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Abstract In recent years, with the spread availability of large datasets from
multiple sources, increasing attention has been devoted to the treatment of miss-
ing information. Recent approaches have paved the way to the development of
new powerful algorithmic techniques, in which imputation is performed through
computer-intensive procedures. Although most of these approaches are attractive
for many reasons, less attention has been paid to the problem of which method
should be preferred according to the data structure at hand. This work addresses the
problem by comparing the two methods missForest and IPCA with a new method
we developed within the forward imputation approach. We carried out comparisons
by considering different data patterns with varying skewness and correlation of
variables, in order to ascertain in which situations a given method produces more
satisfying results.
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1 Missing Data Treatment

Missing data treatment is frequently invoked when performing data analysis. There
exists no field of quantitative research where missing information is not a problem,
and an optimal choice of an imputation procedure should be a guarantee of
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reliable statistical analyses. In modern missing data handling, two broad taxonomies
dominate recent literature: (1) parametric and nonparametric methods; (2) single
and multiple imputation (Little and Rubin 2002). In parametric methods, likelihood-
based procedures (e.g. the EM algorithm) are applied starting from a distributional
assumption on the missing part of data in order to obtain estimates of missing
values according to their generating model. Nonparametric missing data procedures
are model-free methods that do not require distributional assumptions on the data.
Imputation is thus performed by learning from the data structure at hand. While
single imputation is concerned with the problem of assigning a single value to each
missing datum, multiple imputation aims at accounting for the uncertainty implicit
in the fact that the imputed values are not the actual values. This is achieved by
deliberately adding sources of error during the imputation process, thus giving rise
to a multitude of estimates for each missing datum from which standard errors and
confidence intervals can be computed.

Among nonparametric single imputation techniques, methods based on
computer-intensive iterative statistical procedures seem the most promising in
producing reliable imputations. In this work, attention is specifically drawn to three
different logics of imputing, based on the use of random forest (Stekhoven and
Biihlmann 2012), iterative PCA (Nora-Chouteau 1974) and the forward (Ferrari
et al. 2011) procedures respectively. In particular, Stekhoven and Biihlmann’s
method (missForest, Stekhoven and Biihlmann 2012) is an iterative technique for
the imputation of continuous and/or categorical data based on a random forest,
which is a random classifier introduced in the context of machine learning (Breiman
2001). The Iterative Principal Component Analysis (/PCA) (Greenacre 1984; Nora-
Chouteau 1974) imputes missing values simultaneously by an iterative use of the
principal component analysis. It has recently been subject to renewed interest as it is
at the core of the multiple imputation technique with PCA, a component of a more
general methodology (missMDA) introduced by Josse et al. (2011) for imputing
missing data with multivariate data analysis techniques. The Forward Imputation
(ForImp) by Ferrari et al. (2011) is a sequential procedure designed for extracting
a latent dimension from ordinal variables in the presence of missing data. The
nonlinear PCA (NLPCA) and the nearest-neighbour imputation (NNI) method are
alternated in a step-by-step process that recovers the missing ordinal categories and
then extracts the latent dimension.

Although grounded on distinct logics, IPCA and ForImp both depend on factorial
methods, which are widely used also in contexts where the incompleteness of infor-
mation requires a different approach from a purely imputation perspective. This is
the case of data fusion and data grafting procedures which, allowing databases from
different sources to be combined together by recovering mismatches of variables
and/or units, can be regarded as special cases of missing data imputation (Aluja-
Banet et al. 2007; Saporta 2002).

This work has two objectives. The first is to re-formulate ForImp as an imputation
technique for quantitative variables. Indeed, in its original version Forlmp was not
expressly developed as an imputation method, but rather as a method for missing
data handling in NLPCA in alternative to commonly used standard options, such as
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passive treatment (Ferrari et al. 2011). The second is to offer a critical comparison of
the thus revised Forlmp with missForest and IPCA based on various configurations
of quantitative data as given by different patterns of skewness and correlation of
variables.

2 The Forward Imputation for Quantitative Variables

Since our goal is to re-design the Forlmp method as a pure imputation technique, we
specifically focused on missing data handling in the case of quantitative variables.
Accordingly, we relied on the traditional linear PCA to build up the new version of
the method, which will be termed Forward Imputation with the PCA (ForImpPCA).
Although the logic behind ForlmpPCA is very similar to the original Forlmp (Ferrari
et al. 2011), it is characterized by several features. Since the dimensionality
reduction problem is not the primary concern, the PCA method is merely involved
as a tool functional to the imputation exercise. In particular, the same number of
principal components are extracted as the number of variables in the starting data
matrix, in order to produce convenient synthesis indicators that are more or less
related to the original variables.

The ForlmpPCA method assumes an n X p quantitative data matrix X with x;
values (i = 1,...,n,j =1,..., p) with at least p rows free of missing values and
the other n — p rows with at most p — 1 missing values (n > p, p > 2). Then,
in a preliminary phase, data are prepared by splitting X into a complete submatrix
X and K submatrices X, where index k denotes the number of missing values
potentially contained in each row (k = 1,..., K < p — 1). Should k identify
a submatrix without elements, we would set: X; = Xox,, and then jump to the
submatrix corresponding to the subsequent k. The core steps of the ForlmpPCA
algorithm are the following:

— Setk = 1.

1. PCA step: Perform a PCA on the complete X;—; from either its own variance-
covariance matrix or correlation matrix, assumed of full rank, and obtain

. (k—1) . k=1) _ . . (k—1)
eigenvalues Ag and eigenvectors @y with generic element w; from
it, (j,s =1,...,p).

2. PPC step: Compute so-called Pseudo Principal Components (PPC) for both the
complete X;_; and the incomplete X; by involving only common variables
without missing values and eigenvectors obtained at the previous step, in order to
obtain artificial variables free of missing values for both complete and incomplete
units. We denote by ¢ the set formed by those among the k-combinations of the
p indices of variables containing missing values in the rows of X;. Then PPCs,
denoted by C, are given by linear combinations of the original variables outside
the ¢ set with coefficients given by the element in the corresponding eigenvectors:
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C‘(g)) Zl 1 (k l)X(k) for submatrix Xy, and: Cf(]j) D Zl_l (k l)X(k D

for submatrlx Xi—1,8s=1,...,p.

3. Donors’ selection step: PPCs represent common, complete information for
the comparison of complete and incomplete units. PPCs are accordingly used
to compute the Minkowski distance d, of order r, (r > 1), between each

(k) +

incomplete unit #;” in X and the complete units u(k in Xy;_g:

P 1/r
k ~(k ~(k—1 —nl
dy (u; “ ulf V) = %Z‘(C‘g([)),i - xg(t),c))wgk 1)‘ } , =101, (1)
s=1

where the weights: wkD = \/Aﬁk‘”/ I, A%, being the square root of
normalized eigenvalues, are used to strengthen (weaken) the role of PPCs derived
from principal components with higher (smaller) variances. Thereafter, donors
are detected as an opportune percentage of the complete units nearest to a specific
incomplete unit. Formally, donors ut 5. ®) for unit u( ) are given by the first 100 %

complete units ug — corresponding to the g-th quantile d,,; of the distances d,,

O<g<l;i=1,...,0p).

4. Imputation step: Once the donors have been identified, their values in the original
data matrix are used for imputation by means of a weighted average. Weights
are given by the reciprocals of the distances between donors and each specific
incomplete unit in order to put more (less) emphasis on less (more) distant
donors. For a missing value on variable X; and unit u ® the imputed value is
therefore given by:

ngs (k=1) 1
<) _ #

i =y ) Vjeu,
Sldg,

where ng is the total number of donors for ul(k) and ds; is the distance between

the §-th donor and unit u( ) as computed in step 3.

— Setk = k + 1 and jump to the PCA step until X is completely imputed.

3 A Data Structure-Driven Simulation Study
for Comparison

A Monte Carlo simulation study was carried out to assess the performance of the
ForImpPCA method by comparing it with missForest and IPCA in the presence of
different data patterns and Missing Completely At Random (MCAR) generated
missing values (Little and Rubin 2002). In this study, attention was specifically
addressed to skewed data structures, in order to verify whether and to what extent
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Table 1 Experimental
conditions in the simulation
study (1,000 runs for each
scenario)

Common set of experimental conditions:

— Number of variables in X p=13;5;10

— Number of units in X n = 500; 1,000
— Percentage of MCAR missing values 5%; 10 %;20 %

Data generation from N, (0, R):

— Correlation coefficient p =0;0.3;0.7

Data generation from MSN,(Q, a):

— Skewness parameter a = 1;4;10;30
— Correlation parameter in w =0;0.5;0.8

skewness could affect the imputation capability of the three methods. Accordingly,
complete data matrices were randomly generated from both the multivariate normal
(MVN) distribution and the multivariate skew normal (MSN) family of distributions,
the latter being an extension of the multivariate normal distribution allowing for the
presence of skewness (Azzalini and Capitanio 1999; Azzalini and Dalla Valle 1996).
To better understand the role of MSN parameters involved in the simulation study, it
is worth recalling that a p-dimensional random vector X is MSN,(Q, a) distributed
if its density function (d.f.) can be expressed as:

f(x:Q.@) =2¢,(x:Q)P(a'x), (@)

where: ¢, (x; Q) is the N, (0, Q) d.f., with Q a correlation matrix of full rank; ®(-)
is the N(0,1) distribution function, and & is a p-dimensional parameter vector
regulating the skewness. In particular, if: @ = 0, then the d.f. (2) reduces to a
multivariate normal: X ~ N, (0, Q).

We generated data from both MVN and MSN distributions according to the
simulation settings reported in Table 1, for a total number of, respectively, 54
scenarios in the case of MVN, and 216 in the case of MSN. Specifically, in
each scenario a complete data matrix X* was generated from an MVN or an
MSN distribution, and then 1,000 matrices X; were formed from it with a given
percentage of MCAR missing data, 1 = 1,..., 1,000 (Table 1). Then, missForest,
IPCA and ForlmpPCA were applied with the following options. For missForest,
the maximum number of iterations was increased from 10 (the default in the R
library missForest, Stekhoven and Biihlmann 2012) to 50. For IPCA, the number
of extracted principal components was fixed to the maximum possible, i.e. p — 2,
with p > 3 (R library missMDA, Josse et al. 2011). For ForImpPCA, we considered
the Euclidean distance (r = 2 in formula (1)), and the first g-th quantile of such
distances with ¢ = 0.05;0.1;0.15; 0.2 in order to detect donors.

Simulation results were synthesized, and comparisons among the three methods
performed, through the Relative Mean Square Error (RMSE) computed as a function
of the difference between the complete data matrix X* and the imputed data matrix

: : . — P 1 * 3 f(o* = *
X, at the 7-th simulation run: RMSE, = ijl n—(rjz(xj —X; () (xj —X; /), where X;

is the j-th column vector of X*, X j,¢ is the j-th column vector of )N(t, and 0/2 is the
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variance of the j-th variable in X*, (t = 1,..., 1,000). Codes of ForlmpPCA were
implemented and simulations performed in the R environment (R Development
Core Team 2012).

3.1 Simulation Results

Figure 1 shows line plots of RMSE median values, plotted against the percentages of
MCAR missing values (5 %; 10 %; 20 %), obtained for the three methods (Forlmp-
PCA with ¢ = 0.1) under a subset of the scenarios considered, with the number
of variables varying (p = 3;5; 10), number of units fixed to n = 1,000, and data
generated from MVN (with p = 0;0.3;0.7) and MSN (with @ = 0;0.5;0.8 and
o = 4;30). The other omitted results exhibit the same trend. Two remarks are
worth making. First, as expected, RMSE increases as the complexity of the data
increases, that is, the number of variables and the proportion of missing values.
Moreover, ceteris paribus, RMSE tends to decrease as the correlation between
variables increases, thus indicating that the imputation process is more effective if
variables are closely related. Second, the three methods produce very similar RMSE
values with a low percentage of missing values, whereas they display a noticeably
different performance in the presence of higher proportions of missing data. In
particular, /PCA turns out to be the best imputation method in the case of normally
distributed data (1st row of panels, Fig. 1), and highly correlated variables (2nd and
3rd rows, last column, Fig. 1), while ForImpPCA tends to perform best with skew
distributions and variables with small/medium correlations (2nd and 3rd rows, first
two columns, Fig. 1). Finally, missForest tends to produce the highest RMSE values
in most scenarios considered, although it must be remembered that it is designed
especially for imputation in the case of mixed-type data.

Figure 2 displays a more detailed picture of the results achieved in the specific
scenarios with p = 5 variables, n = 1,000 units, and 20 % of missing data. In
addition to missForest and IPCA, boxplots of RMSE distributions are shown also for
ForImpPCA with different donors’ quantiles (¢ = 0.05;0.1;0.15;0.2), in order to
check their effect on the imputation task. The above remarks concerning /PCA and
ForlmpPCA can now be understood more clearly. The best performance of /PCA
can be observed in the first row of panels, while 2nd to 4th rows in the first two
columns highlight the best performance of ForlmpPCA. Moreover, a comparison
among boxplots of ForImpPCA pertaining to different donors’ quantiles suggests
that, overall, having a high percentage of donors is not a convenient choice if
variables are highly correlated (last column of panels, Fig.2), while having few
donors is not suitable if variables are uncorrelated or little correlated (1st column,
Fig.2). This would seem to indicate that a good choice is to select donors that
correspond to the first g = 0.1 or ¢ = 0.15 quantile of Euclidean distances.
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Fig. 1 Line plots of RMSE median values of missForest, IPCA, and ForlmpPCA (FIP), plotted
against percentages of MCAR missing data with p = 3; 5; 10 variables and n = 1,000 units

4 Discussion and Future Work

In the light of our current results, ForlmpPCA seems to be promising as a single
imputation method. It performs best with skew distributions and variables which are
not highly correlated, characteristics typically encountered in real data. Nonetheless,
further studies would help investigate the performance of ForImpPCA more thor-
oughly. For example, the results obtained indicate that it would be useful to examine
ForImpPCA, and to then compare it with other methods, in the presence of data
contaminations such as multivariate outliers, or a different generating mechanism of
missing data, such as MAR (Little and Rubin 2002). From a methodological point of
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Fig. 2 Boxplots of RMSE distributions of missForest, IPCA, and ForlmpPCA (FIP) with ¢ =
0.05,0.1,0.15,0.2 donors’ quantile, under the scenarios with p = 5 variables, n = 1,000 units,

and 20 % of MCAR missing data

view, the potentially optimal properties of ForlmpPCA along with its performance
in cases of more complex data structures need to be further investigated in order
to highlight the capacity of ForlmpPCA to manage different skew distributions
better.
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