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Preface

Our work aims to introduce a combinatorial optimization problem orbit-
ing in Revenue Management, called Package Tour Composition (PTC) and
to discuss its resolution with a mathematical programming method called
column generation method. The classic Network Revenue Management prob-
lem considers a set of resources of finite capacity to be allocated to a set of
products characterized by a given price and a given demand. The models of
Network Revenue Management are applied by airline companies in order to
decide how many seats to allocate on each flight leg (resource) to each fare
(product) that is characterized by origin, destination and fare class. The
model we propose aims to deal with a similar problem in which the demand
is not expressed towards a set of products but towards a set of resources.
This problem arises, for instance, in the composition of package tours where
customer preferences towards events that compose a package tour are more
relevant, and easier to be traced, than customer preferences for the whole
package.

In the PTC problem customers buy products that are bundles of resources
in combinations under various terms and conditions. However demand is
linked to resources not to products. The resource composition of each product
is a decision variable. As a consequence product price is not known but is the
sum of reservation prices of each resource in the bundle. The resource set is
partitioned into several subsets corresponding to different resource types. A
parameter states how many resources of each type characterize each product
type. We refer to resources as ’events’ and to products as ’package tours’ or
simply ’packages’.

The resulting Package Tour Composition problem is a non-linear problem
with integer variables that represent the number of tourists assigned to each
package tour and binary variables that represent which events are assigned
to each package tour. Each event is characterized by a reservation price,
a demand and a capacity. Each package tour belongs to a package tour
type that is characterized by its event type composition parameter. The
number of tourists assigned to each event cannot exceed its actual capacity,
which is defined as the minimuml value between the event capacity and
the event demand. We also impose that the binary variables respect the
composition constraint for every package tour according to its type. The
objective function to be maximized is the total revenue, that is the number
of packages to be sold times their price.

We propose a column generation model to solve the linear relaxation of
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the Package Tour Composition problem. The Column Generation technique
splits the problem in two sub-problems: the pricing problem and the master
problem. The pricing problem dynamically generates, for every package type,
several columns containing an event combination according to the package
type composition parameter. The master problem chooses which event com-
binations to use and in which quantity, imposing that event actual capacity
is respected, in order to maximize revenue.

Chapter 1 concerns the motivation of our research. At first we analyze
the previous literature on the theory of Revenue Management focusing our
attention on the most important mathematical models that tackle two main
Revenue Management problems: Single Resource Capacity Control and Net-
work Capacity Control. We analyze the assumptions of these models to find
improvement directions. After that, we present the state-of-the-art of math-
ematical models applied to tourist operators industry, in particular in the
composition of tour itineraries. We propose a taxonomy to classify several
possible Package Tour Composition problem formulations.

In Chapter 2 the Package Tour Composition Model is formally defined
and we propose the application of Column Generation method and a Column
generation heuristics method to determine an optimal solution to the linear
relaxation problem and a rounded solution to the integer problem. Two
formulations are compared: the integer master formulation and the binary
master formulation. Thereafter we present the dataset description and we
display the results of integer and binary master formulations.

In Chapter 3 we illustrate several extensions of the basic models. The ex-
tensions take into account market segmentation, inconvenience costs, tourist
groups and stochastic demand. For each extension we present computational
results obtained with the state-of-the-art mathematical programming solver
CPLEX.

Finally Chapter 4 presents some conclusions and possible future research
directions.
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Chapter 1

Package Tour Problem
Background

This chapter introduces the motivation of this thesis and presents the Pack-
age Tour Composition Problem (PTCP). We put the PTCP in perspective
in the context of Revenue Management, bundling methods and innovation
in tourism services. For this purpose we present an overview of the scientific
literature concerning Revenue Management and tourism and we outline simil-
arities and differences between the PTCP and some already studied problems.

1



2 Package Tour Problem Background

1.1 The Package Tour Composition Problem

Motivation. The international exposition Expo2015 will bring to Milan
21 million visitors, 30% foreigners. There will be the need of 500000 sleeping
accommodations within 90 minutes travel from the city. In addition 100
international tour operators confirmed their interest in offering package tours
to the visitors [1].

These numbers motivate first of all the need of promoting territories
around Milan that have been so far excluded from mass tourism. Italian tour-
ism facilities such as restaurants and hotels are often managed by families
that own and run their own businesses. Small size restaurants, accommoda-
tions and retailers are spread throughout the Lombardy region as well. Few
of them have an Internet site and the personnel often does not speak a foreign
language. There is no coordination between their activities and therefore the
sector as a whole is not prepared to make the best of the opportunity offered
by the flow of Expo2015 visitors.

This is an example - actually the main initial motivation for this thesis
- of the need of coordinated planing on the side of the tourism offer. A
centralized coordination could give tour operators better access to the many
events and points of interest scattered around in the region, including those
that would be almost invisible to the most part of potential visitors.

Our work proposes a mathematical programming model with the aim
of determining an optimal set of packages to be sold to tourists, in order
to evenly distribute the tourists flow to the many available sites, complying
with their limited accommodation capacity. Packages can be defined in order
to achieve a suitable mix of event types so that events of different types can
promote one another: for instance visitors attracted by music concerts will
be also directed to restaurants, while visitors attracted by food and wine will
also be presented artistic sites.

On the side of demand the advantage is to avoid congestion in some
events/sites (typically within the city of Milan, in the case of Expo2015)
and under-exploiting of others (typically in the country around the city),
thus improving tourists’ experience. On the side of offer the advantage is to
allow all events/sites to count on a suitable level of demand, to maximize
the overall revenue achievable from the visitors’ flow and to evenly distribute
this revenue among all the operators.

Problem description. The mathematical model of the PTCP is described
in detail in the next chapter. Here we give an informal description of the
PTCP to allow for a comparison with the relevant literature. In particular
we refer to the scientific literature on revenue management and tourism.

We consider two main sets: events and package tour types. Events are
classified into event types. For example: churches, museums, castles, parks,
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shopping outlets, concerts, restaurants and accommodations.

Package tour types are characterized by a composition pattern. For in-
stance a package tour ’Shopping’ can be composed of one castle, one natural
park, three restaurants, two nights in a hotel and three shopping outlets; a
package tour ’Religious’ can be composed of three churches, two museums,
three restaurants and two nights in a hotel.

It is important to note that two package tours of the same type can be
made of different events. For example two ’Shopping’ package tours can lead
the tourist to visit different castles, parks, outlets, restaurants and hotels.

Each event is characterized by a finite capacity, a price and an estimated
level of demand. Each package tour is characterized by a price, a number of
tourists and a subset of events complying with the package type composition
pattern. The package tour price is the sum of the prices of the events included
in it.

The aim of the optimization process is to define the right number of the
right packages in order to make the best - in terms of revenue - of the available
capacities.

1.2 Scientific literature on Revenue Manage-

ment

1.2.1 Revenue Management

Definition. The early definition of Revenue Management (RM) is historic-
ally anchored to the airline applications and states that RM, also called Yield
Management, aims at maximizing passenger revenue by selling the right seats
to the right customers at the right time [2]. Pfeifer[3] defined yield manage-
ment as the process by which discount fares are allocated to scheduled flights
for the purposes of balancing demand and increasing revenues. Orkin defined
yield management as controlling the tradeoff between average rate and occu-
pancy. Cross [4] defined Revenue Management as using price incentives and
inventory controls to maximize the value of existing processes.

Weatherford and Bodily[5] proposed a taxonomy and a research over-
view of Revenue Management problems. They introduced the term PARM -
Perishable Asset Revenue Management. However since that publication the
techniques and applications in Revenue Management undertook a substantial
development and that terminology and taxonomy were abandoned. McGill
and Van Ryzin [6] made a remarkable research overview of Revenue Man-
agement problems. They discussed the major areas of revenue management
research (forecasting, overbooking, seat inventory control and pricing) focus-
ing on the airline industry and defining the RM goal as maximizing profits
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seeking booking policies that maximize revenue.

After 2000 the RM literature focus was broaden to other areas outside
the airline industry and the definition of RM was also enlarged. Shelby
and Brunel [7] stated that Revenue Management is concerned with making
efficient use of a given fixed resource that becomes worthless after a given
time. It uses controls such as booking or sales limits at various price levels.
According to Modarres and Sharifyazdi [8] any revenue management problem
contains the following common characteristics: capacity is perishable and
limited (it cannot be enhanced easily in short term), demand is stochastic
and there are different customer classes. The available perishable asset can be
sold at different prices, through different booking classes (usually at different
periods).

More general definitions point out the application of RM outside the air-
line industry using products and resources in a more general manner. Zhang
[9] definition argues RM entails controlling the availability/pricing of differ-
ent products that use the same set of resources in order to maximize revenue.
Bijvank et al 2011 states RM involves the allocation of scarce resources to
stochastic demand for products that consume one or more of these resources,
with the aim of maximizing total expected revenue.

Several papers give an overview of Revenue Management techniques. As
mentioned Weatherford and Bodily [5] propose a taxonomy with 14 elements
and they review the research literature related to each element. Mc Gill
and van Ryzin [6] analyze the major areas of revenue management research
(forecasting, overbooking, seat inventory control and pricing) focusing on the
airline industry.

Pak and Piersman [10] present an overview of operational research tech-
niques applied to the airline industry. Briten and Caldentey [11] present an
overview of pricing models for RM. Chiang, Chen and Xu [12] provide a com-
prehensive review describing applications, major RM problems and issues for
future research.

The major references on RM are the two textbooks Revenue Management
- Theory and Practice by Talluri van Ryzin [13], that provides an extensive
review of the RM literature with 585 references, and Pricing and Revenue
optimization by Robert Philips [14].

To our purpose we highlight Talluri and van Ryzin [13] definition, that
is: Revenue Management is concerned with demand management decisions
and the methodology and systems required to make them. There are three
kinds of decisions involved: structural decisions, price decisions and quantity
decisions.

1. Structural decisions: e.g. which selling format to use (such as posted
prices, negotiations or auctions); which segmentation or differentiation
mechanisms to use (if any); which terms of trade to offer (including



Scientific literature on Revenue Management 5

volume discounts and cancelation or refund options); how to bundle
products.

2. Price decisions: e.g. how to set posted prices, individual offer prices,
and reserve prices (in auctions); how to price across product categories;
how to price over time; how to markdown (discount) over the product
lifetime.

3. Quantity decisions: e.g. whether to accept or reject an offer to buy;
how to allocate output or capacity to different segments, products or
channels; when to withhold a product from the market and sale at later
points in time.

Revenue Management techniques and applications are usually divided
into pricing strategies and capacity control strategies. The different applica-
tion of these two types of strategies depends on the extent to which a firm
is able to vary price and quantity, according to the changes in market con-
ditions. For example price-based RM is widely used in the retail industry,
because it is very easy to make price changes in this sector. On the other
hand quantity-based RM is widely used by airlines because for marketing
and administrative reasons most airlines advertise and price fare products
and therefore it is difficult to make price changes

Structural decisions are normally strategic decisions that are taken relat-
ively infrequently. Therefore they play a secondary role in the RM literature.
Our research focuses on structural decisions, because it addresses the decision
on how to define the right number of packages including the right subsets of
events.

The basic problems in capacity-based RM can be distinguished into single
resource capacity and network capacity. Single resource capacity problems
concern the optimal allocation of a limited resource to different classes of
demand. Two prototypical examples are: controlling the sale of different
fare classes on a single flight leg of an airline and the sales of rooms in a
hotel for a given date at different price classes. Network capacity problems
concern the optimal allocation of capacity when customers buy bundle of
resources. In these problems a lack of availability of any one resource in
the bundle limits sales. Classical examples of network RM are the origin-
destination itinerary fare class combination problem in the airline industry
and the problem of assigning room capacity on consecutive days in the hotel
industry.

We focus our attention on network RM models and especially on bundling
models, which are analyzed in more depth in the next subsections.

Nesting setting and control rules Before presenting such assumptions it
is crucial to clarify the concepts of nesting setting rules and control rules. The
access each demand class has to each capacity class can be set according to
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three different nesting rules: non-nested capacity allocation, nested capacity
allocation and theft nesting capacity allocation. In the non-nested approach
each demand class has access just to the correspondent capacity class. The
nested capacity allocation is the most applied allocation rule: higher classes
demand has access to lower class capacity if its own class capacity is depleted.
The last approach, theft nesting is rarely used: higher capacity has access
to lower capacity also when the own class capacity is still available. The
Figure 1.1 displays the control rules applied to protect capacity to high value
customer: booking limits, protection level and bid prices. The representation
of such control policies are displayed in the figure 1.1.

In a nested control policy the capacity available to different classes over-
laps in a hierarchical manner - with higher-ranked classes having access to
all the capacity reserved for lower. The first rule defines the nested booking
limit bj for each class j as the maximum number of units of capacity we are
willing to sell up to class j. For example for high class 1 the nested booking
limit is b1 = 30, that is the entire capacity. For medium class 2 the nested
booking limit is b2 = 18. For low class 3 the nested booking limit is b3 = 8,
that is the class 3 capacity. We accept at most 30 bookings for classes 1,2
and 3, at most 18 for classes 2 and 3 combined and at most 8 for class 3.

The second rule sets protection level yj specifies an amount of capacity
to reserve (protect) for a particular class j or set of classes. For example
a nested control policy we might set a protection level y1 of 12 for class 1
(meaning 12 units of capacity are protected for sale to class 1), a protection
leve y2 of 22 for classes 1 and 2 combined, and a protection level y3 of 30 for
class 1,2 and 3 combined.

The third rule sets threshold prices that are defined in a bid price table
(based on the remaining capacity or time). A request is accepted just if the
revenue exceeds the threshold price π(x). Bid prices can be used in the same
nested-allocation policy as booking limits and protection levels. In Figure
??fig:controls the bid price π(x) is plotted as a function of the remaining
capacity x. When there are 12 or fewer units remaining, the bid price is over
$75 but less than $100, so that only class 1 demand is accepted. With 13 to
22 units remaining, the bid price is over $50 but less than $75, so that only
class 1 and 2 are accepted. With more than 22 units of capacity available,
the bid price drops bellow $50, so that all three classes are accepted.

1.2.2 Network Revenue Management

In Network Revenue Management problem customers buy bundles of re-
sources in combinations under various terms and conditions. When products
are sold in bundles, the lack of availability of any one resource in the bundle
limits sales. This creates interdependencies among resources and hence it
becomes necessary to jointly manage the capacity controls on all resources.
In the airline industry this is also called the passenger-mix problem or ODF



Scientific literature on Revenue Management 7

Figure 1.1: Nesting setting and control rules
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(origin-destination-fare) control, where several origin-destination fare products
share capacity in the airline network flights. In the hotel industry this is also
called length-of-stay control problem, where customers with different lengths
of stay compete for the same day-room pairs. In the Network Revenue Man-
agement models the price of the products are assumed to be given and they
are not associated with the resources present in the bundle.

Network RM problems are usually modeled by a network made of m
resources and a firm that sells n products. An incidence matrix A = [aij] is
given, where aij = 1 if resource i is used by product j and aij = 0 otherwise.
Thus the jth column of A, denoted by Aj is the incidence vector for product
j.

The state of the network is defined by the vector x = (x1, ..., xm) and
indicates available resource capacities. Time is discrete: there are T periods,
and index t represents the current time for the decision-maker (with the time
index running forward, so t = T is the time of service). Within each time
period t we assume that at most one request for a product can arrive, that is
the discretization of time is sufficiently fine so that the probability of more
than one request is negligible.

The demand in period t is modeled as the realization of a single random
vector P(t) = (P1(t), ..., Pn(t)). If Pj(t) = pj > 0, this indicates that a request
for product j has occurred that is associated with price pj; if Pj(t) = 0, this
indicates there is no request for product j at time t.

The sequence {P(t), t ≥ 1} is assumed to be independent across time t
with known joint distribution in each period t. Let the prices associated with
the products be p = (p1, ..., pn).

At a given current time t, given the current residual capacity x and the
current request P(t), the quantity-based RM decision is as follows: Do we or
do we not accept the current request?

Let the n-vector u(t) denote this decision, where uj(t) = 1 if a request
for product j in period t is accepted, and uj(t) = 0 otherwise. The decision
u(t) is a function of the residual capacity vector x and the price pj and hence
u(t) = u(t, x, p). The vector u(t) is restricted to the set U(x) = {u ∈ {0, 1}n :
Au ≤ x}.

Dynamic Programming formulation. To formulate a dynamic program-
ming algorithm to determine optimal decisions u∗(t, x, p), let Vt(x) denote the
maximum expected revenue to go, given the residual capacity x in period t.
Then Vt(x) must satisfy the Bellman equation

V DP
t (x) = E

[
maxu∈U(x)

{
P (t)ᵀu(t, x, p) + Vt+1(x− Au)

}]
(1.1)
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with boundary conditions

VT+1(x) = 0 ∀x. (1.2)

The set Vt(x) is finite for all finite x and an optimal control u∗ satisfies

u∗j(t, x, pj) =

{
1 if pj ≤ Vt+1(x)− Vt+1(x− Aj) and Aj ≤ x,

0 otherwise.

An optimal control policy for accepting requests is of the form: accept a
request for a product j (at price pj) if and only if there is sufficient remaining
capacity and

pj ≥ Vt+1(x)− Vt+1(x− Aj),

where pj is the price of product j.

This reflects the rather intuitive notion that we accept a booking request
for product j only if its price exceeds the opportunity cost of the reduction
in resource capacities required to satisfy the request.

Deterministic Linear Programming formulation As explained in Tal-
luri van Ryzin [13] in the Deterministic Linear Programming formulation the
aggregate demand coming at time t for each product j is denoted by Dj: it is
the overall demand over the periods t, t+1, ..., T . Its mean value is indicated
by µj. Let D = (D1, ..., Dn) and µ = E[D] denote the vectors of demand
and mean demand respectively. The problem is displayed in figure 1.2. The
deterministic linear programming (DLP) method uses the approximation

V DLP
t = max pTy (1.3)

s.t. Ay ≤ x (1.4)

0 ≤ y ≤ µ. (1.5)

The decision variables y = (y1, ..., yn) represent the partitioned allocation
of capacity for each of the n products. The approximation effectively treats
demand as if it were deterministic and equal to its mean µ and makes an
optimal partitioned allocation accordingly. Using Jensen’s inequality[15] one
can show that V LP

t (x) is in fact an upper bound on the optimal value function
[16, 17, 18].

There are three kinds of nested control: partitioned, virtual and bid-
price. They are further explained in the following sections. Occasionally, the
optimal primal solution to (1.3) is used to construct a partitioned control
directly . More often, the primal allocation are discarded and one uses only
the optimal dual variables, denoted by πLP , associated with the constraints
Ay ≤ x as bid prices .
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Figure 1.2: Network RM Problem: DLP formulation
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Original contribution. In Network RM problems customers buy bundle
of resources in combinations under various terms and conditions. This is also
true in the PTCP we study. Nevertheless in our model the demand is linked
to resources (events) not to products (packages). In addition the composition
of the products, described by the incidence matrix A, is a known parameter
in Network RM while it is a decision variable in our model. Consequently
products (packages) of the same type may have different prices in the PTCP,
because in general they include different resources (events).

For example in the airline industry customers are concerned with origins
and destinations of their flights, while the flight legs are a secondary feature
of the product they purchase. A traveler that flies from Milan to Rio de
Janeiro is interested just in the origin and destination cities. It is not so
important for him to use the flight legs Milan-Paris or Paris-Rio, or Milan-
Madrid and Madrid-Rio. On the contrary in the PTCP customers place their
demand on single events.

In Network RM resources are not categorized, as flight legs in the airline
industry, instead in the PTC problem resources are classified in resources
types. Finally in Network RM demand is decomposed into a set of discrete
time periods before the expiration date, while in the PTCP consider the
aggregated demand in the entire period.

We summarized the major differences between classical Network RM
models and the PTCP model in Figure 1.3.

Figure 1.3: Comparison between the PTCP and Networtk RM.
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1.2.3 Bundling

Bundling is the sale of two or more separate products. Specifically separ-
ate products are products for which separate market exists[19]. Following
Ghosh, Bundling is the practice of offering two or more products as a pack-
age [20]. According to Cataldo, Bundling has been widely investigated from
consumer behavior, economic and marketing points of view [21]. According
to Kobayashi, The majority of cases where bundling is observed, the reason
why separate goods are sold as a package is easily explained by economies
of scope in production or reduction in transactions and information costs,
with an obvious benefit to the seller, the buyer or both [22]. Stremersch and
Tellis [23] identify two key dimensions that enable a comprehensive classific-
ation of bundling strategies: pure vs. mixed bundling and price vs. product
bundling.

They also formulate rules for evaluating the legality of each of these
strategies and they propose a framework of twelve propositions which suggest
which bundling strategy is optimal in various contexts through a simulation
model that uses an optimization routine based on a genetic algorithm.

Pure vs. mixed bundling. The decision-maker has to choose which
bundling strategy to use. Three bundling strategies defined and investig-
ated in the literature are:

• unbundling [24] or pure component strategy [25] is defined as offering
the products for sale separately;

• pure bundling is defined as offering products for sale exclusively in
bundle form; pure bundling is sometimes called ’tying’ in the economic
and legal literature;

• mixed bundling is defined as offering products in both bundle and un-
bundled form [24].

These terms were first defined by Adam and Yellen [26]. They formu-
lated the bundling problem and referred to it as commodity bundling. They
analyzed the pure components strategy, pure bundling strategy and mixed
bundling strategy in a monopoly and presented some implications of com-
modity bundling for public policy analysis. Schmalensee [27], Venkatesh and
Mahajan [28], Hanson and Martin [19] and Venkatesh and Kamakura [29]
investigated which bundling strategy could be more profitable, arriving at
the conclusion that mixed bundling is better than the other two strategies.

In this thesis we consider a monopoly with a pure strategy approach.
The main application is the composition of package tours with capacity con-
straints. In these packages events are sold together, so that tourists are
alleviated from the task of deciding which events/locations to select from a
subset of potential events/locations of a same type.
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Price vs. product bundling. Another bundling classification criterion
is the distinction between price bundling and product bundling.

Price bundling is the sale of two or more separate products in a package at
a discount, without any integration of the products. The major application
of price bundling is in the retail industry as highlighted by Banciu [25]).
In addition several articles entail the application of price bundling in the
Internet [30].

Product bundling can be defined as the integration of two or more products
or services at any price. The term ’integration’ means providing the con-
sumer with value added as compactness (as an integrated stereo systems),
seamless interaction (PC systems), non duplication coverage (one-stop as-
surance), reduced risk (mutual fund) interconnectivity (telecom systems), en-
hanced performance (personalized dieting and exercise program) or conveni-
ence from an integrated bill (telecom calling plan) [23].

Price bundling can be viewed as a promotional tool while product bundling
can be seen as a long term differentiation strategy.

The Package Tour Composition Problem analyzed in this thesis is related
to product bundling. Moreover we are particularly interested in models that
use an optimization approach that simultaneously decides bundle design and
price. Hanson and Martin [19] show that the single firm bundle pricing
problem is naturally viewed as a disjunctive program which is formulated
as a mixed integer linear programming problem. Multiple components and
a variety of cost and reservation price conditions are investigated with this
approach. Nevertheless in Hanson and Martin the model aims to determine
bundles prices considering at most 21 single products. On the contrary in the
model we propose the price of each bundle is given by the sum of the prices
of the products included in the bundle with no discounts, but the elements
(events/points of interest for tourists) are categorized in types and they are
up to 100.

Customized bundling. Customized bundling is characterized by bundles
being determined by the customer’s choice. Hitt and Chen [31] results suggest
that customized bundling has a number of advantages - both in theory and
practice - over other bundling strategies in many relevant settings. They
argue that the use of customized bundling greatly simplifies the complexity of
the problem especially of large number of goods. Wu et al. [32] propose non-
linear mixed-integer programming models to solve the customized bundle-
pricing problem in which consumers are allowed to choose up to a given
number of products out of a larger set.

Original contribution. In the scientific literature on bundling the focus
is mainly on the economic aspects with very limited investigation from an
operational research perspective. Very few models address the problem of the
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optimal composition of product bundles and no paper considers consumer
economic evaluation of products in the bundle.

Britan and Ferrer[33] propose a model to determine the composition and
price of a bundle so as to maximize total expected profit in the case of a com-
pany that operates in a competitive market and for a single bundle. Cataldo
et al. [21] analyze the same problem for multiples bundles in a competitive
market. However they deal with price bundling instead of product bundling.
The number of elements in the bundle is up to 4. The similarity with the
approach we propose is the structure of a two-phase problem: one phase is
the pricing problem and the second is an optimal composition problem. In
the model we propose we use column generation that is also a two-phases
approach. Nevertheless our model phase 1 deals with composition of feas-
ible bundling packages and phase 2 with the selection of packages with the
largest value that become part of the optimal solution, considering also ca-
pacity constraints.

Mayer et al. [34] analyze a service provider’s mixed bundling problem for
services such as sporting events and holidays packages. Their objective is to
maximize total revenue and the service provider has to determine static prices
for each single product at the beginning of the selling period. The optimal
package price must be chosen for a bundle that includes one unit of each
single product. Because of capacity constraints, the availability of products
can change over time so that consumers are forced to switch from their pre-
ferred subset of products to an alternative, following dynamic substitution.
This work proposed a mixed-integer linear program and a meta-heuristic al-
gorithm based on variable neighborhoods as a solution method. Mayers et al.
consider not only the reservation prices but also the contingency ρ, that is
the consumer relative perception of services, and they indicate whether con-
sumers consider the single products to be substitutes (ρ > 0), complements
(ρ < 0) or independent of each other (ρ = 0). The use of this parameter is
necessary for the dynamic substitution mechanism employed in their model.
The model we propose differs for the composition and pricing of packages
and above all for the solution method since we use mathematical program-
ming. Moreover in Mayers research the consumers are not considered as an
aggregated demand, as in our thesis work, but they are grouped into a dis-
crete set of individual consumers. In our model we consider a large number
of products partitioned into several subsets according to their types in order
to cope with the variety inherent to the tourist points of interest.

1.3 Scientific literature on tourism

In this section we give an overview of the scientific literature on tourism,
based upon scientific papers that concern tourist district analysis, composi-
tion of packages for tourists or tour design. In particular we analyze three
main topics: destination management, information technology applications
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and recommendation systems. In the last subsection we also present two
package tour composition models already studied in the literature.

1.3.1 Destination management

The fundamental product in tourism is the destination experience; there-
fore competition is centered on destinations. Although competition occurs
between airlines, tour operators, hotels, and other tourism services, this
inter-enterprise competition is dependent upon and derived from the choices
tourists make between alternative destinations [35]. The role of destination
management is to manage and support the integration of different resources,
activities and stake-holders through suitable policies and actions. Hence
destination management (DM) requires governmental, decisional and func-
tional competencies (planning, organization and control of business activit-
ies), which should generally be performed by public administrations [36].

Some contributions focused on the challenges of strategic management
[37, 38, 39, 40]. Initially the concept of destination tended to coincide with
large geographical areas, but later the research focus shifted towards a local
level [39] and various types of local destinations were identified and analyzed
[41, 42].

In this thesis we focus on tourist districts that can be recognized by the
following constituent elements according to the canonical (or Marshall [43])
approach: (i) a well-defined geographical area, (ii) a set of small-medium
enterprises backed up by larger-sized firms and (iii) a shared culture.

Sainaghi [44] raises the following questions: In a tourist district where
hundreds of independent players compete, often with radically different de-
velopment visions, who should take on DM? How can these players come
together to work toward certain goals? How can actions undertaken at a
district level be brought into line with those done by individual local firms?.
His work proposes a methodology called Dynamic Destination Management
Model (DDMM). One of the important areas included in DDMM is new
product development that concerns the creation of service and event pack-
ages.Sainaghi defines packages that can vary in size, and are usually limited
to a core of services which are seen as central to the reference segment (ac-
commodations, cultural attractions, and other recreational services) and may
leave room for accessory components.

Sainaghi claims that new product development always ’blends’ supervis-
ory processes with activities carried out by firms and local public bodies and
underlines the problems related to supervisory packages of tourist districts
as follows:

• lack of promo-commercialization channels;

• need to reach a sufficient ’critical mass’ in terms of number of beds;
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• different business needs by different district firms;

• difference in standards of quality.

Sainaghi methodology does not follow a mathematical approach; however
it underlines the importance of the creation of service and event packages for
tourist district enhancement that is the main motivation of this thesis.

1.3.2 Information technology in tourism

Several recent studies underline the role of information technology in the
design of innovative tourism services. This includes the adoption of certain
technologies, as discussed in McCabe et al. [45], and the review of the pro-
gress in information technology for tourism management, as illustrated in
Buhalis and Law [46]. Buhalis and Law’s findings state that the technolo-
gical revolution led by the development of the Internet dramatically changed
the market conditions for tourism organizations and lead to re-engineering of
the entire process of developing, managing and marketing tourism products
and destinations. They claim that the future of e-tourism will support or-
ganizations to interact with their customers dynamically and consumers are
becoming powerful and are increasingly able to determine elements of their
tourism products. They are also much more sophisticated and experienced
and therefore more difficult to please.

In this thesis we aim to generate several unique solutions that consist of
bundles of tourism products characterized by a certain pattern of product
types (es. a certain number of restaurants, museums, parks, shopping outlets,
concerts). The solution proposed by our model is able to cope with the
complexity of consumer behavior because takes into account the demand
towards each touristic package component.

1.3.3 Package tour composition and routing

Two recent papers address mathematical programming models for package
tour composition; they mainly deal with routing problems.

Rodr̀ıgues et al. [47] proposed a system that considers many object-
ives which tourists may have when planning their trip: minimization of dis-
tance traveled, minimization of cost, maximization of utility (estimated on
the basis of tourist preferences and the importance of each activity). They
also adjusting the time spent on each type of visit according to tourists’
wishes. Furthermore they take into consideration multiple constraints for
better adjusting their model to reality: in particular they use a multi-criteria
method (MOAMP), which is a meta-heuristic algorithm for multi-objective
programming based on tabu search which combines tools for solving selection
problems with tools for solving the Traveling Salesman Problem.
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Cardoso Neto et al.[48] study tourists routes at Vina del Mar in Chile.
Their objective is to determine the best routes for five existing itineraries,
that is five sets of locations to be visited, minimizing the time spent in
traveling. The authors used an exact method by solving the mathematical
model of the Traveling Salesman Problem and a heuristic method based on
cheapest insertion.

Original contribution. The Package Tour Composition Problem presen-
ted in this thesis links destination management with revenue management. It
provides a mathematical approach to the destination management problems
described by Sainaghi [44] .

Our approach is not focused on technology but it provides the basis for
decision support systems that tour operators can employ to take advantage
of ICT. Our models are intended to support the organization of the tourist
operators so that their revenues can be enhanced by offering a large range of
unique solutions, taking into account consumers reservation prices, demand
and availability for each point of interest or event.

An important feature of our model is the coordination between different
destinations so that the flow of tourists is not concentrated on few over-
crowded locations, but it is evenly distributed to avoid congestions and to
allow all operators to count on a significant demand.

In this way not only profitability is maximized but also the utilization of
resources is optimized and the experience from the viewpoint of the tourists
is improved.

In conclusion we note the small number of exact mathematical models
addressing package tour composition problems in the tourism literature.

1.4 Conclusions

The Package Tour Composition Problem presented in this thesis is a step in
the direction of giving a scientifically sound answer to a well-known and com-
pelling economical problem. The model we have defined deals with proposing
several product solutions that not only maximize tour operators revenue but
also maximize utility for tourists and event capacity usage. It is especially
intended for Italian tourism districts of secondary importance, characterized
by a high number of small operators.

In the Revenue Management literature and in the tourism literature no
other model presents the characteristics of the PTCP.

In Chapter 2 we propose a mathematical model that solves a basic version
of the PTCP and in Chapter 3 we propose some extensions.
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Chapter 2

The Package Tour Composition
Problem

In this chapter we propose mathematical programming models of the Package
Tour Composition (PTC) Problem. In Section 1 we present a non-linear
formulation of the PTC problem and some related computational results
that show the need for alternative approaches. This motivates the use of
column generation as a solution method. In Section 2 and Section 3 we
describe two column generation models. The model described in Section 2
has a master problem with integer relaxed variables, while that described in
Section 3 has a master problem with binary relaxed variables. In both cases
a heuristic technique is proposed to find an integer feasible solution, using
the package tours generated by the relaxed problem. In Section 4 we describe
the instances we used in our computational tests and present computational
results. In Section 5 we propose a parametric formulation and analyze model
robustness.

19
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2.1 The Package Tour Composition Problem:

a non-linear model

The Package Tour Composition Problem deals with two entities: a given
ground set of events and a variable set of package tours to be defined. The
aim of the model is to generate package tours made by suitable event subsets
to be visited by the tourists and also to decide the number of package tours
of each kind to sell in order to maximize revenue.

In Figure 2.1 we show a scheme that represents the PTC problem.

Figure 2.1: PTC Problem

Let E denote the set of available events. Each event e ∈ E is characterized
by a capacity ce, a value ve and a demand de. The event capacity ce represents
the maximum number of tourists that can be accommodated at the event.
The demand de is the predicted number of tourists that are willing to visit
the event. The value ve is the reservation price tourists are willing to pay
for attending the event. Therefore the package tour generated by the model
reflects the aggregated demand preferences: events with high demand, high
value and high capacity are more likely to be included in the package tours
generated by the model.

The event set E is partitioned into subsets Et that correspond to event
types. We indicate with T = the set of event types. This feature reflects
the particular characteristics of a group of events. As discussed in Chapter
1 a possible definition of types could be: museums, parks, shopping outlets,
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churches, castles, restaurants, hotels, etc.

Differently from the classical Network Revenue management problem the
composition of package tours is not known, but it is a variable. The generated
package tours are grouped into package tour types; we indicate with P the set
of package tour types, withQp the set of package tours of each type p ∈ P and
with Q the set of all package tours. Package tour types are characterized by
given composition parameters upt stating the number of events of each event
type t ∈ T that belong to package tours of type p ∈ P .

Therefore all package tours of the same type p ∈ P are made by the same
types of events, but not necessarily by the same events.

The decisions are represented by two sets of discrete variables. Binary
variables xeq state whether an event e ∈ E belongs to package tours q ∈ Q.
Integer variables gq indicate the number of identical package tours q ∈ Q to
be put on sale.

Each package tour q ∈ Q is also characterized by a price, given by the
sum of the values of the events it includes, i.e.

∑
e∈E vexeq ∀q ∈ Q.

2.1.1 A mathematical programming formulation

Data. The following data are given.

• A set E of events.

• A value ve for each event e ∈ E .

• A capacity ce for each event e ∈ E .

• A demand de for each event e ∈ E .

• A set T of event types.

• A partition of the ground set E into subsets: E =
⋃
t∈T Et.

• A set P of package tour types.

• A number upt of events for each event type t ∈ T and for each package
type p ∈ P (composition pattern).

Variables. The following variables are used.

• A set Xp of packages for each package type p ∈ P .

• A binary assignment variable xeq for each event e ∈ E and each package
q ∈ X =

⋃
p∈P Xp; it takes value 1 if and only if event e belongs to

package q.
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• An integer variable gq for each package q ∈ X ; it indicates the number
of packages q to be sold.

Note that the number of packages to be sold for each package type is not
known: the cardinality of sets Xp must be estimated in some way to allow
formulating the model. For instance in the non-linear model we present in
paragraph 2.1.2 we consider the cardinality of Xp as the maximum value it
can assume considering the combination of the elements of the subset Et and
the composition pattern upt.

Constraints. The following constraints define feasible solutions.

• Capacity constraints: the number of packages including each event
e ∈ E cannot be larger than the event capacity ce.∑

p∈P

∑
q∈Xp

xeqgq ≤ ce ∀e ∈ E .

• Demand constraints: the amount of packages including each event e ∈
E cannot be larger than the event demand de.∑

p∈P

∑
q∈Xp

xeqgq ≤ de ∀e ∈ E .

• Package composition constraint: for each package type p ∈ P , every
package tour q ∈ Xp must comply with the composition pattern defined
by the parameter upt.∑

e∈Et

xeq = upt ∀p ∈ P , ∀q ∈ Xp, ∀t ∈ T .

Objective function. The objective is to maximize the overall value of the
packages. The value of each package q ∈ Xp is the sum of the values of its
events multiplied by the number gq of packages to be sold.

z =
∑
p∈P

∑
q∈Xp

∑
e∈E

vexeqgq

A non-linear formulation. Following the definitions above, the PTC
problem turns out to be a non-linear problem with integer and binary vari-
ables. The number of its variables must be determined according to an
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estimate of the cardinality of subsets Xp. The model is as follows.

maximize z =
∑
p∈P

∑
q∈Xp

∑
e∈E

vexeqgq (2.1)

s.t.
∑
p∈P

∑
q∈Xp

xeqgq ≤ min{de, ce} ∀e ∈ E (2.2)

∑
e∈Et

xeq = upt ∀p ∈ P ∀q ∈ Xp ∀t ∈ T (2.3)

xeq binary ∀e ∈ E ∀q ∈ Xp (2.4)

gq integer ∀p ∈ P ∀q ∈ Xp. (2.5)

2.1.2 Solution of the non-linear model

We used a non-linear solver (BONMIN) to solve PTC problem instances.
The number of the elements of Qp ∀p is given by the number of simple com-
binations of upt events chosen from the subset Et for each type t ∈ T , that is

|Qp| =
∏
t∈T

(
|Et|
upt

)

Table 2.1 reports the number of elements of Qp ∀p for each instance. The
instances were randomly generated and the cardinality of event set E , event
type set T and package type set P are presented in Table 2.2.

Table 2.2 reports also the computing time and error messages. Tests were
done in a PC dual core 2.20 Ghz with 4GB of RAM. The timeout considered
is 10 hours.

Table 2.2 Non-linear model execution time
Instance package types event types events time (sec.) error message
BM01 2 3 6 58.67 -
BM02 2 3 10 timeout -
BM03 2 3 25 189.7 too expensive
BM07 6 3 6 31.51 -
BM08 6 3 10 23740.30 -
BM09 6 3 25 58.86 too expensive

As we can see the solver was able to provide a solution just for very small
instances.

We also remark that the solutions provided by the non-linear solver, when
integrality conditions were relaxed, were fractional even though equivalent
integer solutions exist.
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Table 2.1 Number of elements of Qp ∀p for each instance

BM01
upt 1 2 3 |Qp|
1 1 1 1 6
2 2 1 2 2

BM02
upt 1 2 3 |Qp|
1 1 1 1 36
2 2 1 2 54

BM03
upt 1 2 3 |Qp|
1 1 1 1 576
2 2 1 2 8064

BM07
upt 1 2 3 |Qp|
1 1 1 1 6
2 2 1 2 2
3 1 2 1 4
4 2 1 1 4
5 1 1 2 4
6 2 2 1 2

BM08
upt 1 2 3 |Qp|
1 1 1 1 36
2 2 1 2 54
3 1 2 1 36
4 2 1 1 36
5 1 1 2 54
6 2 2 1 36

BM09
upt 1 2 3 |Qp|
1 1 1 1 576
2 2 1 2 8064
3 1 2 1 2016
4 2 1 1 2016
5 1 1 2 2304
6 2 2 1 7056
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This motivates the use of an alternative approach based on column gen-
eration in which the variables are not enumerated a priori but generated
dynamically.

2.1.3 Motivation for column generation

Column generation is often employed to solve the linear relaxation of dis-
crete optimization problems that can be decomposed into smaller and easier
sub-problems when some of their constraints are relaxed. The price to pay
for the decomposition is the exponential number of variables (columns) of
the extended formulation and this motivates the dynamic generation of its
columns. A description of column generation is given in Appendix 1.

Here we have a different motivation: in our case columns generation is
used to solve an extended linear model resulting from the linearization of a
non-linear compact model. Column generation allows us to linearize model
(2.1)-(2.5) and to solve its continuous relaxation to proven optimality, while
keeping integer values for the x variables and only relaxing the integrality
conditions on the g variables.

Model (2.1)-(2.5) is linearized at the expense of considering an exponential
number of columns. We indicate by Qp the set of all feasible packages of type
p ∈ P :

Qp = {x ∈ B|E| :
∑
e∈Et

xe = upt∀t ∈ T } ∀p ∈ P .

Now we can reformulate model (2.1)-(2.5) as follows:

maximize z =
∑
p∈P

∑
q∈Qp

∑
e∈E

vexeqgq (2.6)

s.t.
∑
p∈P

∑
q∈Qp

xeqgq ≤ min{de, ce} ∀e ∈ E (2.7)

gq integer ∀p ∈ P ∀q ∈ Qp. (2.8)

This extended formulation has an exponential number of variables, since the
cardinality of each set Qp is given by a (feasible) combination of events:
for each event type t ∈ T a given number upt of events of type t must be
chosen from Et and this can be done in a number of different ways that is
combinatorial in the size of Et. However model (2.6)-(2.8) is linear, because
the binary x variables of model (2.1)-(2.5) are replaced by binary coefficients
in model (2.6)-(2.8).

In the remainder we present two slightly different models of the PTC
problem that are amenable to column generation: an integer master formu-
lation (IMP) and a binary master formulation (BMP). In the integer master
formulation, derived from model (2.6)-(2.8), the master problem has integer
(relaxed) variables and the pricing problem has binary variables; on the con-
trary in the binary master formulation the master problem has binary (re-
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laxed) variables and the pricing problem has integer variables. The solutions
of the two proposed relaxed models provide dual bounds (upper bounds) for
the PTC problem. In order to also find primal bounds (lower bounds) cor-
responding to feasible integer solutions, a heuristic technique is proposed. It
consists of fixing a subset of columns generated by the column generation
algorithm and to run a general-purpose integer linear programming solver to
solve the master problem without relaxing the integrality restrictions. This
column-generation-based heuristic algorithm turns out to be very fast and to
provide feasible solutions that are very close to optimality.

2.2 Column generation with integer master

problem variables (IMP)

We recall the extended linear formulation of the PTC problem obtained in
the previous section.

maximize z =
∑
p∈P

∑
q∈Qp

∑
e∈E

vexeqgq (2.9)

s.t.
∑
p∈P

∑
q∈Qp

xeqgq ≤ min{de, ce} ∀e ∈ E (2.10)

gq integer ∀q ∈ Q (2.11)

Relaxing the integrality restrictions (2.11) on integer variables g into non-
negativity conditions g ≥ 0 we obtain the following relaxed model:

maximize z =
∑
p∈P

∑
q∈Qp

∑
e∈E

vexeqgq (2.12)

s.t.
∑
p∈P

∑
q∈Qp

xeqgq ≤ min{de, ce} ∀e ∈ E (2.13)

gq ≥ 0 ∀q ∈ Q (2.14)

This linear programming model has an exponential number of variables,
because the cardinality of set Q grows combinatorially with the number of
events and types. Column generation allows to generate the elements of Q
dynamically.

2.2.1 Linear restricted integer master problem (LRIMP)

Using column generation, model (2.12)-(2.14) is decomposed into a master
problem and a pricing problem. The master problem is characterized by the
continuous variables g and by the capacity and demand constraint set (2.13).
The pricing problem is characterized by binary variables x and by the package
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composition constraint set, which defines the set Qp of feasible packages for
each package type p ∈ P . The linear restricted master problem (LRIMP)
uses only a restricted subset Q̄p ⊂ Qp for each p ∈ P and the elements of
subsets Q̄p for each package type p ∈ P are generated dynamically.

Master problem:

maximize z =
∑
p∈P

∑
q∈Q̄p

wqgq (2.15)

s.t.
∑
p∈P

∑
q∈Q̄p

xeqgq ≤ min{de, ce} ∀e ∈ E (2.16)

gq ≥ 0 ∀p ∈ P ∀q ∈ Q̄p. (2.17)

The value wq of each package q ∈ Q̄p is given by wq =
∑

e∈E vexeq. We
indicate with λe the non-negative dual variable associated with each of the
constraints 2.16.

Pricing problem:

The pricing sub-problem can be decomposed and solved independently
for each package type p ∈ P .

maximize wp =
∑
e∈E

(ve − λe)xe (2.18)

s.t.
∑
e∈Et

xe = upt ∀t ∈ T (2.19)

xe binary ∀e ∈ E . (2.20)

The values of the variables x in the columns with positive reduced cost w
become the coefficients of the same column when it is inserted into the master
problem. For this reason we use symbols xe in the pricing sub-problem and
xeq in the master problem, with a little abuse of notation. For the same
reason we use wp to indicate the reduced cost of the optimal column for type
p ∈ P in the pricing sub-problem and wq to indicate the value of each column
q ∈ Qp in the master problem.

The pricing sub-problem is a discrete optimization problem that can be
further decomposed into several sub-problems, one for each event type t ∈ T .
For each event type t ∈ T , it is optimal to select the upt events of type t with
the largest value of (ve − λe). Hence it is trivial to prove that this pricing
sub-problem has the integrality property and it can be solved in polynomial
time.

In usual applications of column generation this could be seen as a serious
drawback, because it means that the dual bound provided by solving an
extended formulation (with an exponential number of columns) with column
generation cannot be better than the optimal value of the linear relaxation
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of the corresponding compact linear formulation. This is not the case for the
model we are considering, since our extended formulation (2.9)-(2.11) is not
derived from a linear compact formulation, but from the linearization of a
non-linear compact formulation.

2.2.2 Heuristic restricted integer master problem (HRIMP)

Column generation provides an optimal solution to model (2.12)-(2.14), but
such a solution is in general infeasible for model (2.9)-(2.11) owing to the
relaxation of constraints (2.11). In order to find a feasible solution with
integer values for the g variables, we use a heuristic method. We consider
an integer linear programming problem whose columns are those that have
been generated while solving model (2.12)-(2.14) with column generation.
We denote as Q̃p this set of columns for each package type p ∈ P . The
model we solve is the following.

maximize z =
∑
p∈P

∑
q∈Q̃p

wqgq (2.21)

s.t.
∑
p∈P

∑
q∈Q̃p

xeqgq ≤ min{de, ce} ∀e ∈ E (2.22)

gq integer ∀p ∈ P ∀q ∈ Q̃p. (2.23)

We call HRIMP this restricted master problem with integer variables and we
solve it directly with an integer linear programming solver.

2.3 Column generation with binary master

problem variables (BMP)

In this section we present a second model for solving the PTC problem with
column generation, where the master problem has binary (relaxed) variables
and the pricing problem has integer variables. Hence each column in the
master problem does not represent an individual package (to be put on sale
a variable number of times), but a unique bunch of packages of the same
type, i.e. made according to the same events pattern but not necessarily
including the same events. The motivation for this alternative formulation
consits in searching for more homogeneous solutions and in using a relaxed
formulation that allows to introduce constraints that limit the number of
tourist to be assigned to each package tour, as in the model with groups
presented in Chapter 3.
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2.3.1 Formulation

Data. The data are the same as those used to define the IMP model in the
previous section.

Variables. The following variables are used.

• A set Gp of bunches of packages for each package type p ∈ P .

• An integer variable nq for each bunch of packages q ∈ G =
⋃
p∈P Gp,

indicating how many individual packages are included in bunch q ∈ G.

• Integer variables yeq indicating how many individual packages in bunch
q ∈ G include event e ∈ E .

• A binary variable hq for each bunch of packages q ∈ G, indicating
whether it belongs to the solution or not.

Constraints. The following constraints define feasible solutions.

• Capacity constraints: the overall number of tourists assigned to each
event e ∈ E cannot be larger than the event capacity ce.∑

p∈P

∑
q∈Gp

yeqhq ≤ ce ∀e ∈ E .

• Demand constraints: the overall number of tourists assigned to each
event e ∈ E cannot be larger than the event demand de.∑

p∈P

∑
q∈Gp

yeqhq ≤ de ∀e ∈ E .

• Package composition constraint: for each package type p ∈ P all pack-
ages in each bunch q ∈ Gp must comply with the composition pattern
defined by upt.∑

e∈Et

yeq = uptnq ∀p ∈ P , ∀q ∈ Gp, ∀t ∈ T .

• Non-repetition constraint: the number of individual packages of each
type p ∈ P including each event e ∈ E cannot be larger than the
number of individual packages in the bunch q ∈ Gp.

yeq <= nq ∀p ∈ P , ∀q ∈ Gp, ∀e ∈ E .
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• In this model we also require solutions to include at most one column
for each package type. This can be imposed without loss of generality,
because every two columns representing package bunches of the same
type can be replaced by a single column, whose value is the sum of
the values of the two original columns. Therefore these constraints are
useful to avoid the presence of a combinatorial number of equivalent
solutions. ∑

q∈Gp

hq ≤ 1 ∀p ∈ P .

Objective function. The objective is to maximize the overall value of the
packages. The value of each package bunch q ∈ Gp is the sum of the values
of the packages in it.

z =
∑
p∈P

∑
q∈Gp

∑
e∈E

veyeqhq.

A non-linear formulation. Following the definitions above, the following
model is obtained. As in the previous case, it is a non-linear model with
integer and binary variables.

maximize z =
∑
p∈P

∑
q∈Gp

∑
e∈E

veyeqhq (2.24)

s.t.
∑
p∈P

∑
q∈Gp

yeqhq ≤ min{de, ce} ∀e ∈ E (2.25)

∑
e∈Et

yeq = uptnq ∀p ∈ P ∀q ∈ Gp ∀t ∈ T (2.26)

yeq <= nq ∀q ∈ G ∀e ∈ E (2.27)∑
q∈Gp

hq ≤ 1 ∀p ∈ P (2.28)

hq binary ∀q ∈ G (2.29)

yeqinteger ∀e ∈ E ∀q ∈ G (2.30)

nqinteger ∀q ∈ Gp. (2.31)

2.3.2 An extended linear formulation

The non-linear compact model (2.24)-(2.31) can be linearized into an exten-
ded formulation, including all feasible integer columns q ∈ Q =

⋃
p∈P Qp,

where

Qp = {(y, n) ∈ Z |E|+ ×Z+ :
∑
e∈Et

ye = uptn ∀t ∈ T , ye <= n} ∀p ∈ P .
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The linear extended formulation reads as follows.

maximize z =
∑
p∈P

∑
q∈Qp

∑
e∈E

veyeqhq (2.32)

s.t.
∑
p∈P

∑
q∈Qp

yeqhq ≤ min{de, ce} ∀e ∈ E (2.33)

∑
q∈Qp

hq ≤ 1 ∀p ∈ P (2.34)

hq binary ∀q ∈ Q (2.35)

Relaxing the integrality restrictions (2.35) on binary variables h into con-
straints of the form 0 ≤ h ≤ 1, we obtain the following relaxed model:

maximize z =
∑
p∈P

∑
q∈Qp

∑
e∈E

veyeqhq (2.36)

s.t.
∑
p∈P

∑
q∈Qp

yeqhq ≤ min{de, ce} ∀e ∈ E (2.37)

∑
q∈Qp

hq ≤ 1 ∀p ∈ P (2.38)

0 ≤ hq ≤ 1 ∀q ∈ Q (2.39)

This linear programming model has an exponential number of variables h,
because the cardinality of set Q grows combinatorially with the number of
events and types. Column generation allows to generate the elements of Q
dynamically.

2.3.3 Linear restricted binary master problem (LRBMP)

We use column generation to solve the continuous relaxation of the extended
linear formulation (2.36)-(2.39).

The master problem is characterized by the continuous variables h and
by the capacity and demand constraint set (2.37). The pricing sub-problem
is characterized by integer variables y and n and by package composition
constraints and non-repetition constraints. To avoid unboundedness in the
pricing sub-problem and infeasibility in the master problem, we must also
insert an additional constraint on the maximum number of packages in a
bunch, as follows:

ye <= min{ce, de} ∀e ∈ E .

The linear restricted binary master problem (LRBMP) includes only a
restricted subset Q̄p ⊂ Qp for each p ∈ P and the elements of subsets Q̄p for
each package type p ∈ P are generated dynamically.
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Master problem:

maximize z =
∑
p∈P

∑
q∈Q̄p

wqhq (2.40)

s.t.
∑
p∈P

∑
q∈Q̄p

yeqhq ≤ min{de, ce} ∀e ∈ E (2.41)

0 ≤ hq ≤ 1 ∀p ∈ P ∀q ∈ Q̄p. (2.42)

The value wq of each bunch of packages q ∈ Q̄p is given by wq =∑
e∈E veyeq. We indicate with µe the non-negative dual variable associated

with each of the constraints (2.41).

Pricing problem:

The pricing sub-problem can be decomposed and solved independently
for each package type p ∈ P .

maximize wp =
∑
e∈E

(ve − µe)ye (2.43)

s.t.
∑
e∈Et

ye = uptn ∀t ∈ T (2.44)

ye ≤ min{de, ce} ∀e ∈ E (2.45)

ye ≤ n ∀e ∈ E (2.46)

ye integer ∀e ∈ E (2.47)

n integer (2.48)

2.3.4 Heuristic restricted binary master problem (HRBMP)

To compute an integer feasible solution we use the same technique described
for the integer master problem. We consider an binary linear programming
problem whose columns are those that have been generated while solving
model (2.36)-(2.39) with column generation. We denote as Q̃p this set of
columns for each package type p ∈ P . The model we solve is the following.

maximize z =
∑
p∈P

∑
q∈Q̃p

w̃qhq (2.49)

s.t.
∑
p∈P

∑
q∈Q̃p

yeqhq ≤ min{de, ce} ∀e ∈ E (2.50)

hq binary ∀p ∈ P ∀q ∈ Q̃p. (2.51)

We call HRBMP this restricted master problem with binary variables and
we solve it directly with an integer linear programming solver.
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2.4 Computational tests

2.4.1 Standard instances description

We constructed six data-sets: 25t3, 25t6, 50t3, 50t6, 100t3 and 100t6. They
differ from one another for the number of events and the number of event
types. The number of package types remains constant and is equal to five.
The number of event types is equal to three or six and the number of events
is equal to 25, 50 or 100 as displayed in Table 2.3.

Table 2.3 Standard instances
Instance 25t3 25t6 50t3 50t6 100t3 100t6

Package types 5 5 5 5 5 5
Events 25 25 50 50 100 100

Event types 3 6 3 6 3 6

In order to construct the instances we generated the distribution model
parameters (event value, event demand, event capacity, package composition,
and event types) at random with a uniform distribution of probability within
the ranges reported in Table 2.4.

Table 2.4 Standard Instances: parameters dimensions

Instance Minimum Maximum
Event value 10 50

Event demand 50 100
Event capacity 40 200

The upt values are generated at random with a uniform distribution of
probability within the ranges reported in Table 2.5.

Table 2.5 Standard Instances: upt generation

|T | Minimum Maximum
∑

p∈P upt
3 0 3 3 or 4
6 0 2 6

Overall actual capacity value. The overall actual capacity value (OACV)
is defined as the value of all events that belong to the event set multiplied by
their actual capacity, that is the minimum among ce and de for each event
e ∈ E :

OACV =
∑
e∈E

ve min{de, ce}.

The value OACV indicates the maximum potential revenue that can be ob-
tained in an ideal case. Therefore it is an upper bound for all feasible solutions
of our models. The OAVC values for our data-set are displayed in Table 2.6.
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Table 2.6 Standard instances: overall actual capacity values.

Instance 25t3 25t6 50t3 50t6 100t3 100t6
OACV 46142 100440 205708

2.4.2 Computational results

In this subsection we describe and compare the results obtained with the
standard instance. To assess the quality of the solutions obtained we compare
them against upper and lower bounds. In particular, the solutions obtained
from column generation provide lower bounds and they are compared with
the upper bound given by the OACV value. The solutions produced by the
heuristic technique based on the HRMP models provide upper bounds to the
optimum value and they are compared with the lower bound given by column
generation. When analyzing the results obtained from our models, besides
the value of the objective function and the computing time, we also consider
another relevant indicator, that is package homogeneity.

If a model provides a solution that uses only one or few package types,
that solution is considered a homogeneous solution. If a model provides a
solution that uses several package tour types, that solution is considered a
heterogeneous solution.

The best alternative between a homogeneous and a heterogeneous solution
depends on the application of the model. A homogeneous solution selects and
concentrates tourists in the more profitable package tour types. Instead a
heterogeneous solution privileges the offer of a larger number of package tour
types.

In the tables reported in the remainder of this section we use the following
terminology:

• ’LRMP o.f.’ is the optimal value of the LRMP.

• ’HRMP o.f.’ is the optimal value of the heuristic model.

• ’LRMP gap’ is the percentage gap between the LRMP o.f. and OACV.

• ’HRMP gap’ is the percentage gap between the HRMP o.f. and LRMP
o.f..

• ’LRMP time’ is the computing time (in seconds) to solve the LRMP
model.

• ’HRMP time’ is the computing time (in seconds) to compute a heuristic
solution. This is the sum of two terms: the ’LRMP time’ (because the
LRMP model generates the columns used by the HRMP model) and
the time taken to solve the heuristic model.
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Table 2.7 Standard instances results: optimal values and execution times.

Instances 25t3 25t6 50t3 50t6 100t3 100t6

Instances
package types 5 5 5 5 5 5

events 25 25 50 50 100 100
event types 3 6 3 6 3 6

OACV 46142 46142 100440 100440 205708 205708

Results
LRMP o.f. 46142 39036 100440 65078 205708 175246
LRMP gap 0% 15% 0% 35% 0% 15%

IMP
HRMP o.f. 46142 39034 100440 65077 205611 175165
HRMP gap 0% 0.01% 0% 0% 0.05% 0.05%
LRMP time 1.4 1.4 2.1 2.0 3.8 5.5
HRMP time 1.5 1.4 2.2 2.1 3.9 7.3

BMP
HRMP o.f. 31489 33369 95805 61757 139737 116298
HRMP gap 31.76% 14.52% 4.61% 5.10% 32.07% 33.64%

LRMP time (sec) 1.2 1.7 2.4 3.1 5.1 7.3
HRMP time (sec) 1.2 1.7 2.4 3.1 5.1 7.3

We compare the results obtained when solving the standard instances
with IMP and BMP models. Afterwards we also analyze the characteristics
of heuristic solutions obtained in both cases.

Table 2.7 reports the results obtained with IMP and BMP models.

LRMP solution quality. In general the optimal solution of the master
problem with both models is a convex combination of columns where the
variables gq and hq assume fractional values. As we note in Table 2.8 in
the columns that belongs to the optimal LRMP solution the amount of non-
integer number of tourists in each columns are substantial.
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Table 2.8 Standard instances results: integer columns in the LRMP solution

IMP LRMP solution
Dataset total Total tourists % tourists total integer % integer

tourists on integer columns on integer columns columns columns columns
25t3 504,68 - 0% 25 - -
25t6 204,00 19 9% 17 3 18%
50t3 980,23 287 29% 50 13 26%
50t6 279,00 - 0% 24 - -
100t3 2002,27 194 10% 100 11 11%
100t6 851,67 - 0% 74 - -

BMP LRMP solution
Dataset total Total tourists % tourists total integer % integer

tourists on integer columns on integer columns columns columns columns
25t3 2,45 - - 25 - -
25t6 2,43 - - 17 - -
50t3 2,19 - - 49 - -
50t6 2,18 - - 24 - -
100t3 2,57 - - 90 - -
100t6 2,34 - - 74 - -
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Analyzing the LRMP solution results, shown in Figure 2.2, we can note
that the gap between the LRMP objective function and the OACVs are null
for the instances characterized by three event types, while instances with six
event types show a larger gap. The reason for this is further investigated in
the following subsubsection.
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Figure 2.2: Standard isntances: LRMP gap.

Heuristic solution quality. Figures 2.3 and 2.4 display the gap between
the heuristic value and the lower bound given by column generation. The
HRIMP heuristic model shows an excellent performance and the gap varies
from 0 to 0.05%. The HRBMP heuristic model instead shows a gap ranging
from 4% to about 35% with no apparent regularity.

LRMP and HRMP performance. Figure 2.5 shows a comparison between
the execution time of LRMP and HRMP models. We note a rising trend in
the execution time of the LRMP models when the number of events grows;
this is intuitive because larger capacity values allow for the generation of
more columns. For most instances the time needed to generate a heuristic
solution from the set of columns produced by column generation turns out
to be negligible.

Homogeneity of the solutions. In this paragraph we analyze the homo-
geneity of the solutions. In particular we consider
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Figure 2.5: Standard instances: Computing time.

• the number of columns generated by the column generation algorithm,
’GENCOL’.

• the number of basic columns in the LRMP solution, ’LRMPCOL’.

• the number of columns selected in the solution of the HRMP model,
’HRMPCOL’.

Table 2.9 displays the results for the IMP and the BMP formulations.

The number of columns generated during the execution of the column
generation algorithm shows a rising trend as the number of events grows.
This trend is similar with both IMP and BMP models.

The number of columns in the heuristic solution increases with the num-
ber of events and decreases with the number of event types.

However the two models produce quite different results in terms of solu-
tions homogeneity. With the BMP heuristic model the number of columns
in the HRMP solution is limited to one or two. In other terms the BMP
heuristic model generates discrete solutions using very few different types
of packages, i.e. it yields very homogeneous solutions. On the other hand
the IMP heuristic model generates discrete solutions using a richer mix of
packages. This also explains the already mentioned better quality of HRIMP
solutions compared to HRBMP solutions.
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Table 2.9 Standard instances results: homogeneity.

Instances 25t3 25t6 50t3 50t6 100t3 100t6
Package types 5 5 5 5 5 5

Events 25 25 50 50 100 100
Event types 3 6 3 6 3 6

IMP
GENCOL 50 54 103 75 160 245

LRMPCOL 25 17 50 24 100 74
HRMPCOL 27 21 58 28 116 93

BMP
GENCOL 50 67 95 105 185 242

LRMPCOL 25 17 49 25 90 74
HRMPCOL 2 1 2 1 1 1
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Figure 2.6: Standard instances: Generated columns
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Figure 2.7: Standard instances: HRMP columns

2.4.3 Final Comments

The IMP model provides solutions of high LRMP quality in instances char-
acterized by three events types and LRMP quality decrease for instances
characterized by six event types. Therefore this suggests that an increase
in event types can have a negative effect in LRMP quality, this hypothesis
is further investigated in the event type variation analysis. The IMP model
provides solutions of high HRMP quality.

The execution time of the IMP model sees a rising trend with a number
of events increase. The capacity growth allows the model to generate more
columns. When the generated columns grow also the execution time grows.

The solution provided by the IMP HRMP model has a similar package
tour pattern as the solution provided by the IMP LRMP model. Both solu-
tions use several package/columns in the optimal solution. The composition
of the IMP HRMP package tour used in the optimal solution in terms of
product type is further investigated in the product type variation subsec-
tion.

The BMP model provides a LRMP solution that follows the same trend
as IMP LRMP solution in terms of LRMP quality. Nevertheless the BMP
model provides solutions of poor HRMP quality. The HRMP quality does
not seem to follow a particular trend as the number events and the number
of event types grows.
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The solution provided by the BMP HRMP model is characterized by a
high homogeneity because the columns that belong to the optimal solution
are just one or two and therefore belong to a very few number of package
types.

2.5 Parametric Analysis

This section is divided into several parts: in subsection 2.5.1 we analyze some
variations on the data-set and we perform a parametric anaysis to assess the
robustness of our approach; in subsection 2.5.2 we present the results that
are obtained by changing some parameters of the models: the number of
events, the number of event types and the number of package types. Finally
we draw some conclusions in subsection 2.5.3.

2.5.1 A parametric formulation

The motivation for the tests described hereafter is the search for less ho-
mogeneous solutions with the HRBMP model. Less homogeneous solutions
are also expected to be better in terms of the objective function, resembling
those obtained with the HRIMP model.

We recall that in the standard BMP formulation each variable ye in the
pricing subproblem is limited by the actual event capacity, that is min{de, ce}.
This leads to the generation of very dense columns. Consequently these
columns exhaust some event capacities and therefore it is difficult to combine
more than two packages together; in turn this leads to poor quality of the
solutions, as underlined in the previous subsubsection.

In order to force column generation based on the BMP model to produce
less heterogeneous solutions, we impose an additional constraint limiting the
value of the y variables. Then we perform a parametric analysis on the
right hand side of such constraints. We call this formulation PBMP, where
P stands for Parametric. The right hand side, indicated by l, ranges from
5 to the largest actual capacity among all events, i.e. maxe∈E min{de, ce}.
Obviously there is no point in testing larger values, because the problem
would be unfeasible. The PBMP model is as follows.

Master problem:

maximize z =
∑
p∈P

∑
q∈Q̄p

wqhq (2.52)

s.t.
∑
p∈P

∑
q∈Q̄p

yeqhq ≤ min{de, ce} ∀e ∈ E (2.53)

0 ≤ hq ≤ 1 ∀p ∈ P ∀q ∈ Q̄p. (2.54)
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Pricing problem:

The pricing sub-problem for each package type p ∈ P is the following.

maximize wp =
∑
e∈E

(ve − µe)ye (2.55)

s.t.
∑
e∈Et

ye = uptn ∀t ∈ T (2.56)

ye ≤ l ∀e ∈ E (2.57)

ye ≤ n ∀e ∈ E (2.58)

ye integer ∀e ∈ E (2.59)

n integer (2.60)

Parametric analysis of instance 25t6 was done and five upt variations were
tested; average values are reported in Table 2.10. The results of parametric
analysis on all instances are displayed in Appendix 3.



44
T

h
e

P
ackage

T
ou

r
C

om
p

osition
P

rob
lem

Table 2.10 Parametric formulation: results.
l 1 5 8 10 25 50 BMP

LRMP o.f. 42265.5 42265.5 42265.5 42265.5 42265.5 42265.5 42265.5
LRMP gap 8% 8% 8% 8% 8% 8% 8%
HRMP o.f. 41876 39354 38071 37543 32051 19340 31832
HRMP gap 1% 7% 10% 11% 24% 54% 25%

time opt 9.7 2.3 2.7 2.2 1.6 1.6 1.5
time rnd 9.8 2.3 2.7 2.3 1.7 1.6 1.5
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Using the standard BMP formulation (rightmost column) the HRBMP
solution objective value is 31832. As we note in in Figure 2.8 the Parametric
formulation performs better than the BMP solution for values lower than
25 that numerically is the half the maximum the event value can assume
(see Table 2.4). This indicates that it is suitable to investigate a formulation
that eliminates the actual capacity limiting constraint (2.45) from the pricing
problem.

Comments. An extension related to this parametric analysis concerns the
generation of packages for groups instead of single tourists and it will be
described in the next chapter.

2.5.2 Model robustness

The experiments presented hereafter are motivated by the need of assessing
the robustness of the solutions provided by our models. For this purpose
we select in turn a parameter of the model and we study the relationship
between its value and the outcome of the model. We repeat this analysis
for three fundamental parameters of our instances: the number of package
types, the number of event types and the number of events.

Number of package types In Table 2.11 we present the results obtained
with instance 50t6 when the number of package types is changed. Every time
a new package type is added, a new row in the composition parameter upt is
also added. We call these instances V P3, . . . , V P9, where the last number
corresponds to the number of package types.

We underline that changes in the parameter upt imply significant changes
in the results because if a package type with a more convenient upt is ad-
ded, the optimal value increases; on the other hand if a package with a less
convenient composition vector upt is added, the optimal value remains stable
and the new package remains unused.

As shown in Figure 2.9, when the number of package types grows the
gap between the LRMP solution and the OACV decreases. This trend is not
linear; higher lower bounds are achieved due to the use of more convenient
package types.

As shown in Figure 2.10, the value of the heuristic solutions is stable for
instances V P4, V P5 and V P6 and then it increases. For instances V P07,
V P08 and V P09 the primal-dual gap is larger because the increase in the
upper bound (dual bound) is larger than the increase in the lower bound
(primal bound).

As shown in Table 2.11 the computing time for column generation and for
the heuristic model grows with the number of package types, because more
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Table 2.11 Variation of P : optimal values and computing time (sec.).

Variation of P
Instance V P3 V P4 V P5 V P6 V P7 V P8 V P9

LRMP o.f. 53.473 65.078 65.078 65.078 76.512 91.646 91.646
LRMP gap 47% 35% 35% 35% 24% 9% 9%

IMP
HRMP o.f. 53.467 65.077 65.077 65.078 76.475 91.607 91.607
HRMP gap 0.01% 0.00% 0.00% 0.00% 0.05% 0.04% 0.04%
LRMP time 1.2 2.1 2.0 3.2 3.1 4.4 6.0
HRMP time 1.3 2.1 2.1 3.3 23.2 4.5 6.4

BMP
HRMP o.f. 52.262 61.757 61.757 61.757 61.757 64.286 70.871
HRMP gap 2.26% 5.10% 5.10% 5.10% 19.28% 29.85% 22.67%
LRMP time 2.0 3.0 3.1 4.1 4.1 4.2 4.4
HRMP time 2.0 3.1 3.1 4.1 4.1 4.3 4.4
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Figure 2.9: Variation of P : LRMP solution quality
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Table 2.12 Variation of P : generated columns and solutions homogeneity.

Variation of P
Instances V P3 V P4 V P5 V P6 V P7 V P8 V P9

IMP
GENCOL 36 66 75 94 97 150 171

LRMPCOL 18 24 24 24 31 40 41
RMPCOL 20 27 28 26 39 49 59

BMP
GENCOL 57 95 105 117 103 146 153

LRMPCOL 18 24 25 24 31 41 41
RMPCOL 2 1 1 1 1 1 2

columns are generated.

Table 2.12 displays information on homogeneity of the IMP and BMP
solutions.

The number of columns generated by the IMP and BMP models follows a
similar rising trend as the number of package types grows. This also explains
the rising trend in the computing time.

This non systematic and unpredictable behavior suggests the opportunity
of a deeper analysis in order to understand what makes a certain package
type attractive. Table 2.13 displays the number of basic columns of each
package type p in the optimal LRIMP solution.

It is possible to note that the most often used package types are 2, 4 and
8. In order to explain this observation we define two event type properties:
the cross event type value and the cross event type actual capacity.

The cross event type value Vt for each event type t ∈ T is the overall
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Table 2.13 Variation of P : number of basic columns at optimality.

p V P3 V P4 V P5 V P6 V P7 V P8 V P9 tot.
1 0 0 0 0 0 6 2 8
2 9 13 13 12 10 11 16 84
3 9 0 0 0 0 0 0 9
4 - 11 11 12 12 6 8 60
5 - - 0 0 0 0 0 0
6 - - - 0 0 0 0 0
7 - - - - 9 0 0 9
8 - - - - - 17 14 31
9 - - - - - - 1 1

Table 2.14 Variation of P : cross event type value and actual capacity.

t 1 2 3 4 5 6
Ct 714 297 910 223 279 924
Vt 339 144 445 78 126 382

value of all events in Et.

Vt =
∑
e∈Et

ve ∀t ∈ T .

The cross event type actual capacity Ct for each event type t ∈ T is
the overall actual capacity of events in Et.

Ct =
∑
e∈Et

min{ce, de} ∀t ∈ T .

As we can see from Table 2.14, the lowest values of Ct and Vt are those
of event types 2, 4 and 5. These event types act like bottlenecks, because
as soon as their capacity is exhausted no more packages can be produced.
Therefore packages of a package type characterized by a composition pattern
upt that includes few units of event types 2, 4 and 5 are easier to combine with
other packages and hence they are likely to be part of the optimal LRMP
solution. We refer to them as bottleneck event types and we indicated their
subset with B.

Table 2.15 displays the composition pattern parameter of each package
type p ∈ P (rows) and each event type t ∈ T (columns). For each package
type p ∈ P we also indicate the overall number of required events from set
B that we refer as βB and the standard deviation of the upt values in B that
we refer as ρB.

B = {2, 4, 5}

βB =
∑
t∈B

upt
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Table 2.15 Variation of P : composition parameters.

upt 1 2 3 4 5 6 βB ρB

1 0 1 1 2 1 1 4 0.5
2 1 0 2 1 1 1 2 0.5
3 2 1 0 1 1 1 3 0.0
4 2 1 1 0 1 1 2 0.5
5 1 1 0 2 1 1 4 0.5
6 0 1 1 2 2 0 5 0.5
7 1 2 2 1 0 0 3 0.8
8 2 1 2 0 0 1 1 0.5
9 2 2 1 0 0 1 2 0.9

ρB = σt∈Bupt

Bottleneck event types correspond to bolded columns. These two indic-
ators show very strong correlation with the presence of the corresponding
package types in the optimal solution. From Table 2.13 we note that pack-
age types 2, 4 and 8 occur several times in the optimal LRMP solution and
from Table 2.15 we also note that the same package types have the lowest
values of βB and ρB.

We can conclude that every time a more convenient package type is ad-
ded to the instance, we observe an increase in the upper bound and the
lower bound, in the number of basic columns in the LRMP optimal solution
and in the computing time. The convenience of a package type can be reli-
ably estimated by two indicators, intuitively meaning that a package type is
convenient when it requires few events of bottleneck event types.

Number of event types Table 2.16 presents the results obtained from
the variation of the number of event types in instance 50t6, which in origin
is characterized by 6 events types. Every time a new event type is added or
subtracted, a new column in the composition parameter upt is also added or
subtracted. Furthermore the event set partition Et changes as a new event
type is added or subtracted, because the set E of events remains the same.
The event set E is so partitioned in a different number of subsets. We call
the modified instances V T3, . . . , V T9, where the last figure represents the
number of event types. Further instances with other event type variation are
tested and their results are presented in Appendix 3.

The effect of changing the number of event types is even more significant
than that of changing the number of package types. The addition of an event
type implies a change in every product type composition parameter upt for
all p ∈ P . Moreover the addition of an event type provokes a decrease in the
cross event type capacities.

From Table 2.11 we note that the addition of more event types initially
implies a significant loss in the value of the upper bound, due to the cross
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Table 2.16 Variation of T : optimal values and computing time (sec.).

Variation of T
Instance V T3 V T4 V T5 V T6 V T7 V T8 V T9

LRMP o.f. 100440 100440 88361 65078 51669 56697 69468
LRMP gap 0.00% 0.00% 12.03% 35.21% 48.56% 43.55% 30.84%

IMP
HRMP o.f. 100440 100410 88354 65077 51669 56695 69468
HRMP gap 0.00% 0.03% 0.01% 0.00% 0.00% 0.00% 0.00%
LRMP time 2.2 2.3 2.6 2.0 1.5 2.1 1.6
HRMP time 2.2 2.5 2.6 2.1 1.5 2.1 1.7

BMP
HRMP o.f. 72265 76274 64952 61757 50196 55210 61760
HRMP gap 28.05% 24.06% 26.49% 5.10% 2.85% 2.62% 11.10%
LRMP time 2.3 2.2 3.1 3.1 3.1 2.8 3.5
HRMP time 2.4 2.3 3.1 3.1 3.1 2.8 3.6

event capacity reduction. Instances V T8 and V T9 are characterized by a
limited improvement of the upper bound, because partitioning the events in
many subsets tends to produce more diverse and therefore easier to combine
package types.
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Figure 2.11: Variation of T : LRMP gap

As with the standard instances the HRIMP model yields a very small
gap with respect to the upper bound. With the HRBMP model the gap is
definitely larger, it decreases as the number of event types grows (see Figure
2.12) because the heuristic solution improves. However this trend is not
monotonic: instance V P9 has a worse heuristic solution than V P8.

The computing time of both BMP and IMP models does not seem to
be correlated with the number of event types (see Figure 2.13). Since the
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Figure 2.12: Variation of T : HRMP gap

Table 2.17 Variation of T : solutions homogeneity.

T Variation
Instance V T3 V T4 V T5 V T6 V T7 V T8 V T9

IMP
GENCOL 93 100 109 75 59 74 68

LRMPCOL 50 50 39 24 19 21 25
RMPCOL 58 56 50 28 23 24 28

BMP
GENCOL 95 90 120 105 91 94 134

LRMPCOL 50 50 39 25 19 21 24
RMPCOL 1 1 1 1 1 1 1

number of calls to the pricing algorithm depends on the number of package
types but not on the number of event types, the change of |T | does not have
any significant impact on the computing time.

Table 2.17 described the homogeneity of the solutions provided by the
IMP and BMP models.

From Figure 2.13 we note that in the IMP model the number of columns
generated follows the same trend as the IMP computing time. In the BMP
model this correlation is not so clear.

The number of columns in the LRIMP, LRBMP and HRIMP optimal
solutions follows a decreasing trend even if for instance V T9 it present a
rising trend. This is probably due to a different configuration of event set
partition: a particularly convenient partition of event type can produce a
capacity increase and therefore more columns are generated (see Figure 2.14
and Figure 2.15).
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Table 2.18 Variation of T : package types distribution IMP solution

T Variation
Instance V T3 V T4 V T5 V T6 V T7 V T8 V T9

p=1 46% 24% 6% 0% 0% 0% 22%
p=2 15% 51% 54% 54% 49% 49% 26%
p=3 15% 3% 0% 0% 46% 48% 2%
p=4 2% 6% 40% 46% 5% 3% 10%
p=5 21% 17% 0% 0% 0% 0% 40%

Table 2.19 Variation of E : optimal values and computing time (sec.).

Variation of E
Instance V E40 V E50 V E60 V E70 V E80
OACV 81780 100440 118966 141443 166722

LRMP o.f. 92769 65078 79322 102095 134151
LRMP gap 23% 35% 33% 28% 20%

IMP
HRMP o.f. 62769 65077 79322 102093 134143
HRMP gap 0.00% 0.00% 0.00% 0.00% 0.01%
LRMP time 2.7 2.0 2.9 3.9 4.9
HRMP time 2.8 2.1 2.9 4.5 5.1

BMP
HRMP o.f. 57921 61757 73234 91757 112826
HRMP gap 7.72% 5.10% 7.68% 10.13% 15.90%
LRMP time 3.1 3.1 4.4 7.4 8.6
HRMP time 3.1 3.1 4.4 7.4 8.7

This results from the variation in the composition pattern:when more
convenient package types are generated, owing to the change in the partition
of the events, and the cross event capacity decreases, owing to the smaller
size of the subsets Et, the optimal solutions tend to be made by columns of
few package types. (see Table 2.18).

Number of events In Table 2.19 we present the results obtained with
instance 50t6 when the number of events is changed. Every change is made
by inserting ten additional events in E , starting with 40 up to 80, as indicated
in the name of the instances. Additional events are randomly assigned to
event types. The composition parameter upt does not change. Since the
OACV increases with the number of events, the values of the upper and
lower bounds also do.

In Figure 2.16 we can note that the optimal value of the LRMP shows an
evident growth with the number of events, because the increase in capacity
yields larger cross event capacity. The heuristic lower bounds provided by the
HRIMP model are consistently higher than those provided by the HRBMP
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Figure 2.16: Variation of E : LRMP gap.

Figure 2.17 shows that the solution of the HRMP models improve, as
expected, as the number of events grows, but the primal-dual gap also grows
larger: larger capacity implies that the columns generated by the HRBMP
solution can accommodate more events, but the improvement in the objective
function is not as large as the improvement in the OACV.
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Figure 2.17: Variation of E : HRMP gap

The computing time of column generation, with both models, shows an
increase with the number of events, as expected, because more and more
columns are generated due to the larger and larger cross event capacity.

Finally we analyze the relationship between the number of events and the
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Figure 2.18: Variation of E : computing time to solve LRMP.

Table 2.20 Variation of E : optimal values and computing time (sec.).

Variation E
Instances V E40 V E50 V E60 V E70 V E80

IMP
GENCOL 83 75 118 142 205

LRMPCOL 24 24 29 40 52
RMPCOL 28 28 29 45 57

BMP
GENCOL 103 105 145 218 279

LRMPCOL 24 25 28 39 52
RMPCOL 1 1 1 1 2

homogeneity of the solutions. Table 2.20 shows the results obtained with the
IMP and the BMP model.

More columns are generated when more events can be combined together
and this in turn explains the increase in computing time.

Figure 2.20 shows the number of columns in the optimal LRMP solution.
Table 2.21 shows that these columns are very homogeneous, that is they are
made of packages of few different types.

2.5.3 Final Comments

The tests reported above show that when significant parameters of the in-
stances are changed the HRIMP model keeps providing better solutions than
the HRBMP model. The optimal solution of the LRBMP model is consist-
ently more homogeneous.There is an evident correlation between the number
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Table 2.21 Variation of E : package types distribution IMP solution

VariationE
Instance E40 E50 E60 E70 E80 E90

p=1 - - 46% 45% 55% 54%
p=2 64% 54% - - - -
p=3 5% - - - - 13%
p=4 31% 46% 54% 55% 45% 32%
p=5 - - - - - 1%
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of columns generated and the computing time.

The parametric analysis shows that the composition parameter upt and
the partitions Et have a high impact on the solutions. We have identified
cross event type capacity as an indicator that allows identifying event types
acting as bottlenecks.

The BMP model is less robust to capacity variations, because it takes
into account capacity constraints not only in the master problem but also in
the pricing problem.In the parametric BMP model the capacity constraint
is eliminated from the pricing problem; as a result, the HRBMP solutions
achieve a smaller HRMP gap for small paramertic values.
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Chapter 3

Extensions

The proposed extensions approach several aspects of Tour Package Com-
position Problem: demand segmentation, inconvenience cost considerations,
groups of multiple sizes and stochastic demand. In each extension we will
use the most suitable formulation: integer master (IMP) or binary master
(BMP). In the first section the group model that gives solutions with tour
packages characterized by a certain dimension. In the second section we
present the IMP version and the BMP version of the Inconvenience cost
problem. In the third section we present the Demand Segmentation Model
in which segmented demand expressed preferences towards the whole offer
of packages tour. In the fourth section we present a model that solves a
stochastic demand problem. In the last section we compare the models and
results presented in the Chapter. Each section is divided into the following
sub-sections: motivation, problem formulation, column generation formula-
tion, data set description, results and comments.
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3.1 A model for tourist groups

3.1.1 Motivation

The classical Network Revenue Management problem[9, 49] and the Single
Capacity Problem [50, 51]. In these models for each individual booking re-
quest a decision is taken whether to accept it or not. On the contrary in
our setting it is very important to consider group requests, because package
tours can be sold to tourist groups willing to stay together. The size of the
groups can also be determined by other factors such as the capacity of the
vehicles carrying the tourists around.

From the results presented so far it appears that the HRIMP model yields
better solutions than the HRBMP model. The primal dual gap is lower than
0.05%, while it ranges from 4% to 33% with the HRBMP model. However,
since HRIMP solutions are less homogeneous, they show a high diversity in
the number of tourists assigned to the same packages as Table 3.1 shows.

Table 3.1 HRIMP: Distribution of tourists into different packages.

Instance 25t3 25t6 50t3 50t6 100t3 100t6
Avg. n. of tourists per package 18.56 9.71 16.90 9.96 17.14 9.15

Standard deviation 10.76 8.46 13.23 7.13 14.20 8.93

In this section we propose a model that generates packages of a dimension
multiple of a given integer parameter. We consider this parameter to be the
capacity of the vehicle used by the groups of tourists. For this purpose we
elaborate a BMP model and a IMP model. In the BMP formulation the
constraints that limit the package size to be an integer multiple of the group
size are in the pricing problem. We indicate this model with BMPMUL.
In the IMP formulation the constraints that limit the package size to be an
integer multiple of the group size are in the master problem of the HRMP
formulation . We indicate this model with IMPMUL.

3.1.2 Problem formulation

We indicate with r the size of the groups. We impose that the number of
tourists assigned to package q and visiting event e is an integer multiple of
r. An integer variable aeq indicates the number of vehicles needed to serve
tourists visiting event e within a package q.

The model is non-linear with integer and binary variables.
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maximize z =
∑
p∈P

∑
q∈Qp

∑
e∈E

vexeqgq (3.1)

s.t.
∑
p∈P

∑
q∈Qp

xeqgq ≤ min{de, ce} ∀e ∈ E (3.2)

∑
e∈Et

xeq = upt ∀p ∈ P ∀q ∈ Qp ∀t ∈ T (3.3)

xeqgq = aeqr ∀p ∈ P ∀q ∈ Qp ∀e ∈ E (3.4)

gq integer ∀p ∈ P ∀q ∈ Qp (3.5)

xeq binary ∀e ∈ E ∀q ∈ Qp (3.6)

3.1.3 Column generation

Binary master group model (BMPMUL) In the column generation
model we need to introduce an integer variable nq representing the number of
tourists with each package tour q and a non-repetition constraint that forbids
any event to be assigned more than once to any package. We dynamically
generate the elements of Qp for each package type p ∈ P .

Master problem:

maximize z =
∑
p∈P

∑
q∈Qp

wqhq (3.7)

s.t.
∑
p∈P

∑
q∈Qp

yeqhq ≤ min{de, ce} ∀e ∈ E (3.8)

0 ≤ hq ≤ 1 ∀p ∈ P ∀q ∈ Qp (3.9)

(3.10)

where wq is the value of all events that belong to package q ∈ Q, that is
wq =

∑
e∈E veyeq. The master problem is linear because yeq are data, not

variables. We indicate with λe the dual variable of each constraint (3.8).

Pricing problem:
The pricing sub-problem is decomposed into a problem for each package type
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p ∈ P .

maximize wp =
∑
e∈E

(ve − λe)ye. (3.11)

s.t.
∑
e∈Et

ye = uptnp ∀t ∈ T (3.12)

ye ≤ min{de, ce} ∀e ∈ E (3.13)

ye = rae ∀e ∈ E (3.14)

ye <= np ∀e ∈ E (3.15)

ye ≥ 0 integer ∀e ∈ E (3.16)

np ≥ 0 integer ∀p ∈ P . (3.17)

Integer master group model (IMPMUL) In Chapter 2 section 2.2.1
the IMP formulation that corresponds to the IMPMUL LRMP formulation
is presented. The HRMP formulation uses the columns generated by the
LRMP formulation.

We consider an integer linear programming problem whose columns are
those that have been generated while solving model (2.12)-(2.14) with column
generation. We denote as Q̃p this set of columns for each package type p ∈ P .
The model we solve is the following.

maximize z =
∑
p∈P

∑
q∈Q̃p

wqgq (3.18)

s.t.
∑
p∈P

∑
q∈Q̃p

xeqgq ≤ min{de, ce} ∀e ∈ E (3.19)

gq = r aq ∀p ∈ P q ∈ Q̃p (3.20)

gq integer ∀p ∈ P ∀q ∈ Q̃p. (3.21)

aq integer ∀p ∈ P ∀q ∈ Q̃p. (3.22)

3.1.4 Data-set and results

The model was tested with five data-sets generated from instance 25t6 and
5 upt variations and for the following group sizes: 5, 10, 15, 20, 25, 35, 50.
The actual capacity event average is 66.94, its standard deviation is 13.57,
its minimum value is 40 and its maximum value is 98.

In Table (3.2) and (3.3) we present the computational results.
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Table 3.2 BMPMUL computational results.

Binary master group model (BMPMUL)
r 1 5 10 15 20 25 35 50

LRMP o.f. 43308.7 43308.7 43308.7 43308.7 43308.7 43308.7 41971.3 35111.4
LRMP gap 6% 6% 6% 6% 6% 6% 9% 24%
HRMP o.f. 32400 31062 29358 29607 26930 26128 24327 24740
HRMP gap 25% 28% 32% 31% 38% 40% 42% 29%

LRMP time (sec.) 2.3 2.3 2.3 2.2 2.2 2.0 2.4 1.9
HRMP time (sec.) 2.4 2.3 2.3 2.2 2.2 2.1 2.3 1.9

Table 3.3 IMPMUL computational results.

Integer master group model (IMPMUL)
r 1 5 10 15 20 25 35 50

LRMP o.f. 42265.5 42265.5 42265.5 42265.5 42265.5 42265.5 42265.5 42265.5
LRMP gap 8%6 8% 8% 8% 8% 8% 8% 8%
HRMP o.f. 42045 41246 38464 36531 34444 32165 24969 13860
HRMP gap 1% 2% 9% 14% 18% 24% 41% 67%

LRMP time (sec.) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
HRMP time (sec.) 1.2 1.2 1.3 1.3 1.3 1.3 1.2 1.2
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3.1.5 Comments

For group size values that are smaller than minimum event capacity IMP-
MUL provides higher HRMP o.f. values than BMPMUL. For larger values
of group size BMPMUL achieves higher HRMP o.f. values. In addition IMP
model provides solutions that are easier to be applied in practice. The BMP-
MUL solution provides a bunch of packages combined together; therefore the
group dimension r does not characterize a group of tourists that visit the
same subset of events. The IMPMUL solution can guarantee that.

3.2 A model with demand segmentation

3.2.1 Motivation

In Revenue Management problems and especially in the Single Resource Ca-
pacity Problem and Network RM problem, demand is segmented according
to consumers’ buying capabilities. To consider this feature in our problem,
we define segments of demand characterized by the number of customers
willing to buy a package tour at a certain maximum price.In this model we
still have demand and price linked to resources (i.e. events). Nevertheless
we introduce segments characterized by a total demand and a correspondent
maximum reservation price. This is to say that packages can be sold only
to customers in a segment whose reservation price is not less than the value
of the package. Hence we generate packages that comply not only with the
constraints considered so far but also with maximum price constraints de-
pending on the segment. The IMP model will be used for column generation.
We indicate this model with IMPSEG. It is not possible to propose a BMP
model because as it generates columns that represents a ”bunch” of packages
combined together it is not possible to separate them in order to impose the
constraint associated with the package price limitations. The model respect
a not-nested capacity rule discussed in paragraph 1.2.1 where each demand
class accesses just it correspondent segment capacity.

3.2.2 Problem formulation

The main differences in the formulation are listed below.

Data. Instances are defined with these additional data:

• a set π of segments;

• a demand sk associated with each segment k ∈ π;

• a reservation price pk associated with each segment k ∈ π;
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Variables

• the composition of packages is indicated by a binary assignment vari-
able xeq, that takes value 1 if and only if event e ∈ E is included in
package q ∈ Qkp, where Qkp is the set of packages of type p ∈ P and
value compatible with segments up to k ∈ π and Q =

⋃
p∈P,k∈πQkp;

• the number of packages q ∈ Qkp of each segment k ∈ π and each type
p ∈ P is indicated by the integer variable gq.

Constraints The constraints are formulated as follows.

• Capacity constraint.∑
k∈π

∑
p∈P

∑
q∈Qkp

xeqgq ≤ ce ∀e ∈ E

• Demand constraint.∑
k∈π

∑
p∈P

∑
q∈Qkp

xeqgq ≤ de ∀e ∈ E

• Package composition constraint.∑
e∈Et

xeq = upt ∀k ∈ π ∀p ∈ P , ∀q ∈ Qkp, ∀t ∈ T

• Segment demand constraint: the amount of packages assigned to each
segment k ∈ π cannot be higher than segment demand sk.∑

p∈P

∑
q∈Qkp

gq ≤ sk ∀k ∈ π

• Reservation price constraint. The value of each package assigned to
each segment k ∈ π is constrained to be not larger than pk and not
smaller than pk−1.

pk−1 ≤
∑
e∈E

xeqve ≤ pk ∀k ∈ π ∀p ∈ P ∀q ∈ Qkp

Objective. The objective is the same as in the previous models.

z =
∑
k∈π

∑
p∈P

∑
q∈Qkp

∑
e∈E

vexeqgq.
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3.2.3 Column generation

Restricted linear master problem (LRIMP). We insert the demand
segmentation in the IMP formulation. The resulting model is indicated by
IMPSEG.

Master problem:

maximize z =
∑
k∈π

∑
p∈P

∑
q∈Qkp

wqgq (3.23)

s.t.
∑
k∈π

∑
p∈P

∑
q∈Qkp

xeqgq ≤ min{de, ce} ∀e ∈ E (3.24)

∑
p∈P

∑
q∈Qkp

gq ≤ sk ∀k ∈ π (3.25)

gq ≥ 0 ∀k ∈ π ∀p ∈ P ∀q ∈ Qkp
(3.26)

where wq is the value of each package q ∈ Qkp, that is wq =
∑

e∈E vexeq.
We indicate with λe and µk the two non-negative dual vectors of constraints
(3.24) and (3.25) of the LRIMP, where the integrality conditions of variables
gq have been relaxed into non-negativity conditions gq ≥ 0.

Pricing problem:

The pricing sub-problem is decomposed for every package p ∈ P and for
every segment k ∈ π.

maximize wkp =
∑
e∈E

vexe −
∑
e∈E

λexe − µk (3.27)

s.t.
∑
e∈Et

xe = upt ∀t ∈ T (3.28)

pk−1 ≤
∑
e∈E

vexe ≤ pk (3.29)

xe binary ∀e ∈ E . (3.30)

The objective function can be rewritten as:

maximize wkp =
∑
e∈E

(ve − λe)xe − µk

.

Heuristic Restricted Master Problem (HRIMP). A heuristic solu-
tion is computed in the same way as shown in the previous chapter. We
solve a restricted integer master problem without relaxing the integrality
constraints and considering only the columns generated by the column gen-
eration algorithm.
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Table 3.4 Model with demand segmentation: computational results.

Instance 25t3 25t6 50t3 50t6 100t3 100t6
Package types 3 6 3 6 3 6

Events 25 25 50 50 100 100
Event types 5 5 5 5 5 5

OACV 46142 46142 100440 100440 205708 205708

LRMP o.f. 46142 32964 100440 59859 205708 154889
LRMP gap 0% 28.56% 0% 40.40% 0% 24.70%
HRMP o.f. 46142 32964 100440 59859 205697 154808
HRMP gap 0% 0% 0% 0% 0.01% 0.05%
time LRMP 1.9 1.3 2.9 2.6 4.7 4.5
time HRMP 1.9 1.4 2.9 2.6 8.5 4.6

3.2.4 Data-set and results

The data-set consists of instances 25t3, 25t6, 50t3, 50t6, 100t3 and 100t6.
The only difference is that segment parameters sk and pk were added. In
particular we have considered three demand segments, corresponding to low,
medium and high purchasing power.

In order to generate feasible instances we estimated segment reservation
prices p and segment demands s that are consistent with event demands d,
event values v and package type composition patterns u.

We generated segment demand s as follows. We first estimated a total
demand

D =

∑
e∈E de∑

p∈P
∑

t∈T upt/|P|
.

Then we assigned this total demand D to each segment using the following
percentages: 50% to the low segment, 30% to the medium segment and 20%
to the high segment.

We generated segment reservation price values p as follows. For each
event type t ∈ T we sort the values ve for all e ∈ Et. Then for each p ∈ P
we sum the upt largest and smallest values in order to compose a maximum
and a minimum virtual value for package type p. We define MAXW and
MINW as the maximum among the maximum virtual values and the min-
imum among the minimum virtual values. Finally we define the p values for
the three segments as 40%, 60% and 85% of MAXW and not lower than
MINW .

In Table 3.4 we display the computational results.

Looking at Figure 3.2 we can note that the gap between the LRMP op-
timal value and the overall actual capacity value (OACV) is null for the
instances with 3 package types and this occurs for both IMPSEG and IMP.
However for instances with 6 package types we observe a gap: the results of
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IMP are better than those of IMPSEG. This was expected because IMPSEG
is a more constrained problem due to the introduction of the additional con-
straints. In addition, observing Table 3.4 we note that the gap between the
LRMP and HRMP values, HRMP gap, are almost null.
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Figure 3.2: Model with demand segmentation: LRMP solution quality

In Figure 3.3 we display the computing time of IMPSEG and IMP. The
two models show a similar trend.

The maximum demand s that can be allocated to each demand segment -
high, medium and low - is a problem parameter. It is interesting to compare
the distribution of the offered packages in the solutions with the distribution
of the demand in the segments. This comparison is displayed in Table 3.5.



72 Extensions

25t3 50t3 100t3 25t6 50t6 100t6

0

2

4

6

8

1,9

2,9

4,7

1,3

2,6

4,5

1,4

2,1

3,8

1,4
2

5,5

%
L

R
M

P
/O

A
V

C
ga

p

LRIMP computing time.

IMPSEG IMP

Figure 3.3: Model with demand segmentation: computing time.
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Table 3.5 Model with demand segmentation: parameters and results

Demand parameters and results
Instance low low medium medium high high total total

parameter result parameter result parameter result parameter result
25t3 239 239 143 143 96 96 478 478
25t6 136 69 81 81 54 54 271 204
50t3 710 439 426 338 284 186 1420 964
50t6 402 - 241 118 161 161 804 279
100t3 985 985 591 591 394 394 1970 1.970
100t6 558 294 335 335 223 223 1116 852
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As we can see the model tends to produce more packages in the medium
and high segments, because it prefers the use of packages with higher value.
Instance 50t6 has a particular configuration of events, where a shortage in
some event types capacity limits the total capacity usage and explains the
poor quality of the solution. In instance 50t6 the IMPSEG model solutions
computed by column generation and by the heuristic model do not include
any package of the low segment.

3.2.5 Comments

The introduction of demand segments does not change the nature of the
problem and it is easily managed by the models here proposed and by the
column generation algorithm we have used. Very good heuristic solutions
can still be obtained from the HRMP model. The gap between the primal
and the dual bounds is never larger than 0.05%.

As expected the IMPSEG model tends to allocate tourists to higher
classes, since they are more convenient.

3.3 Model with inconvenience cost

3.3.1 Motivation

The main motivation for studying the PTC problem is to optimize the dis-
tribution of potential tourism demand on a territory adjacent to classical
tourism centers, in order to exploit the available tourism facilities in an op-
timal way and to maximize revenue. However a primary disadvantage to
overcome is the geographical distance that implies an inconvenience for the
tourists who decide to visit the considered territory, since they have to spend
money and time to travel there. For this reason we extended our models in
order to take into account the inconvenience cost in the objective function.

3.3.2 Problem formulation

The only difference from the PTC problem described in the previous chapter
is the addition of an inconvenience cost f in the objective function. This
parameter represents the cost in which tourists incur by choosing to move to
the territory under study. This cost can be related to the transportation cost
of the transfer. The meaning of subtracting it from the objective function is
to discount the inconvenience cost from the total value of the offered package.

We consider both modeling options for column generation: a model with
integer master variables (IMPINC) and a model with binary master variables



Model with inconvenience cost 75

(BMPINC). In both cases the inconvenience cost affects the computation of
the reduced cost of the columns in the pricing sub-problem.

3.3.3 The IMP model with inconvenience cost

In the IMPINC model each column corresponds to a single package. We
dynamically generate the elements of sets Qp for every package type p ∈ P .

Linear Restricted Master problem:

maximize z =
∑
p∈P

∑
q∈Qp

wqgq (3.31)

s.t.
∑
p∈P

∑
q∈Qp

xeqgq ≤ min{de, ce} ∀e ∈ E (3.32)

gq ≥ 0 ∀p ∈ P ∀q ∈ Qp (3.33)

where wq is the value of each package q ∈ Q discounted by the inconveni-
ence cost, that is wq =

∑
e∈E vexeq − f . We define λe as the dual variables

of constraints (3.32). Integrality conditions of variables g are relaxed into
non-negativity conditions.

Pricing problem: The pricing sub-problem is decomposed for every pack-
age type p ∈ P :

maximize wp =wq −
∑
e∈E

λexe (3.34)

s.t.
∑
e∈Et

xe = upt ∀t ∈ T (3.35)

xe binary ∀e ∈ E . (3.36)

The objective function can be written as

maximize wp =
∑
e∈E

(ve − λe)xe − f.

The pricing problem is a discrete optimization problem that can be further
decomposed in as many sub-problems as the number of event types t ∈ T . For
each event type, indeed, the sub-problem is optimally solved by selecting the
upt events with maximum reduced value (ve−λe). We note that the addition
of the parameter f in the objective function of the pricing problem does
not change its combinatorial structure and does not affect its computational
complexity.
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3.3.4 The BMP model with inconvenience cost

In the BMPINC model each column corresponds to a bunch of packages of
the same type p ∈ P . We dynamically generate the elements of sets Qp for
every package type p ∈ P .

Linear Restricted Master problem:

maximize z =
∑
p∈P

∑
q∈Qp

wqhq (3.37)

s.t.
∑
p∈P

∑
q∈Qp

yeqhq ≤ min{de, ce} ∀e ∈ E (3.38)

0 ≤ hq ≤ 1 ∀p ∈ P ∀q ∈ Qp (3.39)

where wq is the value of each package q ∈ Qp, that is wq =
∑

e∈E veyeq −
npf . In this model the inconvenience value is multiplied by the number of
packages in the bunch. We define µe as the dual variables of constraints
(3.38). The binary conditions on variables h are relaxed into 0 ≥ hq ≥ 1.

Pricing problem:

The pricing sub-problem is decomposed for every package type p ∈ P :

maximize wp =wp −
∑
e∈E

µeye (3.40)

s.t.
∑
e∈Et

ye = uptnp ∀t ∈ T (3.41)

ye ≤ min{de, ce} ∀e ∈ E (3.42)

ye ≥ 0 integer ∀e ∈ E (3.43)

np ≥ 0 integer (3.44)

(3.45)

The objective function can be rewritten as

maximize wp =
∑
e∈E

(ve − µe)ye − npf.

3.3.5 Instances and results

The model was tested with a data-set obtained from instance 50t6 for the
following inconvenience costs: 10, 25, 50, 75, 100. We can compare these
values with the average value of the events and with the average value of the
packages. In instance 50t6 the average event value is 30 and the standard
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Table 3.6 Models with inconvenience cost: computational results.

Models with inconvenience cost
f 0 10 25 50 75 100

OACV 100440 100440 100440 100440 100440 100440

LRMP o.f. 65078 62288 58103 51128 44153 37178
LRMP gap 35% 38% 42% 49% 56% 63%

IMPINC
HRMP o.f. 65077 62284 58101 51123 44151 37178
HRMP gap 0.00% 0.01% 0.00% 0.01% 0.00% 0.00%

time LRMP (sec.) 1.9 2.0 2.1 2.4 2.0 1.9
time HRMP (sec.) 1.9 2.1 2.2 2.4 2.0 2.0

BMPINC
HRMP o.f. 61757 58967 54782 47807 40832 33857
HRMP gap 5% 5% 6% 6% 8% 9%

time LRMP (sec.) 2.7 2.5 2.8 2.9 2.8 2.8
time HRMP (sec.) 2.7 2.5 2.8 2.9 2.9 2.8

deviation of the event value is 12.26. The minimum event value is 10 and
the maximum event value is 50. The average event package value is not
a given datum but a problem output. The average package value in IMP
model results for instance 50t6 is 233. Therefore the inconvenience cost
varies according to event’s value range rather than the package value range.

In Table 3.6 we present the results of the IMPINC and the BMPINC
models for instance 50t6 with different inconvenience costs.

LRMP solution quality. From Figure 3.4 we can note that the gap
between the LRMP objective function and the OACV grows as the inconveni-
ence cost grows. This is intuitive because the inconvenience cost is subtracted
from the objective function but it is not taken into account in the estimate
of the OACV.

Figure 3.5 refers to the IMPINC model and displays the number of gener-
ated columns (GENCOL), the number of columns that belong to the LRMP
solution (LMPCOL) and the number of columns that belong to the HRMP
solution (RMPCOL). We can see that the general structure of both solutions
does not change, in spite of the revenue reduction.

HRMP solution quality By comparing the gap between the HRMP
objective function and the LRMP objective function of the IMPINC and
BMPINC models. As displayed in Figure 3.6 the HRMP gap in the IMP
model is almost null as in other integer master formulation. In the BMPINC
model this gap increases as the inconvenience cost grows.
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Computing time. Concerning the computing time, we can observe from
Figure 3.7 that the IMPINC shows a better performance. We remark that
in both the IMPINC and the BMPINC models the computing time of the
LRMP and of the HRMP formulation do not present a substantial difference.
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Figure 3.7: Model with inconvenience cost: computing time.
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3.3.6 Comments

The main consequence of the introduction of the inconvenience cost is the
decrease in the objective function value. The number of columns used in the
LRMP and HRMP suggests that the general structure of both solutions does
not change. By comparing the binary master inconvenience model and the
integer master inconvenience model it is possible to note that the IMPINC
model shows, as expected, a better HRMP solution quality and requires
shorter computing time.

3.4 Stochastic demand model

3.4.1 Motivation

In this extension we incorporate demand uncertainty into our model and we
propose a Stochastic Programming (SP) model. In SP the decision-making
process with uncertainty is organized in several subsequent steps. An ini-
tial solution is computed without an exact knowledge of the demand, but
relying on a known probability distribution. Following a two-stage recourse
approach we introduce explicitly corrective actions to be taken when demand
becomes known. These corrective actions, called recourse actions in SP, im-
ply penalties in the objective function and the goal is to minimize the total
expected cost. The advantage of this method is that risk is considered ex-
plicitly. The disadvantage is that the model may be too large to solve and
may require a suitable decomposition technique. We give a description of the
”two-stage” recourse approach technique in Appendix 2. Hereafter we refer
to the stochastic demand model with integer variables as the SIMP model.

3.4.2 Formulation

Our model consists in an innovative approach regarding two-stage stochastic
models. In classical approach variables are partitioned in first stage and
second stage variables. In our case the first and second stage decisions are
discriminated by the columns that belong to each scenario. We generated a
set of package tours and their quantity for each scenario and in the objective
function these columns are weighted by the probability to be sold.

In addition to the data considered so far we also introduce the following
data:

• a set S of scenarios ordered from the worst one to the best one i.e. by
increasing demand;

• the probability Ps for each scenario s ∈ S.
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• P̂s =
∑

r∈R|r≥s Pr, a cumulated probability of scenarios not worst than
s such that des′ ≤ des′′∀e ∈ E , ∀s′ ≤ s′′.

• a maximum demand des for each event e ∈ E for each scenario s ∈ S
(this replaces the demand vector d with one component for each event);

Variables. Besides the variables already used so far, we also need the fol-
lowing variable:

• an integer non-negative variable gsq for each event q ∈ Qsp and for each
scenario s ∈ S.

Constraints. Capacity constraints and package composition constraints.

• Capacity constraint∑
p∈P

∑
r∈R|r≤s

∑
q∈Qr

p

xeqg
r
q ≤ min(ce, des) ∀e ∈ E ∀s ∈ S.

• Package composition constraint∑
e∈Et

xeq = upt ∀p ∈ P , ∀q ∈ Qsp, ∀t ∈ T .

Objective The objective is to maximize the overall value obtained from
the events.

z =
∑
p∈P

∑
s∈S

∑
q∈Qs

p

P̂sw
s
qg
s
q

3.4.3 Column generation

Formulation. We dynamically generate the elements of set Qsp for every
package type p ∈ P and for every scenario s ∈ S.

Master problem:

maximize z =
∑
p∈P

∑
s∈S

∑
q∈Qs

p

P̂swqg
s
q (3.46)

s.t.
∑
p∈P

∑
r∈R|r≤s

∑
q∈Qr

p

xeqg
r
q ≤ min(cedes) ∀e ∈ E s ∈ S. (3.47)

gq integer ∀q ∈ Qsp ∀s ∈ S (3.48)
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We relax the integrality restrictions (3.48) to obtain the linear relaxation
of the master problem. We indicate by λes the non-negative dual variables
of constraints 3.48.

Pricing sub-problem.

The pricing sub-problem is decomposed for every package type p ∈ P and
s ∈ S.

maximize wps (3.49)

s.t.
∑
e∈Et

xe = upt ∀t ∈ T (3.50)

xe binary ∀e ∈ E . (3.51)

where wps =
∑
e∈E

vexeP̂s −
∑
e∈E

λexe ∀p ∈ P ∀s ∈ S.

3.4.4 Data-sets and results

The stochastic data-sets are similar to the standard ones. The parameters to
be added are the probability of each scenario Ps and the scenarios’ demand.
The medium scenario demand equals to the demand de of the standard in-
stances. The low and high scenario demand are respectively 75% and 160%
of the medium scenario demand. We present the results for standard data-
sets with the addition of two versions of Ps: version A and version B. The
values of Ps for both versions are displayed in Table 3.7.

Table 3.7 Stochastic model: Ps
Dataset version A B

low 0.1 0.6
medium 0.3 0.3

high 0.6 0.1

Stochastic IMP results. In Table 3.8 and 3.9 we display the results ob-
tained with the stochastic model.
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Table 3.8 Stochastic model: results with version A.
Stochastic IMP version A

Instance 25t3SA 25t6SA 50t3SA 50t6SA 100t3SA 100t6SA
Package types 5 5 5 5 5 5

Events 25 25 50 50 100 100
Event types 3 6 3 6 3 6

OCV 54229 54229 115324 115324 235261 235261
LRMP o.f. 48073 38432 103573 64979 212009 179654

% LRMP o.f. - OCV 11% 29% 10% 44% 10% 24%
LRMP time (sec.) 3.3 4.0 6.3 5.4 10.3 15.2

HRMP o.f. 48069 38432 103569 64971 212006 179644
% OCV - HRMP 11% 29% 10% 44% 10% 24%
HRMP time (sec.) 3.5 4.0 6.4 5.4 10.4 24.2

Low demand HRMP o.f. 3746 32312 78328 55691 164100 135239
Medium demand HRMP o.f. 43180 37347 93671 63746 193568 160311

High demand HRMP o.f. 48073 38432 103573 64979 212009 179654
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Table 3.9 Stochastic model: results with version B.
Stochastic IMP version B

Instance 25t3SB 25t6SB 50t3SB 50t6SB 100t3SB 100t6SB
Package types 5 5 5 5 5 5

Events 25 25 50 50 100 100
Event types 3 6 3 6 3 6

OCV 54229 54229 115324 115324 235261 235261
LRMP o.f. 41868 36175 90847 61023 186853 158247

% LRMP o.f. - OCV 23% 33% 21% 47% 21% 33%
LRMP time (sec.) 4.3 6.1 7.5 7.2 10.5 14.2

HRMP o.f. 41868 36175 90847 61020 186843 158234
% HRMP o.f. - OCV gap 23% 33% 21% 47% 21% 33%

HRMP time (sec.) 4.5 6.2 7.6 7.3 10.6 20.2
Low demand 39329 34982 86191 58884 175804 148916

Medium demand 41687 36175 90669 60850 185971 157790
High demand 41868 36175 90847 61023 186853 158247
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Remarkably in all our tests we could find a heuristic value (HRMP) co-
inciding with the upper bound value (LRMP); this provides an a posteriori
optimality guarantee to the solutions of the HRMP model.

In the previous models analysis we compared the objective function with
the overall actual capacity value (OACV) that takes into account not only
the events capacities but also the events demand. In the stochastic model,
demand is subject to scenario variation and therefore OACV is no longer a
suitable term of comparison. Hence we use the overall capacity value (OCV)
that does not depend on demand and is defined as

OCV =
∑
e∈E

vece.

We define as the OCV gap as the percentage gap between the OCV and the
optimal function value.

We observe in Figures 3.8 and 3.9 that the LRMP objective function is al-
ways incremented when a higher scenario is added, particularly with Version
A probability configuration, characterized by a probability predominance of
the high demand scenario.
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Figure 3.8: Stocastic Model: LRMP- A scenarios

As expected the Ps version A, that is characterized by a superior high
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Figure 3.9: Stochastic model: LRMP-B scenarios
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scenario demand probability achieves higher LRMP values with respect to
version B instances as displayed in Figure 3.10.
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Figure 3.10: Stochastic model: Ps variation

Scenario probability variation. We use instance 25t6S to test further
scenario probability dispersion as displayed in Table 3.10. A higher probab-
ility variation implies lower LRMP objective function values.

Table 3.10 Stochastic model: probability variation

Ps variation
versions X Y Z W
Plow 0.3 0.2 0.1 0

Pmedium 0.4 0.6 0.8 1
Phigh 0.3 0.2 0.1 0
OCV 54229 54229 54229 54229

LRMP o.f. 37173 37678 38286 39036
% LRMP o.f. - OCV 31% 31% 28% 28%

LRMP time (sec.) 4.1 4.1 3.8 3.8
HRMP o.f. 37168 37676 38285 39034

% HRMP o.f. - OCV gap 31% 31% 28% 28%
HRMP time (sec.) 4.2 4.1 3.9 3.8
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Demand variation. We use instance 25t6S to test different ratio between
low and high scenarios’ demand and medium scenario demand. The results
are displayed in Table 3.11. A higher demand variation implies a lower LRMP
objective function values.

Table 3.11 Stochastic model: demand variation
Demand variation

versions J H K L M
% medium demand low scenario 0.9 0.8 0.7 0.6 0.5
% medium demand high scenario 1.1 1.2 1.3 1.4 1.5

OCV 54229 54229 54229 54229 54229
LRMP o.f. 38337 37548 38250 35791 34547

% LRMP o.f. - OCV 29% 31% 45% 34% 36%
LRMP time (sec.) 4.1 4.3 4.3 4.7 4.7

HRMP o.f. 38332 37544 38250 35791 34547
% HRMP o.f. - OCV 29% 31% 45% 34% 5%

HRMP time (sec.) 4.2 4.4 4.3 4.8 4.7

3.4.5 Comments

As expected, in SIMP model, as in IMP models, there is a small gap between
the HRMP objective function and the LMRP objective function. As expected
the variation of scenario probabilities and of demand imply a lower LRMP
objective function values.



Chapter 4

Conclusions

In this chapter we underline the original features of our work and we propose
future research topics on the PTC problem.

89
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4.1 PTC formulations

In this thesis we have analyzed a new mathematical programming model in
the context of destination management for tourism promotion especially suit-
able to enhance tourism activities in territories not reached by mass tourism
and characterized by a large number of small accommodation facilities and
points of interest.

In particular we have addressed the problem of determining the optimal
composition of package tours. Existing literature deals with package tour
composition mainly from a routing point of view, i.e. at a tactical level. On
the contrary we addressed the selection problem at a strategic level.

Our model extends the existing scientific literature on products bundling
because it considers the classification of products into several types, which
allows to solve problem instances with a number of products much larger
than those solved so far.

The proposed model of the PTCP differs from classical network rev-
enue management problems mainly because demand is placed on resources
(events), not on products (packages).

The problem we considered arises at a strategic level, not at an opera-
tional one, since it deals with optimally structuring the offer of products, not
with real-time decisions on how to manage incoming customers’ requests.

From the viewpoint of the solution method, we employed column genera-
tion to linearize a non-linear model with an exponential number of variables,
not to decompose a linear model into subproblems as already done in the
literature.

Integer and binary master formulations. The Linear Restricted Mas-
ter Problem (LRMP) of both integer and binary formulations provide an
upper bound for the PTC problem. We have studied the correlation between
the LRMP objective function and the capacity utilization by a measure called
Overall Actual Capacity Value. Furthermore we observed that the capacity
utilization depends heavily on the data-set cross events capacities, i.e. the
sum of the capacities of events of the same type.

We also defined a math-heuristic method that exploits the columns gener-
ated during the column generation algorithm and can provide primal feasible
solutions of good quality (often optimal in our tests). The IMP formulation
is clearly superior to the BMP as far as the heuristic solutions are concerned.
This is easily explained by the observation that the BMP produces homo-
geneous solutions made of very few columns, while the IMP tends to provide
heterogeneous solutions made by a larger number of different columns.
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Extensions. The extensions illustrated in Chapter 3 incorporate particular
features in our PTC model.

The model with groups is one of the main motivations for using the BMP
formulation. Differently from the IMP formulation, capacity constraints must
be added also to the pricing problem and the solution generated is a bunch
of feasible packages grouped together. This implies that solutions turn out
to be very homogenous in terms of package types.

The extension with demand segmentation, a typical feature of revenue
management applications. The inclusion of this feature in the IMP formula-
tion does not change the nature of the model; the results are still character-
ized by a small gap between the LRMP and the HRMP optimal values that
is never larger than 0.05%. With this extended model it may be difficult
to generate feasible instances; some indications are given to overcome this
limitation.

The model with inconvenience costs is important for applications to ter-
ritories that are likely to imply an additional travel for tourists, like - for
example - the cities of Lombardy region different from Milan in the case of
Expo2015.

The stochastic model motivation is to incorporate uncertainty in demand.
We have analyzed and compared the composition of the optimal solution for
several different combinations of scenario probabilities and demand level.

Future research. The work presented in this thesis opens the way for
several possible developments. For instance:

• gathering all the proposed extensions in a single model simultaneously;

• running a discrete event simulation model to validate the results ob-
tained from the stochastic model,

• considering more complex problems yielding more complex pricing prob-
lems,

• developing models to be applied at an operational decision level.

More complex problems may originate from larger degrees of freedom in
the definition of feasible patterns and therefore in the formulation of compos-
ition constraints. The composition parameter upt, that states the number of
events of each event type that is supposed to be in each package tour type, can
be defined as a decision variable that can vary within a range (e.g. a pattern
may require to include a number of historical points of interest not smal-
ler than one and not larger than three). Moreover composition constraints
may involve combinations of events of different types (e.g. a feasible pattern
may require two churches and one museum or one church and two museums).
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These extensions would give more flexibility to the decision-maker and would
further enhance to optimize the capacity usage.

Finally it is possible to extend the PTCP with pricing policies, where
the price of a package is not given by the sum of the prices of its events,
but discounts and other dynamic pricing policies are employed, according to
variations in demand forecasts in order to maximize the revenue.
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of multiple bundles. Congresso Latino-Iberoamericano di Investigacion
Operativa, pages 3052–3061.

[22] B. H. Kobayashi. does economics provide a reliable guide to regulating
commodity bundling by firms? a survey of the economic literature.
Journal of Competition Law and Economics, 1 (4):707–746, 2005.

[23] S. Stremersch and G.J. Tellis. Strategic bundling of products and
prices: A new synthesis for marketing. Journal of Marketing, 66 (1):55–
72, Jan 2002.

[24] T. Olderog and B. Skiera B. The benefits of bundling strategies. Sch-
malenbach Business Review, 52 (2):137–159, 2000.

[25] M. Banciu, E. Gal-Or, and P. Mirchandani. Bundling strategies when
products are vertically differentiated and capacities are limited. Man-
agement Science, 56(12):2207–2223, December 2010.

[26] W.J. Adams and J. L. Yellen. Commodity bundling and the burden of
monopoly. The Quarterly Journal of Economics, Vol(3):475–498, Aug
1976.



PTC formulations 95

[27] R. Schmalensee. Gaussian demand and commodity bundling. The
Journal of Business,, 57(1):S211 –S230, 1984.

[28] R. Venkatesh and V. Mahajan. A probabilistic approach to pricing a
bundle of products or services. Journal of Marketing Research,, 30:494–
508, Nov 1993.

[29] R. Venkatesh and W. Kamakura. Optimal bundling and pricing under
a monopoly: Contrasting complements and substitutes from independ-
ently valued products. The Journal of Business, 76(2):211–231, April
2003.

[30] Y. Bakos and E. Brynjolfsson. Bundling information goods: Pricing,
profits, and efficiency. Management Science, 45(12):1613–1630, Decem-
ber 1999.

[31] L.M. Hitt and P. Chen. Bundling with customer self-selection: A simple
approach to bundling low-marginal-cost goods. Management Science,
51(10):1481–1493, October 2005.

[32] S. Wu, L.M. Hitt, P. Chen, and G. Anandalingam. Customized bundle
pricing for information goods: A nonlinear mixed-integer programming
approach. Management Science, 54(3):608–622, March 2008.

[33] G.R. Bitran and J.C. Ferrer. On pricing and composition of
bundles. Production and Operations Management, 16(1):93–108,
January-February 2007.

[34] R. Klein S. Mayer and S. Seiermann. A simulation-based approach
to price optimisation of the mixed bundling problem with capacity
constraints. Int. J.ProductionEconomics, 143:584–598, 2013.

[35] J.R.B. Ritchie and G.I. Crouch. The competitive destination: A sus-
tainable perspective. Tourism Management, 22 (SI):1–7, 2000.

[36] M. Manente. Destination management and economic background: de-
fining and monitoring local tourist destinations. International Confer-
ence of Tourism Malaga, 2008.

[37] T. Bieger. Reengineering destination marketing organizations - the case
of switzerland. The Tourist Review, 3:4–17, 1998.

[38] A. Flagestad and C. A. Hope. Strategic success in winter sports destina-
tions: A sustainable value creation perspective. Tourism Management,
22(5):445–461, 200.

[39] V. T. C. Middleton. Principles of Economics Book. 4, chapter The
marketing and management of tourism destinations: Research direc-
tions for the next decade. In Springer [52], 1994.

[40] D.B. Weaver. A broad context model of destination scenarios. Tourism
Management, 21(3):217–224, 2000.

[41] D. Buhalis. Marketing the competitive destination of the future. Tour-
ism Management, 21 (SI):97–116, 2000.



96 Conclusions

[42] C. P. Cooper Ed., editor. Advances in Case-Based Reasoning, chapter
Conceptual issues in the meaning of tourism. Progress in tourism,
recreation and hospitality management, London: Belhaven Press, 1990.

[43] Marshall A. Principles of Economics Book. 4, chapter Industrial Or-
ganization, Continued. The Concentration of Specialized Industries in
Particular Localities. In Springer [52], 1994.

[44] R. Sainaghi. From contents to processes: Versus a dynamic destin-
ation management model (ddmm). Tourism Management, 27:1053–
1063, 2006.

[45] M. Sharples S. McCabe and C. Fosterc. Stakeholder engagement in the
design of scenarios of technology-enhanced tourism services. Tourism
Management Perspectives, 4:36–44, October 2012.

[46] D. Buhalis and R. Law. Progress in information technology and tourism
management: 20 years on and 10 years after the internet the state of
etourism research. Tourism Management, 29:609–623, 2008.
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Appendix I

Column Generation

I.1 Motivation

Decomposition methods solve large scale problems by splitting them into
several smaller subproblems that are coupled through a master problem.
Usually, the master problem is a simple problem that can be solved in high
dimensions, while the subproblems contain the complicated constraints. De-
composition of optimization problems started with the so-called Dantzig-
Wolfe decomposition of linear programs with block-angular structure [53].
The method is linked to the dual simplex method, which is still one of the
most efficient methods for solving linear programs . [54] This technique was
first put to actual use by Gilmore and Gomory [55, 56] as part of an ef-
ficient heuristic algorithm for solving the cutting stock problem. Column
generation is nowadays a prominent method to cope with a huge number of
variables. The embedding of column generation techniques within a linear
programming based branch-and-bound framework, introduced by Desrosiers,
Soumis, and Desrochers [57] for solving a vehicle routing problem under time
window constraints, was the key step in the design of exact algorithms for a
large class of integer programs.[58]

The main reason for applying column generation to LP problems is their
excessive number of columns (variables). LP problems may have a huge
number of variables (for instance when variables have many indices). The
computing time spent by the simplex algorithm usually depends more on
the number of constraints than on the number of variables: so, it may be
convenient to solve the dual of an LP problem with many constraints. LP
problems may show a block-diagonal structure, so that they can be decom-
posed into independent sub-problems when linking constraints are considered
separately. LP problems may arise as linear relaxations of reformulations of
combinatorial problems with an exponential number of variables.

Table I.1 drawn from Lubbecke-Desrosiers 2002 [58] reports several ap-
plications of integer programming column generation.
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Table I.1 some applications of integer programming column generetaion
Reference(s) Application(s)

Agarwal et al. (1989) [59]; Desaulniers et al. (2001b)[60]; Desrochers et al. (1992) [61] various vehicle routing problems
Lobel (1997,1998)[62, 63]; Ribeiro and Soumis (1994)[64]

Borndorfer and Lobel (2001)[65]; Desaulniers et al. (2001b)[60] crew scheduling
Desrochers and Soumis (1989)[66]

Desrosiers et al. (1984) [67] multiple traveling salesman
problem with time windows

Krumke et al. (2002)[68] real-time dispatching of automobile service units
Lubbecke (2001)[69]; Lubbecke and Zimmermann (2003)[70]; multiple pickup and delivery problem with time windows

Sol (1994) [71]
Crainic and Rousseau (1987) [72]; Vance et al. (1997) [73] airline crew pairing

Barnhart and Schneur (1996) [74] air network design for express shipment service
Erdmann et al. (2001) [75] airline schedule generation

Barnhart et al. (1998a)[76]; Desaulniers et al. (1997)[77]; fleet assignment and aircraft
Ioachim et al. (1999)[78] routing and scheduling

Crama and Oerlemans (1994)[79] job grouping for flexible
manufacturing systems

Park et al. (1996)[80] bandwidth packing in
telecommunication networks

Ribeiro et al. (1989) [81] traffic assignment in satellite
communication systems

Sankaran (1995) [82] course registration at a business school
Vanderbeck (1994) [83] graph partitioning e.g., in VLSI, compiler design
Vanderbeck (1994) [83] single-machine multi-item lot-sizing

Hurkens et al. (1997)[84]; Valerio de Carvalho (1999, 2000, 2002b) [85, 86]; bin packing and
Vance (1998)[87]; Vance et al. (1994) [88]; Vanderbeck (1999) [89] cutting stock problems

Alvelos and Valerio de Carvalho (2000)[86]; integer multicommodity flows
Barnhart et al. (1997, 2000) [90, 91]

Bourjolly et al. (1997)[92] maximum stable set problem
Hansen et al. (1998)[93] probabilistic maximum satisfiability problem
Johnson et al. (1993)[94] minimum cut clustering

Mehrotra and Trick (1996)[95] graph coloring
Savelsbergh (1997)[96] generalized assignment problem
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I.2 Column Generation Classification

The term ’column generation’ has been used in three different but related
contexts, all of which apply to problems with a huge number of columns.
Rather than enumerating so many columns explicitly, these methods deal
with them implicitly, generating a selected set. Each involves a master prob-
lem (MP) that is to be optimized. The MP is restricted in the sense that its
columns are not all known explicitly. Hence, it is called the restricted MP
(RMP).

Type I column generation uses an auxiliary model (AM) to identify an
’attractive’ set of columns, defining a RMP that optimizes over these expli-
citly defined columns. The RMP accepts these columns and does not interact
further with the AM.

Type II uses a price-out problem (POP), which interacts with the RMP
to identify improving columns. This is the Column Generation type used in
this thesis.

Type III, which is based on Dantzig-Wolfe decomposition, employs one or
more sub-problems (SPs), which interact with the RMP to identify improving
columns.

We report in the following subsections a recap drawn from Wilhem 2001
[97] concerning three model examples from each column generation type.

I.2.1 Type I

Type I column generation employs an AM to generate a large number of
feasible columns and a RMP to prescribe the best subset of these columns.
This approach was used with noteworthy success in the 1960s and 1970s to
schedule airline crews (Arabeyre et al., 1969 [98]; Hoffman and Padberg, 1993
[99]) using the set-partitioning problem as the RMP. The approach can be
effective because the set-partitioning problem has a tight linear relaxation
but it may result in sub-optimal solutions because the AM may not generate
all optimal columns. The following paragraph describes Type I in a historical
formulation involving airline crew scheduling.

The airline crew scheduling(ACS) Early approaches to the airline crew-
scheduling problem provide classic examples of Type I column generation.
The objective is to minimize total crew cost, which represents a significant
component in the cost of airline operations.

Data. The following data are given:

• A set I of flight segments i ∈ I, which is defined by type of aircraft
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and its departure and arrival times for each flight.

• A set J crew rotation j ∈ J , which services a series of segments and
may last several days.

• The cost of rotation cj that includes lodging and other travel expenses,
flight time and deadheading in which the crew is repositioned by a
flight but does not service it.

Variables. The following variables are used.

• binary variable aij that assumes value 1 if rotation j serves segment
i ∈ I, 0 otherwise,

• binary variable xj that assumes value 1 if rotation j is prescribed, 0
otherwise j ∈ J ,.

Constraints. The following constraints define feasible solutions.

• requirement constraints that states one rotation serve one flight seg-
ment. ∑

j∈J

aijxj = 1 i ∈ I (I.1)

Objective function. The objective is minimize the total cost of all rota-
tions.

Min ZACS =
∑
j∈J

cjxj (I.2)

This model is well known as the set partitioning problem; rotation j
services a subset of the segments i ∈ I and the problem is to prescribe an
optimal subset of the generated rotations to service each segment once.

The first step invokes an auxiliary model (AM) to generate a set of feas-
ible rotations, which is used as a set of explicit columns to define Problem
ACS. It is typically not possible to assure that a restricted set of rotations
includes a subset that comprises an optimal solution, so the overall approach
is a heuristic. Nevertheless, experience has shown that it is possible to pre-
scribe good solutions if the set partitioning problem can be solved effectively
for a large number of generated rotations. The second step solves the set
partitioning problem with the columns defined explicitly by the AM. A body
of research has been directed towards developing algorithms to solve large
scale set-partitioning problems (e.g., Marsten, 1974 [100]; Balas and Pad-
berg, 1976 [101]; Marsten and Shepardson, 1981 [102]; Gershkoff, 1989 [103];
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Fisher and Kedia, 1990 [104]; Ryan, 1992[105]; Hoffman and Padberg, 1993
[99]; E-Darzi and Mitra, 1995 [106]; Rushmeier et al., 1995 [107];Wedelin,
1995[108]; Atamturk et al., 1996[109]; Sherali and Lee, 1996[110]; Conforti
et al., 1999[111]; Gamache et al., 1999[112]; Conforti et al., 2001a, 2001b,
2001c[113, 114, 115]; Fagerholt, 2001[116]). The primary limitation of the
Type I method is that the AM generates columns without interacting with
the RMP. The RMP can provide information specifically the dual variables,
to direct the search for improving columns. Instead of generating a large
set of columns with the hope of including the subset that comprises the op-
timal solution, interaction with the RMP allows columns to be identified
as needed. The following subsection describes Type II methods, which do
involve interaction between the RMP and SP(s).

I.2.2 Type II

Instead of defining columns explicitly, Type II column generation uses a POP
to identify the non basic column with the best Simplex entering criterion.
The RMP provides dual variable values to update objective function coef-
ficients in the POP, allowing it to generate improving columns as needed.
The following paragraph describes Type II formulation for the cutting stock
problem.

Cutting stock (CS) problem. A company stocks rolls (sheets, etc.) of
sheet metal (wire, pipe, cloth, lumber, etc.) in standard lengths Lm, m ∈
M . Assume that the company has an unlimited number of each standard
length and that its business is to cut these standard lengths into shorter
lengths to satisfy customers orders. A cutting pattern may be defined as one
combination of shorter lengths that may be cut from one standard length.

Data. The following data are given.

• a set M of lengths m,

• a set I of cut lengths orded,

• a set J of cutting patterns,

• a subset Ij of cut lengths included in the cutting patterns j,

• standard lengths Lm,

• number of pieces ordered bi,

• lenght ordered by costumers li,

• standard lenght cost cm,

• the cost of the standard roll cj used in pattern j .
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Variables. The following variables are used:

• integer variable aij denote the number of pieces of length li in cutting
pattern j,

• integer variable xj is the number of cutting patterns of type j prescribed
j ∈ J .

Constraints. The following constraints define feasible solutions.

• To be feasible, cutting pattern j must observe the limitation imposed
by the standard length Lm m ∈M :∑

i∈I

li aij ≤  Lm (I.3)

• orders for each cut length must be satisfied∑
j∈J

aij xi ≤ bi i ∈ I (I.4)

Objective function. The objective is minimize he total cost of filling or-
ders includes the costs of all standard lengths cut to fill the orders

Min ZRMP =
∑
j∈J

cjxj (I.5)

The linear relaxation of the cutting stock problem is known to be tight.
However, should an integer solution be required, the solution to the linear
relaxation could be rounded up. This heuristic is not guaranteed to prescribe
the optimal integer solution, however. To guarantee such a solution, the
linear relaxation may be used to obtain a lower bound at each node in a
branch-and-bound (B&B) search tree.

The primary difficulty is that the number of cutting patterns, |J |, may be
extremely large, so that solving the LP problem with all |J | columns could
take a prohibitive amount of time. Gilmore and Gomory (1961)[55] devised
the Type II methodology to circumvent this difficulty. Instead of listing all
|J | columns explicitly and pricing each out to identify the column that should
enter solution at each simplex iteration, they proposed optimizing a price-out-
problem (POP) to determine the entering variable. In fact, an independent
POP may be defined for each standard length m ∈ M with the objective
of determining the nonbasic column (i.e., cutting pattern) that minimizes
cj − zj for each j ∈ J , the LP optimality criterion. It is important to note
that the RMP must be optimized over columns that are known explicitly (i.e.,
considering slack and any other explicit variables) to obtain dual variables
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that are used to define the objective function in the POP. Defining wi as the
dual variable associated with constraint i of type I.4 for i ∈ I, ĉm as the cost
of standard length Lm for each m ∈ M and employing decision variables yi
as the number of length lji in a cutting pattern j , Problem POPm may be
formulated as:

Min ZPOP
m = ĉm −

∑
i∈I

w?i yi (I.6)∑
i∈I

li yi ≤  Lm (I.7)

yi ≤ 0, integer, i ∈ I (I.8)

Gilmore and Gomory (1961) designed a comprehensive algorithm that
forms a prototype for other applications. They proposed a dynamic program-
ming algorithm that solves all |M | POPs simultaneously. They also proposed
the use of a knapsack heuristic to solve individual POPs to quickly identify
an improving column. If the heuristic cannot generate an improving column,
an optimizing procedure must be applied to determine whether or not an im-
proving column exists. Gilmore and Gomory (1963) devised faster knapsack
algorithms and problem-specific techniques to deal with a limitation on the
number of cutting knives available, the need to balance workloads on mul-
tiple cutting machines, and a customer order for a range of amounts instead
of a fixed amount. They also explored three problem-specific techniques to
facilitate solution. First, they observed that, if a subset of cut lengths have
identical dual prices, the shortest length dominates others, which may be
eliminated from the knapsack (on this iteration) to speed solution by mak-
ing the POP smaller. Duplication occurred frequently, enabling POP size to
be reduced by about fifty percent. Second, they observed that if a variable
entered solution with a large value, it made a large change in the RMP ob-
jective function. So, they identified two groups of cut lengths, one with high
demand and the other with low demand. Lengths in the former group allow a
variable to enter at a large value so they required every other pivot to address
only the POPs associated with that group. Tests showed that this device led
to significant improvements on both the number of pivots and the run time.
Third, they performed tests to compare the use of a heuristic to solve each
POP when possible to the use of an optimizing method at all iterations. A
heuristic can solve the POP faster but is not guaranteed to prescribe an op-
timal solution. Their tests showed that optimizing at each iteration reduced
run time by significantly reducing the number of RMP pivots.

I.2.3 Type III

Type III column generation applies Dantzig-Wolfe Decomposition (DWD)
(Dantzig and Wolfe, 1960 [53]; Bazaraa et al., 1990[117]) to the linear re-
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laxation of an IP. At each iteration, values of dual variables from the RMP
update the objective function coefficients in each SP, and one or more SPs
are solved to generate an improving column, if possible. The column repres-
ents an extreme point (or an extreme ray) of the SP polyhedron. Decision
variables in the RMP form a convex combination of the extreme-point based
columns (and nonnegative linear combination of extreme rays) generated by
each SP. DWD is used to optimize an IP by solving a RMP at each node in
the B&B search tree to obtain a bound on the optimal IP solution value. In
this context, column generation is commonly called branch-and-price (B&P )
because DWD, which is a price-directed decomposition method (Barnhart
et al., 1998 [118]), is applied at each node in the B&B search tree. The
earliest use of DWD to solve an IP appears to be Appelgren (1969 [119]),
who addressed a ship-scheduling problem with SPs that were Shortest Path
Problems. Due to the structure of his RMP, he was able to obtain integ-
ral solutions to the linear relaxation in 98-99% of the instances he tested.
A subsequent paper, Appelgren (1971) [120], embedded the DWD within a
B&B search to resolve fractional variables. Appelgren addressed the funda-
mental issues involved in such an application, including devising a method
to select the branching variable and retaining a pool of previously generated
columns. In solving relatively large problems that involved scheduling 100
ships over a 6-7 week planning horizon, his approach successfully identified
optimal integral solutions requiring very few (5-11) nodes in the B&B search
tree. The following paragraph describes Type III in the formulation involving
Generalized Assignment Problem.

Generalized Assignment Problem (GAP) Savelsbergh (1997) formu-
lated GAP as follows:

Data. The following data are given:

• a set J of jobs,

• a set I of agents,

• time capacity bi for each agent i,

• aij time required by agent i to process job j,

• profit cij achieved for each job j processed by agent i.

Variables. The following variables are used:

• binary variable xij that assumes value 1 if and only if the job j is
assigned to agent i and 0 otherwise.
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Constraints. The following constraints define feasible solutions:

• assignment constraint, that assure that each job is assigned to one agent∑
i∈I

xij = 1 j ∈ J (I.9)

• time constraints which invoke time capacity of each agent i.∑
j∈J

aijxij ≤ bi i ∈ I (I.10)

Objective function.

Max ZGAP =
∑
i∈I

∑
j∈J

cijxij (I.11)

The constraints (I.9) and (I.10) exhibit a block diagonal structure that
defines an SP that is associated with each agent i ∈ I. The DWD of the
linear relaxation of the GAP leads to RMP:

maxZRMP =
∑
i∈I

∑
j∈J

(
cijxij

)
λki (I.12)

s.t.
∑
i∈I

(xkij)λ
k
i = 1 j ∈ J (I.13)∑

k∈Ki

λki = 1 i ∈ I (I.14)

λki ≥ 0, integer i ∈ I, k ∈ Ki (I.15)

Each row of constraint (I.9) includes a subset of decision variables; in
particular xij for i ∈ I. The corresponding row of the A matrix consists of
zeroes, except elements (j − 1) |I| + j, ..., (j − 1) |I| + |J | that are 1. Thus,
we define the product Ax =

∑
i∈I xij as denoted in (I.13). Problem SPi may

be formulated as

maxZSP
i =

∑
j∈J

(cij − w?ij) xij − α?i (I.16)

s.t.
∑
j∈J

aijxij ≤ bi (I.17)

xij ∈ {0, 1}, j ∈ J (I.18)

Set X includes binary requirements so that SPi is a binary knapsack
problem. For a given set of dual variables (i.e. w?j (j ∈ J) and α?i (i ∈ I))
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let binary xkij give optimum, ZSP?
i . If ZSP

i > 0, xkij generates an improving
column that enters the RMP. If ZSP?

i ≤ 0 for all i ∈ I, the current solution
of the RMP is optimal.

The convex hull of feasible integral solutions to SPi is contained in the
polytope associated with its linear relaxation, so the polytope defined by
(I.16-I.18) does not have all integral extreme points. Thus, SPs do not exhibit
the Integrality Property, and the solution to the RMP is at least as tight as
the solution to the linear relaxation of model (I.9) (I.10) (I.11) (Geoffrion,
1974)[121]. In fact, the bound provided by the RMP is equal to that provided
by a Lagrangian relaxation that relaxes semi-assignment constraints (I.9) into
the objective function. The Lagrangian dual (LD) is
Problem LD:

MinπMaxx Z
LD =

{∑
i∈I

∑
j∈J

cijxij +
∑
j∈J

π
(

1− xij
)}

constraint (I.10) and integrality constraint.

So, the RMP, an LP, is the dual of the Lagrangian dual that results from
relaxing the complicating constraints Ax ≥ b (Geoffrion, 1974)[121].

It is possible to obtain bounds that are tighter than those from the linear
relaxation by solving a SP over the convex hull of feasible integer points. The
SP could be solved easily (e.g., by LP) if all extreme points of its polytope
were integral. Unfortunately, as in the related Lagrangian relaxation method,
this Integrality Property assures that the decomposition will not give bounds
that are tighter than those from the linear relaxation of the original model.
If a sub-problem does not exhibit the Integrality Property, it must be solved
as an IP, so, in practice, it is only possible to obtain tighter bounds if a sub-
problem has a special structure that can be solved effectively, for example, in
polynomial or pseudo-polynomial time. For example, algorithms have been
devised to solve the knapsack problem and the CSPP in pseudo-polynomial
time. Thus, a model must achieve a tradeoff between SP tractability and
the tightness of bounds. Nemhauser and Wolsey (1988) [122] and Bazaraa et
al. (1990)[123] provide more details on the relationships between Lagrangian
relaxation and DWD.



Appendix II

Stochastic Programming

This appendix is tracted from the Introduction Tutorial on Stochastic Linear
Programming Models from Higle and Sen[124].

II.1 Motivation

It is often difficult to precisely estimate or forecast certain data of linear
programs. In such cases, it is necessary to address the impact of uncertainty
during the planning process. In deterministic activity analysis, planning con-
sists of choosing activity levels that satisfy resource constraints while max-
imizing total profit (or minimizing total cost). All the information necessary
for decision making is assumed to be available at the time of planning. Under
uncertainty, not all the information is available, and some parameters should
be modeled as random variables. Since deterministic methodology has been
prevalent in optimization models, it may be tempting to suggest that random
variables should be replaced by their means and the resulting optimization
problem solved. In general, this approach provides solutions that are struc-
turally different from those provided by stochastic optimization models.

II.2 Impact of uncertainty

The presence of uncertainty affects both feasibility and optimality. In fact,
formulating an appropriate objective function itself raises interesting model-
ing and algorithmic questions.

II.2.1 Feasibility under Uncertainty

To incorporate uncertainty within an LP, one must define feasibility. Two
naive approaches have sometimes been adopted in practice. One concerns

113



114 Stochastic Programming

SLP with Expected Values and one follows a ”wait and see” strategy.

SLP with Expected Values Consider the following four variable determ-
inistic LP:

Minimize x2 (II.1)

s.t.x1 + x2 + x3 = 2 (II.2)

−x1 + x2 + x4 = 2 (II.3)

−1 ≤ x1 ≤ 1 (II.4)

xj > 0, j = 2, 3, 4. (II.5)

Suppose that the coefficients of x1 and x2 in II.3 are not known with certainty,
and all that is known about these parameters is their joint distribution.

(ã21, ã22) =

{
(1, 3

4
) with probability 1

2

(−3, 5
4
) with probability1

2
.

In this case, E[ã21] = −1 and E[ã22] = 1 so that the coefficients in (II.3)
correspond to the expected values of the random variables. In examining
this formulation, we first investigate whether its solution, (x1, x2, x3, x4) =
(0, 2, 0, 0), is feasible under uncertainty. Under uncertainty, the constraint
corresponding to (II.3) is equally likely to be either

x1 +
3

4
+ x2 + x4 = 2

or

−3x1 +
5

4
+ x2 + x4 = 2.

The vector (0, 2, 0, 0) does not satisfy either of these equations and thus
is infeasible under uncertainty! Under uncertainty, the formulation in which
random variables are replaced by their expected values may not provide a
solution that is feasible with respect to the random variables.

Wait and see. Another approach that practitioners often adopt is based on
a wait-and-see analysis (sometimes referred to as scenario analysis or what-if
analysis). This approach mimics the process of delaying all decisions until
the last possible moment, after all uncertainties have been resolved. As a
result, the LPs associated with all possible outcomes of the random quant-
ities are solved. This yields a collection of decision vectors, one for each
possible outcome of the random variable(s). In general, none of these solu-
tions may be worthwhile. For example, consider the two possible realizations
of the problem in Example 1. The solution associated with (ã21, ã22) = (1, 3

4
)

is (−1, 3, 0, 0.75), while the solution associated with (ã21, ã22) = (−3, 5
4
) is

(− 2
17
, 32

17
, 0, 0.75). As with the solution to the expected-value problem, neither
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of these solutions is feasible with respect to the alternate outcome. That is,
if implemented, either solution would have a 50- percent chance of failing to
satisfy a constraint.

Modelling response to future infeasibility. As illustrated by Examples
1 and 2, an appropriate decision-making framework under uncertainty should
explicitly consider the consequences of future infeasibility within the model.
This aspect of modeling responses to future infeasibility sets stochastic pro-
grams apart from their deterministic counterparts. In the stochastic pro-
gramming literature, two approaches are widely studied: one is based on
modeling future recourse (response) and another restricts the probability of
infeasibility (typically equivalent to system failures) to be no greater than a
prespecified threshold. The first approach yields the so-called recourse prob-
lems, and the second approach yields problems with probabilistic (or chance)
constraints. We focus on recourse problems. The stochastic-programming
literature also considers another problem: the distribution problem. Re-
searchers focus on characterizing the distribution of the optimal value or
optimal solutions of random LPs. As with wait-and-see problems, the dis-
tribution problem does not provide a decision-making framework. Neverthe-
less,it provides a mathematical common ground between the second-stage
random LP in recourse problems and the random LP of the wait-and-see ap-
proach. From a computational point of view, this problem remains a major
challenge [125].

II.2.2 Optimality under Uncertainty.

A great deal of research revolves around the choice of objectives in decision
making under uncertainty. One of the more common objectives is to optim-
ize expected costs (or returns). However, as decision makers, we might be
interested in the variability of costs (or returns) associated with a plan. More
generally, a decision maker’s choices may be guided by a utility function. In
decision-making models for an individual, the concept of a utility function
has many merits, although its specification can be elusive. The notion of
a utility function can become even more elusive in large-scale applications
of LP. In the following, we discuss four of the more common objectives for
large-scale LPs under uncertainty:

• Minimization of expected costs is by far the most common objective
used in large-scale optimization under uncertainty. For such applica-
tions as planning power generation, average seasonal cost per day re-
flects the repetitive cost of supplying electricity. For some applications
in telecommunications systems, system performance is often measured
in terms of average unserved demand. Finally, in production-and-
inventory systems, it is common to use average production and holding
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costs in evaluating the cost effectiveness of a system. For such systems,
the expected cost criterion is easily justified.

• Minimization of expected absolute deviations from goals is a class of
objectives that results from extending goal programming techniques
to account for uncertainty. In some cases, it may be advantageous to
specify goals that depend upon particular scenarios. For example, pro-
duction goals may depend upon economic factors that are modeled as
uncertain quantities. Thus, the goals associated with prosperous and
recessionary times may be decidedly different. To meet such mana-
gerial objectives under uncertainty, it may be appropriate to minimize
expected absolute deviations from set goals.

• Minimization of maximum costs is an alternate class of models. There
are various interpretations of the term minimax in stochastic program-
ming models. In one interpretation, no distributional information is
available, and all that is known is the set of possible outcomes. In
this case, the minimax objective minimizes the maximum loss among
all possible outcomes of the random variable. A similar class of prob-
lems arises in the case of partial information regarding the probability
distributions. For instance, one may have information regarding some
characteristics of the distribution (for example, support, mean, and
variance), and the set of probability measures of interest may be those
that share those characteristics. A worst-case approach under partial
information is one in which we choose a decision that minimizes max-
imum expected loss, regardless of the distribution (from among the
class with the specified characteristics). When the class of distribu-
tions can be characterized as a polyhedral set, this class of problems
can be solved using generalized LP. This minimax approach is known to
be conservative and may be appropriate in models that plan to avoid
catastrophes. Thus, models associated with environmental planning
may appropriately use this objective [126]. In this tutorial, we discuss
primarily models with the expected value objective.

II.3 Two-Stage Recourse Models

In two-stage recourse models, we explicitly classify the decision variables
according to whether they are implemented before or after an outcome of
the random variable is observed. Decisions that are implemented before are
known as first-stage decisions while those after are second-stage decisions.
The first-stage decision variables can be regarded as proactive and are often
associated with planning issues, such as capacity expansion or aggregate
production planning. Second-stage decision variables can be regarded as
reactive and are often associated with operating decisions. These second-
stage decisions allow us to model a response to the observed outcome, which
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constitutes our recourse. When outcomes are revealed sequentially, decision
making involves a multistage planning problem.

In recourse planning, we model a response for each outcome of the ran-
dom elements that might be observed. In general, this response will also
depend upon the first-stage decisions. In practice, this type of planning in-
volves setting up policies that will help the organization adapt to the revealed
outcome. For example, in production and inventory systems, the first-stage
decision might correspond to production quantities, and demand might be
modeled using random variables. When demand exceeds the amount pro-
duced, policy may dictate that customer demand be backlogged at some
cost. This policy constitutes a recourse response. The exact level of this
response (the amount backlogged) depends on the amounts produced and
demanded. Under uncertainty, it is essential to adopt initial policies that
will accommodate alternative outcomes. Consequently, modeling under un-
certainty requires that we incorporate a model of the recourse policy.

In some applications, it is possible to deviate from prescribed limits, al-
though with a penalty cost. For example, in production and inventory man-
agement, a backlogging policy leads to shortage costs whenever the demand
exceeds the amount in stock.

II.3.1 Simple recourse policy formulation

For a generic two-stage formulation under a simple recourse policy, we use
an extension of the notation used in deterministic LP. The rows of a de-
terministic LP are usually written as Ax = b. Under uncertainty, we may
think of a submatrix A1 (of A) and a subvector b1 (of b) as rows that contain
only deterministic parameters. We refer to this portion of the problem as
the deterministic part. It corresponds to a first stage of the problem. The
remaining rows (containing at least one random element) will be indexed by
the set R. We refer to ai as the ith row vector in A, and use a ∼ to reflect
the presence of random variables. Let gi > 0 denote the penalty cost for
violating the target b̃i Then we can state a prototypical model allowing a
simple recourse policy as follows:

Minimize cx+
∑
in∈R

giE[|b̃i − ãix|] (II.6)

subject to A1x = b1 (II.7)

aisx+ y+
is − y−is = bis ∀s ∈ Si∀i ∈ R (II.8)

L1 ≤ x ≤ U1. (II.9)

This is an SLP with simple recourse. In such an SLP, the first-stage de-
cision variables (x) are the same as the decision variables associated with
the ’parent’ deterministic LP. Hence, the formulation is not flexible in its
response to uncertainty. Whenever the random vectors {(ãi, b̃i)}i∈R are dis-
crete random variables as in II.2.1, this model can be rewritten as a linear



118 Stochastic Programming

program as shown below. For i ∈ R, let Si denote an index set of all outcomes
of the random vector {(ãi, b̃i)} and let pis = P{(ãi, b̃i) = (ais, bis)}.

Minimize cx+
∑
i∈R

gi
(∑
s∈Si

pis(y
+
is + y−is)

)
(II.10)

subject to A1x = b1 (II.11)

aisx+ y+
is − y−is = bis ∀s ∈ Si∀i ∈ R. (II.12)

L1 ≤ x ≤ U1. (II.13)

In this formulation, the penalty cost per unit is the same whether ãi(x)−b̃i
is positive or negative. In some applications, the cost may be nonzero only
in one of these two cases. More generally, the per unit cost of b̃i− ãix may be
g+
i for positive values (of this random variable) and g−i for negative values.

In this case, the costs used for compensating variables (y+
i , y

−
i ) are g+

i and
g−i and the objective function must be changed to reflect this.

Finally, in stating the SLP with simple recourse, we have assumed that the
upper and lower bounds are not subject to uncertainty. In some situations,
these bounds may be random. Suppose, for example, that the upper bounds
reflect capacity restrictions. When systems fail, such capacity limits may be
modeled as random variables. Assuming a simple recourse policy, we can
easily extend the statement of the model to include this situation.

While the simple recourse policy offers a notion of feasibility for first-
stage plans, the recourse actions themselves are quite limited. For example,
in a production-andinventory system that is experiencing shortages, a simple
recourse policy is one that simply allows the manufacturer to adopt an out-
sourcing option. A more general recourse policy would allow changes in pro-
duction rates, thus allowing greater flexibility. Under uncertainty, greater
flexibility translates into greater responsiveness and greater profitability.

II.3.2 General recourse model

As with the formulation of a simple recourse model, we will present the
general recourse formulation as an extension of an LP problem:

Minimize cx (II.14)

s.t.Ax = b (II.15)

L ≤ x ≤ U . (II.16)

Suppose that the decision maker specifies a subvector of x, say x1, as
the first stage decision variables. These variables cannot be postponed until
better information is available. The remaining variables, say x2, can be
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postponed. Naturally, with this temporal division of the problem, two types
of constraints arise: constraints that involve only the first-stage variables
(x1), and constraints that may involve both sets of variables. Thus, it is
convenient to think of a submatrix A1 (of A) and a subvector b1 (of b) yielding
a subset of the constraints, A1x1 = b1. The remaining constraints involve
x1 and x2, which we write as Bx1 + A2x2 = b2. Finally, the cost vector c is
partitioned as (c1, c2) so that we may rewrite the formulation as

Minimize c1x1 + c2x2 (II.17)

s.t.A1x1 = b1 (II.18)

Bx1 + A2x2 = b2 (II.19)

L1 ≤ x1 ≤ U1, (II.20)

L2 ≤ x2 ≤ U2. (II.21)

It is convenient to think of this deterministic LP as the ’core’ problem
from which the stochastic LP will be derived. It models the time-staged
dynamics of the interactions among the decision variables.

The constraints A1x1 = b1 include the immediate constraints, those that
involve only the variables that cannot be delayed. As such, there are no
random variables in the immediate data (c1, A1, b1). The random variables
appear in the second stage of the problem, which includes the variables x2

and can be postponed until the uncertainties are realized. Thus, we consider
the second-stage data to include random variables, so that we express them
as (c̃2, B̃, ã2, b̃2), (here, we use ∼ to indicate a random entity).

To formulate the stochastic LP, let S denote an index set of all possible
outcomes of the second-stage quantities (B̃, ã2, c̃2, b̃2) such that each s ∈
S corresponds to a unique realization of these quantities (Bs, A2s, c2s, b2s).
If S is a discrete set, then for each s ∈ S, let ps = P{(B̃, ã2, c̃2, b̃2) =
(Bs, A2s, c2s, b2s)}. Also, let x2s denote the recourse response associated with
scenario s. The two-stage program with general recourse may now be written
as follows:

Minimize c1x1 +
∑
s∈S

psc2sx2s (II.22)

s.t. A1x1 = b1 (II.23)

Bsx1 + A2sx2s = b2s ∀s ∈ S (II.24)

L1 ≤ x1 ≤ U1, L2 ≤ x2s ≤ U2 ∀s ∈ S. (II.25)

This formulation is unlike the simple recourse formulation, in that some
(or perhaps all) choices of x1 that satisfy (II.22) can render (II.25) infeasible
for some scenarios. It is possible to include compensating variables (with
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positive penalty costs) to ensure that the resulting problem is feasible. Fur-
thermore, it can be shown that this extended formulation always has a lower
optimal value than a formulation in which the decision maker restricts all de-
cision variables in x (the vector from the deterministic LP) to be first-stage
decisions and only a simple recourse policy is allowed in the second stage.

The stochastic program with general recourse is also referred to as a
problem with random recourse, since the matrices A2s are allowed to depend
on the outcome s ∈ S. However, since the term random recourse might be
misconstrued as a case in which the decision maker has no control over the
recourse policy, we use the term general recourse. When the matrices A2s are
the same for all s ∈ S (that is, A2 is not random), the stochastic program
is said to have fixed recourse. Even in such cases, the random right-hand-
side vector, causes, b̃2, the recourse decision itself to vary with s, and hence
the fixed-recourse formulation retains the variables x2s, s ∈ S. Finally, the
special case of fixed recourse, in which A2s = [I,−I] (where I denotes an
identity matrix) yields the simple recourse model discussed earlier.

A general recourse problem is said to have complete recourse if for any
choice of x1, a feasible recourse decision is possible for all outcomes s ∈ S.
The simple recourse formulation possesses complete recourse. A slightly less
restrictive property is that of relatively complete recourse whereby one re-
quires that a feasible recourse decision be possible for all outcomes s provided
the first-stage decision (x1) satisfies the first-stage constraints (A1x1 = b1, L1 ≤
x1 ≤ U1). By using penalty costs for deviations from constraint satisfaction,
one can ensure complete recourse in any problem.

One of the more important notions incorporated within a stochastic pro-
gramming formulation is that of implementability (or nonanticipativity).
This term reflects the requirement that under uncertainty, the planning de-
cisions (x1) must be implemented before an outcome of the random variable
is observed. That is, the planning decision is made while the random variable
is still unknown, and therefore it cannot be based on any particular outcome
of the random variable. Thus the wait-and-see approach, which is anticipat-
ive, is not an appropriate decision-making framework for planning. On the
other hand, the here-and-now approach embodied in the two-stage SLP with
general recourse provides planning decisions (x1) that are not dependent on
any outcome of the random variable and hence are nonanticipative. An al-
ternate statement of this requirement is given in the scenario formulation
below:
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Minimize
∑
s∈S

ps[c1x1s + c2sx2s] (II.26)

subject to A1x1s = b1 ∀s ∈ S (II.27)

Bsx1s + A2sx2s = b2s ∀s ∈ S (II.28)

x1 − x1s = 0 ∀s ∈ S (II.29)

L1 ≤ x1s ≤ U1, (II.30)

L2 ≤ x2s ≤ U2 s ∈ S. (II.31)

In this formulation, the variables x1s are dependent on the outcome s.
However, constraint II.29 explicitly enforces implementability by requiring
that all outcomes agree on the same planning decision x1. We can obtain
a slightly more compact representation of this formulation by requiring first
A1x1 = b1 and then requiring II.29. By doing so, we avoid replicating the
first set of constraints for each outcome. Both of these are equivalent rep-
resentations of the two-stage SLP with general recourse. The particular
representation used typically depends on the algorithm being used to solve
the problem. Note that the general recourse problem is a finite dimensional
linear program whenever S is a finite set. However, whenever the random
variable is continuous these formulations lead to infinite dimensional prob-
lems. Under these circumstances, it is more convenient to state the model in
the following decomposed form:

Minimize cx1 + E[h̃(x1)] (II.32)

subject to A1x1 ≤ b1 (II.33)

L1 ≤ x1 ≤ U1 (II.34)

where each outcome hs(x) of the random variable h̃(x) is a function
of the LP defined by the outcome (c2s, A2s, Bs, b2s) of the random variable
(c̃2, ã2, B̃s, b̃2), that is,

hs(x1) = Minimize c2sx2s (II.35)

subject to A2sx2s = b2s −Bsx1 (II.36)

L2 ≤ x2s ≤ U2. (II.37)

This decomposed formulation is convenient when the sample space S
contains either a large number of atoms (in the case of discrete random
variables) or a continuum (in the case of continuous random variables). The
function E[h̃(x1)] is referred to as the recourse function. This formulation
emphasizes the time-staged nature of the decision problem. That is, the
selection of x1 is followed by the selection of x2, which is undertaken in
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response to the scenario that unfolds. Thus, the first decision, x1, represents
the immediate commitment made, while the second decision is delayed until
additional information is obtained. For this reason, when solving a recourse
problem, one typically reports only the first-stage decision vector.



Appendix III

Results

In this chapter we present the results of further instances variations. We consider four numbers of events, that are 25, 50, 75 and
100. For each event E set we construct six event set partitions Et according to the number of event types |T |. that are 3, 4, 5, 6, 7
and 8. Furthermore we create 10 upt parameter variations. Each subsection present the results for each event set E corresponding to
25, 50, 75 and 100 events.
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III.1 Dataset 25 events

The following tables present the results that regards the 25 events instances.

Table III.1 Instance 25E- LRMP objective function

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 46142.0 46142.0 44269.6 43389.0 40515.0 41681.3 38538.0 41963.0
B 46142.0 42854.0 39346.0 41989.0 44009.5 43074.0 38.549.4 40.570.4
C 46058.0 43040.0 44542.6 40552.5 38913.8 42380.6 37.990.4 38.893.1
D 46142.0 45729.3 43212.0 39355.0 43289.5 41494.8 38.095.5 40.471.0
E 44557.0 42978.0 46142.0 46042.0 39174.2 42720.0 42.881.0 38.999.2
F 46142.0 46036.8 41388.1 44570.7 42674.4 41780.0 45.068.2 41.986.4
G 46142.0 44912.1 37618.0 45472.4 44560.1 42672.4 36.992.0 41.584.2
H 46142.0 46058.0 43728.5 36405.5 44313.8 41641.7 42.279.0 38.324.4
I 46142.0 46142.0 43519.0 40006.3 45200.0 44045.0 42.132.8 41.125.0
J 46142.0 45366.0 43905.1 44041.4 44145.0 42539.8 44985.3 41188.2
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Table III.2 Instance 25E - LRMP gap

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 0.1% 0.4% 0.4% 0.4% 0.4% 0.5% 0.4% 0.1%
B 0.1% 0.1% 0.5% 0.5% 0.5% 0.0% 0.5% 0.5%
C 0.3% 0.4% 0.3% 0.4% 0.3% 0.3% 0.8% 0.3%
D 0.3% 0.3% 0.0% 0.5% 0.6% 0.5% 0.5% 0.5%
E 0.3% 0.4% 0.5% 0.5% 0.4% 0.4% 0.8% 0.5%
F 0.1% 0.4% 0.2% 0.3% 0.5% 0.5% 0.5% 0.6%
G 0.2% 0.4% 0.4% 0.5% 0.6% 0.5% 0.8% 0.8%
H 0.0% 0.4% 0.2% 0.2% 0.5% 0.2% 0.8% 0.2%
I 0.2% 0.1% 0.4% 0.7% 0.6% 0.5% 0.7% 0.9%
J 0.1% 0.2% 0.4% 0.4% 0.4% 0.2% 0.7% 0.3%

Table III.3 Instance 25E - IMP HRMP objective function

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 46115 45976 44075 43223 40368 41480 38392 41934
B 46113 42797 39167 41797 43804 43074 38359 40349
C 45924 42888 44414 40390 38788 42244 37687 38770
D 46026 45597 43209 39170 43042 41306 37906 40249
E 44425 42809 45923 45810 39027 42569 42524 38798
F 46118 45864 41294 44448 42450 41554 44837 41736
G 46037 44753 37478 45250 44300 42475 36707 41263
H 46122 45895 43633 36337 44097 41540 41951 38243
I 46053 46115 43336 39732 44915 43830 41851 40761
J 46102 45277 43750 43877 43962 42443 44688 41054
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Table III.4 Instance 25E - IMP HRMP gap

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 7.4% 7.1% 23.2% 22.2% 23.9% 39.1% 23.2% 61.0%
B 7.4% 0.0% 0.4% 25.9% 18.7% 26.4% 30.0% 20.4%
C 7.2% 0.4% 27.6% 24.7% 18.3% 25.7% 17.3% 37.0%
D 7.4% 12.0% 12.8% 22.6% 32.7% 26.8% 18.9% 19.5%
E 7.2% 23.7% 30.1% 27.7% 22.5% 19.5% 42.8% 43.0%
F 7.4% 11.8% 26.6% 25.3% 24.5% 32.9% 30.4% 34.2%
G 7.4% 8.7% 13.3% 35.3% 31.8% 35.7% 19.0% 26.7%
H 11.8% 7.0% 25.3% 16.1% 22.8% 29.0% 42.9% 32.1%
I 7.4% 11.2% 20.6% 19.0% 33.0% 36.6% 11.8% 29.5%
J 11.8% 5.5% 25.6% 26.0% 31.7% 34.5% 34.2% 50.6%

Table III.5 Instance 25E - IMP LRMP execution time (sec)

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 1.8 1.6 1.4 1.1 1.1 1.1 1.0 0.7
B 1.8 2.7 1.8 1.2 1.3 1.2 0.9 0.8
C 2.1 1.7 1.5 1.4 1.1 1.1 0.9 0.6
D 1.8 1.6 1.4 1.2 1.2 1.1 0.9 0.7
E 2.1 1.6 1.3 1.0 1.4 1.2 0.9 0.7
F 2.0 1.7 1.4 1.5 1.0 1.0 1.0 0.8
G 1.7 1.8 1.6 1.4 1.1 1.3 0.8 0.9
H 1.8 1.6 1.2 1.1 1.1 1.1 1.0 0.8
I 1.9 1.6 1.5 1.2 1.3 1.0 0.8 0.7
J 1.9 2.3 1.5 1.4 1.5 1.1 0.9 0.9
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Table III.6 Instance 25E - IMP HRMP execution time (sec)

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 1.9 1.7 1.4 1.2 1.2 1.1 1.0 0.7
B 1.9 2.8 1.8 1.2 1.3 1.3 0.9 0.8
C 2.2 1.7 1.5 1.4 1.1 1.1 1.0 0.6
D 1.8 1.6 1.4 1.2 1.3 1.1 0.9 0.7
E 2.1 1.6 1.3 1.1 1.4 1.2 1.0 0.7
F 2.1 1.7 1.4 1.5 1.1 1.0 1.0 0.9
G 1.7 1.8 1.6 1.5 1.1 1.3 0.8 0.9
H 1.8 1.6 1.2 1.1 1.1 1.2 1.0 0.8
I 1.9 1.7 1.6 1.2 1.3 1.0 0.8 0.7
J 2.0 2.4 1.6 1.4 1.5 1.1 0.9 1.0

Table III.7 Instance 25E - BMP HRMP objective function

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 42724 42854 34012 33777 30833 25369 29587 16350
B 42724 42854 39204 31109 35786 31706 27000 32300
C 42724 42854 32238 30526 31801 31478 31407 24516
D 42724 40224 37680 30453 29117 30371 30895 32592
E 41364 32808 32238 33295 30379 34387 24532 22222
F 42724 40610 30371 33295 32238 28018 31354 27610
G 42724 40990 32610 29415 30411 27448 29955 30474
H 40677 42854 32685 30539 34217 29583 24140 26008
I 42724 40990 34573 32394 30267 27943 37168 28985
J 40677 42854 32685 325876 30165 27881 29584 20362
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Table III.8 Instance 25E - BMP HRMP gap

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 7.4% 7.1% 23.2% 22.2% 23.9% 39.1% 23.2% 61.0%
B 7.4% 0.0% 0.4% 25.9% 18.7% 26.4% 30.0% 20.4%
C 7.2% 0.4% 27.6% 24.7% 18.3% 25.7% 17.3% 37.0%
D 7.4% 12.0% 12.8% 22.6% 32.7% 26.8% 18.9% 19.5%
E 7.2% 23.7% 30.1% 27.7% 22.5% 19.5% 42.8% 43.0%
F 7.4% 11.8% 26,6% 25,3% 24,5% 32,9% 30,4% 34,2%
G 7.4% 8.7% 13,3% 35,3% 31,8% 35,7% 19,0% 26,7%
H 11.8% 7.0% 25,3% 16,1% 22,8% 29,0% 42,9% 32,1%
I 7.4% 11.2% 20,6% 19,0% 33,0% 36,6% 11,8% 29,5%
J 11.8% 5.5% 25,6% 26,0% 31,7% 34,5% 34,2% 50,6%

Table III.9 Instance 25E - BMP LRMP execution time (sec)

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 1.6 1.9 1.7 1.7 1.5 1.4 1.2 0.8
B 1.7 3.4 2.6 1.4 1.7 1.3 1.0 1.0
C 2.2 2.8 1.7 1.7 1.6 1.4 1.0 0.7
D 1.6 1.7 1.8 1.5 1.5 1.4 0.9 1.0
E 2.5 1.7 1.2 1.1 1.8 1.7 1.0 0.8
F 1.8 1.9 1.8 1.8 1.6 1.2 0.9 0.9
G 1.6 2.4 2.2 1.2 1.3 1.6 1.4 0.9
H 1.5 1.7 1.4 1.2 1.2 1.6 0.8 1.0
I 1.6 1.7 2.0 1.9 1.3 1.3 1.0 1.0
J 1.9 2.3 1.6 1.5 1.2 1.5 0.8 0.9
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Table III.10 Instance 25E - BMP HRMP execution time (sec)

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 1.6 1.9 1.7 1.7 1.5 1.4 1.2 0.8
B 1.7 3.4 2.6 1.5 1.7 1.3 1.0 1.0
C 2.2 2.9 1.7 1.7 1.6 1.4 1.0 0.7
D 1.6 1.7 1.8 1.5 1.5 1.4 1.0 1.0
E 2.5 1.7 1.2 1.1 1.8 1.7 1.0 0.8
F 1.8 1.9 1.8 1.8 1.6 1.2 0.9 0.9
G 1.6 2.4 2.2 1.2 1.3 1.7 1.4 0.9
H 1.5 1.7 1.4 1.3 1.2 1.7 0.8 1.0
I 1.6 1.7 2.0 1.9 1.4 1.3 1.0 1.0
J 1.9 2.3 1.6 1.6 1.2 1.5 0.8 0.9
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III.2 Dataset 50 events

The following tables present the results that regards the 50 events instances.

Table III.11 Instance 50E- LRMP objective function

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 100440.0 100440.0 96951.0 96262.0 91314.3 84195.0 84482.6 88272.6
B 100440.0 98443.0 84518.0 97146.0 99304.1 85072.5 75298.0 86432.3
C 100440.0 99850.0 96826.9 95406.0 90021.0 84694.0 83054.4 93953.8
D 100440.0 100440.0 96960.4 90081.7 98652.0 82416.6 87494.0 91265.0
E 98478.0 98469.0 99051.0 100214.0 94362.0 86128.0 82820.2 93563.4
F 100440.0 97913.5 96074.7 98229.3 94127.0 77089.4 88845.0 93737.9
G 100440.0 98160.0 88455.0 100240.0 96416.3 82436.1 94374.3 94353.3
H 100440.0 100440.0 98177.5 87936.5 98385.8 83817.8 82234.7 87109.9
I 100440.0 100440.0 82154.8 93197.3 98983.3 85033.9 91929.0 89570.6
J 100440.0 99850.0 99313.3 96864.3 97602.0 85270.0 95415.5 95422.0
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Table III.12 Instance 50E- LRMP gap

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 0.0% 0.0% 3.5% 4.2% 9.1% 16.2% 15.9% 12.1%
B 0.0% 2.0% 15.9% 3.3% 1.1% 15.3% 25.0% 13.9%
C 0.0% 0.6% 3.6% 5.0% 10.4% 15.7% 17.3% 6.5%
D 0.0% 0.0% 3.5% 10.3% 1.8% 17.9% 12.9% 9.1%
E 2.0% 2.0% 1.4% 0.2% 6.1% 14.2% 17.5% 6.8%
F 0.0% 2.5% 4.3% 2.2% 6.3% 23.2% 11.5% 6.7%
G 0.0% 2.3% 11.9% 0.2% 4.0% 17.9% 6.0% 6.1%
H 0.0% 0.0% 2.3% 12.4% 2.0% 16.5% 18.1% 13.3%
I 0.0% 0.0% 18.2% 7.2% 1.5% 15.3% 8.5% 10.8%
J 0.0% 0.6% 1.1% 3.6% 2.8% 15.1% 5.0% 5.0%

Table III.13 Instance 50E- IMP HRMP objective function

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 100209 100119 96634 95808 90716 83750 83828 87763
B 100288 98071 84120 96782 98730 84798 74648 86128
C 100288 98524 96371 94906 89516 84560 82747 93066
D 100278 100075 96607 89587 98184 81897 87223 90731
E 98257 98249 98597 99783 93821 85810 82469 92785
F 100143 97671 95633 97720 93582 76647 88389 93257
G 100332 97873 88172 99668 96046 81944 93949 93870
H 100308 100047 97737 87509 97919 83426 81776 86745
I 100164 100271 81769 92934 98248 84585 91210 88695
J 100173 99456 98826 96475 97054 84743 94843 94829



132
R

esu
lts

Table III.14 Instance 50E- IMP HRMP gap

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 0.2% 0.3% 0.3% 0.5% 0.7% 0.5% 0.8% 0.6%
B 0.2% 0.4% 0.5% 0.4% 0.6% 0.3% 0.9% 0.4%
C 0.2% 1.3% 0.5% 0.5% 0.6% 0.2% 0.4% 0.9%
D 0.2% 0.4% 0.4% 0.5% 0.5% 0.6% 0.3% 0.6%
E 0.2% 0.2% 0.5% 0.4% 0.6% 0.4% 0.4% 0.8%
F 0.3% 0.2% 0.5% 0.5% 0.6% 0.6% 0.5% 0.5%
G 0.1% 0.3% 0.3% 0.6% 0.4% 0.6% 0.5% 0.5%
H 0.1% 0.4% 0.4% 0.5% 0.5% 0.5% 0.6% 0.4%
I 0.3% 0.2% 0.5% 0.3% 0.7% 0.5% 0.8% 1.0%
J 0.3% 0.4% 0.5% 0.4% 0.6% 0.6% 0.6% 0.6%

Table III.15 Instance 50E- IMP LRMP execution time (sec)

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 3.9 2.9 3.3 3.0 2.2 1.7 1.7 1.6
B 4.4 5.1 3.3 2.6 2.4 2.0 1.7 1.7
C 6.3 3.7 3.3 2.4 1.8 1.8 1.8 1.8
D 4.6 3.3 3.2 2.2 2.4 1.6 2.2 1.8
E 4.3 3.2 3.0 2.3 2.7 2.1 1.5 1.9
F 3.4 4.2 3.4 2.6 2.4 2.0 2.2 1.7
G 3.2 3.9 3.7 2.6 2.5 2.2 2.3 1.9
H 3.7 3.7 3.4 2.7 2.8 1.8 1.8 1.9
I 4.3 3.5 3.0 2.7 2.6 1.9 1.8 1.6
J 3.9 5.5 3.6 2.7 2.3 2.1 2.3 1.8
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Table III.16 Instance 50E- IMP HRMP execution time (sec)

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 4.0 2.9 3.3 3.0 2.2 1.7 1.7 1.7
B 4.6 5.8 3.4 2.6 2.4 2.0 1.7 1.8
C 6.4 3.9 3.4 2.4 1.9 1.9 1.8 1.8
D 4.8 3.3 3.3 2.2 2.4 1.6 2.2 1.9
E 4.5 3.3 3.1 2.3 2.7 2.1 1.5 1.9
F 3.5 4.3 3.5 2.6 2.5 2.0 2.2 1.8
G 3.2 4.1 3.8 2.6 2.5 2.2 2.4 1.9
H 3.8 3.8 3.4 2.8 2.9 1.9 1.9 1.9
I 4.3 3.6 3.1 2.7 2.6 1.9 1.9 1.7
J 4.0 5.5 3.6 2.7 2.4 2.2 2.3 1.9

Table III.17 Instance 50E- BMP HRMP objective function

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 95926 98038 79879 73476 66262 52839 59612 44171
B 95926 98038 78444 70815 65162 74686 48746 57838
C 95926 98850 71166 75109 62668 62721 62052 61787
D 95926 83824 83298 67933 63672 53730 65851 76488
E 90186 77622 71166 71034 67319 64925 47135 62509
F 95926 84396 78331 73880 65458 57108 53181 50922
G 95926 84396 82686 72016 63076 66274 60361 73652
H 89879 98038 65874 71880 72281 54980 57581 68101
I 95926 81355 75297 80228 64135 56151 70560 64568
J 89879 98038 67264 71415 70048 57268 65865 50752
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Table III.18 Instance 50E- BMP HRMP gap

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 4.5% 2.4% 17.6% 23.7% 27.4% 37.2% 29.4% 50.0%
B 4.5% 0.4% 7.2% 27.1% 34.4% 12.2% 35.3% 33.1%
C 4.5% 1.0% 26.5% 21.3% 30.4% 25.9% 25.3% 34.2%
D 4.5% 16.5% 14.1% 24.6% 35.5% 34.8% 24.7% 16.2%
E 8.4% 21.2% 28.2% 29.1% 28.7% 24.6% 43.1% 33.2%
F 4.5% 13.8% 18.5% 24.8% 30.5% 25.9% 40.1% 45.7%
G 4.5% 14.0% 6.5% 28.2% 34.6% 19.6% 36.0% 21.9%
H 10.5% 2.4% 32.9% 18.3% 26.5% 34.4% 30.0% 21.8%
I 4.5% 19.0% 8.3% 13.9% 35.2% 34.0% 23.2% 27.9%
J 10.5% 1.8% 32.3% 26.3% 28.2% 32.8% 31.0% 46.8%

Table III.19 Instance 50E- BMP LRMP execution time (sec)

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 4.5 4.1 4.1 3.8 3.2 2.3 2.5 2.0
B 4.7 6.7 4.8 3.8 2.5 1.9 2.6 2.2
C 4.7 3.7 4.2 3.6 2.8 2.7 2.7 2.5
D 4.8 4.1 4.0 3.1 2.3 2.5 2.4 2.7
E 6.1 5.0 3.5 2.4 3.6 2.2 2.3 2.4
F 4.8 5.4 4.2 3.3 3.2 2.4 2.5 2.0
G 4.1 4.9 6.2 2.6 2.6 2.4 2.7 2.4
H 3.9 4.9 4.4 3.7 2.5 2.5 3.3 2.3
I 4.8 3.9 4.6 4.3 2.6 1.9 3.5 2.6
J 4.7 6.2 4.5 3.5 3.1 2.6 2.2 2.3
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Table III.20 Instance 50E- BMP HRMP execution time (sec)

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 4.5 4.1 4.2 3.8 3.3 2.3 2.5 2.0
B 4.7 6.7 4.9 3.8 2.5 1.9 2.6 2.2
C 4.7 3.9 4.2 3.6 2.8 2.7 2.8 2.6
D 4.8 4.1 4.0 3.1 2.3 2.5 2.4 2.7
E 6.2 5.1 3.5 2.4 3.7 2.3 2.4 2.5
F 4.8 5.4 4.3 3.3 3.2 2.4 2.5 2.1
G 4.1 4.9 6.3 2.7 2.6 2.4 2.7 2.4
H 3.9 5.0 4.4 3.8 2.5 2.5 3.3 2.3
I 4.8 3.9 4.6 4.4 2.6 1.9 3.5 2.6
J 4.7 6.2 4.6 3.5 3.1 2.6 2.2 2.4
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III.3 Dataset 75 events

The following tables present the results that regards the 75 events instances.

Table III.21 Instance 75E - LRMP objective function

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 153550.0 152510.0 151536.0 152886.0 137667.0 144404.0 127268.0 133786.0
B 153550.0 150358.0 119880.0 149267.0 146593.0 146132.0 124758.0 133841.0
C 153550.0 153550.0 150796.0 148933.0 142939.0 141908.0 129656.0 142727.0
D 153550.0 153550.0 150517.0 146758.0 147744.0 144681.0 134407.0 138398.0
E 152272.0 151052.0 151519.0 150741.0 139041.0 150242.0 145902.0 140386.0
F 153550.0 148183.0 139512.0 149237.0 137965.0 144942.0 150860.0 145997.0
G 153550.0 148912.0 132082.0 149185.0 146268.0 141186.0 138221.0 133820.0
H 153550.0 153550.0 149234.0 130231.0 150929.0 151083.0 138685.0 140635.0
I 153550.0 153550.0 134752.0 140131.0 151796.0 151083.0 145755.0 145621.0
J 153550.0 153550.0 150134.0 148187.0 151210.0 139250.0 150404.0 141889.0
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Table III.22 Instance 75E - LRMP gap

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 0.0% 0.7% 1.3% 0.4% 10.3% 6.0% 17.1% 12.9%
B 0.0% 2.1% 21.9% 2.8% 4.5% 4.8% 18.8% 12.8%
C 0.0% 0.0% 1.8% 3.0% 6.9% 7.6% 15.6% 7.0%
D 0.0% 0.0% 2.0% 4.4% 3.8% 5.8% 12.5% 9.9%
E 0.8% 1.6% 1.3% 1.8% 9.4% 2.2% 5.0% 8.6%
F 0.0% 3.5% 9.1% 2.8% 10.1% 5.6% 1.8% 4.9%
G 0.0% 3.0% 14.0% 2.8% 4.7% 8.1% 10.0% 12.8%
H 0.0% 0.0% 2.8% 15.2% 1.7% 1.6% 9.7% 8.4%
I 0.0% 0.0% 12.2% 8.7% 1.1% 1.6% 5.1% 5.2%
J 0.0% 0.0% 2.2% 3.5% 1.5% 9.3% 2.0% 7.6%

Table III.23 Instance 75E - IMP HRMP objective function

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 153222 151926 150929 152257 136912 143595 126194 133026
B 153204 149787 119336 148420 145994 145242 123658 133016
C 153342 152943 150149 148053 142045 140926 128949 141326
D 153185 153076 149806 146145 146848 143895 133197 137105
E 151875 150687 150843 150089 138189 149550 144876 139127
F 153289 147631 138873 148451 137097 143847 150073 145145
G 153122 148368 131486 148674 145278 140345 137422 132547
H 153163 152990 148662 129678 150059 150112 137574 139871
I 153137 153217 134339 139645 150820 150112 144758 144687
J 153092 152976 149430 147321 150337 138565 149512 140635
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Table III.24 Instance 75E - IMP HRMP gap

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 0.2% 0.4% 0.4% 0.4% 0.5% 0.6% 0.8% 0.6%
B 0.2% 0.4% 0.5% 0.6% 0.4% 0.6% 0.9% 0.6%
C 0.1% 0.4% 0.4% 0.6% 0.6% 0.7% 0.5% 1.0%
D 0.2% 0.3% 0.5% 0.4% 0.6% 0.5% 0.9% 0.9%
E 0.3% 0.2% 0.4% 0.4% 0.6% 0.5% 0.7% 0.9%
F 0.2% 0.4% 0.5% 0.5% 0.6% 0.8% 0.5% 0.6%
G 0.3% 0.4% 0.5% 0.3% 0.7% 0.6% 0.6% 1.0%
H 0.3% 0.4% 0.4% 0.4% 0.6% 0.6% 0.8% 0.5%
I 0.3% 0.2% 0.3% 0.3% 0.6% 0.6% 0.7% 0.6%
J 0.3% 0.4% 0.5% 0.6% 0.6% 0.5% 0.6% 0.9%

Table III.25 Instance 75E - IMP LRMP execution time (sec)

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 4.1 4.6 4.2 4.6 4.0 3.6 3.2 2.2
B 4.3 6.0 5.7 4.2 4.4 4.3 2.9 2.8
C 5.0 4.6 4.2 3.4 3.7 3.8 3.2 2.9
D 4.8 4.3 4.2 3.8 4.1 3.6 3.3 2.9
E 6.1 5.0 4.0 3.8 4.2 4.3 3.3 2.8
F 6.0 4.7 3.7 3.6 4.7 3.6 3.0 2.8
G 4.4 4.7 4.1 3.8 4.0 4.3 3.3 2.5
H 3.9 5.1 4.0 4.2 4.1 3.9 3.3 2.7
I 4.7 4.9 4.1 3.6 4.7 3.9 3.6 2.9
J 4.3 5.2 4.0 4.4 3.8 3.5 3.2 3.2
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Table III.26 Instance 75E - IMP HRMP execution time (sec)

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 4.3 4.6 4.3 4.7 4.4 3.7 3.2 2.3
B 4.5 6.1 5.8 4.2 4.5 4.3 2.9 2.9
C 5.1 4.7 4.4 3.5 3.8 3.9 3.2 2.9
D 4.8 4.4 4.3 3.9 4.1 3.6 3.3 2.9
E 37.1 5.1 4.1 3.8 4.3 4.3 3.3 2.9
F 7.1 4.8 3.8 3.6 4.8 3.6 3.1 2.8
G 4.6 4.9 4.2 3.9 4.0 4.3 3.4 2.6
H 4.0 5.4 4.1 4.2 4.2 3.9 3.3 2.8
I 4.7 5.1 4.2 3.6 4.8 3.9 3.6 2.9
J 4.9 5.4 4.0 4.4 3.9 3.5 3.2 3.3

Table III.27 Instance 75E - BMP HRMP objective function

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 146415 146557 115644 127835 107811 86423 76411 69122
B 146415 146557 119480 107831 98661 90605 82372 96718
C 146415 146557 101341 109348 96249 87337 95892 96389
D 146415 124024 136001 109409 93927 95607 107471 117074
E 141396 122948 104617 109536 104801 110091 83541 83058
F 146415 127675 97755 109536 101854 87603 86177 82244
G 146415 127675 118051 107327 104474 83690 97126 104701
H 141516 146557 103551 113025 101640 94264 85911 123379
I 146415 127010 124235 113758 103410 94715 112242 91334
J 141516 146557 100327 113025 106654 91012 85378 72722
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Table III.28 Instance 75E - BMP HRMP gap

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 4.6% 3.9% 23.7% 16.4% 21.7% 40.2% 40.0% 48.3%
B 4.6% 2.5% 0.3% 27.8% 32.7% 38.0% 34.0% 27.7%
C 4.6% 4.6% 32.8% 26.6% 32.7% 38.5% 26.0% 32.5%
D 4.6% 19.2% 9.6% 25.4% 36.4% 33.9% 20.0% 15.4%
E 7.1% 18.6% 31.0% 27.3% 24.6% 26.7% 42.7% 40.8%
F 4.6% 13.8% 29.9% 26.6% 26.2% 39.6% 42.9% 43.7%
G 4.6% 14.3% 10.6% 28.1% 28.6% 40.7% 29.7% 21.8%
H 7.8% 4.6% 30.6% 13.2% 32.7% 37.6% 38.1% 12.3%
I 4.6% 17.3% 7.8% 18.8% 31.9% 37.3% 23.0% 37.3%
J 7.8% 4.6% 33.2% 23.7% 29.5% 34.6% 43.2% 48.7%

Table III.29 Instance 75E - BMP LRMP execution time (sec)

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 5.9 6.4 5.6 5.0 6.3 4.4 4.2 2.2
B 9.0 19.2 9.0 6.0 4.9 5.3 4.6 4.0
C 7.3 6.5 5.5 5.6 6.0 4.8 5.3 3.7
D 7.0 5.8 5.8 5.5 6.5 4.5 3.8 3.4
E 10.3 6.6 5.5 5.1 9.2 5.2 3.7 4.0
F 9.3 13.8 5.3 6.2 6.0 4.7 3.5 3.1
G 6.6 10.7 7.6 8.6 6.0 5.3 5.0 3.3
H 7.4 7.2 5.9 6.0 5.6 5.0 5.1 3.8
I 7.5 5.4 7.3 7.0 6.0 4.0 4.6 3.2
J 7.3 6.5 5.4 6.9 6.1 4.7 3.7 3.8
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Table III.30 Instance 75E - BMP HRMP execution time (sec)

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 6.1 6.5 5.6 5.1 6.4 4.4 4.3 2.3
B 9.0 19.3 9.0 6.1 4.9 5.3 4.6 4.1
C 7.4 6.6 5.6 5.6 6.0 4.8 5.3 3.7
D 7.0 5.8 5.9 5.5 6.5 4.6 3.8 3.4
E 10.4 6.6 5.5 5.1 9.3 5.3 3.8 4.2
F 9.4 13.9 5.4 6.2 6.1 4.8 3.5 3.2
G 6.7 10.8 7.6 8.7 6.0 5.4 5.0 3.4
H 7.4 7.2 5.9 6.1 5.7 5.2 5.2 3.8
I 7.6 5.4 7.4 7.1 6.1 4.1 4.6 3.2
J 7.4 6.6 5.4 7.0 6.2 4.7 3.8 3.8
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III.4 Dataset 100 events

The following tables present the results that regards the 100 events instances.

Table III.31 Instance 100E - LRMP objective function

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 205708.00 203144.00 198559.00 198693.00 189210.00 200686.00 174796.00 178253.00
B 205708.00 205688.00 181143.00 202355.00 197191.00 199857.00 171633.00 174956.00
C 205708.00 205708.00 202612.00 193362.00 191174.00 199187.00 177435.00 181647.00
D 205708.00 205708.00 202206.00 186509.00 203551.00 193827.00 171766.00 181977.00
E 203514.00 205708.00 203870.00 204948.00 195069.00 200805.00 192982.00 175347.00
F 205708.00 194463.00 195763.00 200224.00 195921.00 192704.00 199401.00 174307.00
G 205708.00 197598.00 176557.00 198281.00 198466.00 198471.00 198564.00 174219.00
H 205708.00 203206.00 203931.00 182637.00 202158.00 201502.00 187340.00 171927.00
I 205708.00 205708.00 181764.00 196714.00 202291.00 199741.00 193957.00 175566.00
J 205708.00 205568.00 205299.00 196416.00 198745.00 194245.00 200892.00 181489.00
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Table III.32 Instance 100E - LRMP gap

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 0.0% 1.2% 3.5% 3.4% 8.0% 2.4% 15.0% 13.3%
B 0.0% 0.0% 11.9% 1.6% 4.1% 2.8% 16.6% 14.9%
C 0.0% 0.0% 1.5% 6.0% 7.1% 3.2% 13.7% 11.7%
D 0.0% 0.0% 1.7% 9.3% 1.0% 5.8% 16.5% 11.5%
E 1.1% 0.0% 0.9% 0.4% 5.2% 2.4% 6.2% 14.8%
F 0.0% 5.5% 4.8% 2.7% 4.8% 6.3% 3.1% 15.3%
G 0.0% 3.9% 14.2% 3.6% 3.5% 3.5% 3.5% 15.3%
H 0.0% 1.2% 0.9% 11.2% 1.7% 2.0% 8.9% 16.4%
I 0.0% 0.0% 11.6% 4.4% 1.7% 2.9% 5.7% 14.7%
J 0.0% 0.1% 0.2% 4.5% 3.4% 5.6% 2.3% 11.8%

Table III.33 Instance 100E - IMP HRMP objective function

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 205157 202371 197635 197925 188122 199276 173819 177464
B 205127 204809 180267 201435 196201 198255 170516 173982
C 205173 205222 201649 192422 190373 198014 175989 180532
D 205304 205001 201390 185488 202449 192517 170413 180251
E 202931 204920 202909 204066 194385 199716 191771 174017
F 205195 193825 194834 199305 194968 191542 198185 173492
G 205108 196888 175814 197361 197327 197268 196908 173248
H 205132 202613 203297 181650 200839 200269 185967 170381
I 205436 205084 181078 195652 201474 198748 192613 174889
J 205256 204865 204508 195281 197794 192869 199815 180623
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Table III.34 Instance 100E - IMP HRMP gap

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 0.3% 0.4% 0.5% 0.4% 0.6% 0.7% 0.6% 0.4%
B 0.3% 0.4% 0.5% 0.5% 0.5% 0.8% 0.7% 0.6%
C 0.3% 0.2% 0.5% 0.5% 0.4% 0.6% 0.8% 0.6%
D 0.2% 0.3% 0.4% 0.5% 0.5% 0.7% 0.8% 0.9%
E 0.3% 0.4% 0.5% 0.4% 0.4% 0.5% 0.6% 0.8%
F 0.2% 0.3% 0.5% 0.5% 0.5% 0.6% 0.6% 0.5%
G 0.3% 0.4% 0.4% 0.5% 0.6% 0.6% 0.8% 0.6%
H 0.3% 0.3% 0.3% 0.5% 0.7% 0.6% 0.7% 0.9%
I 0.1% 0.3% 0.4% 0.5% 0.4% 0.5% 0.7% 0.4%99
J 0.2% 0.3% 0.4% 0.6% 0.5% 0.7% 0.5% 0.5%

Table III.35 Instance 100E - IMP LRMP execution time (sec)

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 6.3 7.9 5.5 8.8 5.6 4.0 4.5 3.5
B 8.7 10.0 7.1 10.4 5.7 5.0 4.6 3.0
C 8.2 7.8 6.6 8.1 5.5 5.4 5.4 3.4
D 6.7 7.2 6.1 7.9 7.8 4.8 4.7 4.2
E 9.0 7.0 6.8 7.8 8.5 5.9 4.8 6.2
F 8.6 8.3 5.9 8.9 7.9 5.1 5.0 5.6
G 8.5 7.1 6.6 9.3 7.4 6.1 5.5 6.3
H 6.9 10.1 6.7 7.9 6.4 5.1 5.1 5.3
I 8.0 7.2 7.0 8.7 6.6 5.6 6.1 5.0
J 8.4 10.9 12.5 7.9 8.8 4.9 5.1 5.2
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Table III.36 Instance 100E - IMP HRMP execution time (sec)

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 6.6 8.0 5.6 9.0 5.6 4.0 4.6 3.6
B 10.7 13.2 7.6 10.5 5.7 5.0 4.7 3.0
C 9.0 8.2 6.9 8.3 5.5 5.4 5.4 3.4
D 6.8 7.8 6.4 8.0 7.8 4.8 4.8 4.3
E 16.6 7.3 6.9 8.0 8.5 6.0 4.8 6.3
F 8.8 8.6 6.4 9.5 7.9 5.1 5.1 5.6
G 8.9 7.4 6.8 9.5 7.4 6.1 5.6 6.3
H 7.4 10.9 6.9 8.0 6.5 5.2 5.1 5.3
I 8.3 7.7 7.1 8.8 6.7 5.6 6.2 5.0
J 8.7 14.0 12.9 7.9 8.8 4.9 5.2 5.3

Table III.37 Instance 100E - BMP HRMP objective function

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 195304 203032 161827 152980 132022 123111 137836 98472
B 195304 195337 175708 145803 127806 141168 102727 106825
C 195304 195337 134267 124591 110638 115845 130942 140609
D 195304 195337 171273 143218 138432 122407 105974 140547
E 190912 195337 144191 147514 132534 139670 106416 111955
F 195304 195337 138668 150744 140728 119982 108991 88652
G 195304 195337 155901 151026 128640 118808 101829 167806
H 186837 195337 139892 145863 138125 130812 109836 153976
I 195304 195337 155159 173083 140502 118839 135170 142207
J 186837 195337 137367 146920 147124 140436 108237 95119
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Table III.38 Instance 100E - BMP HRMP gap

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 5,1% 0,1% 18,5% 23,0% 30,2% 38,7% 21,1% 44,8%
B 5,1% 5,0% 3,0% 27,9% 35,2% 29,4% 40,1% 38,9%
C 5,1% 5,0% 33,7% 35,6% 42,1% 41,8% 26,2% 22,6%
D 5,1% 5,0% 15,3% 23,2% 32,0% 36,8% 38,3% 22,8%
E 6,2% 5,0% 29,3% 28,0% 32,1% 30,4% 44,9% 36,2%
F 5,1% -0,4% 29,2% 24,7% 28,2% 37,7% 45,3% 49,1%
G 5,1% 1,1% 11,7% 23,8% 35,2% 40,1% 48,7% 3,7%
H 9,2% 3,9% 31,4% 20,1% 31,7% 35,1% 41,4% 10,4%
I 5,1% 5,0% 14,6% 12,0% 30,5% 40,5% 30,3% 19,0%
J 9,2% 5,0% 33,1% 25,2% 26,0% 27,7% 46,1% 47,6%

Table III.39 Instance 100E - BMP LRMP execution time (sec)

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 9.6 16.6 8.8 12.2 8.7 5.6 6.0 5.0
B 11.3 18.7 11.9 10.4 7.8 6.9 6.6 4.8
C 11.4 20.1 8.5 11.7 6.8 6.3 8.1 4.5
D 10.3 21.1 8.5 10.2 7.1 7.4 5.3 4.4
E 12.5 22.3 9.2 7.5 9.9 8.7 9.2 5.1
F 9.9 23.5 9.5 10.5 9.7 8.2 9.1 4.6
G 7.6 24.6 11.6 11.5 8.8 7.9 6.4 5.5
H 8.4 25.7 9.6 10.5 6.0 8.4 7.8 3.9
I 9.6 26.8 9.5 12.1 7.3 8.8 6.1 5.3
J 10.4 27.9 8.3 9.6 10.2 8.6 4.5 4.6
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Table III.40 Instance 100E - BMP HRMP execution time (sec)

upt number of event types |T |
variation 3 4 5 6 7 8 9 10

A 10.0 16.8 8.8 12.4 8.8 5.6 6.1 5.1
B 11.7 19.7 12.1 10.4 7.9 7.0 6.7 5.0
C 11.8 20.8 8.6 11.8 6.9 6.4 8.2 4.6
D 10.7 22.0 8.6 10.3 7.1 7.5 5.3 4.5
E 12.6 23.1 9.2 7.6 10.0 8.7 9.3 5.1
F 10.3 24.3 9.6 10.6 9.8 8.3 9.1 4.7
G 7.7 25.4 11.8 11.6 8.8 8.0 6.4 5.5
H 8.5 26.4 9.7 10.8 6.1 8.6 7.9 3.9
I 10.0 27.6 9.6 12.7 7.4 8.8 6.2 5.3
J 10.5 28.7 8.3 9.8 10.4 8.7 4.5 4.6
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Figure III.1: Computing time datasets 25E, 50E, 75E and 100E
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Figure III.2: LRMP gap datasets 25E, 50E, 75E and 100E
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Figure III.3: IMP HRMP gap datasets 25E, 50E, 75E and 100E
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Figure III.4: BMP HRMP gap datasets 25E, 50E, 75E and 100E



152
R

esu
lts

III.5 Parametric Formulation

The following tables present the results that regards the Parametric Formulation using dataset 25t6 and its five upt variations.

Table III.41 Parametric Formulation 25t6 - LRMP objective function

upt parameter l
variation 1 5 8 10 25 50

A 43389.0 43389.0 43389.0 43389.0 43.389.0 43.389.0
B 41989.0 41989.0 41989.0 41989.0 41989.0 41.989.0
C 40552.5 40552.5 40552.5 40552.5 40552.5 40.552.5
D 39355.0 39355.0 39355.0 39355.0 39355.0 39.355.0
E 46042.0 46042.0 46042.0 46042.0 46042.0 46.042.0

Table III.42 Parametric Formulation 25t6 - LRMP gap

upt parameter l
variation 1 5 8 10 25 50

A 6,0% 6,0% 6,0% 6,0% 6,0% 6,0%
B 9,0% 9,0% 9,0% 9,0% 9,0% 9,0%
C 12,1% 12,1% 12,1% 12,1% 12,1% 12,1%
D 14,7% 14,7% 14,7% 14,7% 14,7% 14,7%
E 0,2% 0,2% 0,2% 0,2% 0,2% 0,2%



P
aram

etric
F

orm
u
lation

153
Table III.43 Parametric Formulation 25t6 - HRMP objective function

upt parameter l
variation 1 5 8 10 25 50

A 43087 41057 39548 38840 33825 20150
B 41222 39623 38996 36325 32572 18575
C 40367 37321 35680 36580 30784 22600
D 39176 36150 34836 35510 29741 15600
E 45530 42621 41296 40460 33332 19775

Table III.44 Parametric Formulation 25t6 - HRMP gap

upt parameter l
variation 1 5 8 10 25 50

A 0.7% 5.4% 8.9% 10.5% 22.0% 53.6%
B 1.8% 5.6% 7.1% 13.5% 22.4% 55.8%
C 0.5% 8.0% 12.0% 9.8% 24.1% 44.3%
D 0.5% 8.1% 11.5% 9.8% 24.4% 60.4%
E 1.1% 7.4% 10.3% 12.1% 27.6% 57.1%

Table III.45 Parametric Formulation 25t6 - LRMP execution time (sec)

upt parameter l
variation 1 5 8 10 25 50

A 7 .9 2 .1 2 .3 2 .2 1 .5 1 .6
B 7 .9 2 .2 2 .5 2 .1 1 .9 1 .6
C 12 .3 2 .6 3 .1 2 .5 1 .7 1 .7
D 14 .7 2 .7 3 .1 2 .6 1 .6 1 .8
E 5 .9 1 .8 2 .2 1 .8 1 .2 1 .2
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Table III.46 Parametric Formulation 25t6 - HRMP execution time (sec)

upt parameter l
variation 1 5 8 10 25 50

A 7.9 2.1 2.4 2.2 1.6 1.6
B 8.0 2.2 2.6 2.1 2.0 1.6
C 12.3 2.6 3.2 2.5 1.8 1.7
D 14.7 2.7 3.1 2.6 1.7 1.9
E 5.9 1.8 2.3 1.9 1.3 1.2
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III.6 BMP model with groups

The following tables present the results that regards the BMP model with groups using dataset 25t6 and its five upt variations.

Table III.47 BMP model with groups 25t6- LRMP objective function

upt group size r
variation 1 5 10 15 20 25 35 50

A 43389.0 43389.0 43389.0 43389.0 43389.0 43389.0 43389.0 35766.0
B 41989.0 41989.0 41989.0 41989.0 41989.0 41989.0 41989.0 34590.0
C 40552.5 40552.5 40552.5 40552.5 40552.5 40552.5 40552.5 34343.0
D 46042.0 46042.0 46042.0 46042.0 46042.0 46042.0 39355.0 32270.5
E 44570.8 44570.8 44570.8 44570.8 44570.8 44570.8 44570.8 38587.3

Table III.48 BMP model with groups 25t6 - LRMP gap

upt group size r
variation 1 5 10 15 20 25 35 50

A 6.0% 6.0% 6.0% 6.0% 6.0% 6.0% 6.0% 22.5%
B 9.0% 9.0% 9.0% 9.0% 9.0% 9.0% 9.0% 25.0%
C 12.1% 12.1% 12.1% 12.1% 12.1% 12.1% 12.1% 25.6%
D 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 14.7% 30.1%
E 3.4% 3.4% 3.4% 3.4% 3.4% 3.4% 3.4% 16.4%
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Table III.49 BMP model with groups 25t6 - HRMP objective function

upt group size r
variation 1 5 10 15 20 25 35 50

A 33777 32955 30450 31035 27900 27450 26705 25400
B 31109 30760 29190 28080 26600 26400 20265 23650
C 30526 29810 28490 31545 28420 24375 23450 24000
D 33295 32455 29330 30555 25865 26550 25865 25300
E 33295 29330 29330 26820 25865 25865 25350 25350

Table III.50 BMP model with groups 25t6 - HRMP gap

upt group size r
variation 1 5 10 15 20 25 35 50

A 22.2% 24.0% 29.8% 28.5% 35.7% 36.7% 38.5% 29.0%
B 25.9% 26.7% 30.5% 33.1% 36.7% 37.1% 51.7% 31.6%
C 24.7% 26.5% 29.7% 22.2% 29.9% 39.9% 42.2% 30.1%
D 27.7% 29.5% 36.3% 33.6% 43.8% 42.3% 34.3% 21.6%
E 25.3% 34.2% 34.2% 39.8% 42.0% 42.0% 43.1% 34.3%

Table III.51 BMP model with groups 25t6 - LRMP execution time (sec)

upt group size r
variation 1 5 10 15 20 25 35 50

A 2.3 2.5 2.4 1.9 2.1 2.1 2.7 1.7
B 2.4 2.2 2.2 2.0 2.4 2.3 2.5 2.2
C 1.8 1.8 1.8 2.1 2.1 1.7 2.2 1.8
D 3.2 2.9 2.9 2.7 2.2 2.3 2.1 2.0
E 1.8 1.8 1.8 2.1 2.1 1.7 2.2 1.8
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Table III.52 BMP model with groups 25t6 - HRMP execution time (sec)

upt group size r
variation 1 5 10 15 20 25 35 50

A 2.3 2.6 2.5 2.0 2.1 2.2 2.3 1.7
B 2.4 2.3 2.3 2.1 2.4 2.3 2.5 2.3
C 1.9 1.8 1.9 2.1 2.2 1.8 2.2 1.9
D 3.3 2.9 2.9 2.7 2.2 2.3 2.2 2.0
E 1.9 1.8 1.9 2.1 2.2 1.8 2.2 1.9
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III.7 IMP model with groups

The following tables present the results that regards the IMP model with groups using dataset 25t6 and its five upt variations.

Table III.53 IMP model with groups 25t6 - LRMP objective function

upt group size r
variation 1 5 10 15 20 25 35 50

A 43389.0 43389.0 43389.0 43389.0 43389.0 43389.0 43389.0 43389.0
B 41989.0 41989.0 41989.0 41989.0 41989.0 41989.0 41989.0 41989.0
C 40552.5 40552.5 40552.5 40552.5 40552.5 40552.5 40552.5 40552.5
D 39355.0 39355.0 39355.0 39355.0 39355.0 39355.0 39355.0 39355.0
E 46042.0 46042.0 46042.0 46042.0 46042.0 46042.0 46042.0 46042.0

Table III.54 IMP model with groups 25t6 - LRMP gap

upt group size r
variation 1 5 10 15 20 25 35 50

A 6.0% 6.0% 6.0% 6.0% 6.0% 6.0% 6.0% 6.0%
B 9.0% 9.0% 9.0% 9.0% 9.0% 9.0% 9.0% 9.0%
C 12.1% 12.1% 12.1% 12.1% 12.1% 12.1% 12.1% 12.1%
D 14.7% 14.7% 14.7% 14.7% 14.7% 14.7% 14.7% 14.7%
E 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2%
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Table III.55 IMP model with groups 25t6 - IMP HRMP objective function

upt group size r
variation 1 5 10 15 20 25 35 50

A 43223 42375 39310 37395 34820 31400 27265 14150
B 41797 40875 38350 36555 34440 32050 25305 12750
C 40390 39785 37450 35445 34140 31050 26915 15250
D 39170 38590 35680 34365 31360 31525 20580 12800
E 45643 44605 41530 38895 37460 34800 24780 14350

Table III.56 IMP model with groups 25t6 - IMP HRMP gap

upt group size r
variation 1 5 10 15 20 25 35 50

A 0.4% 2.3% 9.4% 13.8% 19.7% 27.6% 37.2% 67.4%
B 0.5% 2.7% 8.7% 12.9% 18.0% 23.7% 39.7% 69.6%
C 0.4% 1.9% 7.7% 12.6% 15.8% 23.4% 33.6% 62.4%
D 0.5% 1.9% 9.3% 12.7% 20.3% 19.9% 47.7% 67.5%
E 0.9% 3.1% 9.8% 15.5% 18.6% 24.4% 46.2% 68.8%

Table III.57 IMP model with groups 25t6 - IMP LRMP execution time (sec)

upt group size r
variation 1 5 10 15 20 25 35 50

A 1.2 1.1 1.2 1.2 1.2 1.2 1.2 1.2
B 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
C 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4
D 1.2 1.2 1.3 1.3 1.2 1.2 1.2 1.2
E 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
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Table III.58 IMP model with groups 25t6 - IMP HRMP execution time (sec)

upt group size r
variation 1 5 10 15 20 25 35 50

A 1.2 1.2 1.3 1.2 1.2 1.2 1.2 1.2
B 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
C 1.2 1.5 1.4 1.4 1.4 1.5 1.4 1.4
D 1.2 1.2 1.3 1.4 1.3 1.2 1.2 1.2
E 1.1 1.1 1.1 1.1 1.2 1.1 1.1 1.1
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