergence defines a transition density: below this density cells
move greater distances by directed migration than by stochastic
motions, whereas above this density, individual cell motion is
predominantly diffusive-like, and cell layer motion is similar to
that of concentrated deformable particles (16). Interestingly, this
transition from collective relaxation to highly constrained loca-
lized motion of cells is reminiscent of a glass transition controlled
by cell density; for all τ within the range 100 ≤ τ ≤ 200 min :
this occurs at the density where the lengths converge, σg ¼
2800 mm−2.

To further characterize the approach of fluid-like cell motion
to a glass-like state we plot the inverse diffusivity as a function of
cell density, and fit the data with the Avramov-Milchev (AM)
equation, D−1

0 ¼ D−1
max exp½εðσ∕σgÞα%, where σ is the cell density,

Dmax is the diffusivity at zero density, ε is the dimensionless
activation energy at the glass-transition density, σg is the glass-
transition density, and α is a fragility parameter (Fig. 3C). The

AM equation describes stress relaxation times as a function of
temperature in glass-forming molecular fluids and as a function
of density in glass-forming colloidal fluids (17). Therefore, by
analogy, we identify the cell density with the volume fraction
in colloidal suspensions, which corresponds to the inverse tem-
perature in molecular glass formers. From the fit we obtain
Dmax ¼ 30& 4 μm2 h−1, showing that diffusive-like motions of
cells within a confluent layer are more than an order of magni-
tude slower than the anomalous migration of isolated MDCK
cells (18). By contrast, within the confluent cell layer, Dmax arises
from very different dynamics, as migrating cells have been shown
to pass through a kinetic phase transition as cell density is
increased from subconfluent densities to confluent densities (5).
Glass-like relaxation within the cell layer is captured by the
parameters α and ε. For “strong” glasses, α ¼ 1, whereas for
the most fragile glasses, α ≈ 5–6; we find that within the cell
layer, α ¼ 2.4& 0.1, indicating that the cell layer is analogous
to a moderately fragile glass-forming fluid. Interestingly, we find
that ε ¼ 1.8& 0.1, suggesting that the relative width of the acti-
vation energy spectrum at σg is large compared to that of most
molecular glasses, in which ε ≈ 30. Similar results are obtained
by fitting our data with another widely used description of
non-Arrhenius relaxations in glass-forming systems, the Vogel-
Fulcher-Tamman (VFT) equation (19). Although the underlying
details of the AM and VFT models differ, and the VFT predicts a
divergence in D−1

0 which we cannot observe (20), both models
reveal the same relaxation behavior in the cell system: collective
migration within a confluent cell monolayer exhibits behavior
that is remarkably reminiscent of the non-Arrhenius relaxation
within a moderately fragile glass-forming fluid (21).

Density of States within the Confluent Cell Layer. An additional
means of analyzing the information provided by Sðq;ωÞ is through
the DOS, which provides an additional point of comparison
to glass-like behavior. The DOS in 2D is given by nðωÞ ¼
2q−2maxqðdq∕dωÞ, where, dq∕dω is the reciprocal of the group
velocity, c ¼ dΩðqÞ∕dq. Because there is no well defined cutoff
in our system, such as an intermolecular spacing, and we analyze
fluctuations in the cell layer down to subcellular length scales,
we arbitrarily choose the pixel size to define the maximum wave
vector, qmax ¼ 2π∕ð1.55 μmÞ. This choice of qmax affects the over-
all scale of nðωÞ, but does not change the ω-dependent features.
The dispersion relations exhibit two important features that
affect the DOS. At low q, corresponding to length scales just
larger than the cell size, ΩðqÞ flattens out, and at higher q, ΩðqÞ
develops an inflection point, shown in Fig. 4A. At these frequen-
cies where the group velocity is reduced, there is an increase in

Fig. 3. The width of the Rayleigh peak, Γ0ðqÞ, is the q-dependent inverse relaxation time, and is equal toD0 q2 (A, empty black square: σ ¼ 1;479 mm−2, empty
red circle: σ ¼ 2;088 mm−2, empty green triangle: σ ¼ 2;214 mm−2, empty inverted blue triangle: σ ¼ 2;634 mm−2). The average of Γ0ðqÞ∕q2 over high q yields a
well defined self-diffusivity, D0 (A, inset). Migration distances over 200 min. durations, by diffusion and migration, are calculated from v and D0, showing that
collective migration decreases to levels of self-diffusive motion with increasing cell density. At the highest density, insufficient dynamic range in Sðq;ωÞ pre-
vented the extraction of a diffusivity. (B). An Arrhenius plot ofD−1

0 as a function of cell density illustrates the analogy betweenmotion within the cell monolayer
and particulate supercooled fluids approaching a glass transition (C, blue line: AM equation fit, red line: VFT equation fit).
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the DOS. The excess in DOS is frequently measured in reference
to the Debye-approximation for the DOS, which scales like ω in
2D; thus nðωÞ∕ω exhibits peaks corresponding to the reductions
in dΩðqÞ∕dq, as shown in Fig. 4B.

At the lowest cell densities, nðωÞ∕ω resembles that of molecu-
lar and colloidal fluids: there is a single, dominant peak at
low frequencies and the DOS decreases and flattens out at high
frequencies, as shown in Fig. 4B (22). This peak is commonly
called the boson peak; in supercooled fluids, the boson peak
arises from damped oscillations of long lived molecular structures
(23, 24). This peak shifts to lower frequency with increasing cell
density; the associated time scale of this peak, τ# ¼ 2π∕ωpeak,
increases from approximately 1 h to 1.6 h, as shown in Fig. 4C.
By locating the corresponding q-value in ΩðqÞ, we find that the
wavelength of this oscillation, λ# ¼ 2π∕q#, does not shift drama-
tically relative to cell size as a function of cell density; approxi-
mating the cell length as lc ∼ σ−1∕2, we find λ# ¼ 1.19% 0.14 lc,
shown in Fig. 4D. Typical migration time scales over the length
of a cell body are much larger than an hour, as can be determined
from Fig. 3B, however, cell body shape fluctuations during coop-
erative migration within the layer can be seen directly, and appear
to have a time scale comparable to an hour. Furthermore, it is
natural that the Fourier-mode corresponding to the inchworm-
like, antiparallel oscillations of cell shape during migration have
a reduced group velocity, relative to neighboring modes in ΩðqÞ.
Thus, we believe that the low-ω peak in the DOS arises from
coupled cell body shape fluctuations within the migrating cell
layer, where τ# and λ# provide a direct measure of the oscillation
period and wavelength.

As cell density rises, we observe that the division time per cell
remains constant and, thus, the number of cell divisions per unit
area increases. There is a characteristic type of motion associated
with divisions; the parent cell separates into two daughter cells,
each less than one-half the parent cell size, moving antiparallel
to one another over the course of one-half to 1 h. This type of
highly correlated motion of daughter cell pairs is analogous to
the short-wavelength longitudinal standing-wave mode in atomic
systems; neighboring atoms oscillate out of phase with a corre-
sponding group velocity of zero. Consistent with this picture,
we observe a second peak in the DOS at short wavelengths
and high frequencies corresponding to the characteristic length
scale and time scale of cell division motion; τ# ∼ 0.4 to 1 h, and,
in units of cell lengths, lc, λ# ¼ 0.39% 0.05 (Fig. 4 C and D). We
check these values by direct inspection of the time-lapse movies;
the size and time scale of separating daughter cells is always
within this range. Thus, as density rises and σg is approached,
migration, diffusion, and cell-body deformations dramatically
slow within the cell layer, while the spatial density of cell divisions
rises and persists as an increasingly dominant source of high-
frequency motion.

Discussion
This study uncovers a conceptual foundation for understanding
collective cell migration by exploring several analogies between
confluent cell layer motion and classical glass-forming particulate
systems. The growth of dynamic heterogeneities and the reduc-
tion in diffusive motion with increasing cell density, and the
existence of peaks in the DOS, demonstrate several connections
between cell monolayer migration and classical particulate glass-
forming systems. We extend this analogy further by comparing the
fragility analysis of the cell layer to the fragility of atomic and
molecular glasses (Fig. 3C). From the fit to the VFT equation
and the glass-transition density, σg ¼ 2;800 mm−2, we extract a
glass-transition diffusivity, Dg ¼ 4.17% 0.15 μm2 hr−1. In particu-
late glass-forming fluids, the temperature at which the single
particle relaxation time reaches 100 s is defined as the glass-tran-
sition temperature, Tg. We search for a similar time scale to
define the glass-like state of cell layers from Dg and σg: at σg,
the only motion in the cell layer will be associated with divisions.
Within one division time, all of the material within each cell is
partitioned into two halves of each cell body. We find that the
length scale of this single-cell motion is ∼ð12 σ−1g Þ1∕2, and the time
scale associated with this motion, τg ∼ 1

2 σ−1g D−1
g is 42.8 h. We

directly measure the average division time, and, remarkably,
we find it to be 44.1 h. Thus, there is a fundamental time scale
associated with the glass-like state of the cell monolayer: the cell
division time. This role of division time in the glass-like dynamics
of a cell monolayer illustrates just one of several important dra-
matic differences between cell systems and traditional particulate
systems; to understand the glass transition in cell systems will
require accounting for nonequilibrium particles that generate
forces internally, actively and passively change shape, as well as
proliferate.

An important feature of the cells is the evolution of their
density with time. This process is analogous to aging, and other
time-evolving systems also exhibit relaxation due to dynamic het-
erogeneities, similar to those observed here. For example, foams
evolve in time as the local stresses within them change due to
the coarsening of the bubbles, and this drives relaxation due
to dynamic heterogeneities (25, 26). However, the time scales
of the coarsening and the relaxations are very different. The tem-
poral evolution of the cells also occurs on a much longer time
scale than does the relaxation due to the dynamic heterogene-
ities. However, the relaxation of the cell layer is due to active
motion generated directly by the cells whereas the relaxations
in foams are ultimately thermally driven, assisted by the coarsen-
ing of the bubbles. Perhaps the closest analogy to the behavior of
the cell layer is that of soft, deformable spheres; they exhibit non-
Arrhenius relaxation behavior as they approach the colloidal
glass transition, suggesting that relaxations might occur through
dynamic heterogeneities (16). Dynamic heterogeneities in soft

Fig. 4. Analysis of the Brillouin peaks in Sðq;ωÞ yield dispersion relations of cell motion, ΩðqÞ, at each cell density (A). The DOS of cell motion, extracted from
ΩðqÞ, exhibits two sets of peaks, analogous to boson peaks in supercooled fluids (B). The peaks at lower frequencies and wave vectors correspond to the time
scale and length scale of cell shape oscillations; the peaks at higher frequencies and wave vectors correspond to the time scale and length scale of cell divisions
(C, D). (σ2 ¼ 1;550 mm−2, σ4 ¼ 1;480 mm−2, σ11 ¼ 1;880 mm−2, σ12 ¼ 2;090 mm−2, σ14 ¼ 2;210 mm−2, σ15 ¼ 2;550 mm−2, and σ16 ¼ 2;630 mm−2)
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Figure 15. Results of DFM experiments performed on MCDK cells moving on a substrate. (A)
The dynamic structure factor S(q.!) of the migrating cell monolayer is calculated to quantify
cooperative and self motions over a broad range of length scales and time scales. (B) An example
slice through S(q,!) at q = 0.8 µm�1 shows that the spectral line shape is well described by the
DHO model, consisting of a diffusive Rayleigh peak (red line) and a Brillouin peak (blue line).
(C) The density of states of cell motion, extracted from the Brillouin scattering, exhibits two
sets of peaks, analogous to boson peaks in supercooled fluids. (D) An Arrhenius plot of D�1

0 (as
extracted from the width of the Rayleigh peak) as a function of cell density show a behaviour
reminiscent of colloidal glasses. Fitting with theoretical model (lines) suggest that cells behave
as moderately fragile glasses. Reprinted figure with permission from Ref. [85]. Copyright (2011)
by the National Academy of Sciences.
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was also used to measure the spatio-temporal behaviour of active dynamics due to F-actin in
single glial cells. The active contribution of actin cytoskeleton was obtained by modulating its
dynamic properties via Cytochalasin-D, a drug that inhibits actin polymerisation/depolymerisation.
Even though some differences were observed before and after treatment with Cyto-D, no really
quantitative estimators of such differences were provided [86].

Another recently introduced fluorescence-based DFM method is Dispersion-Relation
Fluorescence Spectroscopy [87], which is equivalent to the previously mentioned kICS and f-DDM.
The authors of Ref. [87] studied mouse embryonic fibroblasts with their actin cytoskeleton labeled
with GFP and were able to distinguish between directed and diffusive transport along the actin
fibers in living cells. The fluorescently labeled actin cytoskeleton exhibited active transport motion
along a direction parallel to the fibers and diffusive in the perpendicular direction, consistently with
the phenomenon of ‘‘treadmilling’’ in which actin filaments are continually polymerising at one end
and depolymerising at the other.

3.6. Flow characterisation

A last example of application of DFM in soft matter is provided by reciprocal space velocimetry
[88, 89, 90, 91, 92]. Similar to Particle Imaging Velocimetry [93] and Laser Speckle Velocimetry
[94], which however operate in the real space, DFM velocimetry is not based on tracking but on
the presence of translating fluctuations of arbitrary origin. Such fluctuations can be due to sub-
diffraction tracers but also to the sample itself, with no added tracers, provided that it displays
sufficiently strong intrinsic refractive index fluctuations [92]. Originally demonstrated in the laser-
based HNFS configuration [88, 89, 90], DFM velocimetry operates in the reciprocal space by using
the structure function reported in Table 1 for motion with uniform velocity. Equivalently, it can
operate in the real space by cross correlation of images at different times. One of the biggest
advantage of DFM velocimetry is that it can directly quantify the number of moving particles
because it is a heterodyne method. The method was later successfully applied also in b-DDM
configuration [91, 92], where the use of a light source with tuneable spatial coherence demonstrated
immediate advantages by allowing passing from a 2D velocimetry to a 3D one [92].

Indeed, in Ref. [92] the depth resolving capabilities of partially coherent illumination typical of
bright field microscopy were used to obtain the velocity profile not only in the transverse direction
but also along the optical axis (Figure 16). The obtained axial resolution (�z ⇠ �/(NA

c

)

2 ⇠ 20

µm) is still somehow poorer than confocal microscopy but the payoff of the method is that does
not require anything more than a commercial microscope.

4. Conclusion and outlook

In this review article we have introduced the working principles of Digital Fourier Microscopy, a
rather novel set of methodologies that share the interest for the correlation properties of a sample in
the reciprocal space. We have provided a set of applications of DFM, with a focus on the dynamics
of soft materials. We conclude this review by outlining the areas that in the near future will most
likely benefit of DFM methods and of their interesting mix of properties.

Quantitative microrheology A very promising application for DFM is microrheology. Microrhe-
ology is a tool for the study of the viscoelastic properties of soft materials, which is based on
measuring the dynamics of colloidal particles embedded in a material of interest and extracting
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scan with longitudinal steps of 20 !m. The results are
summarized in Fig. 3, where the results of the correlation
analysis are compared to the theoretical parabolic flow
profile. Figure 3(b) conversely shows that the cross-
correlation peak obtained for a shallower channel, where
the velocity varies appreciably over distances shorter than
"z, displays the cometlike shape typical of coherent laser
probing. Thus, with some trade-off of spatial resolution, z
scans usually performed by sophisticated techniques such
as confocal differential dynamic microscopy [19] can be
obtained by GPV with high speed.

Finally, we stress again that the GPV approach may not
even require adding tracer particles on purpose: Structured
complex fluids like emulsions, of primary importance in
food and drug engineering, can often be studied in their
natural, unaffected form. MOV2 in the Supplemental
Material [14] shows, for instance, the flow in a microfluidic
channel of skimmed milk, which is a dispersion of droplets
with an average size (obtained by DDM) of about 280 nm,
hence barely resolvable in bright field or even phase con-
trast microscopy. The sample may not even have a particu-
late structure, provided that it displays sufficiently strong
intrinsic refractive index fluctuations. A physical mean-
ingful example is provided by MOV3 of the Supplemental
Material [14], which shows the progressive transition of an
aqueous micellar solution of the nonionic surfactant
C10E5 (pentaethyleneglycol monodecyl ether) from a
homogeneous phase to a spinodal-decomposed mixture,
when brought within the coexistence curve by transversally
heating the sample from a wall. Note that a well defined
speckle pattern is already evident in the single phase region
(first 4 s of movie MOV3), even if the basic constituents of
the mixture are globular micelles with a size of a few
nanometers, due to the presence of strong critical

fluctuations close to the critical temperature. Although
this is evidently a case of a nonstationary flow, reasonable
statistics can be obtained by using a high frame rate
(170 frames=s) that allows time averaging with a window
of about 50 ms, over which the speckle pattern shows
negligible changes. Figure 4, for instance, shows that the
standard deviation # of the speckle pattern considerably
grows as the heating time goes by, reflecting the progres-
sive birth of the two phases from the wall. Since # is
directly related to the amplitude of the local concentration
fluctuations, these preliminary results suggest GPV as an
useful technique to investigate the effect of shear on phase
separation.
We thank R. Cerbino, L. Cipelletti, and M.D. Alaimo

for useful discussions. S. B. acknowledges funding by the
Italian Ministry of Education and Research (‘‘Futuro in
Ricerca’’ Project Anisoft/RBFR125H0M).

FIG. 3 (color online). Main body: z-scan longitudinal flow
pattern in a straight channel, with the full line showing the
predicted parabolic flow. The correlation map obtained at a
depth z ¼ 300 !m in a 600 !m deep channel is shown in inset
(a). Inset (b) conversely shows that the correlation map obtained
in a 30 !m deep channel displays a ‘‘comet’’ effect similar to
what is observed in velocimetry methods using a laser source.

FIG. 4 (color online). Spinodal decomposition of a C10E5
+water mixture, prepared at the critical surfactant concentration
c ’ 3:5% by weight and fed into a 4 mm" 0:2 mm glass
capillary at constant pressure head !P ¼ 102 Pa at an initial
temperature distance Tc # T ’ 5$ from the critical point. Ohmic
heating is provided by a resistor thermally contacted to a metal
block attached to the left cell wall. Panel (a): Speckle and flow
velocity patterns at diverse heating times. The box at the top left
indicates the size of the region where averaging was performed
to obtain the locally averaged flow speed "VðxÞ indicated by the
arrows. Note that, at constant pressure head, "VðxÞ decreases by
more than a factor of 3 from the homogeneous to the phase-
separated state, indicating a consistently higher effective viscos-
ity of the latter. Panel (b): Time evolution of the standard
deviation of the speckle patterns as a function of the distance
from the heated wall.
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Figure 16. Results of a velocimetry experiment with a partially-coherent light source. z-scan
of the longitudinal flow pattern in a straight channel, with the full line showing the predicted
parabolic flow. The correlation map obtained at a depth z = 300 µm in a 600 µm thick channel
is shown in inset (a). Inset (b) conversely shows that the correlation map obtained in a 30 µm
thick channel displays a ‘‘comet’’ effect similar to what is observed in velocimetry methods using
a laser source such as HNFS. Reprinted figure with permission from Ref. [92]. Copyright (2013)
by the American Physical Society.

from it the frequency dependent viscoelastic moduli [96, 95]. By contrast with traditional rheology,
it requires a few microliters of material, it probes the local structure of the material and it can
access higher frequencies, provided that a fast detector is used. There are in general two ways of
performing microrheology experiments that are based on video particle tracking and light scatter-
ing. Once again, DFM methods can just fit in-between these two well established methodologies.
In particular, we believe that fluorescence-based DFM is the ideal choice for the study of materials,
whose strong scattering could mask or distort the signal from the tracer particles. Indeed, FCS has
been already used with profit to study colloidal self diffusion in complex environment in strongly
scattering samples [97] and we foresee a great potential for DFM that can probe collective diffusion
in similar conditions.

Spatially and temporally heterogeneous systems Heterogeneity, namely the coexistence of multiple
characteristic length and time scales and multiple level of organisation within the same system, is
a distinctive feature of many soft and biological materials, prototypical examples being living cells
and tissues. The investigation of the structural properties and the dynamics of an heterogeneous
system is a very challenging task as it requires simultaneously high spatial resolution, statistical
power and the access to a wide range of timescales. The idea that a suitable combination of light
scattering and microscopy, complementing the averaging power of the first one the with the visual
control and the spatial selectivity of the second one, could be an ideal tool for this purpose has
been proposed in a variety of forms [98, 99, 100]. In all cases a laser source was used and an optical
microscope was suitably customised to accommodate a traditional light scattering far field detection
of the light scattered by the sample.

By contrast with the previously cited methods, DFM intrinsically offers the possibility of
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performing a space resolved study of the sample with a natural trade-off between spatial and
spectral resolution. On one side, the observation length scale can be easily tuned for example
by varying the objective magnification, by restricting the analysis to specific regions of interest
within the field of view [50] or, on the contrary, by merging images collected in different positions
or in different planes [30]. On the other hand, the same factors influence the accessible q-range.
Increasing the magnification gives access to larger wave-vectors and using a larger image gives access
to smaller wave-vectors. An elementary example of how DFM could provide a space- and q-resolved
information is the following. Images of one portion of the sample can be easily partitioned in sub-
regions and on each of them the Fourier analysis can be performed in parallel, thus obtaining a
space resolved characterisation of the sample properties with a resolution given by the size of the
sub-regions. A reasonable estimate for the smaller statistically relevant sub-region could be a 8x8
pixel square. By considering that the highest attainable resolution with optical microscopy is of the
order of 0.2 µm and by assuming a slight oversampling by a factor of two, the best final resolution
of space resolved DFM is in the sub-micron range. DFM appears thus a suitable candidate for
obtaining a high quality space- and q-resolved study of heterogeneous systems. We add that the
implementation of imaging processing schemes based on hybrid space-frequency representations
like the wavelet transform [101], could also be a viable means for the quantitative investigation of
spatially heterogeneous systems [16].

As far as temporal heterogeneity i.e. non-stationarity of soft materials is concerned it would be
extremely interesting to use DFM in combination with more complex forms of temporal correlations
that have been proposed in the literature. Typical examples are the two-time correlation function
[102] or the time resolved correlation [103] that are suitable to capture changes in the dynamics of
the system.

Extracting structural information of soft materials Even though we have chosen to describe only
applications devoted to the characterisation of dynamical properties, it is actually possible to
use DFM for the full characterisation of the correlation properties of the sample, including the
information encoded in the static structure factor S(q) and in the form factor P (q). In general, this
entails the detailed knowledge of the transfer function K for the specific imaging process. Indeed,
while in general the study of the lifetime of density fluctuations is not influenced by the details of
the imaging process, the extraction of the spatial Fourier power spectrum of the density fluctuation
from the images is heavily based on them. We stress that beside the bare properties of the optical
system such as for instance the numerical aperture and spectral distribution of the illumination
beam, or the numerical aperture and aberrations of the collection optics, the transfer function K is
affected by a number of sample-dependent factors: scattering properties (e.g. if the sample behaves
like an amplitude and/or a phase object), average refractive index, thickness, position with respect
to the objective focal plane. All these elements need to be carefully accounted for when devising a
strategy for the determination of K.

The simplest approach, which is commonly used also in traditional scattering, involves the
calibration of the optical system by making use of a well characterised reference sample. An example
along this line is described in Ref. [68], where the transfer function of a shadowgraph instrument was
determined by making use of a dilute colloidal suspension of non-interacting nanoparticles for which
both the structure factor and the form factor were substantially constant in the relevant q-range
and the combined effect of the particle size and refractive index could be modelled theoretically.
A similar approach has been demonstrated in Ref. [41], where the static structure factor of dense
suspensions of colloidal hard spheres was measured in a confocal differential dynamic microscopy
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experiment. In that case, by characterising the same system in a very dilute regime, the combined
effect of the optical transfer function and the form factor of the particles was characterised and
used for treating the data at larger concentration.

We believe that the combined use of DFM for obtaining both dynamic and structural
information could really pave the way to the routine use of optical microscopes as powerful
alternatives to dynamic and static light scattering instruments. In this respect, it must be added
that heterodyne DFM gives direct access to the absolute differential scattering cross section of the
sample, as recently demonstrated in Refs. [28] and [50]. Indeed, for heterodyne detection, both the
average image intensity and the amplitude of the signal associated to scatterers are proportional
to transmitted light intensity, which allows for a self-consistent normalisation of fluctuating part of
the image.

Multiply scattering systems Scattering-based DFM is ideal for applications to samples for which
multiple scattering is a limiting factor. Indeed, the thickness of the samples for microscopy studies
can be kept extremely small, down to a few tens of µm, which limits the amount of multiple
scattering from the sample with respect to millimetre sized cells typical of light scattering. In
addition, DFM with partially-coherent illumination has shown a remarkable advantage in terms of
insensitivity to presence of multiple scattering [29, 92] with respect to measurements performed
(both in the near and in the far field) under similar condition by using a laser illumination.
Such insensitivity comes as a consequence of the limited spatial and temporal coherence of the
illuminating beam that acts in reducing the effective depth of field i.e. the axial extent of the
region effectively contributing to the image formation [34]. To some extent there is an analogy with
previous interferometric far-field experiments (see Ref. [104] for a review) in which the combination
of an interferometric setup and of a partially-coherent light source allowed quantifying the Brownian
motion of colloidal particles in highly scattering media. A thorough study of this analogy and of
the possible differences is needed for reaching a precise assessment of the potential of the DFM
approach for the study of opaque samples such as milk and other diary products.

DFM with non-LSI imaging As pointed out in paragraph 2.4.3, whenever the imaging mechanism
does not produce a linear relationship between the image intensity and the density, most of the
considerations presented here are not immediately applicable unless, as we have shown above, the
sample is very dilute. An important example where dilution is not possible and a novel strategy must
be devised is provided by locally anisotropic molecular systems like liquid crystals (or concentrated
suspensions of rod-like particles) that, when observed between crossed polarisers, show striking
maps of the sample birefringence at the expense of the transmitted beam [8, 9]. This corresponds
to a homodyne detection scheme, where the intensity distribution is proportional to the square of the
scattered field, which obviously breaks the linear relation between the intensity and the density. One
of the possible strategies to perform quantitative DFM experiments in this condition was originally
pursued in one of the seminal articles on near field scattering [15] but it was later abandoned in
favour of the heterodyne scheme that proved to be superior in many respects. Nevertheless, there
are cases for which it is not possible to drop the homodyne scheme and an investigation of the
possibilities of DFM method in this regime would be beneficial.

Computational challenges One of the most critical aspects of DFM, especially for beginners, is data
processing. The processing of DFM data can be roughly divided in two main steps: a) computation
of the Fourier domain correlations between the images; b) fitting of the correlation functions with
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a suitable model. The first step involves the manipulation of large stacks of images and is is the
most time and memory consuming. For this reason it also constitutes a bottleneck for the whole
analysis. In this respect, a number of interesting solutions have been already proposed, which are
based on the development of optimised GPU (Graphics Processing Unit)-based software [41, 56].
The resulting optimised software was capable of reducing to a few minutes the computational time
needed to complete the first processing step for a typical DFM experiment. Estimates based on our
experience confirm that, by suitable modifications of the existing algorithms, it should be already
possible to realise a true real-time processing platform for the computation of the Fourier domain
correlations in DFM experiments, with obvious advantages for the final users.

The second step, namely the fitting and the interpretation of the correlation functions, is
strongly system-dependent and can benefit from the huge portfolio of analytical, numerical and
computational tools that have been developed in the last decades for dynamic and static light
scattering applications [3]. We believe that the full exploitation of the analogy between the DFM
and light scattering, with the systematic application of the several already available tools - such
as for example cumulant expansion, CONTIN algorithm, maximum entropy methods - could be
of great importance in widening the field of applicability and in improving the quality of the
information that can be extracted from the experimental DFM data, bringing the method at the
level of the most advanced commercial light scattering instruments.
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