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Abstract. The large adoption of the cloud paradigm is introducing
more and more scenarios where users can access data and services with
an unprecedented convenience, just relying on the storage and compu-
tational power offered by external providers. Also, users can enjoy a
diversity and variety of offers, with the possibility of choosing services
by different providers as they best suit their needs. With the growth of
the market, economic factors have become one of the crucial aspects in
the choice of services. However, security remains a major concern and
users will be free to actually benefit from the diversity and variety of
such offers only if they can also have proper security guarantees on the
services. In this paper, we build upon a recent proposal for assessing
integrity of computations performed by potentially untrusted providers
introducing some optimizations, thus limiting the overhead to be paid
for integrity guarantees, and making it suitable to more scenarios.

1 Introduction

The competitive pressures are driving the IT sector away from the classical model
that assumed the processing and storage of an organization data within the in-
ternal information system, toward the use of storage and processing capabilities
offered by providers, which can benefit from economies of scale deriving from
the large size of the infrastructure and service catalogue, together with possible
access to less expensive resources. Along this line, we can expect a continuous
increase in the differentiation of the market for cloud services. For instance, in
the area of cloud architectures, interest has emerged on hybrid clouds and on a
distinction between cloud storage and cloud computational services. Storage and
computational services respond in fact to separate requirements, with distinct
profiles. The first should offer reliability for data storage, typically correspond-
ing to providers with high reputation on the market. The second should offer
availability of – possibly cheap – computational power, which can be offered
by unknown providers. Reputation of the provider is, in this case, less critical,
as it is relatively easy to move computation from one provider to another, and
the most important parameter becomes the price of the service. An obstacle
to a stronger differentiation in the market between storage and computational
resources is however represented by the security concerns of users, who can see



the involvement of multiple parties in the processing of their information as
increasing the risk of confidentiality and integrity violations.

In this paper, we present an approach for users to protect confidentiality of
processed data and to assess the integrity of computations performed by poten-
tially untrusted computational providers, operating over data stored at trusted
storage providers. Our approach builds upon a recent proposal [5], aimed at
controlling the behavior of a computational provider that joins data stored at
independent trusted storage servers. We address the problem of optimizing in-
tegrity controls so to decrease their performance and economic overheads mak-
ing them suitable to more scenarios and enabling their application with stronger
integrity guarantees. In particular, we introduce two optimization techniques.
The first technique (Sect. 3) exploits the execution of the join with a semi-join
strategy, hence possibly decreasing data communication and consequent perfor-
mance/economic costs, while leaving unaltered the offered guarantees. The sec-
ond technique (Sect. 4) limits the application of the integrity checks to a small
portion of the data, producing a considerable saving in terms of performance
and economic cost, though at the price of a reduced integrity guarantee. The
two optimizations are independent and orthogonal and can be used individually
or in combination (Sects. 5 and 6).

2 Scenario and Basic Concepts

We present the basic idea of the approach on which we build our optimization
techniques. The scenario is characterized by a client that wishes to evaluate a
query involving a join over two relations, Bl and Br, stored at storage servers Sl

and Sr, respectively, by using a computational server Cs. The storage servers are
assumed to be trustworthy while the computational server is not. The query is of
the form “select A from Bl join Br on Bl.I = Br.I where Cl and Cr and

Clr,” where A is a subset of attributes in Bl ∪Br; I is the set of join attributes;
and Cl, Cr, and Clr are Boolean formulas of conditions over attributes in Bl,
Br, and Bl ∪ Br, respectively. Typically, execution of such a query involves in
pushing down, to each of the storage servers, the evaluation of the condition (Cl

and Cr) on its own relation. We assume that, regardless of the degree of the
original schema, relations L and R resulting from the evaluation of Cl and Cr,
respectively, have schema (I, Attr), where I and Attr represent the set of join
attributes and all the other attributes, respectively, as a unit. Without security
concerns, relations L and R are then sent to the computational server, which
performs the join, evaluates condition Clr and returns the result to the client.
Since the computational server is not trusted, the proposal in [5]: i) provides data
confidentiality by encrypting on the fly the relations sent to the computational
server, with a key communicated by the client to the storage servers, ii) provides
integrity guarantees by using a combination of controls as follows:

– markers: each of the storage servers inserts fake control tuples (markers),
not recognizable by the computational server, in the relation to be sent to



the computational server. Markers are inserted so to join (i.e., belong to
the result) and to not collide with real join attribute values (to not create
spurious joined tuples).

– twins: each of the storage servers duplicates (twins) some of the tuples in its
relation before sending it to the computational server. The creation of twins
is easily controlled by the client by specifying a percentage of tuples to be
twinned and a condition for twinning.

– salts/buckets: used in alternative or in combination to destroy recognizable
frequencies of combinations in one-to-many joins. Salts consist in salting the
encryption at side “many” of the join so that occurrences of a same value
become distinct; at the same time salted replicas are created at side “one”
of the join so to create the corresponding matching. Bucketization consists
in allowing multiple occurrences of the same (encrypted) value at the side
many of the join, but in such a way that all the values have the same number
of occurrences. Bucketization can help in reducing the number of salts to be
inserted, while possibly requiring insertion of dummy tuples (to fill otherwise
not complete buckets).

Join computation, illustrated in Fig. 1(a), works now as follows. Each storage
server receives in encrypted form its sub-query, together with the key to be used
to encrypt the sub-query result, and the needed information to regulate the use
of markers, twins, salts and buckets. It then executes the received sub-query (as
before), and applies over the resulting relation L (R, resp.) markers, twins, salts
and buckets as appropriate, producing a relation L∗ (R∗, resp.). Relation L∗

(R∗, resp.) is then encrypted producing relation L∗
k (R∗

k, resp) to be sent to the
computational server. Encrypted relation L∗

k (R∗
k, resp.) contains two encrypted

chunks for each tuple: L∗
k.Ik (R∗

k.Ik, resp.) for the join attribute, and L∗
k.Tuplek

(R∗
k.Tuplek, resp.) for all the other attributes (including the join attribute). The

computational server receives the encrypted relations from the storage servers
and performs the join returning the result J∗

k to the client. The client receives
the join result, decrypts it, checks whether the tuples have been correctly joined
(i.e., L∗.I obtained decrypting L∗

k.Tuplek is equal to R∗.I obtained decrypting
R∗

k.Tuplek), and discards possible tuples with dummy content. Then, it checks
integrity by analyzing markers and twins: an integrity violation is detected if
an expected marker is missing or a twinned tuple appears solo. Note that the
combined use of markers and twins offers strong protection guarantees. In fact,
when omitting a large number of tuples in query results, the probability that
the omission goes undetected increases with respect to twins, and decreases with
respect to markers (e.g., one marker is sufficient to detect that an empty result
is not correct), and vice versa. Figure 1(b) illustrates an example of relations L
and R and of their extensions obtained by assuming: the presences of one marker
(with value x for the join attribute), twinning tuples with join attribute equal
to b, and adopting 2 salts and buckets with 2 tuples each. Figure 1(c) reports
the join result J∗ obtained by the client decrypting relation J∗

k received from
the computational server.
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a Ann a asthma
b Beth b ulcer
b Beth b dummy1
b̄ Beth b̄ ulcer
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x marker1 x marker2
x marker1 x dummy3

(b) (c)

Fig. 1. Join computation as a regular join (a) and an example of relations L and R

and their extensions with markers, twins, salts and buckets (b) along with the join
computed over them (c)

3 Semi-join

The first optimization we illustrate consists in performing the join according to
a semi-join strategy. Without security concerns, a semi-join simply implements
a join operation by first considering only the projection of the join attribute
over the stored relations. Only after the join is computed, the join attribute is
extended with the other attributes from the source relations to produce the final
result. In our distributed setting, semi-joins – while requiring additional data
flows – avoid communication of unnecessary tuples to the client and of non-join
attributes to the computational server, producing a saving of the total commu-
nication costs for selective joins and/or relations with tuples of considerable size
(see Sect. 6). Our approach for executing a semi-join in conjunction with the
security techniques illustrated in the previous section works as follows. The exe-
cution of the join at the computational server basically works as before: it again
receives from the storage servers encrypted relations on which markers, twins,
salts and buckets have been applied; it computes the join between them; and it
sends the result to the client. However, in this case:

– the storage servers do not communicate to the computational server their
entire tuples (relation L) but rather much slimmer tuples (relation LI) with



Fig. 2. Join execution as a semi-join

only the join attribute and the tuple identifier (both in encrypted form). The
tuple identifier (T id) is needed to keep tuples with the same value for the
join attribute distinct.

– after checking/cleaning the result of the join (relation JI), the client asks
the storage servers to complete the tuples in the join with the attributes in
Attr in their relations (obtaining relations LJ and RJ), and combines their
results.

The join process is illustrated in Fig. 2, where the striped triangle corresponds
to the process in Fig. 1(a).

Note that, while entailing more flows (the previous process is a part of this),
the semi-join execution limits the transfer of non-join attributes, thus reducing
the amount of data transferred. Note also that while the storage servers and
the client are involved in the execution of some computation to combine tuples,
this computation does not entail an actual join execution but rather a simple
scan/merging of ordered tuples that then requires limited cost.

Figure 3 illustrates an example of join computation over relations L and R in
Fig. 1(b) according to the semi-join strategy. The semi-join execution strategy
leaves unchanged the integrity guarantees offered by our protection techniques.
In fact, the join computed by the computational server relies on the same pro-
tection techniques used for the computation of a regular join, and the storage
servers are assumed to correctly evaluate the queries received from the client.
The probability ℘ that the computational server omits o tuples without being
detected is then the same of regular joins, that is, ℘ = (1− o

f
)m ·(1−2 o

f
+2( o

f
)2)t≈

e−2 t
f
o, where f is the cardinality of relation J∗ with t twin pairs and m mark-

ers [5]. In fact, the probability that no marker is omitted is (1− o
f
)m, while the

probability that, for each twin pair, either both tuples are omitted or both are
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Fig. 3. An example of query evaluation process with twins on b, one marker, two salts,
and buckets of size two

preserved is (1−2 o
f
+2( o

f
)2)t. This probabilistic analysis has also been confirmed

by and experimental analysis [5].

4 Limiting Salts and Buckets to Twins and Markers

The overhead caused by the adoption of our protection techniques is mainly due
to salts and buckets [5], which are used to protect the frequency distribution
of the values of the join attribute in case of one-to-many joins. In the following
discussion, we refer to the execution of the join according to the process described
in Sect. 2. Let s be the number of salts and b be the size of buckets defined by the
client. Relation L∗ includes s copies of each original tuple in L and of each twin.
Relation R∗ instead includes b tuples for each marker (one marker and (b − 1)
dummy tuples) and between 0 and (b−1) dummy tuples for each value of the join
attribute appearing in R and in the twinned tuples. Hence, also the join result
J∗ will have b tuples for each marker and between 0 and (b−1) dummy tuples for
each original and twinned value of the join attribute. For instance, with respect
to the example in Fig. 1(b), the adoption of our protection techniques causes the
presence of six additional tuples in L∗ and R∗, and five additional tuples in J∗.

The second optimization we propose aims at limiting the overhead caused by
the adoption of salts and buckets by applying them only to twins and markers
rather than to the whole relations. Twins and markers (properly bucketized
and salted) would form a Verification Object (VO) that can be attached to the
original (encrypted) relation. As an example, Fig. 4 illustrates the extended
version of relations L and R in Fig. 1(b) where salts and buckets operate only
on twins and markers. It is immediate to see that this optimization saves three
tuples in L∗, two in R∗, and one in J∗. The strategy of limiting salts and buckets
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b Beth
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Fig. 4. An example of extensions of relations L and R in Fig. 1(b) and their join when
salts and buckets are limited to twins and markers

to twins and markers can be adopted in combination with both the regular and
the semi-join strategies, reducing the computational overhead in both cases.
While providing performance advantages, this strategy may reduce the integrity
guarantee provided to the client. Let us consider a relation J∗, with f original
tuples, t twin pairs, and m markers. We examine the probability ℘ that the
computational server omits o original tuples without being detected. We build
a probabilistic model considering the worst case scenario, assuming that the
computational server: i) is able to recognize the tuples in VO (only the tuples
in VO have a flat frequency distribution), ii) knows the number m of markers
in VO, iii) but cannot recognize which tuples in VO are twins and which are
markers, or which of the original tuples have been twinned. We also consider all
the tuples in a bucket as a single tuple. In fact, the computational server either
preserves or omits buckets of tuples in their entirety as omissions of subsets of
tuples in a bucket can always be detected. If the server omits o tuples out of
f , the probability for each twin to be omitted will be o

f
. To go undetected, the

server should provide a configuration of VO consistent with the f − o returned
tuples. There is only one such configuration, which contains a number of tuples
between m and (m+t). The goal of the computational server is to maximize
the probability of being undetected. We can model the behavior of the server
considering two phases. In the first phase, the server determines the number of
tuples that should belong to VO after the omission. Since there is a uniform and
independent probability for the omission of twins, the number of expected tuples
in VO follows a binomial distribution. This means that the probability that VO
contains (m+t)−k tuples is ℘omit =

(

t
k

)

(1− o
f
)t−k( o

f
)k (e.g., the probability that

VO does not miss any tuple, k = 0, is ℘omit = (1 − o
f
)t). In the second phase,

the server tries to guess the correct configuration including (m + t) − k tuples.
The number of such configurations depends on the number of missing tuples: if
the server knows that k of the (m+t) tuples in VO are missing, the number of
possible configurations is

(

m+t
k

)

, and the probability ℘guess of guessing it right
is the inverse of this quantity. For instance, if no tuple is omitted (k = 0), the
server is certain of guessing the right configuration, whereas if all the twins have
been omitted, the probability of randomly guessing the right configuration with
exactly m tuples is 1/

(

m+t
m

)

, that is, m! · t!/(m + t)!. The server can estimate
the probability of a correct guess for each strategy by multiplying the first term
with the second term, that is, ℘ = ℘omit · ℘guess. The server, to maximize the
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Fig. 5. Probability ℘ that the server omits a fraction o
f

of the tuples without being
detected, considering several strategies, assuming t = 1 (a) and t = 2 (b)

chance of not being detected, will have to choose the strategy that exhibits the
greatest value. Since the second term exhibits an exponential growth with the
increase in k, the server will typically prefer the strategy where no tuple in VO
is omitted.

Figure 5 shows the result of the analysis for configurations with 1 or 2 twins
and a variable number of markers. For the configuration with 1 twin in Fig. 5(a),
we can see that the strategy that keeps all the elements in VO (independently
from the number of markers) is preferable for a large range of omissions. When
the number of markers increases, the cutoff between the selection of the strat-
egy that tries to guess the tuple to omit from VO moves progressively to the
right. A similar behavior characterizes the configuration with 2 twins described
in Fig. 5(b), which shows that there is a range of values for o

f
where each con-

figuration is preferable, but as the number of markers increases, the “keep all”
strategy extends its benefit. The ability to avoid detection when omitting tuples
becomes negligible when we consider configurations with the number of twins
and markers that we expect to use in real systems.

As said above, it is convenient for the server to keep all the tuples in VO. In
this case, the omission goes undetected if the server does not omit any original
tuple that has been twinned. The probability ℘ for the server to go undetected

is then equal to ℘ = (1 − o
f
)t ≈ e−

t
f
·o. Figure 6 compares the results obtained

when salts and buckets protect the whole relations (“full salts and buckets” in
the figure) with the case where salts and buckets protect only VO (“VO-only
salts and buckets” in the figure), assuming t

f
=15%. We note that limiting salts

and buckets to twins and markers offers roughly half the protection of applying
salts and buckets to the whole relation. Intuitively, the client can obtain the
same protection guarantee by doubling the ratio t

f
of twins. We note however

that, even limiting salts and buckets to VO, the probability that the server is
not detected when omitting more than 30 tuples is negligible and is independent
from the number f of tuples in the original relation. Since the computational
server cannot selectively omit tuples from the join result (i.e., it cannot recognize
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tuples that have a twin), the advantage obtained from the omission of less than
30 tuples does not justify the risk of being detected in its omission.

5 Performance Analysis

We now evaluate the performance benefits obtained with the introduction of the
semi-join strategy and the use of salts and buckets only on twins and markers.
The performance costs depend on both the computational and communication
costs. The computational costs are however dominated by the communication
costs. In fact, the computational costs at the client and at the storage servers
can be considered limited with respect to the computational costs at the com-
putational server, which however can rely on a high amount of computational
resources and on traditional techniques for optimizing join evaluation. In the
following, we then focus our analysis first on the communication costs when
evaluating a join as a regular join (RegJ ) [5] or as a semi-join (SemiJ ), accord-
ing to the process described in Sect. 3. We then analyze the communication costs
obtained when limiting salts and buckets to twins and markers.

Semi-join vs regular join. This analysis focuses on the amount of data ex-
changed among the involved parties (i.e., number of tuples transferred multiplied
by their size). We first note that both the regular join and the semi-join require
a common phase (Phase 1) where there is an exchange of data (tuples) between
the storage servers and the computational server and between the computational
server and the client. In this phase, regular join and semi-join differ in the size
of the tuples transferred among the parties. The semi-join then requires an ad-
ditional phase (Phase 2) where the client and the storage servers interact to
compute the final join result. We analyze each of these two phases in details.
Phase 1 [S l,Sr→ Cs; Cs→ Client]. As already discussed, the only difference
between SemiJ and RegJ is the size of the tuples communicated, while the
number of tuples in the join operands and in its result is the same for both
strategies. SemiJ requires the transmission of the join attribute and of the tuple



identifiers only, which are the two attributes forming the schema of relations LI
and RI. RegJ requires instead the transmission of all the attributes in L and R.
If the size of the tuples in L and R is higher than the size of the tuples in LI
and RI, SemiJ implies a lower communication cost than RegJ . Formally, the
amount of data transmitted during this phase is:
SemiJ : |L∗| · sizeL + |R∗| · sizeR + |J∗| · (sizeL + sizeR)
RegJ : |LI∗| · sizeIT + |RI∗| · sizeIT + |JI∗| · 2sizeIT

where sizeL is the size of the tuples in L, sizeR is the size of the tuples in R, sizeIT
is the sum sizeI + sizeTid, with sizeI the size of the join attribute I and sizeTid

the size of the tuple identifier T id. Since LI∗ (RI∗ and JI∗, resp.) has the same
number of tuples as L∗ (R∗ and J∗, resp.), the difference in the communication
cost is:

|L∗| · (sizeL − sizeIT ) + |R∗| · (sizeR − sizeIT ) + |J∗| · (sizeL + sizeR − 2sizeIT ).

Phase 2 [Client →S l,Sr; S l,Sr→ Client]. The number of tuples exchanged be-
tween the client and Sr is equal to the number of tuples resulting from the join
computed by the computational server in the previous phase, after the removal of
markers, twins, and dummies (i.e., |JI|=|RJ|). The number of tuples exchanged
between the client and S l depends on the type of join. In case of one-to-one joins,
the number of tuples coincides with the number of tuples transmitted from the
client to Sr (i.e., |JI|=|LI|). In case of one-to-many joins, the number of tuples
is lower since the same tuple in LI (L, resp.) may appear many times in the
join result JI (J , resp.). Assuming a uniform distribution of values, the number

of different values for the join attribute in RI is 2|RI|
nmax

. Given the selectivity σ
of the join operation, the number of different values for the join attribute in JI

is σ · 2|RI|
nmax

, which corresponds to the number of tuples exchanged between the
client and Sl. The size of the tuples transmitted from the client to each storage
server is sizeTid since the client transmits only the values of the tuple identifier
T id. The size of the tuples transmitted from the storage servers to the client is
equal to the size of the tuples in the original relations L and R (i.e., sizeL and
sizeR, resp.). Formally, the amount of data exchanged during this phase is:
one-to-one join: 2|JI| · sizeTid + |JI| · sizeL + |JI| · sizeR;

one-to-many join: (|JI|+ σ · 2|RI|
nmax

) · sizeTid + σ · 2|RI|
nmax

· sizeL + |JI| · sizeR.
By comparing the amount of data transmitted in Phase 2 with the additional
amount of data transmitted in Phase 1 caused by the regular join, we note that
the semi-join is convenient for relations with large tuples (i.e., sizeIT << sizeL
and sizeIT << sizeR), as also shown by our experimental analysis (Sect. 6). The
advantage of the semi-join with respect to the regular join appears also more
evident in case of one-to-many joins where a tuple in the left operand can appear

many times in the join result (i.e., |LJ | ≈ σ · 2|RI|
nmax

<< |JI|). In fact, with the
semi-join strategy the client receives each tuple in L that belongs to the final
result only once, while it receives many copies of the same tuple when adopting
the regular join approach.

Limiting salts and buckets to twins and markers. The saving, in terms of
communication cost, provided applying salts and buckets to markers and twins



rather than to the whole relation can be computed by analyzing the difference
in the number of tuples in L∗, R∗, and J∗. We analyze each relation in detail.

– L∗. Since only twin tuples are salted, we save the salted copies of the tuples
in L, that is, (s− 1) · |L| tuples.

– R∗. Since buckets operate only on twins and markers, we save the dummy
tuples of the buckets formed with the tuples in R. Since for each value of
the join attribute, there is at most one bucket with dummy tuples with, on

average, b−1
2 dummy tuples, and there are 2|R|

nmax
distinct values for the join

attribute (again assuming a uniform distribution of values), we save b−1
nmax

·|R|
tuples.

– J∗. The join result contains the subset of the tuples in R∗ that combine with
the tuples in L∗. The number of tuples saved in J∗ is then a fraction of the
number of tuples saved in R∗, that is, σ · b−1

nmax
· |R|.

The overall advantage provided by limiting salts and buckets to twins and mark-
ers is: (s− 1) · |L| · sizeL + b−1

nmax
· |R| · sizeR + σ · b−1

nmax
· |R| · (sizeL + sizeR).

6 Experimental Results

To assess the performance advantage of the semi-join strategy with respect to
the regular join and of limiting salts and buckets to twins and markets, we
implemented a prototype enforcing our protection techniques, and run a set of
experiments. We used for the computational server a machine with 2 Intel Xeon
Quad 2.0GHz, 12GB RAM. The client machine and the storage servers were
standard PCs running an Intel Core 2 Duo CPU at 2.4 GHz, with 4GB RAM,
connected to the computational server through a WAN connection with a 4 Mbps
throughput. The values reported are the average over six runs.

Regular join vs semi-join.A first set of experiments was dedicated to the com-
parison between the regular join and the semi-join. The experiments also eval-
uated the impact of latency on the computation, comparing the response times
for queries over local networks (local client configuration) with those obtained
with a client residing on a PC at a distance of 1,000 Km connected through a
shared channel that in tests demonstrated to offer a sustained throughput near
to 80 Mbit/s (remote client configuration). The experiments used a synthetic
database with two tables, each with between 104 and 106 tuples, with size equal
to 30 and 2,000 bytes. We computed one-to-one joins between these tables, using
500 markers and 10% of twins. The results of these experiments are reported in
Fig. 7.

The results confirm that the use of semi-join (SemiJ in the figure) gives
an advantage with respect to regular join (RegJ in the figure) when the tuples
have a large size, whereas the advantage becomes negligible when executing a
join over compact tuples. This is consistent with the structure of the semi-join
computation, which increases the number of exchanges between the different
parties, but limits the number of transfers of non-join attributes. When the
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Fig. 7. Response time for regular join and semi-join

tuples are large, the benefit from the reduced transfer of the additional attributes
compensates the increased number of operations, whereas for compact tuples
this benefit is limited. The experiments also show that the impact of latency is
modest, as the comparison between local client and remote client configurations
of the response times for the same query shows a limited advantage for the local
client scenario, consistent with the limited difference in available bandwidth.
The results obtained also confirm the scalability of the technique, which can be
applied over large tables (up to 2 GB in each table in our experiments) with
millions of tuples without a significant overhead.

Limiting salts and buckets to twins and markers. A second set of ex-
periments was dedicated to the analysis of the use of salts and buckets. The
experiments considered a one-to-many join, evaluated as a regular join, over
a synthetic database containing 1,000 tuples in both join operands. We tested
configurations with at most 50 occurrences of each value, and used a number of
salts s varying between 1 and 100 and buckets of size b=⌈ 50

s
⌉. The experiments

evaluating the overhead of the protection techniques when salts and buckets are
used only on markers and twins show that the overhead due to salts and buckets
is proportional to the fraction of tuples that are twinned. For instance, if we add
a 10% of twins, the overhead for salts and buckets will be one tenth of what
we would have observed if applying the protection to all the tuples. Figure 8
compares the response time observed when executing the query without using
our protection techniques (“base” in the figure), when using 50 markers and 15%
of twins with salts and buckets on the whole table (“full salts and buckets” in
the figure), and a configuration with 50 markers and 30% of twins with salts
and buckets only on markers and twins (“VO-only salts and buckets” in the
figure). The experiments confirm that the increase in response time represents a
fraction t

f
(with t the number of twins and f the cardinality of the join result)

of the increase that would otherwise be observed using salts and buckets over all
the tuples. The figure also shows that the overhead due to the adoption of our
protection techniques is limited.
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Economic analysis. Besides the response time perceived by the user, the choice
between regular and semi-join needs to take into consideration also the economic
cost of each alternative. We focused on evaluating the economic advantage of
the availability of the semi-join, besides regular join, strategy when executing
queries [10]. In fact, in many situations the semi-join approach can be less ex-
pensive, since it entails smaller flows of information among the parties.

In our analysis, we assumed economic costs varying in line with available
solutions (e.g., Amazon S3 and EC2, Windows Azure, GoGrid), number of tuples
to reflect realistic query plans, and reasonable numbers for twins and markers. In
particular, we considered the following parameters: i) cost of transferring data
out of each storage server (from 0.00 to 0.30 USD per GB), of the computational
server (from 0.00 to 0.10 USD per GB), and of the client (from 0.00 to 1.00 USD
per GB); ii) cost of transferring data to the client (from 0.00 to 1.00 USD per
GB);4 iii) cost of CPU usage for each storage server (from 0.05 to 2.50 USD
per hour), for the computational server (from 0.00 to 0.85 USD per hour), and
for the client (from 1.00 to 4.00 USD per hour); iv) bandwidth of the channel
reaching the client (from 4 to 80 Mbit/s); v) size sizeIT = sizeI + sizeTid of
the join attribute and the tuple identifier (from 1 to 100 bytes); vi) number of
tuples in L (from 10 to 1,000) and the size of the other attributes sizeL − sizeIT
(from 1 to 300 bytes); vii) number of tuples in R (from 10 to 10,000) and the
size of the other attributes sizeR − sizeIT (from 1 to 200 bytes); viii) number
m of markers (from 0 to 50); ix) percentage t

f
of twins (from 0 to 0.30); x)

number s of salts (from 1 to 100); xi) maximum number nmax of occurrences of
a value in R.I (from 1 to 100); xii) selectivity σ of the join operation (from 0.30
to 1.00). Similarly to what is usually done in finance and economics to compare
alternative strategies in systems whose behavior is driven by a large number of
parameters assuming values following a probability distribution, we used a Monte
Carlo method to generate 2,000 simulations varying the parameters above and,

4 We did not consider the cost of input data for the storage and computational servers
since all the price lists we accessed let in-bound traffic be free.
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for each simulation, we evaluated the cost of executing a join operation as a
regular and as a semi-join.

We compared the cost of evaluating 2,000 one-to-one and 2,000 one-to-many
join queries with (and without resp.) the availability of the semi-join technique
for query evaluation. We assume that the query optimizer can assess which of the
two strategies (i.e., RegJ , SemiJ ) is less expensive for each query. Figures 9(a)
and 9(b) illustrate the total costs as the number of query grows for the two sce-
narios, considering one-to-one and one-to-many queries, respectively. As visible
in the figure, if all the queries are evaluated adopting the regular join approach,
the total cost (continuous line) reaches higher values than with the availability
of the semi-join approach (dotted line). This trend is more visible for one-to-
many joins, where the total cost reached when all the queries are evaluated as
regular joins is 2,475 USD while with the availability of the semi-join approach
it remains at 1,321 USD, with a total saving of 1,160 USD (corresponding to
46,85%). In fact, out of the 2,000 one-to-many queries, 1784 were evaluated as
semi-joins, while for the remaining 216 the regular join solution was cheaper.
For one-to-one joins, as expected, the total saving is lower (24.77%) since half
of the 2,000 queries considered are cheaper when evaluated as regular joins.

7 Related Work

Our work falls in the area of security and privacy in emerging outsourcing and
cloud scenarios [2,7]. In this context, researchers have proposed solutions address-
ing a variety of issues, including data protection, access control, fault tolerance,
data and query integrity (e.g., [1,3,4,6,8,9,15]). In particular, current solutions
addressing the problem of verifying the integrity (i.e., completeness, correctness,
and freshness) of query results are based on the definition of a verification object
returned with the query result. Different approaches differ in the definition of
the verification object and/or in the kind of guarantees offered, which can be



deterministic or probabilistic. For instance, some proposals are based on the def-
inition of an authenticated data structure (e.g., Merkle hash tree or a variation
of it [12,19] or of a signature-based schemas [13,14]) that allow the verification
of the correctness and completeness of query results. These proposals provide
deterministic guarantees, that is, they can detect integrity violations with cer-
tainty but only for queries involving the attribute(s) on which the authenticated
data structure has been created. Some proposals have also addressed the prob-
lem of verifying the freshness of query results (e.g., [11,18]). The idea consists in
periodically updating a timestamp included in the authenticated data structure
or in periodically changing the data generated for integrity verification.

Probabilistic approaches can offer a more general control than deterministic
approaches but they can detect an integrity violation only with a given prob-
ability (e.g., [5,16,17]). Typically, there is a trade-off between the amount of
protection offered and the computational and communication overhead caused.
The proposal in [16] consists in replicating a given percentage of tuples and in
encrypting them with a key different from the key used for encrypting the orig-
inal data. Since the replicated tuples are not recognizable as such by the server,
the completeness of a query result is guaranteed by the presence of two instances
of the tuples that satisfy the query and are among the tuples that have been
replicated. The proposal in [17] consists in statically introducing a given number
of fake tuples in the data stored at the external server. Fake tuples are generated
so that some of them should be part of query results. Consequently, whenever
the expected fake tuples are not retrieved in the query result, the completeness
of the query result is compromised. In [5] we have introduced the idea of us-
ing markers, twins, salts and buckets for assessing the integrity of join queries.
This paper extends such a solution proposing two optimizations that limit the
overhead introduced by our protection techniques.

8 Conclusions

We presented two variations to markers, twins, salts and buckets proposed for
assessing query integrity, offering significant performance benefits. In particular,
we illustrated how markers, twins, salts and buckets can be easily adapted when
a join query is executed as a semi-join, and how salts and buckets can be limited
to twins and markers. The experimental evaluation clearly showed that these
two variations limit the computational and communication overhead due to the
integrity checks.
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