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Abstract

In this paper, we compare alternative missing imputation methods

in the presence of ordinal data, in the framework of CUB (Combination

of Uniform and (shifted) Binomial random variable) models. Various

imputation methods are considered, as are univariate and multivariate

approaches. The first step consists of running a simulation study

designed by varying the parameters of the CUB model, to consider and

compare CUB models as well as other methods of missing imputation.

We use real datasets on which to base the comparison between our

approach and some general methods of missing imputation for various

missing data mechanisms.
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1 Introduction

In this paper, we consider the CUB (Combination of Uniform and (shifted)

Binomial random variables) model [Piccolo, 2003] for the analysis of ordinal
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variables. We decided to use the CUB model because on one hand, it allowed

us to generate different distributions of ordinal variables, and on the other, it

allowed us to interpret them in the specific context of customer satisfaction.

In CUB models, the answers to ordinal response items in a questionnaire are

interpreted as the result of a cognitive process, where the judgement is intrin-

sically continuous but is expressed in a discrete way within a pre-fixed scale

of m categories. The rationale of this approach stems from the interpretation

of the final choices of respondents as a result of two components; a personal

feeling and some intrinsic uncertainty in choosing the ordinal value of the

response [Iannario, 2012]. The first component is expressed by a shifted bi-

nomial random variable. The second component is expressed by a uniform

random variable. The two components are linearly combined in a mixture

distribution.

To compare different methods of missing imputation, two simulation studies

are done. The first one is designed by varying the CUB model parameters, and

the second simulates missing values in a Likert structure. Two real datasets

with similar structures have been used in simulation studies. Three missing

data mechanisms, namely missing completely at random (MCAR), missing

at random (MAR), and missing not at random (MNAR), are considered and

the imputation methods are applied and compared in terms of proportion of

correct classification and in terms of CUB model parameter estimation.

The paper is organized as follows. Following the Introduction, Section 2

presents a classification of missing imputation methods. Section 3 is devoted

to CUB models. Section 4 presents two simulation studies and the relevant

results. Section 5 deals with real datasets. Section 6 draws the conclusions.

2 Missing data imputation for ordinal data

Various approaches can be followed in the treatment of missing values

[Little and Rubin, 1987, 2002]. In brief, it is possible to distinguish between i.
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strategies which allow a complete dataset to be created (complete-case anal-

ysis or listwise deletion, available-case analysis, weighting procedures, and

imputation-based procedures), and ii. strategies which allow direct analyses

using model-based procedures; models are specified for the observed data,

and inferences are based on likelihood or Bayesian analysis. Moreover, the

numerous studies in the literature on missing data highlight that for both

approaches, there are numerous procedures and methods of missing imputa-

tion, which are often difficult to classify. In this paper, a classification of the

various procedures and methods will be proposed, followed by some specific

proposals for the imputation of ordinal data.

The most common procedures for imputation of missing data can be

classified as:

a. Univariate: methods that substantially use information from the distri-

bution of the variable from which the variable itself is missing (i.e., mean,

median, mode, random imputation, etc.).

b. Multivariate: methods that use the observed pattern for one or more

related variables to estimate by means of a model, in which the variable

is missing (i.e., linear and nonlinear regression models).

Another common classification of methods is:

a. Single imputation (SI), which imputes one value for each missing item.

b. Multiple imputation (MI), which imputes more than one value for each

missing item to allow for the appropriate assessment of imputation uncer-

tainty. Each set of imputations is used to create a complete dataset, which

is analysed by complete-data methods; the results are then combined to

produce appropriate estimates that incorporate missing-data uncertainty.

In multiple imputation, each missing value is replaced with multiple im-

puted values, creating several simulated complete datasets. Rubin [1987]
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presented the method for combining results from a data analysis performed

s times, once for each s imputed dataset, to obtain a single set of results.

Most of the literature on missing data has focused on quantitative data.

Less attention has been paid to the treatment of missing imputation meth-

ods for ordinal data, although ordinal variables occur in many fields. Ex-

isting methods for ordinal data are generally an adaptation of techniques

originally designed for quantitative variables. Galati et al. [2012] studied

bias arising from rounding categorical variables following multivariate normal

(MVN) imputation. Three methods that assign imputed values to categories

based on fixed reference points are compared using different scenarios: crude

rounding, projected distance-based rounding, and distance-based rounding

(DBR).They concluded that these simple methods are generally unsatisfac-

tory for rounding categorical variables following imputation under an MVN

model.

Mattei et al. [2012] give a useful and comprehensive review of missing

data and imputation methods and present an example from the context of

customer satisfaction. They start with a basic discussion of missing-data

patterns, describing which values are observed in the data matrix and which

are missing; and missing-data mechanisms, which concern the relationship

between missingness and the values of variables in the data matrix. Second,

they review four classes of approaches to handling missing data, with a focus

on MI, which they believe is the most generally useful approach for survey

data, including customer satisfaction data. Third, a simple MI analysis is

conducted for the ABC ACSS Survey data1, and theresults are compared to

those from alternative missing-data methods.

Ferrari et al. [2011], in the specific context of qualitative variables, pro-

posed a procedure based on an iterative algorithm where sequentially miss-

ing categories for one element are replaced with the corresponding values

1The ABC Company has conducted an Annual Customer Satisfaction Survey (ACSS)
since 2001,to gather information on its touch points and interactions with customers,
through a questionnaire consisting of 81 questions.
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observed for the most similar element from a complete dataset (R package

ForImp). They employed nonlinear principal component analysis to build

statistical indicators. They carried out a simulation study in which they

applied the forward method to a real dataset and compared the results of

their single multivariate imputation method to other univariate imputation

methods. Their iterative method may be extended to other explanatory

multivariate techniques.

Stekhoven and Bühlmann [2012] proposed an iterative non-parametric

imputation method for mixed-type data, essentially based on random forest

(R package missForest). By averaging over many unpruned classification or

regression trees, random forest intrinsically constitutes a multiple imputa-

tion scheme. Using the built-in out-of-bag error estimates of random forest,

they were able to estimate the imputation error without the need for a test

set. Evaluation was performed on multiple datasets from a diverse selection

of biological fields, with artificially introduced missing values ranging from

10% to 30%. They showed that missForest can successfully handle missing

values, particularly in datasets including different types of variables. In their

comparative study, missForest outperformed other methods of imputation,

especially in datasettings where complex interactions and nonlinear relations

were suspected. Additionally, missForest was found to exhibit attractive

computational efficiency and was able to cope with high-dimensional data.

The idea of using regression and classification trees to input missing values

is not new: Iacus and Porro [2007] proposed random recursive partitioning

(RRP). This method generates a proximity matrix, that can be used in non-

parametric matching problems such as hot-deck missing data imputation and

average treatment effect estimation. RRP is a Monte Carlo procedure that

randomly generates non-empty, recursive partitions of the data and calcu-

lates the proximity between observations as the empirical frequency in the

same cell of these random partitions over all the replications.

White et al. [2010] consider multiple imputation. They highlight that
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the automated procedures widely available in standard software, may hide

many assumptions and possible difficulties in the specific context of categor-

ical variables and may give severely biased results. They propose bootstrap

methods, penalized regression methods and a new argumentation procedure

to solve this problem.

In this paper, we also consider the use of CUB models to inputate missing

values for both univariate and multivariate procedures.

3 CUB models

CUB models are a class of statistical models introduced by Piccolo [2003]

for the specific purpose of interpreting and fitting ordinal responses. An

application of CUB models on marginal ranks can be found in D’Elia and

Piccolo [2005a]. In CUB models, ratings are interpreted as the result of two

main factors: the personal feeling of the subject towards the item and some

intrinsic uncertainty. Let R be a random variable that assumes m possible

categories, r = 1, 2, 3, . . . ,m. Formally, the probability distribution of the

CUB model is given by:

Pr(R = r) = π

(
m− 1

r − 1

)
ξm−r(1− ξ)r−1 + (1− π)

1

m
, r = 1, 2, . . . ,m .

(1)

Since the distribution is well defined when parameters are π ∈ (0, 1] and

ξ ∈ [0, 1], the parametric space is the (left open) unit square:

Ω(π, ξ) = {(π, ξ) : 0 < π ≤ 1, 0 ≤ ξ ≤ 1} .

Iannario [2010] proved that such a model is identifiable for any m > 3.

The first component is a shifted binomial random variable; ξ is inversely

related to the feeling of the respondent towards the item: ξ increases when

respondents choose low ratings, and vice versa.
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The second component is a uniform random variable; π is inversely related

to the uncertainty in the final judgement. If the respondents manifest a

great propensity for extreme indecision in the choice, π −→ 0. When the

respondent manifests a minimum propensity for extreme indecision and the

choice is more resolute and determined mostly by feeling, then π −→ 1

[Iannario, 2012].

To improve the performance of this structure, an extension of the CUB

model with covariates has been proposed [Iannario, 2007, Piccolo and D’Elia,

2008]. If p and q covariates are introduced to explain uncertainty and feel-

ing, respectively, we will denote such a structure as a CUB(p, q) model. The

general formulation of a CUB(p, q) model is modelled by two components:

1. A stochastic component :

Pr(Ri = r | yi; wi) = πi

(
m− 1

r − 1

)
ξm−ri (1− ξi)r−1 + (1− πi)

(
1

m

)
,

r = 1,2,. . . ,m; for any i = 1, 2, . . . , n.

2. Two systematic components :

πi =
1

1 + e−yi β
; ξi =

1

1 + e−wi γ
; i = 1, 2, . . . , n ,

where yi = (1, yi1, yi2, ..., yip)
′ and wi = (1, wi1, wi2, ..., wiq)

′ denote the co-

variates of the i-th subject, selected to explain πi and ξi respectively. γ =

(γ0, γ1, ..., γq)
′ and β = (β0, β1, ..., βq)

′ are parameter vectors.

Asymptotic statistical inference for CUB models, an effective EM pro-

cedure for maximum likelihood estimators, has been developed and imple-

mented by Piccolo [2006], and related software is freely available [Iannario,

2012]. The simulation routine simcub() [Iannario and Piccolo, 2009], can be
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used to simulate from a given CUB distribution.

When only one variable contains missing values, we can estimate the CUB

model based on the subset of the complete data, and then simulate from this

CUB distribution to impute each missing value.

When more than one variable has missing data, imputation typically

requires an iterative method of repeated imputations. On the basis of the

iterative robust model-based imputation proposed by Templ et al. [2011], we

propose a CUB approach-based iterative algorithm (iCUB), where, in each step

of the iteration, one variable is used as a response variable and the remaining

variables serve as the covariates in the CUB models. The proposed iterative

algorithm consists specifically of the following steps:

Step 1 Initialize the missing values using a simple imputation technique.

Step 2 Sort the variables according to the original amount of missing values.

We now assume that the variables are already sorted, i.e. M(x1) ≥
M(x2) ≥ ... ≥ M(xv) where M(xj) denotes the number of missing cells

in variable xj. Set I = {1, ..., v}.

Step 3 Set l = 1.

Step 4 Denote misl ∈ {1, ..., n} the indices of the observations that are

originally missing in variable xl, and obsl = {1, ..., n}\misl the indices

corresponding to the observed cells of xl. Let Xobsl
I\{l} and Xmisl

I\{l} de-

note the matrices with the variables corresponding to the observed and

missing cells of xl, respectively.

Based on the subset of the observed cells of xl, estimate the CUB model

Pr(xi∈obsl
l = r |X i∈obsl

I\{l} ) = πi

(
m− 1

r − 1

)
ξm−ri (1− ξi)r−1 + (1−πi)

(
1

m

)
r = 1, 2, . . . ,m.

πi =
1

1 + e−X
i
I\{l} β

; ξi =
1

1 + e−X
i
I\{l} γ

; i ∈ obsl ,
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We can use a model selection to choose the best model.

Step 5 Estimate the CUB model coefficients with the corresponding model

in Step 4, and replace each missing value xmisl
l by a random number

generared by a CUB model with the estimated CUB model coefficients.

Step 6 Carry out Steps 4-5 in turn for each l = 2, ..., v.

Step 7 Repeat Steps 3-6 until the imputed values stabilize, i.e. until

∑
i(x̂l,i − x̃l,i)2 < δ for all i ∈ misl and l ∈ I

for a small constant δ, where x̂l,i is the i-th imputed value of the current

iteration, and x̃l,i is the i-th imputed value from the previous iteration.

The R function for iCUB and the related functions can be downloaded from

here: http://users.unimi.it/salini/iCUB.zip.

4 Simulation study

Two simulation studies were conducted. The first considered the impu-

tation for only one variable with covariates and the second considered the

imputation for more variables with a Likert structure without covariates, as

in Ferrari et al. [2011]. In all cases, the number of Monte Carlo replications

was 1.000.

4.1 Imputation for one variable with covariates

In the first simulation, we considered a variable Y generated by a CUB(0,0)

model and two covariates: X1 generated by normal distribution N(y, 0.16)

and X2 generated by a CUB model with Y as a covariate to explain feeling.

The variable Y was generated by a CUB(0,0) model with a different number of
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possible categories (m = 5, 7, 9) and for varying parameters over the admissi-

ble parameters space, π = 0.1, 0.2, 0.3, . . . , 1 and ξ = 0, 0.1, 0.2, 0.3, . . . , 0.99.

The missing values were selected only in Y using two different missing

data patterns:

a) missing completely at random (MCAR),

b) missing not at random (MNAR), in which only the low categories are

omitted.

We repeated the experiment for three sample sizes (n = 200, 500, 1.000)

and three different amounts of missing values (v=5%, 10%, and 20%).

To evaluate the imputation method performance, we considered the per-

centage of cases correctly imputed and the bias of the estimates of the CUB

parameters.

The methods compared in this simulation study were: median imputa-

tion (ME), random imputation (RA), CUB(0,0), polytomous ordered logistic

regression (PO), CUB(p,q), forward imputation (FO) [Ferrari et al., 2011] and

miss-Forest (MF) [Stekhoven and Bühlmann, 2012].

In Figure 1 and Figure 2, for case a) MCAR and for b) MNAR respec-

tively, the value of ξ is plotted in the horizontal axis and the percentage of

cases correctly imputed is plotted in the vertical axis, for π = 0.1, 0.5, 0.9.

The first thing to be noticed, in both cases, is that when uncertainty is

high (π = 0.1), MF, FO, and CUBpq methods behave better than all other

methods considered for all levels of feeling. When the missing values are

not at random (case b), the polytomous regression, which, like MF, FO,

and CUBpq, consider the covariates too, is better than univariate methods

median, random and, CUB00. When uncertainty decreases (π = 0.5, 0.9), the

performance of the models MF, FO, and, CUBpq remains better than the

other models and, in the case of missing values not at random, changes with
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Figure 1: Imputation for one variable m = 5 categories, MCAR v = 5%:
Percentage of cases correctly imputed.

the variation of ξ: it improves with increasing ξ (a decrease of feeling) when

the missing values are in low categories. In cases where π = 0.9, that is

where there is little uncertainty, and the missing values are not at random,

median sometimes behaves better than CUBpq.

When m increases, the performance of all methods worsens a little while

maintaining the same pattern of Figure 1 and Figure 2. The same happens

when v increases. When n increases, results are stable; therefore, we decided

not to report them.

In Figure 3 and Figure 4, for case a) MCAR and for b) MNAR respec-

tively, the box-plots of the bias of the estimates of the ξ parameter are

reported. We compared the estimates obtained using different methods of
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Figure 2: Imputation for one variable m = 5 categories, MNAR v = 5%:
Percentage of cases correctly imputed.

imputation as well as complete-case analysis (CCA), in which we ignored

incomplete cases.

It was immediately observed that all univariate methods are biased, with

the most biased being the median. Among the multivariate methods in some

cases, FO has a greater bias than others. The bias is generally reduced when

ξ is very small or very large. There is no large variability of results when

π varies, so we have not reported the results. If the number of missing v

increases, then this increases the variability of the bias. There is, however,

no significant change as a result of the m changes.
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Figure 3: Imputation for one variable, MCAR: bias of the estimates of the
parameter ξ.

4.2 Imputation for more variables with a Likert struc-

ture

In this simulation, the missing values existed in more than one variable, and,

following the approach of Ferrari et al. [2011], we use all the variables to13
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Figure 4: Imputation for one variable: bias of the estimates of the parameter
ξ.

predict the missing values on the others. The multivariate ordinal variable

Y = (Y1, Y2, Y3, Y4, Y5) is generated, following Ferrari and Barbiero [2012]

and using the R package GenOrd [Barbiero and Ferrari, 2013]. This approach

is able to generate multivariate ordinal variables with the required marginal
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distributions and correlations. A sample is drawn from a standard multi-

variate normal rv with correlation matrix RN and then discretized to yield a

sample of ordinal data with assigned marginal distributions by employing a

quantile approach. The matrix RN , ensuring the prescribed correlation ma-

trix RD on the target variables, is computed through a recursive algorithm.

We consider five ordinal categories (m = 5) and three different correlation co-

efficients (ρ(Yi, Yj) = 0.3, 0.5, 0.8), to assess the effect of different correlations

on final results.

We consider two missing data mechanisms:

a) missing completely at random (MCAR),

b) missing not at random (MNAR), in which lowest category are more often

omitted.

To evaluate the performance of the imputation method, we considered the

mean and the standard deviation of percentage of cases correctly imputed.

Table 1 shows the percentage of correct cases in case of MCAR e MNAR

with a rate of missing values equal to 5%. The multivariate models obvi-

ously impute better than univariate, in particular for low values of ρ. To

compare the results in the case MCAR and MNAR, one can observe that

the univariate methods worsen in the case of MNAR and those multivariates

improve instead, especially when ρ is high.

The procedure was also repeated for a missing rate equal to 10%, and

20% but the amount of missing values seems to only minimally affect the

performance of all methods.

To verify our simulation results, we selected various real datasets. The

first two examples were built to produce a situation similar to our simulation

studies. The first dataset contains the ranking of nine serious problems that

could arise in a large metropolitan area. We considered the 2006 wave and

15



Table 1: % correct cases.

MCAR

ρ
Method 0.3 0.5 0.8

ME 25.051 24.697 25.051
(2.051) (2.097) (2.949)

RA 20.857 20.491 19.977
(2.343) (2.491) (2.823)

CUB00 20.251 21.28 20.457
(1.949) (2.52) (2.657)

PO 25.291 29.12 45.749
(1.991) (2.88) (1.851)

FO 23.543 29.28 46.731
(1.143) (2.72) (3.269)

MF 26.149 33.189 52.366
(2.149) (2.211) (3.434)

CUBpq 26.549 33.749 49.291
(2.651) (2.151) (2.009)

MNAR

ρ
Method 0.3 0.5 0.8

ME 15.795 15.597 15.816
(1.395) (1.203) (0.184)

RA 20.149 19.824 20.157
(1.451) (1.024) (1.357)

CUB00 16.565 16.573 16.496
(1.365) (2.973) (1.104)

PO 25.08 32.621 54.139
(2.72) (1.621) (2.661)

FO 24.947 32.363 53.643
(2.253) (2.037) (3.557)

MF 17.923 27.149 58.048
(1.477) (2.549) (2.752)

CUBpq 23.259 32.613 57.872
(2.459) (2.413) (2.128)
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some covariates of the respondents. See D’Elia and Piccolo [2005b] and

Iannario [2007] for more details on the dataset. The values of each variable, as

shown in the paper by D’Elia and Piccolo [2005b], can be modeled effectively

with a CUB model. The fact that data are rankings does not appear to

be relevant if one is interested in the construction of univariate models for

each emergency, because they are estimated for variables with respect to the

marginal analysis of multivariate distribution. Considering the covariates,

we applied the same approach to this dataset as in the first simulation study.

The second dataset comes from a typical questionnaire completed by airline

passengers to evaluate their flight.

The questionnaire contains variables such as overall experience, likelihood

to repurchase, likelihood to recommend and value for money. There are fur-

ther questions grouped by topic: overall booking, check-in, departure, cabin

environment and, meal. The evaluation of each item is based on a seven-

points scale (from 1 = extremely dissatisfied to 7 = extremely satisfied).

Covariates related to the flight and covariates related to the passenger are

present. We applied the same approach to this dataset as in the second sim-

ulation study.

For these two examples, we considered three different cases of missing pat-

terns, selecting 10% of the available rows each time:

A) missing at random (MCAR)

B) missing in the low categories (MNAR)

C) missing associated to some values of the covariates (MAR)

4.3 Dataset: Emergency in Metropolitan Area

The dataset Emergency in Metropolitan Area contains 419 observations. The

variables are 1. Political Patronage, 2. Organized Crime, 3. Unemployment,

4. Pollution, 5. Public Health, 6. Petty Crimes, 7. Immigration, 8. Street and
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Waste, 9. Traffic Transport. The estimation of the CUB model parameters

for the nine variables is reported in Figure 5.
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Figure 5: Emergency in Metropolitan Area: CUB models parameters.

The number of generated missing cases is 10% of the total rows. Table

2 reports the percentage of correct cases for the same method used in the

first simulation studies. The first observation is that, if we consider the

percentage of cases correctly classified, the median tended to work well for

these data, in particular in case A, where missing values were randomly

selected. In the other cases, the performance of the median was lower. The

CUB models exceeded the level of the other models and improved slightly for

MCAR and MAR in cases where there was more uncertainty and the level of

feeling was high (for example, variable 7, Immigration, and variable 9, Traffic

Transport). This is consistent with the result of the first simulation study

shown in Figure 1.
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Table 2: Emergency in Metropolitan Area. % of correct cases.

ME RA CUB00 PO FO MF CUBpq

Case A

1 19.55 16.55 18.71 16.41 12.11 23.76 19.58
2 55.80 38.81 49.53 37.19 40.90 35.63 49.50
3 22.82 17.54 18.83 15.10 19.00 21.46 18.62
4 21.39 17.07 19.78 18.87 19.38 21.58 20.92
5 24.03 14.20 19.09 15.28 18.66 21.64 20.61
6 22.60 17.62 21.16 16.86 15.15 20.86 20.73
7 15.11 28.66 41.41 31.91 26.67 15.68 39.85
8 25.88 16.52 19.75 15.25 16.06 22.46 19.06
9 20.31 18.61 22.04 19.62 19.43 19.63 23.25

Case B

1 4.82 17.48 19.61 17.34 10.44 19.20 21.34
2 100.00 51.34 65.89 49.63 62.22 16.34 67.04
3 27.01 18.69 20.27 17.40 21.97 15.19 20.57
4 20.90 13.58 11.32 13.92 13.67 22.16 12.42
5 21.33 14.53 16.58 17.82 23.71 19.33 17.96
6 32.59 20.10 22.95 17.22 21.37 13.30 21.29
7 0.00 8.91 2.84 11.26 10.64 17.96 9.57
8 2.02 9.33 12.29 11.70 13.47 21.51 13.17
9 0.00 12.59 10.04 14.17 13.69 20.96 11.80

Case C

1 14.50 15.25 19.25 17.13 11.54 21.26 19.30
2 51.90 37.38 47.24 30.17 34.52 32.71 43.80
3 27.61 17.61 18.62 17.37 19.43 22.65 19.65
4 20.65 16.52 18.43 19.86 15.05 21.19 18.96
5 21.62 15.75 18.98 17.96 15.41 23.70 19.50
6 19.74 16.42 19.47 17.04 16.10 21.32 20.59
7 12.77 32.78 48.58 38.22 33.32 18.81 51.72
8 22.87 15.74 16.81 14.15 16.16 16.74 16.24
9 17.58 17.38 20.68 21.98 17.04 16.80 22.81

From a model-based point of view, it might be interesting to evaluate the

bias in the estimators of the parameters of the CUB models in the dataset

completed by different methods. Figure 6 shows the estimates of π and ξ

in the different datasets and for the four cases for variable 9, Traffic Trans-

port. It is immediately evident, that the median sometimes produces biased

estimates for π, and the same happens for the other variables. In cases B
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and C, where the missing values are not at random and are in lower and

higher categories, respectively, all the estimators for ξ are obviously biased:

the (complete case available) CCA have been created by changing the initial

distributions.

A

π

TRUE

CCA

ME

RA

CUB00

PO

FO

MF

CUBpq

0.80 0.82 0.84 0.86 0.88

B

π

TRUE

CCA

ME

RA

CUB00

PO

FO

MF

CUBpq

0.80 0.82 0.84 0.86

C

π

TRUE

CCA

ME

RA

CUB00

PO

FO

MF

CUBpq

0.80 0.82 0.84 0.86 0.88

A

ξ

TRUE

CCA

ME

RA

CUB00

PO

FO

MF

CUBpq

0.195 0.200 0.205 0.210

B

ξ

TRUE

CCA

ME

RA

CUB00

PO

FO

MF

CUBpq

0.170 0.175 0.180 0.185 0.190 0.195 0.200

C

ξ

TRUE

CCA

ME

RA

CUB00

PO

FO

MF

CUBpq

0.195 0.200 0.205 0.210

Figure 6: Estimation of the parameters of the CUB models, Variable 9. Traffic
Transport.

4.4 Dataset: Airline Industry

The dataset Airline Industry contains n = 558 valid questionnaires collected

in 2010. The variables of satisfaction are 1. Booking, 2. Check-in, 3. Depar-

ture, 4. Cabin environment ,and 5. Meal. The estimation of the parameters

of the CUB model for the five variables is reported in Figure 7.

The number of generated missing cases is 10% of the total rows. Table

3 reports the percentage of correct cases for the same methods used in the

second simulation study.
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Figure 7: Airline Industry: CUB model parameters.

Table 3: Dataset: Airline Industry: % of correct cases.

ME RA CUB00 PO FO MF CUBpq

Case A

1 41.85 24.55 30.06 31.37 29.48 35.14 33.51
2 34.88 20.84 24.14 36.94 34.53 32.56 37.25
3 39.61 23.40 31.40 34.13 42.38 43.90 37.29
4 37.12 25.66 32.89 34.44 43.03 44.55 35.50
5 32.32 27.29 34.11 36.98 44.05 48.47 38.25

Case B

1 21.61 14.82 17.71 16.73 18.01 22.98 18.75
2 10.04 10.94 11.86 20.80 18.27 20.98 21.01
3 8.04 15.09 16.76 24.94 22.59 29.59 21.79
4 1.80 19.72 18.03 26.12 30.33 36.01 21.92
5 0.00 20.69 21.49 28.37 31.16 45.88 24.48

Case C

1 48.03 28.81 35.27 32.11 34.09 39.81 38.64
2 31.09 21.67 25.37 36.89 36.78 37.34 38.70
3 31.35 23.18 31.68 35.80 40.75 46.57 37.49
4 35.59 27.19 31.99 33.36 42.12 43.19 35.94
5 28.96 28.07 33.00 32.53 41.21 48.12 38.17
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As shown in Figure 6, in this dataset the values of the CUB model pa-

rameters for variables 4, Cabin environment, and 5, Meal. fall in the case of

little uncertainty and high feeling.

In these cases, the CUBpq model performs worse than the other multivari-

ate models. On the contrary, for variable 2, Check-in in which uncertainty

is present (value of π is low), CUBpq is the best solution for the four cases.

Moreover, generally, CUBpq in both cases of missing at random and missing

not at random approaches PO.

From a model-based point of view, it might be interesting to evaluate the

bias in the estimators of the parameters of the CUB models in the dataset

completed by different methods. Figure 8 and Figure 9 show the estimates

of π and ξ for the three cases of missing patterns for variable 1, Booking,

and variable 3, Departure. We also report the estimates obtained with the

true dataset (TRUE) and with available-case analysis (ACA) which uses only

complete data on the variable that is considered.

In this case, MF, being based on an algorithmic approach, always pro-

duces estimates that seem more biased for π with respect to the other mul-

tivariate estimators. In this case, as in the previous one, the median is

completely biased with respect to the estimators for ξ, and in some cases, all

the univariate estimators are biased as well. Moreover, MF, except in case B

where missing values are concentrated in lower categories, is the most biased

of all the multivariate estimators.

5 Conclusion

As is well known, the imputation for missing ordinal data is more complex

than it is for continuous data. Proposals that work well are found in the liter-

ature, particularly in forward imputation (FO) and missForest (MF). When

the CUB model is the preferred model for data analysis, a further opportu-

nity exists to use CUB models for imputation. We performed two different
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Figure 8: Estimation of the parameters of the CUB models, Variable 1,
Booking.

simulation studies and tested the results on two different real datasets that

reflected the characteristics of the simulation studies. When missing values

were present only for one variable and covariates related to it were available,

the multivariate methods performed better than univariate ones. In cases

where there is little uncertainty, the observations are highly concentrated on

a few values and the relationship with the covariates is not very strong, the

median method may be the best method according to the criteria of cor-

rect attribution of the cases. From a model-based point of view, however,

we also verified that, as expected, imputation with the median produces

biased estimators of the parameters. When data have the classical Likert-

scale structure and the missing values are present for some ordinal variables,

then, in addition to the classic covariates, ordinal variables may be used in

23



A

π

TRUE

ACA

ME

RA

CUB00

PO

FO

MF

CUBpq

0.81 0.82 0.83 0.84 0.85

B

π

TRUE

ACA

ME

RA

CUB00

PO

FO

MF

CUBpq

0.80 0.82 0.84 0.86

C

π

TRUE

ACA

ME

RA

CUB00

PO

FO

MF

CUBpq

0.81 0.82 0.83 0.84

A

ξ

TRUE

ACA

ME

RA

CUB00

PO

FO

MF

CUBpq

0.235 0.240 0.245 0.250

B

ξ

TRUE

ACA

ME

RA

CUB00

PO

FO

MF

CUBpq

0.220 0.230 0.240

C

ξ

TRUE

ACA

ME

RA

CUB00

PO

FO

MF

CUBpq

0.235 0.240 0.245 0.250

Figure 9: Estimation of the parameters of the CUB models, Variable 3,
Departure.

the multivariate imputation methods. The simulation study shows that in

general forward imputation (FO), and missForest (MF) perform better than

the other multivariate methods. However, when the uncertainty is high, the

CUBpq model approach seems better. Reviewing all the results, simulations

and applications suggest that the method missForest, in agreement with the

conclusions of the authors Stekhoven and Bühlmann [2012], performs best

and is also more computationally efficient. The authors, however, proceeding

in an optical complete-case, did not raise the question of the properties of the

estimators obtained from their method. Our results seem to show a greater

bias of the CUB model parameter estimates when using MF for imputation

then when using other multivariate procedures. Circumventing this is a chal-

lenge that is worth investigating in the future. Another interesting aspect to
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note is that the multivariate methods work well, even in the case of missing

not random, sometimes attaining the same performance as in the case with

random missing values.
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