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CHARACTERIZATION OF THE OPTIMAL BOUNDARIES IN
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Abstract. This paper studies a reversible investment problem where a social planner aims to
control its capacity production in order to fit optimally the random demand of a good. Our model
allows for general diffusion dynamics on the demand as well as general cost functional. The resulting
optimization problem leads to a degenerate two-dimensional bounded variation singular stochastic
control problem, for which explicit solution is not available in general and the standard verification
approach cannot be applied a priori. We use a direct viscosity solutions approach for deriving some
features of the optimal free boundary function and for displaying the structure of the solution. In
the quadratic cost case, we are able to prove a smooth fit C2 property, which gives rise to a full
characterization of the optimal boundaries and value function.
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1. Introduction. We are concerned with a bounded variation singular control
problem motivated by a model of reversible investment. More precisely, we imagine
dealing with a social planner whose objective is to optimize some functional depending
on the current demand of a good (energy, electricity, oil, corn, etc.) and its supply in
terms of production capacity that can be increased or decreased at any time and at
given proportional costs.

Problems of investment under uncertainty have been introduced in the economic
literature by [33] and then developed by several other authors. (See [16, Chap. 11] for
references on this subject.) From a mathematical point of view, such problems have
been formulated as optimal stopping problems or, at a second stage of complexity,
as singular stochastic optimal control problems, and have given a considerable im-
pulse to the development of the corresponding mathematical theory. As references for
the theory of singular stochastic control in context different from investment under
uncertainty, we may mention the works [13, 21, 22, 24] and [17, Chap. VIII]. The math-
ematical literature of singular stochastic control applied to the subject of irreversible
investment under uncertainty (i.e., when the capacity can be only increased and the
control is therefore monotone) includes the works [3, 5, 6, 11, 12, 15, 35, 38, 42].
In particular [6, 38] solve the problem by using a probabilistic representation result
stated in [7], which seems very suitable for tackling this kind of problem, while [42]
uses a dynamic programming approach. The economic issue of reversibility (i.e., when
the capacity can also be decreased and the control is a finite variation process) has
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REVERSIBLE INVESTMENT PROBLEMS 2181

then been introduced and studied, among others, in [1, 4, 18, 19, 30, 34]. In the
papers dealing with reversibility mentioned above, the ones (substantially) consider-
ing two state variables (an uncontrolled one containing the noise, and a controlled
one representing the capacity) are [4, 19, 30, 34].1 The paper [4] derives optimality
conditions based on economic considerations, while [19] states and solves the prob-
lem with an interesting connection between finite variation singular control problems
and optimal switching problems. The papers dealing with a dynamic programming
approach directly on the singular control problem and with the study of the associ-
ated Hamilton–Jacobi–Bellman (HJB) equation (which in this case is a variational
inequality) are [30, 34]. In particular, [34] considers an expected performance on an
infinite horizon with discounting over time, as in our case. The approach of [34] is of
verification type. In a singular stochastic control framework; this means that one has
to guess some smooth fit properties of the value function at the optimal free bound-
ary in order to look for a solution of the HJB equation. Then one needs to prove,
a posteriori, that the solution found is indeed the value function, and, as a byprod-
uct, one also gets the optimal feedback control. The presence of an explicit solution
is an important tool for analyzing the qualitative properties of optimal control and
trajectory. On the other hand, explicit solutions are not available in general and,
if one wants to be less restrictive in some assumptions, such as the structure of the
dynamics, another approach seems needed.

In the present paper, we perform a direct study of the singular stochastic control
problem with bounded variation controls (without passing through verification-type
arguments) by means of a viscosity approach to the HJB equation. To our knowl-
edge, this is the first time that such an approach is used in the case of two state
variables, in particular when the controlled state variable, here the reversible capacity
process, has no diffusion term and so is degenerate.2 With this approach, we are
allowed to take a general dynamics for the uncontrolled variable—which is indeed a
general diffusion in the present paper (see also [4])—and to state, under the further
specification of quadratic structure for the cost functional, the smooth fit conditions
of [34] as necessary conditions of optimality, i.e., prove that the value function must
satisfy these conditions. More precisely, we show that the value function is C1 along
the component of the controlled variable (Proposition 3.1; this easily follows from our
assumptions by convexity arguments, just working on the definition of value function).
This allows us to state the structure of the solution (Theorems 4.10 and 4.12). Then,
we prove that it has continuous mixed second derivative along the optimal boundary
function (Proposition 5.3; this is a deeper result, which invokes the viscosity property

1We should mention also [28], which just shows the connection between finite variation singular
control and Dynkin games. We shall indeed use this connection in subsection 3.2 to prove some
results on the value function.

2There are of course several papers (among them we may quote [22]), which consider singular
stochastic control problems with multidimensional state variables and characterize the value function
in terms of viscosity solutions to the associated HJB equations. However, few go beyond the viscosity
characterization and investigate smooth fit properties in order to derive the structural form of the
value function. In this spirit, we may mention the paper [18] in the case of just one dimensional
controlled variable. See also [20] for the impulse control of multidimensional diffusion processes with
nondegenerate diffusion term. On the other hand, we may quote the paper [40], which studies regu-
larity of a two-dimensional singular control problem with nondegenerate diffusion. Finally, we should
mention the paper [41], dealing with a singular control problem with two state variables in a different
context (consumption-investment under transaction costs). In this case the problem is approached
by dynamic programming and by means of viscosity solutions to the associated HJB equation. How-
ever, the regularity of the value function is proved by reducing the problem to dimension one, which
is possible in that case due to the specific structure of the problem.
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2182 SALVATORE FEDERICO AND HUYÊN PHAM

of the value function and requires the additional assumption (5.4) of quadratic cost in
the capacity). The set of optimality conditions stated is then rewritten, following the
arguments of [4], in a more suitable way, which allows us to determine the optimal
boundaries, splitting them in three different regions and giving optimality conditions
characterizing them in each of these regions (Theorem 5.8). At the end, this ma-
chinery allows us to uniquely individuate the value function and solve the problem
by Theorem 4.12. We mention that the approach developed in [6] for singular con-
trol problem with monotone controls is not valid anymore, as it is, in the context of
reversible investment.

The rest of the paper is organized as follows. In section 2, we formulate the two-
dimensional bounded variation singular stochastic control problem and state the main
assumptions. We study in section 3 some first properties of the value function and of
the optimal boundary, which is a function of the demand. In section 4, by relying on
the viscosity property of the value function to its dynamic programming variational
inequality, we give a first main result providing the structure of the value function
and state a second main result yielding the optimal control in terms of the optimal
boundary. Section 5 focuses on the case of quadratic cost function, which allows us
to prove a second order smooth fit principle. This leads to the missing information to
explicitly individuate the value function and the optimal boundary (the third main
result) and makes the results of section 4 applicable. Finally, we close the paper with
explicit illustrations of the theory to the basic example of geometric Brownian motion
for the uncontrolled demand diffusion in the case of irreversible investment. More
examples and applications are developed, in the case of irreversible investment, in the
companion paper [2], where we also take into account delay in the expansion of the
capacity production.

2. The singular stochastic control problem. Let us fix a probability space
(Ω,F ,P) equipped with a filtration F = (Ft)t≥0 satisfying the usual conditions and
supporting a standard one-dimensional Brownian motion (Wt)t≥0.

On this space, we consider an uncontrolled state process D = (Dt)t≥0 (represent-
ing the demand of a good), governed by a diffusion dynamics:

dDt = µ(Dt)dt+ σ(Dt)dWt, D0 = d0.(2.1)

Let

O := (dmin, dmax), −∞ ≤ dmin < dmax ≤ ∞.

Throughout the paper we assume the following on the diffusion D.
Assumption 2.1.
(i) The coefficients µ,σ : O → R are continuous and have at most linear growth.

Moreover the diffusion is nondegenerate, i.e., σ2 > 0 in O.
(ii) For all d0 ∈ O, there exists a unique nonexploding solution Dd0 admitting a

version with continuous paths (and we shall always refer to such a version)
to the SDE (2.1) in the space (Ω,F ,P) taking values into O.

(iii) The unique solution D continuously depends on the initial datum in proba-

bility: if dn → d0 as n →∞, then for every t ≥ 0 it holds that Ddn
t

P−→ Dd0
t .

(iv) The SDE (2.1) satisfies a comparison criterion: if d0 ≤ d′0, then Dd0
· ≤ D

d′
0·

almost surely.
(v) The boundaries dmin, dmax are natural for the diffusion D in the sense of

Feller’s classification.
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REVERSIBLE INVESTMENT PROBLEMS 2183

Remark 2.2. Sufficient conditions for the assumptions above can be found in
many classical references, such as, e.g., [25, Ch. 5]. For example, if we assume that
the coefficients µ : O → R, σ : O → R+ are such that

|µ(d)− µ(d′)| ≤ K|d− d′|, |σ(d)− σ(d′)| ≤ h(|d− d′|),(S)

for some K > 0 and some h : R+ → R+ strictly increasing such that h(0) = 0,∫ ε
0

1
h2(r)dr = ∞, for all ε > 0, and σ has at most linear growth, then pathwise unique-

ness for (2.1) is ensured by the Yamada–Watanabe theorem (see [25, Thm. 5.2.13,
Rem. 5.3]). The existence of a local weak solution to (2.1) is guaranteed by the re-
sults of [25, Chap. 5.5], while the existence of a nonexploding solution is due to the
assumptions of linear growth of µ,σ. So, by another result of Yamada–Watanabe (see
[25, Cor. 5.3.23]), we get existence and uniqueness of a unique nonexploding strong
solution Dd0 to (2.1) for each d0 ∈ O. We also notice that the assumption that σ2 > 0
implies that the diffusion is regular. Moreover, the unique solution D continuously
depends on the initial datum in probability, i.e., Assumption 2.1(iii) is satisfied, as
well as, under (S), the comparison criterion of Assumption 2.1(iv); see [25, Prop. 2.18,
Chap. 5.2].

Finally, we observe that some standard models of diffusion, such as arithmetic
or geometric Brownian motion, mean-reverting processes, or the Cox–Ingersoll–Ross
model (for suitable values of the parameters) satisfy Assumption 2.1.

Next, we denote by I the class of càdlàg bounded variation F-adapted processes,
setting I0− = 0. Given I ∈ I we have the minimal decomposition I = I+− I−, where
I+, I− are the positive and the negative variation of I, respectively. It follows that
the increments

dI+t := I+t − I+t− , dI− := I−t − It−

are supported on disjoint subsets of [0,∞). We shall always refer to the latter minimal
decomposition and, with a slight abuse of notation, we shall often denote I = (I+, I−).
The economic meaning of I+ and I− is the following:

• I+t is the cumulative investment done up to time t to increase the capacity;
• I−t is the cumulative disinvestment done up to time t to decrease the
capacity.

Hence, the production capacity process (Ct)t≥0, controlled by I ∈ I, is given by

Ct = c0 + I+t − I−t , c0 ∈ R.(2.2)

The objective is to minimize over I

E
[∫ ∞

0
e−ρt
(
g(Ct, Dt)dt+ q+0 dI

+
t + q−0 dI

−
t

)]
,(2.3)

where g : R × O → [0,∞) is a cost function, q+0 > 0, q−0 > 0 are, respectively, the
cost per unit of investment and the cost per unit of disinvestment, and ρ is a positive
discount factor.

Remark 2.3.
1. Among all the possible decompositions of a bounded variation process I ∈ I,

the minimal decomposition is the one providing the minimal value for the
functional (2.3). Indeed, denoting by Im,+−Im,− the minimal decomposition
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2184 SALVATORE FEDERICO AND HUYÊN PHAM

of I, for all the other decompositions I = I+−I− the dynamics of the capacity
C is the same, while I+ ≥ Im,+, I− ≥ Im,−. So

E
[∫ ∞

0
e−ρt
(
g(Ct, Dt)dt+ q+0 dI

m,+
t + q−0 dI

m,−
t

)]

≤E
[∫ ∞

0
e−ρt
(
g(Ct, Dt)dt+ q+0 dI

+
t + q−0 dI

−
t

)]
.

2. Even if we shall consider q−0 as a finite number, everything can be extended,
giving a suitable sense, to the case q−0 = ∞. In this case the problem is
equivalent to require irreversibility for the investment (i.e., the case when I−

is constrained to be 0, as there is no convenience to disinvest, the cost being
infinite). This case is treated in subsection 5.3.

3. For simplicity, we do not impose the (economically meaningful: recall that C
should represent the capacity production) state constraint Ct ≥ 0. We will
comment in Remark 4.13 about the case that it may be verified a posteriori.

4. Note that, with respect to the usual investment under uncertainty literature,
which is mainly based on profit/cost performance criterions, we focus here on
the minimization of a cost criterion in the spirit of a social planning problem,
whose objective is to fit the capacity production to the demand at cheapest
cost. In particular the most significant case from the economic point of view
is when g(c, d) = |c − d|2 (see also Remark 2.5.2 below), as it represents
a maximization of social surplus in the context of a linear inverse demand
function. (See [2] for a detailed description and explanation.) We will give a
full solution to the problem exactly in that case.

We shall make the following assumptions on the cost function g.
Assumption 2.4.
(i) g ∈ C0(R×O;R+), g(·, d) ∈ C1(R;R) for every d ∈ O, and gc ∈ C0(R×O;R).
(ii) g(·, d) is convex for all d ∈ O and gc(c, ·) is nonincreasing in O for every

c ∈ R.
(iii) g and gc satisfy a polynomial growth condition w.r.t. d: there exist positive

locally bounded functions γ0, η0 : R → R, and a constant ν ≥ 0 such that

|g(c, d)|+ |gc(c, d)| ≤ γ0(c) + η0(c)|d|ν ∀ c ∈ R, ∀ d ∈ O.(2.4)

Remark 2.5.
1. We observe that the monotonicity property required in Assumption 2.4(ii)

reflects an economic intuition. It means that the marginal cost with respect
to capacity for a fixed level of capacity is nonincreasing in the demand: for a
given level of capacity, the greater the demand, the more convenient it is to
invest; the less the demand, the more convenient it is to disinvest.

2. Any function g of the spread |c − d| between capacity and demand, in the
form

g(c, d) = K0|c− d|α, K0 ≥ 0, α > 1,(2.5)

satisfies Assumption 2.4.
Remark 2.6. Following the idea of [5, sect. 6], our model admits a suitable

generalization to the case of capacity dynamics in the form

dCt = Ct(b dt+ γ dW 0
t ) + dIt, C0− = c,
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REVERSIBLE INVESTMENT PROBLEMS 2185

where W 0 is another Brownian motion independent of W . Indeed letting C0 be the
solution to

dC0
t = C0

t (b dt+ γ dW 0
t ), C0

0 = 1,

the process C can be rewritten as

Ct = C0
t C̄t, t ≥ 0,

where

C̄t = c+ Ī+t − Ī−t with Ī+t =

∫ t

0

1

C0
s

dI+s , Ī−t =

∫ t

0

1

C0
s

dI−s .

So, letting g̃(c̄, c0, d) = g(c0c̄, d), the problem becomes

inf
Ī∈I

E
[∫ ∞

0
e−ρt
(
g̃(C̄t, C

0
t , Dt)dt+ C0

t (q
+
0 dĪ

+
t + q−0 dĪ

−
t )
)]

.

This problem involves an additional uncontrolled state variable (the variable C0) but
keeps the basic structures, so it seems approachable by the same techniques developed
in the next sections.

3. Dynamic programming: Preliminary results. We shall study the opti-
mization problem with dynamic programming methods, and so we consider this sin-
gular stochastic control problem when varying initial data (c0, d0) = (c, d) ∈ R × O.
Therefore, from now on, we stress the dependence of C on c, I and the dependence of
D on d by denoting them, respectively, as Cc,I , Dd. The state space is then equal to

S = R×O.

Throughout the paper we indicate by Ch,k(S;R), h, k ∈ N, the class of functions
which are continuous, h-times differentiable with respect to the first variable and
k-times differentiable with respect to the second variable, and having these derivatives
continuous in S.

Given (c, d) ∈ S, the functional to be minimized over I ∈ I is

G(c, d; I) := E
[∫ ∞

0
e−ρt
(
g(Cc,I

t , Dd
t )dt+ q+0 dI

+
t + q−0 dI

−
t

)]
,

and the associated value function is

v(c, d) := inf
I∈I

G(c, d; I), (c, d) ∈ S.(3.1)

3.1. First properties of the value function: Finiteness and convexity.
Notice that v ≥ 0 as g ≥ 0. We want to ensure also an upper bound for v. Since µ,σ
have at most linear growth, by standard estimates we know (see, e.g., [29, Chap. 2.5,
Cor. 12]) that there exist constants K0 = K0,µ,σ,ν ≥ 0 and K1 = K1,µ,σ,ν ∈ R such
that

E
[∣∣Dd

t

∣∣ν] ≤ K0(1 + |d|ν)eK1t ∀t ≥ 0.(3.2)

In what follows, we make the standing assumption that the discount factor ρ satisfies

ρ > K+
1 ,(3.3)
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2186 SALVATORE FEDERICO AND HUYÊN PHAM

where K1 is the constant appearing in (3.2). Using Assumption 2.4(iii) and (3.2)–
(3.3), we get

V̂ (c, d) := E
[∫ ∞

0
e−ρtg(c,Dd

t )dt

]
≤ γ1(c) + η1(c)|d|ν ∀(c, d) ∈ S(3.4)

for some nonnegative locally bounded real functions γ1, η1. Moreover, due to Assump-
tion 2.4, the function V̂ is continuous in S and differentiable with respect to c for all
d ∈ O, with

V̂c(c, d) = E
[∫ ∞

0
e−ρtgc(c,D

d
t )dt

]
, (c, d) ∈ S,(3.5)

and for the same reason as before

V̂c(c, d) ≤ γ1(c) + η1(c)|d|ν ∀(c, d) ∈ S.(3.6)

Now, let d0 ∈ O be a reference point and let us introduce the functions

S′(d) := exp

(
−
∫ d

d0

2µ(ξ)dξ

σ2(ξ)

)
, d ∈ O,

and

m′(d) :=
2

σ2(d)S′(d)
, d ∈ O.

S′ is the the density of the so-called scale function of the diffusion D, and m′ is the
density of the so-called speed measure of the diffusion D. Let us denote respectively
by ψ and ϕ the increasing and decreasing fundamental solutions, individuated up to
a multiplicative constant, to the linear ordinary differential equation

Lφ(d) := ρφ(d) − µ(d)φ′(d)− 1

2
σ2(d)φ′′(d) = 0.(3.7)

The existence and properties of such functions, as well as their relationship with the
functions S,m defined above, can be found in several references, including
[8, Chap. II], [31, Chap. 15], [39, Chap. V], and [32, Chap. 2]. In particular we
know that ψ,ϕ are strictly positive and convex, and, since dmin, dmax are natural
boundaries, they satisfy (see, e.g., [8, Chap. 2])

lim
d↓dmin

ψ(d) = 0, lim
d↓dmin

ϕ(d) = ∞, lim
d↑dmax

ψ(d) = ∞, lim
d↑dmax

ϕ(d) = 0,(3.8)

lim
d↓dmin

ψ′(d)

S′(d)
= 0, lim

d↓dmin

ϕ′(d)

S′(d)
= −∞, lim

d↑dmax

ψ′(d)

S′(d)
=∞, lim

d↑dmax

ϕ′(d)

S′(d)
= 0.(3.9)

Let w be the constant positive Wronskian of the fundamental solutions ψ,ϕ, i.e.,

0 < w ≡ ψ
′(d)ϕ(d) − ψ(d)ϕ′(d)

S′(d)
, d ∈ O.

Defining the function

r(d, h) =

{
w−1ψ(d)ϕ(h) if d ≤ h,

w−1ψ(h)ϕ(d) if d ≥ h,
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and using the fact that it is the kernel of the resolvent operator (see, e.g., [31, Chap. 15,
Thm. 50.7]) with respect to m, i.e.,

E
[∫ ∞

0
e−ρtf(Dd

t )dt

]
=

∫

O
f(h)r(d, h)m′(h)dh ∀f ∈ B(O;R),

we see (approximating g, gc by bounded functions and using the monotone convergence
theorem) that the functions V̂ and V̂c can be represented in terms of ψ,ϕ as

V̂ (c, d) = w−1

[
ϕ(d)

∫ d

dmin

ψ(ξ)g(c, ξ)m′(ξ)dξ + ψ(d)

∫ dmax

d
ϕ(ξ)g(c, ξ)m′(ξ)dξ

]
,

(3.10)

V̂c(c, d) = w−1

[
ϕ(d)

∫ d

dmin

ψ(ξ)gc(c, ξ)m
′(ξ)dξ + ψ(d)

∫ dmax

d
ϕ(ξ)gc(c, ξ)m

′(ξ)dξ

]
.

(3.11)

Proposition 3.1. The value function v is convex with respect to c and satisfies
the growth condition for some locally bounded functions γ1, η1 : R −→ R,

0 ≤ v(c, d) ≤ V̂ (c, d) ≤ γ1(c) + η1(c)|d|ν ∀(c, d) ∈ S,(3.12)

Proof. Equation (3.12) comes from (3.5) and from the inequality v(c, d) ≤
G(c, d; 0) = V̂ (c, d).

Convexity of v follows in a standard way from the convexity of g with respect to
c and linearity of the state equation for Cc,I .

Remark 3.2. The convexity of the value function v stated in Proposition 3.1—
which clearly strongly relies on the affine structure of Cc,I with respect to I and on
the assumption of convexity of g with respect to c—is crucial for the analysis which
follows. In particular,

1. it allows us to connect the singular control problem to a Dynkin game in the
next subsection;

2. it gives rise to a nice structure for the solution stated in section 4. In particular
the continuation, investment, and disinvestment regions that we shall define
in that section are connected due to the convexity of v with respect to c. If
v was not convex with respect to c, it would be not clear how one could
proceed with the analysis. We mention, however, the conjecture in section 5
[34] about the connectedness of the regions where no convexity assumption
is made.

3.2. Existence of optimal controls and the associated Dynkin game. In
this subsection we show that the singular stochastic control problem admits optimal
controls and that it is related to a suitable associated Dynkin game. We estabilish
this connection mainly to inherit from the monotonicity of gc(c, ·) the monotonicity
of vc(c, ·), whose direct proof seems not attainable. The proofs of Propositions 3.4
and 3.5 closely follow the arguments of [28] and are reported in the appendix.

Definition 3.3. Given (c, d) ∈ S we say that a control I∗ ∈ I is optimal starting
from (c, d) if G(c, d; I∗) = v(c, d).
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Proposition 3.4. For all (c, d) ∈ S there exists an optimal control I∗ starting
from (c, d). Moreover, if g(·, d) is strictly convex on R for every d ∈ O, then I∗ is the
unique (up to undistinguishability) optimal control starting from (c, d).

Let T denote the set of all F-stopping times. For fixed (c, d) ∈ S, we may consider
the functional, controlled by σ ∈ T , τ ∈ T ,

(3.13) J(c, d;σ, τ) = E
[∫ σ∧τ

0
e−ρtgc(c,D

d
t )dt+ q−0 e

−ρσ1{σ<τ} − q+0 e
−ρτ1{τ<σ}

]
.

We can imagine that J(c, d; τ,σ) is the payoff associated to a two-player stochastic
game. The two players, P1 and P2, have the possibility to stop the game at times σ
and τ , respectively (i.e., P1 controls the game through σ and P2 controls the game
through τ). If P1 stops first (i.e., σ < τ), he pays to P2 the amount q−0 e

−ρσ; if P2
stops first (i.e., τ < σ), he pays to P1 the amount q+0 e

−ρτ ; if they decide to stop at
the same time (i.e., τ = σ), then no cashflow occurs; finally, as long as the game is
running, i.e., up to time σ ∧ τ , P1 pays P2 at the rate e−ρtgc(c,Dd

t ) per unit of time.
The goal of P1 is to minimize (3.13), while the goal of P2 is to maximize (3.13). The
functions

w(c, d) := sup
τ∈T

inf
σ∈T

J(c, d;σ, τ), w(c, d) := inf
σ∈T

sup
τ∈T

J(c, d;σ, τ)

are called lower- and upper-values of the game. Clearly one has w(c, d) ≤ w(c, d). If
w(c, d) = w(c, d), the game is said to have a value, denoted by w(c, d) := w(c, d) =
w(c, d). A pair (σ∗, τ∗) ∈ T × T is called a saddle point of the game if

J(c, d;σ∗, τ) ≤ J(c, d;σ∗, τ∗) ≤ J(c, d;σ, τ∗) ∀σ ∈ T , ∀τ ∈ T .(3.14)

One easily sees that the existence of a saddle point implies that the game has a value
and

w(c, d) = J(c, d;σ∗, τ∗).(3.15)

Proposition 3.5.
1. Let (c, d) ∈ S and let I∗ = (I∗,+, I∗,−) ∈ I be an optimal control for the

singular stochastic control problem, i.e., such that v(c, d) = G(c, d; I∗). Define
the stopping times

σ∗ := inf {t ≥ 0 | I∗,−t > 0}, τ∗ := inf {t ≥ 0 | I∗,+t > 0}.

Then (σ∗, τ∗) ∈ T × T is a saddle point for the associated Dynkin game.
2. v is differentiable with respect to c in S and it holds the equality vc = w,

where w is the (well-defined) value of the associated Dynkin game.
By relying on this connection between singular control and Dynkin game, we now

prove some properties on the derivative of the value function vc, to be used in the
next section.

Proposition 3.6. The function vc has the following properties:
1. vc is continuous in S.
2. vc(c, ·) is nonincreasing in O for all c ∈ R.
3. −q+0 ≤ vc ≤ q−0 in S.

D
ow

nl
oa

de
d 

07
/1

7/
14

 to
 1

59
.1

49
.1

03
.6

. R
ed

ist
rib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls/
oj

sa
.p

hp



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

REVERSIBLE INVESTMENT PROBLEMS 2189

Proof. 1. Let (c, d) ∈ S and take a sequence (cn, dn)→ (c, d). For each n ∈ N, let
(σ∗n, τ

∗
n) be a saddle point for the Dynkin game starting at (cn, dn), and let (σ∗, τ∗)

be a saddle point for the Dynkin game starting at (c, d). Using (3.14), we then have

w(c, d)− w(cn, dn) = J(c, d;σ∗, τ∗)− J(cn, dn;σ
∗
n, τ

∗
n)(3.16)

≤ J(c, d;σ∗n, τ
∗)− J(cn, dn;σ

∗
n, τ

∗)

= E
[∫ τ∗∧σ∗n

0
e−ρt
(
gc(c,D

d
t )− gc(cn, D

dn
t )
)
dt

]

= E
[∫ ∞

0
e−ρt
(
gc(c,D

d
t )− gc(cn, D

dn
t )
)
1{t≤τ∗∧σ∗n}dt

]
.

Note that, assuming without loss of generality that (dn)n∈N ⊂ (d − ε, d− ε) ⊂ O for
suitable ε > 0, we have by Assumption 2.1(iv)

|Ddn
t | ≤ |Dd−ε

t |+ |Dd+ε
t | ∀t ≥ 0, ∀n ∈ N.(3.17)

On the other hand, Assumption 2.1(iii) ensures the convergence

Ddn
t

P−→ Dd
t as n→∞ ∀t ≥ 0.(3.18)

Hence, using Assumption 2.4, (3.3), and (3.17)–(3.18), we can apply dominated con-
vergence to (3.16) for n →∞ and conclude that lim infn→∞ w(cn, dn) ≥ w(c, d).

Arguing in a similar way, but considering the couple (σ∗, τ∗n) in place of the
couple (σ∗n, τ

∗), one also gets the inequality lim supn→∞ w(cn, dn) ≤ w(c, d), so w is
continuous at (c, d).

Then the claim follows by Proposition 3.5(2).
2. By the assumption that gc(c, ·) is nonincreasing (Assumption 2.4(ii)), and from

the same comparison result cited above, we have, for every d, d′ ∈ O such that d ≤ d′,

J(c, d;σ, τ) ≥ J(c, d′;σ, τ) ∀σ ∈ T , ∀τ ∈ T .

Passing to the infimum over σ ∈ T and then to the supremum over τ ∈ T the
inequality above, we get, for every d, d′ ∈ O such that d ≤ d′,

w(c, d) ≥ w(c, d′).

Proposition 3.5 states that the game has a value, so from the inequality above we get,
for every d, d′ ∈ O such that d ≤ d′,

w(c, d) ≥ w(c, d′).

Hence, the claim follows from Proposition 3.5.2.
3. We have J(c, d;σ, 0) = −q+0 for every σ ∈ T , σ > 0, and J(c, d; 0, τ) = q−0 for

every τ ∈ T , τ > 0. It follows that −q+0 ≤ w(c, d) ≤ q−0 and the claim follows from
Proposition 3.5.2.

4. The dynamic programming equation and the structure of the
solution. In view of Proposition 3.6, we introduce the continuation region

C := {(c, d) ∈ S|− q+0 < vc(c, d) < q−0 }
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2190 SALVATORE FEDERICO AND HUYÊN PHAM

and its complement set, the action region

A := A+ ∪A−,(4.1)

where A+ and A− are respectively the investment and the disinvestment region de-
fined by

(4.2) A+ := {(c, d) ∈ S | vc(c, d) = −q+0 }, A− := {(c, d) ∈ S | vc(c, d) = q−0 }.

We also set

∂+C := C̄ ∩A+, ∂−C := C̄ ∩A−.

The boundaries ∂±C are associated with a free boundary differential problem (which
we are going to define in the next subsection) and are the objects to individuate to
solve the optimal stochastic control problem.

Let us then consider the functions ĉ+, ĉ− : O → R̄ defined with the conven-
tions inf ∅ = ∞, inf R = −∞, supR = ∞, sup ∅ = −∞ (the equalities below are a
consequence of convexity of v with respect to c):

ĉ+(d) := inf {c ∈ R | vc(c, d) > −q+0 } = sup {c ∈ R | vc(c, d) = −q+0 },(4.3)

ĉ−(d) := sup {c ∈ R | vc(c, d) < q−0 } = inf {c ∈ R | vc(c, d) = q−0 }.(4.4)

Proposition 4.1.

1. ĉ+ : O → R ∪ {−∞}, ĉ− : O → R ∪ {∞}, they are both nondecreasing, and

ĉ+(d) < ĉ−(d) ∀d ∈ O.(4.5)

2. ĉ+ is right-continuous and ĉ− is left-continuous.
3. The action and continuation regions are expressed in terms of the functions

ĉ± as

C = {(c, d) ∈ S | ĉ+(d) < c < ĉ−(d)},
A+ = {(c, d) ∈ S | c ≤ ĉ+(d)}, A− = {(c, d) ∈ S | c ≥ ĉ−(d)}.

4. C is open and connected, and A± are closed and connected.

Proof. 1. The fact that ĉ+ takes values in R ∪ {−∞} and ĉ− takes values in
R ∪ {∞} is consequence of the nonnegativity of v, combined with the convexity of
v(·, d) and with (4.3)–(4.4). Monotonicity follows from Proposition 3.6(2) and (4.3)–
(4.4). Finally, (4.5) is due to the convexity of v with respect to c and to the fact that
v(·, d) ∈ C1(R;R) for every d ∈ O.

2. It follows from Proposition 3.6(1) and from the convexity of v w.r.t. c.

3.,4. They follow from the previous items also considering (4.3)–(4.4).

Figure 1 represents a possible shape of the regions C,A± and of the functions ĉ± (here
dmax = ∞).
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ĉ+(d)

ĉ−(d)
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Fig. 1.

Let us define

c+ := inf
d∈O

ĉ+(d), c̄+ := sup
d∈O

ĉ+(d), c− := inf
d∈O

ĉ−(d), c̄− := sup
d∈O

ĉ−(d),

and the pseudoinverses of ĉ±, i.e., the functions d̂± : R −→ Ō,

d̂+(c) := inf {d ∈ O | ĉ+(d) ≥ c}, d̂−(c) := sup {d ∈ O | ĉ−(d) ≤ c},(4.6)

with the convention inf ∅ = dmax and sup ∅ = dmin.
Proposition 4.2.
1. We have the equalities

(4.7)
d̂+(c) = sup {d ∈ O | vc(c, d) > −q+0 }, d̂−(c) = inf {d ∈ O | vc(c, d) < q−0 }.

2. The functions d̂± are nondecreasing and d̂+ ≥ d̂−.
3. If c̄− < ∞, then d̂− = dmax on [c̄−,∞); if c+ > −∞, then d̂+ = dmin on

(−∞, c+].

4. d̂−(c) < d̂+(c) if and only if c ∈ (c+, c̄−).
Proof.
1. It directly follows from the definition of ĉ±, d̂±.
2. Monotonicity of d̂± and the inequality d̂+ ≥ d̂− follow from Proposition

4.1(1).
3. By monotonicity of d̂−, limc→∞+ d̂−(c) exists. Suppose by contradiction

limc→∞ d̂−(c) = d̄ < dmax. This would imply ĉ− = ∞ over (d̄, dmax), which
contradicts c̄− < ∞. A similar argument works for the other claim.

4. It follows from (4.5).
We introduce the c-section sets of the continuation region

Sc := {c}× (d̂−(c), d̂+(c)), c ∈ R.(4.8)
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2192 SALVATORE FEDERICO AND HUYÊN PHAM

Due to Proposition 4.2, we have

c ∈ (c+, c̄−) ⇐⇒ d̂−(c) < d̂+(c)⇐⇒ Sc 2= ∅.(4.9)

We have the following result on the form of the continuation region.
Proposition 4.3. We have the representation of the continuation region

C =
⋃

c∈(c+,c̄−)

Sc.(4.10)

Proof. If (c, d) ∈ C, then −q+0 < vc(c, d) < q−0 , so, by continuity of vc (Proposition
3.6.1), it is −q+0 < v̂c < q−0 in some suitable neighborhood of (c, d). Then d̂−(c) <
d̂+(c), and therefore, by (4.9), c ∈ (c+, c̄−) and (c, d) ∈ Sc 2= ∅. Hence we have proved
the inclusion C ⊂

⋃
c∈(c+,c̄−) Sc.

Conversely, let c ∈ (c+, c̄−) and let d ∈ O be such that (c, d) ∈ Sc(2= ∅). By
(4.7) and (4.9), we have −q+0 < vc(c, ·) < q−0 in some neighborhood of d. The
continuity of vc with respect to c (Proposition 3.6.1) implies −q+0 < vc < q−0 in some
neighborhood of (c, d). Therefore (c, d) ∈ C. Hence we have proved the inclusion
C ⊃
⋃

c∈(c+,c̄−) Sc.

We also introduce the functions ĉ±,g from O into R defined, with the usual con-
vention sup ∅ = −∞, inf ∅ =∞, by

ĉ+,g(d) = inf {c ∈ R | gc(c, d) > −ρq+0 }, ĉ−,g(d) = sup {c ∈ R | gc(c, d) < ρq−0 }.

One easily checks that by Assumption 2.4, they are nondecreasing and, respectively,
right- and left-continuous. Moreover, we clearly have, by convexity of g(·, d) and
continuity of gc, the inequality ĉ+,g < ĉ−,g. We have the following estimates of ĉ± in
terms of ĉ±,g.

Proposition 4.4. ĉ+ ≤ ĉ+,g and ĉ− ≥ ĉ−,g.
Proof. Let us show the first inequality; the second one can be proved sym-

metrically. Let d ∈ O and take c > ĉ+,g(d), so that gc(c, d) + ρq
+
0 > 0. Let

ε ∈
(
0, gc(c,d)+ρq

+
0

ρ

)
, and consider the stopping time

τε := inf {t ≥ 0 | gc(c,Dd
t ) + ρq

+
0 ≤ ρε}.

By continuity of gc(c, ·) and by continuity of trajectories of Dd, we have τε > 0. Then,
by Proposition 3.5.2 and taking into account the definition of τε, we have

vc(c, d) = inf
σ∈T

sup
τ∈T

J(c, d;σ, τ) ≥ inf
σ∈T

J(c, d;σ, τε)

= inf
σ∈T

E
[∫ σ∧τε

0
e−ρtgc(c,D

d
t )dt+ q−0 e

−ρσ1{σ<τε} − q+0 e
−ρτε1{τε<σ}

]

≥ inf
σ∈T

E
[
(ε− q+0 )(1 − e−ρ(σ∧τε)) + q−0 e

−ρσ1{σ<τε} − q+0 e
−ρτε1{τε<σ}

]

≥ inf
σ∈T

E
[
ε(1− e−ρτε)1{τε<σ} − q+0 e

−ρτε1{τε<σ}
]
.

Clearly the last term of the inequality above is larger than −q+0 . Now, assume by
contradiction that it is equal to −q+0 . This means that there exists a minimizing
sequence of stopping times (σn)n∈N ⊂ T such that

lim
n→∞

E
[
ε(1− e−ρτε)1{τε<σn} − q+0 e

−ρτε1{τε<σn}
]
= −q+0 .(4.11)
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Hence, looking at the second addend in the expectation above, since the first one is
nonnegative, we see that we must have P{τε < σn} → 1. But then we must have

(1− eρτε)1{τε<σn}
P−→ 1− e−ρτε > 0,

from which we deduce that

lim
n→∞

E
[
ε(1− e−ρτε)1{τε<σn}

]
> 0,

contradicting (4.11). So we have shown that vc(c, d) > −q+0 . By continuity of vc(c, ·),
this shows that c > ĉ+(d), completing the proof.

4.1. The dynamic programming equation. The dynamic programming
equation for the singular stochastic control problem (3.1) takes the form of a varia-
tional inequality:

(4.12) max
{
[Lv(c, ·)](d) − g(c, d), −vc(c, d)− q+0 , vc(c, d)− q−0

}
= 0, (c, d) ∈ S,

where the second order ordinary differential operator L is defined in (3.7). Formally,
(4.12) may be derived, assuming sufficient regularity of v and exploiting its convexity
in c, by looking at the three possibilities one has: (1) wait, (2) invest a small amount
ε, (3) disinvest a small amount ε. We refer to [17] for a formal derivation of the
dynamic programming equation in the general context of singular control problems
and specifically to [34] for a problem very similar to ours.

In the following, given a locally bounded function φ : U → R, where U ⊂ Rn is
an open set, we denote respectively by φ∗ and φ∗ the upper semicontinuous and the
lower semicontinuous envelope of φ. Since we do not know a priori if there exists a
smooth solution to (4.12), we first rely in general on the notion of viscosity solutions.

Definition 4.5.
(i) We say that v : S → R is a viscosity subsolution to (4.12) if for any (c, d) ∈ S,

max
{
[Lϕ(c, ·)](d) − g(c, d), −ϕc(c, d)− q+0 , ϕc(c, d)− q−0

}
≤ 0,

whenever ϕ ∈ C1,2(S;R), v∗(c, d) = ϕ(c, d), and v∗−ϕ has a local maximum
at (c, d).

(ii) We say that v : S → R is a viscosity supersolution to (4.12) if for any
(c, d) ∈ S,

max
{
[Lϕ(c, ·)](d) − g(c, d), −ϕc(c, d)− q+0 , ϕc(c, d)− q−0

}
≥ 0,

whenever ϕ ∈ C1,2(S;R), v∗(c, d) = ϕ(c, d), and v∗ − ϕ has a local minimum
at (c, d).

(iii) We say that v : S → R is a viscosity solution to (4.12) if it is both a viscosity
sub- and supersolution.

The viscosity property of the value function follows usually from the dynamic
programming principle (DPP). The statement of DPP calls upon delicate measurable
selection arguments. Once we know a priori that the value function is continuous,
one can overcome this difficulty by exploiting the continuity; see, e.g., [17]. However,
since the control set is unbounded, and we are not assuming Lipschitz continuity of
the coefficients in (2.1) and—overall—of g, it is not clear how to get the continuity
of the value function from its very definition. Instead, we can use the concept of
weak dynamic programming introduced in [9], which holds for our problem (see also
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Remarks 3.10 and 3.11 in [9]), stating that, for each (c, d) ∈ S and for each family
(τI)I∈I of stopping times indexed by I ∈ I, it holds that

inf
I∈I

E
[∫ τ−I

0
e−ρtg(Cc,I

t , Dd
t )dt+ q+0 dI

+
t + q−0 dI

−
t + e−ρτIv∗(C

c,I

τ−I
, Dd
τI )

](4.13)

≤ v(c, d)

≤ inf
I∈I

E
[∫ τ−I

0
e−ρtg(Cc,I

t , Dd
t )dt+ q+0 dI

+
t + q−0 dI

−
t + e−ρτIv∗(Cc,I

τ−I
, Dd
τI )

]
.

Proposition 4.6. The value function v is a viscosity solution to (4.12) on S.
Proof. Given the weak DPP (4.13), the proof is straightforward (and we omit

it for brevity) and follows the line of the proof based on the standard DPP. Indeed,
what one really needs are the two inequalities of (4.13) separately to prove the two
viscosity properties separately. We can refer to [9, section 5], where this is done for
the case of continuous control; the proof can be adapted to our case of stochastic
control.

Remark 4.7. A comparison principle to the variational inequality (4.12) for vis-
cosity sub- and supersolution satisfying the growth condition (3.12) could be proved
using standard techniques (see [14]), hence providing a uniqueness viscosity charac-
terization of the value function v. However, in our approach we rely mainly on the
viscosity property in order to derive a smooth fit property.

We now investigate the structure of the value function v in the continuation region
C and in the action regions A±. The following lemma characterizes the structure of
v in the c-sections Sc defined in (4.8).

Lemma 4.8. Let c ∈ (c+, c̄−).
1. v(c, ·) is a viscosity solution of the ODE

[Lv(c, ·)](d) − g(c, d) = 0, d ∈ (d̂−(c), d̂+(c)).(4.14)

2. v(c, ·) ∈ C2((d̂−(c), d̂+(c));R).
3. There exist constants A(c), B(c) ∈ R such that

v(c, d) = A(c)ψ(d) +B(c)ϕ(d) + V̂ (c, d) ∀ d ∈ (d̂−(c), d̂+(c)).(4.15)

Moreover, (4.15) holds also at d̂−(c), d̂+(c) when they do not coincide with
dmin, dmax, respectively.

Proof. 1. Let us show the subsolution property. (The proof of the supersolution
property is completely analogous.)

First we note that since v(·, d) ∈ C1(R;R), it is v(c, d) = v(c0, d) +
∫ c
c0
vc(ξ, d)dξ,

for every c, c0 ∈ R and every d ∈ O. Thus, since by Proposition 3.6(1) vc is continuous
in S, we deduce the equalities

v∗(c, d) = v(c, ·)∗(d) ∀(c, d) ∈ S;(4.16)

v∗(c, d)− v∗(c0, d) = v(c, d)− v(c0, d) ∀(c, d) ∈ S, ∀c0 ∈ R.(4.17)

Let c0 ∈ (c+, c̄−), d0 ∈ (d̂+(c0), d̂−(c0)), and let φ ∈ C2(O;R) be such that

φ(d0) = v(c0, ·)∗(d0), φ(d) ≥ v(c, ·)∗(d), ∀d ∈ O.(4.18)

D
ow

nl
oa

de
d 

07
/1

7/
14

 to
 1

59
.1

49
.1

03
.6

. R
ed

ist
rib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls/
oj

sa
.p

hp



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

REVERSIBLE INVESTMENT PROBLEMS 2195

We claim that

(vc(c0, d0),φ
′(d0),φ

′′(d0)) ∈ D1,2,+
c,d v∗(c0, d0),(4.19)

where D1,2,+
c,d v∗(c0, d0) is the superdifferential of v∗ at (c0, d0) of first order w.r.t. c

and of second order w.r.t. d (see [43, Chap. 4, sect. 5]). We have to check that

lim sup
(c,d)→(c0,d0)

v∗(c, d)−v∗(c0, d0)−vc(c0, d0)(c−c0)−φ′(d0)(d−d0)−φ′′(d0)(d − d0)2

|c− c0|+ |d− d0|2

(4.20)

≤ 0.

By (4.16) it has to be (φ′(d0),φ′′(d0)) ∈ D2,+
d v∗(c0, d0), where D2,+

d v∗(c0, d0) is the
superdifferential of v∗ at (c0, d0) of second order w.r.t. d. Hence

v∗(c0, d)− v∗(c0, d0)− φ′(d0)(d − d0)− φ′′(d0)(d− d0)
2 ≤ o(|d − d0|2).(4.21)

Moreover, since v(·, d) ∈ C1(R;R) for every d ∈ O and vc is locally uniformly contin-
uous w.r.t. (c, d) ∈ S, for all ε > 0 there exists δ > 0 such that

v(c, d)− v(c0, d)− vc(c0, d)(c− c0) ≤ o(|c− c0|), uniformly in d ∈ (d0 − δ, d0 + δ)
(4.22)

and

(4.23) |vc(c0, d)− vc(c0, d0)| ≤ ε ∀ d ∈ (d0 − δ, d0 + δ).

By (4.17), we derive from (4.22)

v∗(c, d)− v∗(c0, d)− vc(c0, d)(c− c0)≤ o(|c− c0|) uniformly in d ∈ (d0− δ, d0 + δ).
(4.24)

By subtracting and adding vc(c0, d0)(c− c0) in (4.24) and using (4.23), we get

v∗(c, d)− v∗(c0, d)− vc(c0, d0)(c− c0)(4.25)

≤ o(|c− c0|) + ε|c− c0| uniformly in d ∈ (d0 − δ, d0 + δ).

Combining (4.21) and (4.25), dividing by |c− c0|+ |d− d0|2, and taking the limsup,
since ε was arbitrary, we finally get (4.20), thus (4.19).

Now, starting from (4.19), we can construct (see, e.g., [43, Chap. 4, Lem. 5.4]3)
a function ϕ ∈ C1,2(S;R) such that ϕ(c0, d0) = v∗(c0, d0), ϕ ≥ v∗ on S and

(ϕc(c0, d0),ϕd(c0, d0),ϕdd(c0, d0)) = (vc(c0, d0),φ
′(d0),φ

′′(d0)).(4.26)

Now notice that −q+0 < vc(c0, d0) < q−0 , as (c0, d0) ∈ C (Proposition 4.3). Hence,
since v is a viscosity solution to (4.12), taking into account (4.26) we finally get the
desired inequality [Lφ](d0) ≤ 0.

2. Let c ∈ (c+, c̄−) and, given a, b ∈ S̄c with a < b, consider the Dirichlet problem

(4.27)

{
ρu(d)− µ(d)u′(d)− 1

2σ
2(d)u′′(d) = g(c, d), d ∈ (a, b),

u(a) = v(c, a), u(b) = v(c, b).

3The proof works even if the function is just upper semicontinuous.
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2196 SALVATORE FEDERICO AND HUYÊN PHAM

This problem clearly admits a unique viscosity solution, which must coincide with
v(c, ·) in [a, b] by item 1. On the other hand, since σ2 > 0, (4.27) is a uniformly
elliptic problem, so it admits a solution of class C0([a, b];R) ∩ C2((a, b);R), which is
also a viscosity solution, and so coincides with v. Hence, we deduce that v(c, ·) ∈
C2((d̂−(c), d̂(c));R) and satisfies in a classical sense

[Lv(c, ·)](d) − g(c, d) = 0, d ∈ (d̂−(c), d̂+(c)).

3. Notice that V̂ (c, ·) is a particular solution to the ODE

[Lφ(c, ·)](d) − g(c, d) = 0, d ∈ O.(4.28)

Therefore the general solution to (4.28) is in the form

A(c)ψ(d) +B(c)ϕ(d) + V̂ (c, d), d ∈ Sc,

for some real-valued constants A(c), B(c), which proves, together with item 2, the
structure (4.15) of v in Sc.

The extension of (4.15) at d̂−(c) and at d̂(c), when they do not coincide with
dmin, dmax, respectively, can be obtained by taking a = d̂−(c) and b = d̂+(c) in the
argument above.

Lemma 4.9. We have

lim
d↓dmin

(v(c, d) − V̂ (c, d)) = 0 ∀c ∈ (c+, c−);(4.29)

lim
d↑dmax

(v(c, d) − V̂ (c, d)) = 0 ∀c ∈ (c̄+, c̄−).(4.30)

Proof. We prove (4.29); the proof of (4.30) is analogous.
Fix c ∈ (c+, c−). In this case we have d̂−(c) = dmin. Then, due to Lemma 4.8,

we have that v(c, ·) ∈ C2((dmin, d̂+(c));R) and that it satisfies in a classical sense:

[Lv(c, ·)](d) − g(c, d) = 0 ∀d ∈ (dmin, d̂+(c)).(4.31)

Let d0 ∈ (dmin, d̂+(c)) be fixed and take a generic d ∈ (dmin, d0). Consider the stopping
time

τd = inf {t ≥ 0 |Dd
t ≥ d0}.

Since dmin is a not-entrance boundary for the diffusion D, we have (see, e.g., [23,
Chap. 20])

τd ↗∞ when d ↓ dmin.(4.32)

Given a sequence (dn) ⊂ (dmin, d) such that dn ↓ dmin consider the stopping times

τnd = inf {t ≥ 0 |Dd
t ≤ dn}.

Since dmin is inaccessible for the diffusion D, we have

τnd ↗∞ when n →∞.(4.33)

By (4.31) and the definition of τd, we apply Itô’s formula to v(c,Dd
t ) in the interval

[0, τd ∧ τnd ∧ n),
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v(c, d) =

∫ τd∧τnd ∧n

0
e−ρtg(c,Dd

t )dt+

∫ τd∧τnd ∧n

0
e−ρtvd(c,D

d
t )dWt

+ e−ρτdv(c,Dd
τd∧τnd ∧n).

By taking the expectation (noting that the expectation of the stochastic integral
vanishes by our localization and that v ≥ 0), we get

v(c, d) ≥ E
[∫ τd∧τnd ∧n

0
e−ρtg(c,Dd

t )dt

]
.

By taking the limit for n →∞ (note that g ≥ 0, so we can use monotone convergence)
and using (4.33), we get

v(c, d) ≥ E
[∫ τd

0
e−ρtg(c,Dd

t )dt

]
.

Subtracting V̂ (c, d) in both sides of the inequality above, we get

v(c, d)− V̂ (c, d) ≥ E
[∫ ∞

τd

e−ρtg(c,Dd
t )dt

]
.

Taking the liminf for d ↓ dmin, and using (4.32), we obtain

lim inf
d↓dmin

(v(c, d)− V̂ (c, d)) ≥ 0

and so the required limiting result, since we always have v ≤ V̂ (see (3.4)).

4.2. Structure of the value function. We can now provide the complete
structure of the value function. Let us define

O+ := {d ∈ O | ĉ+(d) > −∞}, O− := {d ∈ O | ĉ−(d) < ∞}.

Note that O± are connected due to monotonicity of ĉ±.
Theorem 4.10 (structure and properties of the value function). There exist

functions

A,B ∈ C1((c+, c̄−);R), z± : O± → R

(with A,B eventually extendable to C1 functions up to c+, c̄−, respectively, when there
exists d ∈ O such that ĉ+(d) = c+, or when there exists d ∈ O such that ĉ−(d) = c̄−)
such that

(4.34) v(c, d) =






A(c)ψ(d) +B(c)ϕ(d) + V̂ (c, d) on C̄,

z+(d)− q+0 c on A+,

z−(d) + q−0 c on A−.

Moreover,
(i) A(c) = 0 for every c ∈ [c̄+, c̄−), and B(c) = 0 for every c ∈ (c+, c−] (note

that these intervals may be empty);
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(ii) z± can be written in terms of the values of v at ∂C and of ĉ± as

z+(d) = v(ĉ+(d), d) + q+0 ĉ+(d), d ∈ O+,(4.35)

z−(d) = v(ĉ−(d), d) − q−0 ĉ−(d), d ∈ O−.(4.36)

Proof. Structure of v in C̄. By Lemma 4.8.3, we already know that there exist
functions A,B : (c+, c−)→ R such that we have

v(c, d) = A(c)ψ(d) +B(c)ϕ(d) + V̂ (c, d), (c, d) ∈ C.(4.37)

Let c0 ∈ (c+, c−). Since C is open, from the representation (4.10) we see that we
can find d, d0 ∈ O such that (c, d0), (c, d) ∈ Sc for every c ∈ (c0 − ε, c0 + ε) for some
ε > 0. Writing (4.37) at (c, d), (c, d0) ∈ C, and taking into account that ψ(d)ϕ(d0)−
ϕ(d)ψ(d0) 2= 0 for all d 2= d0 (this is due to strict monotonicity of ϕ,ψ), we can
retrieve A,B in the interval (c0 − ε, c0 + ε) as

A(c) =
(v(c, d) − V̂ (c, d))ϕ(d0)− (v(c, d0)− V̂ (c, d0))ϕ(d)

ψ(d)ϕ(d0)− ϕ(d)ψ(d0)
,(4.38)

B(c) =
(v(c, d0)− V̂ (c, d0))ψ(d) − (v(c, d) − V̂ (c, d))ψ(d)

ψ(d)ϕ(d0)− ϕ(d)ψ(d0)
.(4.39)

Hence, since v(·, d) and V̂ (·, d) are of class C1 for any fixed d ∈ O, we get, by
arbitrariness of c0, that A,B ∈ C1((c+, c̄−);R).

Now assume that there exists d ∈ O such that ĉ+(d) = c+. Then, since the
function ĉ+ is nondecreasing and right-continuous, there exists an interval (a, b) ⊂ O
such that ĉ+(d) = c+ in (a, b). Take d0, d ∈ (a, b). Then, for every c > c+, it is
(c, d0), (c, d) ∈ C. We can then write the relation (4.38) for every c > c+ and pass
it to the limit for c ↓ c+. In such a way we see that A can be extended to the C1

function up to c+. The same argument holds true for the other case involving B
and c̄−.

Let us now check that (4.37) also holds at the points of the boundary ∂C. Let
(c, d) ∈ ∂+C. In this case, one of the following cases must hold:

(a) d = d̂+(c) ∈ O,
(b) c = ĉ+(d) and {(c, d) | c ∈ (ĉ+(d), ĉ(d) + ε)} ⊂ C for some ε > 0,
(c) d = d̂+(c′) for c′ ∈ (c, c+ ε) for some ε > 0.

In case (a) the form (4.37) holds by Lemma 4.8.3. In case (b) the structure (4.37)
holds by continuity of A,B and of v with respect to c, and by the already proved
structure in C. In case (c) the structure (4.37) holds by case (a) and by continuity of
A,B and of v with respect to c.

The same argument holds for points belonging to the boundary ∂−C, so we con-
clude that

v(c, d) = A(c)ψ(d) +B(c)ϕ(d) + V̂ (c, d) in C̄.(4.40)

Structure of v in A±. This follows directly from the definition (4.1) of A±.
Let us now prove the remaining properties.
(i) Let c ∈ (c̄+, c̄−). We can use (4.40) and write

lim
d↑dmax

v(c, d) = lim
d↑dmax

(A(c)ψ(d) +B(c)ϕ(d) + V̂ (c, d)).

By taking into account Lemma 4.9 and (3.8), we see that it must be A(c) = 0.
In a similar way one proves that B(c) = 0 for every c ∈ (c+, c−). Then
A(c̄+) = 0 and B(c−) = 0 follow by continuity.

(ii) It follows using (4.34) and by evaluating v at the points (ĉ±(d), d) ∈ C̄.
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4.3. Optimal control. In the following we suppress, for simplicity of notation,
the superscript d in Dd. Moreover, the superscript k in the notation Ck

t below will
denote not the initial datum but a running natural index.

Let (c, d) ∈ S. Let us define, with the convention inf ∅ = ∞, the random times

τ+0 := inf {t ≥ 0 | c < ĉ+(Dt)}, τ−0 := inf {t ≥ 0 | c > ĉ−(Dt)}, τ0 := τ+0 ∧ τ−0 .

Due to (4.5), we have {τ+0 = τ−0 } = {τ0 =∞}. Define also

Ω∞ := {τ0 = ∞}, Ω+ := {τ+0 < τ−0 }, Ω− := {τ+0 > τ−0 }.

Define

C0
t = c, t ≥ 0,

and define recursively the following processes and stopping times:
• For all k ≥ 0,

D
k
t := max

s∈[τk−1,t]
Ds, Dk

t := min
s∈[τk−1,t]

Ds, t ≥ τk−1.

• If k ≥ 1 is odd,

Ck
t :=






c on Ω∞,

c+ ĉ+(D
k
t ) on Ω+,

c+ ĉ−(D
k
t ) on Ω−,

t ≥ τk−1,

τk :=






∞ on Ω∞,

inf {t ≥ τk−1 |Ck
t > ĉ−(Dt)} on Ω+,

inf {t ≥ τk−1 |Ck
t < ĉ+(Dt)} on Ω−.

• If k ≥ 2 is even

Ck
t :=






c on Ω∞,

c+ ĉ+(D
k
t ) on Ω−,

c+ ĉ−(D
k
t ) on Ω+,

t ≥ τk−1,

τk :=






∞ on Ω∞,

inf {t ≥ τk−1 |Ck
t > ĉ−(Dt)} on Ω−,

inf {t ≥ τk−1 |Ck
t < ĉ+(Dt)} on Ω+.

Since A± are closed and σ2 > 0, we have, if k is odd,

inf {t ≥ τk | (Ck
t , Dt) ∈

◦
A+} = inf {t ≥ τk |Ck

t < ĉ+(Dt)} a.e. in Ω+,

inf {t ≥ τk | (Ck
t , Dt) ∈

◦
A−} = inf {t ≥ τk |Ck

t > ĉ−(Dt)} a.e. in Ω−,

and similar representations if k is even. Hence, since F satisfies the usual conditions,
so hitting times of open sets are stopping times, we see that the sequence (τk) is a
sequence of stopping times. Setting τ−1 := 0, define the process

C∗
t :=

∞∑

k=0

Ck
t 1[τk−1,τk)(t), t ≥ 0.(4.41)
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Since τk →∞ almost surely, the process C∗ is well defined for every t ≥ 0. Moreover
it is clearly right-continuous and adapted. By construction

(C∗
t , Dt) ∈ C̄ ∀t ≥ 0.(4.42)

Define the control

I∗t := C∗
t − c.(4.43)

The control process I∗ does the minimum effort to keep the couple (C∗
t , Dt) inside C̄.

More precisely, at time t ≥ 0,

• if (C∗
t− , Dt) ∈ C, no action is taken (dI∗ = 0);

• if (C∗
t− , Dt) ∈ ∂C (e.g., assume (C∗

t− , Dt) ∈ ∂+C; symmetrically one can argue
in the case (C∗

t− , Dt) ∈ ∂−C), then two cases have to be distinguished:
– if C∗

t− = ĉ+(Dt) (which occurs in particular if ĉ is continuous at Dt),
then I∗ acts in order to reflect (C∗

t , Dt) at the boundary ∂C+ along the
positive c-direction (note that no action is taken if ĉ+ is constant in a
right-neighborhood of Dt);

– if ĉ+ is discontinuous at Dt and C∗
t− < ĉ+(Dt), then the process C∗ has

a positive jump ∆C∗
t = ∆I∗,+t = ĉ+(Dt)− C∗

t− .

Regarding the last possibility, letting N± be the (at most countable) sets of disconti-
nuity points of ĉ±, respectively, due to the continuity of trajectories of D, we see that
the process I∗ = I∗,+ − I∗,− can jump

(a.1) either at time 0 when c < ĉ+(d) or when c > ĉ−(d), and in this case we have,
respectively, ∆I∗0 = ∆I∗,+0 = ĉ+(d)− c or ∆I∗0 = −∆I∗,−0 = ĉ−(d)− c;

(a.2) when Dt ∈ N+ and C∗
t− < ĉ+(Dt), and in this case ∆I∗t = ∆I∗,+t = ĉ+(Dt)−

C∗
t− ;

(a.3) when Dt ∈ N− and C∗
t− > ĉ−(Dt), and in this case ∆I∗t = −∆I∗,−t =

C∗
t− − ĉ−(Dt).

Lemma 4.11. The processes C∗, I∗ satisfy

∫ ∞

0
e−ρt1{(C∗

t ,Dt)∈C} dI
∗,±
t = 0.(4.44)

Proof. Fix ω ∈ Ω and suppose that (C∗
t (ω), D

d
t (ω)) ∈ C. Then, by definition of

the τk’s and since C is open, we must have t ∈ (τk−1(ω), τk(ω)) for some k ≥ 0, and

C∗
t (ω) ∈

(
ĉ+(Dt(ω)), ĉ−(Dt(ω))

)
.(4.45)

By definition of C∗, τk−1, τk, we see that C.∗(ω) is constant in some suitable neigh-
borhood (t− ε(ω), t+ ε(ω)) of t; hence also I.∗(ω) is constant therein. Thus, we have
proved (4.44).

The second main result provides the existence and an explicit description of the
optimal state process (and a description of the optimal investment in terms of the
optimal state).

Theorem 4.12 (optimal control). Let (c, d) ∈ S. The process C∗ constructed
before in (4.41) is an optimal state process for the value function at (c, d) with corre-
sponding optimal control I∗ = (I∗,+, I∗,−) defined by (4.43).
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Proof. Let us show that

v(c, d) ≥ E
[∫ ∞

0
e−ρt
(
g(C∗

t , Dt) + q+0 dI
∗,+
t − q−0 dI

∗,−
t

)]
.(4.46)

Let (Kn) be an increasing sequence of compact subsets of S such that ∪n∈NKn = S.
Consider the (bounded) stopping time τn = inf {t ≥ 0 |C∗

t ∧Dt /∈ Kn}∧n, and notice
that τn ↗ ∞ a.s. when n goes to infinity. From (4.40) and since V̂ ∈ C1,2(S;R), we
see that v ∈ C1,2(C̄;R). Thus, by (4.42), we may apply Itô’s formula (see Proposition
A.2) to e−ρtv(C∗

t , D
d
t ) between 0 and τn, take expectation, and obtain (after observing

that the stochastic integral over the interval [0, τn ∧ T ) vanishes in expectation due
to our localization)

v(c, d) = E
[
e−ρτnv(C∗

τn∧T , Dτn∧T )
]
+ E
[∫ τn

0
e−ρt[Lv(C∗

t , ·)](Dt)dt

]
(4.47)

−E
[∫ τn

0
e−ρtvc(C

∗
t , Dt)dI

∗
t

]

−E




∑

0≤t≤τn

e−ρt(v(C∗
t , Dt)− v(C∗

t− , Dt)− vc(C
∗
t , Dt)∆C∗

t )



 ,

Now observe that [Lv(c′, ·)](d′) = g(c′, d′) for (c′, d′) in C but also in C̄ by continuity
of g and since v ∈ C1,2(C̄;R). This implies

E
[∫ τn

0
e−ρt[Lv(C∗

t , ·)](Dd
t )dt

]
= E
[∫ τn

0
e−ρt
(
g(C∗

t , D
d
t )dt

]
.(4.48)

Now, notice that dI∗,+ = 0 if (C∗
t , D

d
t ) ∈ A− and dI∗,− = 0 if (C∗

t , D
d
t ) ∈ A+. Then

taking into account (4.44) and the fact that vc = −q+0 in A+ and vc = q−0 in A−, we
have

−E
[∫ τn

0
e−ρtvc(C

∗
t , D

d
t )dI

∗
t

]
= E
[∫ τn

0
e−ρt(q+0 dI

∗,+
t + q−0 dI

∗,−
t )

]
.(4.49)

Moreover, considering the three possibilities of jump (a.1)–(a.3) described above for
I∗, we have

v(C∗
t , D

d
t )− v(C∗

t− , D
d
t )− vc(C

∗
t , D

d
t )∆C∗

t = 0 ∀t ≥ 0.(4.50)

Therefore by nonnegativity of v and (4.47)–(4.50), we have

v(c, d) ≥ E
[∫ τn

0
e−ρt
(
g(C∗

t , D
d
t )dt+ q+0 dI

∗,+
t + q−0 dI

∗,−
t

)]
.

Letting n → ∞, from monotone convergence we get the inequality (4.46). Since the
opposite inequality always holds by definition of v, this proves the equality, i.e., that
I∗ is an optimal control.

Figure 2 represents a possible shape of the solution. The state space region S
is the half-plane on the right of the vertical dotted line. When the system lies in
the continuation region C, it moves along the horizontal lines and no action is taken.
Whenever the system touches the boundary ∂C, the optimal control (acting along the
vertical lines as indicated by the arrows in the picture) consists in doing the minimal
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#

# #

!
d

◦ •

◦

•

dmin

C

A+

A−

◦

◦

•

"

"

"

"
"

ĉ+(d)

ĉ−(d)

c

Fig. 2.

effort to keep the system in C̄. We notice that if the boundary ĉ+ or the boundary ĉ−
is constant somewhere, no action is taken if the system reaches this part of boundary,
and the system lies on this part of the boundary for a certain time until it meets a
strictly increasing part of this boundary.

Remark 4.13. From the solution found, it turns out that when c− ≥ 0, starting
from c ≥ 0 the optimal state process verifies C∗

· ≥ 0. This means that the solution is,
henceforth, also the solution of the problem with state constraint C· ≥ 0.

Corollary 4.14.
1. If limc↓−∞ gc(c, d) = −∞, then ĉ+ > −∞ in (d, dmax).
2. If limc↑∞ gc(c, d) = ∞, then ĉ− < ∞ in (dmin, d).

Proof. We prove item 1; then item 2 can be proved symmetrically. Let d ∈ O
be such that limc↓−∞ gc(c, d) = −∞. Take c0 ∈ R such that gc(c0, d) ≤ 0 and
ĉ−(d) > c0. Since by Assumption 2.4 gc is nondecreasing in c and nonincreasing in d,
we have gc ≤ 0 in (−∞, c0] × [d, dmax). Assume, by contradiction, that there exists
d1 ∈ (d, dmax) such that ĉ+(d1) = −∞. By monotonicity of ĉ+ this implies that
ĉ+ ≡ −∞ in (dmin, d1]. Now, given any c ≤ c0 and d0 ∈ (d, d1), define the stopping
times






σ := inf {t ≥ 0 |Dd0
t ≤ d},

τ := inf {t ≥ 0 |Dd0
t ≥ d1},

τ∗(c) := inf {t ≥ 0 |Dd0
t ≥ d̂+(c)}.

Observe that τ ≤ τ∗(c) for every c ∈ R, since d̂+(c) has to be larger than d1, as
ĉ+ ≡ −∞ in (dmin, d1]. Moreover, by Proposition 3.5 and Theorem 4.12, τ∗(c) is the
optimal stopping time of P2 for the Dynkin game defined in subsection 3.2. Hence,
we must have, taking also into account that gc(c, ·) is nonincreasing, that gc ≤ 0 in
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(−∞, c0]× [d, dmax), and that τ ≤ τ∗(c),

vc(c, d) ≤ J(c, d;σ, τ∗(c))

= E
[∫ τ∗(c)∧σ

0
e−ρtgc(c,D

d0
t )dt+ q−0 e

−ρσ1{σ<τ∗(c)} − q+0 e
−ρτ∗(c)1{τ∗(c)<σ}

]

≤ E
[∫ τ∧σ

0
e−ρtgc(c,D

d0
t )dt+ q−0

]

≤ E
[∫ τ∧σ

0
e−ρtgc(c, d)dt+ q−0

]

=
gc(c, d)

ρ
E[1 − e−ρ(τ∧σ)] + q−0 .

Note that σ and τ are independent of c and that τ ∧ σ > 0. So, letting c → −∞ in
the inequality above we get limc→−∞ vc(c, d) = −∞, which contradicts Proposition
3.6.3.

Remark 4.15. We notice that items 1 and 2 of Corollary 4.14 above hold, respec-
tively, when q+0 < ∞ and q−0 < ∞, which is an assumption we are doing throughout
the paper. However, also referring to Remark 2.3.2, we point out that in the case one
considers, e.g., q−0 = ∞ (irreversible investment), one has immediately ĉ− ≡ ∞, so
Corollary 4.14 does not hold anymore.

5. Quadratic cost: Smooth fit and boundaries’ characterization. Until
now, just under the assumption of convexity of g with respect to c, we have proved
the structure of the solution (Theorems 4.10 and 4.12). However, we do not know
how to identify the optimal boundaries ∂C±. Theorem 4.10 and the continuity of vc
in S yield some optimality conditions. Indeed, we should have

(5.1)

{
A′(c)ψ(d) +B(c)ϕ(d) + V̂c(c, d) = −q+0 ∀ (c, d) ∈ ∂C+,

A′(c)ψ(d) +B(c)ϕ(d) + V̂c(c, d) = q−0 ∀ (c, d) ∈ ∂C−.

It is clear that one cannot expect that the conditions above provide a way to find
either the value function or the optimal boundaries ∂±C (e.g., in terms of the functions
ĉ±), as, read at (ĉ±(d), d), they would relate four unknown functions A,B, ĉ± by two
equations. Other optimality conditions are needed and should be derived from some
other suitable smoothness property of the value function at the optimal boundaries
∂±C. To this end, we notice by Theorem 4.10 that

(5.2)
∂

∂d
vc(c, d) = 0 in

◦
A± .

Therefore, a requirement of a smooth fit condition of the second order mixed derivative
of v at the optimal boundaries would imply

lim
(c,d)→(c0,d0)

vcd(c, d) = 0 ∀ (c0, d0) ∈ ∂±C.(5.3)

This is what we are going to prove in the next subsection, but for that we need to
further specify the structure of g by requiring that it is quadratic in c. The reasons
for this are pointed out in Remark 5.4 below.
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5.1. The smooth fit principle. The purpose of the present subsection is indeed
to prove (5.3). However, we need to further specify our assumptions, restricting to
the quadratic cost case:

g(c, d) =
1

2
(c2 − 2β0(d)c+ α0(d)),(5.4)

where α0,β0 are continuous functions. From now on, we assume that g has the
structure (5.4) and we do not repeat this assumption in the statements of the results.
We assume that the functions α0,β0 are continuous and that β0 is nondecreasing, so
that Assumption 2.4 holds true, and we denote

α(d) := E
[∫ ∞

0
e−ρtα0(D

d
t )dt

]
, β(d) := E

[∫ ∞

0
e−ρtβ0(D

d
t )dt

]
,(5.5)

noting that α,β ∈ C2(O;R) as the diffusion D is nondegenerate. The function V̂ is
written in this case as

V̂ (c, d) =
1

2

(
1

ρ
c2 − 2β(d)c+ α(d)

)
.(5.6)

Given a function ϕ ∈ C(R;R), let us denote

[∆2ϕ](x; ε) :=
1

ε2
[ϕ(x+ ε) + ϕ(x− ε)− 2ϕ(x)], x ∈ R, ε > 0.

Lemma 5.1. We have for every (c, d) ∈ S, ε > 0,

0 ≤ [∆2v(·, d)](c; ε) ≤ 1

ρ
.

Proof. The estimate from below is a straightforward consequence of the convexity
of v with respect to c. Let us prove the estimate from above. Let (c, d) ∈ S, ε > 0,
and I ∈ I. By using the fact that gcc ≡ 1 under (5.4), we have

1

ε2
[G(c+ ε, d; I) +G(c− ε, d; I)− 2G(c, d; I)]

(5.7)

=E
[∫ ∞

0
e−ρt
[
1

ε2
(
g(Cc+ε,I

t , Dd
t ) + g(Cc−ε,I

t , Dd
t )− 2g(Cc,I

t , Dd
t )
)]

dt

]
=

1

ρ
.

Since

v(c+ ε, d) + v(c− ε, d)− 2G(c, d; I) ≤ G(c+ ε, d; I) +G(c− ε, d; I)− 2G(c, d; I),

we get from (5.7)

1

ε2
[v(c+ ε, d) + v(c− ε, d)− 2G(c, d; I)] ≤ 1

ρ
∀I ∈ I.

Taking the supremum over I ∈ I, this proves the required upper estimate.
Lemma 5.1 implies that vc(·, d) is Lipschitz continuous for each d ∈ O. Together

with (4.38)–(4.39) and (5.6), we immediately get the following regularity result.
Corollary 5.2. The derivative functions A′, B′ : (c+, c̄−) → R, where A, B

are the functions defined in Theorem 4.10, are locally Lipschitz. In other terms A,
B ∈ W 2,∞

loc ((c+, c̄−);R).
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(This property holds eventually up to c+, c̄−, when A, B can be extended, re-
spectively, to C1 functions up to c+, c̄−, according to the conditions of Theorem 4.10
which allow these extensions.)

We are now able to prove the second order smooth fit result on the value function.
Proposition 5.3. The relation (5.3) holds true.
Proof. We shall prove (5.3) for the lower boundary ∂+C; the claim concerning

the upper boundary ∂−C can be proved in the same way. Letting (c0, d0) ∈ ∂+C we
distinguish three cases.

1. Suppose that c0 = ĉ+(d0) > c+. Let us consider the function on D :=
(c+, c̄−)×O

v̄(c, d) := A(c)ψ(d) +B(c)ϕ(d) + V̂ (c, d), (c, d) ∈ D.

By Theorem 4.10 and (5.6), we have that v̄ ∈ C1,2(D;R) and that v̄cd exists and is
continuous in D. Since v̄ = v in C̄ ∩D, by monotonicity of vc(c, ·), we have

v̄cd ≤ 0 in C,(5.8)

and we must prove

lim
(c,d)→(c0,d0)

(c,d)∈C

v̄cd(c, d) = 0.(5.9)

By continuity of v̄cd, the limit above exists and coincides with v̄cd(c0, d0). Taking into
account (5.8), suppose by contradiction that

v̄cd(c0, d0) < 0.(5.10)

Then, by continuity of v̄cd there exist ε > 0 and a neighborhood N(c0,d0) of (c0, d0)

v̄cd(c, d) ≤ −ε ∀(c, d) ∈ N(c0,d0).(5.11)

Now, note that vc(c0, d0) = −q+0 . Due to (5.10) we can apply the implicit function
theorem to the function v̄ + q+0 . We get the existence of a continuous function d̄+ :
(c− δ, c+ δ) → O, for suitable δ > 0, such that v̄c(c, d̄+(c)) = −q+0 in (c0 − δ, c0 + δ)
and actually d̄+ individuates the unique solution to v̄c(c, ·) = −q+0 in (c0 − δ, c0 + δ).
By definition of d̂+ we see that d̄+ must coincide with d̂+ in (c0−δ, c0+δ). Moreover,
given this identification, by Corollary 5.2 and by (5.11), again the implicit function
theorem states the existence of d′+ in the Sobolev sense in the interval (c0 − δ, c0 + δ)
and

d̂′+(·) = − v̄cc(·, d̂+(·))
v̄cd(·, d̂+(·))

≤ Mε a.e. in (c0 − δ, c0 + δ)(5.12)

for a suitable Mε < ∞. Since ĉ+ is right-continuous, it is continuous in a right neigh-
borhood of d0. Then, combining with the continuity of d̂+ in a right neighborhood of
c0, taking a smaller δ if necessary, we see that d̂+ is strictly increasing in [c0, c0 + δ)
and therefore

d̂′+ > 0 a.e. in [c0, c0 + δ).(5.13)

Let Y be the set of differentiability points of d̂+ in [c0, c0 + δ), where 0 < d̂′+ ≤ M .
Then, taking into account (5.12)–(5.13), we see that Y has full measure in [c0, c0+ δ).
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On the other hand, setting d1 := d̂+(c0 + δ), we have that ĉ+ is the inverse of d̂+ in
[d0, d1). Consequently ĉ′+ exists in d̂+(Y), which is dense in [d0, d1) since d̂+ is strictly
increasing and Y has full measure, and due to (5.12)

ĉ′+ ∈ [1/Mε,∞), in d̂+(Y).(5.14)

Let us now consider the function d ∈ [d0, d1) 6→ v(c0, d). Since ĉ+ is nondecreasing in
[d0, d1) (actually we have shown strictly increasing), the segment {(c0, d) | d ∈ [d0, d1)}
is contained in A+. Hence, Theorem 4.10 yields

(5.15) v(c0, d) = −q+0 c0 + z+(d) ∀d ∈ [d0, d1).

Applying the chain rule at the points of d̂+(Y) to

[d0, d1) → R, d 6→ z+(d) = v(ĉ+(d), d) + q+0 ĉ+(d) = v̄(ĉ+(d), d) + q+0 ĉ+(d),

we see that the function z+ is differentiable at the points of d̂+(Y) and

z′+(d) = v̄c(ĉ+(d), d)ĉ
′
+(d) + v̄d(ĉ+(d), d) + q+0 ĉ

′
+(d) ∀d ∈ d̂+(Y).

By definition of ĉ+, we have v̄c(ĉ+(d), d) = vc(ĉ+(d), d) = −q+0 for every d ∈ O, and so

z′+(d) = vd(ĉ+(d), d) ∀d ∈ d̂+(Y).

Together with (5.15), this shows the existence of vd(c0, d) for each d ∈ d̂+(Y) and the
equality

(5.16) vd(c0, d) = z′+(d) = v̄d(ĉ+(d), d) ∀d ∈ d̂+(Y).

On the other hand, by using again the chain rule, we can get from (5.16) the existence
of vdd(c0, d) for each d ∈ d̂+(Y) and the equality

vdd(c0, d) = z′′+(d) = v̄dd(ĉ+(d), d) + v̄cd(ĉ+(d), d) ĉ
′
+(d) ∀d ∈ d̂+(Y).(5.17)

Therefore, from (5.11), (5.14), and (5.17), we get

(5.18) vdd(c0, d) ≤ v̄dd(ĉ+(d), d) − ε/Mε ∀d ∈ d̂+(Y).

Now the viscosity subsolution property of v, (5.16), and (5.18) yield

g(c0, d) ≥ ρv(c0, d)− µ(d)vd(c0, d)−
1

2
σ2(d)vdd(c0, d)

(5.19)

= ρv(c0, d)− µ(d)v̄d(ĉ+(d), d) −
1

2
σ2(d)[v̄dd(ĉ+(d), d)− ε/Mε] ∀d ∈ d̂+(Y).

Taking a sequence (αn) ⊂ d̂+(Y) such that αn ↓ d0 – this can be done since d̂+(Y) is
dense in [d0, d1)—and passing to the limit in (5.19) evaluated at d = αn we obtain by
continuity of ĉ+ in [d0, d1), continuity of g in S, and since v̄ ∈ C1,2(D,R) and v̄ = v
in C̄,

(5.20) ρv̄(c0, d0)− µ(d0)v̄d(c0, d0)−
1

2
σ2(d0)[v̄dd(c0, d0)− ε/Mε] ≤ g(c0, d0).
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On the other hand, recall that [Lv̄(c, ·)](d) = [Lv(c, ·)](d) = g(c, d) for (c, d) ∈ C.
Therefore, since v̄ ∈ C1,2(D;R) and since (c0, d0) ∈ C̄, by continuity we must also
have

ρv̄(c0, d0)− µ(d0)v̄d(c0, d0)−
1

2
σ2(d0)v̄dd(c0, d0) = g(c0, d0),

which is in contradiction with (5.20) as σ2(d0) > 0 by assumption of nondegeneracy
of D, and the claim is proved in this case.

2. Consider now the case c0 = ĉ+(d0) = c+. In this case we can construct the
function v̂ in D := (c+ − ε, c̄−) × O for some ε > 0 by using the extension part of
Corollary 5.2 and repeat the argument of the previous case.

3. Consider now the last possible case, i.e., d0 = d̂+(c0) and c0 < ĉ+(d0), noting
that ĉ+(d0) < ∞ (see Proposition 4.1.1). In this case the segment K := {(c, d0) | c ∈
[c0, ĉ+(d0)]} is contained in ∂+C. Define the function v̄ as in item 1. We then have
v̄c = vc = −q+0 in K. Hence

−q+0 − v̄c(c, d) = v̄c(c, d0)− v̄c(c, d)(5.21)

=

∫ d0

d
v̄cd(c, ξ)dξ ∀c ∈ [c0, ĉ+(d0)], ∀d ≤ d0,

Taking into account Corollary 5.2 and differentiating (5.21) with respect to c we get
(the derivatives A′′, B′′ must be intended in Sobolev sense)

−v̄cc(c, d) =

∫ d0

d
v̄cdc(c, ξ)dξ a.e. (c, d) ∈ [c0, ĉ+(d0)]× (d̂−(c), d0].(5.22)

Since vcc ≥ 0, hence v̄cc ≥ 0 (in Sobolev sense), from (5.22) we get

0 ≥
∫ d0

d
v̄cdc(c, ξ)dξ a.e. (c, d) ∈ [c0, ĉ+(d0)]× (d̂−(c), d0],(5.23)

from which, taking into account (5.6), we deduce that actually

A′′(c)ψ′(d) +B′′(c)ϕ′(d) ≤ 0 a.e. in [c0, ĉ+(d0)]× (d̂−(c), d0].

Then, since ψ′,ϕ′ are continuous, we deduce that

A′′(c)ψ′(d0) +B′′(c)ϕ′(d0) ≤ 0 a.e. in [c0, ĉ+(d0)].

Hence, v̄cd(·, d0) is nonincreasing with respect to c in [c0, ĉ+(d0)]. Then, assuming
now, as in item 1, by contradiction (5.10), we also must have v̄cd(ĉ+(d0), d0) < 0. So
we are now reduced to the contradiction assumption of item 1, and we can apply the
argument of that item and get the contradiction, and so the claim.

Remark 5.4.
1. In [34], a similar smooth fit principle (5.3) is derived a posteriori in the

particular case where the state process is a geometric Brownian motion, so
that an explicit smooth solution can be obtained, and then shown to be the
equal to the value function by a verification approach. In the general diffusion
case for demand and when the cost function is quadratic, we have proved
directly the smooth fit principle (5.3) by a viscosity solutions approach.
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2. We notice that our proof is based on Lemma 5.1, which relies on assumption
(5.4). This lemma enables us to obtain further regularity of the value function
with respect to c (Corollary 5.2), which is crucial to then prove (5.3).

3. Regarding the comparison with [34], we also notice that the optimization
problem therein is different: it maximizes a profit functional where the rev-
enue is expressed by a revenue function on the variables (C,D) (typically a
Cobb–Douglas function). If an estimate (even just local) on the second order
differentials of the value function like the one provided here in Lemma 5.1
were available, then our approach would be applicable. Unfortunately such an
estimate is not easily obtainable in that context (due to the unboundedness of
the second derivative of the Cobb–Douglas functions), so our approach can-
not be directly applied to the problem of [34]. Hence, the difference between
our choice of functional and the choice of [34] is structural.

5.2. Characterization of the optimal boundaries. Proposition 5.3 can be
used to add other necessary optimality conditions to (5.1): indeed, by (4.40), the
relation (5.3) yields

A′(c)ψ′(d) +B′(c)ϕ′(d) + V̂cd(c, d) = 0 ∀ (c, d) ∈ ∂C.(5.24)

We want to use the optimality conditions (5.1) and (5.24) to characterize the optimal
boundaries ∂C±. First, we rewrite such conditions. (The proofs of the next two
propositions follow the line of [4] and also, in some parts, of [34].)

Proposition 5.5. Let c ∈ R and let d+, d− ∈ O be such that (c, d−) ∈ ∂−C,
(c, d+) ∈ ∂+C. Then






∫ d+

d−

ψ(ξ)gc(c, ξ)m
′(ξ)dξ + q−0

ψ′(d−)

S′(d−)
+ q+0

ψ′(d+)

S′(d+)
= 0,

∫ d+

d−

ϕ(ξ)gc(c, ξ)m
′(ξ)dξ + q−0

ϕ′(d−)

S′(d−)
+ q+0

ϕ′(d+)

S′(d+)
= 0.

(5.25)

Proof. Let c, d± be as in the statement. The conditions (5.1) computed respec-
tively at (c, d+) and (c, d−) yield

{
A′(c)ψ(d+) +B′(c)ϕ(d+) + V̂c(c, d+) = −q+0 ,

A′(c)ψ(d−) +B′(c)ϕ(d−) + V̂c(c, d−) = q−0 ,

from which we get





A′(c) = ϕ(d−)(−V̂c(c,d+)−q+0 )−ϕ(d+)(q−0 −V̂c(c,d−))
ψ(d+)ϕ(d−)−ϕ(d+)ψ(d−) ,

B′(c) = ψ(d+)(q−0 −V̂c(c,d−))−ψ(d−)(−q+0 −V̂c(c,d+))
ψ(d+)ϕ(d−)−ϕ(d+)ψ(d−) .

(5.26)

By Theorem 4.10

vc(c, d) = A′(c)ψ(d) +B′(c)ϕ(d) + V̂c(c, d) ∀d ∈ [d−, d+].(5.27)

So, plugging (5.26) into (5.27), we get

vc(c, d) =
ϕ̃(d)

ϕ̃(d−)
(q−0 − V̂c(c, d−)) +

ψ̃(d)

ψ̃(d+)
(−q+0 − V̂c(c, d+)) + V̂c(c, d) ∀d ∈ [d−, d+],
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where

ϕ̃(d) := ϕ(d) − ϕ(d+)
ψ(d+)

ψ(d), ψ̃(d) := ψ(d)− ψ(d−)
ϕ(d−)

ϕ(d).(5.28)

Hence

vcd(c, d) =
ϕ̃′(d)

ϕ̃(d−)
(q−0 − V̂c(c, d−)) +

ψ̃′(d)

ψ̃(d+)
(−q+0 − V̂c(c, d+))(5.29)

+ V̂cd(c, d) ∀d ∈ [d−, d+].

Now (5.24) yields vcd(c, d−) = vcd(c, d+) = 0. Imposing these conditions into (5.29),
we get






q−0 − V̂c(c, d−) =
−V̂cd(c,d−)ψ̃′(d+)ϕ̃(d−)+V̂cd(c,d+)ψ̃′(d−)ϕ̃(d−)

ϕ̃′(d−)ψ̃′(d+)−ψ̃′(d−)ϕ̃′(d+)
,

−q+0 − V̂c(c, d+) =
−V̂cd(c,d+)ϕ̃′(d−)ψ̃(d+)+V̂cd(c,d−)ϕ̃′(d+)ψ̃(d+)

ϕ̃′(d−)ψ̃′(d+)−ψ̃′(d−)ϕ̃′(d+)
.

(5.30)

Simple computations yield

ϕ̃′(d−)ψ̃
′(d+)− ψ̃′(d−)ϕ̃

′(d+)

= (ϕ′(d−)ψ
′(d+)− ϕ′(d+)ψ

′(d−))(ϕ(d−)ψ(d+)− ϕ(d+)ψ(d−)),
ψ̃′(d+)ϕ̃(d−)

=
(ψ′(d+)ϕ(d−)− ψ(d−)ϕ′(d+))(ϕ(d−)ψ(d+)− ϕ(d+)ψ(d−))

ψ(d+)ϕ(d−)
,

ψ̃′(d−)ϕ̃(d−)

=
(ψ′(d−)ϕ(d−)− ψ(d−)ϕ′(d−))(ϕ(d−)ψ(d+)− ϕ(d+)ψ(d−))

ψ(d+)ϕ(d−)
,

ϕ̃′(d−)ψ̃(d+)

=
(ϕ′(d−)ψ(d+)− ϕ(d+)ψ′(d−))(ϕ(d−)ψ(d+)− ϕ(d+)ψ(d−))

ψ(d+)ϕ(d−)
,

ϕ̃′(d+)ψ̃(d+)

=
(ϕ′(d+)ψ(d+)− ϕ(d+)ψ′(d+))(ϕ(d−)ψ(d+)− ϕ(d+)ψ(d−))

ψ(d+)ϕ(d−)
.

Plugging these expressions into (5.30) we get






q−0 − V̂c(c, d−)

= −V̂cd(c,d−)(ψ′(d+)ϕ(d−)−ψ(d−)ϕ′(d+))+V̂cd(c,d+)(ψ′(d−)ϕ(d−)−ψ(d−)ϕ′(d−)
ϕ′(d−)ψ′(d+)−ψ′(d−)ϕ′(d+) ,

−q+0 − V̂c(c, d+)

= −V̂cd(c,d+)(ϕ′(d−)ψ(d+)−ϕ(d+)ψ′(d−))+V̂cd(c,−)(ϕ′(d+)ψ(d+)−ϕ(d+)ψ′(d+))
ϕ′(d−)ψ′(d+)−ψ′(d−)ϕ′(d+) .
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Using the representations (3.10)–(3.11) in the system of equality above, we get after
long computations

−q+0 (ϕ
′(d−)ψ

′(d+)− ψ′(d−)ϕ
′(d+)) = ϕ

′(d−)S
′(d+)

∫ d+

d−

ψ(ξ)gc(c, ξ)m
′(ξ)dξ

−ψ′(d−)S
′(d+)

∫ d+

d−

ϕ(ξ)gc(c, ξ)m
′(ξ)dξ,

q−0 (ϕ
′(d−)ψ

′(d+)− ψ′(d−)ϕ
′(d+)) = ϕ

′(d+)S
′(d−)

∫ d+

d−

ψ(ξ)gc(c, ξ)m
′(ξ)dξ

−ψ′(d+)S
′(d−)

∫ d+

d−

ϕ(ξ)gc(c, ξ)m
′(ξ)dξ,

from which we finally see that the couple (d−, d+) ∈ O ×O satisfies (5.25).
Let us denote

c+,g := inf
O

ĉ+,g, c−,g := inf
O

ĉ−,g, c̄+,g := sup
O

ĉ+,g, c̄−,g := sup
O

ĉ−,g.

For all c ∈ R denote

d∗+(c) := inf {ξ ∈ O | gc(c, ξ) < −ρq+0 }, d∗−(c) := sup {ξ ∈ O | gc(c, ξ) > ρq−0 }

with the convention sup ∅ = dmin, inf ∅ = dmax. Then clearly we have d∗+(c) < d∗−(c)
for every c ∈ R, and d∗+(c), d

∗
−(c) ∈ O if and only if c ∈ (c−,g, c̄+,g).

Proposition 5.6. Let c ∈ R and let −β0 be strictly decreasing (so that gc(c, ·) =
−β0(·) is strictly decreasing for every c ∈ R). The pair of equations






∫ y

x
ψ(ξ)gc(c, ξ)m

′(ξ)dξ + q−0
ψ′(x)

S′(x)
+ q+0

ψ′(y)

S′(y)
= 0,

∫ y

x
ϕ(ξ)gc(c, ξ)m

′(ξ)dξ + q−0
ϕ′(x)

S′(x)
+ q+0

ϕ′(y)

S′(y)
= 0

(5.31)

admits a solution (x∗(c), y∗(c)) with y∗(c) > x∗(c) if and only if c ∈ (c−,g, c̄+,g).
(Note that the case c−,g > c̄+,g may occur, and in this case this interval is considered
as empty.) If this is the case, i.e., c ∈ (c−,g, c̄+,g), then the solution is unique and
belongs to (dmin, d∗−(c))× (d∗+(c), dmax).

Moreover x∗, y∗ are continuously differentiable in the interval (c−,g, c̄+,g) and have
strictly positive derivatives.

Proof. Fix c ∈ R and consider the functions in the couple of variables (x, y) ∈
O ×O

L1(x, y; c) :=

∫ y

x
ψ(ξ)gc(c, ξ)m

′(ξ)dξ + q+0
ψ′(y)

S′(y)
+ q−0

ψ′(x)

S′(x)
,(5.32)

L2(x, y; c) :=

∫ y

x
ϕ(ξ)gc(c, ξ)m

′(ξ)dξ + q+0
ϕ′(y)

S′(y)
+ q−0

ϕ′(x)

S′(x)
.(5.33)

The solvability of our system of equations corresponds then to the solvability of
L1(x, y; c) = 0, L2(x, y; c) = 0 in O × O with x < y. Using the representations
(see, e.g., [8, Chap. II])

ψ′(·)
S′(·) = ρ

∫ ·

dmin

ψ(ξ)m′(ξ)dξ,
ϕ′(·)
S′(·) = −ρ

∫ dmax

·
ϕ(ξ)m′(ξ)dξ,(5.34)
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L1, L2 can be rewritten as

L1(x, y; c) =

∫ y

x
ψ(ξ)(gc(c, ξ) + ρq

+
0 )m

′(ξ)dξ + (q+0 + q−0 )
ψ′(x)

S′(x)
,

L2(x, y; c) =

∫ y

x
ϕ(ξ)(gc(c, ξ)− ρq−0 )m′(ξ)dξ + (q+0 + q−0 )

ϕ′(y)

S′(y)
,

or equivalently as

L1(x, y; c) =

∫ y

x
ψ(ξ)gc(c, ξ)m

′(ξ)dξ + ρq+0

∫ y

dmin

ψ(ξ)m′(ξ)dξ

+ ρq−0

∫ x

dmin

ψ(ξ)m′(ξ)dξ,

L2(x, y; c) =

∫ y

x
ϕ(ξ)gc(c, ξ)m

′(ξ)dξ − ρq+0
∫ dmax

y
ϕ(ξ)m′(ξ)dξ

− ρq−0
∫ dmax

x
ϕ(ξ)m′(ξ)dξ,

and the partial derivatives of L1, L2 with respect to x, y are

∂L1

∂x
(x, y; c) = −ψ(x)(gc(c, x)− ρq−0 )m′(x),

∂L1

∂y
(x, y; c) = ψ(y)(gc(c, y) + ρq

+
0 )m

′(y),

∂L2

∂x
(x, y; c) = −ϕ(x)(gc(c, x) − ρq−0 )m′(x),

∂L2

∂y
(x, y; c) = ϕ(y)(gc(c, y) + ρq

+
0 )m

′(y).

Let us study the solvability of L1(x, ·; c) = 0 for given x ∈ O. First we notice that
L1(x, x; c) > 0 as ψ′ > 0, S′ > 0. Taking into account that gc(c, ·) is strictly decreasing
and continuous, we see that the sign of ∂L1

∂y (x, ·; c) is strictly positive in (x, d∗+(c)) and

strictly negative in (d∗+(c), dmax). Combined with the fact that L1(x, x; c) > 0, this
shows that there is at most one point y∗(x; c) ∈ (x, dmax) solution to L1(x, ·; c) = 0
and that y∗(x; c) (if exists) must belong to (d∗+(c), dmax). Now we distinguish two
cases:

• If c ≥ c̄+,g, then gc(c, ·)+ρq+0 ≥ 0 in O. So the solution does not exist in this
case.

• If c < c̄+,g, take ŷ(c) > d∗(c) such that L1(x, ŷ(c); c) > 0 (such ŷ(c) exists
by continuity), and observe that since gc(c, ·) is (strictly) decreasing, using
(5.34), one has for every y ≥ ŷ(c)

∫ y

ŷ(c)
ψ(ξ)m′(ξ)(gc(c, ξ) + ρq

+
0 )dξ ≤

gc(c, ŷ) + ρq
+
0

ρ

(
ψ′(y)

S′(y)
− ψ

′(ŷ)

S′(ŷ)

)
,

and therefore

(5.35) L1(x, y; c) ≤ L1(x, ŷ(c); c) +
gc(c, ŷ(c)) + ρq

+
0

ρ

(
ψ′(y)

S′(y)
− ψ

′(ŷ)

S′(ŷ)

)
.

Now we notice that there existsMc > 0 such that L1(x, ŷ(c); c) ≤Mc for every

x ≤ ŷ(c). Indeed,
∫ ŷ(c)
dmin

ψ(ξ)gc(c, ξ)m′(ξ)dξ is finite because of the finiteness

of V̂c and taking into account (3.11);
∫ ŷ(c)
dmin

ψ(ξ)m′(ξ)dξ is finite because of
(5.34); ψ′(x)/S′(x) is bounded in (dmin, ŷ(c)] because of (3.9). Now, since
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gc(c, ŷ(c)) + ρq
+
0 < 0 and since by (3.9) we have ψ′(y)/S′(y) → ∞ as y →

dmax, we see that the solution y∗(x; c) to L1(x, ·; c) = 0 exists in the interval
(ŷ(c), dmax−εMc ] for some εMc > 0, hence in the interval (d∗+(c), dmax−εMc ],
for every x ≤ d∗−(c).

Hence we have shown that, given x ∈ O, there exists a unique solution y∗(x; c) to
L1(x, ·; c) = 0 if and only if c < c̄+,g, and it belongs to the interval (d∗+(c), dmax −
εMc ]. Morever, the implicit function theorem ensures that y∗(·; c) is continuously
differentiable and

(5.36)
d

dx
y∗(x; c) = −

∂L1
∂x (x, y∗(x; c))
∂L1
∂y (x, y∗(x; c))

=
ψ(x)m′(x)(gc(c, x)− ρq−0 )

ψ(y∗(x))m′(y∗(x))(gc(c, y∗(x)) + ρq
+
0 )

.

Now consider the equation L2(x, y∗(x; c); c) = 0. We are going to show existence
and uniqueness of solutions to such an equation in O. This will complete the proof of
existence and uniqueness of solutions for (5.31), as, from what we have said before,
x∗(c) solves the latter equation if and only if (x∗(c), y∗(x∗(c); c)) solves (5.31). We
observe the following:

• If c ≤ c−,g, then gc(c, ·) − ρq−0 ≤ 0 in O; so, since ϕ′(·)/S′(·) < 0 we have
L2(·, y∗(·; c)) < 0 in O and the solution does not exist.

• If c > c−,g, then we have the following facts:

1. L2(·; y∗(·; c)) < 0 in (d∗−(c), dmax), as gc(c, ·) − ρq−0 ≤ 0 therein and
ϕ′(·)/S′(·) < 0.

2. Using (5.36) we compute

d

dx
L2(x, y

∗(x; c))

=
ψ(x)ϕ(y∗(x; c)) − ψ(y∗(x; c))ϕ(x)

ψ(y∗(x; c)
m′(x)(gc(c, x)− ρq−0 ).

So taking into account that y∗(x; c) > x, the strict (opposite) mono-
tonicity of ϕ,ψ, and that g(c, ·)− ρq−0 > 0 in (dmin, d∗−(c)), we see that
d
dxL2(x, y∗(x; c)) < 0 for x ∈ (dmin, d∗−(c)).

3. Arguing as in proving (5.35), we can prove that there exists
x̂ ∈ (dmin, d∗−(c)) such that L2(x̂, y∗(x̂; c)) < 0 and

L2(x, y
∗(x; c)) ≥

∫ y∗(x;c)

x̂
ϕ(ξ)(gc(c, ξ)− ρq−0 )m′(ξ)dξ

−gc(c, x̂)− ρq−0
ρ

(
ϕ′(x)

S′(x)
− ϕ

′(x̂)

S′(x̂)

)
.

Since y∗(x; c) ∈ (d∗+(c), dmax − εMc ] for every x ∈ (dmin, d∗−(c)], setting

K0 :=

∫ dmax−εMc

x̂
ϕ(ξ)(gc(c, ξ)− ρq−0 )m′(ξ)dξ,

the latter inequality yields

L2(x, y
∗(x; c)) ≥ K0 −

gc(c, x̂)− ρq−0
ρ

(
ϕ′(x)

S′(x)
− ϕ

′(x̂)

S′(x̂)

)
.

Now, since ϕ
′(x)

S′(x) → −∞ as x → dmin due to (3.9), and since gc(c, x̂) −
ρq−0 > 0, we see that L2(x, y∗(x; c)) →∞ as x → dmin.
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Combining these three facts we deduce that there exists a unique solution to
the equation L2(·; y∗(·; c)) = 0 and that it belongs to the interval (dmin, d∗−(c)).

Let us show now the last part of the claim. Consider c as a variable in L1, L2 and
consider the matrix

M(x∗(c), y∗(c); c) =




∂L1
∂x (x∗(c), y∗(c); c) ∂L1

∂y (x∗(c), y∗(c); c)

∂L2
∂x (x∗(c), y∗(c); c) ∂L2

∂y (x∗(c), y∗(c); c)



 .

Taking into account that x∗(c) < d∗−(c), y
∗(c) > d∗−(c), and that ψ,ϕ are respec-

tively strictly increasing and strictly decreasing, we see that the M∗(x∗(c), y∗(c); c)
is actually nonsingular. More precisely, M := det(M(x∗(c), y∗(c); c)) < 0 and

(5.37) M(x∗(c), y∗(c); c)−1 =
1

M




∂L2
∂y (x∗(c), y∗(c); c) −∂L1

∂y (x∗(c), y∗(c); c)

−∂L2
∂x (x∗(c), y∗(c); c) ∂L1

∂x (x∗(c), y∗(c); c)



 .

So, since L1(x∗(c), y∗(c); c) = 0, L1(x∗(c), y∗(c); c) = 0, we can apply the implicit
function theorem, which yields

d

dc

(
x∗(c)

y∗(c)

)
= −M(x∗(c), y∗(c); c)−1




∂L1
∂c (x∗(c), y∗(c); c)

∂L2
∂c (x∗(c), y∗(c); c)



 .(5.38)

Since gcc = 1, we have

∂L1

∂c
(x∗(c), y∗(c); c) =

∫ y∗(c)

x∗(c)
ψ(ξ)m′(ξ)dξ,

∂L2

∂c
(x∗(c), y∗(c); c)

=

∫ y∗(c)

x∗(c)
ϕ(ξ)m′(ξ)dξ.

So, from (5.38)–(5.37) we get

dx∗

dc
(c) = − 1

M
(gc(c, y

∗(c)) + ρq+0 )m
′(y∗(c))

×
∫ y∗(c)

x∗(c)
(ϕ(y∗(c))ψ(ξ) − ψ(y∗(c))ϕ(ξ))m′(ξ)dξ,

dy∗

dc
(c) = − 1

M
(gc(c, x

∗(c))− ρq−0 )m′(x∗(c))

×
∫ y∗(c)

x∗(c)
(ϕ(x∗(c))ψ(ξ) − ψ(x∗(c))ϕ(ξ))m′(ξ)dξ.

Now, notice that

M < 0, gc(c, y
∗(c)) + ρq+0 < 0, gc(c, x

∗(c))− ρq−0 > 0,

and that the functions

q(ξ) := ϕ(y∗(c))ψ(ξ) − ψ(y∗(c))ϕ(ξ), p(ξ) := ϕ(x∗(c))ψ(ξ) − ψ(x∗(c))ϕ(ξ),

are both strictly increasing and verify, respectively, q(y∗(c)) = 0 and p(x∗(c)) = 0. So
we conclude from (5.38).
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We are now ready to characterize the optimal boundaries.
Theorem 5.7. Let −β0 be strictly decreasing. We have c− = c−,g, c̄+ = c̄+,g,

and the optimal boundaries ∂±C are characterized piecewise as follows. (Note that
some of the three regions below where we split the characterization may be empty.)

1. In the region (c−,g, c̄+,g) × O, the optimal boundaries ∂±C are identified by

the functions d̂± which are characterized as follows: given c ∈ (c−,g, c̄+,g)

the couple (d̂−(c), d̂+(c)) ∈ O × O is the unique solution of the system of
equations (5.31) provided by Proposition 5.6.

2. In the region (−∞, c−,g] × O only ∂+C (at most) exists and is identified in
terms of the function ĉ+ (note that Corollary 4.14 ensures ĉ+ > −∞)), which
is explicitly given by

ĉ+(d) = ρ

[
β(d) − ψ(d)

ψ′(d)
β′(d)− q+0

]
, d ≤ d0 := lim

c↓c−,g

d̂+(c), d ∈ O.

(For the definition of limc↓c̄−,g d̂+(c) when (c−,g, c̄+,g) is empty, recall that

d̂+(c) ≡ dmax for c ≥ c̄+.)
3. In the region [c̄+,g,∞) × O only ∂−C (at most) exists and is identified in

terms of the function ĉ− (note that Corollary 4.14 ensures ĉ− < ∞)), which
is explicitly given by

ĉ−(d) = ρ

[
β(d) − ϕ(d)

ϕ′(d)
β′(d) + q−0

]
, d ≥ d1 := lim

c↑c̄+,g

d̂−(c), d ∈ O.

(For the definition of limc↑c̄+,g d̂−(c) when (c−,g, c̄+,g) is empty, recall that

d̂−(c) ≡ dmin for c ≤ c−.)
Moreover,

(i) the functions ĉ± : O → R are continuous and strictly increasing,
(ii) ĉ+ and ĉ− are of class C1 except, at most, at the points limc↓c−,g

d̂+(c) and

limc↑c̄+,g d̂−(c), respectively (if they belong to O).

Proof. 1. First we notice that, by Proposition 4.4, we have c−,g ≤ c− and c̄+,g ≥
c̄+. In the interval (c−, c̄+), we have that the couple (d̂−(c), d̂+(c)) belongs to O×O,
and, by Propositions 5.5 and 5.6, it can be identified as the unique solution of the
system of equations (5.31). This shows claim 1, once we prove the claim c−,g = c−
and c̄+,g = c̄+, which is what we are going to prove now.

Assume by contradiction that (c−,g, c−] is nonempty. Then, for all c ∈ (c−,g, c−]
we should have a unique solution (d−(c), d+(c)) ∈ O × O to (5.31) as provided by
Proposition 5.6. By the monotonicity claim of Proposition 5.6, such a solution should
be such that dmin < d−(c) < limζ↓c− d̂−(ζ) =: d0. Now if d0 > dmin, then, by
definition of c− we would have ĉ− ≡ c− in (dmin, d0) and we would have, by Proposition
5.5, more than one solution to (5.31) at the level c−. But this contradicts Proposition
5.6. Therefore it should be d0 = dmin, but this would be a contradiction to dmin <
d−(c) < d0. Hence, it remains proved that c− = c−,g. The same argument applies to
c̄+ and so the claim is proved.

2. The fact that only ∂+C (at most) exists in the region (−∞, c−,g] is due to
the definition of c−, to the equality c−,g = c− and to the fact that, as shown in

item 1, limζ↓c− d̂−(ζ) = dmin. Then, due to Theorem 4.10, we have B(c) = 0 for
all c ≤ c−,g. Hence, the optimality conditions (5.1) and (5.24) written at the points
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(ĉ+(d), d) ∈ ∂+C with d ∈ (dmin, limc↓c−,g
d̂+(c)] (notice that, due to Corollary 4.14,

we actually have ĉ+ : O → R) yield

(5.39)






A′(ĉ+(d))ψ(d) + 1
ρ ĉ+(d) − β(d) = −q+0 ,

A′(ĉ+(d))ψ′(d)− β′(d) = 0.

Multiplying the second equation in (5.39) by ψ/ψ′ and subtracting it from the first
one, we get (5.42).

3. The same argument of item 2 applies symmetrically.
Let us now show items (i) and (ii).
(i) We show the claim for ĉ+, the proof of the claim regarding ĉ− is analogous.

Since d̂+ is strictly increasing and continuous in the interval (c−,g, c̄+,g) (when this

is not empty), we see that ĉ+ is the inverse of d̂+ in the interval (limc↓c d̂+(c), dmax)
(when this is, correspondingly, nonempty) and is strictly increasing and continuous
therein. So we must now show that ĉ+ is strictly increasing and continuous in the
interval (dmin, limc↓c d̂+(c)] (when this is nonempty). Assume by contradiction that

there exists a nonempty interval (a, b) ⊂ (dmin, limc↓c d̂+(c)] where ĉ+ ≡ c0. Then
from the first equality in (5.39) we should have

β(d) = A′(c0)ψ(d) +
1

ρ
c0 + q+0 , d ∈ (a, b).

Since ψ solves Lψ = 0, we then have that Lβ ≡ c0 + ρq+0 in (a, b). On the other
hand, from (5.5), we see that it must be also Lβ = β0, so we should conclude that β0
is constant in (a, b), contradictiong the hypothesis. So, it has been proved that ĉ+ is
strictly increasing.

Now we show that ĉ+ is continuous. Indeed it is continuous in the interval
(dmin, limc↓c d̂+(c)], due to item 2, and in the interval (limc↓c d̂+(c), dmax), due to

item 1. It remains to prove that ĉ+ is continuous at limc↓c d̂+(c) (when it belongs to
O). This comes just from the fact that ĉ+ is right-continuous in general and, as we
have seen just now, it is left-continuous at limc↓c d̂+(c).

(ii) It follows from the previuos claims and from Proposition 5.6.
We notice that c−,g, c̄+,g are explicit. So Theorem 5.7 actually provides a way

to find, up to the (possibly numerical) solution of the system of equations (5.31) for
every c ∈ (c−,g, c̄+,g), when this interval is not empty, the optimal boundaries ∂±C.
Then the functions A,B individuating the value function in the continuation region
can be retrieved by Theorem 4.10:

• If (c−,g, c̄+,g) 2= ∅, then A,B can be computed in the interval (c−,g, c̄+,g) by
integrating (5.26) with boundary conditions A(c̄+,g) = 0 and B(c−,g) = 0,
and, respectively, in the intervals (c+, c−,g] and [c̄+, c̄+,g) (when they are
nonempty), by the equalities

A(c) =

[
lim

c↓c−,g

A(c)

]
−
∫ c−,g

c

β′(d̂+(ξ))

ψ′(d̂+(ξ))
dξ, c ∈ (c+, c−,g];

B(c) =

[
lim

c↑c̄+,g

B(c)

]
+

∫ c

c̄+,g

β′(d̂+(ξ))

ϕ′(d̂+(ξ))
dξ, c ∈ [c̄+,g, c̄−).
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!dmin dmax d

◦c+

c−,g◦

◦
c̄+,g

c̄− ◦
"

∂+C

∂−C

c

d0d1

Fig. 3.

• If (c−,g, c̄+,g) = ∅, then

A(c) = −
∫ c̄+,g

c

β′(d̂+(ξ))

ψ′(d̂+(ξ))
dξ, c ∈ (c+, c̄+,g),(5.40)

B(c) =

∫ c

c−,g

β′(d̂−(ξ))

ϕ′(d̂+(ξ))
dξ, c ∈ (c−,g, c̄−).(5.41)

Then z± can be obtained by (4.35). The final picture of the solution, according
to the collected information, is represented in Figure 3

5.3. Quadratic cost and irreversibility. In this subsection we further partic-
ularize to the irreversible investment case. Even if it is, rigorously speaking, out of
our setting, nonetheless it can be formally seen as corresponding to taking q−0 = ∞.
The upper boundary in this case is clearly ĉ− ≡ ∞, or, in other terms, it disappears.
Hence, from Theorem 5.7, we immediately get the following.

Corollary 5.8. Let q−0 = ∞, and let the assumptions of Theorem 5.7 hold true.
Then the functions ĉ±, A,B, z± of Theorem 4.10 are determined as follows:

(a) The upper optimal boundary is ĉ− ≡ ∞, and lower boundary function ĉ+ is
explicitly given by

(5.42) ĉ+(d) = ρ

[
β(d)− ψ(d)

ψ′(d)
β′(d)− q+0

]
, d ∈ O.

In particular ĉ+ ∈ C1(O;R).
(b) B ≡ 0, and the function A is given by

A(c) = −
∫ c̄+,g

c

β′(d̂+(ξ))

ψ′(d̂+(ξ))
dξ, c ∈ (c+, c̄+,g).
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(c) The function z− is whatever function (it does not play a role, as ĉ− ≡ ∞
implies A− = ∅), while the function z+ is

z+(d) = A(ĉ+(d))ψ(d) + V̂ (ĉ+(d), d) + q+0 ĉ+(d), d ∈ O,(5.43)

with V̂ given in (5.6).
We end this paper with a simple and explicit illustration of Corollary 5.8 for the

case when the demand is modeled as a geometric Brownian motion:

dDt = µDtdt+ σDtdWt, µ ∈ R, σ > 0,

with initial datum d > 0. In this case O = (0,∞). Moreover, assume that

g(c, d) =
1

2
(c− d)2,

and, according to (3.3), assume that

(5.44) ρ > [2µ+ σ2]+.

Then V̂ is the quadratic function equal to

V̂ (c, d) =
1

2

(
1

ρ− 2µ− σ2 d
2 − 2

ρ− µ
dc+

1

ρ
c2
)
.

The increasing fundamental solution to

[Lφ](d) := ρφ− µdφ′ − 1

2
σ2d2φ′′ = 0

is given by

ψ(d) = dm,

where m is the positive root of the equation ρ − µm − 1
2σ

2m(m − 1) = 0, and is
explicitly given by

m = − µ

σ2
+

1

2
+

√(
− µ

σ2
+

1

2

)2

+
2ρ

σ2
.

Notice that m > 2 by (5.44). From Corollary 5.8, the value function v has the explicit
form

v(c, d) =

{
A(c)dm + V̂ (c, d) if c > ĉ+(d),

−q+0 c+ z(d) if c ≤ ĉ+(d),

where the functions A, ĉ+, z are

ĉ+(d) = ad− b, d > 0,

A(c) = − am−1

m(m− 2)

1

ρ− µ
(c+ b)2−m, c > −b,

z+(d) = A(ad− b)dm + V̂ (ad− b, d) + q+0 (αd− b), d > 0,
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with

a =
m− 1

m

ρ

ρ− µ
,b = ρq+0 .

Appendix A.
Proof of Proposition 3.4. Existence. Let (c, d) ∈ S and take a sequence (In)n∈N ⊂

I s.t. G(c, d; In) → v(c, d). Assume, without loss of generality, that G(c, d; In) ≤
v(c, d)+1 for all n ≥ 0 and set κ := min{q+0 , q−0 } > 0. Then, taking into account that
g ≥ 0 and that In,+0− = In,−0− = 0 for all n ≥ 0, and integrating by parts, we get

v(c, d) + 1 ≥ κ E
∫ ∞

0
e−ρt
(
dIn,+t + dIn,−t

)

= κ E
[∫ ∞

0
e−ρt
(
In,+t + In,−t

)
dt+ [e−ρt(In,+t + In,−t )]∞0−

]

≥ κ E
[∫ ∞

0
e−ρt
(
In,+t + In,−t

)
dt

]
.

So, the sequence (In)n∈N is bounded in the space L1(Ω × R;P × e−ρtdt). Thus,
by a theorem of Komlós, there exists a subsequence (relabeled and still denoted by
(In)n∈N) and a pair of measurable processes Ĩ+, Ĩ− such that the Cesàro sequences
of processes



Ĩn,± :=
1

n

n∑

j=1

Ij,±



 ⊂ I converge (P× e−ρtdt)− a.e. to Ĩ±.(A.1)

Define Ĩn := Ĩn,+ − Ĩn,−. Then, from (A.1), we have the convergence

Ĩn −→ Ĩ (P× e−ρtdt)− a.e.(A.2)

By convexity of G w.r.t. the control argument I, we have that also (Ĩn)n∈N is a
minimizing sequence, i.e., G(c, d; Ĩn) → v(c, d). On the other hand, arguing as in
Lemmata 4.5–4.7 of [26], we can see that Ĩ+ and Ĩ− admit modifications—which we
still denote by Ĩ+ and Ĩ−—right-continuous, nondecreasing, and F-adapted. Hence,
there is also a modification of Ĩ—which we still denote by Ĩ—belonging to I. Now
Fatou’s lemma yields

G(c, d; Ĩ) ≤ lim inf
n→∞

G(c, d; Ĩn) = v(c, d),(A.3)

so Ĩ is an optimal control starting from (c, d).
Uniqueness. Let (c, d) ∈ S, and let I1 ∈ I, I2 ∈ I be two optimal controls

starting from (c, d). Define Ī := 1
2I

1 + 1
2I

2. By linearity of the state equation (2.2)

we then have Cc,Ī = 1
2C

c,I1
+ 1

2C
c,I2

. Thus, since g(·, d) is convex,

0 ≤ G(c, d; Ī)− v(c, d) = G(c, d; Ī)− 1

2
G(c, d; I1)− 1

2
G(c, d; I2)

= E
[∫ ∞

0
e−ρt
(
g

(
1

2
Cc,I1

+
1

2
Cc,I2

, Dd
t

)
− 1

2
g(Cc,I1

t , Dd
t )−

1

2
g(Cc,I2

t , Dd
t )

)]
≤ 0.

So, the inequalities above are indeed equalities and, still due to convexity of g(·, d),
we must have
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g(Cc,Ī , Dd
t )−

1

2
g(Cc,I1

t , Dd
t )−

1

2
g(Cc,I2

t , Dd
t ) = 0, P-a.s., for a.e. t ∈ R.

Now the assumption of strict convexity of g(·, d) implies Cc,I1
= Cc,I2

, P-a.s., for
a.e. t ∈ R, from which we derive I1 = I2, P-a.s., for a.e. t ∈ R. So, due to right-
continuity, I1 and I2 are indistinguishable.

Lemma A.1. Let (c, d) ∈ S and denote by v+c (c, d), v−c (c, d), respectively, the
right and left derivative of v w.r.t. c at (c, d) (their existence being guaranteed by
convexity of v(·, d)). Then

(A.4) v+c (c, d) ≤ J(c, d;σ, τ∗) ∀σ ∈ T ; v−c (c, d) ≥ J(c, d;σ∗, τ) ∀τ ∈ T .

Proof. Let us show the first inequality. Let (c, d) ∈ S and let I∗ = (I∗,+, I∗,−) ∈ I
be an optimal control for (c, d). Let ε > 0 and set

τ∗ := inf {t ≥ 0 | I∗,+t > 0}, τε := inf {t ≥ 0 | I∗,+t ≥ ε}.

Moreover, given σ ∈ T , set

Iε :=

{
−I∗,−t if 0 ≤ t < σ ∧ τε,

I∗t − ε if t ≥ σ ∧ τε.

We can write

G(c+ ε, d; Iε) = E
[ ∫ σ∧τ∗

0
e−ρtg(c+ ε− I∗,−t , Dd

t )dt

+

∫ σ∧τε

σ∧τ∗
e−ρtg(c+ ε− I∗,−t , Dd

t )dt+

∫ ∞

σ∧τε
e−ρtg(c− I∗t , D

d
t )dt

+1{τε≤σ}

(
e−ρτεq+0 (I

∗,+
τε − ε) +

∫ ∞

τ+ε

e−ρtq+0 dI
∗,+
t

+

∫ ∞

0
e−ρtq−0 dI

∗,−
t

)

+1{τ∗≤σ<τε}

(
e−ρσq−0 (ε− I∗,+σ ) +

∫ ∞

σ+
e−ρtq+0 dI

∗,+
t

+

∫ ∞

0
e−ρtq−0 dI

∗,−
t

)

+1{σ<τ∗}

(
e−ρσq−0 ε+

∫ ∞

τ∗
e−ρtq+0 dI

∗,+
t +

∫ ∞

0
e−ρtq−0 dI

∗,−
t

)]

and

G(c, d; I∗) = E
[ ∫ σ∧τ∗

0
e−ρtg(c− I∗,−t , Dd

t )dt+

∫ σ∧τε

σ∧τ∗
e−ρtg(c+ I∗t , D

d
t )dt

+

∫ ∞

σ∧τε
e−ρtg(c+ I∗,−t , Dd

t )dt

+ 1{τε≤σ}

(∫ τ−ε

τ∗
e−ρtq+0 dI

∗,+
t + e−ρτεq+0 (I

∗,+
τε − I∗,+

τ−ε
)

+

∫ ∞

τ+ε

e−ρtq+0 dI
∗,+
t +

∫ ∞

0
e−ρtq−0 dI

∗,−
t
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+ 1{τ∗≤σ<τε}

(∫ σ−

τ∗
e−ρtq+0 dI

∗,+
t + e−ρσq−0 (I

∗,+
σ − I∗,+σ− )

+

∫ ∞

σ+
e−ρtq+0 dI

∗,+
t +

∫ ∞

0
e−ρtq−0 dI

∗,−
t

)

+ 1{σ<τ∗}

(∫ ∞

τ∗
e−ρtq+0 dI

∗,+
t +

∫ ∞

0
e−ρtq−0 dI

∗,−
t

)]
.

Subtracting we get

v(c+ ε, d)− v(c, d) ≤ E
[ ∫ σ∧τ∗

0
e−ρt
(
g(c+ ε− I∗,−t , Dd

t )− g(c− I∗,−t , Dd
t )
)
dt

+

∫ σ∧τε

σ∧τ∗
e−ρt
(
g(c+ ε− I∗,−t , Dd

t )− g(c+ I∗,+t − I∗t , D
d
t )
)
dt

+1{τε≤σ}

(
e−ρτεq+0 (I

∗,+
τ−ε

− ε)−
∫ τ−ε

τ∗
e−ρtq+0 dI

∗,+
t

)

+1{τ∗≤σ<τε}

(
e−ρσq−0 (I

∗,+
σ− − ε)−

∫ σ−

τ∗
e−ρtq+0 dI

∗,+
t

)

−1{σ<τ∗}e
−ρσq−0 ε

]
.

Using convexity of g(·, d) we can estimate from above the first two terms in the
expectation above respectively with

ε

∫ σ∧τ∗

0
e−ρtgc(c− I∗,−t , Dd

t )dt, L1(ε) :=

∫ σ∧τε

σ∧τ∗
e−ρt(ε− I∗,+t )gc(c+ ε, D

d
t )dt,

while the third term can be rearranged as

−εq+0 e−ρτ
∗
1{τ∗<σ} + L2(ε) + L3(ε),

where

L2(ε) := εq
+
0 [e

−ρτ∗1{τ∗<σ} − e−ρτε1{τε≤σ}],

L3(ε) := 1{τε≤σ}

(
e−ρτεI∗,+

τ−ε
−
∫ τ−ε

τ∗
e−ρtdI∗,+t

)
.

Setting also

L4(ε) := 1{τ∗≤σ<τε}

(
e−ρσq−0 (I

∗,+
σ− − ε)−

∫ σ−

τ∗
e−ρtq+0 dI

∗,+
t

)

we can write

v(c+ ε, d)− v(c, d)

ε
≤ J(c, d;σ, τ∗) +

1

ε

4∑

j=1

Lj(ε).

Using estimates like the ones used in [28, Lemma 4.3], one can see that for each

j = 1, . . . , 4, Lj(ε)
ε → 0 when ε −→ 0, which gives the first inequality in (A.4). The

second inequality can be obtained in a similar way.
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Proof of Proposition 3.5. Let v+c (c, d) and v−c (c, d) be, respectively, the left and
the right derivative of v w.r.t. c at (c, d), which exist due to convexity of v(·, d) and
verify v+c (c, d) ≥ v−c (c, d). Then, considering (A.4), we get

v−c (c, d) ≤ v+c (c, d) ≤ J(c, d;σ∗, τ∗) ≤ v−c (c, d).

So the inequalities above are indeed equalities and hence it follows that vc(c, d) exists
and is equal to J(c, d;σ∗, τ∗). Then, still using (A.4), we get

J(c, d;σ∗, τ) ≤ v−c (c, d) = J(c, d;σ∗, τ∗) = v+c (c, d) ≤ J(c, d;σ, τ∗) ∀σ ∈ T , ∀τ ∈ T .

This shows both the claims.
Proposition A.2 (Dynkin’s formula). Let ϕ ∈ C1,2(S;R), (c, d) ∈ S, I ∈ I, and

let τ be a bounded stopping time such that (Cc,I
t , Dd

t )t∈[0,τ ] is contained in a compact
subset of S. Then the following change of the variable’s formula holds:

ϕ(c, d) = E
[
e−ρτϕ(Cc,I

τ , Dd
τ )
]
+ E
[∫ τ

0
e−ρt[Lϕ(Cc.I

t , ·)](Dd
t )dt

]

−E
[∫ τ

0
e−ρtϕc(C

c,I
t , Dd

t )dIt

]

−E




∑

0≤t≤τ
e−ρt(ϕ(Cc,I

t , Dd
t )− ϕ(C

c,I
t− , Dd

t )− ϕc(C
∗
t , D

d
t )∆Cc,I

t )



 .

Proof. Theorem 33 [37, p. 81] provides the desired formula for functions which
are continuously twice differentiable when τ is constant. The extension to the case of
τ stopping time for the latter class of functions is standard. To get the formula for
functions belonging to C1,2(S;R), one can argue using mollifiers as follows. Take a
sequence of mollifiers (ξn)n∈N and consider the convolution ϕn := ξn ∗ ϕ. Then ϕn

is continuously twice differentiable for each n, so the formula applies to the sequence
(ϕn)n∈N. Moreover all the derivatives of ϕn involved in the formula converge locally
uniformly to the corresponding derivatives of v (which exist, as the formula involves
only derivatives which are defined in the class C1,2(S;R)). Hence, the claim follows
by uniform convergence since (Cc,I

t , Dd
t )t∈[0,τ ] is contained in a compact subset of S.
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