Università degli Studi di Milano
Scuola di Dottorato in Scienze Matematiche Dipartimento di Matematica F. Enriques

Corso di Dottorato di Ricerca in Matematica
XXVI Ciclo

Tesi di Dottorato di Ricerca

A motivic version of the theorem of Fontaine and Wintenberger

MAT/02 - MAT/03

Candidato
Alberto Vezzani

Matricola
R08962

Relatori
Prof. Joseph Ayoub
Prof. Luca Barbieri Viale

Coordinatore del Dottorato
Prof. Lambertus Van Geemen

Zusammenfassung

Ein Satz von Fontaine und Wintenberger [17] besagt, dass es einen Isomorphismus zwischen den absoluten Galoisgruppen der Vervollständigung K des bewerteten Körpers $\mathbb{Q}_{p}\left(p^{1 / p^{\infty}}\right)$ und der Vervollständigung K^{b} des bewerteten Körpers $\mathbb{F}_{p}((t))\left(t^{1 / p^{\infty}}\right)$ gibt. Nach der Definition von Scholze [42] bemerken wir, dass diese Körper beide perfektoid sind, d.h. vollständige nichtarchimedische, nicht-diskret bewertete Körper mit einem Restklassenkörper der Charakteristik p und so, dass die Frobenius-Abbildung auf O_{K} / p surjektiv ist. In loc. cit. zeigt der Autor, dass man für einen solchen Körper K das multiplikative Monoid $K^{b}=\lim _{x \mapsto x^{p}} K$ mit einer Körperstruktur versehen kann, die perfektoid der Charakteristik p ist. Dieser Körper wird der Tilt von K genannt. Darüber hinaus induziert dieser "tilting"-Funktor eine Äquivalenz zwischen endlichen étalen Algebren über K und über K^{b} und bietet damit eine Verallgemeinerung des Satzes von Fontaine und Wintenberger.

In einer Motivsprache kann das obige Ergebnis mit den Worten beschrieben werden, dass die Kategorien von Artin-Motiven über den beiden Körpern äquivalent sind. Das Ziel der vorliegenden Arbeit ist, diese Äquivalenz auf die gesamte Kategorie der (triangulierten) Motive analytischer Varietäten über K und über K^{b} zu verallgemeinern.

Das natürliche höher-dimensionale Analogon zur Kategorie von Artin-Motiven über einem lokalen Körper ist die Kategorie der analytischen Motive RigDM, welche von Ayoub eingeführt und analysiert wurde [5]. In diesem Zusammenhang werden die Grundkörper mit ihren nichtarchimedischen Strukturen betrachtet, und nicht nur als abstrakte Körper wie in der Definition der Motive DM auf glatten Varietäten.

Das wichtigste Ergebnis unserer Arbeit ist der folgende Satz :
Theorem. Sei K ein perfektoider Körper mit Tilt K^{b}. Es gibt eine Äquivalenz von triangulierten monoidalen Kategorien:

$$
\mathfrak{F}: \operatorname{RigDM}_{\mathrm{ett}}^{\mathrm{eff}}\left(K^{b}, \mathbb{Q}\right) \rightarrow \operatorname{RigDM}_{\hat{e t t}}^{\mathrm{eff}}(K, \mathbb{Q}) .
$$

Die Situation kann mit dem folgenden Diagramm zusammengefasst werden. Die Schreibweise wird in der Dissertation beschrieben und erläutert.

Introduction

A theorem of Fontaine and Wintenberger [17], later expanded by Scholze [42], states that there is an isomorphism between the Galois groups of a perfectoid field K and the associated (tilted) perfect field K^{b} of positive characteristic. The standard example of such a pair is formed by the completions of the fields $\mathbb{Q}_{p}\left(p^{1 / p^{\infty}}\right)$ and $\mathbb{F}_{p}((t))\left(t^{1 / p^{\infty}}\right)$.

In a motivic language, the previous result can be rephrased by saying that the categories of Artin motives over the two fields are equivalent. The goal of this paper is to extend this equivalence to the whole category of (mixed derived) motives of rigid analytic varieties RigDM over K and over K^{b} with \mathbb{Q}-coefficients. As a matter of fact, the natural analogue in higher dimension of the category of (derived) Artin motives over a local field is the category of rigid motives, introduced and analyzed by Ayoub [5], where the base field is considered as a nonarchimedean valued field and not just as an abstract field as in the case of the category of algebraic motives DM.

In this thesis, we prove the following (Theorem 1.7.8):
Theorem. Let K be a perfectoid field with tilt K^{b} and let Λ be a \mathbb{Q}-algebra. There is a monoidal triangulated equivalence of categories

$$
\mathfrak{F}: \operatorname{RigDM}_{\text {êt }}^{\mathrm{eff}}\left(K^{b}, \Lambda\right) \rightarrow \boldsymbol{\operatorname { R i g D M }}_{\text {êt }}^{\mathrm{eff}}(K, \Lambda) .
$$

We remark that the construction of the functor \mathfrak{F} requires a lot of machinery and uses Scholze's tilting functor in a crucial way. We can roughly sketch the construction of this functor as follows. We start from a smooth rigid variety X over the perfectoid field of positive characteristic K^{b} and we associate to it a perfectoid space \widehat{X} obtained by taking the perfection of X. This operation can be performed canonically since K^{b} has characteristic p. We then use Scholze's theorem to tilt \widehat{X} obtaining a perfectoid space \widehat{Y} in mixed characteristic. Suppose now that \widehat{Y} is the limit of a tower of rigid analytic varieties

$$
\ldots \rightarrow Y_{h+1} \rightarrow Y_{h} \rightarrow \ldots \rightarrow Y_{1} \rightarrow Y_{0}
$$

such that Y_{0} is étale over the Tate ball $\mathbb{B}^{n}=\operatorname{Spa} K\left\langle v_{1}, \ldots, v_{n}\right\rangle$ and each Y_{h} is obtained as the pullback of Y_{0} by the map $\mathbb{B}^{n} \rightarrow \mathbb{B}^{n}$ defined by taking the p^{h}-powers of the coordinates $v_{i} \mapsto v_{i}^{p^{h}}$. Under such hypothesis (we will actually need slightly stronger conditions on the tower above) we then "de-perfectoidify" \widehat{Y} by associating to it $Y_{\bar{h}}$ for a sufficiently big index \bar{h}.

The main technical problem of this construction is to show that it is independent of the choice of the tower, and on the index \bar{h}. It is also by definition a local procedure, which is not canonically extendable to arbitrary varieties by gluing. In order to overcome these obstacles, we use in a crucial way some techniques of approximating maps between spaces up to homotopy which are obtained by a generalization of the implicit function theorem in the non-archimedean setting. We also need to introduce a subcategory of adic spaces (in the sense of Huber [26]) $\widehat{\text { RigSm where to embed both rigid analytic and perfectoid spaces, and adapt the motivic tools to }}$ develop homotopy theory on it.

Generalizing the results of [3, Appendix B], we also prove that the natural functor $a_{\text {tr }}$ of adding transfers induces and equivalence between the category of motives without transfers $\operatorname{Rig} \mathbf{D A}_{\text {êt }}^{\text {eff }}(K, \Lambda)$ and the category of motives with transfers $\operatorname{RigDM}_{\text {êt }}^{\text {eff }}(K, \Lambda)$ in characteristic zero. In positive characteristic, it induces an equivalence between $\operatorname{RigDA}_{\text {Frobét }}^{\text {eff }}\left(K^{b}, \Lambda\right)$ and $\operatorname{Rig} \mathbf{D M}_{\text {êt }}^{\text {eff }}\left(K^{b}, \Lambda\right)$ where the former category is obtained as a localization of $\operatorname{RigDA}_{\text {ett }}^{\text {eff }}\left(K^{b}, \Lambda\right)$ with respect to the set of relative Frobenius maps $X \rightarrow X \times_{K^{b}, \Phi} K^{b}$ for all rigid varieties X
over K^{b}. Our main theorem can therefore be stated as an equivalence between $\mathbf{R i g D A} \mathbf{A}_{\text {ét }}^{\text {eff }}(K, \Lambda)$ and $\operatorname{RigDA} A_{\text {Frobét }}^{\text {eff }}\left(K^{b}, \Lambda\right)$ for any perfectoid field K of characteristic 0 .

The statements above involve only rigid analytic varieties and their proofs use Scholze's theory of perfectoid spaces only in an auxiliary way. Nonetheless, we can restate our main result highlighting the role of perfectoid spaces as follows:

Theorem. Let K be a perfectoid field and let Λ be a \mathbb{Q}-algebra. There is a monoidal triangulated equivalence of categories

$$
\operatorname{RigDM}_{\hat{e t t}}^{\mathrm{eff}}(K, \Lambda) \xrightarrow{\sim} \operatorname{PerfDA}_{\text {êt }}^{\mathrm{eff}}(K, \Lambda)
$$

The category $\operatorname{PerfDA}_{\hat{e ́ t}}^{\mathrm{eff}}(K, \Lambda)$ is built in the same way as $\operatorname{RigDA}_{\text {ett }}^{\mathrm{eff}}(K, \Lambda)$ using as a starting point the big étale site of perfectoid spaces which are locally étale over some perfectoid ball $\widehat{\mathbb{B}}^{n}$.

The following diagram of categories of motives summarizes the situation. The equivalence in the bottom line follows easily from the "tilting equivalence" of Scholze, see [42, Proposition 6.17]. The notation introduced in the theorems and in the diagram will be described in later sections.

The thesis is organized as follows. The first chapter is devoted to the proof of the main theorem. In Section 1.1 we recall the basic definitions and the language of adic spaces while in Section 1.2 we define the environment in which we will perform our construction, namely the
 we define the categories of motives for RigSm, $\widehat{\text { RigSm }}$ and PerfSm adapting the constructions of Voevodsky's and Ayoub's. Thanks to the general model-categorical tools introduced in this section, we give in Section 1.4 a motivic interpretation of some approximation results of maps valid for non-archimedean Banach algebras. In Sections 1.5 and 1.6 we prove the existence of the de-perfectoidification functor from perfectoid motives to rigid motives in zero and positive characteristics, respectively. Finally, we give in Section 1.7 the proof of our main result.

In the second chapter we prove the equivalence between rigid motives with and without transfers. In Section 2.1] we introduce the Frob-topology and the Frobét-topology, which plays the same role of the étale topology in positive characteristic for our purposes. In Section 2.2 we define the categories of motives associated to these sites, as well as the auxiliary categories of motives of normal varieties and their relative counterpart. Finally in Section 2.3 we prove the desired equivalence $\boldsymbol{\operatorname { R i g }} \mathbf{D A}_{\text {Frobét }}^{\text {eff }}(K, \Lambda) \cong \operatorname{RigDM}_{\text {ett }}^{\text {eff }}(K, \Lambda)$.

In the appendix, we collect some technical theorems that are used along the proofs of the first chapter. Specifically, we first present a generalization of the implicit function theorem in
the rigid setting, and conclude a result about the approximation of maps modulo homotopy as well as its geometric counterpart. We also prove the existence of compatible approximations of a collection of maps $\left\{f_{1}, \ldots, f_{N}\right\}$ from a variety in $\widehat{\operatorname{RigSm}}$ of the form $X \times \mathbb{B}^{n}$ to a rigid variety Y such that the compatibility conditions among the maps f_{i} on the faces $X \times \mathbb{B}^{n-1}$ are preserved. This fact has important consequences for computing maps to \mathbb{B}^{1}-local complexes of presheaves in the motivic setting.

Acknowledgments

This thesis has been carried out in a co-tutelle program between the University of Milan and the University of Zurich. I am incredibly indebted to my advisor Professor Joseph Ayoub for his suggestion of pursuing the present project, his constant and generous guidance, the outstanding amount of insight that he kindly shared with me, and his endless patience. I wish to express my gratitude to my co-advisor Professor Luca Barbieri Viale, for his invaluable encouragement and the numerous mathematical discussions throughout the development of my thesis. I am grateful to Professor Peter Scholze for his answering to some questions I have asked. I also thank Professor Fabrizio Andreatta and the referees for having raised interesting remarks on earlier version of this thesis. I had the opportunity to give a presentation of this work at the University of Freiburg and a series of talks at the University of Zurich. I kindly thank Professor Andrew Kresch and Helene Sigloch for this chance and the various discussions on this topic. For the plentiful remarks on preliminary versions of this work and his precious and friendly support, I also wish to thank Simon Pepin Lehalleur.

Finally, I also must acknowledge my friends and colleagues who helped me throughout my PhD giving me mathematical advice and support. They include Matilde Ner, Alberto Maspero, Riccardo Brasca, Martin Gallauer Alves de Souza, Luca Spolaor, Alessandra Cipriani and Giulia Maino.

Contents

Zusammenfassung iii
Introduction iv
Acknowledgments vii
Chapter 1. The tilting equivalence of motives of rigid analytic varieties 1
1.1. Generalities on adic spaces 1
1.2. Semi-perfectoid spaces 9
1.3. Categories of adic motives 12
1.4. Motivic interpretation of approximation results 21
1.5. The de-perfectoidification functor in characteristic 0 23
1.6. The de-perfectoidification functor in characteristic p 28
1.7. The main theorem 31
Chapter 2. Rigid motives with and without transfers 37
2.1. The Frob-topology 37
2.2. Rigid motives and Frob-motives 42
2.3. The equivalence between motives with and without transfers 48
Appendix A. An implicit function theorem and approximation results 55
A.1. A non-archimedean implicit function theorem 55
A.2. Approximation of maps of adic spaces 59
Bibliography 64

CHAPTER 1

The tilting equivalence of motives of rigid analytic varieties

The purpose of this chapter is to construct the equivalence of categories between motives of analytic varieties over a perfectoid field K and its tilt K^{b}. To this aim, we first recall the theory of perfectoid spaces and we introduce the categories of adic spaces that we will be interested in.

1.1. Generalities on adic spaces

We start by recollecting the language of adic spaces, as introduced by Huber [26] and generalized by Scholze-Weinstein [45] including some terminology of Buzzard-Verberkmoes [12] and Wedhorn [52]. We will always work with adic spaces over a non-archimedean valued field.
1.1.1. Definition. A non-archimedean field is a toplological field K whose topology is induced by a non-trivial valuation of rank one. The associated norm is a multiplicative map that we denote by $|\cdot|: K \rightarrow \mathbb{R}_{\geq 0}$ and its valuation ring is denoted by K°. A pair $\left(K, K^{+}\right)$is called a valuation field if K is a non-archimedean field and $K^{+} \subset K^{\circ}$ an open bounded valuation subring. We say it is complete if K (and hence also K^{+}) is complete. A map $\left(K, K^{+}\right) \rightarrow\left(L, L^{+}\right)$of valuation fields is local if the inverse image of L^{+}in K coincides with K^{+}.
1.1.2. Remark. A map $\left(K, K^{+}\right) \rightarrow\left(L, L^{+}\right)$is local if an only if the map $K^{+} \rightarrow L^{+}$is a local map between local rings. In that case, the two valuations on K induced by K^{+}and L^{+} coincide. The valuation on K induced by K^{+}has rank 1 precisely when K^{+}coincides with K°.

From now on, we fix a complete non-archimedean field K and we pick a non-zero element $\pi \in K$ with $|\pi|<1$.

We now recall some definitions given in [25]. We also introduce the notion of a bounded affinoid K-algebra.
1.1.3. Definition. A Tate K-algebra is a topological K-algebra R for which there exists a subring R_{0} such that the set $\left\{\pi^{k} R_{0}\right\}$ forms a basis of neighborhoods of 0 . A subring R_{0} with the above property is called a ring of definition.
1.1.4. Definition. Let R be a Tate K-algebra.

- A subset S of R is bounded if it is contained in the set $\pi^{-N} R_{0}$ for some integer N. An element x of R is power-bounded if the set $\left\{x^{n}\right\}_{n \in \mathbb{N}}$ is bounded. The set of powerbounded elements is a subring of R that we denote by R°. We say that R is uniform if R° is bounded.
- An element x of R is topologically nilpotent if $\lim _{n \rightarrow+\infty} x^{n}=0$. The set of topologically nilpotent elements is an ideal of R° that we denote by $R^{\circ \circ}$.
1.1.5. Remark. Suppose that R is a Tate K-algebra. The definition of a bounded set does not depend on the choice of the ring of definition R_{0}. A subring of R is a ring of definition if and only if it is bounded and open. By [25, Corollary 1.3] the ring R° is the filtered union of all rings of definitions of R. In particular if $x \in R$ is algebraic over R° then it is algebraic over a ring of
definition, and so it is power-bounded proving that R° is integrally closed in R. Moreover, since for any $x \in R$ the sequence $x \pi^{n}$ tends to zero, we conclude that $x \pi^{n}$ is contained in a ring of definition R_{0} for a sufficiently big index n and hence $R_{0}\left[\pi^{-1}\right]=R$.
1.1.6. Definition. Let K be a complete non-archimedean field.
- An affinoid K-algebra is a pair $\left(R, R^{+}\right)$where R is a Tate K-algebra and R^{+}is an open and integrally closed K°-subalgebra of R°. A morphism $\left(R, R^{+}\right) \rightarrow\left(S, S^{+}\right)$of affinoid K-algebras is a pair of compatible K°-linear continuous maps of rings $\left(f, f^{+}\right)$.
- A bounded affinoid K-algebra is an affinoid K-algebra $\left(R, R^{+}\right)$such that R^{+}is a ring of definition.
- An affinoid K-algebra $\left(R, R^{+}\right)$is called complete if R (and hence also R^{+}) is complete.
1.1.7. Remark. If $\left(R, R^{+}\right)$is an affinoid K-algebra and R is uniform then $\left(R, R^{+}\right)$is bounded.
1.1.8. Remark. If (R, R^{+}) is an affinoid K-algebra and x is topologically nilpotent, then there exists an integer N such that $x^{N} \in R^{+}$and hence $x \in R^{+}$since R^{+}is integrally closed. We then deduce that R^{+}contains the set $R^{\circ \circ}$. The restricted topology on a ring of definition R_{0} coincides with the π-adic topology. In particular, the topology of a bounded affinoid K-algebra (R, R^{+}) is uniquely determined by the K°-algebra R^{+}.
1.1.9. Example. By Remark 1.1 .5 , if R is a Tate K-algebra, then $\left(R, R^{\circ}\right)$ is an affinoid K-algebra.

Any affinoid K-algebra $\left(R, R^{+}\right)$is endowed with a universal map $\left(R, R^{+}\right) \rightarrow\left(\widehat{R}, \widehat{R}^{+}\right)$to a complete affinoid K-algebra that we call the completion of $\left(R, R^{+}\right)$(see [25, Lemma 1.6]). In case $\left(R, R^{+}\right)$is bounded, then \widehat{R}^{+}is the π-adic completion of R^{+}and \widehat{R} is $\widehat{R}^{+}\left[\pi^{-1}\right]$. More generally, for any affinoid K-algebra $\left(R, R^{+}\right)$we can define the π-adic completion to be the complete affinoid K-algebra $\left(S, S^{+}\right)$where S^{+}is the π-adic completion of R^{+}and S is $S^{+}\left[\pi^{-1}\right]$ endowed with the topology generated by the sets $\left\{\pi^{k} S^{+}\right\}$.

Let $\left\{\left(R_{i}, R_{i}^{+}\right), f_{i}\right\}$ be a direct system of maps of affinoid K-algebras. As remarked in [44], it is not true in general that the direct limit $\left(\underset{\longrightarrow}{\lim } R_{i}, \underline{\longrightarrow} R_{i}^{+}\right)$endowed with the direct limit topology is an affinoid K-algebra. In the bounded context, however, this nuisance can be easily solved.
1.1.10. Lemma. Let $\left\{\left(R_{i}, R_{i}^{+}\right), f_{i}\right\}$ be a direct system of maps of bounded affinoid K algebras. Endow the ring ${\underset{\longrightarrow}{\lim }}_{i} R_{i}$ with the topology for which $\lim _{\rightarrow i} R_{i}^{+}$is a ring of definition. The pair $\left(R, R^{+}\right):=\left(\lim _{i} R_{i},{\underset{\longrightarrow}{l}}_{i} R_{i}^{+}\right)$is a bounded affinoid K-algebra and one has $\operatorname{Hom}\left(\left(R, R^{+}\right),\left(S, S^{+}\right)\right) \cong{\underset{\lim }{i}}_{i}^{\gtrless}\left(\left(R_{i}, \vec{R}_{i}^{+}\right),\left(S, S^{+}\right)\right)$for any bounded affinoid K-algebra $\left(S, S^{+}\right)$.

Proof. A map from $\left(R, R^{+}\right)$to $\left(S, S^{+}\right)$is uniquely determined by a K°-linear map from $R^{+}=\underset{\longrightarrow}{\lim } R_{i}^{+}$to S^{+}. Similarly, a map from $\left(R_{i}, R_{i}^{+}\right)$to $\left(S, S^{+}\right)$is uniquely determined by a K°-linear map from R_{i}^{+}to S^{+}. From the isomorphism $\operatorname{Hom}\left(\underset{\longrightarrow}{\lim } R_{i}^{+}, S^{+}\right) \cong \lim _{i} \operatorname{Hom}\left(R_{i}^{+}, S^{+}\right)$ we then deduce the claim.

From the lemma above, we conclude that the category of bounded affinoid K-algebras has direct limits.

We now examine some examples.
1.1.11. EXAMPLE. Let $\underline{v}=\left(v_{1}, \ldots, v_{N}\right)$ be an N-tuple of coordinates. If $\left(R, R^{+}\right)$is a bounded affinoid K-algebra, then also the pair $\left(R\langle\underline{v}\rangle, R^{+}\langle\underline{v}\rangle\right)$ is, where $R\langle\underline{v}\rangle$ is the ring of
strictly convergent power series in N variables with coefficients in R :

$$
R\langle\underline{v}\rangle:=\left\{\sum_{I} a_{I} v^{I} \in R[[\underline{]}]]: \forall k \in \mathbb{N}, a_{I} \in \pi^{k} R^{+} \text {for almost all } I\right\}
$$

with the topology having $\pi^{k} R^{+}\langle\underline{v}\rangle$ as a basis of neighborhoods of 0 . In case R is normed, then also $R\langle\underline{v}\rangle$ is normed, with respect to the Gauss norm $\left|\sum_{I} a_{I} v^{I}\right|:=\max _{I}\left\{\left|a_{I}\right|\right\}$ and is complete whenever R is (see [9 , Section 1.4.1]).
1.1.12. Example. If R is any normed K-algebra, then $\left(R, R^{\circ}\right)$ is an affinoid K-algebra. The classical definition of Tate gives therefore examples of affinoid K-algebras.
1.1.13. Definition. A topologically of finite type Tate algebra (or simply tft Tate algebra) is a Banach K-algebra R isomorphic to a quotient of the normed K-algebra $K\left\langle v_{1}, \ldots, v_{n}\right\rangle$ for some n.

If R is a tft Tate algebra, the pair $\left(R, R^{\circ}\right)$ is an affinoid K-algebra, which is bounded whenever R is reduced (see [9 Theorem 6.2.4/1]).

We now recall the definition of perfectoid pairs, introduced in [42]:
1.1.14. Definition. A perfectoid field K is a complete non-archimedean field whose rank one valuation is non-discrete, whose residue characteristic is p and such that the Frobenius is surjective on K° / p. In case char $K=p$ this last condition amounts to saying that K is perfect.
1.1.15. Definition. Let K be a perfectoid field.

- A perfectoid algebra is a Banach K-algebra R such that R° is bounded and the Frobenius map is surjective on R° / p.
- A perfectoid affinoid K-algebra is an affinoid K-algebra $\left(R, R^{+}\right)$over a perfectoid field K such that R is perfectoid.
1.1.16. Remark. Any perfectoid affinoid K-algebra is bounded. If R is a perfectoid algebra, then $\left(R, R^{\circ}\right)$ is a perfectoid affinoid K-algebra.
1.1.17. Example. Suppose that K is a perfectoid field. A basic example of a perfectoid algebra is the following: let $\underline{v}=\left(v_{1}, \ldots, v_{N}\right)$ be a N-tuple of coordinates and $K^{\circ}\left[\underline{v}^{1 / p^{\infty}}\right]$ be the ring ${\underset{\longrightarrow}{\lim }}_{h} K^{\circ}\left[\underline{v}^{1 / p^{h}}\right]$ endowed with the sup-norm induced by the norm on K. We also denote by $K^{\circ}\left\langle\underline{\nu}^{1 / p^{\infty}}\right\rangle$ its π-adic completion. By [42, Proposition 5.20], the ring $K^{\circ}\left\langle\underline{v}^{1 / p^{\infty}}\right\rangle\left[\pi^{-1}\right]$ is a perfectoid K-algebra which we will denote by $K\left\langle\underline{v}^{1 / p^{\infty}}\right\rangle$. The pair $\left(K\left\langle\underline{v}^{1 / p^{\infty}}\right\rangle, K^{\circ}\left\langle\underline{v}^{1 / p^{\infty}}\right\rangle\right)$ is a perfectoid affinoid K-algebra. We also define in the same way the perfectoid affinoid K-algebra $\left(K\left\langle\underline{v}^{ \pm 1 / p^{\infty}}\right\rangle, K^{\circ}\left\langle\underline{v}^{ \pm 1 / p^{\infty}}\right\rangle\right)$ (see [43, Example 4.4]).
1.1.18. REMARK. $K\left\langle\underline{v}^{1 / p^{\infty}}\right\rangle$ is isomorphic as a $K\langle\underline{v}\rangle$-topological module to the completion $\widehat{\bigoplus} K\langle\underline{v}\rangle$ of the free module $\bigoplus K\langle\underline{v}\rangle$ with basis indexed by the set $(\mathbb{Z}[1 / p] \cap[0,1))^{N}$. By [9 Proposition 2.1.5/7] there is an explicit description of this ring as a subring of $\prod K\langle\underline{v}\rangle$.

The following theorem summarizes some results of Scholze, including the tilting equivalence of perfectoid algebras which will play a crucial role in our construction.
1.1.19. THEOREM ([42]). Let K be a perfectoid field.
(1) ([42] Lemma 3.4]) The multiplicative monoid $\varliminf_{\leftrightarrows}^{\mathrm{m}_{x \mapsto x^{p}}} K$ can be given a structure K^{b} of perfectoid field with the norm induced by the multiplicative map $\#: K^{b} \rightarrow K$. The field K^{b} has characteristic p and coincides with K in case char $K=p$.
(2) ([42, Theorem 3.7]) The functor $L \mapsto L^{b}$ for L finite étale over K induces an isomorphism $\operatorname{Gal}(K) \cong \operatorname{Gal}\left(K^{b}\right)$.
(3) ([42, Lemma 6.2]) There is an equivalence of categories, the tilting equivalence, from perfectoid affinoid K-algebras to perfectoid affinoid K^{b}-algebras denoted by $\left(R, R^{+}\right) \mapsto\left(R^{b}, R^{b+}\right)$ such that R^{b} is multiplicatively isomorphic to $\varliminf_{\leftarrow}^{\lim _{x \rightarrow x^{p}}} R$ and R^{b+} is multiplicatively isomorphic to $\lim _{x \mapsto x^{p}} R^{+}$.
(4) ([42, Proposition 5.20 and Corollary 6.8]) The tilting equivalence associates $\left(K\left\langle\underline{v}^{1 / p^{\infty}}\right\rangle, K^{\circ}\left\langle\underline{v}^{1 / p^{\infty}}\right\rangle\right)$ to $\left(K^{b}\left\langle\underline{v}^{1 / p^{\infty}}\right\rangle, K^{b \circ}\left\langle\underline{v}^{1 / p^{\infty}}\right\rangle\right)$ and $\left(K\left\langle\underline{v}^{ \pm 1 / p^{\infty}}\right\rangle, K^{\circ}\left\langle\underline{v}^{ \pm 1 / p^{\infty}}\right\rangle\right)$ to $\left(K^{b}\left\langle\underline{v}^{ \pm 1 / p^{\infty}}\right\rangle, K^{b o}\left\langle\underline{v}^{ \pm 1 / p^{\infty}}\right\rangle\right)$.

We now introduce a geometric category. We make use of a definition of Wedhorn [52, Remark and Definition 8.9].
1.1.20. Definition. Let X be a topological space and let \mathcal{B} be a basis of open subsets of X. A presheaf \mathcal{F} on X with values in a category where projective limits exist is adapted to \mathcal{B} if

1.1.21. Remark. If \mathcal{F} is a sheaf, it is adapted to any basis of open subsets. Vice-versa, if \mathcal{F} is a presheaf on X adapted to \mathcal{B} and a sheaf on \mathcal{B} then it is a sheaf on X.
1.1.22. Definition. Let K be a complete non-archimedean field.

- We denote by $\mathbf{V}_{\text {psh }}$ the following category: objects are triples $\left(X, \mathcal{O}_{X}, \mathcal{O}_{X}^{+}\right)$with the following properties:
- X is a topological space.
- \mathcal{O}_{X} resp. \mathcal{O}_{X}^{+}is a presheaf on X of complete topological algebras over K resp. over K° with $\mathcal{O}_{X} \supseteq \mathcal{O}_{X}^{+}$and the stalk at each point x is a local ring $\mathcal{O}_{X, x}$ resp. $\mathcal{O}_{X, x}^{+}$. We denote by \mathfrak{m}_{x} the maximal ideal of $\mathcal{O}_{X, x}$.
- There is a basis of open subsets \mathcal{B} such that the presheaves \mathcal{O}_{X} and \mathcal{O}_{X}^{+}are adapted to it and the pair $\left(\mathcal{O}_{X}, \mathcal{O}_{X}^{+}\right)$defines a presheaf on \mathcal{B} of complete affinoid K-algebras.
- For each point x in X the π-adic completion of the pair $\left(\mathcal{O}_{X, x}, \mathcal{O}_{X, x}^{+}\right)$is a valuation field $\left(\widehat{k}(x), \widehat{k}(x)^{+}\right)$such that the map $\mathcal{O}_{X, x} \rightarrow \widehat{k}(x)$ factors over $\mathcal{O}_{X, x} / \mathfrak{m}_{x}$.
A morphism $f:\left(X, \mathcal{O}_{X}, \mathcal{O}_{X}^{+}\right) \rightarrow\left(Y, \mathcal{O}_{Y}, \mathcal{O}_{Y}^{+}\right)$is a pair formed by a map of topological spaces $f: X \rightarrow Y$ and a couple of maps of presheaves of topological K°-algebras $\left(f^{\sharp}, f^{+\sharp}\right):\left(\mathcal{O}_{Y}, \mathcal{O}_{Y}^{+}\right) \rightarrow f_{*}\left(\mathcal{O}_{X}, \mathcal{O}_{X}^{+}\right)$inducing local maps of valuation fields at each point. For each $x \in X$ we denote the totally ordered topological abelian group $\widehat{k}(x)^{*} / \widehat{k}(x)^{+*}$ by $\Gamma(x)$.
- We denote by \mathbf{V} the full subcategory of $\mathbf{V}_{\mathrm{psh}}$ formed by triples $\left(X, \mathcal{O}_{X}, \mathcal{O}_{X}^{+}\right)$such that \mathcal{O}_{X} and \mathcal{O}_{X}^{+}are sheaves of topological rings.
1.1.23. Lemma. Let $\left(X, \mathcal{O}_{X}^{+}, \mathcal{O}_{X}\right)$ be an object of $\mathrm{V}_{\mathrm{psh}}$ and x be a point of X.
(1) The completion map $\mathcal{O}_{X, x}^{+} \rightarrow \widehat{k}(x)^{+}$and the map $\mathcal{O}_{X, x} \rightarrow \widehat{k}(x)$ are local.
(2) If $\left(f, f^{\sharp}, f^{+\sharp}\right):\left(X, \mathcal{O}_{X}, \mathcal{O}_{X}^{+}\right) \rightarrow\left(Y, \mathcal{O}_{Y}, \mathcal{O}_{Y}^{+}\right)$is a morphism of \mathbf{V} then the pairs $\left(f, f^{\sharp}\right)$ and $\left(f, f^{+\sharp}\right)$ are morphisms of locally ringed spaces.
(3) The map $\mathcal{O}_{X, x} \rightarrow \widehat{k}(x)$ induces a continuous valuation $|\cdot(x)|: \mathcal{O}_{X, x} \rightarrow \Gamma(x) \cup\{0\}$ and morphism of $\mathrm{V}_{\mathrm{psh}}$ are compatible with these valuations.
(4) The ring $\mathcal{O}_{X, x}^{+}$coincides with the subring of elements f with $|f(x)| \leq 1$ and its maximal ideal coincides with the set of elements f such that $|f(x)|<1$.
(5) The maximal ideal \mathfrak{m}_{x} of $\mathcal{O}_{X, x}$ coincides with the set of elements f such that $|f(x)|=0$.
(6) If $\left(X, \mathcal{O}_{X}^{+}, \mathcal{O}_{X}\right)$ lies in V then $\mathcal{O}^{+}(X)$ coincides with the ring $\{f \in \mathcal{O}(X):|f(x)| \leq$ 1 for all $x \in X\}$.
(7) For any $a, b \in \mathcal{O}_{X}(X)$ the sets $\{x:|a(x)| \neq 0\}$ and $\{x:|a(x)| \leq|b(x)| \neq 0\}$ are open.

Proof. We start by proving the first claim. The local map $\mathcal{O}_{X, x}^{+} \rightarrow \mathcal{O}_{X, x}^{+} / \pi$ factors by the completion map $\mathcal{O}_{X, x}^{+} \rightarrow k(x)^{+}$which is then also local. The claim about $\mathcal{O}_{X, x} \rightarrow k(x)$ follows from the very definition of the category $\mathbf{V}_{\mathrm{psh}}$.

For the second claim, we only need to prove that the induced maps $\mathcal{O}_{Y, f(x)}^{+} \rightarrow \mathcal{O}_{X, x}^{+}$and $\mathcal{O}_{Y, f(x)} \rightarrow \mathcal{O}_{X, x}$ are local. This follows from the first claim and the fact that a local map of valuation fields $\left(\widehat{k}(y), \widehat{k}(y)^{+}\right) \rightarrow\left(\widehat{k}(x), \widehat{k}(x)^{+}\right)$induces a local map $\widehat{k}(y)^{+} \rightarrow \widehat{k}(x)^{+}$. This also proves the third claim.

If an element a in $\mathcal{O}_{X, x}$ satisfies $|a(x)| \leq 1$ then a lies in $\widehat{k}(x)^{+}$which is the π-adic completion of $\mathcal{O}_{X, x}^{+}$. In particular, there exist elements $a^{\prime}, c \in \mathcal{O}_{X, x}^{+}$such that $a-c \pi=a^{\prime}$. We then deduce $a \in \mathcal{O}_{X, x}^{+}$and hence the third claim. The fourth and fifth claims are easy consequences of the previous ones.

If \mathcal{O}_{X} and \mathcal{O}_{X}^{+}are sheaves, then also the subsheaf \mathcal{F} of \mathcal{O}_{X} defined as $\mathcal{F}(U)=\{f \in$ $\mathcal{O}_{X}(U):|f(x)| \leq 1$ for all $\left.x \in U\right\}$ is a sheaf and by what proved above has the same stalks of \mathcal{O}_{X}^{+}. They therefore coincide and this shows the sixth claim.

We now move to the last claim. Fix now $a, b \in \mathcal{O}_{X}(X)$. From the previous results, we deduce that $|a(x)| \neq 0$ is equivalent to $a \in \mathcal{O}_{X, x}^{*}$ which is an open condition. In order to prove that the second set is also open it therefore suffices to show that the condition $|a(x)| \leq 1$ is open. From the third claim, this amounts to saying that $a \in \mathcal{O}_{X, x}^{+}$which is again an open condition, as wanted.

By the above result, each object $\left(X, \mathcal{O}_{X}, \mathcal{O}_{X}^{+}\right)$of \mathbf{V} defines a triple $\left(X, \mathcal{O}_{X},\left\{v_{x}\right\}_{x \in X}\right)$ where v_{x} is a multiplicative valuation defined on the stalk $\mathcal{O}_{X, x}$ and the maps of \mathbf{V} are compatible with them. The category V is then a subcategory of \mathcal{V} as defined by Huber in [27, Section 2]. Our definition is more restrictive, as we assume that the valuation ring at each point coincides with the π-adic completion of the stalk of \mathcal{O}_{X}^{+}. On the other hand, valuations at each point are automatically induced by the properties of the stalks of $\left(\mathcal{O}_{X}, \mathcal{O}_{X}^{+}\right)$.

We now recall Huber's construction of the spectrum of a valuation ring (see [26]).
1.1.24. Construction. Let $\left(R, R^{+}\right)$be an affinoid K-algebra. The set $\operatorname{Spa}\left(R, R^{+}\right)$ is the set of equivalence classes of continuous multiplicative valuations, i.e. multiplicative maps $|\cdot|: R \rightarrow \Gamma \cup\{0\}$ where (Γ, \cdot) is a totally ordered abelian group, such that $|0|=0$, $|1|=1,|x+y| \leq \max \{|x|,|y|\}$ and $\left|R^{+}\right| \leq 1$. It is endowed with the topology generated by rational subsets $\left\{U\left(f_{1}, \ldots, f_{n} \mid g\right)\right\}$ by letting f_{1}, \ldots, f_{n}, g vary among elements in R such that f_{1}, \ldots, f_{n} generate R as an ideal and where the set $U\left(f_{1}, \ldots, f_{n} \mid g\right)$ is the set of those valuations $|\cdot|$ satisfying $\left|f_{i}\right| \leq|g|$ for all i. Rational subsets form a basis of quasi-compact sets of the (quasi-compact) space $\operatorname{Spa}\left(R, R^{+}\right)([\mathbf{2 5}$, Theorem 3.5]).

Alternatively, $\mathrm{Spa}\left(R, R^{+}\right)$is the set $\lim \operatorname{Hom}\left(\left(R, R^{+}\right),\left(L, L^{+}\right)\right)$by letting $\left(L, L^{+}\right)$vary in the category of valuation fields over K and local maps. Its topology can be defined by declaring the sets $\{\phi: 0 \neq|\phi(f)| \leq|\phi(g)|\}$ to be open, for all pairs of elements f, g in R.

Let $\left(R, R^{+}\right)$be an affinoid K-algebra, let f_{1}, \ldots, f_{n} be elements in R that generate R as an ideal and g be in R. We can endow the ring $R[1 / g]$ with the topology generated by $\pi^{k} R_{0}\left[f_{1} / g, \ldots, f_{n} / g\right]$ where R_{0} is a ring of definition of R. If we let B be the integral closure
of $R^{+}\left[f_{1} / g, \ldots, f_{n} / g\right]$ in $R[1 / g]$ the pair $(R[1 / g], B)$ is an affinoid algebra, and its completion will be denoted by ($R\left\langle f_{1} / g, \ldots, f_{n} / g\right\rangle, R\left\langle f_{1} / g, \ldots, f_{n} / g\right\rangle^{+}$). If (R, R^{+}) is bounded (or even if R is uniform) the pair ($R\left\langle f_{1} / g, \ldots, f_{n} / g\right\rangle, R\left\langle f_{1} / g, \ldots, f_{n} / g\right\rangle^{+}$) may not be bounded (see the proof of [12, Proposition 17]).

We associate to $U\left(f_{1}, \ldots, f_{n} \mid g\right)$ the affinoid K-algebra

$$
\left(\mathcal{O}(U), \mathcal{O}^{+}(U)\right)=\left(R\left\langle f_{1} / g, \ldots, f_{n} / g\right\rangle, R\left\langle f_{1} / g, \ldots, f_{n} / g\right\rangle^{+}\right)
$$

introduced above. Whenever a rational subspace U is contained in another one U^{\prime} there are canonical maps $\rho_{U}^{U^{\prime}}:\left(\mathcal{O}\left(U^{\prime}\right), \mathcal{O}^{+}\left(U^{\prime}\right)\right) \rightarrow\left(\mathcal{O}(U), \mathcal{O}^{+}(U)\right)$ (see [26, Lemma 1.5]). For an arbitrary open V we can then define

$$
\mathcal{O}(V)=\lim _{V \supset U \text { rational }} \mathcal{O}(U)
$$

and similarly for \mathcal{O}^{+}. This way, we define a pair of presheaves of complete topological K algebras $\left(\mathcal{O}, \mathcal{O}^{+}\right)$on $\operatorname{Spa}\left(R, R^{+}\right)$adapted to rational subsets. By [26, Lemma 1.5, Proposition 1.6] we have $U \cong \operatorname{Spa}\left(\mathcal{O}(U), \mathcal{O}^{+}(U)\right)$ which is called a rational subspace of $X=\operatorname{Spa}\left(R, R^{+}\right)$ and for any $x \in X$ the valuation at x extends to a valuation on $\mathcal{O}_{X, x}$ such that the stalk $\mathcal{O}_{X, x}^{+}$is local and corresponds to $\left\{f \in \mathcal{O}_{X, x}:|f(x)| \leq 1\right\}$. The triple $\left(\operatorname{Spa}\left(R, R^{+}\right), \mathcal{O}_{X}, \mathcal{O}_{X}^{+}\right)$defines an object of $\mathrm{V}_{\text {psh }}$. The property at stalks is a consequence of [42, Proposition 2.25]. We point out that $\left(\mathcal{O}(X), \mathcal{O}^{+}(X)\right) \cong\left(\widehat{R}, \widehat{R}^{+}\right)$and that $\mathrm{Spa}\left(R, R^{+}\right) \cong \mathrm{Spa}\left(\widehat{R}, \widehat{R}^{+}\right)$as remarked in [25, Proposition 3.9].

By [26, Proposition 1.6] there holds $\mathcal{O}^{+}(U)=\{f \in \mathcal{O}(U):|f(x)| \leq 1$ for all $x \in U\}$ for any rational open U of $\operatorname{Spa}\left(R, R^{+}\right)$so that \mathcal{O}^{+}is a sheaf if \mathcal{O} is a sheaf. By Tate's acyclicity theorem [9] Theorem 8.2.1/1] and Scholze's acyclicity theorem [42, Theorem 6.3], if $\left(R, R^{+}\right)$is a tft Tate algebra or a perfectoid affinoid K-algebra, then $\mathcal{O}, \mathcal{O}^{+}$are sheaves. Sadly enough, this does not hold in general as shown at the end of [26, Section 1].
1.1.25. Remark. By [12, Theorem 7] if $\left(R, R^{+}\right)$is an affinoid K-algebra such that $\mathcal{O}(U)$ is uniform for all rational subspaces U of $\mathrm{Spa}\left(R, R^{+}\right)$(i.e. it is stably uniform following [12]) then the presheaf \mathcal{O} on $\operatorname{Spa}\left(R, R^{+}\right)$is a sheaf.
1.1.26. REmARK. By abuse of notation, whenever R is a reduced fft Tate algebra we will sometimes denote by Spa R the object $\operatorname{Spa}\left(R, R^{\circ}\right)$ of \mathbf{V}.

The category \mathbf{V} must be thought of as the analogue of the category of locally ringed spaces, and allows to have a completely abstract definition of the affinoid spectrum $\operatorname{Spa}\left(A, A^{+}\right)$akin to the case of schemes (see [14, I.1.2.1]) as the following fact shows. It is a slight generalization of [26. Proposition 2.1(ii)].
1.1.27. Proposition. Let $\left(R, R^{+}\right)$be an affinoid K-algebra and X be an object of V . The global section functor induces a bijection

$$
\operatorname{Hom}_{\mathbf{V}_{\mathrm{psh}}}\left(X, \operatorname{Spa}\left(R, R^{+}\right)\right) \cong \operatorname{Hom}_{K-\operatorname{cont}}\left(\left(\widehat{R}, \widehat{R}^{+}\right),\left(\mathcal{O}(X), \mathcal{O}^{+}(X)\right)\right)
$$

where the set on the right is the set of continuous K°-linear maps of pairs of complete topological rings.

Proof. We can assume that $\left(R, R^{+}\right)$is a complete affinoid K-algebra. There is a canonical map

$$
\Gamma: \operatorname{Hom}_{\mathbf{V}_{\mathrm{psh}}}\left(X, \operatorname{Spa}\left(R, R^{+}\right)\right) \rightarrow \operatorname{Hom}_{K-\operatorname{cont}}\left(\left(R, R^{+}\right),\left(\mathcal{O}_{X}(X), \mathcal{O}_{X}^{+}(X)\right)\right)
$$

induced by the global section functor. We now define a map

$$
\phi: \operatorname{Hom}_{K-\operatorname{cont}}\left(\left(R, R^{+}\right),\left(\mathcal{O}_{X}(X), \mathcal{O}_{X}^{+}(X)\right) \rightarrow \operatorname{Hom}_{\mathbf{v}_{\mathrm{psh}}}\left(X, \operatorname{Spa}\left(R, R^{+}\right)\right)\right) .
$$

Suppose we have a map $a:\left(R, R^{+}\right) \rightarrow\left(\mathcal{O}_{X}(X), \mathcal{O}_{X}^{+}(X)\right)$. We associate to each $x \in X$ the point $\phi_{a}(x)$ of $\mathrm{Spa}\left(R, R^{+}\right)$correponding to the composite map

$$
\left(R, R^{+}\right) \rightarrow\left(\mathcal{O}_{X}(X), \mathcal{O}_{X}^{+}(X)\right) \rightarrow\left(k(x), k(x)^{+}\right) .
$$

The map $x \mapsto \phi_{a}(x)$ from X to $\operatorname{Spa}\left(R, R^{+}\right)$is continuous, since the condition $|a(f)(x)| \leq$ $|a(g)(x)| \neq 0$ is open in X by Lemma 1.1.23. For each $f_{1}, \ldots, f_{n} \in R$ generating R and any $g \in R$ let V be the subset $\left\{x \in X: \mid a\left(\overline{\left.f_{i}\right)(x) \mid} \leq|a(g)(x)| \neq 0\right.\right.$ for all $\left.i\right\}$. It is open by Lemma 1.1.23. For any subset B of V in the basis \mathcal{B} there exists an induced map of affinoid K-algebras

$$
\left(\phi_{a}^{\sharp}, \phi_{a}^{+\sharp}\right)(V):\left(R\left\langle f_{1} / g, \ldots, f_{n} / g\right\rangle, R\left\langle f_{1} / g, \ldots, f_{n} / g\right\rangle^{+}\right) \rightarrow\left(\mathcal{O}_{X}(B), \mathcal{O}_{X}^{+}(B)\right)
$$

deduced by the universal property of $\left(R\left\langle f_{i} / g\right\rangle, R\left\langle f_{i} / g\right\rangle^{+}\right)$[26, Proposition 1.3]. Since \mathcal{O}_{X} and \mathcal{O}_{X}^{+}are sheaves and since \mathcal{O} and \mathcal{O}^{+}are adapted to rational subsets the mapping above also defines

$$
\left(\phi_{a}^{\sharp}, \phi_{a}^{+\sharp}\right)(U):\left(\mathcal{O}(U), \mathcal{O}^{+}(U)\right) \rightarrow\left(\mathcal{O}_{X}\left(\phi^{-1}(U)\right), \mathcal{O}_{X}^{+}\left(\phi^{-1}(U)\right)\right)
$$

for an arbitrary open subset U of $\operatorname{Spa}\left(R, R^{+}\right)$. Therefore the triple $\left(\phi_{a}, \phi_{a}^{\sharp}, \phi_{a}^{+\sharp}\right)$ defines an element of $\operatorname{Hom}_{\mathbf{V}_{\text {psh }}}\left(X, \operatorname{Spa}\left(R, R^{+}\right)\right)$as wanted.

The composition $\Gamma \circ \phi$ is the identity by definition. We are left to check that $\phi \circ \Gamma$ is the identity. Fix a map $\left(f, f^{\sharp}, f^{+\sharp}\right)$ in $\operatorname{Hom}_{\mathbf{V}_{\text {psh }}}\left(X, \operatorname{Spa}\left(R, R^{+}\right)\right)$and let a be the associated map in $\operatorname{Hom}_{K-\text { cont }}\left(\left(R, R^{+}\right),\left(\mathcal{O}_{X}(X), \mathcal{O}_{X}^{+}(X)\right)\right)$. For each $x \in X$ we deduce the following commutative diagram:

where $\left(f_{x}^{\sharp}, f_{x}^{+\sharp}\right)$ is a local map of valuation fields. Since the composite map

$$
\left(R, R^{+}\right) \rightarrow\left(\mathcal{O}_{X}(X), \mathcal{O}_{X}^{+}(X)\right) \rightarrow\left(k(x), k^{+}(x)\right)
$$

coincides with ϕ_{x} we deduce that ϕ_{x} is equivalent to the valuation induced by the map $\left(R, R^{+}\right) \rightarrow$ $\left(k(f(x)), k^{+}(f(x))\right)$ hence $f(x)=\phi_{x}$. Fix now a rational subset U of $\operatorname{Spa}\left(R, R^{+}\right)$and let V be $f^{-1}(U)$. By covering it with open sets of \mathcal{B} we conclude that the map a factors over

$$
\left(f^{\sharp}, f^{+\sharp}\right)(V):\left(\mathcal{O}(U), \mathcal{O}^{+}(U)\right) \rightarrow\left(\mathcal{O}_{X}(V), \mathcal{O}_{X}^{+}(V)\right)
$$

and it coincides with $\left(\phi_{a}^{\sharp}, \phi_{a}^{+\sharp}\right)(V)$ by the universal property of $\left(\mathcal{O}(U), \mathcal{O}^{+}(U)\right)$. This proves the claim.
1.1.28. Remark. The functor Spa induces an adjunction between \mathbf{V} and the category of affinoid K-algebras such that the presheaf \mathcal{O} on $\operatorname{Spa}\left(R, R^{+}\right)$is a sheaf, also known as sheafy affinoid K-algebras using the language of [45], and these include reduced tft Tate algebras and perfectoid affinoid K-algebras.
1.1.29. Remark. Proposition 1.1.27 slightly differs from [26, Proposition 2.1(ii)] since we do not assume that X is locally affinoid and that $\operatorname{Spa}\left(R, R^{+}\right)$is in \mathbf{V}.
1.1.30. Definition. Let X be an object of \mathbf{V}.

- We say that X is an affinoid adic space if it is isomorphic to $\operatorname{Spa}\left(R, R^{+}\right)$for some affinoid K-algebra $\left(R, R^{+}\right)$. It is called bounded if $\left(R, R^{+}\right)$is bounded.
- We say that X is an affinoid rigid variety if it is isomorphic to $\operatorname{Spa}\left(R, R^{\circ}\right)$ for some tft Tate algebra R and it is called reduced if R is reduced.
- We say that X is a perfectoid affinoid space if it is isomorphic to $\mathrm{Spa}\left(R, R^{+}\right)$for some perfectoid affinoid K-algebra $\left(R, R^{+}\right)$.
- We say that X is an adic space if it is locally isomorphic to an affinoid adic space.
- We say that X is a rigid variety if it is locally isomorphic to an affinoid rigid variety. It is called reduced if it is locally isomorphic to a reduced affinoid rigid variety.
- We say that X is a perfectoid space if it is locally isomorphic to a perfectoid affinoid space.

In this work we will always be dealing with stably uniform affinoid K-algebras. For this reason, the adjectives "bounded" and "reduced" will sometimes be omitted.

There is an apparent clash of definitions between rigid varieties as presented above, and as defined by Tate [49]. In fact, the two categories are canonically equivalent. We refer to [26. Section 4] and [42, Section 2] for a more detailed collection of results on the comparison between these theories.
1.1.31. Assumption. From now on, we will always assume that K is a perfectoid field. We also make the extra assumption that the invertible element π of K satisfies $|p| \leq|\pi|<1$ and coincides with $\left(\pi^{b}\right)^{\sharp}$ for a chosen π^{b} in K^{b}. In particular, π is equipped with a compatible system of p-power roots $\pi^{1 / p^{h}}$ (see [42, Remark 3.5]).

We now consider some basic examples and fix some notation. Let $\underline{v}=\left(v_{1}, \ldots, v_{N}\right)$ be a N-tuple of coordinates. The Tate N-ball $\operatorname{Spa}\left(K\langle\underline{v}\rangle, K^{\circ}\langle\underline{v}\rangle\right)$ will be denoted by \mathbb{B}^{N} and the N-torus $\operatorname{Spa}\left(K\left\langle\underline{v}^{ \pm 1}\right\rangle, K^{\circ}\left\langle\underline{v}^{ \pm 1}\right\rangle\right)$ by \mathbb{T}^{N}. It is the rational open subset $U\left(1 \mid v_{1} \ldots v_{N}\right)$ of \mathbb{B}^{N}. The map of spaces induced by the inclusion $\left(K\langle\underline{v}\rangle, K^{\circ}\langle\underline{v}\rangle\right) \rightarrow\left(K\left\langle\underline{v}^{1 / p^{h}}\right\rangle, K^{\circ}\left\langle\underline{v}^{1 / p^{h}}\right\rangle\right)$ will be denoted by $\mathbb{B}^{N}\left\langle\underline{v}^{1 / p^{h}}\right\rangle \rightarrow \mathbb{B}^{N}$. We use the analogous notation $\mathbb{T}^{N}\left\langle\underline{v}^{1 / p^{h}}\right\rangle \rightarrow \mathbb{T}^{N}$ for the torus. These maps are clearly isomorphic to the endomorphism of \mathbb{B}^{N} resp. \mathbb{T}^{N} induced by $v_{i} \mapsto v_{i}^{p^{h}}$.

The space defined by the perfectoid affinoid K-algebra ($K\left\langle\underline{v}^{1 / p^{\infty}}\right\rangle, K^{\circ}\left\langle\underline{v}^{1 / p^{\infty}}\right\rangle$) will be denoted by $\widehat{\mathbb{B}}^{N}$ and referred to as the perfectoid N-ball. The space defined by the perfectoid affinoid K-algebra $\left(K\left\langle\underline{v}^{ \pm 1 / p^{\infty}}\right\rangle, K^{\circ}\left\langle\underline{v}^{ \pm 1 / p^{\infty}}\right\rangle\right)$ coincides with the rational subspace $U\left(1 \mid v_{1} \ldots v_{N}\right)$ of $\widehat{\mathbb{B}}^{N}$ will be denoted by $\widehat{\mathbb{T}}^{N}$ and will be referred to as the perfectoid N-torus.

We now recall the definition of étale maps on the category of adic spaces, taken from [42, Section 7].
1.1.32. Definition. A map of affinoid adic spaces $f: \mathrm{Spa}\left(S, S^{+}\right) \rightarrow \mathrm{Spa}\left(R, R^{+}\right)$is finite étale if the associated map $R \rightarrow S$ is a finite étale map of rings, and if S^{+}is the integral closure of R^{+}in S. A map of adic spaces $f: X \rightarrow Y$ is étale if for any point $x \in X$ there exists an open neighborhood U of x and an affinoid open subset V of Y containing $f(U)$ such that $\left.f\right|_{U}: U \rightarrow V$ factors as an open embedding $U \rightarrow W$ and a finite étale map $W \rightarrow V$ for some affinoid adic space W.

The previous definitions, when restricted to the case of tft Tate varieties, coincide with the usual ones, as proved in [18, Proposition 8.1.2].
1.1.33. Remark. Suppose we are given a diagram of affinoid K-algebras

In general, it is not possible to define a push-out in the category of affinoid K-algebras. Nonetheless, this can be performed under some hypotheses. For example, if the affinoid K-algebras are tft Tate algebras then the push-out exists and it is the tft Tate algebra associated to the completion $S \widehat{\otimes}_{R} T$ of $S \otimes_{R} T$ endowed with the norm of the tensor product (see [9 , Section 3.1.1]). In case the affinoid K-algebras are perfectoid affinoid, then the push-out exists and is also perfectoid affinoid. It coincides with the completion of (L, L^{+}) where L is the ring $S \otimes_{R} T$ endowed with the norm of the tensor product and L^{+}is the algebraic closure of $S^{+} \otimes_{R^{+}} T^{+}$in L (see [42, Proposition 6.18]). The same construction holds in case the map $\left(R, R^{+}\right) \rightarrow\left(S, S^{+}\right)$is finite étale and $\left(T, T^{+}\right)$is a perfectoid affinoid (see [42, Lemma 7.3]). By Proposition 1.1.27, the constructions above give rise to fiber products in the category \mathbf{V}.

1.2. Semi-perfectoid spaces

We can now introduce a convenient generalization of both smooth rigid varieties and smooth perfectoid spaces. We recall that our base field K is a perfectoid field.
1.2.1. Proposition. Let $\underline{v}=v_{1}, \ldots, v_{N}$ and $\underline{\nu}=\nu_{1}, \ldots, \nu_{M}$ be two systems of coordinates. Let $\left(R_{0}, R_{0}^{\circ}\right)$ be a tft Tate algebra and let

$$
f: \operatorname{Spa}\left(R_{0}, R_{0}^{\circ}\right) \rightarrow \mathbb{T}^{N} \times \mathbb{T}^{M}=\operatorname{Spa} K\left\langle\underline{v}^{ \pm 1}, \underline{\nu}^{ \pm 1}\right\rangle
$$

be a map which is a composition of finite étale maps and rational embeddings. Let also $\operatorname{Spa}\left(R_{h}, R_{h}^{\circ}\right)$ be the affinoid rigid variety $\operatorname{Spa}\left(R_{0}, R_{0}^{\circ}\right) \times_{\mathbb{T}^{N}} \mathbb{T}^{N}\left\langle\underline{v}^{1 / p^{h}}\right\rangle$. The π-adic completion $\left(T, T^{+}\right)$of $\left(\lim _{i} R_{i}, \varliminf_{i} R_{i}^{\circ}\right)$ represents the fiber product $\mathrm{Spa}\left(R_{0}, R_{0}^{\circ}\right) \times_{\mathbb{T}^{N}} \widehat{\mathbb{T}}^{N}$ and defines a bounded affinoid adic space. Moreover, $\left(T, T^{+}\right)$is isomorphic to the completion of $\left(L, L^{+}\right)$ where L is the ring $R_{0} \otimes_{K\langle\underline{v}\rangle} K\left\langle\underline{v}^{1 / p^{\infty}}\right\rangle$ endowed with the norm of the tensor product and L^{+}is the integral closure of R_{0}° in L.

Proof. Let $\left(T, T^{+}\right)$be as in the last claim. We need to prove that $W:=\operatorname{Spa}\left(T, T^{+}\right)$is an adic space, i.e. that \mathcal{O} is a sheaf on it. We let W^{\prime} be the fiber product of $\operatorname{Spa}\left(R_{0}, R_{0}^{\circ}\right)$ and $\widehat{\mathbb{T}}^{N} \times \widehat{\mathbb{T}}^{M}$ over $\mathbb{T}^{N} \times \mathbb{T}^{M}$. If char $K=0$ by [42, Proposition 6.3(iii), Lemma 7.3 and Proposition 7.10] and the proof of [43, Lemma 4.5] it exists, is affinoid perfectoid represented by $\left(T^{\prime}, T^{\prime+}\right)$ where T^{\prime} is $R_{0} \widehat{\otimes}_{K\langle\underline{v}, \underline{\nu}\rangle} K\left\langle\underline{v}^{1 / p^{\infty}}, \underline{\nu}^{1 / p^{\infty}}\right\rangle$ and where $T^{\prime+}$ is bounded in T^{\prime} and corresponds to the completion of the algebraic closure of $R_{0}^{\circ} \otimes_{K^{\circ}\langle v, \nu\rangle} K^{\circ}\left\langle\underline{v}^{1 / p^{\infty}}, \underline{\nu}^{1 / p^{\infty}}\right\rangle$ in $R_{0} \otimes_{K\langle\underline{v}, \underline{\nu}\rangle} K\left\langle\underline{v}^{1 / p^{\infty}}, \underline{\nu}^{1 / p^{\infty}}\right\rangle$. The same is true if char $K=p$ as in this case it coincides with the completed perfection of X_{0} (see [19, Theorem 3.5.13]).

Let $\left\{U_{i}\right\}$ be a finite rational covering of W and let $\left\{U_{i}^{\prime}\right\}$ be the rational covering of W^{\prime} obtained by pullback. We first prove that the pullback of $\mathcal{O}\left(W^{\prime}\right)$ and $\mathcal{O}\left(U_{i}\right)$ over $\mathcal{O}\left(U_{i}^{\prime}\right)$ coincides with $\mathcal{O}(W)$. Since as pointed out in Remark the ring $K\left\langle\underline{\nu}^{1 / p^{\infty}}\right\rangle$ is isomorphic to $\widehat{\bigoplus} K\langle\underline{\nu}\rangle$ also $\mathcal{O}\left(W^{\prime}\right)$ is isomorphic to $\widehat{\oplus} \mathcal{O}(W)$ and $\mathcal{O}\left(U_{i}^{\prime}\right)$ is isomorphic to $\widehat{\bigoplus} \mathcal{O}\left(U_{i}\right)$ using [9] Proposition 2.1.7/8]. By the explicit description of this set as a subset of $\prod \mathcal{O}\left(U_{i}\right)$ given in [9, Proposition 2.1.5/7] we conclude that $\widehat{\oplus} \mathcal{O}(W) \times_{\widehat{\oplus} \mathcal{O}\left(U_{i}\right)} \mathcal{O}\left(U_{i}\right)=\mathcal{O}(W)$ as claimed. We then conclude
that the equalizer of the diagram

$$
\prod_{i} \mathcal{O}\left(U_{i}\right) \rightrightarrows \prod_{i, j} \mathcal{O}\left(U_{i} \cap U_{j}\right)
$$

is obtained by pullback from equalizer of the diagram

$$
\prod_{i} \mathcal{O}\left(U_{i}^{\prime}\right) \rightrightarrows \prod_{i, j} \mathcal{O}\left(U_{i}^{\prime} \cap U_{j}^{\prime}\right)
$$

Since the latter coincides with $\mathcal{O}\left(W^{\prime}\right)$ we deduce that the former coincides wih $\mathcal{O}(W)$ as wanted.
Moreover, since the map $R_{0} \rightarrow R_{h}$ is finite, R_{h}° is the algebraic closure in R_{h} of R_{0}° by [9 , Theorem 6.3.5/1]. Passing to the direct limit, one finds that T^{+}is the completion of $\underset{\rightarrow}{\lim _{h}} R_{h}^{\circ}$. We are left to prove that T^{+}is bounded, and this follows as it strictly embeds in $T^{\prime+}$ which is bounded in T^{\prime}.
1.2.2. Corollary. Let X be a reduced rigid variety with an étale map

$$
f: X \rightarrow \mathbb{T}^{N} \times \mathbb{T}^{M}=\operatorname{Spa} K\left\langle\underline{v}^{ \pm 1}, \underline{\nu}^{ \pm 1}\right\rangle
$$

Then the fiber product $X \times_{\mathbb{T}^{N}} \widehat{\mathbb{T}}^{N}$ exists.
Proof. This follows from Proposition 1.2.1 and the fact that every étale map is locally (on the source) a composition of rational embeddings and finite étale maps.
1.2.3. Definition. We denote by $\widehat{\operatorname{Rig} S m}{ }^{g c} / K$ the full subcategory of adic spaces whose objects are isomorphic to spaces $X=X_{0} \times_{\mathbb{T}^{N}} \widehat{\mathbb{T}}^{N}$ with respect to a map of affinoid rigid varieties $f: X_{0} \rightarrow \mathbb{T}^{N} \times \mathbb{T}^{M}$ that is a composition of rational embeddings and finite étale maps. Because of Proposition 1.2.1, such fiber products $X=X_{0} \times_{\mathbb{T}^{N}} \widehat{\mathbb{T}}^{N}$ exist and are affinoid. Whenever $N=0$ these varieties are rigid analytic varieties and the full subcategory they form will be denoted by RigSm ${ }^{\text {gc }} / K$ and referred to as smooth affinoid rigid varieties with good coordinates. Whenever $M=0$ these varieties are perfectoid affinoid spaces and the full subcategory they form will be denoted by PerfSm ${ }^{\text {gc }} / K$ and referred to as smooth affinoid perfectoids with good coordinates. A perfectoid space X in $\widehat{\operatorname{Rig}} \mathrm{Sm}^{\text {gc }} / K$ will be sometimes denoted with \widehat{X}.

When $X=X_{0} \times_{\mathbb{T}^{N}} \widehat{\mathbb{T}}^{N}$ is in $\widehat{\operatorname{Rig} S m}{ }^{\text {gc }} / K$ we denote by X_{h} the fiber product $X_{0} \times_{\mathbb{T}^{N}}$ $\mathbb{T}^{N}\left\langle\underline{v}^{1 / p^{h}}\right\rangle$ and we will write $X=\lim _{h} X_{h}$. We say that a presentation $X=\lim _{h} X_{h}$ of an object X in $\widehat{\operatorname{RigSm}}{ }^{\mathrm{gc}} / K$ has good reduction if the map $X_{0} \rightarrow \mathbb{T}^{n} \times \mathbb{T}^{m}$ has an étale formal model $\mathfrak{X} \rightarrow \operatorname{Spf}\left(K^{\circ}\left\langle\underline{v}^{ \pm 1}, \underline{\nu}^{ \pm 1}\right\rangle\right)$. We say that a presentation $X=\lim _{h} X_{h}$ of an object X in $\widehat{\text { RigSm }}{ }^{\text {gc }} / K$ has potentially good reduction if there exists a finite separable field extension L / K such that $X_{L}=\lim _{\breve{X_{h}}}\left(X_{h}\right)_{L}$ has good reduction in $\widehat{\operatorname{RigSm}^{\text {gc }}} / L$. We warn the reader that the association $X \mapsto \overleftarrow{X}_{0}$ is not functorial and the varieties X_{h} are not uniquely determined by X in general.

We denote by $\widehat{\text { RigSm }} / K$ the full subcategory of adic spaces which are locally isomorphic to objects in $\widehat{\operatorname{RigSm}}{ }^{\text {gc }} / K$; we denote by RigSm $/ K$ the full subcategory of adic spaces which are locally isomorphic to objects in $\operatorname{RigSm}{ }^{\mathrm{gc}} / K$ and by PerfSm $/ K$ the one of adic spaces which are locally isomorphic to objects in $\operatorname{PerfSm}^{\mathrm{gc}} / K$. Whenever the context allows it, we omit K from the notation.
1.2.4. Remark. Any smooth rigid variety (see for example [5, Definition 1.1.39]) has locally good coordinates over \mathbb{T}^{N} by [5] Corollary 1.1.49]. Hence RigSm coincides with the category of smooth rigid varieties.

We remark that the presentations of good reduction defined above are a special case of the objects considered in [2].

The notation $X=\lim _{h} X_{h}$ is justified by the following corollary, which is inspired by [45, Proposition 2.4.5].
1.2.5. COROLLARY. Let Y be a bounded affinoid adic space and let X be in $\widehat{\operatorname{RigSm}}{ }^{\text {gc }}$ with $X={\underset{\longleftarrow}{Ł}}_{h} X_{h}$. Then $\operatorname{Hom}(Y, X) \cong \lim _{\varlimsup_{h}} \operatorname{Hom}\left(Y, X_{h}\right)$.

Proof. This follows from Lemma 1.1.10 and Proposition 1.2.1.
Let $\left\{X_{h}, f_{h}\right\}_{h \in I}$ be a cofiltered diagram of rigid varieties and let $\left\{X \rightarrow X_{h}\right\}_{h \in I}$ be a collection of compatible maps of adic spaces. We recall that, according to [27, Remark 2.4.5], one writes $X \sim \lim _{h} X_{h}$ when the following two conditions are satisfied:
(1) The induced map on topological spaces $|X| \rightarrow \prod_{h}\left|X_{h}\right|$ is a homeomorphism.
(2) For any $x \in X$ with images $x_{h} \in X_{h}$ the map of residue fields $\lim _{\rightarrow} k\left(x_{h}\right) \rightarrow k(x)$ has dense image.
The apparent clash of notations is solved by the following fact.
1.2.6. Proposition. Let $X=\lim _{\varliminf_{h}} X_{h}$ be in $\widehat{\operatorname{Rig} S m}{ }^{\text {gc }}$. Then $X \sim \lim _{h} X_{h}$.

Proof. This follows from $\widehat{\mathbb{T}}^{N} \sim \lim _{h} K\left\langle\underline{v}^{ \pm 1 / p^{h}}\right\rangle$ and from [42, Proposition 7.16].
Étale maps define a topology on $\widehat{\operatorname{Rig} S m}$ in the following way.
1.2.7. Definition. A collection of étale maps of adic spaces $\left\{U_{i} \rightarrow X\right\}_{i \in I}$ is an étale cover if the induced map $\bigsqcup_{i \in I} U_{i} \rightarrow X$ is surjective. These covers define a Grothendieck topology on $\widehat{\text { RigSm called the étale topology. }}$

The following facts are shown in the proof of [42, Theorem 7.17] and of [27, Proposition 2.4.4].
1.2.8. Proposition. Let $X=\lim _{h_{h}} X_{h}$ be an object of $\widehat{\operatorname{RigSm}}{ }^{\text {gc }}$.
(1) Any finite étale map $U \rightarrow X$ is isomorphic to $U_{\bar{h}} \times_{X_{\bar{h}}} X$ for some integer \bar{h} and some finite étale map $U_{\bar{h}} \rightarrow X_{\bar{h}}$.
(2) Any rational subspace $U \subset X$ is isomorphic to $U_{\bar{h}} \times_{X_{\bar{h}}} X$ for some integer H and some rational subspace $U_{\bar{h}} \subset X_{\bar{h}}$.

Proof. The first statement follows from [42, Lemma 7.5]. The second statement follows from [25, Lemma 3.10] and the fact that $\lim _{h} \mathcal{O}\left(X_{h}\right)$ is dense in $\mathcal{O}(X)$.
1.2.9. Corollary. Let $X=\lim _{\varliminf_{h}} X_{h}$ be an object of $\widehat{\operatorname{RigSm}}{ }^{\mathrm{gc}}$ and let $\mathcal{U}:=\left\{f_{i}: U_{i} \rightarrow X\right\}$ be an étale covering of adic spaces. There exists an integer \bar{h} and a finite affine refinement $\left\{V_{j} \rightarrow X\right\}$ of \mathcal{U} which is obtained by pullback of an étale covering $\left\{V_{\bar{h} j} \rightarrow X_{\bar{h}}\right\}$ of $X_{\bar{h}}$ and such that $V=\lim _{\hbar} V_{h j}$ lies in $\widehat{\operatorname{Rig} S m}{ }^{\text {gc }}$ by letting $V_{h j}$ be $V_{\bar{h} j} \times_{X_{\bar{h}}} X_{h}$ for all $h \geq \bar{h}$.

PROOF. Any étale map of adic spaces is locally a composition of rational embeddings and finite étale maps and they descend because of Proposition 1.2.8.
1.2.10. Corollary. A perfectoid space X lies in PerfSm if and only if it is locally étale over $\widehat{\mathbb{T}}^{N}$.

Proof. Let X be locally étale over $\widehat{\mathbb{T}}^{N}$. Then it is locally open in a finite étale space over a rational subaffinoid of $\widehat{\mathbb{T}}^{N}=\lim _{h} \mathbb{T}^{N}\left\langle\underline{v}^{ \pm 1 / p^{h}}\right\rangle$. By Proposition 1.2 .8 , we conclude it is locally of the form $X_{0} \times_{\mathbb{T}^{N}} \widehat{\mathbb{T}}^{N}$ for some étale map $X_{0} \rightarrow \mathbb{T}^{N}=\operatorname{Spa}\left(K\left\langle\underline{v}^{ \pm 1}\right\rangle, K^{\circ}\left\langle\underline{v}^{ \pm 1}\right\rangle\right)$ which is the composition of rational embeddings and finite étale maps.
1.2.11. Remark. If X is a smooth affinoid perfectoid space, then it has a finite number of connected components. Indeed, it is quasi-compact and locally isomorphic to a rational domain of a perfectoid which is finite étale over a rational domain of $\widehat{\mathbb{T}}^{N}$.

For later use, we record the following simple example of a space $X=\varliminf_{l_{h}} X_{h}$ for which the varieties X_{h} are easy to understand.
1.2.12. Proposition. Consider the smooth variety with good coordinates

$$
X_{0}=U(v-1 \mid \pi) \hookrightarrow \mathbb{T}^{1}=\operatorname{Spa}\left(K\left\langle v^{ \pm 1}\right\rangle\right)
$$

One has $X_{h} \cong \mathbb{B}^{1}$ for all h and $\widehat{X}=\lim _{h} X_{h} \cong \widehat{\mathbb{B}}^{1}$.
Proof. By direct computation, the variety X_{h} is isomorphic to $\operatorname{Spa}\left(K\langle v, \omega\rangle /\left(\omega^{p^{h}}-(\pi v+\right.\right.$ $1))$). Since $|p| \leq|\pi|$ we deduce that $\left|\binom{p^{h}}{i}\right| \leq|\pi|$ for all $0<i<p^{h}$. In particular, in the ring $K\langle v, \omega\rangle /\left(\omega^{p^{h}}-(\pi v+1)\right)$ one has

$$
\left|(\omega-1)^{p^{h}}\right|=\left|\pi v+\sum_{i=1}^{p^{h}-1}\binom{p^{h}}{i} \omega^{i}\right|=|\pi|
$$

Analogously, in the ring $K\langle\chi\rangle$ one has

$$
\left|\left(\chi+\pi^{-1 / p^{h}}\right)^{p^{h}}-\pi^{-1}\right|=\left|\chi^{p^{h}}+\sum_{i=1}^{p^{h}-1}\binom{p^{h}}{i} \chi^{p^{h}-1} \pi^{-i / p^{h}}\right|=1
$$

The following maps are therefore well defined and clearly mutually inverse:

$$
\begin{aligned}
X_{h}=\operatorname{Spa}\left(K\langle v, \omega\rangle /\left(\omega^{p^{h}}-(\pi v+1)\right)\right. & \leftrightarrows \operatorname{Spa}(K\langle\chi\rangle)=\mathbb{B}^{1} \\
(v, \omega) & \mapsto\left(\left(\chi+\pi^{-1 / p^{h}}\right)^{p^{h}}-\pi^{-1}, \pi^{1 / p^{h}} \chi+1\right) \\
\pi^{-1 / p^{h}}(\omega-1) & \hookrightarrow \chi .
\end{aligned}
$$

Consider the multiplicative map $\sharp: K^{b}\left\langle v^{1 / p^{\infty}}\right\rangle=\left(K\left\langle v^{1 / p^{\infty}}\right\rangle\right)^{b} \rightarrow K\left\langle v^{1 / p^{\infty}}\right\rangle$ defined in [42, Proposition 5.17]. By our assumptions on π the element $(v-1)^{\sharp}-(v-1)$ is divisible by π in $K^{\circ}\left\langle v^{1 / p^{\infty}}\right\rangle$ and therefore the rational set $\widehat{X} \cong U(v-1 \mid \pi)$ of $\widehat{\mathbb{T}}^{1}$ coincides with $U\left((v-1)^{\sharp} \mid \pi^{b \sharp}\right)$. From [42, Theorem 6.3] we conclude $\widehat{X}^{b} \cong U\left(v-1 \mid \pi^{b}\right) \hookrightarrow \widehat{\mathbb{T}}^{b 1}$ which is isomorphic to $\widehat{\mathbb{B}}^{b 1}$ hence the claim.

From the previous proposition we conclude in particular that the perfectoid space $\widehat{\mathbb{B}}^{1}$ lies in PerfSm ${ }^{\mathrm{gc}}$.

1.3. Categories of adic motives

From now on, we fix a commutative ring Λ and work with Λ-enriched categories. In particular, the term "presheaf" should be understood as "presheaf of Λ-modules" and similarly for the tem "sheaf". The presheaf $\Lambda(X)$ represented by an object X of a category \mathbf{C} sends an object Y of \mathbf{C} to the free Λ-module $\Lambda \operatorname{Hom}(Y, X)$.
1.3.1. Assumption. Unless otherwise stated, we assume from now on that Λ is a \mathbb{Q}-algebra and we omit it from the notations.

We make extensive use of the theory of model categories and localization, following the approach of Ayoub in [5] and [6]. Fix a site (C, τ). In our situation, this will be the étale site of RigSm or RigSm. The category of complexes of presheaves $\mathbf{C h}(\operatorname{Psh}(\mathbf{C}))$ can be endowed with the projective model structure for which weak equivalences are quasi-isomorphisms and fibrations are maps $\mathcal{F} \rightarrow \mathcal{F}^{\prime}$ such that $\mathcal{F}(X) \rightarrow \mathcal{F}^{\prime}(X)$ is a surjection for all X in $\mathbf{C}(\mathrm{cfr}[23$, Section 2.3] and [6, Proposition 4.4.16]).

Also the category of complexes of sheaves $\mathbf{C h}\left(\mathbf{S h}_{\tau}(\mathbf{C})\right)$ can be endowed with the projective model structure defined in [6, Proposition 4.4.41]. In this structure, weak equivalences are quasi-isomorphisms of complexes of sheaves.
1.3.2. Remark. Let \mathbf{C} be a category. As shown in [16] any projectively cofibrant complex \mathcal{F} in $\mathrm{Ch} \operatorname{Psh}(\mathbf{C})$ is a retract of a complex that is the filtered colimit of bounded above complexes, each constituted by presheaves that are direct sums of representable ones.

Just like in [29], [36], [37] or [41], we consider the left Bousfield localization of $\operatorname{Ch}(\operatorname{Psh}(\mathbf{C}))$ with respect to the topology we select, and a chosen "contractible object". We recall that left Bousfield localizations with respect to a class of maps S (see [22, Chapter 3]) is the universal model categories in which the maps in S become weak equivalences. The existence of such structures is granted only under some technical hypothesis, as shown in [22, Theorem 4.1.1] and [6, Theorem 4.2.71].
1.3.3. Proposition. Let (\mathbf{C}, τ) be a site with finite direct products and let \mathbf{C}^{\prime} be a full subcategory of \mathbf{C} such that every object of \mathbf{C} has a covering by objects of \mathbf{C}^{\prime}. Let also I be an object of \mathbf{C}^{\prime}.
(1) The projective model category $\mathbf{C h} \operatorname{Psh}(\mathbf{C})$ admits a left Bousfield localization $\mathrm{Ch}_{I} \mathbf{P s h}(\mathbf{C})$ with respect to the set S_{I} of all maps $\Lambda(I \times X)[i] \rightarrow \Lambda(X)[i]$ as X varies in \mathbf{C} and i varies in \mathbb{Z}.
(2) The projective model categories $\mathbf{C h} \operatorname{Psh}(\mathbf{C})$ and $\mathbf{C h} \operatorname{Psh}\left(\mathbf{C}^{\prime}\right)$ admit left Bousfield localizations $\mathbf{C h}_{\tau} \mathbf{P s h}(\mathbf{C})$ and $\mathbf{C h}_{\tau} \mathbf{P s h}\left(\mathbf{C}^{\prime}\right)$ with respect to the class S_{τ} of maps $\mathcal{F} \rightarrow \mathcal{F}^{\prime}$ inducing isomorphisms on the ét-sheaves associated to $H_{i}(\mathcal{F})$ and $H_{i}\left(\mathcal{F}^{\prime}\right)$ for all $i \in \mathbb{Z}$. Moreover, the two localized model categories are Quillen equivalent and the sheafification functor induces a Quillen equivalence to the projective model category $\mathbf{C h ~ S h}_{\tau}(\mathbf{C})$.
(3) The model categories $\mathrm{Ch}_{\tau} \operatorname{Psh}(\mathbf{C})$ and $\mathbf{C h}_{\tau} \operatorname{Psh}\left(\mathbf{C}^{\prime}\right)$ admit left Bousfield localizations $\mathbf{C h}_{\tau, I} \mathbf{P s h}(\mathbf{C})$ and $\mathbf{C h}_{\tau, I} \mathbf{P s h}\left(\mathbf{C}^{\prime}\right)$ with respect to the set S_{I} defined above. Moreover, the two localized model categories are Quillen equivalent.

Proof. The model structure on complexes is left proper and cellular. It follows that the projective model structures in the statement are also left proper and cellular. Any such model category admits a left Bousfield localization with respect to a set of maps ([22, Theorem 4.1.1]) hence the first claim.

For the first part of second claim, it suffices to apply [6] Proposition 4.4.32, Lemma 4.4.35] showing that the localization over S_{τ} is equivalent to a localization over a set of maps. The second part is a restatement of [6] Corollary 4.4.43, Proposition 4.4.56].

Since by [6, Proposition 4.4.32] the τ-localization coincides with the Bousfield localization with respect to a set, we conclude by [6. Theorem 4.2.71] that the model category $\mathbf{C h}_{\tau} \mathbf{P s h}(\mathbf{C})$
is still left proper and cellular. The last statement then follows from [22, Theorem 4.1.1] and the second claim.

In the situation above, we will denote by $S_{(\tau, I)}$ the union of the class S_{τ} and the set S_{I}.
1.3.4. REMARK. A geometrically relevant situation is induced when I is endowed with a multiplication map $\mu: I \times I \rightarrow I$ and maps i_{0} and i_{1} from the terminal object to I satisfying the relations of a monoidal object with 0 as in the definition of an interval object (see [37], Section 2.3]). Under these hypotheses, we say that the triple (\mathbf{C}, τ, I) is a site with an interval.
1.3.5. EXAMPLE. The affinoid rigid variety with good coordinates $\mathbb{B}^{1}=$ Spa $K\langle\chi\rangle$ is an interval object with respect to the natural multiplication μ and maps i_{0} and i_{1} induced by the substitution $\chi \mapsto 0$ and $\chi \mapsto 1$ respectively.

We now apply the constructions above to the sites introduced in the previous sections. We recall that we consider adic spaces defined over a perfectoid field K.
1.3.6. Corollary. The following pairs of model categories are Quillen equivalent.

- $\mathrm{Ch}_{\text {et }} \operatorname{Psh}(\operatorname{RigSm})$ and $\mathrm{Ch}_{\text {ét }} \operatorname{Psh}\left(\operatorname{RigSm}{ }^{\mathrm{gc}}\right)$.
- $\mathrm{Ch}_{\text {ét, } \mathbb{B}^{1}} \operatorname{Psh}(\operatorname{RigSm})$ and $\mathrm{Ch}_{\text {ét }, \mathbb{B}^{1}} \operatorname{Psh}\left(\operatorname{RigSm}^{\mathrm{gc}}\right)$.
- $\mathrm{Ch}_{\hat{e t t}} \operatorname{Psh}(\widehat{\operatorname{RigSm}})$ and $\mathbf{C h}_{\text {ét }} \operatorname{Psh}\left(\widehat{\operatorname{Rig} S m}{ }^{\mathrm{gc}}\right)$.
- $\mathrm{Ch}_{\text {ét, } \mathbb{B}^{1}} \operatorname{Psh}(\widehat{\operatorname{Rig} S m})$ and $\mathrm{Ch}_{\text {et }, \mathbb{B}^{1}} \operatorname{Psh}\left(\widehat{\operatorname{RigSm}}{ }^{\text {gc }}\right)$.

Proof. It suffices to apply Proposition 1.3 .3 to the sites with interval (RigSm, ét, \mathbb{B}^{1}) and $\left(\widehat{\operatorname{RigSm}}\right.$, ét, $\left.\mathbb{B}^{1}\right)$ where \mathbf{C}^{\prime} is in both cases the subcategory of varieties with good coordinates.
1.3.7. Definition. For $\eta \in\left\{\right.$ ét, \mathbb{B}^{1}, (ét, $\left.\left.\mathbb{B}^{1}\right)\right\}$ we say that a map in $\mathbf{C h} \operatorname{Psh}(\operatorname{RigSm})$ [resp. Ch $\operatorname{Psh}(\widehat{\operatorname{Rig} S m})]$ is a η-weak equivalence if it is a weak equivalence in the model structure $\mathrm{Ch}_{\eta} \operatorname{Psh}(\operatorname{RigSm})$ [resp. $\mathrm{Ch}_{\eta} \operatorname{Psh}(\widehat{\operatorname{RigSm}})$]. The triangulated homotopy category associated to the localization $\mathrm{Ch}_{\text {et, }, \mathbb{B}^{1}} \operatorname{Psh}($ RigSm $)$ [resp. $\left.\mathrm{Ch}_{\text {ét }, \mathbb{B}^{1}} \mathbf{P s h}(\widehat{\operatorname{RigSm}})\right]$ will be denoted by $\operatorname{RigDA}_{\text {ét }}^{\text {eff }}(K, \Lambda)$ [resp. $\left.\widehat{\operatorname{Rig}} \mathbf{D A}_{\text {eft }, \mathbb{B}^{1}}^{\mathrm{eff}}(K, \Lambda)\right]$. We will omit Λ from the notation whenever the context allows it. The image of a variety X in one of these categories will be denoted by $\Lambda(X)$. We say that an object \mathcal{F} of the derived category $\mathbf{D}=\mathbf{D}(\operatorname{Psh}(\operatorname{RigSm}))$ [resp. $\mathbf{D}=\mathbf{D}(\operatorname{Psh}(\widehat{\operatorname{RigSm}}))]$ is η-local if the functor $\operatorname{Hom}_{\mathbf{D}}(\cdot, \mathcal{F})$ sends maps in S_{η} to isomorphisms. This amounts to say that \mathcal{F} is quasi-isomorphic to a η-fibrant object.

We need to keep track of \mathbb{B}^{1} in the notation of $\widehat{\operatorname{Rig}} \mathbf{D A}_{\text {ét }, \mathbb{B}^{1}}^{\text {eff }}(K, \Lambda)$ since later we will perform a localization on Ch Psh $(\widehat{\operatorname{Rig} S m})$ with respect to a different interval object.
1.3.8. Remark. Using the language of [8], the localizations defined above induce endofunctors C^{η} of the derived categories $\mathbf{D}(\mathbf{P s h}(\operatorname{RigSm})), \mathbf{D}\left(\mathbf{P s h}\left(\operatorname{RigSm}^{g c}\right)\right), \mathbf{D}(\mathbf{P s h}(\widehat{\operatorname{RigSm}}))$ and $\mathbf{D}\left(\operatorname{Psh}\left(\widehat{\operatorname{Rig} S m}{ }^{\mathrm{gc}}\right)\right)$ such that $C^{\eta} \mathcal{F}$ is η-local for all \mathcal{F} and there is a natural transformation $C^{\eta} \rightarrow$ id which is a pointwise η-weak equivalencce. The functor C^{η} restricts to a triangulated equivalence on the objects \mathcal{F} that are η-local and one can compute the Hom set $\operatorname{Hom}\left(\mathcal{F}, \mathcal{F}^{\prime}\right)$ in the the homotopy category of the η-localization as $\mathbf{D}\left(\mathcal{F}, C^{\eta} \mathcal{F}^{\prime}\right)$.
1.3.9. Remark. By means of [6, Proposition 4.4.59] the complex $C^{\text {ét }} \mathcal{F}$ is such that $\mathbf{D}\left(\Lambda(X)[-i], C^{e t} \mathcal{F}\right)=\mathbb{H}_{\text {ett }}^{i}(X, \mathcal{F})$ for all X in $\widehat{\text { RigSm }}$ and all integers i. This property characterizes $C^{\text {et }} \mathcal{F}$ up to quasi-isomorphisms.

We now show that the étale localization can alternatively be described in terms of étale hypercoverings $\mathcal{U}_{\bullet} \rightarrow X$ (see for example [15]). Any such datum defines a simplicial presheaf $n \mapsto \bigoplus_{i} \Lambda\left(U_{n i}\right)$ whenever $\mathcal{U}_{n}=\bigsqcup_{i} h_{U_{n i}}$ is the sum of the presheaves of sets $h_{U_{n i}}$ represented by $U_{n i}$. This simplicial presheaf can be associated to a normalized chain complex, that we denote by $\Lambda\left(\mathcal{U}_{\bullet}\right)$. It is is endowed with a map to $\Lambda(X)$.
1.3.10. Proposition. The localization over $S_{\text {ét }}$ on $\operatorname{ChPsh}\left(\mathrm{RigSm}^{\mathrm{gc}}\right)$ [resp. on Ch Psh $\left.\left(\widehat{\operatorname{Rig} S m}{ }^{\mathrm{gc}}\right)\right]$ coincides with the localization over the set $\Lambda\left(\mathcal{U}_{\bullet}\right)[i] \rightarrow \Lambda(X)[i]$ as $\mathcal{U}_{0} \rightarrow X$ varies among bounded étale hypercoverings of the objects X of $\operatorname{RigSm}{ }^{\text {gc }}$ [resp. $\left.\widehat{\operatorname{Rig} S m}{ }^{\mathrm{gc}}\right]$ and i varies in \mathbb{Z}.

Proof. Any ét-local object \mathcal{F} is also local with respect to the maps of the statement. We are left to prove that a complex \mathcal{F} which is local with respect to the maps of the statement is also ét-local.

Since Λ contains \mathbb{Q} the étale cohomology of an étale sheaf \mathcal{F} coincides with the Nisnevich cohomology (the same proof of [36, Proposition 14.23] holds also here). By means of [5, 1.2.19] we conclude that any rigid variety X has a finite cohomological dimension. By [1, Theorem V.7.4.1] and [48, Theorem 0.3], we obtain for any rigid variety X and any complex of presheaves \mathcal{F} an isomorphism

$$
\mathbb{H}_{\hat{e} t}^{n}(X, \mathcal{F}) \cong{\underset{\mathcal{U}_{\bullet} \in}{ } \in \underset{H R_{\infty}}{ } \lim _{X}(X)} H_{-n} \operatorname{Hom} \cdot\left(\Lambda\left(\mathcal{U}_{\bullet}\right), \mathcal{F}\right)
$$

where $H R_{\infty}(X)$ is the category of bounded étale hypercoverings of X (see [1, V.7.3]) and Hom. is the Hom-complex computed in the unbounded derived category of presheaves. Suppose now \mathcal{F} is local with respect to the maps of the statement. Then $\operatorname{Hom}_{\bullet}\left(\Lambda\left(\mathcal{U}_{\mathbf{0}}\right), \mathcal{F}\right)$ is quasi-isomorphic to $\operatorname{Hom}_{\bullet}(X, \mathcal{F})$ for every bounded hypercovering \mathcal{U}_{\bullet}. hence $H_{-n} \mathcal{F}(X) \cong \mathbb{H}_{\text {et }}^{n}(X, \mathcal{F})$ by the formula above. We then conclude that the map $\mathcal{F} \rightarrow C^{\text {ét }} \mathcal{F}$ is a quasi-isomorphism, proving the proposition.

As the following proposition shows, there are also alternative presentations of the homotopy categories introduced so far, which we will later use.
1.3.11. Proposition. Let Λ be a \mathbb{Q}-algebra. The natural inclusion induces Quillen equivalences $L_{S} \mathbf{C h}\left(\operatorname{Psh}\left(\widehat{\operatorname{RigSm}}{ }^{\mathrm{gc}}\right)\right) \leftrightarrows \mathbf{C h}_{\text {et }} \mathbf{P s h}\left(\widehat{\operatorname{Rig} S m}{ }^{\mathrm{gc}}\right)$ where L_{S} denotes the Bousfield localization with respect to the set S of shifts of the maps of complexes induced by étale Cech hypercoverings $\mathcal{U}_{\bullet} \rightarrow X$ of objects X in $\widehat{\operatorname{RigSm}}{ }^{\text {gc }}$ such that for some presentation $X=\lim _{h} X_{h}$ the covering $\mathcal{U}_{0} \rightarrow X$ descends to a covering of X_{0}.

Proof. Using Proposition 1.3.10, it suffices to prove that the map $\Lambda\left(\mathcal{U}_{0}\right) \rightarrow \Lambda(X)$ is an isomorphism in the homotopy category $L_{S} \mathbf{C h}\left(\operatorname{Psh}\left(\widehat{\operatorname{Rig}} \mathrm{Sm}^{g \mathrm{~g}}\right)\right)$ for a fixed bounded étale hypercovering \mathcal{U}_{0} of an object X in $\widehat{\text { Rig } S m ~}{ }^{\text {gc }}$.

Since the inclusion functor $\mathrm{Ch}_{\geq 0} \rightarrow \mathbf{C h}$ is a Quillen functor, it suffices to prove that $\Lambda\left(\mathcal{U}_{\bullet}\right) \rightarrow \Lambda(X)$ is a weak equivalence in $L_{T} \mathbf{C h}_{\geq 0}\left(\mathbf{P s h}\left(\widehat{\operatorname{RigSm}}{ }^{\text {gc }}\right)\right)$ where T is the set of shifts of the maps of complexes induced by étale Cech hypercoverings descending at finite level. Let $L_{\tilde{T}} \operatorname{sPsh}\left(\widehat{\operatorname{Rig} S m}{ }^{\mathrm{gc}}\right)$ be the Bousfield localization of the projective model structure on simplicial presheaves of sets with respect to the set \tilde{T} formed by maps induced by étale Cech hypercoverings $\mathcal{U}_{.} \rightarrow X$ descending at finite level. We remark that the Dold-Kan correspondence (see [46, Section 4.1]) and the Λ-enrichment also define a left Quillen functor from $L_{\tilde{T}} \mathrm{SPsh}\left(\widehat{\left.\operatorname{Rig} \mathrm{Sm}^{\mathrm{gc}}\right)}\right.$ to the category $L_{T} \mathbf{C h}_{\geq 0}\left(\operatorname{Psh}\left(\widehat{\operatorname{Rig} S m}{ }^{\mathrm{gc}}\right)\right)$. It therefore suffices to prove that $\mathcal{U}_{\bullet} \rightarrow X$ is a weak
equivalence in $L_{\tilde{T}} \operatorname{sPsh}\left(\widehat{\operatorname{Rig}} \mathrm{Sm}^{\mathrm{gc}}\right)$ and this follows from the fact that bounded hypercovering define the same localization as Cech hypercoverings (see [15, Theorem A.6]) together with the fact that coverings descending to finite level define the same topology (Corollary 1.2.9) and hence the same localization ($[\mathbf{1 5}$, Corollary A.8]). We remark that [15, Corollary A.8] applies in our case even if the coverings $\mathcal{U} \rightarrow X$ descending to the finite level do not form a basis of the topology, as their pullback via an arbitrary map $Y \rightarrow X$ may not have the same property. However, the proof of the statement relies on [15] Proposition A.2], where it is only used that the chosen family of coverings $\mathcal{U} \rightarrow X$ generates the topology and that the fiber product $\mathcal{U} \times{ }_{X} \mathcal{U}$ is defined.
1.3.12. Remark. It is shown in the proof that the statements of Propositions 1.3 .10 and 1.3.11 hold true without any assumptions on Λ under the condition that all varieties X have finite cohomological dimension with respect to the étale topology.

As we pointed out in Remark 1.3.9, there is a characterization of $C^{\text {ett }} \mathcal{F}$ for any complex \mathcal{F}. This is also true for the \mathbb{B}^{1}-localization, described in the following part.
1.3.13. Definition. We denote by \square the Σ-enriched cocubical object (see [3, Appendix A]) defined by putting $\square^{n}=\mathbb{B}^{n}=\operatorname{Spa} K\left\langle\tau_{1}, \ldots, \tau_{n}\right\rangle$ and considering the morphisms $d_{r, \epsilon}$ induced by the maps $\mathbb{B}^{n} \rightarrow \mathbb{B}^{n+1}$ corresponding to the substitution $\tau_{r}=\epsilon$ for $\epsilon \in\{0,1\}$ and the morphisms p_{r} induced by the projections $\mathbb{B}^{n} \rightarrow \mathbb{B}^{n-1}$. For any variety X and any presheaf \mathcal{F} with values in an abelian category, we can therefore consider the Σ-enriched cubical object $\mathcal{F}(X \times \square)$ (see [3, Appendix A]). Associated to any Σ-enriched cubical object \mathcal{F} there are the following complexes: the complex $C_{0}^{\sharp} \mathcal{F}$ defined as $C_{n}^{\sharp} \mathcal{F}=\mathcal{F}_{n}$ and with differential $\sum(-1)^{r}\left(d_{r, 1}^{*}-d_{r, 0}^{*}\right)$; the simple complex $C . \mathcal{F}$ defined as $C_{n} \mathcal{F}=\bigcap_{r=1}^{n} \operatorname{ker} d_{r, 0}^{*}$ and with differential $\sum(-1)^{r} d_{r, 1}^{*}$; the normalized complex $N_{\bullet} \mathcal{F}$ defined as $N_{n} \mathcal{F}=C_{n} \cap \mathcal{F} \bigcap_{r=2}^{n} \operatorname{ker} d_{r, 1}^{*}$ and with differential $-d_{1,1}^{*}$. By [4] Lemma A.3, Proposition A.8, Proposition A.11], the inclusion $N_{\bullet} \mathcal{F} \hookrightarrow C_{\bullet} \mathcal{F}$ is a quasi-isomorphism and both inclusions $C_{\bullet} \mathcal{F} \hookrightarrow C_{\bullet}^{\sharp} \mathcal{F}$ and $N_{\bullet} \mathcal{F} \hookrightarrow C_{\bullet} \mathcal{F}$ split. For any complex of presheaves \mathcal{F} we let $\operatorname{Sing}{ }^{\mathbb{B}^{1}} \mathcal{F}$ be the total complex of the simple complex associated to the $\underline{\operatorname{Hom}(\Lambda(\square), \mathcal{F}) \text {. It sends the object } X \text { to the total complex of the }}$ simple complex associated to $\mathcal{F}(X \times \square)$.

The following lemma is the cocubical version of [36, Lemma 2.18].
1.3.14. Lemma. For any presheaf \mathcal{F} the two maps of cubical sets $i_{0}^{*}, i_{1}^{*}: \mathcal{F}\left(\square \times \mathbb{B}^{1}\right) \rightarrow \mathcal{F}(\square)$ induce chain homotopic maps on the associated simple and normalized complexes.

Proof. Consider now the isomorphism $s_{n}: \mathbb{B}^{n+1} \rightarrow \mathbb{B}^{n} \times \mathbb{B}^{1}$ defined on points by separating the last coordinate and let s_{n}^{*} be the induced map $\mathcal{F}\left(\square^{n} \times \mathbb{B}^{1}\right) \rightarrow \mathcal{F}\left(\square^{n+1}\right)$. We have $s_{n-1}^{*} \circ d_{r, \epsilon}^{*}=d_{r, \epsilon}^{*} \circ s_{n}^{*}$ for all $1 \leq r \leq n$ and $\epsilon \in\{0,1\}$. We conclude that

$$
\begin{array}{r}
s_{n-1}^{*} \circ \sum_{r=1}^{n}(-1)^{r}\left(d_{r, 1}^{*}-d_{r, 0}^{*}\right)+\sum_{r=1}^{n+1}(-1)^{r}\left(d_{r, 1}^{*}-d_{r, 0}^{*}\right) \circ\left(-s_{n}^{*}\right)= \\
=(-1)^{n}\left(d_{n+1,1}^{*} \circ s_{n}^{*}-d_{n+1,0}^{*} \circ s_{n}^{*}\right)=(-1)^{n}\left(i_{1}^{*}-i_{0}^{*}\right) .
\end{array}
$$

Therefore, the maps $\left\{(-1)^{n} s_{n}^{*}\right\}$ define a chain homotopy from i_{0}^{*} to i_{1}^{*} as maps of complexes $C_{0}^{\sharp} \mathcal{F}\left(\square \times \mathbb{B}^{1}\right) \rightarrow C_{\sharp}^{\sharp} \mathcal{F}(\square)$.

We automatically deduce that if an inclusion $C_{\bullet}^{\prime} \mathcal{F} \rightarrow C_{\bullet}^{\sharp} \mathcal{F}$ has a functorial retraction, then the maps $i_{0}^{*}, i_{1}^{*}: C_{\bullet}^{\prime} \mathcal{F}\left(\square \times \mathbb{B}^{1}\right) \rightarrow C_{\bullet}^{\prime} \mathcal{F}(\square)$ are also chain homotopic.

The following proposition is the rigid analytic analogue of [3, Theorem 2.23], or the cocubical analogue of [[5, Lemma 2.5.31].
1.3.15. Proposition. Let \mathcal{F} be a complex in $\operatorname{Ch} \operatorname{Psh}(\widehat{\operatorname{Rig} S m})$. Then $\operatorname{Sing}^{\mathbb{B}^{1} \mathcal{F}}$ is \mathbb{B}^{1}-local and \mathbb{B}^{1}-weak equivalent to \mathcal{F} in $\mathrm{Ch} \operatorname{Psh}(\widehat{\operatorname{RigSm}})$.

Proof. In order to prove that Sing ${ }^{\mathbb{B}^{1}} \mathcal{F}$ is \mathbb{B}^{1}-local in $\operatorname{Ch} \operatorname{Psh}(\widehat{\operatorname{Rig} S m})$ we need to check that each homology presheaf $H_{n}\left(\operatorname{Sing}^{\mathbb{B}^{1}} \mathcal{F}\right)$ is homotopy-invariant. By means of [5, Proposition 2.2.37] it suffices to show that the maps $i_{0}^{*}, i_{1}^{*}: N_{\bullet} \mathcal{F}\left(\square \times \mathbb{B}^{1}\right) \rightarrow N_{\bullet} \mathcal{F}(\square)$ are chain homotopic, and this follows from Lemma 1.3.14.

We now prove that $\operatorname{Sing}{ }^{\mathbb{B}^{1}} \mathcal{F}$ is \mathbb{B}^{1}-weak equivalent to \mathcal{F}. We first prove that the canonical map $a: \mathcal{F} \rightarrow \underline{\operatorname{Hom}}\left(\Lambda\left(\square^{n}\right), \mathcal{F}\right)$ has an inverse up to homotopy for a fixed n. Consider the map $b: \underline{\operatorname{Hom}}\left(\Lambda\left(\square^{n}\right), \mathcal{F}\right) \rightarrow \mathcal{F}$ induced by the zero section of \square^{n}. It holds that $b \circ a=\mathrm{id}$ and $a \circ b$ is homotopic to id via the map

$$
H: \Lambda\left(\mathbb{B}^{1}\right) \otimes \underline{\operatorname{Hom}}\left(\Lambda\left(\square^{n}\right), \mathcal{F}\right) \rightarrow \underline{\operatorname{Hom}}\left(\Lambda\left(\square^{n}\right), \mathcal{F}\right)
$$

which is deduced from the adjunction $\left(\Lambda\left(\mathbb{B}^{1}\right) \otimes \cdot, \underline{\left.\operatorname{Hom}\left(\Lambda\left(\mathbb{B}^{1}\right), \cdot\right)\right) \text { and the map }}\right.$

$$
\underline{\operatorname{Hom}}\left(\Lambda\left(\square^{n}\right), \mathcal{F}\right) \rightarrow \underline{\operatorname{Hom}}\left(\Lambda\left(\mathbb{B}^{1} \times \square^{n}\right), \mathcal{F}\right)
$$

defined via the homothety of \mathbb{B}^{1} on \square^{n}. As \mathbb{B}^{1}-weak equivalences are stable under filtered colimits and cones, we also conclude that the total complex associated to the simple complex of $\underline{\operatorname{Hom}}(\Lambda(\square), \mathcal{F})$ is \mathbb{B}^{1}-equivalent to the one associated to the constant cubical object \mathcal{F} (see for example the argument of [5, Corollary 2.5.36]) which is in turn quasi-isomorphic to \mathcal{F}.
1.3.16. Corollary. Let Λ be $a \mathbb{Q}$-algebra. For any \mathcal{F} in $\operatorname{Ch} \operatorname{Psh}(\widehat{\operatorname{RigS}})$ the localization $C^{\mathbb{B}^{1}} \mathcal{F}$ is quasi-isomorphic to Sing $\mathbb{B}^{\mathbb{B}^{1}} \mathcal{F}$ and the localization $C^{\text {ét, } \mathbb{B}^{1}} \mathcal{F}$ is quasi-isomorphic to $\operatorname{Sing}{ }^{\mathbb{B}^{1}}\left(C^{\text {ét }} \mathcal{F}^{\bullet}\right)$.

Proof. The first claim follows from Proposition 1.3.15. We are left to prove that the complex $\operatorname{Sing}^{\mathbb{B}^{1}}\left(C^{\text {et }} \mathcal{F}^{\bullet}\right)$ is ét-local. To this aim, we use the description given in Proposition 1.3.10 and we show that $\operatorname{Sing}^{\mathbb{B}^{1}}\left(C^{\text {ett }} \mathcal{F}^{\bullet}\right)$ is local with respect to shifts of maps $\Lambda\left(\mathcal{U}_{\bullet}\right) \rightarrow \Lambda(X)$ induced by bounded hypercoverings $\mathcal{U}_{\bullet} \rightarrow X$.

Fix a bounded hypercovering $\mathcal{U}_{\bullet} \rightarrow X$. From the isomorphisms $H_{p} \operatorname{Hom}_{\bullet}\left(\Lambda\left(\mathcal{U}_{\bullet} \times\right.\right.$ $\left.\left.\square^{q}\right), C^{\text {et }} \mathcal{F}\right) \cong H_{p} \operatorname{Hom}_{\bullet}\left(\Lambda\left(X \times \square^{q}\right), C^{\text {et }} \mathcal{F}\right)$ valid for all p, q and a spectral sequence argument (see [48, Theorem 0.3]) we deduce $\mathbf{D}\left(\Lambda(X)[n]\right.$, Sing $\left.{ }^{\mathbb{B}^{1}} C^{\text {ett }} \mathcal{F}\right) \cong \mathbf{D}\left(\Lambda\left(\mathcal{U}_{\bullet}\right)[n]\right.$, Sing $\left.{ }^{\mathbb{B}^{1}} C^{\text {ét }} \mathcal{F}\right)$ for all n as wanted.

We now investigate some of the natural Quillen functors which arise between the model categories introduced so far. We start by considering the natural inclusion of categories RigSm $\rightarrow \widehat{\text { RigSm }}$
1.3.17. Proposition. The inclusion RigSm $\hookrightarrow \widehat{\text { RigSm induces a Quillen adjunction }}$

$$
\iota^{*}: \mathbf{C h}_{\hat{e} t, \mathbb{B}^{1}} \operatorname{Psh}(\operatorname{RigSm}) \rightleftarrows \mathbf{C h}_{\hat{e t}, \mathbb{B}^{1}} \operatorname{Psh}(\widehat{\operatorname{Rig} S m}): \iota_{*}
$$

Moreover, the functor $\mathbb{L} \iota^{*}: \operatorname{RigDA}_{\hat{e ́ t}}^{\mathrm{eff}}(K) \rightarrow \widehat{\operatorname{Rig}} \mathbf{D A}_{\hat{e} t, \mathbb{B}^{1}}^{\mathrm{eff}}(K)$ is fully faithful.
Proof. The first claim is a special instance of [6, Proposition 4.4.46].
We prove the second claim by showing that $\mathbb{R} \iota_{*} \mathbb{L} \iota^{*}$ is isomorphic to the identity. Let \mathcal{F} be a cofibrant object in $\mathrm{Ch}_{\text {ét }, \mathbb{B}^{1}} \mathbf{P s h}(\operatorname{RigSm})$. We need to prove that the map $\mathcal{F} \rightarrow$ $\iota_{*}\left(\right.$ Sing $\left.^{\mathbb{B}^{1}} C^{\text {ét }}\left(\iota^{*} \mathcal{F}\right)\right)$ is an (ét, $\left.\mathbb{B}^{1}\right)$-weak equivalence. Since ι_{*} commutes with Sing ${ }^{\mathbb{B}^{1}}$ we are
left to prove that the map $\iota_{*} \iota^{*} \mathcal{F}=\mathcal{F} \rightarrow \iota_{*} C^{\text {et }}\left(\iota^{*} \mathcal{F}\right)$ is an ét-weak equivalence. This follows since ι_{*} preserves ét-weak equivalences, as it commutes with ét-sheafification.

We are now interested in finding a convenient set of compact objects which generate the categories above, as triangulated categories with small sums. This will simplify many definitions and proofs in what follows.
1.3.18. PROPOSITION. The category $\operatorname{RigDA}_{\hat{e ́ t}}^{\mathrm{eff}}(K)\left[r e s p . \widehat{\left.\operatorname{RigDA}_{\hat{e t}, \mathbb{B}^{1}}^{\mathrm{eff}}(K)\right] \text { is compactly }}\right.$ generated (as a triangulated category with small sums) by motives $\Lambda(X)$ associated to rigid varieties X which are in RigSm ${ }^{\text {gc }}$ [resp. $\widehat{\operatorname{Rig}} \mathrm{Sm}^{\mathrm{gc}}$].

Proof. The statements are analogous, and we only consider the case of the cate-
 isomorphisms between étale local objects, by letting X vary in $\widehat{\operatorname{Rig} S m}{ }^{\text {gc }}$ and i vary in \mathbb{Z}. We are left to prove that the motives $\Lambda(X)$ with X in $\widehat{\operatorname{RigSm}}{ }^{\text {gc }}$ are compact. Since $\Lambda(X)$ is compact in $\mathbf{D}\left(\operatorname{Psh}\left(\widehat{\operatorname{Rig} S m}{ }^{\mathrm{gc}}\right)\right)$ and $\operatorname{Sing}^{\mathbb{B}^{1}}$ commutes with direct sums, it suffices to prove that if $\left\{\mathcal{F}_{i}\right\}_{i \in I}$ is a family of ét-local complexes, then also $\bigoplus_{i} \mathcal{F}_{i}$ is ét-local. If I is finite, the claim follows from the isomorphisms $H_{-n} \operatorname{Hom}_{\bullet}\left(X, \bigoplus_{i} \mathcal{F}_{i}\right) \cong \bigoplus_{i} \mathbb{H}^{n}\left(X, \mathcal{F}_{i}\right) \cong \mathbb{H}^{n}\left(X, \bigoplus_{i} \mathcal{F}_{i}\right)$. A coproduct over an arbitrary family is a filtered colimit of finite coproducts, hence the claim follows from the stability of ét-local complexes under filtered colimits [6, Proposition 4.5.62].
1.3.19. Remark. The above proof shows that the statement of Proposition 1.3 .18 holds true without any assumptions on Λ under the condition that all varieties X have finite cohomological dimension with respect to the étale topology.

We now introduce the category of motives associated to smooth perfectoids, using the same formalism as before. In this category, the canonical choice of the "interval object" for defining homotopies is the perfectoid ball $\widehat{\mathbb{B}}^{1}$.
1.3.20. EXAMPLE. The perfectoid ball $\widehat{\mathbb{B}}^{1}=\operatorname{Spa}\left(K\left\langle\chi^{1 / p^{\infty}}\right\rangle, K^{\circ}\left\langle\chi^{1 / p^{\infty}}\right\rangle\right)$ is an interval object with respect to the natural multiplication μ and maps i_{0} and i_{1} induced by the substitution $\chi^{1 / p^{h}} \mapsto 0$ and $\chi^{1 / p^{h}} \mapsto 1$ respectively.

The perfectoid variety $\widehat{\mathbb{B}}^{1}$ naturally lives in $\widehat{\operatorname{Rig} S m}$ and has good coordinates by Proposition 1.2.12. It can therefore be used to define another homotopy category out of Ch Psh($\widehat{\operatorname{RigSm}}$) and Ch Psh $\left(\widehat{\operatorname{Rig} S m}{ }^{\mathrm{gc}}\right)$.
1.3.21. Corollary. The following pairs of model categories are Quillen equivalent.

- $\mathbf{C h}_{\text {ét }} \operatorname{Psh}(\operatorname{PerfSm})$ and $\mathbf{C h}_{\text {ét }} \operatorname{Psh}\left(\mathrm{PerfSm}^{\mathrm{gc}}\right)$.
- $\mathrm{Ch}_{\text {et, }, \widehat{\mathbb{B}}^{1}} \operatorname{Psh}(\operatorname{PerfSm})$ and $\mathrm{Ch}_{\text {ét, } \widehat{\mathbb{B}}^{1}} \operatorname{Psh}\left(\mathrm{PerfSm}^{\mathrm{gc}}\right)$.
- $\mathbf{C h}_{\text {ét }} \operatorname{Psh}(\widehat{\operatorname{Rig} S m})$ and $\mathbf{C h}_{\text {ét }} \operatorname{Psh}\left(\widehat{\operatorname{Rig} S m}{ }^{\mathrm{gc}}\right)$.
- $\mathrm{Ch}_{\text {ét }, \widehat{\mathbb{B}}^{1}} \operatorname{Psh}(\widehat{\operatorname{Rig} S m})$ and $\mathrm{Ch}_{\text {ét }, \widehat{\mathbb{B}}^{1}} \operatorname{Psh}\left(\widehat{\operatorname{Rig} S m}{ }^{\text {gc }}\right)$.

Proof. It suffices to apply Proposition 1.3.3 to the sites with interval (PerfSm, ét, $\widehat{\mathbb{B}}^{1}$) and $\left(\widehat{\operatorname{RigS}} \mathrm{m}\right.$, ét, $\widehat{\mathbb{B}}^{1}$) where \mathbf{C}^{\prime} is in both cases the subcategory of affinoid rigid varieties with good coordinates.
1.3.22. Definition. For $\eta \in\left\{\right.$ ét, $\widehat{\mathbb{B}}^{1},\left(\right.$ ét, $\left.\left.\widehat{\mathbb{B}}^{1}\right)\right\}$ we say that a map in $\operatorname{Ch} \operatorname{Psh}(\operatorname{PerfSm})$ [resp. Ch $\operatorname{Psh}(\widehat{\operatorname{Rig} S m})]$ is a η-weak equivalence if it is a weak equivalence in the model
structure $\mathbf{C h}_{\eta} \mathbf{P s h}(\operatorname{PerfSm})$ [resp. $\left.\mathbf{C h}_{\eta} \mathbf{P s h}(\widehat{\operatorname{Rig} S m})\right]$. We say that an object \mathcal{F} of the derived category $\mathbf{D}=\mathbf{D}(\operatorname{Psh}(\operatorname{PerfSm}))[$ resp. $\mathbf{D}=\mathbf{D}(\operatorname{Psh}(\widehat{\operatorname{RigSm}}))]$ is η-local if the functor $\operatorname{Hom}_{\mathbf{D}}(\cdot, \mathcal{F})$ sends maps in S_{η} to isomorphisms. This amounts to say that \mathcal{F} is quasiisomorphic to a η-fibrant object. The triangulated homotopy category associated to the localization $\mathbf{C h}_{\text {ett }, \widehat{\mathbb{B}}^{1}} \operatorname{Psh}(\operatorname{PerfSm})$ [resp. $\left.\mathbf{C h}_{\text {ett, } \widehat{\mathbb{B}}^{1}} \operatorname{Psh}(\widehat{\operatorname{Rig} S m})\right]$ will be denoted by $\operatorname{PerfDA}_{\text {êt }}^{\text {eff }}(K, \Lambda)$ [resp. $\left.\widehat{\operatorname{Rig}} \mathbf{D A}_{\hat{e t}, \widehat{\mathbb{B}^{1}}}^{\text {eff }}(K, \Lambda)\right]$. We will omit Λ whenever the context allows it. The image of a variety X in one of these categories will be denoted by $\Lambda(X)$.

We recall one of the main results of Scholze [42], reshaped in our derived homotopical setting. It will constitute the bridge to pass from characteristic p to characteristic 0 . We recall that as summarized in Theorem 1.1.19 there is an equivalence of categories between perfectoid affinoid K-algebras and perfectoid affinoid K^{b}-algebras, extending to an equivalence between the categories of perfectoid spaces over K and over K^{b} (see [42, Proposition 6.17]). We refer to this equivalence as the tilting equivalence.
1.3.23. Proposition. There exists an equivalence of triangulated categories

$$
(-)^{\sharp}: \operatorname{PerfDA}_{e ̂ t}^{\mathrm{eff}}\left(K^{b}\right) \rightleftarrows \operatorname{PerfDA}_{\hat{e t t}}^{\mathrm{eff}}(K):(-)^{b}
$$

induced by the tilting equivalence.
Proof. The tilting equivalence induces an equivalence of the étale sites on perfectoid spaces over K and over K^{b} (see [42, Theorem 7.12]). Moreover $\left(\widehat{T}^{n}\right)^{b}=\widehat{\mathbb{T}}^{n}$ and $\left(\widehat{\mathbb{B}}^{n}\right)^{b}=\widehat{\mathbb{B}}^{n}$. It therefore induces an equivalence of sites with interval $\left(\operatorname{PerfSm} / K\right.$, ét, $\left.\widehat{\mathbb{B}^{1}}\right) \cong\left(\operatorname{PerfSm} / K^{b}\right.$, ét, $\left.\widehat{\mathbb{B}}^{1}\right)$ hence the claim.

We now investigate the triangulated functor between the categories of motives induced by the natural embedding PerfSm $\rightarrow \widehat{\text { RigSm in the same spirit of what we did previously in }}$ Proposition 1.3.17
1.3.24. Proposition. The inclusion PerfSm $\hookrightarrow \widehat{\text { RigSm induces a Quillen adjunction }}$

$$
j^{*}: \mathbf{C h}_{\text {ét, } \widehat{\mathbb{B}}^{1}} \mathbf{P s h}(\operatorname{PerfSm}) \rightleftarrows \mathbf{C h}_{\text {ett, } \widehat{\mathbb{B}}^{1}} \mathbf{P s h}(\widehat{\operatorname{RigSm}}): j_{*} .
$$

Moreover, the functor $\mathbb{L} j^{*}: \operatorname{PerfDA}_{\text {ét }}^{\text {eff }}(K) \rightarrow \widehat{\operatorname{Rig}} \mathbf{D A}_{\text {ét }, \widehat{\mathbb{B}}^{1}}^{\text {eff }}(K)$ is fully faithful.
Proof. The result follows in the same way as Proposition 1.3.17.
Also in this framework, the $\widehat{\mathbb{B}}^{1}$-localization has a very explicit construction. Most proofs are straightforward analogues of those relative to the \mathbb{B}^{1}-localizations, and will therefore be omitted.
1.3.25. DEFINITION. We denote by $\hat{\square}$ the Σ-enriched cocubical object (see [4, Appendix A]) defined by putting $\widehat{\square}^{n}=\widehat{\mathbb{B}}^{n}=\operatorname{Spa} K\left\langle\tau_{1}^{1 / p^{\infty}}, \ldots, \tau_{n}^{1 / p^{1 / \infty}}\right\rangle$ and considering the morphisms $d_{r, \epsilon}$ induced by the maps $\widehat{\mathbb{B}}^{n} \rightarrow \widehat{\mathbb{B}^{n+1}}$ corresponding to the substitution $\tau_{r}^{1 / p^{h}}=\epsilon$ for $\epsilon \in\{0,1\}$ and the morphisms p_{r} induced by the projections $\widehat{\mathbb{B}}^{n} \rightarrow \widehat{\mathbb{B}}^{n-1}$. For any complex of presheaves
 sends the object X to the total complex of the simple complex associated to $\mathcal{F}(X \times \widehat{\square})$.
1.3.26. Proposition. Let \mathcal{F} be a complex in $\operatorname{Ch} \operatorname{Psh}(\operatorname{PerfSm})$ [resp. Ch Psh $(\widehat{\operatorname{RigSS}})$]. Then Sing $\widehat{\mathbb{B}}^{1} \mathcal{F}$ is $\widehat{\mathbb{B}}^{1}$-local and $\widehat{\mathbb{B}}^{1}$-weak equivalent to \mathcal{F}.

Proof. The fact that Sing $\widehat{\mathbb{B}}^{1} \mathcal{F}$ is $\widehat{\mathbb{B}}^{1}$-local in $\mathrm{Ch} \operatorname{Psh}(\widehat{\operatorname{Rig} S m})$ can be deduced by Lemma 1.3.27 and Lemma 1.3.28. We are left to prove that Sing $\widehat{\mathbb{B}}^{1} \mathcal{F}$ is $\widehat{\mathbb{B}}^{1}$-weak equivalent to \mathcal{F} and this follows in the same way as in the proof of Proposition 1.3.15.

The following lemmas are used in the previous proof.
1.3.27. Lemma. A presheaf \mathcal{F} in $\operatorname{Psh}(\operatorname{Sm} \operatorname{Perf})$ [resp. in $\operatorname{Psh}(\widehat{\operatorname{RigS}})$] is $\widehat{\mathbb{B}}^{1}$-invariant if and only if $i_{0}^{*}=i_{1}^{*}: \mathcal{F}\left(X \times \widehat{\mathbb{B}}^{1}\right) \rightarrow \mathcal{F}(X)$ for all X in Sm Perf [resp. in $\widehat{\text { RigSm]. }}$

Proof. This follows in the same way as [36, Lemma 2.16].
1.3.28. LEmmA. For any presheaf \mathcal{F} the two maps of cubical sets $i_{0}^{*}, i_{1}^{*}: \mathcal{F}\left(\widehat{\square} \times \widehat{\mathbb{B}}^{1}\right) \rightarrow \mathcal{F}(\widehat{\square})$ induce chain homotopic maps on the associated simple and normalized complexes.

Proof. This follows in the same way as Lemma 1.3.14.
1.3.29. Corollary. Let \mathcal{F} be in $\operatorname{Ch} \operatorname{Psh}(\operatorname{PerfSm})$ [resp. in $\operatorname{Ch} \operatorname{Psh}(\widehat{\operatorname{Rig} S m})$] the

Proof. This follows in the same way as Corollary 1.3.16.
1.3.30. Proposition. The category $\operatorname{PerfDA}_{\text {êt }}^{\text {eff }}(K)$ [resp. $\left.\widehat{\operatorname{Rig}} \mathbf{D A}_{\text {et }, \widehat{\mathbb{B}^{1}}}^{\text {eff }}(K)\right]$ is compactly generated (as a triangulated category with small sums) by motives $\Lambda(X)$ associated to rigid varieties X which are in $\operatorname{PerfSm}^{\mathrm{gc}}$ [resp. $\widehat{\operatorname{Rig} S m}{ }^{\mathrm{gc}}$].

Proof. This follows in the same way as Proposition 1.3.18.
1.3.31. Remark. The above proof shows that the statement of Proposition 1.3 .30 holds true without any assumptions on Λ under the condition that all varieties X have finite cohomological dimension with respect to the étale topology.

So far, we have defined two different Bousfield localizations on complexes of presheaves on
 constitutes a further localization of the first, in the following sense.
1.3.32. Proposition. \mathbb{B}^{1}-weak equivalences in $\mathrm{Ch} \operatorname{Psh}(\widehat{\operatorname{Rig} S m})$ are $\widehat{\mathbb{B}}^{1}$-weak equivalences.

Proof. It suffices to prove that $X \times \mathbb{B}^{1} \rightarrow X$ induces a $\widehat{\mathbb{B}}^{1}$-weak equivalence, for any variety X in $\widehat{\operatorname{Rig} S m}$. This follows as the multiplicative homothety $\widehat{\mathbb{B}}^{1} \times \mathbb{B}^{1} \rightarrow \mathbb{B}^{1}$ induces a homotopy between the zero map and the identity on \mathbb{B}^{1}.
1.3.33. Corollary. The category $\widehat{\operatorname{Rig}} \mathbf{D A}_{\text {ett }, \widehat{\mathbb{B}}^{1}}^{\text {eff }}(K)$ is equivalent to the full triangulated subcategory of $\widehat{\operatorname{Rig}} \mathbf{A A}_{\hat{e t}, \mathbb{B}^{1}}^{\mathrm{eff}}(K)$ formed by $\widehat{\mathbb{B}^{1}}$-local objects.

Proof. Because of Proposition 1.3 .32 , the triangulated category $\widehat{\operatorname{Rig}} \mathbf{D A}_{\text {ét }, \widehat{\mathbb{B}}^{1}}^{\text {eff }}(K)$ coincides with the localization of $\widehat{\operatorname{Rig}} \mathbf{D} \mathbf{A}_{\hat{\text { etf }, \mathbb{B}^{1}}}^{\text {efl }}(K)$ with respect to the set generated by the maps $\Lambda\left(\widehat{\mathbb{B}}_{X}^{1}\right)[n] \rightarrow \Lambda(X)[n]$ as X varies in $\widehat{\text { RigSm }}$ and n in \mathbb{Z}.

We end this section by recalling the definition of rigid motives with transfers. The notion of finite correspondence plays an important role in Voevodsky's theory of motives. In the case of rigid varieties over a field K correspondences give rise to the category $\operatorname{Rig} \operatorname{Cor}(K)$ as defined in [5. Definition 2.2.27]. For further details, we refer to Definition 2.2.3.
1.3.34. Definition. Additive presheaves over $\operatorname{Rig} \operatorname{Cor}(K)$ are called presheaves with transfers, and the category they form is denoted by $\operatorname{PST}(\operatorname{RigSm} / K, \Lambda)$ or simply by $\operatorname{PST}(\operatorname{RigSm})$ when the context allows it.

By [5, Definition 2.5.15], the projective model category Ch PST(RigSm) admits a Bousfield localization $\mathbf{C h}_{\text {et, }, \mathbb{B}^{1}} \mathbf{P S T}(\operatorname{RigSm})$ with respect to the union of the class of maps $\mathcal{F} \rightarrow \mathcal{F}^{\prime}$ inducing isomorphisms on the ét-sheaves associated to $H_{i}(\mathcal{F})$ and $H_{i}\left(\mathcal{F}^{\prime}\right)$ for all $i \in \mathbb{Z}$ and the set of all maps $\Lambda\left(\mathbb{B}_{X}^{1}\right)[i] \rightarrow \Lambda(X)[i]$ as X varies in RigSm and i varies in \mathbb{Z}.
1.3.35. Definition. The triangulated homotopy category associated to the localization $\mathbf{C h}_{\text {et }, \mathbb{B}^{1}} \mathbf{P S T}(\operatorname{RigSm})$ will be denoted by $\operatorname{RigDM}_{\text {ett }}^{\text {eff }}(K, \Lambda)$. We will omit Λ from the notation whenever the context allows it. The image of a variety X in will be denoted by $\Lambda_{\text {tr }}(X)$.
1.3.36. REmARK. Since Λ is a \mathbb{Q}-algebra, one can equivalently consider the Nisnevich topology in the definition above and obtain a homotopy category $\operatorname{RigDM}_{\mathrm{Nis}}^{\mathrm{eff}}(K, \Lambda)$ which is equivalent to RigDM êt $_{\text {eff }}^{\text {ef }}(K, \Lambda)$.
1.3.37. Remark. The faithful embedding of categories RigSm \rightarrow RigCor induces a Quillen adjunction (see [5, Lemma 2.5.18]):

$$
a_{t r}: \mathbf{C h}_{\hat{e} t, \mathbb{B}^{1}} \mathbf{P s h}(\operatorname{RigSm}) \rightleftarrows \mathbf{C h}_{\hat{e t}, \mathbb{B}^{1}} \mathbf{P S T}(\operatorname{RigSm}): o_{t r}
$$

such that $a_{t r} \Lambda(X)=\Lambda_{t r}(X)$ for any $X \in \operatorname{RigSm}$ and $o_{t r}$ is the functor of forgetting transfers. These functors induce an adjoint pair:

$$
\mathbb{L} a_{t r}: \mathbf{R i g D A}_{\text {ét }}^{\text {eff }}(K) \rightleftarrows \operatorname{RigDM}_{\text {ett }}^{\text {eff }}(K): \mathbb{R} o_{t r} .
$$

1.4. Motivic interpretation of approximation results

In all this section, K is a perfectoid field of arbitrary characteristic. We begin by presenting an approximation result whose proof is differed to Appendix A.
1.4.1. Proposition. Let $X=\lim _{\hbar} X_{h}$ be in $\widehat{\operatorname{RigSm}}{ }^{\text {gc }}$. Let also Y be an affinoid rigid variety endowed with an étale map $Y \rightarrow \mathbb{B}^{m}$. For a given finite set of maps $\left\{f_{1}, \ldots, f_{N}\right\}$ in $\operatorname{Hom}\left(X \times \mathbb{B}^{n}, Y\right)$ we can find corresponding maps $\left\{H_{1}, \ldots, H_{N}\right\}$ in $\operatorname{Hom}\left(X \times \mathbb{B}^{n} \times \mathbb{B}^{1}, Y\right)$ and an integer \bar{h} such that:
(1) For all $1 \leq k \leq N$ it holds $i_{0}^{*} H_{k}=f_{k}$ and $i_{1}^{*} H_{k}$ factors over the canonical map $X \rightarrow X_{\bar{h}}$.
(2) If $f_{k} \circ d_{r, \epsilon}=f_{k^{\prime}} \circ d_{r, \epsilon}$ for some $1 \leq k, k^{\prime} \leq N$ and some $(r, \epsilon) \in\{1, \ldots, n\} \times\{0,1\}$ then $H_{k} \circ d_{r, \epsilon}=H_{k^{\prime}} \circ d_{r, \epsilon}$.
(3) If for some $1 \leq k \leq N$ and some $h \in \mathbb{N}$ the map $f_{k} \circ d_{1,1} \in \operatorname{Hom}\left(X \times \mathbb{B}^{n-1}, Y\right)$ lies in $\operatorname{Hom}\left(X_{h} \times \mathbb{B}^{n-1}, Y\right)$ then the element $H_{k} \circ d_{1,1}$ of $\operatorname{Hom}\left(X \times \mathbb{B}^{n-1} \times \mathbb{B}^{1}, Y\right)$ is constant on \mathbb{B}^{1} equal to $f_{k} \circ d_{1,1}$.
The statement above has the following interpretation in terms of complexes.
1.4.2. Proposition. Let $X=\lim _{\leftarrow} X_{h}$ be in $\widehat{\operatorname{Rig} S m}{ }^{\text {gc }}$ and let Y be in $\operatorname{RigSm}^{\mathrm{gc}}$. The natural map

$$
\phi: \underset{h}{\lim }\left(\operatorname{Sing}^{\mathbb{B}^{1}} \Lambda(Y)\right)\left(X_{h}\right) \rightarrow\left(\operatorname{Sing}^{\mathbb{B}^{1}} \Lambda(Y)\right)(X)
$$

is a quasi-isomorphism.

Proof. We need to prove that the natural map

$$
\phi: \underset{h}{\lim } C \bullet \Lambda \operatorname{Hom}\left(X_{h} \times \square, Y\right) \rightarrow C \bullet \Lambda \operatorname{Hom}(X \times \square, Y)
$$

defines bijections on homology groups.
We start by proving surjectivity. As \square is a Σ-enriched cocubical object, the complexes above are quasi-isomorphic to the associated normalized complexes N_{\bullet} which will then be considered instead. Suppose that $\beta \in \Lambda \operatorname{Hom}\left(X \times \square^{n}, Y\right)$ defines a cycle in N_{n} i.e. $\beta \circ d_{r, \epsilon}=0$ for $1 \leq r \leq n$ and $\epsilon \in\{0,1\}$. This means that $\beta=\sum \lambda_{k} f_{k}$ with $\lambda_{k} \in \Lambda, f_{k} \in \operatorname{Hom}\left(X \times \square^{n}, Y\right)$ and $\sum \lambda_{k} f_{k} \circ d_{r, \epsilon}=0$. This amounts to say that for every k, r, ϵ the sum $\sum \lambda_{k^{\prime}}$ over the indices k^{\prime} such that $f_{k^{\prime}} \circ d_{r, \epsilon}=f_{k} \circ d_{r, \epsilon}$ is zero. By Proposition 1.4.1, we can find an integer h and maps $H_{k} \in \operatorname{Hom}\left(X \times \square^{n} \times \mathbb{B}^{1}, Y\right)$ such that $i_{0}^{*} H=f_{k}, i_{1}^{*} H=\phi\left(\tilde{f}_{k}\right)$ with $\tilde{f}_{k} \in \operatorname{Hom}\left(X_{h} \times \square^{n}, Y\right)$ and $H_{k} \circ d_{r, \epsilon}=H_{k^{\prime}} \circ d_{r, \epsilon}$ whenever $f_{k} \circ d_{r, \epsilon}=f_{k^{\prime}} \circ d_{r, \epsilon}$. If we denote by H the cycle $\sum \lambda_{k} H_{k} \in \Lambda \operatorname{Hom}\left(X \times \square^{n} \times \mathbb{B}^{1}, Y\right)$ we therefore have $d_{r, \epsilon}^{*} H=0$ for all r, ϵ.

By Lemma 1.3.14, we conclude that $i_{1}^{*} H$ and $i_{0}^{*} H$ define the same homology class, and therefore β defines the same class as $i_{1}^{*} H$ which is the image of a class in $\Lambda \operatorname{Hom}\left(X_{h} \times \square^{n}, Y\right)$ as wanted.

We now turn to injectivity. Consider an element $\alpha \in \Lambda \operatorname{Hom}\left(X_{0} \times \square^{n}, Y\right)$ such that $\alpha \circ d_{r, \epsilon}=0$ for all r, ϵ and suppose there exists an element $\beta=\sum \lambda_{i} f_{i} \in \Lambda \operatorname{Hom}\left(X \times \square^{n+1}, Y\right)$ such that $\beta \circ d_{r, 0}=0$ for $1 \leq r \leq n+1, \beta \circ d_{r, 1}=0$ for $2 \leq r \leq n+1$ and $\beta \circ d_{1,1}=\phi(\alpha)$. Again, by Proposition 1.4.1, we can find an integer \bar{h} and maps $H_{k} \in \operatorname{Hom}\left(X \times \square^{n+1} \times \mathbb{B}^{1}, Y\right)$ such that $H:=\sum \lambda_{k} H_{k}$ satisfies $i_{1}^{*} H=\phi(\gamma)$ for some $\gamma \in \Lambda \operatorname{Hom}\left(X_{\bar{h}} \times \square^{n+1}, Y\right), H \circ d_{r, 0}=0$ for $1 \leq r \leq n+1, H \circ d_{r, 1}=0$ for $2 \leq r \leq n+1$ and $H \circ d_{1,1}$ is constant on \mathbb{B}^{1} and coincides with $\phi(\alpha)$. We conclude that $\gamma \in N_{n}$ and $d \gamma=\alpha$. In particular, $\alpha=0$ in the homology group, as wanted.
1.4.3. Corollary. Let \mathcal{F} be a projectively cofibrant complex in $\operatorname{Ch} \operatorname{Psh}\left(\operatorname{RigSm}^{\mathrm{gc}}\right)$. For any $X=\lim _{h} X_{h}$ in $\widehat{\text { RigSm }}{ }^{\text {gc }}$ the natural map

$$
\phi: \underset{h}{\lim }\left(\operatorname{Sing}^{\mathbb{B}^{1}} \mathcal{F}\right)\left(X_{h}\right) \rightarrow\left(\operatorname{Sing}^{\mathbb{B}^{1}} \iota^{*} \mathcal{F}\right)(X)
$$

is a quasi-isomorphism.
Proof. As homology commutes with filtered colimits, by means of Remark 1.3.2 we can assume that \mathcal{F} is a bounded above complex formed by sums of representable presheaves. For any X in $\widehat{\text { RigSm }}$ the cohomology of Sing ${ }^{\mathbb{B}}{ }^{1} \mathcal{F}(X)$ coincides with the cohomology of the total complex associated to $C_{\bullet}(\mathcal{F}(X \times \square))$. The result then follows from Proposition 1.4.2 and the convergence of the spectral sequence associated to the double complex above, which is concentrated in one quadrant.

The following technical proposition is actually a crucial point of our proof, as it allows some explicit computations of morphisms in the category $\widehat{\operatorname{Rig} D} A_{\text {et }}^{\text {eff }}(K)$.
1.4.4. Proposition. Let \mathcal{F} be a cofibrant $\left(\mathbb{B}^{1}\right.$, ét)-fibrant complex in $\operatorname{Ch} \operatorname{Psh}\left(\operatorname{RigSm}^{\mathrm{gc}}\right)$. Then Sing $\mathbb{B}^{1}\left(\iota^{*} \mathcal{F}\right)$ is $\left(\mathbb{B}^{1}\right.$, ét $)$-local in $\operatorname{Ch} \operatorname{Psh}\left(\widehat{\operatorname{Rig} S m}{ }^{\text {gc }}\right)$.

Proof. The difficulty lies in showing that the object Sing ${ }^{\mathbb{B ^ { 1 }}}\left(\iota^{*} \mathcal{F}\right)$ is ét-local. By Propositions 1.3.11 and 1.3.15, it suffices to prove that $\operatorname{Sing}^{\mathbb{B}^{1}}\left(\iota^{*} \mathcal{F}\right)$ is local with respect to the étale-Cech hypercoverings $\mathcal{U}_{\bullet} \rightarrow X$ in $\widehat{\operatorname{Rig} S m}{ }^{\mathrm{gc}}$ of $X=\lim _{h} X_{h}$ descending at finite level. Let $\mathcal{U}_{\bullet} \rightarrow X$ be one of them. Without loss of generality, we assume that it descends to an étale
covering of X_{0}. In particular we conclude that $\mathcal{U}_{n}=\varliminf_{\longleftarrow} \lim _{h} \mathcal{U}_{n h}$ is a disjoint union of objects in $\widehat{\operatorname{Rig} S m}{ }^{\mathrm{gc}}$.

We need to show that $\operatorname{Hom}_{\bullet}\left(\Lambda\left(\mathcal{U}_{\bullet}\right), \operatorname{Sing}^{\mathbb{B}^{1}}\left(\iota^{*} \mathcal{F}\right)\right)$ is quasi-isomorphic to $\operatorname{Sing}^{\mathbb{B}^{1}}\left(\iota^{*} \mathcal{F}\right)(X)$. Using Corollary 1.4.3, we conclude that the complex ($\left.\operatorname{Sing} \mathbb{B}^{\mathbb{B}^{1}} \iota^{*} \mathcal{F}\right)\left(\mathcal{U}_{n}\right)$ is quasi-isomorphic to ${\underset{h}{l}}_{\lim _{h}}\left(\operatorname{Sing}^{\mathbb{B}^{1}} \iota^{*} \mathcal{F}\right)\left(\mathcal{U}_{n h}\right)$ for each $n \in \mathbb{N}$. Passing to the homotopy limit on n on both sides, we get $\rightarrow h$ that $\operatorname{Hom}_{\bullet}\left(\Lambda\left(\mathcal{U}_{\bullet}\right), \operatorname{Sing}^{\mathbb{B}^{1}} \iota^{*} \mathcal{F}\right)$ is quasi-isomorphic to ${\underset{\longrightarrow}{\lim }}_{h} \operatorname{Hom} \cdot\left(\Lambda\left(\mathcal{U}_{\bullet} h\right)\right.$, Sing $\left.{ }^{\mathbb{B}^{1}} \iota^{*} \mathcal{F}\right)$. Using again Corollary 1.4.3, we also obtain that the complex $\left(\operatorname{Sing}^{\mathbb{B}^{1}} \iota^{*} \mathcal{F}\right)(X)$ is quasi-isomorphic to $\lim _{h}\left(\operatorname{Sing}^{\mathbb{B}^{1}} \iota^{*} \mathcal{F}\right)\left(X_{h}\right)$.

From the exactness of $\xrightarrow{\text { lim }}$ it suffices then to prove that the maps

$$
\operatorname{Hom}_{\bullet}\left(\Lambda\left(\mathcal{U}_{\bullet}\right), \operatorname{Sing}^{\mathbb{B}^{1}} \mathcal{F}\right) \rightarrow \operatorname{Hom}_{\bullet}\left(\Lambda\left(X_{h}\right), \operatorname{Sing}^{\mathbb{B}^{1}} \mathcal{F}\right)
$$

are quasi-isomorphisms. This follows once we show that the complex Sing ${ }^{\left[\mathbb{B}^{1}\right.} \mathcal{F}$ is ét-local.
We point out that since \mathcal{F} is \mathbb{B}^{1}-local, then the canonical map $\mathcal{F} \rightarrow$ Sing ${ }^{\mathbb{B}^{1}} \mathcal{F}$ is a quasiisomorphism. As \mathcal{F} is ét-local we conclude that $\operatorname{Sing}^{\mathbb{B}^{1}} \mathcal{F}$ also is, hence the claim.

We are finally ready to state the main result of this section.
1.4.5. Proposition. Let $X=\lim _{h} X_{h}$ be in $\widehat{\operatorname{Rig} S m}{ }^{\text {gc }}$. For any complex of presheaves \mathcal{F} on $\mathrm{RigSm}{ }^{\text {gc }}$ the natural map
is an isomorphism.
Proof. Since any complex \mathcal{F} has a fibrant-cofibrant replacement in a model category, we can assume that \mathcal{F} is cofibrant and (ét, \mathbb{B}^{1})-fibrant. Since it is \mathbb{B}^{1}-local, it is quasi-isomorphic to Sing ${ }^{\mathbb{B}^{1}} \mathcal{F}$. By Corollary 1.4 .3 , for any integer i one has

$$
\underset{h}{\lim } \operatorname{Hom}\left(\Lambda\left(X_{h}\right)[i], \operatorname{Sing}^{\mathbb{B}^{1}} \mathcal{F}\right) \cong \operatorname{Hom}\left(\Lambda(X)[i], \operatorname{Sing} \mathbb{\mathbb { B }}^{1} \iota^{*} \mathcal{F}\right) .
$$

As $\Lambda(X)$ is a cofibrant object in $\operatorname{Ch} \operatorname{Psh}\left(\widehat{\operatorname{RigS}}{ }^{\mathrm{gc}}\right)$ and $\operatorname{Sing}^{\mathbb{B}^{1}} \iota^{*} \mathcal{F}$ is a $\left(\mathbb{B}^{1}\right.$, ét $)$-local replacement of \mathcal{F} in $\mathrm{Ch}_{\text {ét, } \mathbb{B}^{1}} \operatorname{Psh}\left(\widehat{\operatorname{Rig} S \mathrm{~s}^{\text {gc }}}\right)$ by Proposition 1.4.4, we conclude that the previous isomorphism can be rephrased in the following way:

$$
\underset{h}{\lim } \operatorname{RigDA}_{\text {êt }}^{\mathrm{eff}}(K)\left(\Lambda\left(X_{h}\right)[i], \mathcal{F}\right) \cong \widehat{\operatorname{Rig}} \mathbf{D A}_{\hat{e ̂ t}, \mathbb{B}^{1}}^{\mathrm{eff}}(K)\left(\Lambda(X)[i], \mathbb{L} \iota^{*} \mathcal{F}\right)
$$

proving the claim.

1.5. The de-perfectoidification functor in characteristic 0

The results proved in Section 1.4 are valid both for char $K=0$ and char $K=p$. On the contrary, the results of this section require that char $K=0$. We will present later their variant for the case char $K=p$.

We start by considering the adjunction between motives with and without transfers (see Remark 1.3.37). Thanks to the following crucial theorem, we are allowed to add or ignore transfers according to the situation.
1.5.1. TheOrem. Suppose that char $K=0$. The functors ($a_{t r}, o_{t r}$) induce an equivalence:

$$
\mathbb{L} a_{t r}: \operatorname{Rig} \mathbf{D A} A_{\text {êt }}^{\text {eff }}(K) \rightleftarrows \operatorname{RigDM}_{\text {ett }}^{\text {eff }}(K): \mathbb{R} o_{t r} .
$$

We postpone the proof of this fact to the second chapter, see Theorem 2.3.3
1.5.2. REMARK. The proof of the statement above uses in a crucial way the fact that the ring of coefficients Λ is a \mathbb{Q}-algebra. This is the main reason of our assumption on Λ.
1.5.3. Proposition. Suppose char $K=0$. Let $X=\lim _{h} X_{h}$ be in $\widehat{\mathrm{RigSm}^{g c}}$. If h is big enough, then the map $\Lambda\left(X_{h+1}\right) \rightarrow \Lambda\left(X_{h}\right)$ is an isomorphism in $\mathbf{R i g D A}_{\text {ét }}^{\text {eff }}(K)$.

Proof. By means of Proposition 1.5.1, we can equally prove the statement in the category $\operatorname{RigDM}_{\text {ett }}^{\text {eff }}(K)$. We claim that we can also make an arbitrary finite field extension L / K. Indeed the transpose of the natural map $Y_{L} \rightarrow Y$ is a correspondence from Y to Y_{L}. Since Λ is a \mathbb{Q}-algebra, we conclude that $\Lambda_{\text {tr }}(Y)$ is a direct factor of $\Lambda_{\mathrm{tr}}\left(Y_{L}\right)=\mathbb{L} e_{\sharp} \Lambda_{\mathrm{tr}}\left(Y_{L}\right)$ for any variety Y where $\mathbb{L} e_{\sharp}$ is the functor $\operatorname{RigDM}{ }_{\text {ett }}^{\text {eff }}(L) \rightarrow \operatorname{RigDM}_{\text {ett }}^{\text {eff }}(K)$ induced by restriction of scalars. In particular, if $\Lambda_{\operatorname{tr}}\left(\left(X_{h+1}\right)_{L}\right) \rightarrow \Lambda_{\mathrm{tr}}\left(\left(X_{h}\right)_{L}\right)$ is an isomorphism in $\operatorname{RigDM}_{\text {êt }}^{\text {eff }}(L)$ then $\Lambda_{\mathrm{tr}}\left(\left(X_{h+1}\right)_{L}\right) \rightarrow \Lambda_{\mathrm{tr}}\left(\left(X_{h}\right)_{L}\right)$ is an isomorphism in $\operatorname{RigDM}_{\mathrm{et}}^{\mathrm{eff}}(K)$ and therefore also $\Lambda_{\mathrm{tr}}\left(X_{h+1}\right) \rightarrow \Lambda_{\mathrm{tr}}\left(X_{h}\right)$ is.

By means of Lemma [5, 1.1.50], we can suppose that $X_{0}=\operatorname{Spa}\left(R_{0}, R_{0}^{\circ}\right)$ with $R_{0}=$ $S\langle\sigma, \tau\rangle /(P(\sigma, \tau))$ where $S=\mathcal{O}\left(\mathbb{T}^{M}\right), \sigma=\left(\sigma_{1}, \ldots, \sigma_{N}\right)$ is a N-tuple of coordinates, $\tau=$ $\left(\tau_{1}, \ldots, \tau_{m}\right)$ is a m-tuple of coordinates and P is a set of m polynomials in $S[\sigma, \tau]$ with $\operatorname{det}\left(\frac{\partial P}{\partial \tau}\right) \in R_{0}^{\times}$. In particular $X_{1}=\operatorname{Spa}\left(R_{1}, R_{1}^{\circ}\right)$ with $R_{1}=S\langle\sigma, \tau\rangle /\left(P\left(\sigma^{p}, \tau\right)\right)$ and the map $f: X_{1} \rightarrow X_{0}$ is induced by $\sigma \mapsto \sigma^{p}, \tau \mapsto \tau$. Since the map f is finite and surjective, we can also consider the transpose correspondence $f^{T} \in \operatorname{Rig} \operatorname{Cor}\left(X_{0}, X_{1}\right)$. The composition $f \circ f^{T}$ is associated to the correspondence $X_{0} \stackrel{f}{\leftarrow} X_{1} \xrightarrow{f} X_{0}$ which is the cycle $\operatorname{deg}(f) X_{0}=p^{N} \cdot \operatorname{id}_{X_{0}}$.
 $\mathbb{T}^{N}\left\langle\sigma^{1 / p}\right\rangle \times_{\mathbb{T}^{N}} \mathbb{T}^{N}\left\langle\sigma^{1 / p}\right\rangle \cong \mathbb{T}^{N}\left\langle\sigma^{1 / p}\right\rangle \times \mu_{p}^{N}$ we conclude that the above correspondence is $X_{1} \stackrel{p_{1}}{\leftarrow} X_{1} \times\left(\mu_{p}\right)^{N} \xrightarrow{\eta} X_{1}$ where η is induced by the multiplication map $\mathbb{T}^{N} \times \mu_{p}^{N} \rightarrow \mathbb{T}^{N}$. Up to a finite field extension, we can assume that K has the p-th roots of unity. The above correspondence is then equal to $\sum f_{\zeta}$ where each f_{ζ} is a map $X_{1} \rightarrow X_{1}$ defined by $\sigma_{i} \mapsto \zeta_{i} \sigma_{i}$, $\tau \mapsto \tau$ for each N-tuple $\zeta=\left(\zeta_{i}\right)$ of p-th roots of unity. If we prove that each f_{ζ} is homotopically equivalent to $\operatorname{id}_{X_{1}}$ then we get $\frac{1}{p^{N}} f^{T} \circ f=\mathrm{id}, f \circ \frac{1}{p^{N}} f^{T}=\mathrm{id}$ in $\operatorname{RigDM}_{\text {êt }}^{\text {eff }}$ as wanted.

We are left to find a homotopy between id and f_{ζ} for a fixed $\zeta=\left(\zeta_{1}, \ldots, \zeta_{n}\right)$ up to considering higher indices h. For the sake of clarity, we consider them as maps Spa $\bar{R}_{1} \rightarrow$ Spa R_{1} where we put $\bar{R}_{h}=S\langle\bar{\sigma}, \bar{\tau}\rangle /\left(P\left(\bar{\sigma}^{p^{h}}, \bar{\tau}\right)\right)$ for any integer h. The first map is induced by $\sigma \mapsto \bar{\sigma}, \tau \mapsto \bar{\tau}$ and the second induced by $\sigma \mapsto \zeta \bar{\sigma}, \tau \mapsto \bar{\tau}$. Let $F_{h}=\sum_{n} a_{n}(\sigma-\bar{\sigma})^{n}$ be the unique array of formal power series in $\bar{R}_{h}[[\sigma-\bar{\sigma}]]$ centered in $\bar{\sigma}$ associated to the polynomials $P\left(\sigma^{p^{h}}, \tau\right)$ in $\bar{R}_{h}[\sigma, \tau]$ via Corollary A.1.2. Let also ϕ_{h} be the map $\bar{R}_{h} \rightarrow \bar{R}_{h+1}$. From the formal equalities $P\left(\sigma^{p^{(h+1)}}, F_{h+1}(\sigma)\right)=0, P\left(\sigma^{p^{h}}, \phi\left(F_{h}(\sigma)\right)\right)=\phi_{h}\left(P\left(\sigma^{p^{h}}, F_{h}(\sigma)\right)\right)=0$ and the uniqueness of F_{h+1} we deduce $F_{h+1}(\sigma)=\phi_{h}\left(F_{h}\left(\sigma^{p}\right)\right)$.

We therefore have

$$
\begin{aligned}
F_{h+1}(\sigma) & =\sum_{n} \phi_{h}\left(a_{n}\right)\left(\sigma^{p}-\bar{\sigma}^{p}\right)^{n}= \\
& =\sum_{n} \phi_{h}\left(a_{n}\right)\left((\sigma-\bar{\sigma})^{p-1}+\sum_{j=1}^{p-1}\binom{p}{j}(\sigma-\bar{\sigma})^{j-1} \bar{\sigma}^{p-j}\right)^{n}(\sigma-\bar{\sigma})^{n}
\end{aligned}
$$

The expression

$$
Q(x)=x^{p}+\sum_{j=1}^{p-1}\binom{p}{j} x^{j} \bar{\sigma}^{p-j}
$$

is a polynomial in x and it easy to show that the mapping $x \mapsto Q(x)$ extends to a map $\bar{R}_{h+1}\langle x\rangle \rightarrow \bar{R}_{h+1}\langle x\rangle$ since \bar{R}_{h+1} is complete and p divides $\binom{p}{j}$ for $1<j<p$. We deduce that we can read off the convergence in the circle of radius 1 around $\bar{\sigma}$ and the values of F_{h+1} on its expression given above.

We remark that the norm of $Q(\sigma-\bar{\sigma})$ in the circle of radius $\rho \leq 1$ around $\bar{\sigma}$ is bounded by $\max \left\{\rho^{p},|p|\right\} \leq \max \{\rho,|p|\}$. Suppose that F_{h} converges in a circle of radius ρ with $0<\rho \leq 1$ around $\bar{\sigma}$ and in there it takes values in power-bounded elements. By the expression above, the same holds true for F_{h+1} in the circle of radius $\min \left\{\rho|p|^{-1}, 1\right\}$ around $\bar{\sigma}$. By induction we conclude that for a sufficiently big h the power series F_{h} converges in a circle of radius $\delta>|p|^{1 / p}$ around $\bar{\sigma}$ and its values in it are power bounded. Up to rescaling indices, we suppose that this holds for $h=1$.

The value $|p|^{1 / p}$ is larger than $\left|\zeta_{i}-1\right|$ for all i since $\left(\zeta_{i}-1\right)^{p}$ is divisible by p. Also, from the relation $F_{h+1}(\sigma)=\phi_{h}\left(F_{h}\left(\sigma^{p}\right)\right)$ we conclude $F_{1}(\zeta \bar{\sigma})=F_{1}(\bar{\sigma})=\bar{\tau}$. Therefore, the map

$$
\begin{aligned}
X_{1}=\operatorname{Spa}\left(S\langle\sigma, \tau\rangle / P\left(\sigma^{p}, \tau\right)\right) & \leftarrow X_{1} \times \mathbb{B}^{1}=\operatorname{Spa}\left(S\langle\bar{\sigma}, \bar{\tau}, \chi\rangle /\left(P\left(\bar{\sigma}^{p}, \bar{\tau}\right)\right)\right. \\
\left(\sigma_{i}, \tau_{j}\right) & \mapsto\left(\bar{\sigma}_{i}+\left(\zeta_{i}-1\right) \bar{\sigma}_{i} \chi, F_{1}(\bar{\sigma}+(\zeta-1) \bar{\sigma} \chi)\right)
\end{aligned}
$$

is a well defined map, inducing a homotopy between $\operatorname{id}_{X_{1}}$ and f_{ζ} as claimed.
It cannot be expected that all maps $X_{h+1} \rightarrow X_{h}$ are isomorphisms in $\operatorname{RigDA}_{\text {êt }}^{\text {eff }}(K)$: consider for example $X_{0}=\mathbb{T}^{1}\left\langle\tau^{1 / p}\right\rangle \rightarrow \mathbb{T}^{1}$. Then X_{0} is a connected variety, while X_{1} is not. That said, there is a particular class of objects $X=\lim _{h} X_{h}$ in $\widehat{\operatorname{Rig} S m}{ }^{\text {gc }}$ for which this happens: this is the content of the following proposition which nevertheless will not be used in the following.

We recall that a presentation $X=\lim _{h} X_{h}$ of an object in $\widehat{\operatorname{Rig} S^{g c}}$ is of good reduction if the map $X_{0} \rightarrow \mathbb{T}^{N} \times \mathbb{T}^{M}$ has a formal model which is an étale map over $\operatorname{Spf} K^{\circ}\left\langle\underline{v}^{ \pm 1}, \underline{\nu}^{ \pm 1}\right\rangle$ and is of potentially good reduction if this happens after base change by a separable finite field extension L / K.
1.5.4. Proposition. Let char $K=0$ and let $X=\lim _{h} X_{h}$ be a presentation of a variety in $\widehat{\operatorname{RigSm}}{ }^{\mathrm{gc}}$ of potentially good reduction. The maps $\Lambda\left(X_{h+1}\right) \rightarrow \Lambda\left(X_{h}\right)$ are isomorphisms in $\operatorname{RigDA}_{\hat{\text { ett }}}^{\mathrm{eff}}(K)$ for all h.

Proof. If the map $X_{0} \rightarrow \mathbb{T}^{N} \times \mathbb{T}^{M}$ has an étale formal model, then also the map $X_{h} \rightarrow$ $\mathbb{T}^{N}\left\langle\underline{v}^{1 / p^{h}}\right\rangle \times \mathbb{T}^{M}$ does. It is then sufficient to consider only the case $h=0$. Since L / K is finite and Λ is a \mathbb{Q}-algebra, by the same argument of the proof of Proposition 1.5 .3 we can assume that $\lim _{h} X_{h}$ has good reduction. Also, by means of Proposition 1.5 .1 and the Cancellation theorem [5, Corollary 2.5.49], we can equally prove the statement in the stable category $\mathbf{R i g D A}_{\text {ett }}(K)$ defined in [5, Definition 1.3.19].

Let $\mathfrak{X}_{0} \rightarrow \operatorname{Spf} K^{\circ}\left\langle\underline{v}^{ \pm 1}, \underline{\nu}^{ \pm 1}\right\rangle$ be a formal model of the map $X_{0} \rightarrow \mathbb{T}^{n} \times \mathbb{T}^{m}$. We let \bar{X}_{0} be the special fiber over the residue field k of K. The variety X_{1} has also a smooth formal model \mathfrak{X}_{1} whose special fiber is \bar{X}_{1}. By definition, the natural map $\bar{X}_{1} \rightarrow \bar{X}_{0}$ is the push-out of the (relative) Frobenius map $\mathbb{A}_{k}^{\operatorname{dim} X} \rightarrow \mathbb{A}_{k}^{\operatorname{dim} X}$ which is isomorphic to the relative Frobenius map and hence an isomorphism of correspondences as p is invertible in Λ. We conclude that $\Lambda_{\mathrm{tr}}\left(\bar{X}_{1}\right) \rightarrow \Lambda_{\mathrm{tr}}\left(\bar{X}_{0}\right)$ is an isomorphism in $\mathbf{D M}_{\text {ett }}(k)$.

Let FormDA ${ }_{\text {ett }}\left(K^{\circ}\right)$ be the stable category of motives of formal varieties $\mathbf{F S H}_{\mathfrak{M}}\left(K^{\circ}\right)$ defined in [5] Definition 1.4.15] associated to the projective model category $\mathfrak{M}=\mathbf{C h}(\Lambda$-Mod). Using the canonical equivalence $\mathbf{D M}_{\text {ét }}(k) \cong \mathbf{D M}_{\text {ét }}(k)$ [7]. Theorem B.1] we deduce that the $\operatorname{map} \Lambda\left(\bar{X}_{1}\right) \rightarrow \Lambda\left(\bar{X}_{0}\right)$ is an isomorphism in $\mathbf{D A}_{\text {ett }}(k)$ as is its image via the following functor (see [5] Remark 1.4.30]) induced by the special fiber functor and the generic fiber functor:

$$
\mathbf{D A}_{\text {ét }}(k) \underset{\sim}{\stackrel{(-)_{\sigma}}{\sim}} \text { FormDA }_{\text {êt }}\left(K^{\circ}\right) \xrightarrow{(-)_{\eta}} \boldsymbol{R i g D A}_{\text {ett }}(K) .
$$

This morphism is precisely the map $\Lambda\left(X_{1}\right) \rightarrow \Lambda\left(X_{0}\right)$ proving the claim.
We are now ready to present the main result of this section.
1.5.5. ThEOREM. Let char $K=0$. The functor $\mathbb{L} \iota^{*}: \operatorname{RigDA}_{\hat{e ́ t}}^{\mathrm{eff}}(K) \rightarrow \widehat{\operatorname{Rig}} \mathbf{D A}_{\hat{e ́ t}}^{\mathrm{eff}}(K)$ has a left adjoint $\mathbb{L} \iota!$ and the counit map id $\rightarrow \mathbb{L} \iota!\mathbb{L} \iota^{*}$ is invertible. Whenever $X=\lim _{\hbar} X_{h}$ is an object of $\widehat{\operatorname{Rig} S^{g c}}$ then $\mathbb{L}_{\iota!} \Lambda(X) \cong \Lambda\left(X_{h}\right)$ for a sufficiently large index h. If moreover $X=\lim _{h} X_{h}$ is of potentially good reduction, then $\mathbb{L} \iota \Lambda(X) \cong \Lambda\left(X_{0}\right)$.

Proof. We start by proving that the canonical map

$$
\boldsymbol{\operatorname { R i g } D A} A_{\text {êt }}^{\mathrm{eff}}(K)\left(\Lambda\left(X_{\bar{h}}\right), \mathcal{F}\right) \rightarrow \widehat{\operatorname{Rig}} \mathbf{D} A_{\text {êt }}^{\mathrm{eff}}(K)\left(\Lambda(X), \mathbb{L} \iota^{*} \mathcal{F}\right)
$$

is an isomorphism, for every $X={\underset{\longleftarrow}{h}}^{h} X_{h}$ and for \bar{h} big enough. By Proposition 1.4.5, it suffices to prove that the natural map

$$
\operatorname{RigDA}^{\mathrm{eff}}(K)\left(\Lambda\left(X_{\bar{h}}\right), \mathbb{L} a_{t r} \mathcal{F}\right) \rightarrow \underset{h}{\lim } \operatorname{RigDA}^{\mathrm{eff}}(K)\left(\Lambda\left(X_{h}\right), \mathbb{L} a_{t r} \mathcal{F}\right)
$$

is an isomorphism for some \bar{h}. This follows from Proposition 1.5 .3 since all maps of the directed diagram are isomorphisms for $h \geq \bar{h}$ for some \bar{h} big enough. In case $\varliminf_{\leftarrow} X_{h}$ is of potentially good reduction, then Proposition 1.5.4 ensures that we can choose $\bar{h}=0$.

We conclude that the subcategory \mathbf{T} of $\widehat{\operatorname{Rig}} \mathbf{D A}_{\hat{e t}, \widehat{\mathbb{B}^{1}}}^{\mathrm{eff}}(K)$ formed by the objects M such that the functor $N \mapsto \widehat{\operatorname{Rig}} \mathbf{D A}_{\text {ét }, \widehat{\mathbb{B}}^{1}}^{\text {eff }}(K)\left(M, \mathbb{L} \iota^{*} N\right)$ is corepresentable contains all motives $\Lambda(X)$ with X any object of $\widehat{\operatorname{Rig}} \mathrm{Sm}^{\mathrm{gc}}$. Since these objects form a set of compact generators of $\widehat{\operatorname{Rig}} \mathbf{D A}_{\text {ett }, \widehat{\mathbb{B}}^{1}}^{\text {efl }}(K)$ by Proposition 1.3 .18 , we deduce the existence of the functor $\mathbb{L} \ell$ by Lemma 1.5 .6

The formula $\mathbb{L} \iota!\mathbb{L} \iota^{*} \cong \mathrm{id}$ is a formal consequence of the fact that $\mathbb{L} \iota$ is the left adjoint of a fully faithful functor $\mathbb{L} \iota^{*}$.
1.5.6. LEMMA. Let $\mathfrak{G}: \mathbf{T} \rightarrow \mathbf{T}^{\prime}$ be a triangulated functor of triangulated categories. The full subcategory \mathbf{C} of \mathbf{T}^{\prime} of objects M such that the functor $a_{M}: N \mapsto \operatorname{Hom}(M, \mathfrak{G} N)$ is corepresentable is closed under cones and small direct sums.

Proof. For any object M in \mathbf{C} we denote by $\mathfrak{F} M$ the object corepresenting the functor a_{M}. Let now $\left\{M_{i}\right\}_{i \in I}$ be a set of objects in C. It is immediate to check that $\bigoplus_{i} \mathfrak{F} M_{i}$ corepresents the functor $a_{\oplus_{i} M_{i}}$.

Let now M_{1}, M_{2} be two objects of \mathbf{C} and $f: M_{1} \rightarrow M_{2}$ be a map between them. There are canonical maps $\eta_{i}: M_{i} \rightarrow \mathfrak{G} \mathfrak{F} M_{i}$ induced by the identity $\mathfrak{F} M_{i} \rightarrow \mathfrak{F} M_{i}$ and the universal property of $\mathfrak{F} M_{i}$. By composing with η_{2} we obtain a morphism $\operatorname{Hom}\left(M_{1}, M_{2}\right) \rightarrow$ $\operatorname{Hom}\left(M_{1}, \mathfrak{G} \mathfrak{F} M_{2}\right) \cong \operatorname{Hom}\left(\mathfrak{F} M_{1}, \mathfrak{F} M_{2}\right)$ sending f to a map $\mathfrak{F} f$. Let C be the cone of f and D
be the cone of $\mathfrak{F} f$. We claim that D represents a_{C}. From the triangulated structure we obtain a map of distinguished triangles

inducing for any object N of \mathbf{T} the following maps of long exact sequences

Since the vertical compositions are isomorphisms for M_{1} and M_{2} we deduce that they all are, proving that D corepresents a_{C} as wanted.

We remark that we used the fact that Λ is a \mathbb{Q}-algebra at least twice in the proof of Theorem 1.5.5: to allow for field extensions and correspondences using Theorem 1.5 .1 as well as to invert the map defined by multiplication by p. Nonetheless, it is expected that after inverting the Tate twist, Theorem 1.5.1 also holds for $\mathbb{Z}[1 / p]$-coefficients therefore providing a stable version of previous result with more general coefficients.

The following fact is a straightforward corollary of Theorem 1.5 .5 .
1.5.7. Proposition. Let char $K=0$. The motive $\mathbb{L} \iota_{!} \Lambda\left(\widehat{\mathbb{B}}^{1}\right)$ is isomorphic to Λ.

Proof. In order to prove the claim, it suffices to prove that $\mathbb{L} \iota!\left(\widehat{\mathbb{B}}^{1}\right) \cong \Lambda\left(\mathbb{B}^{1}\right)$. This follows from Proposition 1.2 .12 and the description of \mathbb{L} ! given in Theorem 1.5.5.

We recall that all the homotopy categories we consider are monoidal (see [6] Propositions 4.2.76 and 4.4.63]), and the tensor product $\Lambda(X) \otimes \Lambda\left(X^{\prime}\right)$ of two motives associated to varieties X and Y coincides with $\Lambda\left(X \times X^{\prime}\right)$. The unit object is obviously the motive Λ. Due to the explicit description of the functor $\mathbb{L} \ell$! we constructed above, it is easy to prove that it respects the monoidal structures.
1.5.8. Proposition. Let char $K=0$. The functor

$$
\mathbb{L}_{\iota!}: \widehat{\operatorname{Rig}} \mathbf{D A}_{\hat{e t t}, \mathbb{B}^{1}}^{\mathrm{eff}}(K) \rightarrow \mathbf{R i g D A}_{\hat{e ̂ t}}^{\mathrm{eff}}(K)
$$

is a monoidal functor.

Proof. Since $\mathbb{L} \iota_{!}$is the left adjoint of a monoidal functor $\mathbb{L} \iota^{*}$ there is a canonical natural tranformation of bifunctors $\mathbb{L} \iota_{!}\left(M \otimes M^{\prime}\right) \rightarrow \mathbb{L} \iota_{!} M \otimes \mathbb{L} \iota_{!} M^{\prime}$. In order to prove it is an isomorphism, it suffices to check it on a set of generators of $\widehat{\operatorname{Rig}} \mathbf{D A}_{\text {ett }, \mathbb{B}^{1}}^{\mathrm{eff}}$ such as motives of semi-perfectoid varieties $X=\lim _{h} X_{h}, X^{\prime}=\lim _{\hbar} X_{h}^{\prime}$. Up to rescaling, we can suppose that $\mathbb{L} \iota_{!} \Lambda(X)=\Lambda\left(X_{0}\right)$ and $\mathbb{L} \iota_{!} \Lambda\left(X^{\prime}\right)=\Lambda\left(X_{0}^{\prime}\right)$ by Theorem 1.5.5. In this case, by definition of the tensor product, we obtain the following isomorphisms
$\mathbb{L} \iota_{!}\left(\Lambda(X) \otimes \Lambda\left(X^{\prime}\right)\right) \cong \mathbb{L}_{\iota!} \Lambda\left(X \times X^{\prime}\right) \cong \Lambda\left(X_{0} \times X_{0}^{\prime}\right) \cong \Lambda\left(X_{0}\right) \otimes \Lambda\left(X_{0}^{\prime}\right) \cong \mathbb{L}_{\iota!} \Lambda(X) \otimes \mathbb{L} \iota!\Lambda\left(X^{\prime}\right)$
proving our claim.

The following proposition can be considered to be a refinement of Theorem 1.5.5.
1.5.9. Proposition. Let char $K=0$. The functor $\mathbb{L} \iota_{!}$factors through $\widehat{\operatorname{Rig}} \mathbf{D A}_{\text {ett }, \mathbb{B}^{1}}^{\mathrm{eff}} \rightarrow$ $\widehat{\operatorname{Rig}} \mathbf{D A}_{\text {ét, } \widehat{\mathbb{B}}^{1}}^{\text {eff }}$ and the image of the functor $\mathbb{L} \iota^{*}: \operatorname{RigDA}_{\text {ét }}^{\mathrm{eff}}(K) \rightarrow \widehat{\operatorname{Rig}} \mathbf{D A}_{\hat{e} t, \mathbb{B}^{1}}^{\mathrm{eff}}(K)$ lies in the subcategory of $\widehat{\mathbb{B}}^{1}$-local objects. In particular, the triangulated adjunction

$$
\mathbb{L} \iota_{!}: \widehat{\operatorname{Rig}} \mathbf{D A}_{\hat{e ́ t}, \mathbb{B}^{1}}^{\mathrm{eff}}(K) \rightleftarrows \mathbf{R i g D A}_{\hat{e t t}}^{\mathrm{eff}}(K): \mathbb{L} \iota^{*}
$$

restricts to a triangulated adjunction

Proof. By Propositions 1.5 .7 and 1.5.8. $\mathbb{L} \iota$! is a monoidal functor sending $\Lambda\left(\widehat{\mathbb{B}}^{1}\right)$ to Λ. This proves the first claim.

From the adjunction $\left(\mathbb{L} \iota, \mathbb{L} \iota^{*}\right)$ we then obtain the following isomorphisms, for any X in $\widehat{\operatorname{Rig} S m}{ }^{\text {gc }}$ and any M in RigDA êt $_{\text {eff }}(K)$:

$$
\begin{aligned}
& \widehat{\boldsymbol{\operatorname { R i g }} \mathbf{D A}}{ }_{\mathrm{et}, \mathbb{B}^{1}}^{\mathrm{eff}}(K)\left(\Lambda\left(X \times \widehat{\mathbb{B}}^{1}\right), \mathbb{L} \iota^{*} M\right) \cong \boldsymbol{\operatorname { R i g }}^{\boldsymbol{D}} \mathbf{A}_{\text {êt }}^{\mathrm{eff}}(K)(\mathbb{L} \iota!\Lambda(X) \otimes \Lambda, M) \cong \\
& \cong \boldsymbol{\operatorname { R i g }} \mathbf{D A}_{\text {êt }}^{\mathrm{eff}}(K)\left(\mathbb{L} \iota_{\iota!} \Lambda(X), M\right) \cong \widehat{\operatorname{Rig}} \mathbf{D} \mathbf{A}_{\hat{e} t, \mathbb{B}^{1}}^{\mathrm{eff}}(K)\left(\Lambda(X), \mathbb{L} \iota^{*} M\right)
\end{aligned}
$$

proving the second claim.
1.5.10. Remark. In the statement of the proposition above, we make a slight abuse of notation when denoting with $\left(\mathbb{L} \iota!, \mathbb{L} \iota^{*}\right)$ both adjoint pairs. It will be clear from the context which one we consider at each instance.

1.6. The de-perfectoidification functor in characteristic p

We now consider the case of a perfectoid field K^{b} of characteristic p and try to generalize the results of Section 1.5 . We will need to perform an extra localization on the model structure, and in return we will prove a stronger result. In this section, we always assume that the base perfectoid field has characteristic p. In order to emphasize this hypothesis, we will denote it with K^{b}.

In positive characteristic, we are not able to prove the equivalence of motives with and without transfers (Theorem 1.5.1) as it is stated, and it is therefore not clear that the maps $X_{h+1} \rightarrow X_{h}$ associated to an object $X=\lim _{h} X_{h}$ of $\widehat{\operatorname{RigSS}}$ are isomorphisms in $\operatorname{RigDA}_{\text {ét }}^{\text {eff }}\left(K^{b}\right)$ for a sufficiently big h. In order to overcome this obstacle, we localize our model category further.

For any variety X over K^{b} we denote by $X^{(1)}$ the pullback of X over the Frobenius map $\Phi: K^{b} \rightarrow K^{b}, x \mapsto x^{p}$. The absolute Frobenius morphism induces a K^{b}-linear map $X \rightarrow X^{(1)}$. Since K^{b} is perfect, we can also denote by $X^{(-1)}$ the pullback of X over the inverse of the Frobenius map $\Phi^{-1}: K^{b} \rightarrow K^{b}$ and $X \cong\left(X^{(-1)}\right)^{(1)}$. There is in particular a canonical map $X^{(-1)} \rightarrow X$ which is isomorphic to the map $X^{\prime} \rightarrow X$ induced by the absolute Frobenius, where we denote by X^{\prime} the same variety X endowed with the structure map $X \rightarrow$ Spa $K \xrightarrow{\Phi}$ Spa K.
1.6.1. Proposition. The model category $\mathbf{C h}_{\text {ete, }^{\mathbb{B}}} \operatorname{Psh}\left(\operatorname{RigSm} / K^{b}\right)$ admits a left Bousfield localization $\mathrm{Ch}_{\text {Frobét, } \mathbb{B}^{1}} \mathbf{P s h}\left(\mathrm{RigSm} / K^{b}\right)$ with respect to the set $S_{\text {Frob }}$ of relative Frobenius maps $\Phi: \Lambda\left(X^{(-1)}\right)[i] \rightarrow \Lambda(X)[i]$ as X varies in RigSm and i varies in \mathbb{Z}.

Proof. Since by [6, Proposition 4.4.32] the τ-localization coincides with the Bousfield localization with respect to a set, we conclude by [6. Theorem 4.2.71] that the model category $\mathrm{Ch}_{\text {ét, } \mathbb{B}^{1}} \operatorname{Psh}\left(\operatorname{RigSm} / K^{b}\right)$ is still left proper and cellular. We can then apply [22, Theorem 4.1.1].
1.6.2. Definition. We will denote by $\operatorname{RigDA}_{\text {Frobét }}^{\text {eff }}\left(K^{b}, \Lambda\right)$ the homotopy category of $\mathrm{Ch}_{\text {Frobét, } \mathbb{B}^{1}} \operatorname{Psh}\left(\operatorname{RigSm} / K^{b}\right)$. We will omit Λ whenever the context allows it. The image of a rigid variety X in this category will be denoted by $\Lambda(X)$.

The category $\operatorname{RigDA} A_{\text {Frobét }}^{\text {eff }}\left(K^{b}\right)$ is canonically isomorphic to the full triangulated subcategory of $\operatorname{RigDA}_{\hat{e t t}}^{\text {eff }}\left(K^{b}\right)$ formed by Frob-local objects, i.e. objects that are local with respect to the maps in $S_{\text {Frob }}$. Modulo this identification, there is an obvious functor RigDA ${ }_{\text {ett }}^{\text {eff }}\left(K^{b}\right) \rightarrow$ RigDA Frobét $_{\text {eff }}\left(K^{b}\right)$ associating to \mathcal{F} a Frob-local object $C^{\text {Frob }} \mathcal{F}$.

Inverting Frobenius morphisms is enough to obtain an analogue of Theorem 1.5 .1 in characteristic p.
1.6.3. Theorem. Let char $K^{b}=p$. The functors $\left(a_{t r}, o_{t r}\right)$ induce an equivalence of triangulated categories:

$$
\mathbb{L} a_{t r}: \operatorname{RigDA}_{\text {Frobét }}^{\text {eff }}\left(K^{b}\right) \cong \operatorname{Rig} \mathbf{D M} M_{\text {êt }}^{\text {eff }}\left(K^{b}\right)
$$

We postpone the proof of this fact to the second chapter, see Theorem 2.3.2
1.6.4. REMARK. The proof of the statement above uses in a crucial way the fact that the ring of coefficients Λ is a \mathbb{Q}-algebra. This is the main reason of our assumption on Λ.

We now investigate the relations between the category RigDA Frobét $_{\text {eff }}\left(K^{b}\right)$ we have just defined, and the other categories of motives introduced so far.
1.6.5. Proposition. Let X_{0} be in RigSm $/ K^{b}$ endowed with an étale map $X_{0} \rightarrow \mathbb{T}^{N} \times$ $\mathbb{T}^{M}=\operatorname{Spa}\left(K^{b}\left\langle\underline{v}^{ \pm 1}, \underline{\nu}^{ \pm 1}\right\rangle\right)$. The map $X_{1}=X_{0} \times_{\mathbb{T}^{N}} \mathbb{T}^{N}\left\langle\underline{v}^{ \pm 1 / p}\right\rangle \rightarrow X_{0}$ is invertible in $\operatorname{RigDA}_{\text {Frobét }}^{\text {eff }}\left(K^{b}\right)$.

PROOF. The map of the claim is a factor of $X_{0} \times_{\left(\mathbb{B}^{N} \times \mathbb{B}^{M}\right)}\left(\mathbb{B}^{N}\left\langle\underline{v}^{1 / p}\right\rangle \times \mathbb{B}^{M}\left\langle\underline{\nu}^{1 / p}\right\rangle\right) \rightarrow X_{0}$ which is isomorphic to the relative Frobenius map $X_{0}^{(-1)} \rightarrow X_{0}$ (see for example [19, Theorem 3.5.13]). If we consider the diagram

$$
X_{1}^{(-1)} \xrightarrow{a} X_{0}^{(-1)} \xrightarrow{b} X_{1} \xrightarrow{c} X_{0}
$$

we conclude that the two compositions $b a$ and $c b$ are isomorphisms hence also c is an isomorphism, as claimed.
1.6.6. Proposition. The image via $\mathbb{L} \iota^{*}$ of a Frob-local object of $\operatorname{RigDA}_{\text {ét }}^{\text {eff }}\left(K^{b}\right)$ is $\widehat{\mathbb{B}}^{1}$ local. In particular, the functor $\mathbb{L} \iota^{*}$ restricts to a functor

$$
\mathbb{L} \iota^{*}: \mathbf{R i g D A}_{\text {Frobét }}^{\text {eff }}\left(K^{b}\right) \rightarrow \widehat{\operatorname{Rig}^{\text {ig }}}{ }_{\text {êt }, \widehat{\mathbb{B}}^{1}}^{\text {eff }}\left(K^{b}\right) .
$$

PRoof. Let $X^{\prime}=\lim _{\varlimsup_{h}} X_{h}^{\prime}$ be in $\widehat{\operatorname{Rig} S m^{g c}}$. We consider the object $X^{\prime} \times \widehat{\mathbb{B}}^{1}=\lim _{h}\left(X_{h}^{\prime} \times X_{h}\right)$ where we use the description $\widehat{\mathbb{B}}^{1}=\lim _{{ }_{幺}} X_{h}$ of Proposition 1.2.12. Let M be a Frob-local object of $\operatorname{RigDA}_{\text {ét }}^{\text {eff }}\left(K^{b}\right)$. From Propositions 1.4.5 and 1.6.5 we then deduce the following
isomorphisms

$$
\begin{aligned}
& \widehat{\operatorname{Rig}} \mathbf{D}{\underset{e ̂ t}{e t}, \mathbb{B}^{1}}_{\mathrm{eff}}\left(K^{b}\right)\left(X^{\prime} \times \widehat{\mathbb{B}}^{1}, \mathbb{L} \iota^{*} M\right) \cong \underset{h}{\lim } \operatorname{RigDA}_{\hat{e t t}}^{\mathrm{eff}}\left(K^{b}\right)\left(X_{h}^{\prime} \times X_{h}, M\right) \cong \\
& \cong \operatorname{RigDA}_{\hat{e ́ t}}^{\mathrm{eff}}\left(K^{b}\right)\left(X_{0}^{\prime} \times \mathbb{B}^{1}, M\right) \cong \operatorname{RigDA}_{\hat{e ́ t}}^{\mathrm{eff}}\left(K^{b}\right)\left(X_{0}^{\prime}, M\right) \cong
\end{aligned}
$$

proving the claim.
We remark that in positive characteristic the perfection Perf : $X \mapsto \varliminf^{(-i)}$ is functorial. This makes the description of various functors a lot easier. We recall that we denote by

$$
\mathbb{L} j^{*}: \operatorname{PerfDA}_{\hat{e t t}}^{\mathrm{eff}}\left(K^{b}\right) \rightleftarrows \widehat{\operatorname{Rig}} \mathbf{D A}_{\hat{e ́ t}, \widehat{\mathbb{B}}^{1}}^{\mathrm{eff}}(K): \mathbb{R} j_{*}
$$

the adjoint pair induced by the inclusion of categories $j:$ PerfSm $\rightarrow \widehat{\text { RigSm }}$.
1.6.7. Proposition. The perfection functor Perf : $\widehat{\operatorname{Rig} S m} \rightarrow$ PerfSm induces an adjunction
and \mathbb{L} Perf* factors through $\widehat{\operatorname{Rig}} \mathbf{D A}_{\text {êt }, \mathbb{B}^{1}}^{\mathrm{eff}}\left(K^{b}\right) \rightarrow \widehat{\operatorname{Rig}} \mathbf{D} \mathrm{e}_{\text {êt }, \widehat{\mathbb{B}}} \mathrm{eff}^{\mathrm{ef}}\left(K^{b}\right)$. Moreover, the functor \mathbb{L} Perf ${ }^{*}$ coincides with $\mathbb{R} j_{*}$ on $\widehat{\operatorname{Rig} D A}{ }_{\text {eft }, \widehat{\mathbb{B}}^{1}}^{\text {eff }}\left(K^{b}\right)$.

Proof. The perfection functor is continuous with respect to the étale topology and maps \mathbb{B}^{1} and $\widehat{\mathbb{B}}^{1}$ to $\widehat{\mathbb{B}}^{1}$ hence the first claim.

We now consider the functors $j:$ PerfSm $\rightarrow \widehat{\text { RigSm }}$ and Perf : $\widehat{\operatorname{Rig} S m} \rightarrow$ PerfSm. They induce two Quillen pairs $\left(j^{*}, j_{*}\right)$ and $\left(\operatorname{Perf}^{*}, \operatorname{Perf}_{*}\right)$ on the associated (ét, $\left.\widehat{\mathbb{B}}^{1}\right)$-localized model categories of complexes. Since Perf is a right adjoint of j we deduce that Perf* is a right adjoint of j^{*} and hence we obtain an isomorphism $j_{*} \cong$ Perf* which shows the second claim.
1.6.8. Proposition. Let Λ be a \mathbb{Q}-algebra. The functor

$$
\mathbb{L} \operatorname{Perf}^{*} \mathbb{L} \iota^{*}: \operatorname{RigDA}_{\hat{e ́ t}}^{\mathrm{eff}}\left(K^{b}\right) \rightarrow \operatorname{PerfDA}_{e ̂ t}^{\mathrm{eff}}\left(K^{b}\right)
$$

factors over $\mathbf{R i g D} \mathbf{A}_{\text {Frobét }}^{\text {eff }}\left(K^{b}\right)$ and is isomorphic to $\mathbb{R} j_{*} \mathbb{L} \iota^{*} C^{\text {Frob }}$.
Proof. The first claim follows as the perfection of $X^{(-1)}$ is canonically isomorphic to the perfection of X for any object X in RigSm.

The second part of the statement follows from the first claim and the commutativity of the following diagram, which is ensured by Propositions 1.6.6 and 1.6.7.

1.6.9. Theorem. Let Λ be a \mathbb{Q}-algebra. The functor $\mathbb{L} \operatorname{Perf}^{*}: \operatorname{RigDA}_{\text {Frobét }}^{\text {eff }}\left(K^{b}\right) \rightarrow$ $\operatorname{PerfDA}_{\text {êt }}^{\mathrm{eff}}\left(K^{b}\right)$ defines a monoidal, triangulated equivalence of categories.

Proof. Let X_{0} and Y be objects of RigSm ${ }^{\text {gc }}$. Suppose X_{0} is endowed with an étale map over \mathbb{T}^{N} which is a composition of finite étale maps and inclusions, and let \widehat{X} be $\lim _{h} X_{h}$. We can identify \widehat{X} with Perf X_{0}. Since $C^{\text {Frob }} \Lambda(Y)$ is Frob-local, by Proposition 1.6.5 the maps

$$
\operatorname{RigDA}_{\text {êt }}^{\mathrm{eff}}\left(K^{b}\right)\left(\Lambda\left(X_{h}\right), C^{\text {Frob }} \Lambda(Y)\right) \rightarrow \mathbf{R i g D A}_{\text {êt }}^{\mathrm{eff}}\left(K^{b}\right)\left(\Lambda\left(X_{h+1}\right), C^{\text {Frob }} \Lambda(Y)\right)
$$

are isomorphisms for all h. Using Propositions 1.4.5, 1.6.6 and 1.6.8, we obtain the following sequence of isomorphisms for any $n \in \mathbb{Z}$:

$$
\begin{aligned}
& \boldsymbol{R i g D A}_{\text {Frobét }}^{\text {eff }}\left(K^{b}\right)\left(\Lambda\left(X_{0}\right), \Lambda(Y)[n]\right) \cong \operatorname{RigDA}_{\text {êt }}^{\text {eff }}\left(K^{b}\right)\left(\Lambda\left(X_{0}\right), C^{\text {Frob }} \Lambda(Y)[n]\right) \\
& \cong \underset{h}{\lim } \mathbf{R i g} \mathbf{D A}_{\text {êt }}^{\text {eff }}\left(K^{b}\right)\left(\Lambda\left(X_{h}\right), C^{\text {Frob }} \Lambda(Y)[n]\right) \cong \widehat{\operatorname{Rig}} \mathbf{D A}_{\text {êt }, \mathbb{B}^{1}}^{\text {eff }}\left(K^{b}\right)\left(\Lambda(\widehat{X}), \mathbb{L} \iota^{*} C^{\text {Frob }} \Lambda(Y)[n]\right) \\
& \cong \widehat{\operatorname{Rig}} \mathbf{D A}_{\hat{e t}, \widehat{\mathbb{B}}^{1}}^{\mathrm{eff}}\left(K^{b}\right)\left(\Lambda(\widehat{X}), \mathbb{L}_{\iota^{*}} C^{\mathrm{Frob}} \Lambda(Y)[n]\right) \\
& \cong \operatorname{PerfDA}_{\text {ett }}^{\text {eff }}\left(K^{b}\right)\left(\Lambda(\widehat{X}), \mathbb{R} j_{*} \mathbb{L} \iota^{*} C^{\text {Frob }} \Lambda(Y)[n]\right) \\
& \cong \operatorname{PerfDA}_{\text {êt }}^{\text {eff }}\left(K^{b}\right)\left(\mathbb{L} \operatorname{Perf}^{*}\left(X_{0}\right), \mathbb{L} \operatorname{Perf}^{*}(Y)[n]\right) \text {. }
\end{aligned}
$$

In particular, we deduce that the triangulated functor \mathbb{L} Perf* maps a set of compact generators to a set of compact generators (see Propositions 1.3 .18 and 1.3 .30) and on these objects it is fully faithful. By means of [5] Lemma 1.3.32], we then conclude it is a triangulated equivalence of categories, as claimed.
1.6.10. REMARK. From the proof of the previous claim, we also deduce that the inverse \mathbb{R} Perf $_{*}$ of \mathbb{L} Perf * sends the motive associated to an object $X=\lim _{h} X_{h}$ to the motive of X_{0}. This functor is then analogous to the de-perfectoidification functor $\mathbb{L} j^{*} \circ \mathbb{L} \ell$! of Theorem 1.5.5

1.7. The main theorem

Thanks to the results of the previous sections, we can reformulate Theorem 1.5 .5 in terms of motives of rigid varieties. We will always assume that char $K=0$ since the results of this section are tautological when char $K=p$.
1.7.1. Corollary. There exists a triangulated adjunction of categories

$$
\mathfrak{F}: \operatorname{Rig}_{\mathbf{D}} \mathbf{M}_{\text {ett }}^{\mathrm{eff}}\left(K^{b}\right) \rightleftarrows \operatorname{RigDM}_{\text {ett }}^{\mathrm{eff}}(K): \mathfrak{G}
$$

such that \mathfrak{F} is a monoidal functor.
Proof. From Theorem 1.5.5 and Proposition 1.5.8, we can define an adjunction

$$
\mathfrak{F}^{\prime}: \operatorname{RigDA}_{\text {Frobét }}^{\text {eff }}\left(K^{b}\right) \rightleftarrows \operatorname{RigDA}_{\text {êt }}^{\text {eff }}(K): \mathfrak{G}^{\prime}
$$

by putting $\mathfrak{F}^{\prime}:=\mathbb{L}_{\ell!} \circ \mathbb{L}^{j^{*}} \circ(-)^{\sharp} \circ \mathbb{L}$ Perff${ }^{*}$. We remark that by Proposition 1.5.8, \mathfrak{F}^{\prime} is also monoidal. The claim then follows from the equivalence of motives with and without transfers (see Propositions 1.5.1 and 1.6.3).

Our goal is to prove that the adjunction of Corollary 1.7 .1 is an equivalence of categories. To this aim, we recall the construction of the stable versions of the rigid motivic categories given in [5) Definition 2.5.27].
1.7.2. Definition. Let T be the cokernel in PST(RigSm $/ K)$ of the unit map $\Lambda_{\operatorname{tr}}(K) \rightarrow$ $\Lambda_{\text {tr }}\left(\mathbb{T}^{1}\right)$. We denote by $\operatorname{RigDM}_{\text {ét }}(K, \Lambda)$ or simply by $\operatorname{RigDM}_{\text {ét }}(K)$ the homotopy category associated to the stable (ét, \mathbb{B}^{1})-local model structure on the category of symmetric spectra $\operatorname{Spect}_{T}^{\Sigma}\left(\mathbf{C h}_{\text {ét }, \mathbb{B}^{1}} \mathbf{P S T}(\operatorname{RigSm} / K)\right)$.

As explained in [5] Section 2.5], T is cofibrant and the cyclic permutation induces the identity on $T^{\otimes 3}$ in $\mathbf{R i g D M}_{\text {ett }}^{\text {eff }}$. Moreover, by [24, Theorem 9.3], $T \otimes-$ is a Quillen equivalence in this category, which is actually the universal model category where this holds (in some weak sense made precise by [24, Theorem 5.1, Proposition 5.3 and Corollary 9.4]). We recall that the canonical functor $\operatorname{RigDM}_{\mathrm{ett}}^{\mathrm{eff}}(K) \rightarrow \operatorname{RigDM}_{\mathrm{ett}}(K)$ is fully faithful, as proved in [5] Corollary 2.5.49] as a corollary of the Cancellation Theorem [5, Theorem 2.5.38].
1.7.3. Definition. We denote by $\Lambda(1)$ the motive $T[-1]$ in $\operatorname{RigDM}_{\text {êt }}^{\text {eff }}(K)$. For any positive integer d we let $\Lambda(d)$ be $\Lambda(1)^{\otimes d}$. The functor $(\cdot)(d):=(\cdot) \otimes \Lambda(d)$ is an auto-equivalence of $\operatorname{RigDM}_{\text {et }}(K)$ and its inverse will be denoted with $(\cdot)(-d)$.
1.7.4. Definition. We denote by $\operatorname{RigDM} M_{\text {ett }}^{\mathrm{ct}}(K, \Lambda)$ or simply by $\operatorname{RigDM}_{\text {ett }}^{\mathrm{ct}}(K)$ the full triangulated subcategory of $\operatorname{RigDM}_{\text {ét }}(K, \Lambda)$ whose objects are the compact ones. They are of the form $M(d)$ for some compact object M in $\operatorname{RigDM} \mathbf{M}_{\text {et }}^{\text {eff }}(K)$ and some d in \mathbb{Z}. This category is called the category of constructible motives.

We now present an important result that is a crucial step toward the proof of our main theorem. The motivic property it induces will be given right afterwards.
1.7.5. Proposition. Let \widehat{X} be a smooth affinoid perfectoid. The natural map of complexes

$$
\operatorname{Sing}^{\widehat{\mathbb{B}}^{1}}\left(\Lambda\left(\widehat{\mathbb{T}}^{d}\right)\right)(\widehat{X}) \rightarrow \operatorname{Sing}^{\widehat{\mathbb{B}}^{1}}\left(\Lambda\left(\mathbb{T}^{d}\right)\right)(\widehat{X})
$$

is a quasi-isomorphism.
Proof. We let \widehat{X} be $\operatorname{Spa}\left(R, R^{+}\right)$. A map f in $\operatorname{Hom}\left(\widehat{X} \times \widehat{\mathbb{B}}^{n}, \mathbb{T}^{d}\right)$ [resp. in $\operatorname{Hom}(\widehat{X} \times$ $\left.\widehat{\mathbb{B}}^{n}, \widehat{\mathbb{T}}^{d}\right)$] corresponds to d elements f_{1}, \ldots, f_{d} in the group $\left(R^{+}\left\langle\tau_{1}^{1 / p^{\infty}}, \ldots, \tau_{n}^{1 / p^{\infty}}\right\rangle\right)^{\times}$[resp. in the group $\left.\left(R^{b+}\left\langle\tau_{1}^{1 / p^{\infty}}, \ldots, \tau_{n}^{1 / p^{\infty}}\right\rangle\right)^{\times}\right]$and the map between the two objects is induced by the multiplicative tilt map $R^{b+}\left\langle\tau_{1}^{1 / p^{\infty}}, \ldots, \tau_{n}^{1 / p^{\infty}}\right\rangle \rightarrow R^{+}\left\langle\tau_{1}^{1 / p^{\infty}}, \ldots, \tau_{n}^{1 / p^{\infty}}\right\rangle$.

We now present some facts about homotopy theory for cubical objects, which mirror classical results for simplicial objects (see for example [35, Chapter IV]). We remark that the map of the statement is induced by a map of enriched cubical Λ-vector spaces (see [3, Definition A.6]), which is obtained by adding Λ-coefficients to a map of enriched cubical sets

$$
\operatorname{Hom}\left(\widehat{X} \times \hat{\square}, \widehat{\mathbb{T}}^{d}\right) \rightarrow \operatorname{Hom}\left(\widehat{X} \times \hat{\square}, \mathbb{T}^{d}\right)
$$

Any enriched cubical object has connections in the sense of [10, Section 1.2], induced by the maps m_{i} in [3, Definition A.6]. We recall that the category of cubical sets with connections can be endowed with a model structure by which all objects are cofibrant and weak equivalences are defined through the geometric realization (see [30]). Moreover, its homotopy category is canonically equivalent to the one of simplicial sets, as cubical sets with connections form a strict test category by [34].

The two cubical sets appearing above are abelian groups on each level and the maps defining their cubical structure are group homomorphisms. They therefore are cubical groups. By [50], they are fibrant objects and their homotopy groups π_{i} coincide with the homology $H_{i} N$ of the associated normalized complexes of abelian groups (see Definition 1.3.13). The Λ enrichment functor is tensorial with respect to the monoidal structure of cubical sets introduced
in [11. Section 11.2] and the cubical Dold-Kan functor, associating to a cubical Λ-module with connection its normalized complex (see [11, Section 14.8]) is a left Quillen functor. We deduce that in order to prove the statement of the proposition it suffices to show that the two normalized complexes of abelian groups are quasi-isomorphic. We also remark that it suffices to consider the case $d=1$.

We prove the following claim: the n-th homology of the complex $N\left((R \widehat{\otimes} \mathcal{O}(\widehat{\square}))^{+\times}\right)$is 0 for $n>0$. Let f be invertible in $R^{+}\left\langle\tau_{1}^{1 / p^{\infty}}, \ldots, \tau_{n}^{1 / p^{\infty}}\right\rangle$ with $d_{r, \epsilon} f=1$ for all (r, ϵ). We claim that $f-1$ is topologically nilpotent. Up to adding a topological nilpotent element, we can assume that $f \in R^{+}[\underline{\tau}]$. Since f is invertible, its image in $\left(R^{+} / R^{\circ \circ}\right)\left[\underline{\tau}^{1 / p^{\infty}}\right]$ is invertible as well. Invertible elements in this ring are just the invertible constants. We deduce that all coefficients of $f-f(0)=f-1$ are topologically nilpotent and hence $f-1$ is topologically nilpotent. In particular, the element $H=f+\tau_{n+1}(1-f)$ in $R^{+}\left\langle\underline{\tau}^{1 / p^{\infty}}, \tau_{n+1}^{1 / p^{\infty}}\right\rangle$ is invertible, satisfies $d_{r, \epsilon} H=1$ for all ϵ and all $1 \leq r \leq n$ and determines a homotopy between f and 1 . This proves the claim.

We can also prove that the 0 -th homology of the complex $N\left((R \widehat{\otimes} \mathcal{O}(\widehat{\square}))^{+\times}\right)$coincides with $R^{+\times} /\left(1+R^{\circ \circ}\right)$. This amounts to showing that the image of the ring map

$$
\begin{aligned}
\left\{f \in R^{+}\left\langle\tau^{1 / p^{\infty}}\right\rangle^{\times}: f(0)=1\right\} & \rightarrow R^{+\times} \\
f & \mapsto f(1)
\end{aligned}
$$

coincides with $1+R^{\circ \circ}$. Let f be invertible in $R^{+}\left\langle\tau^{1 / p^{\infty}}\right\rangle$ with $f(0)=1$. As proved above, $f-1$ is topologically nilpotent so that also $f(1)-1$ is. Vice-versa if $a \in R$ is topologically nilpotent then the element $1+a \tau \in R^{+}\left\langle\tau^{1 / p^{\infty}}\right\rangle$ is invertible, satisfies $f(0)=1$ and $f(1)=1+a$ proving the claim.

We are left to prove that the multiplicative map \sharp induces an isomorphism $\left(R^{b+}\right)^{\times} /(1+$ $\left.R^{\text {boo }}\right) \rightarrow\left(R^{+}\right)^{\times} /\left(1+R^{\circ \circ}\right)$. We start by proving it is injective. Let $a \in R^{b+}$ such that $\left(a^{\sharp}-1\right)$ is topologically nilpotent. Since $\left(a^{\sharp}-1\right)=(a-1)^{\sharp}$ in R^{+} / π we deduce that the element $(a-1)^{\sharp}-\left(a^{\sharp}-1\right)$ is also topologically nilpotent. We conclude that $(a-1)^{\sharp}$ as well as $(a-1)$ are topologically nilpotent, as wanted.

We now prove surjectivity. Let a be invertible in R^{+}. In particular both a and a^{-1} are power-bounded. From the isomorphism $R^{b+} / \pi^{b} \cong R^{+} / \pi$ we deduce that there exists an element $b \in R^{b+}$ such that $b^{\sharp}=a+\pi \alpha=a\left(1+\pi \alpha a^{-1}\right)$ for some (power bounded) element $\alpha \in R^{+}$. We deduce that $\left(1+\pi \alpha a^{-1}\right)$ lies in $1+R^{\circ \circ}$ and that b^{\sharp} is invertible. Since the multiplicative structure of R^{b} is isomorphic to $\varliminf_{\leftarrow} \lim _{x \rightarrow x^{p}} R$ and \sharp is given by the projection to the last component, we deduce that as b^{\sharp} is invertible, then also b is. In particular, the image of $b \in\left(R^{b+}\right)^{\times}$in $\left(R^{+}\right)^{\times} /\left(1+R^{\circ \circ}\right)$ is equal to a as wanted.

We recall that by Corollary 1.7.1 there is an adjunction

$$
\mathfrak{F}: \operatorname{RigDM}_{\text {êt }}^{\mathrm{eff}}\left(K^{b}\right) \rightleftarrows \operatorname{RigDM}_{\text {êt }}^{\mathrm{eff}}(K): \mathfrak{G}
$$

and our goal is to prove it is an equivalence.

1.7.6. Proposition. The motive $\mathfrak{G} \Lambda(d)$ is isomorphic to $\Lambda(d)$ for any positive integer d.

Proof. The natural map $\Lambda(d) \rightarrow \mathfrak{G} \Lambda(d)$ is induced by the isomorphism $\mathfrak{F} \Lambda(d) \cong \Lambda(d)$. We need to prove it is an isomorphism. The motive $\Lambda(d)$ is a direct factor of the motive $\Lambda\left(\mathbb{T}^{d}\right)[-d]$ and the map above is induced by $\Lambda\left(\mathbb{T}^{d}\right) \rightarrow \mathfrak{G} \Lambda\left(\mathbb{T}^{d}\right)$. It suffices then to prove that the map $\Lambda\left(\mathbb{T}^{d}\right) \rightarrow \mathfrak{G} \Lambda\left(\mathbb{T}^{d}\right)$ is an isomorphism.

By the definition of the adjoint pair $(\mathfrak{F}, \mathfrak{G})$ given in Corollary 1.7.1, we can equivalently consider the adjunction

$$
\mathbb{L} \iota!\mathbb{L} j^{*}: \operatorname{PerfDA}_{\hat{e ́ t}}^{\mathrm{eff}}(K) \rightleftarrows \operatorname{RigDA}_{\text {êt }}^{\mathrm{eff}}(K): \mathbb{R} j_{*} \mathbb{L} \iota^{*}
$$

and prove that $\Lambda\left(\widehat{\mathbb{T}}^{d}\right) \rightarrow\left(\mathbb{R} j_{*} \circ \mathbb{L} \iota^{*}\right) \Lambda\left(\mathbb{T}^{d}\right)$ is an isomorphism in $\operatorname{PerfDA}_{\hat{e ́ t}}^{\text {eff }}(K)$.
From Proposition 1.7 .5 we deduce that the complexes $\operatorname{Sing}{ }^{\widehat{\mathbb{B}}^{1}} \Lambda\left(\widehat{\mathbb{T}}^{d}\right)$ and $j_{*} \operatorname{Sing}^{\widehat{\mathbb{B}}^{1}} \Lambda\left(\mathbb{T}^{d}\right)$ are quasi-isomorphic in $\operatorname{Ch} \operatorname{Psh}(\mathrm{PerfSm})$. By means of Remark 1.7.7the quasi-isomorphism above can be restated as

$$
\operatorname{Sing}{ }^{\widehat{\mathbb{B}}^{1}} \Lambda\left(\widehat{\mathbb{T}}^{d}\right) \cong \mathbb{R} j_{*} \operatorname{Sing}{ }^{\widehat{\mathbb{B}}^{1}} \Lambda\left(\mathbb{T}^{d}\right)
$$

Due to Proposition 1.3 .26 the complex Sing $\widehat{\mathbb{B}}^{1} \mathcal{F}$ is $\widehat{\mathbb{B}}^{1}$-equivalent to \mathcal{F} for any complex \mathcal{F}. This fact, together with the isomorphism $\mathbb{L} \iota^{*} \Lambda\left(\mathbb{T}^{d}\right) \cong \Lambda\left(\mathbb{T}^{d}\right)$ implies $\Lambda\left(\widehat{\mathbb{T}}^{d}\right) \cong \mathbb{R} j_{*} \mathbb{L} \iota^{*} \Lambda\left(\mathbb{T}^{d}\right)$ as wanted.
1.7.7. Remark. Since j_{*} commutes with ét-sheafification, it preserves ét-weak equivalences. It also commutes with Sing $\widehat{\mathbb{B}}^{1}$ and therefore preserves \mathbb{B}^{1}-weak equivalences. We conclude that $\mathbb{R} j_{*}=j_{*}$ and in particular $\mathbb{R} j_{*}$ commutes with small direct sums.

We are finally ready to present the proof of our main result.

1.7.8. Theorem. The adjunction

$$
\mathfrak{F}: \operatorname{Rig}_{\mathbf{D}} \mathbf{M}_{\mathrm{ett}}^{\mathrm{eff}}\left(K^{b}\right) \rightleftarrows \operatorname{RigDM}_{\text {et }}^{\mathrm{eff}}(K): \mathfrak{G}
$$

is a monoidal triangulated equivalence of categories.
Proof. By Theorem 1.5.5 the functor $\mathbb{L} \iota!\mathbb{L} j^{*}: \operatorname{PerfDA}_{\text {êt }}^{\text {eff }}(K) \rightarrow \operatorname{RigDA}_{\hat{e t t}}^{\text {eff }}(K)$ sends the motive $\Lambda(\widehat{X})$ associated to a perfectoid $\widehat{X}=\lim _{h} X_{h}$ to the motive $\Lambda\left(X_{0}\right)$ associated to X_{0} up to rescaling indices. It is triangulated, commutes with sums, and its essential image contains motives $\Lambda\left(X_{0}\right)$ of varieties X_{0} having good coordinates $X_{0} \rightarrow \mathbb{T}^{N}$ and such that $X_{h}=X_{0} \times_{\mathbb{T}^{N}} \mathbb{T}^{N}\left\langle\underline{v}^{1 / p^{h}}\right\rangle \rightarrow X_{0}$ is an isomorphism in $\operatorname{RigDA}_{\text {ét }}^{\text {eff }}(K)$ for all h. We call these rigid varieties with very good coordinates. By Proposition 1.5.3, for every rigid variety with good coordinates $X_{0} \rightarrow \mathbb{T}^{N}$ there exists an index h such that $X_{h}=X_{0} \times_{\mathbb{T}^{N}} \mathbb{T}^{N}\left\langle\underline{v}^{ \pm 1 / p^{h}}\right\rangle$ has very good coordinates. Since char $K=0$ the map $\mathbb{T}^{N}\left\langle\underline{v}^{ \pm 1 / p^{h}}\right\rangle \rightarrow \mathbb{T}^{N}$ is finite étale, and therefore also the map $X_{h} \rightarrow X_{0}$ is. We conclude that any rigid variety with good coordinates has a finite étale covering with very good coordinates, and hence the motives associated to varieties with very good coordinates generate the étale topos. In particular, the motives associated to them generate $\operatorname{RigDA} \mathbf{A}_{e t t}^{\text {eff }}(K)$ and hence the functor $\mathbb{L} \ell \circ \circ \mathbb{L} j^{*}$ maps a set of compact generators to a set of compact generators.

Since \mathfrak{F} is monoidal and $\mathfrak{F}(\Lambda(1))=\Lambda(1)$ it extends formally to a monoidal functor from the category $\operatorname{RigDA}_{\hat{\text { ett }}}^{\text {ct }}\left(K^{b}\right)$ to $\operatorname{RigDA}_{\text {ett }}(K)$ by putting $\mathfrak{F}(M(-d))=\mathfrak{F}(M)(-d)$. Let now M, N in $\mathbf{R i g D M}_{\text {ett }}\left(K^{b}\right)$ be twists of the motives associated to the analytification of smooth projective varieties X resp. X^{\prime}. They are strongly dualizable objects of $\operatorname{RigDM}_{\text {et }}\left(K^{b}\right)$ since $\Lambda_{\mathrm{tr}}(X)$ and $\Lambda_{\mathrm{tr}}\left(X^{\prime}\right)$ are strongly dualizable in $\mathbf{D M}_{\text {ett }}\left(K^{b}\right)$. Fix an integer d such that $N^{\vee}(d)$ lies in $\operatorname{RigDM}_{\text {êt }}^{\text {eff }}\left(K^{b}\right)$. The objects M, N, M^{\vee} and N^{\vee} lie in $\operatorname{RigDM}_{\text {ett }}^{\text {ct }}\left(K^{b}\right)$ and moreover $\mathfrak{F}\left(N^{\vee}\right)=\mathfrak{F}(N)^{\vee}$. From Lemma 1.7 .9 we also deduce that the functor \mathfrak{F} induces a bijection

$$
\boldsymbol{R i g D M}_{\text {ett }}^{\mathrm{ct}}\left(K^{b}\right)\left(M \otimes N^{\vee}, \Lambda\right) \cong \boldsymbol{R i g D M}_{\text {ett }}(K)\left(\mathfrak{F}(M) \otimes \mathfrak{F}(N)^{\vee}, \Lambda\right) .
$$

By means of the Cancellation theorem [5] Corollary 2.5.49] the first set is isomorphic to the set $\operatorname{RigDM}_{\text {êt }}^{\text {eff }}\left(K^{b}\right)(M, N)$ and the second is isomorphic to $\operatorname{RigDM}_{\text {ett }}^{\text {eff }}(K)(\mathfrak{F}(M), \mathfrak{F}(N))$. We
then deduce that all motives M associated to the analytification of smooth projective varieties lie in the left orthogonal of the cone of the map $N \rightarrow \mathfrak{G} \mathfrak{F} N$ which is closed under direct sums and cones. Since Λ is a \mathbb{Q}-algebra, such motives generate $\operatorname{RigDM} M_{\text {ett }}^{\text {eff }}\left(K^{b}\right)$ by means of [5, Theorem 2.5.35]. We conclude that $N \cong \mathfrak{G} \mathfrak{F} N$. Therefore the category \mathbf{T} of objects N such that $N \cong \mathfrak{G} \mathfrak{F} N$ contains all motives associated to the analytification of smooth projective varieties. It is clear that \mathbf{T} is closed under cones. The functors \mathfrak{F} and $\mathbb{L} \iota^{*}$ commute with direct sums as they are left adjoint functors. As pointed out in Remark 1.7 .7 also the functor $\mathbb{R} j_{*}$ does. Since \mathfrak{G} is a composite of $\mathbb{R} j_{*} \mathbb{L} \iota^{*}$ with equivalences of categories, it commutes with small sums as well. We conclude that \mathbf{T} is closed under direct sums. Using again [5, Theorem 2.5.35] we deduce $\mathbf{T}=\operatorname{RigDM}_{\text {ett }}^{\text {eff }}\left(K^{b}\right)$ proving that \mathfrak{F} is fully faithful. This is enough to prove it is an equivalence of categories, by applying [5, Lemma 1.3.32].
1.7.9. Lemma. Let M be an object of $\operatorname{RigDA}_{\text {ét }}^{c t}\left(K^{b}\right)$. The functor \mathfrak{F} induces an isomorphism

$$
\operatorname{RigDM}_{\text {êt }}^{\mathrm{ct}}\left(K^{b}\right)(M, \Lambda) \cong \operatorname{Rig}_{\mathbf{i g}}^{\text {ét }}(K)(\mathfrak{F}(M), \Lambda)
$$

Proof. Suppose that d is an integer such that $M(d)$ lies in $\operatorname{RigDA}_{\text {ett }}^{\text {eff }}\left(K^{b}\right)$. One has $\mathfrak{F} \Lambda(d) \cong \Lambda(d)$ and by Proposition 1.7.6 the unit map $\eta: \Lambda(d) \rightarrow \mathfrak{G} \mathfrak{F} \Lambda(d)$ is an isomorphism. In particular from the adjunction $(\mathfrak{F}, \mathfrak{G})$ we obtain a commutative square

in which the top arrow is then an isomorphism. By the Cancellation theorem [5] Corollary 2.5.49] we also obtain the following commutative square

and hence also the top arrow is an isomorphism. We conclude the claim from the following commutative square, whose vertical arrows are isomorphisms since the functor $(\cdot)(d)$ is invertible in $\operatorname{RigDM}_{\text {ett }}(K)$:

$$
\begin{gathered}
\boldsymbol{\operatorname { R i g D M }}_{\mathrm{ett}}^{\mathrm{ct}}\left(K^{b}\right)(M, \Lambda) \xrightarrow[(\cdot)]{\mathfrak{F}} \operatorname{RigDM}_{\text {ett }}(K)(\mathfrak{F} M, \Lambda) \\
\forall \sim \\
\boldsymbol{R i g D M}_{\text {ett }}^{\mathrm{ct}}\left(K^{b}\right)(M(d), \Lambda(d)) \xrightarrow{\mathfrak{F}} \underset{\sim}{\sim} \operatorname{RigDM}_{\text {ett }}(K)(\mathfrak{F} M(d), \Lambda(d)) .
\end{gathered}
$$

1.7.10. Remark. In the proof of Theorem 1.7 .8 we again used the hypothesis that Λ is a \mathbb{Q}-algebra in order to apply [$\mathbf{5}$, Theorem 2.5.35] which states that the motives associated to the analytification of smooth projective varieties generate RigDM êt $_{\text {eff }}\left(K^{b}\right)$.

We remark that the proof above also induces the following statement.

1.7.11. Corollary. The functor

$$
\mathfrak{F}: \operatorname{RigDM}_{\mathrm{ett}}^{\mathrm{ct}}\left(K^{b}\right) \rightarrow \operatorname{RigDM}_{\mathrm{ett}}^{\mathrm{ct}}(K)
$$

is a monoidal equivalence of categories.
1.7.12. REMARK. The reader may wonder if the equivalence $\operatorname{RigDM}_{\text {et }}^{\text {eff }}(K, \Lambda) \cong$ $\operatorname{RigDM}_{\text {ét }}^{\text {eff }}\left(K^{b}, \Lambda\right)$ still holds true for an arbitrary ring of coefficients Λ such that $p \in \Lambda^{\times}$. With this respect, the case of rational coefficients that we tackled in this thesis is particularly meaningful. Indeed, it is expected that if l is coprime to p then the category $\operatorname{RigDM}_{\text {êt }}^{\text {eff }}(K, \mathbb{Z} / l \mathbb{Z})$ coincides with the derived category of $\mathbb{Z} / l \mathbb{Z}$-Galois representations, in analogy to the case of $\mathbf{D M}_{\text {ett }}^{\text {eff }}(K, \mathbb{Z} / l \mathbb{Z})$. It would then be equivalent to $\operatorname{Rig} \mathbf{D M}_{\text {êt }}^{\text {eff }}\left(K^{b}, \mathbb{Z} / l \mathbb{Z}\right)$ by the theorem of Fontaine and Wintenberger.

CHAPTER 2

Rigid motives with and without transfers

The purpose of this chapter is to prove an equivalence of categories $\operatorname{RigDA}_{\text {Frobét }}^{\text {eff }}(K, \Lambda) \cong$ $\operatorname{RigDM}_{\text {êt }}^{\text {eff }}(K, \Lambda)$ adapting the proof of [3, Theorem B.1] and [7, Theorem B.1] to the rigid analytic setting and to an arbitrary characteristic. To this aim, we first need to present a refinement of the étale topology.

2.1. The Frob-topology

In all this section, we assume that K is a perfect field which is complete with respect to a non-archimedean norm. Unless otherwise stated, we will use the term "variety" to indicate an affinoid rigid analytic variety over K.
2.1.1. Definition. A map $f: Y \rightarrow X$ of varieties over K is called a Frob-cover if it is finite, surjective and for every affinoid U in X the affinoid inverse image $V=f^{-1}(U)$ is such that the induced map of rings $\mathcal{O}(U) \rightarrow \mathcal{O}(V)$ is radicial.
2.1.2. REmARK. By [21, Corollary IV.18.12.11] a morphism of schemes is finite, surjective and radicial if and only if it is a finite universal homeomorphism. The same holds true for rigid analytic varieties.

If char $K=p$ and X is a variety over K then the absolute n-th Frobenius map $X \rightarrow X$ given by the elevation to the p^{n}-th power, factors over a map $X \rightarrow X^{(n)}$ where we denote by $X^{(n)}$ the base change of X by the absolute n-th Frobenius map $K \rightarrow K$. We denote by $\Phi^{(n)}$ the map $X \rightarrow X^{(n)}$ and we call it the relative n-th Frobenius. Since K is perfect, $X^{(n)}$ is isomorphic to X endowed with the structure map $X \rightarrow$ Spa $K \xrightarrow{\Phi-n}$ Spa K and the relative n-th Frobenius is isomorphic to the absolute n-th Frobenius of X over \mathbb{F}_{p}. We can also define $X^{(n)}$ for negative n to be the base change of X over the the map $\Phi^{n}: K \rightarrow K$ which is again isomorphic to X endowed with the structure map $X \rightarrow$ Spa $K \xrightarrow{\Phi^{-n}}$ Spa K. The Frobenius map induces a morphism $X^{(-1)} \rightarrow X$ and the collection of maps $\left\{X^{(-1)} \rightarrow X\right\}$ defines a coverage (see for example [31, Definition C.2.1.1]).

We also define $X^{(n)}$ to be X and the maps $\Phi: X^{(n-1)} \rightarrow X^{(n)}$ to be the identity maps for all $n \in \mathbb{Z}$ in case char $K=0$.
2.1.3. Proposition. Let $Y \rightarrow X$ be a Frob-cover between normal varieties over K. There exists an integer n and a map $X^{(-n)} \rightarrow Y$ such that the composite map $X^{(-n)} \rightarrow Y \rightarrow X$ coincides with Φ^{n} and the composite map $Y \rightarrow X \rightarrow Y^{(n)}$ coincides with Φ^{n}.

Proof. We can equally prove the statement for affine schemes. Let $f: Y \rightarrow X$ a finite universal homeomorphism of affine normal schemes over K. By [33, Proposition 6.6] there exists an integer n and a map $h: X \rightarrow Y^{(n)}$ such that the composite map $Y \rightarrow X \rightarrow Y^{(n)}$ coincides with the relative n-th Frobenius. We remark that the map $Y \rightarrow X$ is an epimorphism (in the categorical sense) of normal varieties. From the equalities $f h f^{(n)}=\Phi_{Y}^{(n)} f^{(n)}=f \Phi_{X}^{(n)}$
we then conclude that the composite map $X \rightarrow Y^{(n)} \rightarrow X^{(n)}$ coincides with the n-relative Frobenius. This proves the claim.
2.1.4. Definition. Let B be a normal variety over K. We define RigSm / B to be the category of varieties which are smooth over B. We denote by $\tau_{\text {ét }}$ the étale topology.
2.1.5. Definition. Let B be a normal variety over K. We define RigNor $/ B$ to be the category of normal varieties over B.

- We denote by $\tau_{\text {Frob }}$ the topology on RigNor / B induced by Frob-covers.
- We denote by $\tau_{\text {ét }}$ the étale topology.
- We denote by $\tau_{\text {Frobet }}$ the topology generated by $\tau_{\text {Frob }}$ and $\tau_{\text {ét }}$.
- We denote by $\tau_{\text {fh }}$ the topology generated by covering families $\left\{f_{i}: X_{i} \rightarrow X\right\}_{i \in I}$ such that I is finite, and the induced map $\sqcup f_{i}: \sqcup_{i \in I} X_{i} \rightarrow X$ is finite and surjective.
- We denote by $\tau_{\text {fhét }}$ the topology generated by $\tau_{\text {fh }}$ and $\tau_{\text {ét }}$.
2.1.6. REmARK. The fhét-topology is often denoted by qfh (see [51]). We stick to the notation fhét in order to be consistent with [3].

We are not imposing any additivity condition on the Frob-topology, i.e. the families $\left\{X_{i} \rightarrow\right.$ $\left.\sqcup_{i \in I} X_{i}\right\}_{i \in I}$ are not Frob-covers. This does not interfere much with our theory since we will mostly be interested in the Frobét-topology, with respect to which such families are covering families.
2.1.7. Remark. The fh-topology is obviously finer that the Frob-topology, which is the trivial topology in case char $K=0$.
2.1.8. Remark. The category of normal affinoid is not closed under fiber products, and the fh-coverings do not define a Grothendieck pretopology. Nonetheless, they define a coverage which is enough to have a convenient description of the topology they generate (see for example [31, Section C.2.1]).
2.1.9. REMARK. A particular example of fh-covers is given by pseudo-Galois covers which are finite, surjective maps $f: Y \rightarrow X$ of normal integral affinoid varieties such that the field extension $K(Y) \rightarrow K(X)$ is obtained as a composition of a Galois extension and a finite, purely inseparable extension. The Galois group G associated to the extension coincides with $\operatorname{Aut}(Y / X)$. As shown in [5, Corollary 2.2.5], a presheaf \mathcal{F} on $\operatorname{RigNor} / B$ with values in a complete and cocomplete category is an fh-sheaf if and only if the two following conditions are satisfied.
(1) For every finite set $\left\{X_{i}\right\}_{i \in I}$ of objects in RigNor $/ B$ it holds $\mathcal{F}\left(\sqcup_{i \in I} X_{i}\right) \cong$ $\prod_{i \in I} \mathcal{F}\left(X_{i}\right)$.
(2) For every pseudo-Galois covering $Y \rightarrow X$ with associated Galois group G the map $\mathcal{F}(X) \rightarrow \mathcal{F}(Y)^{G}$ is invertible.
2.1.10. Definition. Let B be a normal variety over K.

- We denote by RigSm $/ B^{\text {Perf }}$ the 2 -limit category $2-\lim _{n} \operatorname{RigSm} / B^{(-n)}$ with respect to the functors RigSm $/ B^{(-n-1)} \rightarrow \operatorname{RigSm} / B^{(-n)}$ induced by the pullback along the map $B^{(-n-1)} \rightarrow B^{(-n)}$. More explicitly, it is equivalent to the category $\mathbf{C}_{B}\left[S^{-1}\right]$ where \mathbf{C}_{B} is the category whose objects are pairs $(X,-n)$ with $n \in \mathbb{N}$ and $X \in \operatorname{RigSm} / B^{(-n)}$ and morphisms $\mathbf{C}_{B}\left((X,-n),\left(X^{\prime},-n^{\prime}\right)\right)$ are maps $f: X \rightarrow X^{\prime}$ forming commutative
squares

and where S is the class of canonical maps $\left(X^{\prime} \times_{B^{\left(-n^{\prime}\right)}} B^{(-n)},-n\right) \rightarrow\left(X^{\prime},-n^{\prime}\right)$ for each $X \in \operatorname{RigSm} / B^{\left(-n^{\prime}\right)}$ and $n \geq n^{\prime}$ (see [20, Definition VI.6.3]).
- We say that a map $(X,-n) \rightarrow\left(X^{\prime},-n^{\prime}\right)$ of RigSm $/ B^{\text {Perf }}$ is a Frob-cover if the map $X \rightarrow X^{\prime}$ is a Frob-cover. We denote by $\tau_{\text {Frob }}$ the topology on $\mathrm{RigSm} / B^{\text {Perf }}$ induced by Frob-covers.
- We say that a collection of maps $\left\{\left(X_{i},-n_{i}\right) \rightarrow(X,-n)\right\}_{i \in I}$ is an étale cover if the induced collection $\left\{X_{j} \rightarrow X\right\}$ is. We denote by $\tau_{\text {ét }}$ the topology on $\operatorname{RigSm} / B^{\text {Perf }}$ generated by the étale coverings. It coincides with the one induced by putting the étale topology on each category $\operatorname{RigSm} / B^{(-n)}$ (see [1 , Theorem VI.8.2.3]).
- We denote by $\tau_{\text {Frobét }}$ the topology generated by $\tau_{\text {Frob }}$ and $\tau_{\text {ét }}$.

We now investigate some properties of the Frob-topology.
2.1.11. PROPOSITION. Let B be a normal variety over K.

- A presheaf \mathcal{F} on $\operatorname{RigNor} / B$ is a Frob-sheaf if and only if $\mathcal{F}\left(X^{(-1)}\right) \cong \mathcal{F}(X)$ for all objects X in RigNor $/ B$.
- A presheaf \mathcal{F} on RigSm $/ B^{\text {Perf }}$ is a Frob-sheaf if and only if $\mathcal{F}\left(X^{(-1)},-n-1\right) \cong$ $\mathcal{F}(X,-n)$ for all objects $(X,-n)$ in $\operatorname{RigSm} / B^{\text {Perf }}$.

Proof. The two statements are analogous and we only prove the claim for RigNor $/ B$. By means of [31, Lemma C.2.1.6 and Lemma C.2.1.7] the topology generated by maps $f: Y \rightarrow X$ which factor a power of Frobenius $X^{(-n)} \rightarrow X$ is the same as the one generated by the coverage $X^{(-1)} \rightarrow X$. Using Proposition 2.1 .3 , we conclude that the Frob-topology coincides with the one generated by the coverage $\left\{X^{(-1)} \rightarrow X\right\}$. Since the Frobenius map is a monomorphism of normal varieties, the sheaf condition associated to the coverage $X^{(-1)} \rightarrow X$ is simply the one of the statement by [31, Lemma 2.1.3].

2.1.12. Corollary. Let B be a normal variety over K.

- The class Φ of maps $\left\{X^{(-r)} \rightarrow X\right\}_{r \in \mathbb{N}, X \in \operatorname{RigNor} / B}$ admits calculus offractions, and its saturation consists of Frob-covers. In particular, the continuous map

$$
(\text { RigNor } / B, \text { Frob }) \rightarrow \text { RigNor } / B\left[\Phi^{-1}\right]
$$

defines an equivalence of topoi.

- The class Φ of maps $\left\{\left(X^{(-r)},-n-r\right) \rightarrow(X,-n)\right\}_{r \in \mathbb{N},(X, n) \in \operatorname{RigSm} / B^{\text {Perf }}}$ admits calculus of fractions, and its saturation consists of Frob-covers. In particular, the continuous map

$$
\left(\operatorname{RigSm} / B^{\text {Perf }}, \operatorname{Frob}\right) \rightarrow \operatorname{RigSm} / B^{\text {Perf }}\left[\Phi^{-1}\right]
$$

defines an equivalence of topoi.
Proof. We only prove the first claim. The fact that Φ admits calculus of fractions is an easy check, and the characterization of its saturation follows from Proposition 2.1.3. The sheaf condition for a presheaf \mathcal{F} with respect to the Frob-topology is simply $\mathcal{F}\left(X^{(-1)}\right) \cong \mathcal{F}(X)$ by Corollary 2.1.11 hence the last claim.
2.1.13. Remark. We follow the notations introduced in Definition 2.1.10. Any pullback of a finite, surjective radicial map between normal varieties is also finite, surjective and radicial. In particular, if B is a normal variety, the maps in the class S are invertible in RigNor $/ B\left[\Phi^{-1}\right]$. The functor $\mathbf{C}_{B} \rightarrow$ RigNor $/ B\left[\Phi^{-1}\right]$ defined by mapping $(X,-n)$ to X factors through a functor $\operatorname{RigSm} / B^{\text {Perf }} \rightarrow \operatorname{RigNor} / B\left[\Phi^{-1}\right]$. In particular, there is a functor $\operatorname{RigSm} / B^{\text {Perf }}\left[\Phi^{-1}\right] \rightarrow$ RigNor / $B\left[\Phi^{-1}\right]$ defined by sending $(X,-n)$ to X hence, by Corollary 2.1.12, there is a functor $\mathbf{S h}_{\text {Frob }}\left(\operatorname{RigSm} / B^{\text {Perf }}\right) \rightarrow \mathbf{S h}_{\text {Frob }}($ RigNor $/ B)$.
2.1.14. REMARK. If $e: B^{\prime} \rightarrow B$ is a finite map of normal varieties, any étale hypercover $\mathcal{U} \rightarrow B^{\prime}$ has a refinement by a hypercover \mathcal{U}^{\prime} obtained by pullback from an étale hypercover \mathcal{V} of B (see for example [47, Section 44.45]). In particular, the functor $e_{*}: \operatorname{Psh}\left(\operatorname{RigSm} / B^{\prime}\right) \rightarrow$ $\operatorname{Psh}(\operatorname{RigSm} / B)$ commutes with the functor $a_{\text {et }}$ of ét-sheafification. The same holds true for the functor $e_{*}: \operatorname{Psh}\left(\operatorname{RigSm} / B^{\prime \text { Perf }}\right) \rightarrow \mathbf{P s h}\left(\operatorname{RigSm} / B^{\text {Perf }}\right)$.

From now on, we fix a commutative ring Λ and work with Λ-enriched categories. In particular, the term "presheaf" should be understood as "presheaf of Λ-modules" and similarly for the term "sheaf". It follows that the presheaf $\Lambda(X)$ represented by an object X of a category \mathbf{C} sends an object Y of \mathbf{C} to the free Λ-module $\Lambda \operatorname{Hom}(Y, X)$.
2.1.15. Assumption. Unless otherwise stated, we assume from now on that Λ is a \mathbb{Q} algebra and we omit it from the notations.

The following facts are immediate, and will also be useful afterwards.
2.1.16. Proposition. Let B be a normal variety over K.

- If \mathcal{F} is an étale sheaf on RigSm $/ B^{\text {Perf }}$ [resp. on RigNor $\left./ B\right]$ then $a_{\text {Frob }} \mathcal{F}$ is a Frobétsheaf.
- If \mathcal{F} is a Frob-sheaf on $\operatorname{RigSm} / B^{\text {Perf }}$ [resp. on RigNor $\left./ B\right]$ then $a_{\text {ett }} \mathcal{F}$ is a Frobétsheaf.

Proof. We only prove the claims for RigNor $/ B$. First, suppose that \mathcal{F} is an étale sheaf. By Proposition 2.1.3, we obtain that $a_{\text {Frob }} \mathcal{F}(X)=\lim _{n} \mathcal{F}\left(X^{(-n)}\right)$. Whenever $U \rightarrow X$ is étale, then $U \times_{X} X^{(-n)} \cong U^{(-n)}$ and $U^{(-n)} \times_{X^{(-n)}} U^{(-n)} \cong\left(U \times_{X} U\right)^{(-n)}$ so that the following diagram is exact

$$
0 \rightarrow \mathcal{F}\left(X^{(-n)}\right) \rightarrow \mathcal{F}\left(U^{(-n)}\right) \rightarrow \mathcal{F}\left(\left(U \times_{X} U\right)^{(-n)}\right)
$$

The first claim the follows by taking the limit over n.
We now prove the second claim. Suppose \mathcal{F} is a Frob-sheaf. For any étale covering $\mathcal{U} \rightarrow X$ we indicate with \mathcal{U}^{\prime} the associated covering of $X^{(-1)}$ obtained by pullback. From Remark 2.1.14 one can compute the sections of $a_{\text {et }} \mathcal{F}\left(X^{(-1)}\right)$ with the formula

$$
a_{\text {et }} \mathcal{F}\left(X^{(-1)}\right)={\underset{\mathcal{U}}{\boldsymbol{\mathcal { L }} \rightarrow X}}_{\lim _{X}}^{\operatorname{ker}}\left(\mathcal{F}\left(\mathcal{U}_{0}^{\prime}\right) \rightarrow \mathcal{F}\left(\mathcal{U}_{1}^{\prime}\right)\right)
$$

where $\mathcal{U} \rightarrow X$ varies among hypercovers of X. Since \mathcal{F} is a Frob-sheaf, then $\mathcal{F}\left(U_{0}^{\prime}\right) \cong \mathcal{F}\left(U_{0}\right)$ and $\mathcal{F}\left(U_{1}^{\prime}\right) \cong \mathcal{F}\left(U_{1}\right)$. The formula above then implies

$$
a_{\text {et }} \mathcal{F}\left(X^{(-1)}\right)={\underset{\mathcal{U}}{\rightarrow X}}_{\lim } \operatorname{ker}\left(\mathcal{F}\left(\mathcal{U}_{0}\right) \rightarrow \mathcal{F}\left(\mathcal{U}_{1}\right)\right)=a_{\text {ett }} \mathcal{F}(X)
$$

proving the claim.
2.1.17. Proposition. Let B be a normal variety over K. If \mathcal{F} is $a \mathrm{fh}$-sheaf on RigNor $/ B$ then $a_{\text {et }} \mathcal{F}$ is a fhét-sheaf.

Proof. Let $f: X^{\prime} \rightarrow X$ be a pseudo-Galois cover with associated group G. In light of Remark 2.1.9, we need to show that $a_{\text {ett }} \mathcal{F}(X) \cong a_{\text {ét }} \mathcal{F}\left(X^{\prime}\right)^{G}$. For any étale covering $\mathcal{U} \rightarrow X$ we indicate with \mathcal{U}^{\prime} the associated covering of X^{\prime} obtained by pullback. From Remark 2.1.14 one can compute the sections of $a_{\mathrm{et}} \mathcal{F}\left(X^{\prime}\right)$ with the formula

$$
a_{\mathrm{et}} \mathcal{F}\left(X^{\prime}\right)=\underset{\mathcal{U} \rightarrow X}{\lim } \operatorname{ker}\left(\mathcal{F}\left(\mathcal{U}_{0}^{\prime}\right) \rightarrow \mathcal{F}\left(\mathcal{U}_{1}^{\prime}\right)\right)
$$

where $\mathcal{U} \rightarrow X$ varies among hypercovers of X. Taking the G-invariants is an exact functor as Λ is a \mathbb{Q}-algebra and when applied to the formula above it yields

$$
a_{\text {ett }} \mathcal{F}\left(X^{\prime}\right)^{G}=\underset{\mathcal{U} \rightarrow X}{\lim } \operatorname{ker}\left(\mathcal{F}\left(\mathcal{U}_{0}^{\prime}\right)^{G} \rightarrow \mathcal{F}\left(\mathcal{U}_{1}^{\prime}\right)^{G}\right)=\underset{\mathcal{U} \rightarrow X}{\lim } \operatorname{ker}\left(\mathcal{F}\left(\mathcal{U}_{0}\right) \rightarrow \mathcal{F}\left(\mathcal{U}_{1}\right)\right)=a_{\text {ett }} \mathcal{F}(X)
$$

as wanted.
2.1.18. Proposition. Let B be a normal variety over K. The canonical inclusions

$$
\begin{aligned}
o_{\text {Frob }} & : \mathbf{S h}_{\text {Frob }}(\operatorname{RigNor} / B) \rightarrow \mathbf{P s h}(\operatorname{RigNor} / B) \\
o_{\text {Frob }}: & \mathbf{S h}_{\text {Frob }}\left(\operatorname{RigSm} / B^{\text {Perf }}\right) \rightarrow \mathbf{P s h}\left(\operatorname{RigSm} / B^{\text {Perf }}\right) \\
o_{\mathrm{fh}}: & \mathbf{S h}_{\mathrm{fh}}(\operatorname{RigNor} / B) \rightarrow \mathbf{P s h}(\operatorname{RigNor} / B)
\end{aligned}
$$

are exact.
Proof. In light of Proposition 2.1.11 the statements about $o_{\text {Frob }}$ are obvious. Since Λ is a \mathbb{Q}-algebra, the functor of G-invariants from $\Lambda[G]$-modules to Λ-modules is exact. The third claim then follows from Remark 2.1.9.

We now investigate the functors of the topoi introduced above induced by a map of varieties $B^{\prime} \rightarrow B$.
2.1.19. Proposition. Let $f: B^{\prime} \rightarrow B$ be a map of normal varieties over K.

- Composition with f defines a functor f_{\sharp} : RigNor $/ B^{\prime} \rightarrow$ RigNor $/ B$ which induces the following adjoint pair

$$
f_{\sharp}: \mathbf{C h} \mathbf{S h}_{\text {Frobét }}\left(\text { RigNor } / B^{\prime}\right) \rightleftarrows \mathbf{C h} \mathbf{S h}_{\text {Frobét }}(\text { RigNor } / B): f^{*}
$$

- The base change over f defines functors $f^{(-n) *}: \operatorname{RigSm} / B^{(-n)} \rightarrow \operatorname{RigSm} / B^{\prime(-n)}$ which induce the following adjoint pair

$$
f^{*}: \mathbf{C h} \mathbf{S h}_{\text {Frobét }}\left(\operatorname{RigSm} / B^{\text {Perf }}\right) \rightleftarrows \mathbf{C h} \mathbf{S} \mathbf{h}_{\text {Frobét }}\left(\operatorname{RigSm} / B^{\prime \text { Perf }}\right): f_{*}
$$

- If f is a Frob-cover, the functors above are equivalences of categories.
- If f is smooth, the composition with f defines functors $f_{\sharp}^{(-n)}: \operatorname{RigSm} / B^{(-n)} \rightarrow$ RigSm $/ B^{(-n)}$ which induce the following adjoint pair

$$
f_{\sharp}: \mathbf{C h} \mathbf{S h}_{\text {Frobét }}\left(\operatorname{RigSm} / B^{\prime \text { Perf }}\right) \rightleftarrows \mathbf{C h} \mathbf{S h}_{\text {Frobét }}\left(\operatorname{RigSm} / B^{\text {Perf }}\right): f^{*}
$$

Proof. We initially remark that the functors $f^{(-n) *}$ induce a functor $f^{*}: \mathbf{C}_{B} \rightarrow \mathbf{C}_{B^{\prime}}$ where C_{B} is the fibered category introduced in Definition 2.1.10. As cartesian squares are mapped to cartesian squares, they also induce a functor $f^{*}: \operatorname{RigSm} / B^{\text {Perf }} \rightarrow \operatorname{RigSm} / B^{\text {Perf }}$.

The existence of the first two adjoint pairs is then a formal consequence of the continuity of the functors f_{\sharp} and f^{*}.

Let now f be a Frob-cover. The functors $f^{*}: \operatorname{RigSm} / B^{\text {Perf }}\left[\Phi^{-1}\right] \rightarrow \operatorname{RigSm} / B^{\text {Perf }}\left[\Phi^{-1}\right]$ and $f_{\sharp}:$ RigNor $/ B^{\prime}\left[\Phi^{-1}\right] \rightarrow$ RigNor $/ B\left[\Phi^{-1}\right]$ are equivalences, and we conclude the third claim by what proved above and Corollary 2.1.12.

For the fourth claim, we use a different model for the Frobét-topos on RigSm $/ B^{\text {Perf }}$. The fibered category \mathbf{C}_{B} can be endowed with the Frob-topology and the Frobét-topology. Following the proof of Corollary 2.1.12, the map $\left(\mathbf{C}_{B}\right.$, Frob $) \rightarrow \mathbf{C}_{B}\left[\Phi^{-1}\right]$ induces an equivalence of topoi. Moreover, the canonical functor $\mathbf{C}_{B}\left[\Phi^{-1}\right] \rightarrow \operatorname{RigSm} / B^{\text {Perf }}\left[\Phi^{-1}\right]$ induces an equivalence of categories.

The existence of the last Quillen functor is therefore a formal consequence of the continuity of the functor $f_{\sharp}:\left(\mathbf{C}_{B^{\prime}}\left[\Phi^{-1}\right]\right.$, ét $) \rightarrow\left(\mathbf{C}_{B}\left[\Phi^{-1}\right]\right.$, ét $)$.
2.1.20. Remark. Let $f: B^{\prime} \rightarrow B$ be a map of normal varieties. The image via f^{*} of the presheaf represented by $(X,-n)$ is the the presheaf represented by $\left(X \times_{B} B^{(-n)},-n\right)$ and if f is smooth, the image via f_{\sharp} of the presheaf represented by $\left(X^{\prime},-n\right)$ is the sheaf represented by $\left(X^{\prime},-n\right)$.

2.2. Rigid motives and Frob-motives

We apply the techniques and the terminology of Section 1.3 to the relative étale and Frobétale site. We recall that the ring of coefficients Λ is assumed to be a \mathbb{Q}-algebra.

The category of complexes of presheaves $\operatorname{Ch}(\operatorname{Psh}(\mathbf{C}))$ can be endowed with the projective model structure for which weak equivalences are quasi-isomorphisms and fibrations are maps $\mathcal{F} \rightarrow \mathcal{F}^{\prime}$ such that $\mathcal{F}(X) \rightarrow \mathcal{F}^{\prime}(X)$ is a surjection for all X in $\mathbf{C}(\operatorname{cfr}[23$, Section 2.3] and [6, Proposition 4.4.16]).

We recall that from Proposition 1.3.3, whenever (\mathbf{C}, τ, I) is a site with an interval, the Bousfield localization over τ-local, I-local and (τ, I)-local maps is well defined. The induced model categories will be denoted by $\mathrm{Ch}_{\tau} \operatorname{Psh}(\mathbf{C}), \mathrm{Ch}_{I} \operatorname{Psh}(\mathbf{C})$ and $\mathrm{Ch}_{\tau, I} \operatorname{Psh}(\mathbf{C})$ respectively. The model category $\mathrm{Ch}_{\tau} \operatorname{Psh}(\mathrm{C})$ is canonically Quillen equivalent to the projective model structure on the category of complexes of sheaves $\mathbf{C h} \mathrm{Sh}_{\tau}(\mathbf{C})$

2.2.1. Definition. Let B be a normal variety over K.

- The triangulated homotopy category of the localization $\mathbf{C h}_{\text {ét }, \mathbb{B}^{1}} \mathbf{P s h}(\operatorname{RigSm} / B)$ will be denoted by $\operatorname{RigDA}{ }_{\text {et }}^{\text {eff }}(B, \Lambda)$.
- The triangulated homotopy category of the localization $\mathbf{C h}_{\text {et }, \mathbb{B}^{1}} \mathbf{P s h}\left(\operatorname{RigSm} / B^{\text {Perf }}\right)$ will be denoted by $\operatorname{RigDA} A_{\text {etf }}^{\text {eff }}\left(B^{\text {Perf }}, \Lambda\right)$ while the triangulated homotopy category of $\mathrm{Ch}_{\text {Frobét }, \mathbb{B}^{1}} \operatorname{Psh}\left(\operatorname{RigSm} / B^{\text {Perf }}\right)$ will be denoted by $\operatorname{RigDA}{\underset{F}{\text { Frobét }}}_{\text {eff }}\left(B^{\text {Perf }}, \Lambda\right)$.
- The triangulated homotopy category of the localization $\mathbf{C h}_{\text {Frobét }, \mathbb{B}^{1}} \mathbf{P s h}$ (RigNor $/ B$) will be denoted by $\mathbf{D}_{\text {Frobet }, \mathbb{B}^{1}}$ (RigNor $/ B, \Lambda$) while the triangulated homotopy category of $\mathbf{C h}_{\mathrm{fhét}, \mathbb{B}^{1}} \mathbf{P s h}(\operatorname{RigNor} / B)$ will be denoted by $\mathbf{D}_{\text {ét, } \mathbb{B}^{1}}^{\mathrm{fh}}(\operatorname{RigNor} / B, \Lambda)$.
- If \mathbf{C} is one of the categories $\operatorname{RigSm} / B, \operatorname{RigSm} / B^{\text {Perf }}$ and $\operatorname{RigNor} / B$ and $\eta \in$ $\left\{\right.$ ét, Frob, f, Frobét, fhét, $\mathbb{B}^{1},\left(\right.$ ét, $\left.\mathbb{B}^{1}\right),\left(\right.$ Frobét, $\left.\mathbb{B}^{1}\right),\left(\right.$ fhét, $\left.\left.\mathbb{B}^{1}\right)\right\}$ we say that a map in $\operatorname{Ch} \operatorname{Psh}(\mathbf{C})$ is a η-weak equivalence if it is a weak equivalence in the model structure $\mathrm{Ch}_{\eta} \operatorname{Psh}(\mathbf{C})$ whenever this makes sense.
- We will omit Λ from the notation whenever the context allows it. The image of a variety X in one of these categories will be denoted by $\Lambda(X)$.

We now want to introduce the analogue of the previous definitions for motives with transfers. By Remark 2.1.13 the map $(X,-n) \mapsto X$ induces a functor $\mathbf{S h}_{\text {Frob }}\left(\operatorname{RigSm} / B^{\text {Perf }}\right) \rightarrow$ $\mathrm{Sh}_{\text {Frob }}(\operatorname{RigNor} / \bar{B})$. If we compose it with the Yoneda embedding and the functor a_{fh} of fh-sheafification we obtain a functor

$$
\operatorname{RigSm} / B^{\text {Perf }} \rightarrow \mathbf{S h}_{\text {Frob }}\left(\operatorname{RigSm} / B^{\text {Perf }}\right) \rightarrow \mathbf{S h}_{\mathrm{fh}}(\operatorname{RigNor} / B)
$$

2.2.2. Definition. Let B be a normal variety over K.

- We define the category RigCor $/ B$ as the category whose objects are those of RigSm / B and whose morphisms $\operatorname{Hom}(X, Y)$ are computed in $\mathbf{S h}_{\mathrm{fh}}(\operatorname{RigNor} / B)$. The category $\operatorname{Psh}(\operatorname{RigCor} / B)$ will be denoted by $\operatorname{PST}(\operatorname{RigSm} / B)$.
- We define the category RigCor $/ B^{\text {Perf }}$ as the category whose objects are those of $\operatorname{RigSm} / B^{\text {Perf }}$ and whose morphisms $\operatorname{Hom}(X, Y)$ are computed in $\mathbf{S h}_{\mathrm{fh}}(\operatorname{RigNor} / B)$. The category Psh(RigCor $\left./ B^{\text {Perf }}\right)$ will be denoted by PST(RigSm $\left./ B^{\text {Perf }}\right)$.

We remark that, as Λ is a \mathbb{Q}-algebra, our definition of $\operatorname{RigCor} / B$ is equivalent to the one given in [5] Definition 2.2.17]. We also remark that the inclusions of categories RigSm $/ B \rightarrow$ $\operatorname{RigCor} / B$ and RigSm $/ B^{\text {Perf }} \rightarrow \operatorname{RigCor} / B^{\text {Perf }}$ induce the following adjunctions:

$$
\begin{aligned}
a_{\mathrm{tr}}: \operatorname{Ch} \operatorname{Psh}(\operatorname{RigSm} / B) & \rightleftarrows \operatorname{ChPST}(\operatorname{RigSm} / B): o_{\mathrm{tr}} . \\
a_{\mathrm{tr}}: \operatorname{ChPsh}\left(\operatorname{RigSm} / B^{\text {Perf }}\right) & \rightleftarrows \operatorname{ChPST}\left(\operatorname{RigSm} / B^{\text {Perf }}\right): o_{\mathrm{tr}} .
\end{aligned}
$$

We now define the category of motives with transfers.
2.2.3. Proposition. Let B be a normal variety over K and let \mathbf{C} be either the category RigSm / B or the category RigSm / $B^{\text {Perf }}$. The projective model category $\operatorname{ChPST(C)}$ admits a left Bousfield localization $\mathbf{C h}_{\text {et }} \mathbf{P S T}(\mathbf{C})$ with respect to $S_{\text {ét }}$, the class of of maps f such that $o_{\mathrm{tr}}(f)$ is a ét-weak equivalence. It also admits a further Bousfield localization $\mathbf{C h}_{\mathrm{et}_{\mathrm{e}, \mathbb{B}^{1}}} \mathbf{P S T}(\mathbf{C})$ with respect to the set formed by all maps $\Lambda\left(\mathbb{B}_{X}^{1}\right)[i] \rightarrow \Lambda(X)[i]$ by letting X vary in \mathbf{C} and i vary in \mathbb{Z}.

Proof. The proof of [5, Theorem 2.5.7] also applies in our situation. For the second statement, it suffices to apply [22, Theorem 4.1.1].
2.2.4. Remark. By means of an étale version of [5, Corollary 2.5.3], if \mathcal{F} is a presheaf with transfers then the associated étale sheaf $a_{\text {et }} \mathcal{F}$ can be endowed with a unique structure of presheaf with transfers such that $\mathcal{F} \rightarrow a_{\text {ett }} \mathcal{F}$ is a map of presheaves with transfers. The class $S_{\text {ét }}$ can then be defined intrinsecally, as the class of maps $\mathcal{F} \rightarrow \mathcal{F}^{\prime}$ inducing isomorphisms of étale sheaves with transfers $a_{\text {ett }} H_{i} \mathcal{F} \rightarrow a_{\text {et }} H_{i} \mathcal{F}^{\prime}$.
2.2.5. Definition. Let B be a normal variety over K.

- The triangulated homotopy category of the localization $\mathbf{C h}_{\text {et }^{(\mathbb{B}}} \mathbf{P S T}(\operatorname{RigSm} / B)$ will be denoted by $\operatorname{RigDM} \mathbf{M e f t}_{\text {eff }}^{\text {eft }}(B, \Lambda)$.
- The triangulated homotopy category of the localization $\mathbf{C h}_{\text {et, } \mathbb{B}^{1}} \mathbf{P S T}\left(\operatorname{RigSm} / B^{\text {Perf }}\right)$ will be denoted by RigDM ett $_{\text {eff }}^{\text {ef }}\left(B^{\text {Perf }}, \Lambda\right)$.
- We will omit Λ from the notation whenever the context allows it. The image of a variety X in one of these categories will be denoted by $\Lambda_{\operatorname{tr}}(X)$.

We remark that if char $K=0$ the two definitions above coincide. Also, if B is the spectrum of the perfect field K the category $\operatorname{RigDM}_{\text {ét }}^{\text {eff }}\left(B^{\text {Perf }}\right.$) coincides with $\operatorname{RigDM}_{\text {ett }}^{\text {eff }}(K)$. In this case, the definition of $\operatorname{RigDA} A_{\text {Frobét }}^{\text {eff }}\left(B^{\text {Perf }}\right)$ also coincides with the one of $\operatorname{RigDA}_{\text {Frobét }}^{\text {eff }}(K)$ given in Definition 1.6.2, as the following fact shows.
2.2.6. Proposition. Let B be a normal variety over K. There is a Quillen equivalence between the category $\mathrm{Ch}_{\text {Frobét }}\left(\operatorname{RigSm} / B^{\text {Perf }}\right.$) and the left Bousfield localization of $\mathbf{C h}_{\text {ét }} \operatorname{Psh}\left(\operatorname{RigSm} / B^{\text {Perf }}\right)$ over the set of all shifts of maps $\Lambda\left(X^{(-1)},-n-1\right) \rightarrow \Lambda(X,-n)$ as $(X,-n)$ varies in RigSm $/ B^{\text {Perf. }}$.

Proof. From Lemmas 2.1.16, 2.1.18 and 2.2.7 we conclude that Frobét-local objects are those which are Frob-local and ét-local. We can then conclude using Lemma 2.2.8.
2.2.7. Lemma. Let \mathbf{C} be a category endowed with two Grothendieck topologies τ_{1}, τ_{2} and let τ_{3} be the topology generated by τ_{1} and τ_{2}. We denote by $a_{\tau_{i}}$ the associated sheafification functor and with $o_{\tau_{i}}$ their right adjoint functors. If $o_{\tau_{1}}$ is exact and $a_{\tau_{3}}=a_{\tau_{2}} a_{\tau_{1}}$ then the following categories are canonically equivalent:
(1) The homotopy category of $\mathbf{C h}_{\tau_{3}} \mathbf{P s h}(\mathbf{C})$.
(2) The full triangulated subcategory of $\mathbf{D}(\mathbf{P} \operatorname{sh}(\mathbf{C}))$ formed by objects which are τ_{3}-local.
(3) The full triangulated subcategory of $\mathbf{D}(\mathbf{P s h}(\mathbf{C}))$ formed by objects which are τ_{1}-local and τ_{2}-local.

Proof. The equivalence between the first and the second category follows by definition of the Bousfield localization. We are left to prove the equivalence between the second and the third. We remark that τ_{3}-local objects are in particular $\left(\tau_{1}, \tau_{2}\right)$-local.

Since $o_{\tau_{1}}$ is exact, the category of τ_{1}-local objects coincides with the category of complexes quasi-isomorphic to complexes of τ_{1}-sheaves. Consider the model category $\mathbf{C h}_{\tau_{3}}\left(\mathbf{S h}_{\tau_{1}}(\mathbf{C})\right)$ which is the Bousfield localization of $\mathbf{C h}\left(\mathbf{S h}_{\tau_{1}}(\mathbf{C})\right)$ over the class of maps of complexes inducing isomorphisms on the τ_{3}-sheaves associated to the homology presheaves, that we will call τ_{3}-equivalences. From the assumption $a_{\tau_{3}}=a_{\tau_{2}} a_{\tau_{1}}$ the class of τ_{3}-equivalences coincides with the class of maps $S_{\tau_{2}}$ of complexes inducing isomorphisms on the τ_{2}-sheaves associated to the homology τ_{1}-sheaves. Hence $\mathbf{C h}_{\tau_{3}}\left(\mathbf{S h}_{\tau_{1}}(\mathbf{C})\right)$ coincides with $\mathbf{C h}_{\tau_{2}}\left(\mathbf{S h}_{\tau_{1}}(\mathbf{C})\right)$ and its derived category is equivalent to the category of $\left(\tau_{1}, \tau_{2}\right)$-local complexes.

Because of the following Quillen adjunction

$$
\mathbb{L} a_{\tau_{1}}=a_{\tau_{1}}: \operatorname{Ho}\left(\mathbf{C h}_{\tau_{3}} \mathbf{P} \mathbf{s h}(\mathbf{C}) \rightleftarrows \operatorname{Ho}\left(\mathbf{C h}_{\tau_{3}} \mathbf{S h}_{\tau_{1}}(\mathbf{C})\right): \mathbb{R} o_{\tau_{1}}=o_{\tau_{1}}\right.
$$

we conclude that the image via $o_{\tau_{1}}$ of a τ_{2}-local complex of sheaves i.e. a $\left(\tau_{1} . \tau_{2}\right)$-local complex, is τ_{3}-local, as wanted.
2.2.8. LEMMA. Let B be a normal variety over K. A projectively fibrant object of Ch Psh $\left(\operatorname{RigSm} / B^{\text {Perf }}\right)$ is Frob-local if and only if it is local with respect to the set of all shifts of maps $\Lambda\left(X^{(-1)},-n-1\right) \rightarrow \Lambda(X,-n)$ as $(X,-n)$ varies in RigSm $/ B^{\text {Perf }}$.

Proof. We initially remark that a fibrant complex \mathcal{F} is local with respect to the set of maps in the claim if and only if $\left(H_{i} \mathcal{F}\right)(X,-n) \cong\left(H_{i} \mathcal{F}\right)\left(X^{(-1)},-n-1\right)$ for all X and i. By Proposition 2.1.3, this amounts to say that $H_{i} \mathcal{F}$ is a Frob-sheaf for all i.

Suppose now that \mathcal{F} is fibrant and Frob-local. Since the map of presheaves $\Lambda\left(X^{(-1)},-n-\right.$ $1) \rightarrow \Lambda(X,-n)$ induces an isomorphism on the associated Frob-sheaves, we deduce that $\left(H_{i} \mathcal{F}\right)\left(X^{(-1)},-n-1\right) \cong\left(H_{i} \mathcal{F}\right)(X,-n)$. This implies that $H_{i} \mathcal{F}$ is a Frob-sheaf and hence \mathcal{F} is local with respect to the maps of the claim, as wanted.

Suppose now that \mathcal{F} is fibrant and local with respect to the maps of the claim. Let $\mathcal{F} \rightarrow$ $C^{\text {Frob }} \mathcal{F}$ a Frob-weak equivalence to a fibrant Frob-local object. By definition, we deduce that the Frob-sheaves associated to $H_{i} \mathcal{F}$ and to $H_{i} C^{\text {Frob }} \mathcal{F}$ are isomorphic. On the other hand, we know that these presheaves are already Frob-sheaves, and hence the map $\mathcal{F} \rightarrow C^{\mathrm{Frob}} \mathcal{F}$ is a quasi-isomorphism of presheaves and \mathcal{F} is Frob-local.

We now want to find another model for the category $\mathbf{D}_{\text {ét, }, \mathbb{B}^{1}}^{\mathrm{fh}}(\operatorname{RigNor} / B)$. This is possible by means of the model-categorical machinery developed above.

By Remark 2.1.9 an object \mathcal{F} in $\operatorname{Ch} \operatorname{Psh}($ RigNor $/ B)$ is fh-local if and only if it is additive and

$$
\mathbf{D} \operatorname{Psh}(\operatorname{RigNor} / B)(\Lambda(X), \mathcal{F}) \rightarrow \mathbf{D} \operatorname{Psh}(\operatorname{RigNor} / B)\left(\Lambda\left(X^{\prime}\right), \mathcal{F}\right)^{\operatorname{Aut}\left(X^{\prime} / X\right)}
$$

is an isomorphism, for all pseudo-Galois coverings $X^{\prime} \rightarrow X$. Therefore, if we consider $\mathbf{D}_{\text {Frobét }, \mathbb{B}^{1}}($ RigNor $/ B)$ as the subcategory of $\left(\mathbb{B}^{1}\right.$, Frobét $)$-local objects in $\mathbf{D} \operatorname{Psh}($ RigNor $/ B)$ we say that an object \mathcal{F} of $\mathbf{D}_{\text {Frobét }, \mathbb{B}^{1}}$ (RigNor $/ B$) is fh-local if and only if

$$
\mathbf{D}_{\text {Frobét }, \mathbb{B}^{1}}(\operatorname{RigNor} / B)(\Lambda(X), \mathcal{F}) \rightarrow \mathbf{D}_{\text {Frobét }, \mathbb{B}^{1}}(\operatorname{RigNor} / B)\left(\Lambda\left(X^{\prime}\right), \mathcal{F}\right)^{\operatorname{Aut}\left(X^{\prime} / X\right)}
$$

is an isomorphism, for all pseudo-Galois coverings $X^{\prime} \rightarrow X$.
2.2.9. Proposition. Let B be a normal variety over K. The category $\mathbf{D}_{\hat{e ́ t}, \mathbb{B}^{1}}^{\mathrm{fh}}(\operatorname{RigNor} / B)$ is canonically isomorphic to the category of fh-local objects in $\mathbf{D}_{\text {Frobet, }, \mathbb{B}^{1}}(\operatorname{RigNor} / B)$.

PROOF. It suffices to prove the claim before performing the \mathbb{B}^{1}-localization on each category. The statement then follows from Propositions 2.1.16 and 2.1.17 together with Lemmas 2.1.18 and 2.2.7.

We now study some functoriality properties of the categories just defined, and later prove a fundamental fact: the locality axiom (see [37, Theorem 3.2.21]).
2.2.10. Proposition. Let $f: B^{\prime} \rightarrow B$ be a map of normal varieties over K. The first two adjoint pairs of Proposition 2.1.19 induce the following Quillen pairs:

$$
\begin{aligned}
\mathbb{L} f_{\sharp}: \mathbf{D}_{\text {Frobét }, \mathbb{B}^{1}}\left(\text { RigNor } / B^{\prime}\right) & \rightleftarrows \mathbf{D}_{\text {Frobét }, \mathbb{B}^{1}}(\text { RigNor } / B): \mathbb{R} f^{*} \\
\mathbb{L} f^{*}: \operatorname{RigDA}_{\text {Frobét }}^{\text {eff }}\left(B^{\text {Perf }}\right) & \rightleftarrows \operatorname{RigDA}_{\text {Frobét }}^{\text {eff }}\left(B^{\prime \text { Perf }}\right): \mathbb{R} f_{*}
\end{aligned}
$$

which are equivalences whenever f is a Frob-covering. Moreover, if f is a smooth map, the third adjoint pair of Proposition 2.1.19 induces a Quillen pair:

$$
\mathbb{L} f_{\sharp}: \operatorname{RigDA}_{\text {Frobét }}^{\text {eff }}\left(B^{\prime \text { Perf }}\right) \rightleftarrows \operatorname{RigDA}_{\text {Frobét }}^{\text {eff }}\left(B^{\text {Perf }}\right): \mathbb{L} f^{*}
$$

Proof. The statement is a formal consequence of Proposition 2.1.19 and the formulas $f^{*}\left(\mathbb{B}_{X}^{1}\right)=\mathbb{B}_{f^{*}(X)}^{1}$ and $f_{\sharp}\left(\mathbb{B}_{X}^{1}\right)=\mathbb{B}_{X}^{1}$.
2.2.11. Proposition. Let $e: B^{\prime} \rightarrow B$ be a finite map of normal varieties over K. The functor

$$
e_{*}: \operatorname{Ch} \operatorname{Psh}\left(\operatorname{RigSm} / B^{\prime \text { Perf }}\right) \rightarrow \mathbf{C h} \operatorname{Psh}\left(\operatorname{RigSm} / B^{\text {Perf }}\right)
$$

preserves the (Frobét, $\left.\mathbb{B}^{1}\right)$-equivalences.
Proof. Let $e: B^{\prime} \rightarrow B$ be a finite map of normal varieties. The functor e_{*} is induced by the map RigSm $/ B^{\text {Perf }} \rightarrow \operatorname{RigSm} / B^{\prime \text { Perf }}$ sending $(X,-n)$ to $\left(X \times_{B^{(-n)}} B^{\prime(-n)},-n\right)$. From Remark 2.1.14 it commutes with ét-sheafification. As the image of $\left(X^{(-1)},-n-1\right)$ is isomorphic to $\left(\left(X \times_{B^{(-n)}} B^{\prime(-n)}\right)^{(-1)},-n-1\right)$ we deduce from Corollary 2.1.12 that e_{*} commutes with Frobsheafification. Therefore by Proposition 2.1.16 we deduce that $e_{*}: \operatorname{Psh}\left(\operatorname{RigSm} / B^{\prime \operatorname{Perf}}\right) \rightarrow$ $\operatorname{Psh}\left(\operatorname{RigSm} / B^{\text {Perf }}\right)$ commutes with the functor $a_{\text {Frobét }}$ of Frobét-sheafification, hence it preserves Frobét-equivalences.

We now prove that it also preserves \mathbb{B}^{1}-equivalences. By [6] Proposition 4.2.74] it suffices to show that $e_{*}\left(\Lambda\left(\mathbb{B}_{V}^{1}\right) \rightarrow \Lambda(V)\right)$ is a \mathbb{B}^{1}-weak equivalence for any V in RigSm $/ X^{\prime \text { Perf }}$. This follows from the explicit homotopy between the identity and the zero map on $e_{*}\left(\Lambda\left(\mathbb{B}_{V}^{1}\right)\right)$ (see the argument of [5, Theorem 2.5.24]).

The following property is an extension of [5] Theorem 1.4.20] and referred to as the locality axiom.
2.2.12. THEOREM. Let $i: Z \hookrightarrow B$ be a closed immersion of normal varieties over K and let $j: U \hookrightarrow B$ be the open complementary. For every object M in $\mathbf{R i g D A}_{\text {Frobét }}^{\text {eff }}\left(B^{\text {Perf }}\right)$ there is a distinguished triangle

$$
\mathbb{L} j_{\sharp} \mathbb{L} j^{*} M \rightarrow M \rightarrow \mathbb{R} i_{*} \mathbb{L} i^{*} M \rightarrow
$$

In particular, the pair $\left(\mathbb{L} j^{*}, \mathbb{L} i^{*}\right)$ is conservative.
Proof. First of all, we remark that by Proposition 2.2 .11 one has $\mathbb{R} i_{*}=i_{*}$. In particular it suffices to prove the claim before performing the localization over the shifts of maps $\Lambda\left(X^{(-1)},-n-1\right) \rightarrow \Lambda(X,-n)$ i.e. in the category $\operatorname{RigD} A_{\text {ett }}^{\text {eff }}\left(B^{\text {Perf }}\right)$.

The functors $\mathbb{L} j_{\sharp} \mathbb{L} j^{*}$ and $\mathbb{L} i^{*}$ commute with small sums because they admit right adjoint functors. Also $\mathbb{R} i_{*}$ does, since it holds $\mathbb{R} i_{*}=i_{*}$. We conclude that the full subcategory of $\operatorname{RigDA} A_{\text {Frobét }}^{\text {eff }}\left(B^{\text {Perf }}\right)$ of objects M such that

$$
\mathbb{L} j_{\sharp} \mathbb{L} j^{*} M \rightarrow M \rightarrow \mathbb{R} i_{*} \mathbb{L} i^{*} M \rightarrow
$$

is a distinguished triangle is closed under cones, and under small sums. We can then equivalently prove the claim in the subcategory $\mathbf{R i g D A} \hat{e ́ t}_{\text {ct }}^{\text {ct }}\left(B^{\text {Perf }}\right)$ of compact objects, since these motives generate $\operatorname{RigDA} \mathbf{e l t}_{\text {eft }}^{\text {eff }}\left(B^{\text {Perf }}\right)$ as a triangulated category with small sums.

Because of Lemma 2.2.13 and Proposition 2.2.11, we can prove the claim for each category $\operatorname{RigDA}_{\hat{e} t}^{\text {eff }}\left(B^{(-n)}\right)$. Therefore, it suffices to prove the claim for the categories $\operatorname{RigDA}_{\mathrm{Nis}}^{\mathrm{eff}}\left(B^{(-n)}\right)$ as defined in $[\mathbf{5}]$, since the category $\operatorname{RigDA}_{\text {ét }}^{\mathrm{eff}}\left(B^{(-n)}\right)$ is a further localization of $\operatorname{RigDA}_{\mathrm{Nis}}^{\mathrm{eff}}\left(B^{(-n)}\right)$. In this case, the statement is proved in [5] Theorem 1.4.20].
2.2.13. Lemma. Let B be a normal variety over K. The functors $\operatorname{RigSm} / B^{(-n)} \rightarrow$ RigSm $/ B^{\text {Perf }}$ induce a triangulated equivalence of categories

$$
\underset{n}{\lim } \operatorname{RigDA}_{\text {ett }}^{\mathrm{ct}}\left(B^{(-n)}\right) \cong \mathbf{R i g D A}_{\text {ett }}^{\mathrm{ct}}\left(B^{\text {Perf }}\right)
$$

where we denote by $\mathbf{R i g D A} \mathbf{A}_{\text {ett }}^{\mathrm{ct}}\left(B^{(-n)}\right)$ [resp. with $\mathbf{R i g D A} \mathbf{A}_{\text {ett }}^{\mathrm{ct}}\left(B^{\text {Perf }}\right)$] the subcategory of compact objects of $\operatorname{RigDA} \mathcal{e ́ t}_{\text {eff }}^{\text {eff }}\left(B^{(-n)}\right)$ [resp. of $\left.\operatorname{RigDA} \mathrm{e}_{\text {et }}^{\text {eff }}\left(B^{\text {Perf }}\right)\right]$.

Proof. The functor $\lim _{n} \operatorname{RigDA}_{\text {ett }}^{\text {ct }}\left(B^{(-n)}\right) \rightarrow \operatorname{RigDA}_{\text {ett }}^{c t}\left(B^{\text {Perf }}\right)$ is triangulated and sends the objects $\Lambda(X)[i]$ which are compact generators of the first category, to a set of compact generators of the second. Up to shifting indeces, it therefore suffices to show that for X, Y in RigSm / B one has

$$
\underset{n}{\lim } \operatorname{RigDA}_{\text {êt }}^{\text {eff }}\left(B^{(-n)}\right)\left(\Lambda\left(X \times_{B} B^{(-n)}\right), \Lambda\left(Y \times_{B} B^{(-n)}\right)\right) \cong \operatorname{RigDA}_{\text {êt }}^{\text {eff }}\left(B^{\text {Perf }}\right)(\Lambda(\bar{X}), \Lambda(\bar{Y}))
$$

where we denote by $\bar{X}=(X, 0)$ and $\bar{Y}=(Y, 0)$ the object of RigSm $/ B^{\text {Perf }}$ associated to X resp. Y. To this aim, we simply follow the proof of [5, Proposition 1.A.1]. For the convenience of the reader, we reproduce it here.

Step 1: We consider the directed diagram \mathcal{B} formed the maps $B^{(-n-1)} \rightarrow B^{(-n)}$ and we let $\operatorname{RigSm} / \mathcal{B}$ be the the category of rigid smooth varieties over it as defined in [5, Section 1.4.2]. We can endow the category $\operatorname{Ch} \operatorname{Psh}(\operatorname{RigSm} / \mathcal{B})$ with the (ét, $\left.\mathbb{B}^{1}\right)$-local model structure, and consider the Quillen adjunctions induced by the map of diagrams $\alpha_{n}: B^{(-n)} \rightarrow \mathcal{B}$, $f_{n m}: B^{(-n)} \rightarrow B^{(-m)}$:

$$
\begin{array}{r}
\alpha_{n}^{*}: \operatorname{Ch} \operatorname{Psh}(\operatorname{RigSm} / \mathcal{B}) \rightleftarrows \operatorname{Ch} \operatorname{Psh}\left(\operatorname{RigSm} / B^{(-n)}\right): \alpha_{n *} \\
\alpha_{n \sharp}: \operatorname{Ch} \operatorname{Psh}\left(\operatorname{RigSm} / B^{(-n)}\right) \rightleftarrows \mathrm{Ch} \operatorname{Psh}(\operatorname{RigSm} / \mathcal{B}): \alpha_{n}^{*} \\
f_{n m}^{*}: \operatorname{Ch} \operatorname{Psh}\left(\operatorname{RigSm} / B^{(-m)}\right) \rightleftarrows \operatorname{Ch} \operatorname{Psh}\left(\operatorname{RigSm} / B^{(-n)}\right): f_{n m *}
\end{array}
$$

We also remark that the canonical map RigSm $/ B^{(-n)} \rightarrow \operatorname{RigSm} / B^{\text {Perf }}$ induces a Quillen adjunction

$$
f_{\infty n}^{*}: \operatorname{Ch} \operatorname{Psh}\left(\operatorname{RigSm} / B^{(-n)}\right) \rightleftarrows \operatorname{Ch} \operatorname{Psh}\left(\operatorname{RigSm} / B^{\text {Perf }}\right): f_{\infty n *} .
$$

Consider a trivial cofibration $\alpha_{0 *} \Lambda(Y) \rightarrow R$ with target R that is (ét, $\left.\mathbb{B}^{1}\right)$-fibrant. Since α_{n}^{*} is a left and right Quillen functor and $\alpha_{n}^{*} \alpha_{0 *}=f_{n 0}^{*}$ we deduce that the map $\Lambda\left(Y \times_{B} B^{(-n)}\right)=$ $f_{n 0}^{*} \Lambda(Y) \rightarrow \alpha_{n}^{*} R$ is also an (ét, \mathbb{B}^{1})-trivial cofibration with an (ét, \mathbb{B}^{1})-fibrant target.

Step 2: By applying the left Quillen functors $f_{n m}^{*}$ and $f_{\infty m}^{*}$ we also obtain that $f_{n 0}^{*} \Lambda(Y)=$ $f_{n m}^{*} f_{m 0}^{*} \Lambda(Y) \rightarrow f_{n m}^{*} \alpha_{m}^{*} R$ and $f_{\infty 0}^{*} \Lambda(Y)=f_{\infty m}^{*} f_{m 0}^{*} \Lambda(Y) \rightarrow f_{\infty m}^{*} \alpha_{m}^{*} R$ are (ét, \mathbb{B}^{1})-trivial cofibrations. By the 2-out-of-3 property of weak equivalences applied to the composite map

$$
f_{n 0}^{*} \Lambda(Y) \rightarrow f_{n m}^{*} \alpha_{m}^{*} R \rightarrow \alpha_{n}^{*} R
$$

we then deduce that the map $f_{n m}^{*} \alpha_{m}^{*} R \rightarrow \alpha_{n}^{*} R$ is an (ét, \mathbb{B}^{1})-weak equivalence.
Step 3: We now claim that the natural map $\Lambda(\bar{Y}) \rightarrow \hat{R}$ with $\hat{R}:=\operatorname{colim}_{n} f_{\infty n}^{*} \alpha_{i}^{*} R$ is an (ét, \mathbb{B}^{1})-weak equivalence in $\operatorname{Ch} \operatorname{Psh}\left(\operatorname{RigSm} / B^{\text {Perf }}\right)$. By what shown in Step 2, it suffices to prove that the functor

$$
\text { colim: } \operatorname{Ch} \operatorname{Psh}\left(\operatorname{RigSm} / B^{\text {Perf }}\right)^{\mathbb{N}} \rightarrow \mathbf{C h} \operatorname{Psh}\left(\operatorname{RigSm} / B^{\text {Perf }}\right)
$$

preserves (ét, \mathbb{B}^{1})-weak equivalences. First of all, we remark that it is a Quillen left functor with respect to the projective model structure on the diagram category $\operatorname{Ch} \operatorname{Psh}\left(\operatorname{RigSm} / B^{\text {Perf }}\right)^{\mathbb{N}}$ induced by the pointwise (ét, \mathbb{B}^{1})-structure. Hence, it preserves (ét, \mathbb{B}^{1})-weak equivalences between cofibrant objects. On the other hand, as directed colimits commute with homology, it also preserves weak equivalences of presheaves. Since any complex is quasi-isomorphic to a cofibrant one, we deduce the claim.

Step 4: We now prove that \hat{R} is \mathbb{B}^{1}-local. Consider a variety U smooth over $B^{(-n)}$. From the formula

$$
\hat{R}(\bar{U})=\operatorname{colim}_{m \geq n} \alpha_{m}^{*} R\left(U \times_{B^{(-n)}} B^{(-m)}\right)
$$

and the fact that $\alpha_{m}^{*} R$ is \mathbb{B}^{1}-local, we deduce a quasi-isomorphism $\hat{R}(U) \cong \hat{R}\left(\mathbb{B}_{U}^{1}\right)$ as wanted.
Step 5: We now prove that \hat{R} is ét-local. It suffices to show that for any U smooth over $B^{(-n)}$ one has $\mathbb{H}_{\text {ett }}^{k}(\bar{U}, \hat{R}) \cong H_{-k} \hat{R}(\bar{U})$. The topos associated to Et / U is equivalent to the one of $\underset{\mathrm{lim}}{\mathrm{Et}} /\left(U \times_{B^{(-n)}} B^{(-m)}\right)$ and all these sites have a bounded cohomological dimension since Λ is a \mathbb{Q}-algebra. By applying [$\mathbf{1}$, Theorem VI.8.7.3] together with a spectral sequence argument given by [48, Theorem 0.3], we then deduce the formula

$$
\mathbb{H}_{e \mathrm{et}}^{k}(\bar{U}, \hat{R}) \cong \operatorname{colim}_{m} \mathbb{H}_{\mathrm{ett}}^{k}\left(U \times_{B}^{(-n)} B^{(-m)}, \alpha_{m}^{*} R\right)
$$

On the other hand, as $\alpha_{m}^{*} R$ is ét-local, we conclude that

$$
\operatorname{colim}_{m} \mathbb{H}_{\text {êt }}^{k}\left(U \times_{B^{(-n)}} B^{(-m)}, \alpha_{i}^{*} R\right) \cong \operatorname{colim}_{m} H_{-k}\left(\alpha_{m}^{*} R\right)\left(U \times_{B^{(-n)}} B^{(-m)}\right) \cong H_{-k} \hat{R}(\bar{U})
$$

proving the claim.
Step 6: From Steps 3-5, we conclude that we can compute $\operatorname{RigDA}_{\hat{e ́ t}}^{\text {eff }}\left(B^{\text {Perf }}\right)(\Lambda(\bar{X}), \Lambda(\bar{Y}))$ as $\hat{R}(\bar{X})$ which coincides with $\operatorname{colim}_{n}\left(\alpha_{n}^{*} R\right)\left(X \times_{B} B^{(-n)}\right)$. By what is proved in Step 1, we also deduce that $\alpha_{n}^{*} R$ is a (ét, $\left.\mathbb{B}^{1}\right)$-fibrant replacement of $\Lambda\left(Y \times_{B} B^{(-n)}\right)$ and hence the last group coincides with $\operatorname{colim}_{n} \operatorname{RigDA}_{\text {êt }}^{\text {eff }}\left(B^{(-n)}\right)\left(\Lambda\left(X \times_{B} B^{(-n)}\right), \Lambda\left(Y \times_{B} B^{(-n)}\right)\right)$ proving the statement.

2.3. The equivalence between motives with and without transfers

We can finally present the main result of this section. We recall that the ring of coefficients Λ is assumed to be a \mathbb{Q}-algebra.
2.3.1. Theorem. Let B be a normal variety over K. The functor $a_{t r}$ induces an equivalence of triangulated categories:

$$
\mathbb{L} a_{t r}: \operatorname{RigDA}_{\text {Frobét }}^{\text {eff }}\left(B^{\text {Perf }}\right) \cong \operatorname{RigDM} M_{\text {êt }}^{\text {eff }}\left(B^{\text {Perf }}\right)
$$

As a corollary, we obtain the two following results, which are indeed our main motivation.
2.3.2. THEOREM. The functor $a_{t r}$ induces an equivalence of triangulated categories:

$$
\mathbb{L} a_{t r}: \operatorname{RigDA}_{\text {Frobét }}^{\text {eff }}(K) \cong \operatorname{RigDM}_{\text {êt }}^{\mathrm{eff}}(K)
$$

2.3.3. Theorem. Let B be a normal variety over a field K of characteristic 0 . The functor $a_{t r}$ induces an equivalence of triangulated categories:

$$
\mathbb{L} a_{t r}: \operatorname{RigDA}_{\hat{e} t}^{\mathrm{eff}}(B) \cong \operatorname{Rig} \mathbf{D M} M_{e ̂ t}^{\mathrm{eff}}(B)
$$

2.3.4. REMARK. The statement of Theorem 2.3.1 in case B is a normal affinoid rigid analytic variety immediately implies the statement for the case of an arbitrary normal rigid analytic variety B. Therefore, we can suppose that B is affinoid, being consistent with our notations on the term "variety".

The proof of Theorem 2.3.1 is divided into the following steps.
(1) We first produce a triangulated functor $\mathbb{L} a_{\text {tr }}: \operatorname{RigDA}_{\text {Frobét }}^{\text {eff }}\left(B^{\text {Perf }}\right) \rightarrow \operatorname{RigDM}_{\text {ét }}^{\text {eff }}\left(B^{\text {Perf }}\right)$ commuting with sums, sending a set of compact generators of the first category into a set of compact generators of the second.
(2) We define a fully faithful functor $\mathbb{L} i^{*}: \mathbf{R i g D A}_{\text {Frobét }}^{\text {eff }}\left(B^{\text {Perf }}\right) \rightarrow \mathbf{D}_{\text {Frobét, } \mathbb{B}^{1}}^{\mathrm{ffh}}(\operatorname{RigNor} / B)$.
(3) We define a fully faithful functor $\mathbb{L} j^{*}: \mathbf{R i g D} \mathbf{D}_{\text {ét }}^{\text {eff }}\left(B^{\text {Perf }}\right) \rightarrow \mathbf{D}_{\text {Frobét, } \mathbb{B}^{1}}^{\mathrm{fh}}($ RigNor $/ B)$.
(4) We check that $\mathbb{L} j^{*} \circ \mathbb{L} a_{\mathrm{tr}}$ is isomorphic to $\mathbb{L} i^{*}$ proving that $\mathbb{L} a_{\mathrm{tr}}$ is also fully faithful.

We now prove the first step.
2.3.5. Proposition. Let B be a normal variety over K. The functor $a_{\text {tr }}$ induces a triangulated functor

$$
\mathbb{L} a_{\mathrm{tr}}: \operatorname{RigDA}_{\text {Frobét }}^{\text {eff }}\left(B^{\text {Perf }}\right) \rightarrow \operatorname{RigDM}_{\text {êt }}^{\text {eff }}\left(B^{\text {Perf }}\right)
$$

commuting with sums, sending a set of compact generators of the first category into a set of compact generators of the second.

Proof. The functor $a_{\text {tr }}$ induces a Quillen functor

$$
\mathbb{L} a_{\mathrm{tr}}: \mathbf{C h}_{\text {ét }} \mathbf{P s h}\left(\operatorname{RigSm} / B^{\text {Perf }}\right) \rightarrow \mathbf{C h}_{\text {ét }} \mathbf{P S T}\left(\operatorname{RigSm} / B^{\text {Perf }}\right)
$$

sending $\Lambda(X,-n)$ to $\Lambda_{\operatorname{tr}}(X)$. We are left to prove that it factors over the Frob-localization, i.e. that the map $\Lambda_{\mathrm{tr}}\left(X^{(-1)}\right) \rightarrow \Lambda_{\mathrm{tr}}(X)$ is an isomorphism in $\mathbf{R i g D M} \mathbf{M}_{\text {êt }}^{\text {eff }}\left(B^{\text {Perf }}\right)$ for all $X \in$ $\operatorname{RigSm} / B^{(-n)}$. Actually, since the map $X^{(-1)} \rightarrow X$ induces an isomorphism of fh-sheaves, we deduce that it is an isomorphism in the category RigCor $/ B^{\text {Perf }}$ hence also in $\mathbf{R i g D M} \mathbf{e x f}_{\text {êt }}^{\text {eff }}\left(B^{\text {Perf }}\right)$.

We are now ready to prove the second step.
2.3.6. Proposition. Let B be a normal variety over K. The functors RigSm $/ B^{(-n)} \rightarrow$ RigNor / B induce a fully faithful functor

$$
\mathbb{L} i_{B}^{*}: \operatorname{RigDA}_{\text {Frobét }}^{\text {eff }}\left(B^{\text {Perf }}\right) \rightarrow \mathbf{D}_{\text {Frobét }, \mathbb{B}^{1}}(\text { RigNor } / B)
$$

Proof. We let \mathbf{C}_{B} be the category introduced in Definition 2.1.10. As already remarked in the proof of Proposition 2.1.19 we can endow it with the Frobét-topology and the topos associated to it is equivalent to the Frobét-topos on RigSm $/ B^{\text {Perf }}$. In particular, the continuous functor $i_{B}: \mathbf{C}_{B} \rightarrow$ RigNor $/ B$ induces an adjunction

$$
\mathbb{L} i_{B}^{*}: \operatorname{RigDA}_{\text {Frobét }}^{\mathrm{eff}}\left(B^{\text {Perf }}\right) \rightleftarrows \mathbf{D}_{\text {Frobét }, \mathbb{B}^{1}}(\text { RigNor } / B): \mathbb{R} i_{B *} .
$$

As $i_{B *} i_{B}^{*}$ is isomorphic to the identity, it suffices to show that $\mathbb{R} i_{B *}=i_{B *}$ so that $\mathbb{R} i_{B *} \mathbb{L} i_{B}^{*}$ is isomorphic to the identity as well.

The functor $i_{B *}$ commutes with Frobét-sheafification, and hence it preserves Frobét-weak equivalences, and since $i_{B *}\left(\Lambda\left(\mathbb{B}_{V}^{1}\right)\right) \cong \Lambda\left(\mathbb{B}_{B}^{1}\right) \otimes i_{B *}(\Lambda(V))$ is weakly equivalent to $i_{B *}(\Lambda(V))$ for every V in RigNor / B we also conclude that it preserves \mathbb{B}^{1}-weak equivalences, as wanted.
2.3.7. Remark. As a corollary of the proof of Proposition 2.3.6 we obtain that the functor $i_{B *}$ preserves (Frobét, \mathbb{B}^{1})-equivalences.

We remark that the previous result does not yet prove our claim. This is reached by the following crucial fact.
2.3.8. Proposition. Let B be a normal variety over K. The image of $\mathbb{L} i_{B}^{*}$ is contained in the subcategory of fh-local objects.

Proof. Let M be an object of $\operatorname{RigDA}_{\text {Frobét }}^{\text {eff }}\left(B^{\text {Perf }}\right)$ let $f: X \rightarrow B$ be a normal irreducible variety over B and let $r: X^{\prime} \rightarrow X$ be a pseudo-Galois covering in RigNor $/ B$ with $G=$ $\operatorname{Aut}\left(X^{\prime} / X\right)$. We are left to prove that

$$
\mathbf{D}_{\text {Frobét }, \mathbb{B}^{1}}(\text { RigNor } / B)\left(\Lambda(X), \mathbb{L} i^{*} M\right) \rightarrow \mathbf{D}_{\text {Frobét }, \mathbb{B}^{1}}(\text { RigNor } / B)\left(\Lambda\left(X^{\prime}\right), \mathbb{L} i^{*} M\right)^{G}
$$

is an isomorphism. Using Lemma 2.3.9 we can equally prove that

$$
\operatorname{RigDA}_{\text {Frobét }}^{\text {eff }}\left(X^{\text {Perf }}\right)\left(\Lambda, \mathbb{L} f^{*} M\right) \rightarrow \operatorname{RigDA}_{\text {Frobét }}^{\text {eff }}\left(X^{\prime \text { Perf }}\right)\left(\Lambda, \mathbb{L} r^{*} \mathbb{L} f^{*} M\right)^{G}
$$

is an isomorphism. Using the notation of Lemma 2.3.12, it suffices to prove that the natural transformation id $\rightarrow\left(\mathbb{R} r_{*} \mathbb{L} r^{*}\right)^{G}$ is invertible.

Using Lemma 2.3.13, we can define a stratification $\left(X_{i}\right)_{0 \leq i \leq n}$ of X made of locally closed connected normal subvarieties of X such that $r_{i}: X_{i}^{\prime} \rightarrow X_{i}$ is a composition of an étale cover and a Frob-cover of normal varieties, by letting X_{i}^{\prime} be the reduction of the subvariety $X_{i} \times{ }_{X} X^{\prime} \subset$ X^{\prime}. Using the locality axiom (Theorem 2.2.12 for $\operatorname{RigDA}_{\text {Frobét }}^{\text {eff }}$ applied to the inclusions $u_{i}: X_{i} \rightarrow X$ we can then restrict to proving that each transformation $\mathbb{L} u_{i}^{*} \rightarrow \mathbb{L} u_{i}^{*}\left(\mathbb{R} r_{*} \mathbb{L} r^{*}\right)^{G} \cong$ $\left(\mathbb{R} r_{i *} \mathbb{L} r_{i}^{*}\right)^{G} \mathbb{L} u_{i}^{*}$ is invertible, where the last isomorphism follows from Lemma 2.3.12. It suffices then to prove that id $\rightarrow\left(\mathbb{R} r_{i *} \mathbb{L} r_{i}^{*}\right)^{G}$ is invertible. If $s: Z \rightarrow T$ is a Frob-cover, the functors $\left(\mathbb{L} s^{*}, \mathbb{R} s_{*}\right)$ define an equivalence of categories $\operatorname{RigDA} A_{\text {Frobét }}^{\text {eff }}\left(T^{\text {Perf }}\right) \cong \operatorname{RigDA}_{\text {Frobét }}^{\text {eff }}\left(Z^{\text {Perf }}\right)$ by Proposition 2.2 .10 hence we can assume that the maps r_{i} are étale covers. Moreover, since $\mathbb{L} r_{i}^{*}: \operatorname{RigDA}_{\text {Frobét }}^{\text {eff }}\left(X_{i}^{\text {Perf }}\right) \rightarrow \mathbf{R i g D A}_{\text {Frobét }}^{\text {eff }}\left(X_{i}^{\prime \text { Perf }}\right)$ is conservative by Lemma 2.3.11, we can equivalently prove that $\mathbb{L} r_{i}^{*} \rightarrow \mathbb{L} r_{i}^{*}\left(\mathbb{R} r_{i *} \mathbb{L} r_{i}^{*}\right)^{G} \cong\left(\mathbb{R} r_{i *}^{\prime} \mathbb{L} r_{i}^{\prime *}\right)^{G} \mathbb{L} r_{i}^{*}$ is invertible, where r_{i}^{\prime} is the base change of r_{i} over itself (see Lemma 2.3.12). By the assumptions on r_{i} we conclude that r_{i}^{\prime} is a projection $\bigsqcup X_{i}^{\prime} \rightarrow X_{i}^{\prime}$ with G acting transitively on the fibers, so that the functor $\left(\mathbb{R} r_{i *}^{\prime} \mathbb{L} r_{i}^{\prime *}\right)^{G}$ is the identity, proving the claim.

The following lemmas were used in the proof of the previous proposition.
2.3.9. Lemma. Let $f: B^{\prime} \rightarrow B$ be a map of normal rigid varieties over K. For any $M \in \mathbf{R i g D A}_{\text {Frobét }}(B)$ there is a canonical isomorphism

$$
\mathbf{D}_{\text {Frobét, }, \mathbb{B}^{1}}(\operatorname{RigNor} / B)\left(\Lambda\left(B^{\prime}\right), \mathbb{L} i_{B}^{*} M\right) \cong \operatorname{RigDA}_{\text {Frobét }}\left(B^{\prime}\right)\left(\Lambda, \mathbb{L} f^{*} M\right)
$$

Proof. Consider the following diagram of functors:

Let \mathcal{F} be in $\operatorname{Psh}\left(\mathbf{C}_{B}\left[\Phi^{-1}\right]\right)$ and X^{\prime} be in RigNor $/ B^{\prime}$. One has $\left(i_{B^{\prime}}^{*} f^{*}\right)(\mathcal{F})\left(X^{\prime}\right)=\operatorname{colim} \mathcal{F}(V)$ where the colimit is taken over the maps $X^{\prime} \rightarrow V \times_{B^{(-n)}} B^{\prime(-n)}$ in RigNor $/ B^{\prime}\left[\Phi^{-1}\right]$ by letting V vary among varieties which are smooth over some $B^{(-n)}$. On the other hand, one has $\left(f^{*} i_{B}^{*}\right)(\mathcal{F})\left(X^{\prime}\right)=\operatorname{colim} \mathcal{F}(V)$ where the colimit is taken over the maps $X^{\prime} \rightarrow V$ in RigNor $/ B\left[\Phi^{-1}\right]$ by letting V vary among varieties which are smooth over some $B^{(-n)}$. Since $V \times_{B^{(-n)}} B^{\prime(-n)} \cong\left(V \times_{B} B^{\prime}\right)^{\text {red }}$ in RigSm $/ B^{\prime}\left[\Phi^{-1}\right]$ we deduce that the indexing categories are equivalent, hence the diagram above is commutative and therefore by Corollary 2.1.12 and what shown in the proof of Proposition 2.1.19 also the following one is:

This fact together with Lemma 2.3.10 implies $f^{*} \mathbb{L} i_{B}^{*} \cong \mathbb{L} i_{B^{\prime}}^{*} \mathbb{L} f^{*}$. By Propositions 2.2.10 and 2.3.6 we then deduce

$$
\begin{aligned}
& \mathbf{D}_{\text {Frobét, }, \mathbb{B}^{1}}(\operatorname{RigNor} / B)\left(\Lambda\left(B^{\prime}\right), \mathbb{L} i_{B}^{*} M\right)=\mathbf{D}_{\text {Frobét }, \mathbb{B}^{1}}(\operatorname{RigNor} / B)\left(\mathbb{L} f_{\sharp}(\Lambda), \mathbb{L} i_{B}^{*} M\right) \cong \\
& \cong \mathbf{D}_{\text {Frobét }, \mathbb{B}^{1}}\left(\operatorname{RigNor} / B^{\prime}\right)\left(\Lambda, f^{*} \mathbb{L} i_{B}^{*} M\right) \cong \mathbf{D}_{\text {Frobét }, \mathbb{B}^{1}}\left(\operatorname{RigNor} / B^{\prime}\right)\left(\Lambda, \mathbb{L} i_{B^{\prime}}^{*} \mathbb{L} f^{*} M\right) \cong \\
& \cong \mathbf{D}_{\text {Frobét, } \mathbb{B}^{1}}\left(\operatorname{RigNor} / B^{\prime}\right)\left(\mathbb{L} i_{B^{\prime}}^{*} \Lambda, \mathbb{L} i_{B^{\prime}}^{*} \mathbb{L} f^{*} M\right) \cong \operatorname{RigDA}_{\text {Frobét }}\left(B^{\prime}\right)\left(\Lambda, \mathbb{L} f^{*} M\right)
\end{aligned}
$$

as claimed.
2.3.10. Lemma. Let $f: B^{\prime} \rightarrow B$ be a map of normal varieties over K. The functor

$$
f^{*}: \operatorname{Ch} \operatorname{Psh}(\operatorname{RigNor} / B) \rightarrow \mathbf{C h} \operatorname{Psh}\left(\operatorname{RigNor} / B^{\prime}\right)
$$

preserves the (Frobét, $\left.\mathbb{B}^{1}\right)$-equivalences.
Proof. Since f^{*} commutes with Frobét-sheafification and with colimits, it preserves Frobét-equivalences. Since $f^{*}\left(\Lambda\left(\mathbb{B}_{V}^{1}\right)\right) \cong \mathbb{B}_{B}^{1} \otimes f^{*}(\Lambda(V))$ is weakly equivalent to $f^{*}(\Lambda(V))$ for every V in $\operatorname{RigNor} / B$ we also conclude that f^{*} preserves \mathbb{B}^{1}-weak equivalences, hence the claim.
2.3.11. Lemma. Let B be a normal variety over K and let $f: X \rightarrow Y$ be a composition of Frob-coverings and ét-coverings in RigNor $/ B$. The functor $\mathbb{L} f^{*}: \operatorname{RigDA}_{\text {Frobét }}^{\text {eff }}\left(Y^{\text {Perf }}\right) \rightarrow$ $\operatorname{RigDA} \mathrm{F}_{\text {Frobét }}^{\text {eff }}\left(X^{\text {Perf }}\right)$ is conservative.

Proof. If f is a Frob-cover, then $\mathbb{L} f^{*}$ is an equivalence by Proposition 2.2.10. We are left to prove the claim in case f is an ét-covering. In this case, we can use the proof of the analogous statement in algebraic geometry [7, Lemma 3.4].
2.3.12. Lemma. Let e $: X^{\prime} \rightarrow X$ be a finite morphism of normal varieties over K and let G be a finite group acting on $\mathbb{R} e_{*} \mathbb{L} e^{*}$. There exists a subfunctor $\left(\mathbb{R} e_{*} \mathbb{L} e^{*}\right)^{G}$ of $\mathbb{R} e_{*} \mathbb{L} e^{*}$ such that for all M, N in $\mathbf{R i g D A}_{\text {Frobét }}^{\text {eff }}\left(X^{\text {Perf }}\right)$ one has

$$
\operatorname{RigDA}_{\text {Frobét }}^{\mathrm{eff}}\left(X^{\text {Perf }}\right)\left(M,\left(\mathbb{R} e_{*} \mathbb{L} e^{*}\right)^{G} N\right) \cong \operatorname{RigDA}_{\text {Frobét }}^{\mathrm{eff}}\left(X^{\text {Perf }}\right)\left(M, \mathbb{R} e_{*} \mathbb{L} e^{*} N\right)^{G}
$$

Moreover for any map $f: Y \rightarrow X$ of normal rigid varieties factoring into a closed embedding followed by a smooth map, and any diagram of normal varieties

there is an induced action of G on $\mathbb{R} e_{*}^{\prime} \mathbb{L} e^{\prime *}$ and an invertible transformation $\mathbb{L} f^{*}\left(\mathbb{R} e_{*} \mathbb{L} e^{*}\right)^{G} \xrightarrow{\sim}$ $\left(\mathbb{R} e_{*}^{\prime} \mathbb{L} e^{\prime *}\right)^{G} \mathbb{L} f^{*}$.

Proof. We define $\left(\mathbb{R} e_{*} \mathbb{L} e^{*}\right)^{G}$ to be subfunctor obtained as the image of the projector $\frac{1}{|G|} \sum g$ acting on $\mathbb{R} e_{*} \mathbb{L} e^{*}$.

In order to prove the second claim, it suffices to prove that $\mathbb{L} f^{*} \mathbb{R} e_{*} \mathbb{L} e^{*} \cong \mathbb{R} e_{*}^{\prime} \mathbb{L} e^{\prime *} \mathbb{L} f^{*}$. As the latter term coincides with $\mathbb{R} e_{*}^{\prime} \mathbb{L}\left(f e^{\prime}\right)^{*}=\mathbb{R} e_{*}^{\prime} \mathbb{L}\left(e f^{\prime}\right)^{*}=\mathbb{R} e_{*}^{\prime} \mathbb{L} f^{\prime *} \mathbb{L} e^{*}$ it suffices to show that the base change transformation $\mathbb{L} f^{*} \mathbb{R} e_{*} \rightarrow \mathbb{R} e_{*}^{\prime} \mathbb{L} f^{\prime *}$ is invertible. We can consider individually the case in which f is smooth, and the case in which f is a closed embedding.

Step 1: Suppose that f is smooth. Then f^{*} has a left adjoint f_{\sharp}. We can equally prove that the natural tranformation $\mathbb{L} f_{\sharp}^{\prime} \mathbb{L} e^{\prime *} \rightarrow \mathbb{L} e^{*} \mathbb{L} f_{\sharp}$ is invertible. This follows from the isomorphism between the functors $f_{\sharp}^{\prime} e^{\prime *}$ and $e^{*} f_{\sharp}$ from $\operatorname{Psh}\left(\operatorname{RigSm} / X^{\prime \text { Perf }}\right)$ to $\operatorname{Psh}\left(\operatorname{RigSm} / Y^{\text {Perf }}\right)$ obtained by direct inspection.

Step 2: Suppose that f is a closed immersion. Let $j: U \rightarrow X$ be the open immersion complementary to f and j^{\prime} be the open immersion complementary to f^{\prime}. By the locality axiom (Theorem 2.2 .12 we can equally prove that $\mathbb{L} j_{\sharp} \mathbb{R} e_{*}^{\prime} \rightarrow \mathbb{R} e_{*} \mathbb{L} j_{\sharp}^{\prime}$ is invertible.

Step 3: It is easy to prove that the transformation $\mathbb{L} j_{\sharp} \mathbb{R} e_{*}^{\prime} \rightarrow \mathbb{R} e_{*} \mathbb{L} j_{\sharp}^{\prime}$ is invertible once we know that $e_{*}, e_{*}^{\prime}, j_{\sharp}$ and j_{\sharp}^{\prime} preserve the (Frobét, \mathbb{B}^{1})-equivalences. Indeed, if this is the case, the functors derive trivially and it suffices to prove that for any Frobét-sheaf \mathcal{F} the map $\left(j_{\sharp} e_{*}^{\prime}\right)(\mathcal{F}) \rightarrow\left(e_{*} j_{\sharp}^{\prime}\right)(\mathcal{F})$ is invertible. This follows from the very definitions.

Step 4: The fact that j_{\sharp} (and similarly j_{\sharp}^{\prime}) preserves the (Frobét)-weak equivalences follows from the fact that it respects quasi-isomorphisms of complexes of Frobét-sheaves, since it is the functor of extension by 0 . In order to prove that it preserves the \mathbb{B}^{1}-equivalences, by [6] Proposition 4.2.74] we can prove that $j_{\sharp}\left(\Lambda\left(\mathbb{B}_{V}^{1}\right) \rightarrow \Lambda(V)\right)$ is a \mathbb{B}^{1}-weak equivalence for all V in $\operatorname{RigSm} / U^{\text {Perf }}$ and this is clear. The fact that e_{*} (and similarly e_{*}^{\prime}) preserves the (Frobét, \mathbb{B}^{1})equivalences is proved in Proposition 2.2.11. We then conclude the claim in case f is a closed immersion.
2.3.13. Lemma. Let $f: X^{\prime} \rightarrow X$ be a pseudo-Galois map of normal varieties over K. There exists a finite stratification $\left(X_{i}\right)_{1 \leq i \leq n}$ of locally closed normal subvarieties of X such that each induced map $f_{i}:\left(X^{\prime} \times_{X} X_{i}\right)_{\mathrm{red}} \rightarrow X_{i}$ is a composition of an étale cover and a Frob-cover of normal rigid varieties.

Proof. For every affinoid rigid variety $\operatorname{Spa}\left(R, R^{\circ}\right)$ there is a map of ringed spaces $\operatorname{Spa}\left(R, R^{\circ}\right) \rightarrow \operatorname{Spec} R$ which is surjective on points, and such that the pullback of a finite étale map Spec $S \rightarrow \operatorname{Spec} R$ [resp. of an open inclusion $U \rightarrow \operatorname{Spec} R$] over $\operatorname{Spa}\left(R, R^{\circ}\right) \rightarrow \operatorname{Spec} R$ exists (following the notation of [26, Lemma 3.8]) and is finite étale [resp. an open inclusion]. The claim then follows from the analogous statement valid for schemes over K.
2.3.14. REmARK. In the proof of Proposition 2.3.8, we made use of the fact that Λ is a \mathbb{Q}-algebra in a crucial way, for instance, in order to define the functor $\left(\mathbb{R} e_{*} \mathbb{L} e^{*}\right)^{G}$.

The following result proves the second step.
2.3.15. Corollary. Let B be a normal variety over K. The composite functor

$$
\operatorname{RigDA}_{\text {Frobét }}^{\text {eff }}\left(B^{\text {Perf }}\right) \rightarrow \mathbf{D}_{\text {Frobét }, \mathbb{B}^{1}}(\text { RigNor } / B) \rightarrow \mathbf{D}_{\text {ét }, \mathbb{B}^{1}}^{\mathrm{fh}}(\text { RigNor } / B)
$$

is fully faithful.
Proof. This follows at once from Proposition 2.2.9 and Proposition 2.3.8.
We now move to the third step. We recall that the category $\operatorname{Rig} \operatorname{Cor}\left(B^{\text {Perf }}\right)$ is a subcategory of $\mathbf{S h}_{\mathrm{fh}}(\operatorname{RigNor} / B)$. We denote by j this inclusion of categories.
2.3.16. Proposition. Let B be a normal variety over K. The functor j induces a fully faithful functor $\mathbb{L} j^{*}: \operatorname{RigDM}{ }^{\mathrm{eff}}\left(B^{\text {Perf }}\right) \rightarrow \mathbf{D}_{\hat{e t}, \mathbb{B}^{1}}^{\mathrm{fh}}(\operatorname{RigNor} / B)$.

Proof. The functor j extends to a functor $\operatorname{PST}\left(\operatorname{RigSm} / B^{\text {Perf }}\right) \rightarrow \mathbf{S h}_{\mathrm{fh}}(\operatorname{RigNor} / B)$ and induces a Quillen pair $j^{*}: \operatorname{Ch} \operatorname{PST}\left(\operatorname{RigSm} / B^{\text {Perf }}\right) \rightleftarrows \mathbf{C h ~}_{\mathbf{S h}}(\operatorname{RigNor} / B): j_{*}$ with respect to the projective model structures. We prove that it is a Quillen adjunction also with respect to the (ét, \mathbb{B}^{1})-model structure on the two categories by showing that j_{*} preserves (ét, \mathbb{B}^{1})-local objects. From the following commutative diagram

we deduce that $o_{\mathrm{tr}} j_{*}=i_{*} o_{\mathrm{fh}}$ which is a right Quillen functor. It therefore suffices to show that if $o_{\text {tr }} \mathcal{F}$ is (ét, \mathbb{B}^{1})-local then also \mathcal{F} is, for every fibrant object \mathcal{F}. Let $\mathcal{F} \rightarrow \mathcal{F}^{\prime}$ be a (ét, \mathbb{B}^{1})-weak equivalence to a (ét, \mathbb{B}^{1})-fibrant object of $\operatorname{ChPST}\left(\operatorname{RigSm} / B^{\text {Perf }}\right)$. By Lemma 2.3.17, we deduce that $o_{\mathrm{tr}} \mathcal{F} \rightarrow o_{\mathrm{tr}} \mathcal{F}^{\prime}$ is a (ét, \mathbb{B}^{1})-weak equivalence between (ét, \mathbb{B}^{1})-fibrant objects, hence it is a quasi-isomorphism. As $o_{\text {tr }}$ reflects quasi-isomorphisms, we conclude that \mathcal{F} is quasi-isomorphic to \mathcal{F}^{\prime} hence (ét, \mathbb{B}^{1})-local.

We now prove that $\mathbb{L} j^{*}$ is fully faithful by proving that $\mathbb{R} j_{*} \mathbb{L} j^{*}$ is isomorphic to the identity. As $j_{*} j^{*}$ is isomorphic to the identity, it suffices to show that $\mathbb{R} j_{*}=j_{*}$. We start by proving that j_{*} preserves Frobét-weak equivalences. As shown in Remark 2.3.7, the functor i_{*} preserves Frobét-equivalences. It is also clear that o_{fh} does. Since o_{tr} reflects Frobét-weak equivalences, the claim follows from the equality $o_{\mathrm{tr}} j_{*}=i_{*} o_{\mathrm{fh}}$. Since $j_{*}\left(\Lambda\left(\mathbb{B}_{V}^{1}\right)\right) \cong \Lambda\left(\mathbb{B}_{B}^{1}\right) \otimes j_{*}(\Lambda(V))$ is weakly equivalent to $j_{*}(\Lambda(V))$ for every V in RigNor $/ B$, we also conclude that j_{*} preserves \mathbb{B}^{1}-weak equivalences, hence the claim.
2.3.17. Lemma. Let B be a normal variety over K. The functor

$$
o_{\text {tr }}: \operatorname{Ch} \operatorname{PST}\left(\operatorname{RigSm} / B^{\text {Perf }}\right) \rightarrow \operatorname{Ch} \operatorname{Psh}\left(\operatorname{RigSm} / B^{\text {Perf }}\right)
$$

preserves $\left(\right.$ ét, $\left.\mathbb{B}^{1}\right)$-weak equivalences.

Proof. The argument of [3, Lemma 2.111] easily generalizes to our context.
The fourth step is just an easy check, as the next proposition shows.
2.3.18. Proposition. Let B be a normal variety over K. The composite functor $\mathbb{L} j^{*} \circ \mathbb{L} a_{\mathrm{tr}}$ is isomorphic to $\mathbb{L} i^{*}$. In particular $\mathbb{L} a_{\mathrm{tr}}$ is fully faithful.

Proof. It suffices to check that the following square is quasi-commutative.

This can be done by inspecting the two composite right adjoints, which are canonically isomorphic.

This also ends the proof of Theorem 2.3.1.
We remark that in case K is endowed with the trivial norm, we obtain a result on the category of motives constructed from schemes over K. It is the natural generalization of [3, Theorem B.1] in positive characteristic. We recall that the ring of coefficients Λ is assumed to be a \mathbb{Q}-algebra.
2.3.19. Theorem. Let B be a normal algebraic variety over a perfect field K. The functor $a_{t r}$ induces an equivalence of triangulated categories:

$$
\mathbb{L} a_{t r}: \mathbf{D A}_{\text {Frobét }}^{\text {eff }}\left(B^{\text {Perf }}\right) \cong \mathbf{D M}_{\text {ét }}^{\text {eff }}\left(B^{\text {Perf }}\right)
$$

We now define the stable version of the categories of motives introduced so far, and remark that Theorem 2.3.3 extends formally to the stable case providing a generalization of the result [13, Theorem 15.2.16].
2.3.20. Definition. We denote by $\operatorname{RigDA}_{\text {Frobét }}\left(B^{\text {Perf }}\right)$ [resp. by $\left.\operatorname{RigDM}_{\text {ét }}\left(B^{\text {Perf }}\right)\right]$ the homotopy category associated to the model category of symmetric spectra (see [6. Section 4.3.2]) $\mathrm{Sp}_{T}^{\Sigma} \mathbf{C h}_{\text {Frobét }, \mathbb{B}^{1}} \operatorname{Psh}\left(\operatorname{RigSm} / B^{\text {Perf }}\right)\left[\right.$ resp. $\left.\mathrm{Sp}_{T}^{\Sigma} \mathbf{C h}_{\text {ét }, \mathbb{B}^{1}} \mathbf{P S T}\left(\operatorname{RigSm} / B^{\text {Perf }}\right)\right]$ where T is the cokernel of the unit map $\Lambda(B) \rightarrow \Lambda\left(\mathbb{T}_{B}^{1}\right)\left[\operatorname{resp} \Lambda_{\operatorname{tr}}(B) \rightarrow \Lambda_{\operatorname{tr}}\left(\mathbb{T}_{B}^{1}\right)\right]$.
2.3.21. Corollary. Let B be a normal variety over K. The functor $a_{\text {tr }}$ induces an equivalence of triangulated categories:

$$
\mathbb{L} a_{t r}: \operatorname{RigDA}_{\text {Frobét }}\left(B^{\text {Perf }}\right) \cong \operatorname{RigDM}_{\text {êt }}\left(B^{\text {Perf }}\right)
$$

Proof. Theorem 2.3.3 states that the adjunction

$$
a_{t r}: \mathbf{C h}_{\text {Frobét }, \mathbb{B}^{1}} \operatorname{Psh}\left(\operatorname{RigSm} / B^{\text {Perf }}\right) \rightleftarrows \mathbf{C h}_{\text {Frobét, }, \mathbb{B}^{1}} \mathbf{P S T}\left(\operatorname{RigSm} / B^{\text {Perf }}\right): o_{\text {tr }}
$$

is a Quillen equivalence. It therefore induces a Quillen equivalence on the categories of symmetric spectra

$$
a_{t r}: \mathrm{Sp}_{T}^{\Sigma} \mathbf{C h}_{\text {Frobét }, \mathbb{B}^{1}} \mathbf{P s h}\left(\operatorname{RigSm} / B^{\text {Perf }}\right) \rightleftarrows \mathrm{Sp}_{T}^{\Sigma} \mathbf{C h}_{\text {Frobét }, \mathbb{B}^{1}} \mathbf{P S T}\left(\operatorname{RigSm} / B^{\text {Perf }}\right): o_{\mathrm{tr}}
$$

by means of [$\mathbf{6}$, Proposition 4.3.35].
We now assume that Λ equals \mathbb{Z} if char $K=0$ and equals $\mathbb{Z}[1 / p]$ if char $K=p$. In analogy with the statement $\mathbf{D A}_{\text {ett }}(B, \Lambda) \cong \mathbf{D M}_{\text {ét }}(B, \Lambda)$ proved for motives associated to schemes (see [7, Appendix B]) it is expected that the following result also holds.
2.3.22. Conjecture. Let B be a normal variety over K. The functors $\left(a_{t r}, o_{t r}\right)$ induce an equivalence of triangulated categories:

$$
\mathbb{L} a_{t r}: \operatorname{RigDA}_{\text {ét }}(B, \Lambda) \cong \operatorname{RigDM}_{\text {ét }}(B, \Lambda)
$$

We remark that in the above statement differs from Corollary 2.3.21 for two main reasons: the ring of coefficients is no longer assumed to be a \mathbb{Q}-algebra, and the class of maps with respect to which we localize are the ét-local maps and no longer the Frobét-local maps.

In order to reach this twofold generalization, using the techniques developed in [7], it would suffice to show the two following formal properties of the 2 -functor $\mathrm{RigDA}_{\text {ét }}$:

- Separateness: for any Frob-cover $B^{\prime} \rightarrow B$ the functor

$$
\operatorname{RigDA}_{\text {ét }}(B, \Lambda) \rightarrow \operatorname{RigDA}_{\text {ét }}\left(B^{\prime}, \Lambda\right)
$$

is an equivalence of categories.

- Rigidity: if char $K \nmid N$ the functor

$$
\mathbf{D} \mathbf{S h}_{\text {ett }}(\mathrm{Et} / B, \mathbb{Z} / N \mathbb{Z}) \rightarrow \mathbf{R i g D A}_{\text {et }}(B, \mathbb{Z} / N \mathbb{Z})
$$

is an equivalence of categories where Et / B is the small étale site over B.

APPENDIX A

An implicit function theorem and approximation results

The aim of this appendix is to prove approximation results for maps defined from objects $\lim X_{h}$ in $\widehat{\operatorname{RigSm}}{ }^{\text {gc }}$ to rigid analytic varieties. We will show that, up to homotopy, any such map factors over an analytic space X_{h} in the direct system.

Along this chapter, we assume that K is a complete non-archimedean field.

A.1. A non-archimedean implicit function theorem

We begin our analysis with the analogue of the inverse mapping theorem, which is a variant of [28, Theorem 2.1.1].
A.1.1. Proposition. Let R be a K-algebra, let $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ and $\tau=\left(\tau_{1}, \ldots, \tau_{m}\right)$ be two systems of coordinates and let $P=\left(P_{1}, \ldots, P_{m}\right)$ be a collection of polynomials in $R[\sigma, \tau]$ such that $P(\sigma=0, \tau=0)=0$ and $\operatorname{det}\left(\frac{\partial P_{i}}{\partial \tau_{j}}\right)(\sigma=0, \tau=0) \in R^{\times}$. There exists a unique collection $F=\left(F_{1}, \ldots, F_{m}\right)$ of m formal power series in $R[[\sigma]]$ such that $F(\sigma=0)=0$ and $P(\sigma, F(\sigma))=0$ in $R[[\sigma]]$.

Moreover, if R is a Banach K-algebra, then the polynomials P_{1}, \ldots, P_{n} have a positive radius of convergence.

Proof. Let f be the polynomial $\operatorname{det}\left(\frac{\partial P_{i}}{\partial \tau_{j}}\right)$ in $R[\sigma, \tau]$ and let S be the ring $R[\sigma, \tau]_{f} /(P)$. The induced map $R[\sigma] \rightarrow S$ is étale, and from the hypothesis $f(0,0) \in R^{\times}$we conclude that the map $R[\sigma, \tau] /(P) \rightarrow R,(\sigma, \tau) \mapsto 0$ factors through S.

Suppose given a factorization as $R[\sigma]$-algebras $S \rightarrow R[\sigma] /(\sigma)^{n} \rightarrow R$ of the map $S \rightarrow R$. By the étale lifting property (see [21, Definition IV.17.1.1 and Corollary IV.17.6.2]) applied to the square

we obtain a uniquely defined $R[\sigma]$-linear map $S \rightarrow R[\sigma] /(\sigma)^{n+1}$ factoring $S \rightarrow R$ and hence by induction a uniquely defined $R[\sigma]$-linear map $R[\sigma, \tau] /(P) \rightarrow R[[\sigma]]$ factoring $R[\sigma, \tau] /(P) \rightarrow R$ as wanted. The power series F_{i} is the image of τ_{i} via this map.

Assume now that R is a Banach K-algebra. We want to prove that the array $F=$ $\left(F_{1}, \ldots, F_{m}\right)$ of formal power series in $R[[\sigma]]$ constructed above is convergent around 0 . As R is complete, this amounts to proving estimates on the valuation of the coefficients of F. To this aim, we now try to give an explicit description of them, depending on the coefficients of P. Whenever I is a n-multi-index $I=\left(i_{1}, \ldots, i_{n}\right)$ we denote by σ^{I} the product $\sigma_{1}^{i_{1}} \cdot \ldots \cdot \sigma_{n}^{i_{n}}$ and we adopt the analogous notation for τ.

We remark that the claim is not affected by any invertible R-linear transformation of the polynomials P_{i}. Therefore, by multiplying the column vector P by the matrix $\left(\frac{\partial P_{i}}{\partial \tau_{j}}\right)(0,0)^{-1}$
we reduce to the case in which $\left(\frac{\partial P_{i}}{\partial \tau_{j}}\right)(0,0)=\delta_{i j}$. We can then write the polynomials P_{i} in the following form:

$$
P_{i}(\sigma, \tau)=\tau_{i}-\sum_{|J|+|H|>0} c_{i J H} \sigma^{J} \tau^{H}
$$

where J is an n-multi-index, H is an m-multi-index and the coefficients $c_{i J H}$ equal 0 whenever $|J|=0$ and $|H|=1$.

We will determine the functions $F_{i}(\sigma)$ explicitly. We start by writing them as

$$
F_{i}(\sigma)=\sum_{|I|>0} d_{i I} \sigma^{I}
$$

with unknown coefficients $d_{i I}$ for any n-multi-index I. We denote their q-homogeneous parts by

$$
F_{i q}(\sigma):=\sum_{|I|=q} d_{i I} \sigma^{I}
$$

We need to solve the equation $P(\sigma, F(\sigma))=0$ which can be rewritten as

$$
F_{i}(\sigma)=\sum_{J, H} c_{i J H} \sigma^{J}\left(\prod_{r=1}^{m} F_{r}(\sigma)^{h_{r}}\right)
$$

where we denote by h_{r} the components of the m-multi-index H.
By comparing the q-homogeneous parts we get

$$
F_{i q}(\sigma)=\sum_{(J, H, \Phi) \in \Sigma_{i q}} c_{i J H} \sigma^{J} \prod_{r=1}^{m} \prod_{s=1}^{h_{r}} F_{r, \Phi(r, s)}(\sigma)
$$

where the set $\Sigma_{i q}$ consists of triples (J, H, Φ) in which J is a n-multi-index, H is a m-multi-index and Φ is a function that associates to any element (r, s) of the set

$$
\left\{(r, s): r=1, \ldots, m ; s=1, \ldots, h_{r}\right\}
$$

a positive (non-zero!) integer $\Phi(r, s)$ such that $\sum \Phi(r, s)=q-|J|$.
If $\Phi(r, s) \geq q$ for some r we see by definition that $|J|=0,|H|=1$ and we know that in this case $c_{i 0 H}=0$. In particular, we conclude that the right hand side of the formula above involves only $F_{r q^{\prime}}$'s with $q^{\prime}<q$. Hence, we can determine the coefficients $d_{i I}$ by induction on $|I|$. Moreover, by construction, each coefficient $d_{i I}$ can be expressed as

$$
\begin{equation*}
d_{i I}=Q_{i I}\left(c_{i J H}\right) \tag{1}
\end{equation*}
$$

where each $Q_{i I}$ is a polynomial in $c_{i J H}$ for $|J|+|H| \leq|I|$ with coefficients in \mathbb{N}.
We can fix a non-zero topological nilpotent element π such that $\left\|c_{i J K}\right\| \leq|\pi|^{-1}$ for all i, J, H. From the argument above, we deduce inductively that each coefficient $d_{i I}$ is a finite sum of products of the form $\prod c_{k J H}$ with $\sum|J| \leq|I|$. In particular, each product has at most $|I|$ factors and hence $\| d_{i I}| | \leq|\pi|^{-|I|}$. We conclude $\| d_{i I} \pi^{2|I|}| | \leq|\pi|^{|I|}$ which tends to 0 as $|I| \rightarrow \infty$.

The previous statement has an immediate generalization.
A.1.2. Corollary. Let R be a non-archimedean Banach K-algebra, let $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ and $\tau=\left(\tau_{1}, \ldots, \tau_{m}\right)$ be two systems of coordinates, let $\bar{\sigma}=\left(\bar{\sigma}_{1}, \ldots, \bar{\sigma}_{n}\right)$ and $\bar{\tau}=\left(\bar{\tau}_{1}, \ldots, \bar{\tau}_{m}\right)$ two sequences of elements of R and let $P=\left(P_{1}, \ldots, P_{m}\right)$ be a collection of polynomials in $R[\sigma, \tau]$ such that $P(\sigma=\bar{\sigma}, \tau=\bar{\tau})=0$ and $\operatorname{det}\left(\frac{\partial P_{i}}{\partial \tau_{j}}\right)(\sigma=\bar{\sigma}, \tau=\bar{\tau}) \in R^{\times}$. There
exists a unique collection $F=\left(F_{1}, \ldots, F_{m}\right)$ of m formal power series in $R[[\sigma-\bar{\sigma}]]$ such that $F(\sigma=\bar{\sigma})=\bar{\tau}$ and $P(\sigma, F(\sigma))=0$ in $R[[\sigma-\bar{\sigma}]]$ and they have a positive radius of convergence around $\bar{\sigma}$.

Proof. If we apply Proposition A.1.1 to the polynomials $P_{i}^{\prime}:=P(\bar{\sigma}+\eta, \bar{\tau}+\theta)$ we obtain an array of formal power series $F^{\prime}=\left(F_{1}, \ldots, F_{m}^{\prime}\right)$ in $R[[\eta]]$ with positive radius of convergence such that $P^{\prime}\left(\eta, F^{\prime}(\eta)\right)=0$. If we now put $\sigma:=\bar{\sigma}+\eta$ and $F:=\bar{\tau}+F^{\prime}$ we get $P(\sigma, F(\sigma-\bar{\sigma}))=0$ in $R[[\sigma-\bar{\sigma}]]$ as wanted.

We now assume that K is perfectoid and we come back to the category $\widehat{\operatorname{Rig} S m}{ }^{g c}$ that we introduced above (see Definition 1.2.3. We recall that an object $X=\lim _{h} X_{h}$ of this category is the pullback over $\widehat{\mathbb{T}}^{N} \rightarrow \mathbb{T}^{N}$ of a map $X_{0} \rightarrow \mathbb{T}^{N} \times \mathbb{T}^{M}$ that is a composition of rational embeddings and finite étale maps from an affinoid tft adic space X_{0} to a torus $\mathbb{T}^{N} \times \mathbb{T}^{M}=$ Spa $K\left\langle\underline{v}^{ \pm 1}, \underline{\nu}^{ \pm 1}\right\rangle$ and X_{h} denotes the pullback of X_{0} by $\mathbb{T}^{N}\left\langle\underline{v}^{1 / p^{h}}\right\rangle \rightarrow \mathbb{T}^{N}$.
A.1.3. Proposition. Let $X=\lim _{h} X_{h}$ be an object of $\widehat{\operatorname{Rig} S m} \mathrm{gc}^{\mathrm{gc}}$. If an element ξ of $\mathcal{O}^{+}(X)$ is algebraic and separable over each generic point of $\operatorname{Spec} \mathcal{O}\left(X_{0}\right)$ then it lies in $\mathcal{O}^{+}\left(X_{\bar{h}}\right)$ for some \bar{h}.

Proof. Let X_{0} be $\operatorname{Spa}\left(R_{0}, R_{0}^{\circ}\right)$ let X_{h} be $\operatorname{Spa}\left(R_{h}, R_{h}^{\circ}\right)$ and X be $\operatorname{Spa}\left(R, R^{+}\right)$. For any $h \in \mathbb{N}$ one has $R_{h}=R_{0} \widehat{\otimes}_{K\left\langle v^{ \pm 1}\right\rangle} K\left\langle\underline{v}^{ \pm 1 / p^{h}}\right\rangle$ and R^{+}coincides with the π-adic completion of $\lim _{h} R_{h}^{\circ}$ by Proposition 1.2.1 The proof is divided in several steps.

Step 1: We can suppose that R is perfectoid. Indeed, we can consider the refined tower $X_{h}^{\prime}=X_{0} \times_{\mathbb{T}^{N} \times \mathbb{T}^{M}}\left(\mathbb{T}^{N}\left\langle\underline{v}^{1 / p^{h}}\right\rangle \times \mathbb{T}^{M}\left\langle\underline{\nu}^{1 / p^{h}}\right\rangle\right)$ whose limit \widehat{X} is perfectoid. If the claim is true for this tower, we conclude that ξ lies in the intersection of $\mathcal{O}\left(X_{h}^{\prime}\right)$ and $\mathcal{O}(X)$ inside $\mathcal{O}(\widehat{X})$ for some h. By Remark 1.1.18 this is the intersection

$$
\left(\widehat{\bigoplus}_{I \in(\mathbb{Z}[1 / p] \cap[0,1))^{N}} R_{0} \underline{v}^{I}\right) \cap\left(\widehat{\bigoplus}_{\substack{I \in\left\{a / p^{p}: 0 \leq a<p^{h}\right\}^{N} \\ J \in\left\{a / p^{h}: 0 \leq a<p^{h}\right\}^{M}}} R_{0} \underline{\underline{v}}^{I} \underline{\nu}^{J}\right)
$$

which coincides with

$$
\widehat{\bigoplus}_{I \in\left\{a / p^{h}: 0 \leq a<p^{h}\right\}^{N}} R_{0} \underline{v}^{I}=R_{h} .
$$

Step 2: We can always assume that each R_{h} is an integral domain. Indeed, the number of connected components of Spa R_{h} may rise, but it is bounded by the number of connected components of the affinoid perfectoid X which is finite by Remark 1.2.11.

We deduce that the number of connected components of Spa R_{h} stabilizes for h large enough. Up to shifting indices, we can then suppose that $\operatorname{Spa} R_{0}$ is the finite disjoint union of irreducible rigid varieties Spa $R_{i 0}$ for $i=1, \ldots, k$ such that $R_{i h}=R_{i 0} \widehat{\otimes}_{K\left\langle\underline{v}^{ \pm 1}\right\rangle} K\left\langle\underline{v}^{ \pm 1 / p^{h}}\right\rangle$ is a domain for all h. We denote by R_{i} the ring $R_{i 0} \widehat{\otimes}_{K\left\langle\underline{v}^{ \pm 1}\right\rangle} K\left\langle\underline{v}^{ \pm 1 / p^{\infty}}\right\rangle$. Let now $\xi=\left(\xi_{i}\right)$ be an element in $R^{+}=\prod R_{i}^{+}$that is separable over \prod Frac R_{i} i.e. each ξ_{i} is separable over Frac R_{i}. If the proposition holds for R_{i} we then conclude that ξ_{i} lies in $R_{i h}^{\circ}$ for some large enough h so that $\xi \in R_{h}^{\circ}$ as claimed.

Step 3: We prove that we can consider a non-empty rational subspace $U_{0}=$ Spa $R_{0}\left\langle f_{i} / g\right\rangle$ of X_{0} instead. Indeed, using Remark 1.1.18 if the result holds for U_{0} assuming $\bar{h}=0$ we deduce that ξ lies in the intersection of $R \cong \widehat{\bigoplus} R_{0}$ and of $R_{0}\left\langle f_{i} / g\right\rangle$ inside $R\left\langle f_{i} / g\right\rangle \cong \widehat{\bigoplus} R_{0}\left\langle f_{i} / g\right\rangle$ which coincides with R_{0}.

Step 4: We prove that we can assume ξ to be integral over R_{0}. Indeed, let P_{ξ} be its minimal polynomial over $\operatorname{Frac}\left(R_{0}\right)$. We can suppose there is a common denominator d such that P_{ξ} has
coefficients in $R_{0}[1 / d][x]$. By [9, Proposition 6.2.1/4(ii)] we can also assume that $|d|=1$. In particular, by [9 , Proposition 7.2.6/3], the rational subset associated to $R_{0}\langle 1 / d\rangle$ is not empty. By Step 3, we can then restrict to it and assume ξ integral over R_{0} and $R_{0}[\xi] \cong R_{0}[x] / P_{\xi}(x)$.

Step 5: We can suppose that $P_{\xi}(x)$ is the minimal polynomial of ξ with respect to all nonempty rational subspaces of X_{h} for all h. If it is not the case, from the previous steps we can rescale indices and restrict to a rational subspace with respect to which the degree of $P_{\xi}(x)$ is lower. Since the degree is bounded from below, we conclude the claim.

Step 6: We prove that we can assume that the sup-norm on R_{h} is multiplicative for all h. By [9. Proposition 6.2.3/5] this is equivalent to state that $\widetilde{R}_{h}:=R_{h}^{\circ} / R_{h}^{\circ \circ}$ is a domain. The maps $R_{h} \rightarrow R_{h+1}$ induce inclusions $\tilde{R}_{h} \rightarrow \tilde{R}_{h+1}$ by [9, Lemma 3.8.1/6] and these rings are included in $\widetilde{R}:=R^{\circ} / R^{\circ \circ}$ which is isomorphic to \widetilde{R}^{b} by [42, Proposition 5.17]. Up to considering a rational subspace, we can assume that R^{b} is the perfection of a smooth affinoid rigid variety R_{0}^{b} and \widetilde{R}^{b} is a domain if and only if \widetilde{R}_{0}^{b} is. As this last ring is reduced, there is a Zariski open in which it is a domain, and hence by [9 , Proposition 7.2.6/3] there is a non-empty rational subspace of $\operatorname{Spa}\left(R^{b}, R^{b+}\right)$ and therefore of $\operatorname{Spa}\left(R, R^{+}\right)$with the required property (the tilting equivalence preserves rational subspaces as proved in [42, Proposition 6.17]). We conclude the claim since rational subspaces of X descend to X_{h} for h big enough by Proposition 1.2.8. We can assume this happens at $h=0$.

Step 7: Since R is the completion of ${\underset{\mathrm{lim}}{h}} R_{h}$ with respect to the sup-norms, by the previous step we deduce that the norm $\|\cdot\|$ on R is multiplicative. Fix a separable closure L of the completion of Frac R with respect to $\|\cdot\|$. The element ξ and its conjugates ξ_{1}, \ldots, ξ_{n} that are different from ξ all lie in the integral closure S of the ring ${\underset{\longrightarrow}{l}}_{h} R_{h}$ in L which coincides with the integral closure of R_{0} since all maps $R_{0} \rightarrow R_{h}$ are integral. We can assume that for all i the minimal polynomial of $\xi-\xi_{i}$ over R_{0} coincides with the one over all rings $R_{h}\langle 1 / f\rangle$ with $|f|=1$. Otherwise, restrict to some rational subspace $U(1 \mid \bar{f})$ of $X_{\bar{h}}$ with $|\bar{f}|=1$ where this holds and rescale indices. By [9, Proposition 7.2.6/3] the hypotheses of the previous step are still preserved. Because R_{0} is normal, by means of [9 , Proposition 3.8.1/7] we can also endow S with the sup-norm $|\cdot|$. Let ϵ be the positive number $\min \left\{\left|\xi-\xi_{i}\right|\right\}$. By the density of $\lim _{h} R_{h}$ in R we can find an element $\beta \in R_{\bar{h}}$ for some \bar{h} such that $\|\xi-\beta\|<\epsilon$. Up to rescaling indices, we can assume $\bar{h}=0$.

Step 8: We prove that we can assume that the sup-norm on $R_{0}[\xi]$ is multiplicative. We remark that this ring is a tft Tate K-algebra by [9, Proposition 6.1.1/6]. The ring $\widetilde{R_{0}[\xi]}$ is reduced, contains the domain \widetilde{R}_{0} and is finite over it (see [9] Proposition 1.2.5/7, Lemma 3.8.1/6, Theorem 6.3.1/6 and Theorem 6.3.5/1]). Up to considering an open of Spec \widetilde{R}_{0} and hence restricting to a non-empty rational subset $U\left(1 \mid f\right.$) of Spa R_{0} with $|f|=1$ (see [9 , Proposition 7.2.6/3]) we can then assume that the variety Spec $\widetilde{R_{0}[\xi]}$ is a disjoint union of integral schemes. Since the spectrum of $R_{0}[\xi] \cong R_{0}[x] / P_{\xi}(x)$ is connected, we deduce that Spec $\widetilde{R_{0}[\xi]}$ is also connected hence integral, and the sup norm on $R_{0}[\xi]$ is multiplicative by means of [9 , Proposition 6.2.3/5]. We also remark that, by the construction of our restrictions, the rings \tilde{R}_{h} are still domains hence the sup-norm is multiplicative on R_{h}. Moreover, the inequalities $\|\xi-\beta\|<\epsilon$ and $\left|\xi-\xi_{i}\right|>\epsilon$ still hold since the maps $R_{h} \rightarrow R_{h}\langle 1 / f\rangle$ are isometries with respect to the sup-norm (see [9. Lemma 6.3.1/6]) and because of our hypotheses from Step 7 together with the formulas computing the sup-norm on S (see [9 , Proposition 3.8.1/7]).

Step 9: We prove that we the norm on $R_{0}[\xi]$ induced by R coincides with the sup-norm on this ring. By Step 7 and Step 8 the norm $\|\cdot\|$ on R and the sup-norm $|\cdot|_{\text {sup }}$ on $R_{0}[\xi]$ are
multiplicative, and both extend the sup-norm on R_{0}. Since the map $R_{0}[\xi] \rightarrow R$ is continuous, there is an integer n such that $|b|_{\text {sup }} \leq|\pi|^{n}$ implies $\|b\| \leq 1$ for all $b \in R_{0}[\xi]$. By Lemma A.1.4 we deduce that the two norms $|\cdot|_{\text {sup }}$ and $\|\cdot\|$ on $R_{0}[\xi]$ coincide, as claimed.

Step 10: In this last step we argue as for Krasner's Lemma (see [9, Section 3.4.2]). The maps $R_{h} \rightarrow S$ and $R_{0}[\xi] \rightarrow S$ are all isometries with respect to sup-norms by [9, Lemma 3.8.1/6]. By the previous step, we deduce $|\xi-\beta|<\epsilon$ with respect to the sup-norm on $R_{0}[\xi]$. We now show that $n=0$ i.e. that the degree of the separable polynomial $P_{\xi}(x)$ is 1 and therefore ξ lies in R_{0}. We argue by contradiction and we assume $n \geq 1$. Any choice of an element ξ_{i} induces a R_{0}-linear isomorphism $\tau_{i}: R_{0}[\xi] \cong R_{0}\left[\xi_{i}\right]$ which is an isometry with respect to the sup-norm. Therefore one has $\left|\xi-\xi_{i}\right| \leq \max \left\{|\xi-\beta|,\left|\xi_{i}-\beta\right|\right\}=\max \left\{|\xi-\beta|,\left|\tau_{i}(\xi-\beta)\right|\right\}=|\xi-\beta|<\epsilon$ leading to a contradiction.
A.1.4. Lemma. Let $R \rightarrow S$ be an integral extension of integral domains over K. Let $|\cdot|$ be a multiplicative K-algebra norm on R and let $|\cdot|_{1}$ and $|\cdot|_{2}$ be two multiplicative norms on S extending the one of R such that $|b|_{1} \leq \varepsilon$ implies $|b|_{2} \leq 1$ for all $b \in S$ for a fixed $\varepsilon \in(0,1] \subset \mathbb{R}$. Then $|\cdot|_{1}=|\cdot|_{2}$.

Proof. We can suppose that $\varepsilon=|\alpha|$ for some $\alpha \in K^{\times}$. We first prove the inequality $\varepsilon|b|_{2} \leq|b|_{1}$ for all $b \in S$. Fix an element $b \in S$ and a sequence of rational numbers in $\mathbb{Z}[1 / p]$ such that $|\pi|^{m_{i} / n_{i}}$ converges to $|b|_{1}$ from above. From the inequality $\left|\pi^{-m_{i} / n_{i}} \alpha b\right|_{1} \leq \varepsilon$ we deduce $\varepsilon|b|_{2} \leq|\pi|^{m_{i} / n_{i}}$ and hence $\varepsilon|b|_{2} \leq|b|_{1}$ as claimed.

We can endow the field Frac S with the extensions $|\cdot|_{i}$ of the norms of S by putting $|f / g|_{i}:=|f|_{i} /|g|_{i}$. They are well defined and multiplicative. Since S is integral over R any element of $\operatorname{Frac} S$ is of the form f / g with $g \in R$. From what we proved above, one has $\varepsilon|b|_{2} \leq|b|_{1}$ for all $b \in \operatorname{Frac} S$.

From standard valuation theory we then conclude that the two norms are equivalent on Frac S (for example, apply [38, Theorem II.3.4] with $a_{1}=0$ and $a_{2}=1$). Since they agree on K we conclude that they actually coincide on $\operatorname{Frac} S$ hence on S.

A.2. Approximation of maps of adic spaces

We introduce now the geometric application of Propositions A.1.1 and A.1.3. It states that a map from $\lim _{h} X_{h} \in \widehat{\text { RigSm to a rigid variety factors, up to } \mathbb{B}^{1} \text {-homotopy, over one of the }}$ intermediate varieties X_{h}. Analogous statements are widely used in in [5] (see for example [5, Theorem 2.2.49]): there, these are obtained as corollaries of Popescu's theorem ([39] and [40]), which is not available in our non-noetherian setting.
A.2.1. PRoposition. Let $X=\lim _{h} X_{h}$ be in $\widehat{\operatorname{Rig} S m}{ }^{\mathrm{gc}}$. Let Y be an affinoid rigid variety endowed with an étale map $Y \rightarrow \mathbb{B}^{n}$ and let $f: X \rightarrow Y$ be a map of adic spaces.
(1) There exist m polynomials Q_{1}, \ldots, Q_{m} in $K\left[\sigma_{1}, \ldots, \sigma_{n}, \tau_{1}, \ldots, \tau_{m}\right]$ such that $Y \cong$ Spa A with $A \cong K\langle\sigma, \tau\rangle /(Q)$ and $\operatorname{det}\left(\frac{\partial Q_{i}}{\partial \tau_{j}}\right) \in A^{\times}$.
(2) There exists a map $H: X \times \mathbb{B}^{1} \rightarrow Y$ such that $H \circ i_{0}=f$ and $H \circ i_{1}$ factors over the canonical map $X \rightarrow X_{h}$ for some integer h.
Moreover, if f is induced by the map $K\langle\sigma, \tau\rangle \rightarrow \mathcal{O}(X), \sigma \mapsto s, \tau \mapsto t$ the map H can be defined via

$$
(\sigma, \tau) \mapsto(s+(\tilde{s}-s) \chi, F(s+(\tilde{s}-s) \chi))
$$

where F is the unique array of formal power series in $\mathcal{O}(X)[[\sigma-s]]$ associated to the polynomials $P(\sigma, \tau)$ by Corollary A.1.2 and \tilde{s} is any element in $\underline{\lim }_{h} \mathcal{O}^{+}\left(X_{h}\right)$ such that the radius of convergence of F is larger than $\|\tilde{s}-s\|$ and $F(\tilde{s})$ lies in $\overrightarrow{\mathcal{O}^{+}}(X)$.

Proof. The first claim follows from the proof of [5, Lemma 1.1.50]. We turn to the second claim. Let X_{0} be $\operatorname{Spa}\left(R_{0}, R_{0}^{\circ}\right)$ and X be $\operatorname{Spa}\left(R, R^{+}\right)$. For any $h \in \mathbb{N}$ we denote $R_{0} \widehat{\otimes}_{K\langle\underline{v}\rangle} K\left\langle\underline{v}^{ \pm 1 / p^{h}}\right\rangle$ with R_{h} so that R^{+}coincides with the π-adic completion of ${\underset{\longrightarrow}{l i m}}_{h} R_{h}^{\circ}$ by Proposition 1.2.1

The map f is determined by the choice of n elements $s=\left(s_{1}, \ldots, s_{n}\right)$ and m elements $t=\left(t_{1}, \ldots, t_{m}\right)$ of R^{+}such that $P(s, t)=0$. We prove that the formula for H provided in the statement defines a map H with the required properties.

By Corollary A.1.2 there exists a collection $F=\left(F_{1}, \ldots, F_{m}\right)$ of m formal power series in $R[[\sigma-s]]$ with a positive radius of convergence such that $F(s)=t$ and $P(\sigma, F(\sigma))=0$. As $\lim _{h} R_{h}^{\circ}$ is dense in R^{+}we can find an integer \bar{h} and elements $\tilde{s}_{i} \in R_{\bar{h}}^{\circ}$ such that $\|\tilde{s}-s\|$ is smaller than the convergence radius of F. By renaming the indices, we can assume that $\bar{h}=0$. As F is continuous and R^{+}is open, we can also assume that the elements $F_{j}(\tilde{s})$ lie in R^{+}. We are left to prove that they actually lie in $\lim _{\rightarrow} R_{h}^{\circ}$. Since the determinant of $\left(\frac{\partial P_{i}}{\partial \tau_{j}}\right)(\tilde{s}, F(\tilde{s}))$ is invertible, the field $L:=\operatorname{Frac}\left(R_{0}\right)\left(F_{1}(\tilde{s}), \ldots, F_{m}(\tilde{s})\right)$ is algebraic and separable over $\operatorname{Frac}\left(R_{0}\right)$. We can then apply Proposition A.1.3 to conclude that each element $F_{j}(\tilde{s})$ lies in R_{h}° for a sufficiently big integer h.

The goal of the rest of this section is to prove Proposition 1.4.1. To this aim, we present a generalization of the results above for collections of maps. As before, we start with an algebraic statement and then translate it into a geometrical fact for our specific purposes.
A.2.2. Proposition. Let R be a Banach K-algebra and let $\left\{R_{h}\right\}_{h \in \mathbb{N}}$ be a collection of nested complete subrings of R such that $\xrightarrow{\lim } R_{h}$ is dense in R. Let s_{1}, \ldots, s_{N} be elements of $R\left\langle\theta_{1}, \ldots, \theta_{n}\right\rangle$. For any $\varepsilon>0$ there exists an integer h and elements $\tilde{s}_{1}, \ldots, \tilde{s}_{N}$ of $R_{h}\left\langle\theta_{1}, \ldots, \theta_{n}\right\rangle$ satisfying the following conditions.
(1) $\left|s_{\alpha}-\tilde{s}_{\alpha}\right|<\varepsilon$ for each α.
(2) For any $\alpha, \beta \in\{1, \ldots, N\}$ and any $k \in\{1, \ldots, n\}$ such that $\left.s_{\alpha}\right|_{\theta_{k}=0}=\left.s_{\beta}\right|_{\theta_{k}=0}$ we also have $\left.\tilde{s}_{\alpha}\right|_{\theta_{k}=0}=\left.\tilde{s}_{\beta}\right|_{\theta_{k}=0}$.
(3) For any $\alpha, \beta \in\{1, \ldots, N\}$ and any $k \in\{1, \ldots, n\}$ such that $\left.s_{\alpha}\right|_{\theta_{k}=1}=\left.s_{\beta}\right|_{\theta_{k}=1}$ we also have $\left.\tilde{s}_{\alpha}\right|_{\theta_{k}=1}=\left.\tilde{s}_{\beta}\right|_{\theta_{k}=1}$.
(4) For any $\alpha \in\{1, \ldots, N\}$ if $\left.s_{\alpha}\right|_{\theta_{1}=1} \in R_{h^{\prime}}\langle\underline{\theta}\rangle$ for some h^{\prime} then $\left.\tilde{s}_{\alpha}\right|_{\theta_{1}=1}=\left.s_{\alpha}\right|_{\theta_{1}=1}$.

Proof. We will actually prove a stronger statement, namely that we can reinforce the previous conditions with the following:
(5) For any $\alpha, \beta \in\{1, \ldots, N\}$ any subset T of $\{1, \ldots, n\}$ and any map $\sigma: T \rightarrow\{0,1\}$ such that $\left.s_{\alpha}\right|_{\sigma}=\left.s_{\beta}\right|_{\sigma}$ then $\left.\tilde{s}_{\alpha}\right|_{\sigma}=\left.\tilde{s}_{\beta}\right|_{\sigma}$.
(6) For any $\alpha \in\{1, \ldots, N\}$ any subset T of $\{1, \ldots, n\}$ containing 1 and any map $\sigma: T \rightarrow$ $\{0,1\}$ such that $\left.s_{\alpha}\right|_{\sigma} \in R_{h}\langle\underline{\theta}\rangle$ for some h then $\left.\tilde{s}_{\alpha}\right|_{\sigma}=\left.s_{\alpha}\right|_{\sigma}$.
Above we denote by $\left.s\right|_{\sigma}$ the image of s via the substitution $\left(\theta_{t}=\sigma(t)\right)_{t \in T}$. We proceed by induction on N, the case $N=0$ being trivial.

Consider the conditions we want to preserve that involve the index N. They are of the form

$$
\left.s_{i}\right|_{\sigma}=\left.s_{N}\right|_{\sigma}
$$

and are indexed by some pairs (σ, i) where i is an index and σ varies in a set of maps Σ. Our procedure consists in determining by induction the elements $\tilde{s}_{1}, \ldots, \tilde{s}_{N-1}$ first, and then deduce the existence of \tilde{s}_{N} by means of Lemma A.2.5 by lifting the elements $\left\{\left.\tilde{s}_{i}\right|_{\sigma}\right\}_{(\sigma, i)}$. Therefore, we first define $\varepsilon^{\prime}:=\frac{1}{C} \varepsilon$ where $C=C(\Sigma)$ is the constant introduced in Lemma A.2.5 and then apply the induction hypothesis to the first $N-1$ elements with respect to ε^{\prime}.

By the induction hypothesis, the elements $\left.\tilde{s}_{i}\right|_{\sigma}$ satisfy the compatibility condition of Lemma A.2.5 and lie in $R_{h}\langle\underline{\theta}\rangle$ for some integer h. Without loss of generality, we assume $h=0$. By Lemma A.2.5 we can find an element \tilde{s}_{N} of $R_{h}\langle\underline{\theta}\rangle$ lifting them such that $\left|\tilde{s}_{N}-s_{N}\right|<C \varepsilon^{\prime}=\varepsilon$ as wanted.

The following lemmas are used in the proof of the previous proposition.
A.2.3. Lemma. For any normed ring R and any map $\sigma: T_{\sigma} \rightarrow\{0,1\}$ defined on a subset T_{σ} of $\{1, \ldots, n\}$ we denote by I_{σ} the ideal of $R\langle\underline{\theta}\rangle$ generated by $\theta_{i}-\sigma(i)$ as i varies in T_{σ}. For any finite set Σ of such maps and any such map η one has $\left(\bigcap_{\sigma \in \Sigma} I_{\sigma}\right)+I_{\eta}=\bigcap_{\sigma \in \Sigma}\left(I_{\sigma}+I_{\eta}\right)$.

Proof. We only need to prove the inclusion $\bigcap\left(I_{\sigma}+I_{\eta}\right) \subseteq\left(\bigcap I_{\sigma}\right)+I_{\eta}$. We can make induction on the cardinality of T_{η} and restrict to the case in which T_{η} is a singleton. By changing variables, we can suppose $T_{\eta}=\{1\}$ and $\eta(1)=0$ so that $I_{\eta}=\left(\theta_{1}\right)$.

We first suppose that $1 \notin T_{\sigma}$ for all $\sigma \in \Sigma$. Let s be an element of $\bigcap\left(I_{\sigma}+\left(\theta_{1}\right)\right)$. This means we can find elements $s_{\sigma} \in I_{\sigma}$ and polynomials $p_{\sigma} \in R\langle\underline{\theta}\rangle$ such that $s=s_{\sigma}+p_{\sigma} \theta_{1}$. Since I_{σ} is generated by polynomials of the form $\theta_{i}-\epsilon$ with $i \neq 1$ we can suppose that s_{σ} contains no θ_{1} by eventually changing p_{σ}. Let now σ, σ^{\prime} be in Σ. From the equality

$$
s_{\sigma}=\left.\left(s_{\sigma}+p_{\sigma} \theta_{1}\right)\right|_{\theta_{1}=0}=\left.\left(s_{\sigma^{\prime}}+p_{\sigma^{\prime}} \theta_{1}\right)\right|_{\theta_{1}=0}=s_{\sigma^{\prime}}
$$

we conclude that $s_{\sigma} \in \bigcap I_{\sigma}$. Therefore $s \in \bigcap I_{\sigma}+\left(\theta_{1}\right)$ as claimed.
We now move to the general case. Suppose $\bar{\sigma}(1)=1$ for some $\bar{\sigma} \in \Sigma$. Then $I_{\bar{\sigma}}+I_{\eta}=R\langle\underline{\theta}\rangle$ and if $f \in \bigcap_{\sigma \neq \bar{\sigma}} I_{\sigma}$ then $f=-f\left(\theta_{1}-1\right)+f \theta_{1} \in \bigcap_{\sigma} I_{\sigma}+\left(\theta_{1}\right)$. Therefore, the contribution of $I_{\bar{\sigma}}$ is trivial on both sides and we can erase it from Σ. We can therefore suppose that $\sigma(1)=0$ whenever $1 \in T_{\sigma}$.

For any $\sigma \in \Sigma$ let σ^{\prime} be its restriction to $T_{\sigma} \backslash\{1\}$. We have $I_{\sigma^{\prime}} \subseteq I_{\sigma}$ and $I_{\sigma^{\prime}}+\left(\theta_{1}\right)=I_{\sigma}+\left(\theta_{1}\right)$ for all $\sigma \in \Sigma$. By what we already proved, the statement holds for the set $\Sigma^{\prime}:=\left\{\sigma^{\prime}: \sigma \in \Sigma\right\}$. Therefore:

$$
\bigcap_{\sigma \in \Sigma}\left(I_{\sigma}+\left(\theta_{1}\right)\right)=\bigcap_{\sigma^{\prime} \in \Sigma^{\prime}}\left(I_{\sigma^{\prime}}+\left(\theta_{1}\right)\right)=\bigcap_{\sigma^{\prime} \in \Sigma^{\prime}} I_{\sigma^{\prime}}+\left(\theta_{1}\right) \subseteq \bigcap_{\sigma \in \Sigma} I_{\sigma}+\left(\theta_{1}\right)
$$

proving the claim.
We recall (see [9, Definition 1.1.9/1]) that a morphism of normed groups $\phi: G \rightarrow H$ is strict if the homomorphism $G / \operatorname{ker} \phi \rightarrow \phi(G)$ is a homeomorphism, where the former group is endowed with the quotient topology and the latter with the topology inherited from H. In particular, we say that a sequence of normed K-vector spaces

$$
R \xrightarrow{f} S \xrightarrow{g} T
$$

is strict and exact at S if it exact at S and if f is strict i.e. the quotient norm and the norm induced by S on $R / \operatorname{ker}(f) \cong \operatorname{ker}(g)$ are equivalent.
A.2.4. Lemma. For any map $\sigma: T_{\sigma} \rightarrow\{0,1\}$ defined on a subset T_{σ} of $\{1, \ldots, n\}$ we denote by I_{σ} the ideal of $R\langle\underline{\theta}\rangle=R\left\langle\theta_{1} \ldots, \theta_{n}\right\rangle$ generated by $\theta_{i}-\sigma(i)$ as i varies in T_{σ}. For any finite set Σ of such maps and any complete normed K-algebra R the following sequence of Banach K-algebras is strict and exact

$$
0 \rightarrow R\langle\underline{\theta}\rangle / \bigcap_{\sigma \in \Sigma} I_{\sigma} \rightarrow \prod_{\sigma \in \Sigma} R\langle\underline{\theta}\rangle / I_{\sigma} \rightarrow \prod_{\sigma, \sigma^{\prime} \in \Sigma} R\langle\underline{\theta}\rangle /\left(I_{\sigma}+I_{\sigma^{\prime}}\right)
$$

and the ideal $\bigcap_{\sigma \in \Sigma} I_{\sigma}$ is generated by a finite set of polynomials with coefficients in \mathbb{Z}.

Proof. We follow the notation and the proof of [32]. For a collection of ideals $\mathcal{I}=\left\{I_{\sigma}\right\}$ we let $A(\mathcal{I})$ be the kernel of the map $\prod_{\sigma} R\langle\underline{\theta}\rangle / I_{\sigma} \rightarrow \prod_{\sigma, \sigma^{\prime}} R\langle\underline{\theta}\rangle /\left(I_{\sigma}+I_{\sigma^{\prime}}\right)$ and $O(\mathcal{I})$ be the cokernel of $R\langle\underline{\theta}\rangle / \bigcap_{\sigma} I_{\sigma} \rightarrow A(\mathcal{I})$. We make induction on the cardinality m of \mathcal{I}. The case $m=1$ is obvious.

Let \mathcal{I}^{\prime} be $\mathcal{I} \cup\left\{I_{\eta}\right\}$. From the diagram

we obtain by the snake lemma the exact sequence

$$
0 \rightarrow I_{\eta} \cap \bigcap I_{\sigma} \rightarrow \bigcap I_{\sigma} \rightarrow W \rightarrow O\left(\mathcal{I}^{\prime}\right) \rightarrow O(\mathcal{I}) .
$$

By direct computation, it holds $W=\bigcap\left(I_{\sigma}+I_{\eta}\right) / I_{\eta}$. By the induction hypothesis, we obtain $O(\mathcal{I})=0$. Moreover, since $\bigcap I_{\sigma}+I_{\eta}=\bigcap\left(I_{\sigma}+I_{\eta}\right)$ by Lemma A.2.3, we conclude that the $\operatorname{map} \bigcap I_{\sigma} \rightarrow W$ is surjective and hence $O\left(\mathcal{I}^{\prime}\right)=0$ proving the main claim.

The ideals I_{σ} are defined over \mathbb{Z}. In order to prove that the ideal $\bigcap I_{\sigma}$ is also defined over \mathbb{Z} and that the sequence is strict, by means of [9 , Proposition 2.1.8/6] it suffices to consider the cases $R=K=\mathbb{Q}_{p}$ or $R=K=\mathbb{F}_{p}((t))$ for which the statement is clear.

Let σ and σ^{\prime} be maps defined from two subsets T_{σ} resp. $T_{\sigma^{\prime}}$ of $\{1, \ldots, n\}$ to $\{0,1\}$. We say that they are compatible if $\sigma(i)=\sigma^{\prime}(i)$ for all $i \in T_{\sigma} \cap T_{\sigma^{\prime}}$ and in this case we denote by (σ, σ^{\prime}) the map from $T_{\sigma} \cup T_{\sigma^{\prime}}$ extending them.
A.2.5. Lemma. Let $X=\lim _{h} X_{h}$ be an object in $\widehat{\operatorname{RigSm}}$ and Σ a set as in Lemma A.2.4 We denote $\mathcal{O}(X)$ by R and $\mathcal{O}\left({\overleftarrow{X_{h}}}^{h}\right.$ by R_{h}. For any $\sigma \in \Sigma$ let \bar{f}_{σ} be an element of $R\langle\underline{\theta}\rangle / I_{\sigma}$ such that $\left.\bar{f}_{\sigma}\right|_{\left(\sigma, \sigma^{\prime}\right)}=\left.\bar{f}_{\sigma^{\prime}}\right|_{\left(\sigma, \sigma^{\prime}\right)}$ for any couple $\sigma, \sigma^{\prime} \in \Sigma$ of compatible maps.
(1) There exists an element $f \in R\langle\underline{\theta}\rangle$ such that $\left.f\right|_{\sigma}=\bar{f}_{\sigma}$.
(2) There exists a constant $C=C(\Sigma)$ such that iffor some $g \in R\langle\underline{\theta}\rangle$ one has $\left|\bar{f}_{\sigma}-g\right|_{\sigma} \mid<\varepsilon$ for all σ then the element f can be chosen so that $|f-g|<C \varepsilon$. Moreover, if $\bar{f}_{\sigma} \in R_{0}\langle\underline{\theta}\rangle / I_{\sigma}$ for all σ then the element f can be chosen inside $R_{h}\langle\underline{\theta}\rangle$ for some integer h.

Proof. The first claim and the first part of the second are simply a restatement of Lemma A.2.4, where $C=C(\Sigma)$ is the constant defining the compatibility $\|\cdot\|_{1} \leq C\|\cdot\|_{2}$ between the norm $\|\cdot\|_{1}$ on $R\langle\underline{\theta}\rangle / \bigcap I_{\sigma}$ induced by the quotient and the norm $\|\cdot\|_{2}$ induced by the embedding in $\prod R\langle\underline{\theta}\rangle / I_{\sigma}$. We now turn to the last sentence of the second claim.

We apply Lemma A.2.4 to each R_{h} and to R. We then obtain exact sequences of Banach spaces:

$$
\begin{aligned}
0 & \rightarrow R_{h}\langle\underline{\theta}\rangle / \bigcap_{\sigma \in \Sigma} I_{\alpha}
\end{aligned} \prod_{\sigma \in \Sigma} R_{h}\langle\underline{\theta}\rangle / I_{\sigma} \rightarrow \prod_{\sigma, \sigma^{\prime} \in \Sigma} R_{h}\langle\underline{\theta}\rangle /\left(I_{\sigma}+I_{\sigma^{\prime}}\right) .
$$

where all ideals that appear are finitely generated by polynomials with \mathbb{Z}-coefficients, depending only on Σ.

In particular, there exist two lifts of $\left\{\bar{f}_{\sigma}\right\}$: an element f_{1} of $R_{0}\langle\underline{\theta}\rangle$ and an element f_{2} of $R\langle\underline{\theta}\rangle$ such that $\left|f_{2}-g\right|<C \varepsilon$ and their difference lies in $\bigcap I_{\sigma}$. Hence, we can find coefficients
$\gamma_{i} \in R\langle\underline{\theta}\rangle$ such that $f_{1}=f_{2}+\sum_{i} \gamma_{i} p_{i}$ where $\left\{p_{1}, \ldots, p_{M}\right\}$ are generators of $\bigcap I_{\sigma}$ which have coefficients in K. Let now $\tilde{\gamma}_{i}$ be elements of $R_{h}\langle\underline{\theta}\rangle$ with $\left|\tilde{\gamma}_{i}-\gamma_{i}\right|<C \varepsilon / M\left|p_{i}\right|$. The element $f_{3}:=f_{1}-\sum_{i} \tilde{\gamma}_{i} p_{i}$ lies in $\underline{l i m}_{h}\left(R_{h}\langle\underline{\theta}\rangle\right)$ is another lift of $\left\{\bar{f}_{\sigma}\right\}$ and satisfies $\left|f_{3}-g\right| \leq$ $\max \left\{\left|f_{2}-g\right|,\left|f_{2}-f_{3}\right|\right\}<C \varepsilon$ proving the claim.

We can now finally prove the apporximation result that played a crucial role in Section 1.4
Proof of Proposition 1.4.1. For any $h \in \mathbb{Z}$ we will denote $\mathcal{O}\left(X_{h}\right)\left\langle\theta_{1}, \ldots, \theta_{n}\right\rangle$ by R_{h}. We also denote the π-adic completion of $\lim _{\rightarrow h} R_{h}^{\circ}$ by R^{+}and $R^{+}\left[\pi^{-1}\right]$ by R.

By Proposition A.2.1 we conclude that there exist integers m and n and a m-tuple of polynomials $P=\left(P_{1}, \ldots, P_{m}\right)$ in $K[\sigma, \tau]$ where $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ and $\tau=\left(\tau_{1} \ldots, \tau_{m}\right)$ are systems of variables such that $K\langle\sigma, \tau\rangle /(P) \cong \mathcal{O}(Y)$ and each f_{k} is induced by maps $(\sigma, \tau) \mapsto\left(s_{k}, t_{k}\right)$ from $K\langle\sigma, \tau\rangle /(P)$ to R for some m-tuples s_{k} and n-tuples t_{k} in R. Moreover, there exists a sequence of power series $F_{k}=\left(F_{k 1}, \ldots, F_{k m}\right)$ associated to each f_{k} such that

$$
(\sigma, \tau) \mapsto\left(s_{k}+\left(\tilde{s}_{k}-s_{k}\right) \chi, F_{k}\left(s_{k}+\left(\tilde{s}_{k}-s_{k}\right) \chi\right) \in R\langle\chi\rangle \cong \mathcal{O}\left(X \times \mathbb{B}^{n} \times \mathbb{B}^{1}\right)\right.
$$

defines a map H_{k} satisfying the first claim, for any choice of $\tilde{s}_{k} \in{\underset{\longrightarrow}{l}}_{h} R_{h}^{\circ}$ such that \tilde{s}_{k} is in the convergence radius of F_{k} and $F_{k}\left(\tilde{s}_{k}\right)$ is in R^{+}.

Let now ε be a positive real number, smaller than all radii of convergence of the series $F_{k j}$ and such that $F(a) \in R^{+}$for all $|a-s|<\varepsilon$. Denote by $\tilde{s}_{k i}$ the elements associated to $s_{k i}$ by applying Proposition A.2.2 with respect to the chosen ε. In particular, they induce a well defined map H_{k} and the elements $\tilde{s}_{k i}$ lie in $R_{\bar{h}}^{\circ}\left\langle\theta_{1} \ldots, \theta_{n}\right\rangle$ for some integer \bar{h}. We show that the maps H_{k} induced by this choice also satisfy the second and third claims of the proposition.

Suppose that $f_{k} \circ d_{r, \epsilon}=f_{k^{\prime}} \circ d_{r, \epsilon}$ for some $r \in\{1, \ldots, n\}$ and $\epsilon \in\{0,1\}$. This means that $\bar{s}:=\left.s_{k}\right|_{\theta_{r}=\epsilon}=\left.s_{k^{\prime}}\right|_{\theta_{r}=\epsilon}$ and $\bar{t}:=\left.t_{k}\right|_{\theta_{r}=\epsilon}=\left.t_{k^{\prime}}\right|_{\theta_{r}=\epsilon}$. This implies that both $\left.F_{k}\right|_{\theta_{r}=\epsilon}$ and $\left.F_{k^{\prime}}\right|_{\theta_{r}=\epsilon}$ are two m-tuples of formal power series \bar{F} with coefficients in $\mathcal{O}\left(X \times \mathbb{B}^{n-1}\right)$ converging around \bar{s} and such that $P(\sigma, \bar{F}(\sigma))=0, \bar{F}(\bar{s})=\bar{t}$. By the unicity of such power series stated in Corollary A.1.2, we conclude that they coincide.

Moreover, by our choice of the elements \tilde{s}_{k} it follows that $\overline{\tilde{s}}:=\left.\tilde{s}_{k}\right|_{\theta_{r}=\epsilon}=\left.\tilde{s}_{k^{\prime}}\right|_{\theta_{r}=\epsilon}$. In particular one has

$$
\left.F_{k}\left(\left(\tilde{s}_{k}-s_{k}\right) \chi\right)\right|_{\theta_{r}=\epsilon}=\bar{F}((\overline{\tilde{s}}-\bar{s}) \chi)=\left.F_{k^{\prime}}\left(\left(\tilde{s}_{k^{\prime}}-s_{k^{\prime}}\right) \chi\right)\right|_{\theta_{r}=\epsilon}
$$

and therefore $H_{k} \circ d_{r, \epsilon}=H_{k^{\prime}} \circ d_{r, \epsilon}$ proving the second claim.
The third claim follows immediately since the elements $\tilde{s}_{k i}$ satisfy the condition (4) of Proposition A.2.2.

Bibliography

[1] Théorie des topos et cohomologie étale des schémas. Tome 2. Lecture Notes in Mathematics, Vol. 270. Springer-Verlag, Berlin, 1972. Séminaire de Géométrie Algébrique du Bois-Marie 1963-1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat.
[2] Fabrizio Andreatta. Generalized ring of norms and generalized (ϕ, Γ)-modules. Ann. Sci. École Norm. Sup. (4), 39(4):599-647, 2006.
[3] Joseph Ayoub. L'algèbre de Hopf et le groupe de Galois motiviques d'un corps de caractéristique nulle, I. Journal für die reine und angewandte Mathematik, to appear.
[4] Joseph Ayoub. L'algèbre de Hopf et le groupe de Galois motiviques d'un corps de caractéristique nulle, II. Journal für die reine und angewandte Mathematik, to appear.
[5] Joseph Ayoub. Motifs des variétés analytiques rigides. Preprint, http://user.math.uzh.ch/ayoub.
[6] Joseph Ayoub. Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique, II. Astérisque, (315):vi+364 pp. (2008), 2007.
[7] Joseph Ayoub. La réalisation étale et les opérations de Grothendieck. Ann. Sci. Éc. Norm. Supér. (4), 47:1-141, 2014.
[8] Alexander Beilinson and Vadim Vologodsky. A DG guide to Voevodsky's motives. Geom. Funct. Anal., 17(6):1709-1787, 2008.
[9] Siegfried Bosch, Ulrich Güntzer, and Reinhold Remmert. Non-Archimedean analysis, volume 261 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1984. A systematic approach to rigid analytic geometry.
[10] Ronald Brown and Philip J. Higgins. On the algebra of cubes. J. Pure Appl. Algebra, 21(3):233-260, 1981.
[11] Ronald Brown, Philip J. Higgins, and Rafael Sivera. Nonabelian algebraic topology, volume 15 of EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich, 2011. Filtered spaces, crossed complexes, cubical homotopy groupoids, With contributions by Christopher D. Wensley and Sergei V. Soloviev.
[12] Kevin Buzzard and Alain Verberkmoes. Stably uniform affinoids are sheafy. arXiv:1404.7020 [math.NT], 2014.
[13] Denis-Charles Cisinski and Frédéric Déglise. Triangulated categories of mixed motives. arXiv:0912.2110 [math.AG], 2009.
[14] Michel Demazure and Pierre Gabriel. Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs. Masson \& Cie, Éditeur, Paris, 1970. Avec un appendice Corps de classes local par Michiel Hazewinkel.
[15] Daniel Dugger, Sharon Hollander, and Daniel C. Isaksen. Hypercovers and simplicial presheaves. Math. Proc. Cambridge Philos. Soc., 136(1):9-51, 2004.
[16] Halvard Fausk. T-model structures on chain complexes of presheaves. arXiv:math/0612414 [math.AG], 2006.
[17] Jean-Marc Fontaine and Jean-Pierre Wintenberger. Extensions algébriques et corps des normes des extensions APF des corps locaux. C. R. Acad. Sci. Paris Sér. A-B, 288(8):A441-A444, 1979.
[18] Jean Fresnel and Marius van der Put. Rigid analytic geometry and its applications, volume 218 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 2004.
[19] Ofer Gabber and Lorenzo Ramero. Almost ring theory, volume 1800 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2003.
[20] Alexander Grothendieck. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II. Inst. Hautes Études Sci. Publ. Math., (24):231, 1965.
[21] Alexander Grothendieck. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV. Inst. Hautes Études Sci. Publ. Math., (32):361, 1967.
[22] Philip S. Hirschhorn. Model categories and their localizations, volume 99 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2003.
[23] Mark Hovey. Model categories, volume 63 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1999.
[24] Mark Hovey. Spectra and symmetric spectra in general model categories. J. Pure Appl. Algebra, 165(1):63-127, 2001.
[25] Roland Huber. Continuous valuations. Math. Z., 212(3):455-477, 1993.
[26] Roland Huber. A generalization of formal schemes and rigid analytic varieties. Math. Z., 217(4):513-551, 1994.
[27] Roland Huber. Étale cohomology of rigid analytic varieties and adic spaces. Aspects of Mathematics, E30. Friedr. Vieweg \& Sohn, Braunschweig, 1996.
[28] Jun-ichi Igusa. An introduction to the theory of local zeta functions, volume 14 of AMS/IP Studies in Advanced Mathematics. American Mathematical Society, Providence, RI, 2000.
[29] John F. Jardine. Simplicial presheaves. J. Pure Appl. Algebra, 47(1):35-87, 1987.
[30] John F. Jardine. Cubical homotopy theory: a beginning. Preprints of the Newton Institute, NI02030-NST, 2002.
[31] Peter T. Johnstone. Sketches of an elephant: a topos theory compendium. Vol. 1, volume 43 of Oxford Logic Guides. The Clarendon Press, Oxford University Press, New York, 2002.
[32] Ernst Kleinert. Some remarks on the Chinese remainder theorem. Arch. Math. (Basel), 52(5):433-439, 1989.
[33] János Kollár. Quotient spaces modulo algebraic groups. Ann. of Math. (2), 145(1):33-79, 1997.
[34] Georges Maltsiniotis. La catégorie cubique avec connexions est une catégorie test stricte. Homology, Homotopy Appl., 11(2):309-326, 2009.
[35] J. Peter May. Simplicial objects in algebraic topology. Van Nostrand Mathematical Studies, No. 11. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967.
[36] Carlo Mazza, Vladimir Voevodsky, and Charles Weibel. Lecture notes on motivic cohomology, volume 2 of Clay Mathematics Monographs. American Mathematical Society, Providence, RI, 2006.
[37] Fabien Morel and Vladimir Voevodsky. A ${ }^{1}$-homotopy theory of schemes. Inst. Hautes Études Sci. Publ. Math., (90):45-143 (2001), 1999.
[38] Jürgen Neukirch. Algebraic number theory, volume 322 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999. Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder.
[39] Dorin Popescu. General Néron desingularization. Nagoya Math. J., 100:97-126, 1985.
[40] Dorin Popescu. General Néron desingularization and approximation. Nagoya Math. J., 104:85-115, 1986.
[41] Joël Riou. Catégorie homotopique stable d'un site suspendu avec intervalle. Bull. Soc. Math. France, 135(4):495-547, 2007.
[42] Peter Scholze. Perfectoid spaces. Publ. Math. Inst. Hautes Études Sci., 116:245-313, 2012.
[43] Peter Scholze. p-adic Hodge theory for rigid-analytic varieties. Forum Math. Pi, 1:e1, 77, 2013.
[44] Peter Scholze. Perfectoid Spaces: A survey. arXiv:1303.5948 [math.AG], 2013.
[45] Peter Scholze and Jared Weinstein. Moduli of p-divisible groups. arXiv:1211.6357v2 [math.NT], 2013.
[46] Stefan Schwede and Brooke Shipley. Equivalences of monoidal model categories. Algebr. Geom. Topol., 3:287-334 (electronic), 2003.
[47] The Stacks Project Authors. Stacks Project. http://stacks.math.columbia.edu, 2014.
[48] Andrei Suslin and Vladimir Voevodsky. Bloch-Kato conjecture and motivic cohomology with finite coefficients. In The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), volume 548 of NATO Sci. Ser. C Math. Phys. Sci., pages 117-189. Kluwer Acad. Publ., Dordrecht, 2000.
[49] John Tate. Rigid analytic spaces. Invent. Math., 12:257-289, 1971.
[50] Andrew P. Tonks. Cubical groups which are Kan. J. Pure Appl. Algebra, 81(1):83-87, 1992.
[51] Vladimir Voevodsky. Homology of schemes. Selecta Math. (N.S.), 2(1):111-153, 1996.
[52] Torsten Wedhorn. Adic spaces. Preprint, 2012.

