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Abstract

We recently showed that differential expression of extracellular matrix (ECM) genes delineates four subgroups of breast
carcinomas (ECM1, -2, -3- and -4) with different clinical outcome. To further investigate the characteristics of ECM signature
and its impact on tumor progression, we conducted unsupervised clustering analyses in 6 additional independent datasets
of invasive breast tumors from different platforms for a total of 643 samples. Use of four different clustering algorithms
identified ECM3 tumors as an independent group in all datasets tested. ECM3 showed a homogeneous gene pattern,
consisting of 58 genes encoding 43 structural ECM proteins. From 26 to 41% of the cases were ECM3-enriched, and analysis
of datasets relevant to gene expression in neoplastic or corresponding stromal cells showed that both stromal and breast
carcinoma cells can coordinately express ECM3 genes. In in vitro experiments, b-estradiol induced ECM3 gene production in
ER-positive breast carcinoma cell lines, whereas TGFb induced upregulation of the genes leading to ECM3 gene
classification, especially in ER-negative breast carcinoma cells and in fibroblasts. Multivariate analysis of distant metastasis-
free survival in untreated breast tumor patients revealed a significant interaction between ECM3 and histological grade
(p = 0.001). Cox models, estimated separately in grade I–II and grade III tumors, indicated a highly significant association
between ECM3 and worse survival probability only in grade III tumors (HR = 3.0, 95% CI = 1.3–7.0, p = 0.0098). Gene Set
Enrichment analysis of ECM3 compared to non-ECM3 tumors revealed significant enrichment of epithelial-mesenchymal
transition (EMT) genes in both grade I–II and grade III subsets of ECM3 tumors. Thus, ECM3 is a robust cluster that identifies
breast carcinomas with EMT features but with accelerated metastatic potential only in the undifferentiated (grade III)
phenotype. These findings support the key relevance of neoplastic and stroma interaction in breast cancer progression.
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Introduction

Neoplastic cells in tumors exist in a rich microenvironment

composed of stromal cells, including myofibroblasts, angiogenic

and inflammatory cells, and an extracellular matrix (ECM). The

ECM represents a complex mixture of proteins such as

proteoglycans and adhesive glycoproteins (collagens, laminins

and others) that provides structural and mechanical support to

cells and tissues and also influences tumor progression by

architectural and signaling interaction [1]. Cell-cell and cell-

matrix interactions between neoplastic cells, the surrounding

stromal cells and the ECM stimulate cascades of molecular signals

in and out of the cells, modulating cell behavior and contributing

to tumor progression [2–7]. In particular, ECM remodeling is

regulated jointly by stromal and epithelial cells, and the

progressive change in orientation and crosslinking of collagen

fibers may influence cell invasion by affecting migration along the

collagen fibers or by perturbing integrin signaling [8;9]. Certain

microenvironments can also restrict tumor progression, acting as a

barrier to tumor invasion [10]. To date, several studies have

emphasized the importance of interaction between neoplastic and

stromal cells in in vitro experimental models [11;12].

We recently reported that breast carcinomas can be divided into

four subgroups with different clinical outcome based on expression

of ECM genes [13]. In the present study, we focused on ECM3,

one of the subgroups that showed a highly robust cluster. We find

that ECM3 genes are coordinately expressed in both neoplastic

and adjacent stromal cells, and are modulated by TGFb and

hormonal stimulus. Moreover, we show that ECM3 characteristics

interact with tumor grade in determining risk of distant metastases,
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with ECM3 grade III tumors presenting a highly significant poor

prognosis in untreated patients.

Methods

ECM-enriched gene list
An upgraded list of ECM-enriched genes was generated

essentially as described [13] using NetAffx (https://www.

affymetrix.com/analysis/netaffx/). The complete list of 738 genes

included genes encoding 298 membrane cell-cell matrix and cell-

cell adhesion molecules, 156 extracellular molecules, 202 proteases

and peptidases, 42 other enzymes (transglutaminases and enzymes

involved in carbohydrate and hyaluronic acid metabolism), and 40

enzyme inhibitors (Table S1).

Cell culture
Human breast carcinoma cell lines MDAMB231, ZR75.1 and

BT474 (American Type Culture Collection) were authenticated

using a panel of microsatellite markers and maintained in RPMI

1640 (Sigma-Aldrich, St. Louis, MO, USA) and DMEM (Lonza,

Verviers, Belgium), respectively, supplemented with 10% (v/v)

FCS (Sigma-Aldrich) and L-glutamine in a 5% CO2 humidified

chamber at 37uC. ZR75.1 medium were supplemented with

1 mM sodium pyruvate, 0.1 mM non-essential amino acids,

10 mg/ml HEPES. Human GM847 fibroblasts were a kind gift

from Dr. M.G. Daidone, and were maintained in DMEM 10%

FCS supplemented with 2.5 mM HEPES. For estrogen depriva-

tion, cells were grown for 72 h in the same media but containing

phenol red-free RPMI and charcoal-stripped FCS; after plating in

6-well plates at an initial concentration of 66105 cells/well, cells

were grown for 24 h in the presence or absence of 10 nM 17-b-

estradiol (Sigma-Aldrich). Treatment with 10 ng/ml TGFb (R&D

Systems, Inc., Minneapolis, MN, USA) was performed in complete

medium for 24 h.

Immunohistochemistry
Expression of ECM3-associated SPARC and COLVI was

analyzed immunohistochemically on formalin-fixed, paraffin-

embedded (FFPE) tumor sections using mouse monoclonal anti-

human SPARC (clone ON1-1, 10 mg/ml) (ZYMED Laboratories

Inc., S. San Francisco, CA, USA) and mouse monoclonal anti-

human collagen VI (clone VI-26, 5 mg/ml) (Chemicon Interna-

tional, Temecula, CA, USA), respectively. Antigen retrieval was

carried out by heating slides for 6 min at 95uC in 5 mM citrate

buffer, pH 6.0, followed by 5-min treatment at 37uC with pronase

E for SPARC staining (Sigma-Aldrich) and by 1-h treatment at

37uC with hyaluronidase for collagen VI staining (Sigma-Aldrich).

Immunoreactions were visualized using streptavidin-biotin-perox-

idase, followed by counterstaining with Carazzi hematoxylin.

Hematoxylin and eosin (H&E)-stained FFPE sections from the

ITA dataset [13] were evaluated semi-quantitatively (score 1+, 2+
and 3+) for intra-tumor fibroblast infiltration (Figure S1).

Institutional approval from our ethics committee CEI (Comitato

Etico Indipendente, Fondazione IRCCS, Istituto Nazionale dei

Tumori) was obtained for the conduct of the studies. Patients had

agreed to the use of samples from their tumors for future

investigations, although they did not provide written permission

for the present study, which was performed many years after the

initial diagnosis.

Quantitative RT-PCR (qRT-PCR)
Total RNA was extracted from cell lines with Trizol H

(Invitrogen, Carlsbad, CA, USA) and from FFPE tissue with the

High Pure FFPE RNA extraction kit (Roche, Basel, Switzerland)

according to the manufacturers’ instructions. cDNAs were reverse-

transcribed from 2 ug of total RNA in a 20-ml volume with

SuperScript III (Invitrogen) using oligo-dT primers for cell lines

and random-hexamer primers for FFPE breast tissues. qRT-PCR

was performed using Applied Biosystem Taqman assays (CO-

L5A2: Hs00169768_m1; SPARC: Hs00277762_m1; LAMA4:

Hs00158588_m1; COL1A2: Hs00164099_m1; COL6A3:

Hs00915120_m1; MMP11: Hs00171829_m1) on the ABI Prism

7900HT sequence detection system (Applied Biosystems, Foster

City, CA, USA). Data were normalized to GAPDH in experi-

ments on cell lines and to the combined expression levels of 6

genes (GAPDH, ACTB, MRPL19, PUM1, PSMC4, SF3A1) [14]

in experiments on FFPE breast tissues. Gene expression levels

were calculated by the comparative Ct method using untreated

samples as the reference in experiments on cell lines and Universal

Human Reference RNA (Stratagene, La Jolla, CA, USA) in

experiments on FFPE breast tissues.

Statistical analysis
Public gene expression data from 6 previous studies based on

hybridization of cDNA and oligonucleotide DNA chips [15–20]

and the two datasets used in Bergamaschi et al [13] to define ECM

classification (ITA and NOR) were used for analysis (Table S2);

clinical data were accessed when available.

Strength of relationships between pairs of continuous variables

(gene expression, signatures, etc.) was estimated by Pearson’s

correlation coefficient r and the null hypothesis r = 0 was tested.

Absence of association between two categorical variables was

tested by chi-square test. Two-sided p,0.05 was considered

statistically significant.

The ECM3 sample cluster was identified using 4 unsupervised

clustering algorithms: independent row-column clustering based

on hierarchical clustering (IRCC-HC); independent row-column

clustering based on k-means clustering (IRCC-KM); a modifica-

tion of IRCC-KM based on column clustering using a selected

subset (CCSS) of genes; and the Large Average Submatrix (LAS)

biclustering method [21] (see Supporting Information S1). LAS

biclustering of 738 ECM genes was chosen as the representative

method to identify ECM3 tumors in all subsequent analyses.

Agreement between ECM classification in the ITA dataset [13]

using the 738 and 282 ECM-related gene lists was evaluated by

the Cohen’s k coefficient [22].

The significance and stability of the ECM3 partition was

evaluated: with respect to the 4 unsupervised clustering algorithms

above (see Supporting Information S1); by estimating a set of

internal and external cluster validation techniques (compactness,

connectedness, separation of clusters); and by repeated resampling

and perturbing the original datasets. Genes and samples of the

ECM3 clusters identified by the 4 clustering algorithms were

compared using the Jaccard similarity index [23]. Compactness

and separation of cluster partitions were evaluated using the Dunn

index and silhouette width [24]. Connectedness of clusters was

quantified using the connectivity measure [24]. Cluster stability of

ECM3 was assessed using resampling methods (bootstrapping,

gene and sample subsetting, jittering, and replacement of data

points by noise) [23]. Cluster stability was further investigated

considering consensus clustering [25] and prediction strength [26].

Statistical significance of ECM3 clusters was estimated using the

SigClust method [27].

Metagene of COL1A2, COL5A2, SPARC and LAMA4 gene

expression was estimated using principal component analysis

(PCA). The first principal component was dichotomized using

median value as cut-off. Survival functions were assessed using the

Kaplan-Meier estimator, while log-rank test was used to compare

ECM Influences Breast Cancer Progression
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survival distributions. Multivariate survival analysis was carried

out using Cox proportional hazards regression models, and the

effects of explanatory variables on event hazard were quantified by

hazard ratios (HR) [28].

Area under the ROC curve was calculated by nonparametric

ROC analysis [29] using the roctab command of Stata 11 [30].

Classification into the five molecular intrinsic subtypes (normal-

like, ERBB2, lumA, lumB and basal-like) was assessed as described

[13].

Gene set enrichment analysis to assess ECM and grade

functional association was performed using GSEA v2.07 [31].

Genes represented by more than one probe were collapsed to the

probe with the maximum value using the Collapse Dataset tool.

Gene set permutation type was applied 1000 times. The 193

cancer-related gene set database reported in Table S3 is an

upgrade of a database previously described [32].

Results

ECM3 characterizes a breast cancer molecular subtype
To test the robustness of our previously reported breast

carcinoma classification according to ECM gene profile in the

ITA and NOR cohorts [13], we studied the expression profile of

ECM-related genes in 6 additional independent datasets of

invasive breast tumors from different platforms, counting 643

samples overall (Table S2). To minimize the possibility that

different platforms used in profiling invasive breast tumors are

differentially efficient in analyzing ECM molecular characteristics,

we analyzed an upgraded version of the ECM-related gene list

which includes 738 instead of the previously used 282 ECM genes

(Table S1). Agreement between ECM classification in the ITA

dataset using the 738 and 282 ECM-related gene lists was highly

significant (p,0.0001, Cohen’s k coefficient = 0.85).

Of the ECM1, -2, -3, and -4 breast tumor subgroups defined in

our previous analysis, we focused on ECM3 because it was clearly

detectable in every dataset analyzed.

Comparison of gene and sample partitions generated by the

clustering algorithms LAS, IRCC-HC, IRCC-KM and CCSS

indicated good agreement between clusters of ECM3 tumors

(median Jaccard index = 0.76; range = 0.42–0.96) and high

homogeneity in the composition of ECM3 gene clusters (median

Jaccard index = 0.53; range = 0.30–0.84). Evaluation of compact-

ness, connectedness, and separation of cluster partitions showed

that the average silhouette of ECM3 clusters in the 6 datasets

ranged from 0.26 to 0.38 (median = 0.36), the Dunn indices

ranged from 0.19 to 0.53 (median = 0.35) and connectivity ranged

from 7.4 to 53.6 (median = 17.0). The average clusterwise Jaccard

index ranged from 0.57 to 0.97 for bootstrapped data, from 0.87

to 1.00 for jittered data, from 0.82 to 0.99 for subsetted data and

from 0.67 to 0.97 for data partially replaced by noise. In each

dataset, ECM3 clusters were highly significant (p,0.001) (see

Supporting Information S1). Together, these validation results

clearly indicated that ECM3 clusters are stable, since changing

clustering algorithms and perturbing observed data did not

significantly alter the structure of the set of ECM3 tumors and

of ECM3 genes.

According to the LAS clustering method, from 26 to 41% of the

cases were ECM3-enriched. Figure 1A shows a representative

example of the ECM3 cluster in the Van’t Veer dataset [15].

Analysis of datasets for which clinical data were available (Sotiriou

et al [20], Desmedt et al [19], Chin [16] datasets) revealed a

consistent association between ECM3 features and ER positivity

and histological grades I and II in all datasets, but no association

with tumor size or age (Table 1).

To identify an objective and reproducible set of overexpressing

genes defining ECM3 tumors across different studies and

platforms, we examined ECM3 gene clusters obtained using the

LAS method and identified 58 genes most relevant in determining

the ECM3 cluster (Figure 1B). Consistent with our previous study

[13], SPARC was a prominent gene in ECM3 gene classification of

breast tumors. In addition, Pearson’s correlations between

expression of SPARC and 738 ECM-enriched genes in the same

datasets identified a set of ECM genes significantly correlated with

SPARC (median r.0.5) (Figure S2) that included 89% of the 58

ECM3 genes identified by the LAS method. Most of the ECM3

genes (43/58) encode structural ECM proteins, 7 genes encode

proteases (MMP2, ADAM12, ADAMTS2, ADAMTS5, CTSK,

MMP11, MMP14), 3 encode peptidase inhibitors (TIMP3,

SERPINF1, SERPINH1) and 5 cell adhesion molecules (CDH11,

SGCD, CNTN1), including two integrin b chains (ITGB5, ITGBL1).

To further test for the coordinated expression of ECM3 genes in

breast carcinomas, we randomly selected groups of 4 genes within

the 58 ECM3 genes and estimated the area under the ROC curve

(AUC) in all datasets. The median AUC ranged from 0.92

(IQR = 0.88–0.95) to 0.98 (IQR = 0.95–0.99), indicating a good

performance of these 4-gene sets in singling out ECM3 cases.

Moreover, the average expression of the gene set COL1A1,

COL5A2, SPARC and LAMA4, with AUC greater than the 75th

percentile of the randomly selected 4-gene AUCs in almost all

datasets, was significantly higher in tumor specimens classified in

microarray analysis of ITA dataset [13] as ECM3 in comparison

with non-ECM3 tumors when tested by qPCR using RNA from

FFPE sections (p = 0.005, Figure 2A). The AUC generated

(AUC = 0.95, 95%CI = 0.86–1.00) confirmed the qPCR results,

indicating the good performance of this score in discriminating

ECM3 tumors (Figure 2B).

Neoplastic cells participate in ECM3 gene expression
Although previously identified stromal signatures reportedly

derive from reactive stroma [33;34], we found no significant

increase in the proportion of stromal vs epithelial cells in ECM3

compared to non-ECM3 carcinomas from 29 primary breast

tumors of the ITA cohort [13] as assessed based on a semi-

quantitative intra-tumor fibroblast infiltration score (score 1+: 37%

vs 40%; score 2+: 44% vs 38% and score 3+: 19% vs 22%).

Immunohistochemical analysis of FFPE sections from these tumors

revealed the presence of the ECM3 representative markers

SPARC and Collagen VI (Figure 3A; note clear cytoplasmic

staining in neoplastic cells) in a significantly higher percentage of

ECM3 samples as compared with non-ECM3 samples (100% vs

32%, p = 0.008 and 75% vs 35%, p = 0.050, respectively). Intra-

tumoral fibroblast cells scored SPARC- and Collagen VI-positive

in ECM3 and in the majority of non-ECM3 carcinomas

(Figure 3A). LAS analysis of ECM3 gene expression in the Ma

dataset [18], which contains expression data from whole breast

tumor tissue samples as well as from the corresponding laser-

captured microdissected breast tumor cells, showed that 7 of 18

(39%) tumors were classified as ECM3 in both datasets. Moreover,

analysis of the Boersma dataset [35], which comprises gene

expression data for both neoplastic and corresponding stromal

cells, showed that the ECM3 genes were coordinately expressed in

14 of 48 (29%) microdissected neoplastic cell samples (6 ER-

positive, 6 ER-negative and 2 not determined) and in 12 of 47

(25.5%) stroma samples, of which 6 are matched. Both clusters

were stable according to stability parameters (see Supporting

Information S1). The average expression level of ECM3 genes in

microdissected neoplastic and stromal cells belonging to the

ECM3 cluster was comparable, while non-ECM3 samples

ECM Influences Breast Cancer Progression
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revealed significantly higher expression levels of ECM3 genes in

stromal compared to epithelial tumor cells (Figure S3). Thus, while

high expression of these genes is characteristic of stromal cells, the

neoplastic cells in ECM3 tumors also coordinately express these

genes and may impact on the tumor total expression levels.

Based on the high frequency of ER-positive tumors in the

ECM3 cluster and on the known TGFb induction of ECM genes

in fibroblasts [36;37], we carried out qPCR analysis of 6

representative ECM3 genes (COL1A1, COL5A2, SPARC, LAMA4,

COL6A3 and MMP11) in ER-positive (ZR75.1 and BT474) and -

negative (MDAMB231) breast carcinoma cell lines as well as on

GM847 fibroblasts to investigate possible pathways involved in

ECM3 gene expression in tumor cells. While no increase was

found in COL5A2 expression after treatment with b-estradiol or in

COL5A2 and LAMA4 after treatment with TGFb in ER-positive

and -negative breast carcinoma cells, respectively, all other gene

expression levels increased significantly after treatments (Figure

S4). The ECM3 score was significantly enhanced in ER-negative

and -positive breast carcinoma cells upon treatment with TGFb
(Figure 3B; MDAMB231 cells, p = 0.016; BT474 cells, p = 0.045)

or b-estradiol (Figure 3C; BT474 cells, p = 0.041; ZR75.1 cells,

p = 0.018), while only TGFb stimulation led to increased ECM3

gene expression in fibroblasts (Figure 3B; GM847 cells, p = 0.034),

in which basal expression levels of ECM3 genes are 30- to 300-fold

higher than in breast carcinoma cell lines (data not shown).

ECM3 impacts tumor progression according to tumor
differentiation status

Univariate analysis of metastasis-free survival (DMFS) indicated

no prognostic significance for ECM3 (data not shown) in the

Sotiriou [20] and Desmedt [19] datasets of node-negative,

untreated patients. Multivariate analysis of the joined dataset

Figure 1. ECM3 gene pattern in breast carcinomas. (A) Expression profile of LAS biclustering in breast tumors from the Van’t Veer dataset [15].
(B) Frequency distribution of most influential ECM3 genes in 6 datasets ([15–20]), tumor clustering and gene importance estimation.
doi:10.1371/journal.pone.0056761.g001

Table 1. Frequency of clinico-pathological characteristic in patients according to ECM3 classification.

Chin Sotiriou Desmedt

n6 ECM3/tot (%) p value* n6 ECM3/tot (%) p value* n6 ECM3/tot (%) p value*

Grade I–II 21/54 (39) 48/79 (61) 37/113 (33)

Grade III 12/60 (20) 0.0381 3/28 (11) ,0.0001 14/83 (17) 0.0137

ER pos 29/75 (39) 45/84 (54) 42/134 (31)

ER neg 6/43 (14) 0.0061 6/40 (15) ,0.0001 10/64 (16) 0.024

Size #2 15/47 (32) 32/74 (43) 29/102 (28)

Size .2 20/69 (29) 19/49 (39) 23/96 (24)

Age ,50 14/50 (28) 21/53 (40) 33/142 (23)

Age $50 21/67 (31) 30/71 (42) 19/56 (34)

*Evaluated by Fisher exact test.
doi:10.1371/journal.pone.0056761.t001

ECM Influences Breast Cancer Progression
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evidenced a significant interaction between ECM3 and grade

(p = 0.001) (Table 2), indicating that ECM3 has a different clinical

significance in grade I–II vs grade III. The probability of

developing metastases in a 10-year follow-up was 14% for

ECM3 differentiated tumors (grade I–II) as compared to 61%

for ECM3 grade III carcinomas and about 25% for all non-ECM3

tumors (Figure 4A). Comparable results were obtained using a

metagene of the 4 genes used in qPCR (COL1A1, COL5A2, SPARC

Figure 2. ECM3 classification of breast carcinomas by qRT-PCR. (A) qPCR analysis of ECM3 score derived from the average expression levels
of COL1A1, COL5A2, SPARC and LAMA4 genes on FFPE specimens of 24 breast tumors of the ITA cohort [13] classified as ECM3 or non-ECM3 by
unsupervised clustering. ** p,0.01 in unpaired t-test. (B) Receiver-operator characteristics (ROC) curve for expression of ECM3 genes in the ECM3
tumor subgroup.
doi:10.1371/journal.pone.0056761.g002

Figure 3. ECM3 gene expression in tumor cells. (A) Representative immunohistochemical staining for Collagen VI and SPARC in ECM3 and non-
ECM3 breast tumors. Magnification: 6400. (B,C) Fold-increase in ECM3 score expression as assessed by qRT-PCR after treatment with TGFb (B) and
17b-estradiol (C) in breast carcinoma and fibroblast cell lines. Dotted line indicates average ECM3 expression in untreated cell lines. *p,0.05 in
unpaired t-test vs untreated cells.
doi:10.1371/journal.pone.0056761.g003

ECM Influences Breast Cancer Progression
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and LAMA4) (Figure S5). Cox models estimated separately in

grade I–II and grade III tumors indicated the strong and

significant association of ECM3 with worse survival probability

in grade III tumors (HR = 3.0, 95% CI = 1.3–7.0, p = 0.0098),

whereas no significant association of ECM3 with survival was

found in grade I–II (HR = 1.01; p = 0.9693) (Table S4). In

differentiated tumors, better survival was significantly associated

with ER positivity and small tumor size (Table S4). The clinical

significance of ECM3 on DMFS was investigated separately in the

ER-positive and ER-negative groups of the joined dataset. In ER-

negative patients, ECM3 was moderately associated with better

survival in differentiated tumors (log-rank test: p = 0.0695)

(Figure 4B) and was a significant predictor of distant metastasis

in grade III tumors (HR = 4.12, 95%CI = 1.54–11.05, p = 0.0049)

(Figure 4D and Table S5). In ER-positive patients, ECM3 and

recurrence risk were modestly associated only in grade III patients

(HR = 2.5, 95%CI = 0.74–8.48, p = 0.141) (Figure 4E and Table

S5).

To explore the ability of ECM-related genes to provide

biologically meaningful insights according to tumor cell differen-

tiation grade, we performed GSEA [31] in two datasets (Desmedt

[19] and Chin [16]) according to ECM and grade classification.

Comparison of gene expression in ECM3 vs non-ECM3 grade III

tumors revealed significant enrichment for cell adhesion, focal

adhesion, EMT, TGFb and hypoxia genes in the ECM3 group

and for genes representative of NK, T or B cells in the non-ECM3

group (Figure 5A). Among grade I–II ECM3 tumors, no

differences in lymphoid cell-associated pathways vs non-ECM3

tumors were detected, whereas cell and focal adhesion and EMT

genes were also upregulated in this subset of ECM3 tumors

(Figure 5B). Comparison between ECM3 and non-ECM3 grade

III tumors in Desmedt and Sotiriou datasets with respect to

clinico-pathological features and intrinsic molecular subtype,

assigned as previously reported [13], revealed no significant

differences. Indeed, while ECM3 grade III tumors were enriched

in basal-like (5/17) and ERBB2 (6/17) subtypes, a large

proportion of basal tumors (39/94) presented non-ECM3 features.

Notably, ECM3 grade III patients relapsed more frequently than

did non-ECM3 grade III patients independent of intrinsic

molecular subtype (Figure S6). Moreover, analysis of clinico-

pathological features available revealed no differences between

ECM3 and non-ECM3 grade III tumors (Table S6).

Discussion

ECM3 is one of four main groups of breast carcinomas

previously identified according to the pattern of ECM gene

expression in two different datasets [13]. Our present analysis of 6

independent datasets including more than 600 samples identified

ECM3 as a stable tumor partition in each series analyzed. The

high stability of the ECM3 cluster is supported by ECM3 tumor

classification using four different unsupervised clustering algo-

rithms and by repeated resampling and/or perturbing the original

datasets, with analyses indicating that ECM3 is a robust cluster

identifying a breast carcinoma molecular category with high

concordance in genes defining this cluster.

The majority of the 58 genes found relevant in determining the

ECM3 cluster encode macromolecules involved in the mainte-

nance of connective tissue (collagens, laminins, and matrix-

associated proteins) and proteolytic enzymes (MMPs and AD-

AMs). The coordinate overexpression of all of these genes strongly

suggests the presence of a tumor microenvironment that under-

goes extensive remodeling in the structural organization of ECM

components. Moreover, enriched expression of molecules involved

in focal adhesion in these tumors strongly supports interplay

between tumor cells and the microenvironment.

Although stromal fibroblasts have been described as the main

contributors to transcriptional signatures enriched in stroma-

Figure 4. ECM3 prognostic significance in relation to differentiation status. (A) Association between ECM3 grade III (ECM3 GIII, solid black
line), non-ECM3 grade III (non-ECM3 GIII, dotted black line), ECM3 grade I–II (ECM3 GI-II, solid grey line) and non-ECM3 grade I–II (non-ECM3 GI-II,
dotted grey line) with DMFS in untreated patient joined datasets. (B–E) Association between ECM3 (black line) and non-ECM3 (grey line) with DMFS in
ER-negative grade I–II (B), ER-positive grade I–II (C), ER-negative grade III (D) and ER-positive grade III (E) subgroups. p-values by log rank test.
doi:10.1371/journal.pone.0056761.g004

ECM Influences Breast Cancer Progression
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derived structural ECM genes [33;34;38], as supported by our in

vitro finding of higher basal levels of ECM3 gene expression in

fibroblasts than in neoplastic cells, our present data indicate that

ECM3 genes are coordinately expressed by stromal as well as

neoplastic cells in ECM3 tumors and that both cell types

contribute in regulating the properties of their microenvironment.

Furthermore, the lack of any difference between the neoplastic and

stromal counterpart in ECM3 gene levels of ECM3 tumors in the

microdissected tumor Boersma dataset, as well as the comparable

proportion of stromal and neoplastic cells in both ECM3 and non-

ECM3 tumors, point to the significant impact of neoplastic cells on

total expression of these genes in ECM3 tumors. Our in vitro

experiments with ER-positive breast carcinoma cell lines BT474

and ZR75.1 showed that b-estradiol provided a signal for

induction of ECM3 gene expression. Normal human mammary

cells coordinately express matrix proteins mainly belonging to the

ECM3 cluster during hormone-regulated phases of mammary

gland development, i.e., branching, alveologenesis and lactation

[39]. While ER-positive breast carcinoma cells producing these

ECM3 molecules appear to be highly hormone-dependent, as

indicated by the significant correlation between ECM3, ER

expression and grade I–II found in human tumor samples, the

presence of ER-negative tumors in the ECM3 cluster of

microdissected tumor samples indicates that breast carcinoma

cells can also produce ECM3 molecules in the absence of

hormonal activation. Accordingly, TGFb induced in vitro upregu-

lation of the genes leading to ECM3 gene classification, especially

in ER-negative breast carcinoma cells. The different regulation of

ECM3 genes in ER-positive versus ER-negative cells might reflect

the dependence on diverse signals in dictating ECM3 constitution

based on tumor cell molecular characteristics. Moreover, based on

the lack of significantly increased expression of COL5A2 and

LAMA4 genes in in vitro tumor cells after TGFb or b-estradiol

treatment, we speculate that signals other than TGFb or b-

estradiol contribute in regulating ECM3 genes. The co-regulation

of ECM3 genes in both epithelial and stromal cells might rest in

the fact that these genes are regulated by the same stimuli in both

cell types. Indeed, TGFb has been described to regulate some

ECM3 gene expression in fibroblasts, and hormones reportedly

activate fibroblasts and inflammatory cells [40–42], raising the

possibility that they too induce ECM3 gene expression in stromal

cells.

ECM3 was strongly and significantly associated with worse

survival probability only in grade III tumors. In grade I–II tumors,

the association of ECM3 with better prognosis in Kaplan-Meier

analysis could have resulted from tumor ER positivity and small

size, the two factors found significantly associated with better

prognosis in this subgroup by Cox models. Thus, it is possible that

in well-differentiated breast carcinoma cells, the production of

ECM3 molecules driven mainly by the ER signal acts to slow

tumor progression. By contrast, in undifferentiated grade III

tumors, which are mainly independent of the hormone pathway,

the TGFb signal might support the ECM3 environment and

contribute to tumor progression. The well-known Janus role of

TGFb in tumor progression based on tumor stage [43] might also

explain the reversion of ECM3 from a pro- to an anti-tumoral

effect. Indeed, some ECM3 genes are TGFb-regulated ([44] and

present results, see Figure 3), and the TGFb pathway is enriched

in ECM3 as compared with non-ECM3 tumors. In addition a

strict correlation exists between SPARC, the core gene of our

signature, and TGFb, since SPARC is directly involved in the

regulation of the TGFb signaling cascade and SPARC is regulated

by TGFb [45]. In this context, expression of SPARC was found to

inhibit epithelial cell proliferation, in part through stimulation of

TGFb signaling [46], while in MCF7 breast carcinoma cells

expressing oncogenes, SPARC induced cell motility and aggres-

siveness [47]. Overall, further studies are clearly needed to

determine whether ECM3 molecules simply mirror those modu-

lated by TGFb, or whether they actively participate in tumor

progression by modulating interactions among neoplastic cells and

Table 2. Multivariate proportional hazards analysis of metastasis-free survival in untreated patients.

Sotiriou Desmedt Joined

Variable Hazard Ratio (95% CI)* p value Hazard Ratio (95% CI) p value Hazard Ratio (95% CI) p value

Size 2.1 (1.2–3.5) 0.0074 1.4 (1.0–1.8) 0.0376 1.5 (1.1–1.9) 0.0029

Age 1.0 (1.0–1.1) 0.0388 1.0 (1.0–1.1) 0.4059 1.0 (1.0–1.1) 0.0768

ER pos 1.0 (0.4–2.6) 0.9368 0.5 (0.3–0.9) 0.0139 0.6 (0.4–1.0) 0.0515

ECM3 Grade III 42.5 (5.2–345.1) 0.0004 3.7 (1.2–11.0) 0.0219 5.5 (2.0–15.1) 0.0010

ECM3 0.3 (0.1–0.8) 0.0219 1.0 (0.5–2.1) 0.9478 0.8 (0.4–1.7) 0.6081

Grade III 0.2 (0.1–0.7) 0.0108 0.6 (0.3–1.1) 0.1024 0.6 (0.3–1.1) 0.0792

*CI = confidence interval.
doi:10.1371/journal.pone.0056761.t002

Figure 5. Molecular characteristics of breast carcinomas
according to ECM and grade classification by Gene Set
Enrichment Analysis (GSEA). Heatmap shows the normalized
enrichment scores (NES) of gene sets significantly enriched at p,0.05
and FDR,25% in ECM3 grade III (A) and grade I–II (B) tumors of
Desmedt [19] and Chin [16] datasets.
doi:10.1371/journal.pone.0056761.g005
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the tumor environment. Nevertheless, the coordinated expression

of ECM3 genes in breast carcinomas, confirmed by the good

performance of the average expression profile of 4 genes (COL1A1,

COL5A2, SPARC and LAMA4) in discriminating ECM3 tumors

and evaluating their prognosis, argues for their active involvement

in the behavior of breast carcinomas. Indeed, upregulation of

ECM3 genes encoding macromolecules involved in the mainte-

nance of connective tissue (e.g., collagens, laminins, etc.) and

encoding matrix-associated proteins (e.g., SPARC) could result in

a rigid network of stiff cross-linked matrix fibers which impedes

migration of well-differentiated (grade I–II) tumor cells [48],

whereas the same matrix fibers may support a valid substrate for

migration and dissemination of tumor cells with aggressive features

(grade III), consistent with the ability of cancer cells to migrate

rapidly on collagen fibers in areas enriched in collagen [49].

Proliferation genes that dominate and integrate most prognostic

information in the majority of prognostic signatures currently

studied in breast cancer [50;51] are highly expressed in grade III

tumors, but probably cannot alone explain the high aggressiveness

of some breast carcinomas. Indeed, the grade III tumors with the

worst prognosis were those enriched in EMT, TGFb and hypoxia

gene expression, all significantly up-modulated in ECM3 com-

pared with non-ECM3 tumors. The enrichment in EMT gene

expression was also present in ECM3 differentiated (grade I–II)

carcinomas; however, in this case, there was no association with

worse prognosis. In addition, both non-ECM3 grade III and grade

I–II carcinomas showed comparable DMFS. This finding might

rest in an accelerated acquisition of full metastatic potential only in

tumors combining undifferentiated, proliferating (grade III)

features with an ECM3 microenvironment and might explain

why the ECM3 signature has a significant prognostic role only in

progression of undifferentiated carcinomas and not in grade I–II

tumors, where ECM3 enrichment is likely due to responsiveness of

these breast tumors to the hormone pathway.

In addition, a prominent role for the host immune response

in hampering non-ECM3 and grade III tumor progression

must be considered, based on the significant enrichment for

genes representative of lymphoid infiltration in these tumors.

Accordingly, the lack of SPARC in the environment was found

to impair collagen deposition and accelerate the onset of T-cell

priming [52], whereas TGFb was shown to induce an

immunosuppressive effect [53]. Furthermore, the absence of

significant differences between ECM3 and non-ECM3 grade

III tumors according to clino-pathological features and

intrinsic molecular subtypes suggest the value of ECM3

classification in providing additional information on the

biology of tumor progression. Notwithstanding the small

sample size used in our study to assess the impact of ECM3

on breast cancer progression, and the weakness of some

published breast cancer outcome signatures when tested in

meta-analyses [54], our results, indicating the significance of

interaction between tumor and stromal features in influencing

tumor progression, might provide the proof-of-concept that

cross-talk between transformed cells and the microenviron-

ment, to date extensively described in preclinical models [55],

is a key force in conditioning breast carcinoma evolution in

patients. Further studies are clearly needed to understand the

biological implications of the ECM3 signature in differentiated

versus undifferentiated breast carcinomas, and to verify the

good performance of the 4-gene score (COL1A2, COL5A2,

SPARC, LAMA4) in discriminating ECM3 tumors, thus

validating the role of ECM3 molecular marker. If such studies

confirm the relevance of ECM3 gene expression in breast

carcinoma progression, new therapies that target the ECM3

microenvironment and block its communication with trans-

formed cells could represent a promising tool to halt

progression of aggressive, undifferentiated (grade III) tumors.

Supporting Information

Figure S1 Intra-tumor fibroblast infiltration score.
Representative H&E image of each score value is shown;

magnification: 6200.

(TIF)

Figure S2 ECM genes significantly correlated with
SPARC expression.

(TIF)

Figure S3 ECM3 score expression in microdissected
breast carcinomas. Average expression level of 4 representa-

tive ECM3 genes (COL1A1, COL5A2, SPARC and LAMA4) in

microdissected neoplastic cell samples (N) and in microdissected

stromal cell samples (S). **p,0.01, ***p,0.001, in unpaired t-test.

(TIF)

Figure S4 ECM3 genes expression in tumor cells. Fold-

increase in expression of representative ECM3 genes (COL1A1,

COL5A2, SPARC, LAMA4, COL6A3 and MMP11) as assessed by

qRT-PCR after treatment with TGFb (A) and 17b-estradiol (B) in

breast carcinoma and fibroblast cell lines. Dotted line indicates

ECM3 gene expression in untreated cell lines. *p,0.05,

**p,0.01, ***p,0.001, in unpaired t-test vs untreated cells.

(TIF)

Figure S5 ECM3 prognostic significance in relation to
differentiation status using the ECM3 score. Association

between ECM3 (black line) and non-ECM3 (grey line) with DMFS

in grade I–II (A) and grade III (B) patients of joined dataset;

ECM3 was determined as higher expression level of a COL1A2,

COL5A2, SPARC and LAMA4 metagene with respect to metagene

median expression level. p-values by log-rank test.

(TIF)

Figure S6 Intrinsic molecular classification of grade III
tumors according to ECM classification.

(TIF)

Table S1 ECM gene list.

(XLS)

Table S2 Datasets used in this study.

(XLS)

Table S3 Gene Set Enrichment Analysis (GSEA) of
ECM3 versus non-ECM3 tumors and cancer-related
gene set database.
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Table S4 Multivariate proportional hazards analysis of
metastasis-free survival in untreated patients according
to tumor grade.
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Table S5 Multivariate proportional hazards analysis of
metastasis-free survival in untreated grade III patients
according to ER status.

(DOC)

Table S6 Frequency of clinico-pathological features in
patients with grade III breast carcinomas according to
ECM3 classification.
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