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Introduction

The electrical activity of the heart is a complex phenomenon closely related

to its physiology, fiber structure and anatomy. Its modelling must deals with

micro and macroscales at the same time. Typically, phenomenological evidence

refers to the macroscales, while their physical causes are found at the microscales.

Accordingly, accurate cardiac models should include processes acting on different

levels of biological organisation: cell, tissue and organ.

At the cellular level the cell membrane separates both the intra- and extra-

cellular environments consisting of a dilute aqueous solution of dissolved salts

dissociated into ions. Differences in ion concentrations on opposite sides of the

membrane lead to a voltage called the transmembrane potential, vM , defined as

the difference between the intra- and extracellular potentials, (ui and ue). The

bioelectric activity of a cardiac cell is described by the time course of vM , the so

called action potential. Starting from the sino-atrial node (SAN), which acts as

a pacemaker, a front-like variation of vm spread first in the atria and then to the

ventricles; the fiber structure strongly affects this process and is the main factor

of the anisotropic conductivity of cardiac tissue.

The whole process of action potential generation is due to specialized membrane-

spanning proteins that control the movement of ions by passive electrodiffusion

through transmembrane pores (ion channels). Membrane ion channels interact

with dynamically changing ionic concentrations and varying transmembrane po-

tential, and are subject to various regulatory processes. These interactions are

nonlinear making the single cardiac cell a complex interactive system. Even though

advances in electrophysiological techniques and molecular biology have allowed us

to build models based on ion channels molecular structure, most of the math-

ematical models of the ionic currents are based on extensions of the formalism

introduced by Hodgkin-Huxley, [37]. Using their formalism, a SAN AP model

was thus developed based on available experimental data [69], with the aim to

gain a deeper understanding of the cellular basis of cardiac pacemaking, which is
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still debated. Recently, novel models incorporating a detailed calcium-handling

dynamics have been proposed, but they fail to reproduce experimental effects of

the funny current (If ) reduction. Our model describes satisfactorily experimen-

tal data concerning autonomic stimulation, funny-channel blockade and inhibition

of the Ca2+ -related system by specific drugs. Simulation results suggest that a

detailed description of the intracellular calcium fluxes is fully compatible with the

observation that If is a major component of pacemaking and rate modulation.

At the tissue level the most complete mathematical model of cardiac electro-

physiology is the Bidomain model, consisting of a degenerate reaction-diffusion

system of a parabolic and an elliptic partial differential equation modelling the

intra- and extracellular electric potentials of the anisotropic cardiac tissue, cou-

pled nonlinearly with a membrane model. A reduced cardiac tissue model is the

anisotropic Monodomainn system, a parabolic reaction-diffusion equation describ-

ing the evolution of the transmembrane potential coupled with an elliptic problem

for the extracellular potential.

The multiscale nature of both the Bidomain and Monodomain models yields

very high computational costs for their numerical resolution. The starting point

for a spatial discretization is a geometrical representation that encompasses the

required anatomical and structural details, and that is also suitable for compu-

tational studies. Detailed models have been proposed based on structured grids

with cubic Hermite interpolation functions, which enable a smooth representation

of ventricular geometry with relatively few elements. In this study we used an

alternative approach that overlays the former one using Isogeometric Ananlysis

(IGA). This is a method for the discretization of partial differential equations, in-

troduced in [39], and based on the same spline or Non-Uniform Rational B-spline

(NURBS) basis functions used to design domain geometries in Computer Aided

Design (CAD) to construct both trial and test spaces in the discrete variational

formulation of differential problem, and provides a higher control on the regularity

of the discrete space. The IGA discretization of the Bidomain model in space with

semi-implicit (IMEX) finite differences in time requires the solution at each time

step of a large very ill-conditioned linear system. Since the iteration matrix is sym-

metric positive definite for the Monodomain and semi-definite for the Bidomain,

it is natural to solve them using the preconditioned conjugate gradient method.

In this thesis we develop and analyze an overlapping additive Schwarz precon-

ditioner for the isogeometric discretization of the cardiac Bidomain model, first

introduced in [9] for scalar elliptic problems and in [60] for Bidomain FEM dis-

cretization. We proved that the resulting solver is scalable and optimal in the ratio
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of subdomain/element size. Several tests confirm the scalability and the optimality

on both a cartesian slab and on NURBS domains in two and three dimensions.

The content of the thesis is organized as follows.

In Chapter 1, we introduce some basic notions of cardiac anatomy and electro-

physiology.

In Chapter 2, we describe the modelling of a cardiac cellular electrical activity and

introduce a sinoatrial node cell action potential model, developed in collaboration

with Prof. Stefano Severi (Università di Bologna) and Prof. Dario DiFrancesco

(Università degli studi di Milano).

In Chapter 3, we present the mathematical models of the electrical activity in the

cardiac tissue, i.e., the Bidomain and the Monodomain models.

In Chapter 4, there is a brief introduction to the Isogeometric Analysis.

In Chapter 5, we describe numerical method to solve the models.

In Chapter 6, we construct and analyze a two level overlapping Schwarz precondi-

tioner for the Bidomain system.

Finally in Chapter 7, we provide results from some numerical simulations based

on the Bidomain and Monodomain models.



Chapter 1

Anatomy and cellular physiology

of the heart

The derivation of mathematical models of the bioelectric activity in the heart

is based on the organ’s anatomy and principles of physiology. This chapter aims

at providing some basic background on these topics. For further information,

textbooks such as [11] could be profitably consulted.

1.1 Anatomy of the heart

The human heart is a hollow muscular organ of a approximately conical form; it

is located between the lungs in the mediastinum, which is the central sub-division

of the thoracic cavity. It is enclosed in a thin double-walled sac of about 20 µm

called the pericardium.

The pericardium’s outer wall is called the parietal pericardium and the inner

one the visceral pericardium. Between them there is some pericardial fluid which

permits the inner and outer walls to slide easily over one another with the heart

movements. Outside the parietal pericardium is a fibrous layer called the fibrous

pericardium which is attached to the mediastinal fascia. This sac protects the

heart, anchors it to the surrounding structures, but has no effect on ventricular

hemodynamics in a healthy person.

The heart is subdivided by septa into right and left halves, and a constriction

subdivides each half of the organ into two cavities, the upper cavity being called

the atrium, the lower the ventricle. The heart therefore consists of four chambers,

i.e., the right and left atria, and the right and left ventricles. The atria are the

6
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receiving chambers and the ventricles are the discharging chambers. During each

cardiac cycle, the atria contract first, forcing blood that has entered them into

their respective ventricles, then the ventricles contract, forcing blood out of the

heart. Due to the force needed to pump blood to the body, ventricles have thicker

walls than do atria.

The proper flow of blood through the heart is guaranteed by the valves. The

valves are flap-like structures composed of endocardium, Section 1.2, and connec-

tive tissue, that allow blood to flow in only one direction. A heart has four valves

subdivided in two kind: the atrioventricular, allowing blood to flow from atria to

ventricles, and the semilunar valves, allowing blood to flow out of the heart. The

heart valves open and close passively because of pressure differences across the

valve.

The pathway of the blood consists of a pulmonary circuit and a systemic cir-

cuit which function simultaneously (see Fig. 1.1). Deoxygenated blood from the

body flows via the venae cavae into the right atrium, which pumps it through

the tricuspid valve into the right ventricle, whose subsequent contraction forces it

out through the semilunar pulmonary valve into the pulmonary arteries leading

to the lungs. Meanwhile, oxygenated blood returns from the lungs through the

pulmonary veins into the left atrium, which pumps it through the bicuspid (or mi-

tral) valve into the left ventricle, whose subsequent strong contraction forces it out

through the semilunar aortic valve to the aorta leading to the systemic circulation.

The audible sounds that can be heard from the heart are results from the

closing of the heart valves. These sounds are referred to as the ”lub-dub” sounds.

The ”lub” sound, or first heart tone, is made by the systole (i.e. contraction) of

the ventricles and the closing of the atrioventricular valves. The ”dupp” sound, or

second heart tone, is made by the semilunar valves closing at the beginning of the

ventricular diastole (i.e. relax).

1.2 Cardiac tissue

The outer wall of the human heart is composed of three layers hystologically

different: epicardium, myocardium and endocardium.

The outer layer is called the epicardium, or visceral pericardium since it is also

the inner wall of the pericardium. It is composed of connective tissue that contains

adipose tissue, nerves and the coronary arteries and veins.

The inner layer is called the endocardium and is in contact with the blood that

the heart pumps. It helps blood flow smoothly and prevents clots from forming.
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Figure 1.1: Frontal view of the opened human heart. Arrows indicate normal

blood flow direction. From http://www.texasheartinstitute.org/

Outermost it is composed of connective tissue containing nerves vein and Purkinje

fibers, then it merges with the inner lining (endothelium) of blood vessels.

The middle layer is called the myocardium and is composed of cardiac muscle

which contracts. The cells that compose the cardiac muscle are called cardiomy-

ocytes. They are one-nucleus cells, typically 30-100 µm long and 8-20 µm wide,

with irregular staircase shape, arranged into fibrous bundles so that the longer axes

of the cells are parallel. The cells are immersed in an aqueous interstitial fluid,

that constitutes the extracellular space. The bounding membranes of adjacent

cells are separated by narrow clefts of interstitial space, except at the point called

the gap junctions or nexus, where the two membranes join. The nexus connects

the intracellular compartments of the cells via connexon protein channels and nexa

occur predominantly at the ends of cells and to a lesser extent along the length

of cells. Approximately 70% of the gap junctions embedded in the cell membrane

are at the intercalated disks in the longitudinal direction, the remaining 30% form

the transverse connections.

The myocyte shape, cellular connections, and supporting structures give car-
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diac tissue the appearance of being composed of fibers, se Fig. 1.2. It is possible

to define an average myocyte direction at each point. This average direction can

be interpreted as the local fiber orientation. The work of pioneering anatomists

showed that the heart ventricle is an assembly of discrete muscle layers, arranged in

nested layers or discrete fiber bundles. The first quantitative analysis of fiber orien-

tation by Streeter and Bassett [77, 76] revealed that there is a smooth transmural

variation in fiber angle and that the myocardium is well connected or syncytial

throughout. In a more recent quantitative analysis, Le Grice et al. [47] shows

that a true syncytial myocardium is not an accurate characterization. Rather, the

heart is composed of discrete layers of fibers called sheets, see Fig. 1.3. Sheets are

approximately four to five cells thick, with neighboring layers of sheets branching

into each other. The sheets are surrounded by collagenous connective tissue and

the arrangement varies as a function of position in the ventricle. Le Grice et al.

found that the sheets lie radial to the ventricular surfaces, though they become al-

most tangential to the epicardial surface. In this discrete view, the edges formed by

cutting the wall tangential to the epicardium define the fiber orientation. Across

the ventricular wall, the fibers rotate 120◦ and the axis of preferred current flow is

subject to a corresponding variation, see Section 1.4 and Chapter 3.

Figure 1.2: Cardiac muscle in longitudinal section.

1.3 The conduction system

The heart is a pump that creates pressure that drives the flow of blood through-

out the system. The pumping function of the heart is the result of a rhythmic cycle

of contraction and relaxation of billions of muscle cells, a process that is controlled

by a complex pattern of electrical activation. Electrical activity is essential for the
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function of the heart, and many heart problems are closely linked to disturbance

of it.

Although the heart is innervated by the autonomic nervous system, the heart

does not require the nervous system to function. It is autorhythmic, meaning it

generates its own rhythmic action potentials independent of the nervous system.

The cardiac conduction system is responsible for the organized transmission of

electrical impulses in the heart. This system consists of a network of cells that

transmits electrical potentials from the atria to the ventricles.

The sinoatrial node, which is located in the right atrium, is responsible for the

generation of electrical impulses. These impulses are then transmitted through

atrial conduction tissue to the atrioventricular node. The atrioventricular node

causes a slight delay in transmission, and then allows the signals to travel to the

cells of the interventricular septum. The conduction fibers in the interventricular

septum are known as the bundle of His named after the Swiss cardiologist Wilhelm

His, Jr., who discovered them in 1893. These fibers divide into the left and right

bundle branches, which transmit electrical impulses to the left and right ventricles,

respectively.

The ability of the conduction system to stimulate the heart to contract in an

organized fashion stems from its intrinsic properties. The conductive tissue that

has the fastest automaticity acts as the pacemaker of the heart. In a normal heart,

the sinoatrial node has the highest automaticity and, thus, acts as the primary

pacemaker of the heart. However, if one pacemaker in the heart fails to act,

the conduction tissue with the next fastest rate will gain control of the pacing

function. Each component of the conductive system has its own intrinsic rate of

self-excitation, as follows: the sinoatrial node has an intrinsic rate of 60-100 beats

per minute. The atrioventricular node has an intrinsic rate of 40-60 beats per

minute. The ventricular conduction tracts have an intrinsic rate of 15-40 beats

per minute.

The intracellular spaces of adjacent myocytes are interconnected by gap junc-

tions. The gap junction distribution over the cell is heterogeneous with a higher

density at the intercalated discs located at cell ends (along the long axis of the

cell) and a lower density along the lateral boundaries. As a consequence of the

elongated cellular geometry and the directionally varying gap junction density,

current flows more readily along the cells than transverse to them. The extra-

cellular matrix consists of networks of collagen fibers which determine the passive

mechanical properties of the myocardium. It is assumed that the preferred current

flow directions are co-aligned between the two spaces, but that the conductivity
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ratios between the principal axes are unequal between the two domains. As a

consequence, direction and speed of propagation is constantly modified by interac-

tions with discontinuous spatial variations in material properties at various spatial

scales.

Figure 1.3: Fibers and sheets in the ventricles. Schematic representation of cardiac

microstructure. Adapted from Le Grice et al. [47]

1.4 Electrophysiology of cardiac cells

In this section, a description of basic cardiac electrophysiology is included to

provide a background. Each cardiac cell is encapsulated within a thin (5-7 nm)

membrane. The cell membrane is a phospholipid bilayer acting as a separator

between the extracellular and intracellular space. Both environments are made

of aqueous solutions of salts dissociated in ions. Woven into this bilipid shell are

membrane-spanning proteins that combine to form small pores in the cell mem-

brane, see Fig. 1.4. Under most circumstances these pores may allow only specific

ion to pass through the membrane and then only under certain conditions. These

pores are often referred to as ion channels. The selective permeability property

allows a potential difference to form between the inside and the outside of the

cell. The main ions that are of interest in cardiac electrophysiology are Na+, K+

and Ca2+, whose concentrations under resting conditions are given in Table 1.1.
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Ion [ion]I (mM) [ion]E (mM)

Na+ 10 140

K+ 145 5.4

Ca2+ 0.00012 1.8

Table 1.1: intra- and extra-cellular principal ionic concentrations

Figure 1.4: Schema rappresentativo della membrana cellulare.

The two forces acting on these ions to create the potential difference across

the cell membrane are a chemical and an electrical force. When a concentration

gradient of a particular ion species exists, the ions will naturally flow down this

concentration gradient. This movement then causes an electrical gradient to be

established that acts to oppose the chemical gradient. From Table1.1 it can be

seen that, at rest, the intracellular and extracellular concentrations of each ion are

substantially different. Therefore, an electrical gradient must exist that balances

these concentration differences. The potential at which the chemical and electrical

forces acting on a single ion species are in equilibrium (the electrochemical equilib-

rium) goes by two main names. In some circumstances this potential is called the

reversal potential as it represents the potential at which the flux of the ion changes

from one direction to the other. Mathematically this potential difference across

the cell membrane can be calculated from the Nernst equation, (1.1), named after

the German scientist Walther Hermann Nernst who developed the equation and

therefore it is called Nernst potential. For a general ion x, the Nernst potential,
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Vx, can be written as

Vx =
RT

zxF
ln

(
[x]E
[x]I

)
, (1.1)

where R is the universal gas constant (8.314 J mol−1 K−1), T is the absolute tem-

perature, zx is the valence of the ion x and F is the Faraday’s constant (96,485

C mol−1). The Nernst equation (1.1) can be derived from thermodynamic con-

siderations of the free energy changes involved, for more details we refer to [42].

According to Table 1.1 and (1.1) we have VNa = 70 mV, VK = −88 mV and

VCa = 128 mV. The resting potential of a cell therefore depends on these Nernst

potentials and the relative permeability of the membrane to each of these ions.

The potential difference set up across the cell membrane is known as the trans-

membrane potential (or membrane potential) and is given the symbol vM . By

convention it is computed as the difference between the intracellular potential, uI ,

and the extracellular potential, uE,

vM = uI − uE.

The regulation of the membrane potential through the activity of the ion chan-

nels is at the basis of the description of the bioelectric activity of the heart.

1.5 Ion channels

Ion channels are pore forming membrane proteins whose function include es-

tablishing a resting membrane potential by gating the flow of ions across the

membrane.

There are three distinctive features of ion channels:

• permeability: the ability of an ion to move through the channel. Ions pass

through the channel down their electrochemical gradient, without the input

of metabolic energy (e.g. ATP, co-transport or active transport mechanism);

• selectivity: the degree to which a channel allows a specific ion to pass while

excluding others;

• gating : the process of conformational changes of an ion channel transforming

between any of its conducting and non-conducting states.

A variety of cellular changes can trigger gating depending on the ion channel, in-

cluding changes in voltage across the membrane (voltage-gated ion channels), drugs
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Activation

Deactivation

INACTIVATED

InactivationRecovery

Figure 1.5: Schematic representation of voltage gated channel states.

or hormones interacting with ion channel (ligand-gated ion channels), stretching or

deformation of the cell membrane. The rate at which any of these gating process

occurs are known as the kinetics of gating.

The voltage-gated channels are often describe as having four gating process:

activation, deactivation, inactivation and recovery from inactivation. Activation

is the opening of a channel due to the presence of a gating signal; deactivation is

the closing due to removal of the gating signal (i.e. the opposite of activation);

inactivation is the closing of a channel in the continued presence of the gating

signal, finally recovery is the opposite of inactivation. A depiction of this process

is shown in Fig. 1.5. We now briefly describe the main channel involved in an

action potential.

Sodium channels

Voltage-gated sodium channels can be activated by a slight depolarization and

they produce an intense inward current of Na+ ions (by convention negative, and

denoted by INa).
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Calcium channels

Two types of voltage-dependent calcium channels play a role in cardiac cells,

the L-type (long-lasting) and T-type (transient) channels, whose names reflect

their main features. L-type also have a lower threshold for activation than T-

type and because T-type carry a smaller depolarizing current, T can also stands

for ”tiny”. L-type Ca2+ channel are activated and inactivated by voltage and

inactivated by high concentration of Ca2+ .

Potassium channels

The configuration of cardiac action potential varies considerably among species

and different region of the heart, which is largely attributable to the diversity

expression of the different types of time- and voltage-activated K+ channels. Under

physiological condition the current through these channel is always outward. The

Ito (transient outward) has a fast activation and inactivation, it is important in the

atria and subepicardial ventricle. The rapid and slow delayed rectifier potassium

currents, IKr and IKs , respectively, are, together with the inward rectifier current

IK1, the primary currents responsible for repolarizing the myocyte membranes in

the final part of the action potential and thereby terminating it (phase 3).

HCN channels

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are some-

times referred as the pacemaker channel because they help to generate rhythmic

activity within groups of heart cells, they are highly expressed in spontaneously

active cardiac region, such as the sinoatral node and Purkinje fibers. The current

flowing through the HCN channels is called funny current (If ), described for the

first time by DiFrancesco Nooble e Brown in 1979 [13]. The atypical features of

this current justify its name. It is a mixed current potassium current that activates

upon hyperpolarization at voltages in the diastolic range (normally from -60/-70

mV to -40 mV) and has a slow kinetics. When at the end of a sinoatrial action

potential the membrane repolarizes below the If threshold (about -40/-50 mV),

the funny current is activated and supplies inward current, which is responsible

for starting the diastolic depolarization.
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1.6 Cardiac action potential

From the perspective of electrical activity, the most important property of

cardiac cells is that they are excitable, some autonomously as the sinoatrial node

cells (SAN cells). In fact, cardiac muscle cells have an inbuilt protection whereby

small perturbation in the membrane potential elicits only a passive response. From

such perturbation the transmembrane potential move back towards the resting

potential. If a sufficiently large stimulus is given, the membrane potential rises

above a critical value (threshold potential) and an active response occurs. This

response, which actually is the time course of the membrane potential, is called

the action potential. The waveforms of the action potentials in different region of

the heart are distinct, as shown in Figure 1.6.

Figure 1.6: Pathways of electrical conduction in the heart and the corresponding

action potentials.

Two main types of action potentials occur in the heart and are shown in Fig. 1.7.

One type, the fast response, occurs in normal atrial and ventricular myocytes and

in the specialized conducting fibers (Purkinje fibers of the heart) and is divided

into five phases, as in Fig. 1.7(b).

Upstroke (Phase 0) Any stimulus that abruptly depolarizes the membrane po-
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tential to a critical value (called the threshold) elicits an action potential. The

rapid depolarization (phase 0) is related almost exclusively to the rapid influx of

Na+ into the myocyte as a result of sodium channels activation.

Early repolarization (Phase 1) This phase is due to the inactivation of Na+

channels and outward flux of of K+ (Ito current).

Plateau (Phase 2) This is the longest phase of the action potential. This phase

is unique among excitable cells and is sustained by a balance between influx of

Ca2+ through L-type Ca2+ channels (ICa,L ) and efflux of K+ through the slow-

delayed rectifier K channels (IKs ). The Na+ -Ca2+ exchanger current (INaCa )

and the Na+ /K+ also play minor roles during phase 2.

Rapid repolarization (Phase 3) the phase of rapid repolarization, restores the

resting membrane potential. During this phase, the L-type Ca2+ channels close,

while the slow-delayed rectifier (IKs ) K+ channels are still opened. This ensures

a net outward current, corresponding to negative change in membrane potential,

thus allowing more types of K+ channels to open. These are primarily the rapid

delayed rectifier K+ channels, IKr , and the inwardly rectifying K current, IK1 .

The delayed rectifier IKr channels close when the membrane potential is restored

about -80 to -85 mV, while IK1 remains conducting throughout phase 4, contribut-

ing to set the resting membrane potential.

Resting (Phase 4)is the resting phase, during which the transmembrane po-

tential remains at the resting value of about -84 mV until it is stimulated by an

external electrical.

The slow response action potential occurs in the sinoatrial (SA) node, which

is the natural pacemaker region of the heart, and in the atrioventricular (AV).

nodeSA node cells fire spontaneously in a cycle defined by three phases, referred

to as phase 4, phase 0, and phase 3, as shown in Fig. 1.7(a).

Diastolic depolarization (Phase 4) It consists of a slow, spontaneous depo-

larization that is caused by an inward pacemaker current If . This spontaneous

depolarization accounts for the automaticity of the SA node. The channels that

carry the If current are activated during the repolarization phase of the previous

action potential.

Depolarization (Phase 0) is a more rapid depolarization mediated by highly

selective voltage-gated Ca2+ channels that, upon opening, drive the membrane

potential toward calcium resting potential VCa.

Repolarization (Phase 3). When the Ca2+ channels slowly close and K+ -

selective channels open, resulting in membrane repolarization. Once the mem-
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brane potential repolarizes to approximately -60 mV, the opening of If channels

is triggered and the cycle begins again.
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Figure 1.7: Phases of the sinoatrial node (a) and the ventricular myocardial cell

(b) action potentials.



Chapter 2

Action Potential Modeling

At the molecular level, the electrical activity in the heart is generated by spe-

cialized membrane-spanning proteins that control the movement of ions either by

passive electrodiffusion through transmembrane pores (channels) or translocation

across the membrane by carrier proteins (pumps, exchangers, and transporters).

As a first approximation, ion channels can be thought of as mediating the dy-

namic portions of the action potential, such as the upstroke and repolarization,

and also providing the entry of trigger calcium to initiate excitationcontraction

coupling. In contrast, pumps, exchangers, and transporters can be thought of as

steadily working in the background to establish and maintain ionic gradients. Ob-

viously, this is only an approximation: pumps, exchangers and transporters can

and do contribute to the overall behaviour of the action potential too. Nonetheless,

channels dominate depolarization and repolarization, and the process of repolar-

ization is largely understood as the dynamic interaction of membrane ion channels.

Consequently, in many situations the action potential can be approximated well

using a model containing only channels. Membrane ion channels interact with

dynamically changing ionic concentrations and varying transmembrane voltage,

and are subject to various regulatory processes. These interactions are nonlinear,

making the single cardiac cell a complex interactive system. In this chapter, we

introduce mathematical approaches that provide a synthesis and an integration

of this processes, in order to describe the electrical activity of a whole cell; the

milestone work for quantitative modelling of ion channels is the one by Hodgkin-

Huxley [37]. Their equations are purely empirical, since they were developed long

before channel structure was known. However they introduced a formalism that is

still adopted, even though advances in electrophysiological techniques and molec-

ular biology have allowed us to build new models of the biophysical properties

19
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of ion channels based on their molecular structure. At the end of the chapter a

novel sinoatrial action potential model is introduced, which, adopting the Hodgkin-

Huxley (HH) formalism integrated with a markovian model for calcium handling,

tries to make a contribution to gain a deeper understanding of the cellular basis

of cardiac pacemaking.

2.1 Ionic currents

Although the Nernst equation for the equilibrium potential can be derived from

thermodynamic considerations (see [42]) and is thus universally applicable, there

is no universal expression for the ionic current. The simplest model available for

describing the uncoupled movement of a charged species though an open channel

is given by the equation

Ix = γx(vM − Vx), (2.1)

where Ix and Ex are the current and the Nernst potential relative of ion x, re-

spectively, while γx is defined as the conductance. In fact, this equation describes

an ohmic conductor, as there is a linear relationship between current and voltage.

Even though the Nernst equation can be used to calculate the correct reversal

potential for an ion and the net driving force for an ion, the net flux is not al-

ways linearly related to the voltage difference as implied by this equation. An

alternative model come out from the integration of the NernstPlanck equation,

assuming a constant electric field, giving the Goldman Hodgkin Katz (GHK), or

constant-field, current equation:

Ix = Px · z2
x

vM · F 2

RT

[x]i − [x]o exp(−zx · vM · F/RT )

1− exp(−zx · vM · F/RT )
. (2.2)

where zX is the valence of ion x, Px is the permeability of the membrane for ion

x, F the Faraday constant, R the gas constant, T the absolute temperature and

[x]i and [x]o the internal and external concentration of ion x.

2.2 Electrical circuit model of the cellular mem-

brane

Cole and Curtis, [24] measured cell membrane resistance and capacitance in

nerve cells and showed that the electrical properties of the membrane are well
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Figure 2.1: Electrical circuit model of the cellular membrane

represented by an RC circuit, as shown in Fig. 2.1. The capacitor represents

the capacitance of the lipid bilayer that form the cell membrane, and the resis-

tor represents the conductance of the ionic channels that are open at the resting

potential.

The capacitance is defined as the ratio between the charge Q across the capac-

itor and the voltage potential vM necessary to hold the charge

Cm =
Q

vM
.

Since the capacitive current is Ic = dQ/dt, if Cm is constant, we have

Ic =
dQ

dt
= Cm

dvM
dt

.

By the current conservation law, the transmembrane current given by the sum

of the capacitative and ionic currents, must equal the applied current Iapp

Cm
dv

dt
+ Iion = Iapp. (2.3)

The structure of the ionic current will be described by the specific ionic mem-

brane model adopted. In order to discuss these models, we need to introduce the

formalism for modelling ion channel gating.

2.3 Ion channel gating modelling

A channel pore conducts all-or-nothing according to whether its ion gates are

open or closed. An open channel conducts with a single-pore conductance, the total
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membrane conductance is the sum of the conductances of all the open channels.

A transient channel has two ion gates, the activation gate and the inactivation

gate. Accordingly, this channel is seen as having three states: (1) deactivated

(activation gate closed, inactivation gate open); (2) activated (both gates open);

and (3) inactivated (inactivation gate closed). A persistent channel has only two

states, activated and deactivated, because it has only one gate. We suppose that

individual channel gates open or close independently of one another but as a

function of the membrane voltage.

The simplest model of a gating variable is the two state channel. We consider

a membrane portion of unit area containing a given type of ionic channel that

assume state only C (close) and O (open), The channel can pass from a state to

the other according to the following diagram

C �α
β O,

where α and β are the transition rate constant of opening and closing, respectively,

and are function of the membrane voltage but not of time. If we denote by C(t)

and O(t) the average number of channels that at time t are in the state C and O,

respectively, for each time C(t) + O(t) = T , where T is the total number of ion

channels. Applying the law mass action we obtain
dO

dt
= α C − β O

C +O = T.

Eliminating C and denoting by w := O
T

the gating variable, we have

dw

dt
= α (1− w)− β w . (2.4)

By setting

w∞ =
α

α + β
(2.5)

τw =
1

α + β
; (2.6)

this equation can be rewritten as

dw

dt
=

w∞ − w
τw

. (2.7)
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2.4 Calcium handling

The intracellular calcium exerts profound influence on a vast variety of cellu-

lar processes. It is the central regulator of cardiac contractility, and according to

the Ca2+ -clock theory (Sec. 2.6) could be important for the pacemaking. The

key pathways involved in myocyte Ca2+ transport can be summarized as follows.

Calcium ions enter the cell through the calcium channel (ICa,L and ICa,T ). This

fact induce the release of more calcium ions from the sarcoplasmic reticulum by a

process called calcium-induced calcium release (CICR), resulting in an elevation of

intracellular calcium. This elevation of intracellular calcium is transient because

calcium ions are taken up by the sarcoplasmic reticulum, and are extruded outside

the cell by the sodium-calcium exchanger and a calcium pump, or intracellular

calcium binds to cytosolic Ca2+ buffers. Therefore, the amount of free intracellu-

lar calcium in the myoplasm is determined by many processes: the calcium that

enters and exits the cell through ionic channels, the calcium that leaves the cell

through the Na-Ca exchanger, the calcium that is taken up and released from the

sarcoplasmic reticulum, and the calcium that is bound to some cytosolic proteins.

Calcium fluxes

Calcium fluxes in the sarcoplasmic reticulum, represented by J, represent changes

in ionic concentrations per unit time and have units of mM/s.

Several models describing the uptake and the release of calcium by the sar-

coplasmic reticulum (SR) can be found in literature. The SR occupies about

1% and 6% of the cell volume, in sinoatrial and ventricular cell, respectively. It

consists of two compartments: the network sarcoplasmic reticulum (NSR), where

calcium is uptaken in the SR, and the junctional sarcoplasmic reticulum (JSR),

from which calcium is released to the cytoplasm. The NSR occupies about 90%

the SR volume, and the JSR the rest.

We can model the fluxes in the SR by formulating the uptake (Jup) from NSR,

the calcium translocation from the NSR to the JSR (Jtr) and the release from the

JSR (Jrel). The uptake is performed by a metabolic pump by a Hill equation

Jup = Pup
[Ca]i

[Ca]i +Kup

,

where Pup is the maximum pump rate, [Ca]i is the intracellular calcium concen-

tration and Kup is the half-activation concentration, i.e., the [Ca]i at which the

pump rate is half of its maximum) and n is the order of the biding process.
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The flux of calcium ions from the NSR to the JSR can be formulated as

Jtr =
[Ca]nsr − [Ca]jsr

τtr
,

where [Ca]nsr and [Ca]jsr are the calcium concentrations in the NSR and JSR,

respectively, and τtr is the time constant of the translocation.

The release of calcium from the JSR is a process that is more complex than

the other calcium fluxes discussed so far, because the rate of release from the JSR

depends on the concentration of intracellular calcium by the process of CICR. Old

models as DiFrancesco and Noble [58] and Luo and Rudy [51] assume that the JSR

release calcium into the myoplasm, more recent model, as those proposed by Shan-

non et al. in [70], assume that there exist a submembrane space, also called junc-

tional cleft, where calcium is released, before to spread into the cytoplasm. This

distinction recognizes the fact that the concentration in the submembrane space,

which influences both the NaCa exchange current and the calcium-dependent in-

activation of calcium current, is much larger during release than the average bulk

concentration inside the myoplasm, due to the proximity of this space to dyadic

junctions. The formulation of calcium release in their model is

Jrel = ks ·O · ([Ca]jsr − [Ca]sub),

where [Ca]sub is the concentration of free calcium in the junctional cleft, ks is the

maximum rate of calcium release, and O is the probability that the release channel

is open.

The JSR releases calcium through ryanodine receptors (RyR), (Fabiato [30]).

Ryanodine receptors are so named because of their sensitivity to ryanodine, which

decreases the open probability of the channel. One of the earliest model of the

ryanodine receptors is due to Stern et al. [74], and shown in Fig. 2.2; this is a four

state model with closed states R and RI, inactivated state I and open state O. Tran-

sitions between these states are calcium dependent, reflecting binding of calcium

to binding sites. A modification of the Stern et al model is used in [70], in which

the rate constants of activation and inactivation are assumed to be dependent on

the concentration of calcium in the submembrane, through a Michaelis-Menten

equation. Other groups have developed RyR models of greater or lesser complex-

ity, However, there is still no consensus as to which of this multitude of models

best describes RyR behavior in vivo, we refer to [42] for further details.
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Figure 2.2: Markovian state model of ryanodine receptor.

Calcium buffering

In addition to its role in cardiac excitation, intracellular calcium regulates many

intracellular process by binding to cytosolic proteins. For example, troponin is a

contractile protein that binds intracellular calcium, and detects a rise in intracellu-

lar calcium as a signal to initiate the interactions between other contractile proteins

(actin and myosin) that activate the process of muscle contraction. Intracellular

calcium also binds to other proteins such as calmodulin. Similarly to troponin,

calmodulin responds to a rise of intracellular calcium. Calmodulin is involved in

the regulation of metabolic pathways of energy production, muscle contraction,

and neurotransmitter release. The fact that calcium binds to cell proteins modu-

lates the amount of free calcium, and, as a result, the cell excitation. The binding

of calcium to some proteins has a buffering effect that keeps intracellular calcium

concentration at a low level, more than 90% of intracellular calcium binds to a

protein.

In its most simplified form, calcium buffering can be modelled using the same

formalism used in enzymatic reaction. If the concentration of the buffer is [B] and

the concentration of intracellular calcium is [Ca]i, then the binding of the calcium

to the buffer can be modelled as a chemical reaction as follows:

[Ca]i + [B]free �
kfB
kbB

[BCa],

where [B]free is the concentration of free buffer, [Ca]iis the concentration of free

intracellular calcium and [BCa] is the concentration of buffer bound to calcium.

The forward rate constant is k
fB, and the reverse rate is k

bB.
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2.5 Luo-Rudy I model

In the next two sections we introduce two models of action potential of my-

ocytes ventricle cells and of sinoatrial node cell, respectively.

In 1991, Ching-hsing Luo and Yoram Rudy published a mathematical model

of the cardiac action potential in guinea pig ventricular cells, [50], based on the

Beeler-reuter model [8]. This was the first of two models, and it has subsequently

come to be known as the Luo-Rudy I model (LR1). In this model the ionic current

Iion is the sum of six currents

Iion = INa + Isi + IK + IK1 + IKp + Ib, (2.8)

two inwards (INa, Isi) and four outwards (IK , IK1, IKp, Ib). The first three currents

depend on six gating variables and on intracellular calcium concentration, while

the last three are time independent. The detailed formulation of the ionic currents

are reported in Appendix A. The fast inward sodium current INa is primarily

responsible for the rapid upstroke of the action potential, while the other currents

determine the configuration of the plateau and repolarization phases. The slow

inward current Isi, primarily carried by calcium ions, influences the duration of the

action potential. The time-dependent and time-independent outward potassium

currents IK and IK1 are instead responsible for the repolarization phase. The

plateau potassium current Ip plays a role during the plateau phase of the action

potential, restoring the cell to its resting state. Background current Ib is a linear

function of the transmembrane potential.

In Fig. 2.3 is reported the action potential produced by the LR1 model.

Figure 2.3: An AP waveform generated by the LR1 model.
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2.6 An updated sinoatrial action potential model

Over the past half century, there has been an intense and fruitful interaction be-

tween experimental and computational investigations of cardiac function. This has

led, for example, to more profound understanding of cardiac excitation-contraction

coupling: how it works, as well as how it fails. However, many lines of inquiry

remain unresolved, among them the initiation of each heartbeat. The sinoatrial

node, a cluster of specialized pacemaking cells in the right atrium of the heart,

spontaneously generates an electro-chemical wave that spreads through the atria

and the cardiac conduction system to the ventricles, initiating the contraction of

cardiac muscle essential for pumping blood to the body. Despite the fundamental

importance of this primary pacemaker, this process is still not fully understood,

and ionic mechanisms underlying cardiac pacemaking function are currently under

heated debate.

Since its discovery in 1979 [13], the inward funny current (If ) has held a

prominent place in the understanding of this process. In fact, many textbooks

and review articles refer to If as the pacemaker current [4, 5], a term that implies

primacy. The properties of If make it seem almost ideally suited for pacemaking:

it slowly activates at the negative membrane potentials of diastole, and the inward

current it supplies can drive a slow depolarization towards the action potential

threshold [27]. This mechanism, whereby spontaneous beating results from volt-

age and time-dependent changes in ionic currents, has been termed a membrane

clock, or M-clock. However, the hypothesis that the funny current plays a domi-

nant role in pacemaking has not gone unchallenged. In recent years, studies from

several groups have suggested that periodic spontaneous release of Ca2+ from the

sarcoplasmic reticulum plays a critical role in SA nodal pacemaking [45, 44]. Ac-

cording to this hypothesis, local release of SR Ca2+ near the cell membrane leads

to Ca2+ extrusion from the cell via the Na+Ca2+ exchanger (Na-Ca). Because Na-

ca is electrogenic, Ca2+ removal results in an inward current that contributes to

diastolic depolarization. This general mechanism has been called the Ca2+-clock.

Mathematical modelling of SAN cells has a long history, beginning with models

developed in the early 1980s, such as the famous DiFrancesco-Noble model, [29]. In

subsequent years, ion transport pathways have become more clearly defined, and

models have generally increased in complexity to reflect new knowledge about the

channels, transporters, and pumps that may contribute to pacemaking. In 2009,

Maltsev and Lakatta first developed a model (the ML model, [52]) of a coupled

membrane- and Ca2+ -clock to address the ionic mechanism of cardiac pacemaking.
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They concluded that only a coupled system of membrane- and Ca2+ -clocks offers

both the robustness and flexibility that are required to maintain normal pace-

making function, and their model predicts that the most important pacemaker

current during late DD is the inward INaCa, instead of If . Unfortunately this

model, as the previous (e.g. [43]), fails to reproduce a number of experimental

data, and more specifically effects of If modifications. In order to test the hypoth-

esis that a quantitatively important role of If in pacemaking and rate modulation

is fully compatible with the recently proposed description of intracellular calcium

handling, in collaboration with Dario DiFrancesco (University of Milan) and Ste-

fano Severi and Matteo Fantini (University of Bologna), we developed a SAN AP

model, [69], based on available experimental data. We selected the rabbit SAN as

a basis for our model, and aimed at using species-specific data whenever possible

for improved consistency. The model was constructed based on the mathematical

formulation of rigorously selected ionic currents and pump/exchange mechanisms

derived from relevant published experimental data. The model was then validated

by simulating the action of pharmacological and autonomic agents that modulate

SAN rate and comparing numerical reconstructions with experimental results from

the literature. Model equations are provided in Appendix B. Moreover, the model

code is published in the CellML repository [49], (http://www.cellml.org/).

2.6.1 Methods

The framework of the model and the computational strategy were the same

as in work [29]. We adopted the intracellular Ca2+ handling formulation of the

ML model, since it is the more advanced and tuned. Membrane currents, pumps

and exchangers were reformulated based on a critical review of published rabbit

experiments, however we only retained mechanisms for which clear experimental

evidence is available. Fig. 2.4 shows a schematic diagram of the model. The model

follows the classical Hodgkin-Huxley formulation, and consists of ten currents. The

differential equation for the membrane potential is

dvM
dt

= −Itot
Cm

(2.9)

Itot = If + IKr + IKs + Ito + INaK + INaCa + INa + ICaL + ICaT + IKACh, (2.10)

where ICa,L and ICa,T represent the L-type and T-type Ca2+ channel currents,

respectively. The rapid and slow components of the delayed rectifier K+ current

are denoted as IKr and IKs , respectively. The membrane current system also
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Figure 2.4: Diagram of the SAN cell model.

includes the transient (Ito), the hyperpolarization-activated (funny) current (If ),

a very small inward Na+ channel current (INa), a muscarinic K+ channel current

(IK,ACh), Na+ -K+ pump current (INaK), and sodium calcium exchanger current

(INaCa) charging the membrane capacitance (Cm). Model equations for channel

gating behaviors are essentially the same as those of the previous Hodgkin-Huxley

type models. Hereafter we describe in detail few relevant currents.

Funny current (If )

If is described as composed of two relatively independent Na+ and K+ com-

ponents, whose contributions to the total conductance at normal Na+ and K+

concentrations, are similar. As according to the original description in [28], If is

also modulated by the extracellular potassium concentration, and we assumed, as

in the DiFrancesco-Noble model [29] that this dependence is a first order bind-

ing process. For the gating mechanism, we adopted Hodgkin-Huxley second order

kinetics as [57]. Our formulation of the steady-state activation curve fits the exper-

imental results of [2] and [4], from DiFrancesco’s group, and describes an activation

curve positioned around a half-activation potential of -64 mV; notice that previous

SAN models and also ML, based on data from [80], assumed a much more nega-

tive activation curve (Fig. 2.5A). The time constant curve (τf ) was formulated on

the basis of data from [57] (Fig. 2.5B), here too, our τf curve is shifted to more

depolarized voltages relative to that of other models.
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Figure 2.5: A: If activation curve. Plotted are the curve used in our model (thick

line), based on data from [2] and [4](filled and open circles, respectively) and the

ML model curve (thin line), based on data from [80](filled squares). B: If time

constant curve. Comparison between our curve (thick line) based on [57](open

circles) and ML model curve (dashed line) based on [80] data (filled circles).

L-type and T-type calcium current (ICa,L , ICa,T )

The kinetics of ICa,L are described with activation (dL), voltage-dependent

inactivation (fL), and Ca2+ -dependent inactivation gating variables. The voltage

dependences of the steady-state activation and inactivation curves are shown in

Fig.2.6. The formulations of were based on the data from Fermini and Nathan

[32]. Actually, also ML models and other models ([43] and [26]) all quoted the

same experimental data but with successive adjustments, motivated by the need

of improving the fitting on the action potential data, that progressively make

their current formulation significantly far from experimental evidences, Fig. 2.6.

Expression of the activation time constant was based, as already done for Maltsev,

Kurata and Demir models, on the whole cell data of [56] (guinea pig SAN myocytes

at 25 ◦C), because specific data on rabbit SAN are not available. A Q10 factor

of 2.3 was applied to scale these data for a temperature of 37◦C. In addition, the

time constant relationship was shifted to align it more properly with the steady-

state activation curve. We formulated the inactivation time constant from data
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from [54, 40, 33]. Formulation for the Ca2+ -dependent inactivation were adopted

from the Kurata model, as already done by the Maltsev model. We adopted the

constant-field formulation to describe the conductance property of ICaL, which is

known to have small but not negligible components carried by Na+ and K+ ions.

As in the case with ICa,L , ICa,T the steady state activation and inactivation

curves are the Boltzmann curves fitting the data of Fermini and Nathan [32],

while ML refers to data from [33]. We used this work for the expression of the

time constant of inactivation, by fitting the data through a least square procedure.

As done for ICa,L , we opted for the constant-field equation for the conductance

property, setting the calcium permeability to 0.02 nA/mM., in order to maintain

a constant total current during the diastolic depolarization phase.

Figure 2.6: A, ICa,L activation and deactivation curves. Our activation and deactivation curves

(thick lines), based on [32] data (filled and open circles, respectively), are compared with those

of the Kurata et al model KHIS (grey line) and ML models (thin line). B, time constant of ICa,L
inactivation. The plot shows our curve (thick line), the curve of the ML model (thin line) and

experimental data from [54] (open squares), [33] (open circles) and [40] (filled triangles).

Rapid and slow delayed rectifier (IKr , IKs )

The expression of these components in SAN cells are species dependent. In rab-

bit SA node, both currents are present, but IKr is the predominant component.

Although contribution of IKs to beating rate is small under control condition, it

contributes significantly during β−adrenergic stimulation, [48]. The work of Ono

and Ito [59] for rabbit SAN cells at about 33◦C reported complete quantitative
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Figure 2.7: A, ICa,T activation and deactivation curves. Our activation and deactivation curves

(thick lines), based on [32] (filled and open circles, respectively), are plotted along with the curves

of the ML model (thin lines) and data from [33] (filled and open squares, respectively). B, time

constant of ICa,T inactivation. Compared are our curve (thick line), based on [33] (open circles)

and the ML model curve (thin line).

data on the activation of IKr . According with their study, activation and deacti-

vation is well modeled through two activation variable: a fast activation variable

(paf ) and a slow (pas). The general activation variable (pas) is a convex linear

combination of paf and pas. We adopted the mathematical description of Ono and

Ito for the activation and inactivation kinetics of IKr . In order to improve the

overall AP morphology, the steady-state activation variable and time constant of

fast activation were slightly modified. Since no detailed experimental data were

reported by Ono and Ito on the voltage dependence of the time constant of inac-

tivation, for this variable we used the expression provided by Shibasaki [71], as in

the ML model.

The slow activation of IKs is described by the formulation provided by Zhang

model [85], subsequently adopted by Kurata and Maltsev. In this work IKs was

modeled using second order Hodgkin-Huxley kinetics. The steady-state function

was from data in Lei and Brown 1996, from rabbit SA node cells at 37◦C. There are

limited experimental data for the time constant of the voltage-dependent activation

of IKs in rabbit SAN cells. Zhang model used formulation by Heath and Terrar,

[35], based on their data from guinea-pig ventricular cells. With respect this

approach, we opted for a new formulation of the time constant curve, in order to
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reproduce the AP-clamp results from rabbit sinoatrial node cells of [48]. With this

aim we adjusted the conductance, gks, setting its value at 45 nS. Fig. 2.8 shows

our time constant curve in compared to that in ML model (i.e. Zhang model) and

Heath and Terrar data.

Figure 2.8: A: time constant of activation of IKs our formulation (thick line) and that of

ML model (thin line, also shown experimentaldata from [35] (open circles). B: simulation of

AP-clamp, reproducing the results of the experiments of [48] in C)

2.6.2 Validitation

For simulations we used Cellular Open Resource (COR) on a Windows 7 PC

with an Intel Core 2 Quad processor. Integration was performed by the CVODE

algorithm, using Backward Differentiation Formulae (BDF) together with a New-

ton iteration.

Action potential features during control

Before validating our model against specific rate modulation agents, we assess

the basic features of the action potential. As shown Table 2.1 each of the ba-

sic characteristics of our model is within the range of experimental measurements.

The AP waveforms generated by the model (Fig. 2.9) mimic closely those recorded
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Feature Model values Experim. values

(mean±SD range)

CL (ms) 352 352±42

MDP (mV) -58 -56±6

APA (mV) 80 87±6

POP (mV) 22 27±6

APD50 (ms) 108 93±12

dV/dtmax (mV/ms) 7.1 11.3±6.5

Table 2.1: Simulation data from different models compared with experimental AP character-

istics from 12 studies at physiological temperatures (Table 1 in [43]). CL, cycle length; MDP,

maximum diastolic potential; APA, action potential amplitude; POP, peak overshoot poten-

tial; APD50, AP duration at its half-amplitude; dV/dtmax, maximum rate of rise of membrane

potential during AP upstroke.

in rabbit SAN cells in normal Tyrode solution at a Temperature of 34-37◦C. In par-

ticular our AP is able to reproduce one aspect of membrane potential morphology

that is relevant for SAN function, that is the profile of the early diastolic depolar-

ization (DD). It is well known that for rabbit SAN AP the membrane potential

increases linearly during the early DD phase, followed by an exponential-like in-

crease during the late DD. The latter is mainly driven by Ca2+ fluxes due to the

activation of ICa,L and to Ca2+ extrusion by the Na+ -Ca2+ exchanger.
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Figure 2.9: Simulation of 800 ms of spontaneous electrical activity in the rabbit SA node.
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If blockade

A large amount of data shows that the use of drugs at concentration known to

produce only partial block of If leads to a significant AP rate reduction. Ivabradine

is just a medication that reduces the heart rate via specific inhibition of the funny

channel. The action of Ivabradine is simulated by a partial block of funny channels

(66% reduction of If conductance, as reported with a 3 µM concentration by

Bucchi et al [14]. The assumption of a constant block during pacemaking activity

is a good approximation because of the extremely slow block kinetics of ivabradine.

The model predicts a reduction of spontaneous rate (Fig.2.10) of 22% in agreement

with experimental findings, at the same time, neither the TOP (-42 vs. -41 mV)

nor the MDP (-59 vs. -58 mV) is altered by the drug, as also verified experimentally

[15].
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Figure 2.10: Simulation of the action of 3µM Ivabradine on spontaneous activity

Finally we simulate increasing level of If current blocks. Our model predict

progressive prolongation of the CL, up to complete cessation of pacemaking only

when If is fully blocked (Fig. 2.11). This observation, indicates that the weight of

If has been significantly underestimated in previous models. Our results demon-

strate that it is possible to reproduce realistic If rate modulation properties with-

out dramatically change other model components, in particular without modifying

the calcium handling description.

Adrenergic modulation of rate

Isoprenaline-induced rate acceleration, especially at low-to-moderate doses, is

attributable mostly to the shortening of DD associated with a faster slope of DD,

while action potential duration and shape vary minimally as reported in [15, 27].

The positive chronotropic effects of Iso 1 µ Fig. 2.12 were simulated by shifting
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Figure 2.11: Simulation of the effects on action potential of increasing If block.

the If activation gating variables by 7.5 mV to more positive voltages [84] and

by modulating ICa,L , IKs , INaK and the Ca2+ release uptake rate Pup, for more

detail see [69]. Specifically, 1µ Iso increases the amplitude of ICa,L by 75% [82]; this

enhancement was reconstructed by shifting the activation curves (Nagykaldi et al.

1999;Ke et al. 2007) to more negative values (-8mV), by decreasing the inverse

of slope factor of the activation variable (-31%) and by increasing the maximal

conductance (+23%). Similarly, IKs maximal conductance was increased by 20%

and its activation curves were shifted by 14 mV to more negative potentials in order

to increase the current amplitude. A 20% increase of the maximal conductance of

INaK was also introduced, according to Zeng and Rudy model. Finally, since the

presence of a β-adrenergic agonist affects the SR Ca2+ -pump, but no quantitative

data are available, we estimated an increase of Pup of 25% of its control value. The

overall simulated effects of 1µ Iso was a 28.2% rate increase, in good agreement

with the reported experimental value of 26.3±5.4% for the same Iso concentration

[15]. The rate increase was entirely due to increase in the DD slope, with only

minor changes in MDP and TOP.

Ca2+ buffering by BAPTA

BAPTA (1,2-bis(o-aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid) is a Ca2+

chelator, i.e. it is a molecule that binds calcium and cover the ion in a way it is no

longer available for cellular metabolism. Ca2+ buffering by BAPTA is simulated

according to the Kurata model, [43], in both the cytoplasm and subsarcolemmal

space, in an attempt to reproduce Himeno et al (2011) experiments, [36]. In this

work the authors note that experimental rupturing of the perforated-patch mem-

brane to allow rapid equilibration of the cytosol with 10 mM BAPTA pipette
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Figure 2.12: Simulation of the action of 1µM Isoprenaline on spontaneous activity

solution, failed to decrease the rate of spontaneous action potential within about

30 s, whereas contraction ceased within about 3 s, in a guinea pig SAN cell. The

spontaneous rhythm also remained intact within a few minutes when SR Ca2+

dynamics were acutely disrupted using high doses of SR blockers. These experi-

mental results suggested that rapid disruption of normal Ca2+ dynamic would not

affect the pacemaking activity. Model testing of BAPTA effects show slowing of

rate without cessation of beating Fig. 2.13 as reported in [36]; this result could

not be reproduced by the ML model. In our simulation the spontaneous cycle

length was increased up to 443 ms (-26% rate) and the AP amplitude was also

significantly decreased.
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Figure 2.13: a), simulation of the effects of 10 mM BAPTA internal perfusion. b), same

simulation in the ML model. Arrows in a) and b) indicate the beginning of the perfusion.

In conclusion, we have developed a novel computational model of physiological

cardiac cell pacemaker function, able to reproduce a set of recent and less recent
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experimental data relevant to generation and control of pacemaker activity. More

specifically, our model reproduce satisfactorily the changes of pacemaking func-

tion associated with changes in If current and Ca2+ handling, as experimentally

observed. The lack of sensitivity to If block in previous models can therefore

be a consequence of incorrect estimation of membrane currents during diastolic

depolarization



Chapter 3

Cardiac reaction-diffusion models

Cardiac muscles cells are excitable, responding actively to an electrical stim-

ulus. As described in Chapter 1, myocytes are connected, so that the electrical

signal can propagate by depolarization of adjacent cells mainly in the direction

along fiber. The depolarization is a very fast process, and it is followed by a slow

repolarization that restores the potential difference to the resting. A mathematical

model describing the electrical activity in cardiac tissue need to take into account

both the anisotropy of the tissue and the behaviour of the membrane potential in

each single cell, so that it deals with the macroscopic and microscopic levels. We

introduce a continuous approximations of the tissue based on a volume-averaged

approach, which must be able to distinguish between the intracellular and ex-

tracellular domains. Since it takes into account both the intra-cellular and the

extra-cellular domains, this model is called Bidomain, Sec. 3.1. For large scale

simulations involving the whole ventricles, computer memory and time require-

ments become excessive, for this reason less demanding approximation have been

developed such as the Monodomain model, introduced in Sec. 3.2, and Eikonal

model, see [10, 41] and the recent survey [21].

3.1 The Bidomain model

At a microscopic scale, the cardiac structure is composed of a collection of

elongated cardiac cells connected via gap junctions, embedded in the extracellular

fluid. The gap junctions form the long fiber structure of the cardiac muscle,

whereas the presence of lateral junctions establishes a connection between the

elongated fibers. Since the interconnection between cells has resistance comparable

39
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to that of the intracellular volume, we can consider the cardiac tissue as a single

isotropic intramural connected domain, ΩI , separated from the extracellular fluid,

ΩE, by a membrane surface Γm.

At a macroscopic level the cardiac tissue can be represented by a continuous

model, the Bidomain model. It can be derived from a microscopic model, assuming

the tissue as a periodic lattice, using a homogenization technique in a rigorous

mathematical framework, as formalized in [62].

Another common derivation, adopted in [73], is based on the volume averaging

technique. With this approach, the values of parameters and variables in each

point of the domain are obtained by taking the average of the considered quantity

in a volume centered in the point considered. The dimension of the region on

which to compute the average should be large enough to contain a discrete amount

of cells but small with respect to the scale of the considered tissue. Thanks to

this averaging procedure, the resulting Bidomain model describes averaged intra-

and extracellular potential by a system of reaction-diffusion of partial differential

equations (PDEs), conceiving the cardiac tissue as the superimposition of two

anisotropic continuous media: the intra- and extracellular domains, coexisting in

each point of the tissue and connected by a distributed continuous cell membrane,

that is

Ω ≡ ΩI ≡ ΩE ≡ Γm ⊂ R3 the physical region occupied by the heart

uI , uE : Ω× (0, T ) −→ R,

vM := uI − uE : Ω× (0, T ) −→ R.

All the quantities obtained by averaging over the extracellular domain will be

denoted by the subscript E while those obtained by averaging over the intracellular

domain will be denoted by the subscript I.

The anisotropy of the two media is characterized by the conductivity tensor

DI and DE. These tensors are anisotropic in relation to the direction of the

cardiac fibers, that rotates counterclockwise from epicardium to endocardium and

to the laminar organization of the heart muscle [47]. Therefore, at any point x, it is

possible to identify a triplet of orthonormal principal axes {al(x), at(x)an(x)} with

al(x) parallel to the local fiber direction, at(x) and an(x), tangent and orthogonal

to the radial laminae, respectively, and both being transversal to the fiber axis, see

Fig. 3.1. Let σI,El , σI,Et and σI,En be the conductivity coefficients measured along

the corresponding directions. In general they depend on x, nevertheless we will

assume that they are constant; this case refers to homogeneous anisotropy. Since
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Figure 3.1: al(x) (red), an(x) (blue) and at(x) (black).

it holds

al(x)aTl (x) + at(x)aTt (x) + an(x)aTn (x) = I,

the orthotropic anisotropic conductivity tensors can be expressed by

DI,E(x) = σI,El al(x)aTl (x) + σI,Et at(x)aTt (x) + σI,En an(x)aTn (x) (3.1)

= σI,El I + (σI,Et − σI,El )at(x)aTt (x) + (σI,En − σI,El )an(x)aTn (x),

and they are symmetric, positive definite and continuous tensors DI,E : Ω̄ →
Mat3×3(R).

For axisymmetric anisotropic media σI,En = σI,Et and (3.1) becomes

DI,E = σI,Et I + (σI,Et − σI,El )al(x)aTl (x). (3.2)

The current densities in both spaces are given by Ohm’s law under the quasi-

static assumption

JI,E = −DI,E∇uI,E.

In fact the induction effects are negligible, so the current fields can be defined as

the gradient of the potentials.

Denoting by Jm the membrane current per unit volume, we have

Jm = χIm = cm
∂vM
∂t

+ iion(vM , w), (3.3)

with cm = χCm, iion = χIion, χ represents the ratio of membrane area per unit

of tissue volume while Iion is the ionic current of the membrane per unit area, as
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appears in (2.3). Finally, let II,Eapp : Ω −→ R be extracellular current stimuli per

unit of tissue volume.

Imposing the conservation of currents, that is the interchange between the two

media must balance the membrane current flow per unit volume, and exploiting

the divergence theorem we have

div JI = −Jm + IIapp, div JE = Jm + IEapp. (3.4)

The complete formulation of the Bidomain system coupled with the membrane

model is finally

cm
∂vM
∂t
− div(DI∇uI) + iion(vM , w) = IIapp in Ω× (0, T ) (3.5)

−cm
∂vM
∂t
− div(DE∇uE)− iion(vM , w) = IEapp in Ω× (0, T ) (3.6)

∂w

∂t
−R(vM , w) = 0 in Ω× (0, T ) (3.7)

where the nonlinear function R describes the dynamics of the gating variables.

The initial conditions can be expressed as

vM(x, 0) = uI(x, 0)− uE(x, 0) = v0(x) in Ω (3.8)

w(x, 0) = w0(x) in Ω. (3.9)

Supposing that the myocardium is insulated from the surrounding tissue, the

homogeneous Neumann boundary conditions are assigned

nTDI,E∇uI,E = 0 on ∂Ω× (0, T ). (3.10)

Adding the two equations (3.4), we have div JI + div JE = IIapp + IEapp. Inte-

grating on Ω and applying Neumann boundary conditions, we have the following

compatibility condition for system (3.5)-(3.7) to be solvable∫
Ω

(IIapp + IEapp)dx = 0. (3.11)

The Bidomain system uniquely determines vM , while the potentials uI and

uE are defined only up to a same additive time-dependent constant relating to

the reference potential. This potential is chosen to be the average extracellular

potential in the cardiac volume by imposing∫
Ω

uEdx = 0. (3.12)
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The Bidomain model can be equivalently rewritten in terms of the transmem-

brane and extracellular potentials, yielding a system consisting in a parabolic

nonlinear reaction-diffusion partial differential equation (PDE) coupled with an

elliptic linear PDE.

− div((DI +DE)∇uE)− div(DI∇vM) = IIapp + IEapp in Ω× (0, T ) (3.13)

cm
∂vM
∂t

+ div(DE∇uE) + iion(vM , w) = −IEapp in Ω× (0, T ); (3.14)

alternatively

cm
∂vM
∂t
− div(DI(∇vM +∇uE)) + iion(vM , w) = IIapp in Ω× (0, T ) (3.15)

− div((DI +DE)∇uE)− div(DI∇vM) = IIapp + IEapp in Ω× (0, T ) (3.16)

We will consider formulation (3.15)-(3.16) in the sequel.

3.2 The Monodomain model

In order to avoid the high computational costs of the full Bidomain model,

many large scale simulations have been performed using the so-called Monodomain

model. This model is a relaxed Bidomain model described by a system of a

parabolic and an elliptic equation, but unlike the Bidomain model, the former

evolution equation is fully uncoupled from the elliptic one. An anisotropic Mo-

nodomain model consists of a parabolic reaction-diffusion equation for vM , with

conductivity tensor DM(x) and applied current IMapp, coupled with gating and ionic

concentrations system of ODEs and an elliptic problem

cm
∂vM
∂t
− div(DM∇vM) + iion(vM , w) = IMapp in Ω× (0, T ) (3.17)

∂w

∂t
−R(vM , w) = 0 in Ω× (0, T ) (3.18)

− div((DI +DE)∇uE)− div(DI∇vM) = IIapp + IEapp in Ω× (0, T ). (3.19)

(3.20)

It is known that if the two media have the same anisotropy ratio, that is
σEl
σIl

=

σEt
σIt

= σEn
σIn

= λ, so that DE = λDI for a constant λ, then the Bidomain system

reduces to the Monodomain one with

DM =
λ

1 + λ
DI IMapp =

1

1 + λ
(IIapp − λIEapp). (3.21)
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This is not a physiological case; in the following we introduce a derivation of Mono-

domain model not making the a priori equal anisotropy assumption, as developed

in [16, 18].

Denoting by Jtot = JI + JE the total current flowing in the two media and by

D = DI+DE the conductivity of the bulk medium; since Jtot = −DI∇uI−DE∇uE,

substituting uI = vM + uE, we obtain

∇uE = −D−1(DI∇vM + Jtot). (3.22)

Therefore the second equation in the Bidomain system (3.6) can be written as

−cm
∂vM
∂t
− div(DED

−1∇)− iion(vM , w) = IEapp in Ω× (0, T ). (3.23)

Since the conductivity tensors are given by (3.1), omitting the dependence on x

of the principal axes, it results

DED
−1 = µlala

T
l + µtata

T
t + µnana

T
n

= µlI + (µt − µl)ataTt + (µn − µl)anaTn , (3.24)

where µl,t,n :=
σEl,t,n

σEl,t,n+σIl,t,n
. Taking into account that div Jtot = IIapp+IEapp, we obtain

div(DED
−1Jtot) = µl div(Jtot) + (µt − µl) div(ata

T
t Jtot) + (µn − µl) div(ana

T
nJtot)

= µl div(IIapp + IEapp) + (µt − µl) div(ata
T
t Jtot) + (µn − µl) div(ana

T
nJtot)

(3.25)

From (3.22) it follows that −DED
−1DI∇vM = DE∇uE + DED

−1Jtot, hence we

have the flux relationship

nTDED
−1DI∇vM = nTDED

−1Jtot + nTDE∇uE. (3.26)

Using the split form (3.24), the first term on the right hand side can be written as

nTDED
−1Jtot = µln

TJtot + (µt − µl)(nTat)(a
T
t Jtot) + (µn − µl)(nTan)(aTnJtot).

(3.27)

The insulating conditions nTJI = nTJE = 0 imply that the second term in (3.26)

is zero and also that nTJtot = 0, i.e. Jtot is tangent to ∂Ω, and assuming that the

fibers are tangent too, we have nTan(x) = aTt (x)Jtot = 0 for x ∈ ∂Ω; substituting

these conditions in (3.26) it holds

nTDED
−1DI∇vM = 0 on ∂Ω. (3.28)
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Disregarding the two additional source terms in (3.25) related to the pro-

jections of Jtot on the directions across the fibers, i.e. at and an, it results in

div(DED
−1Jtot) ≈ µl(I

I
app + IEapp). Substituting this approximation into (3.23) and

considering the boundary condition (3.28), we obtain (3.17) with the conductivity

tensor DM := DED
−1DI and IMapp =

σEl I
I
app−σIl I

E
app

σEl +σIl
. We remark that the conductiv-

ity coefficients of DM are the harmonic means of σI,El,t,n.

The Bidomain model is particularly useful when analyzing the mechanisms

by which an electric field interacts with cardiac tissue. One such mechanism is

fiber curvature. If the direction of the myocardial fibers varies throughout the

tissue, then an electric field will cause a transmembrane potential distribution:

both depolarization and hyperpolarization (sometimes called a virtual cathode

and virtual anode) [20]. This mechanism only operates if the tissue has unequal

anisotropy ratios.

3.3 Variational formulations

In this section, we describe the variational formulation of both the Bidomain

and Monodomain models, providing some references to their theoretical analysis.

Firstly, we assume that the cardiac region Ω is a bounded Lipschitz connected

domain in Rd, with d = 3, 2, and that the symmetric and continuous conductivity

tensors DI,E : Ω̄ −→ Matd×d(R) satisfy also the following uniform ellipticity and

continuity condition

∃ αI,E > 0 : ξTDI,E(x)ξ ≥ αI,E|ξ|2 ∀ξ ∈ Rd, ∀x ∈ Ω. (3.29)

∃ CI,E > 0 CI,E = sup
x∈Ω

sup
ξ∈Rd

|DI,E(x)ξ|
|ξ|

(3.30)

Denote by V the Sobolev space

H̃ := H1(Ω)/R = {w ∈ H1(Ω) :

∫
Ω

w = 0},

and (ϕ, ψ) :=
∫

Ω
ϕψ the usual L2(Ω) inner product.

We define the following bilinear forms

aI,E(ϕ, ψ) :=

∫
Ω

(∇ϕ)TDI,E(x)∇ψdx ∀ϕ, ψ ∈ H1(Ω), (3.31)

a(ϕ, ψ) :=

∫
Ω

(∇ϕ)T (DI +DE)(x)∇ψdx ∀ϕ, ψ ∈ H1(Ω). (3.32)
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For the properties of the conductivity tensor product and (3.30), they are obviously

symmetric and continuous, in fact

aI,E(ϕ, ψ) =

∫
Ω

(∇ϕ)TDI,E(x)∇ψdx

≤ max{CI , CE}|ϕ|1|ψ|1
≤ max{CI , CE}‖ϕ‖H1(Ω)‖ψ‖H1(Ω),

denoting by | · |1 the H1(Ω) seminorm. Moreover we define α = min{αI , αE} and

c the Poincaré constant, thanks to (3.29) and the Poincaré-Friedrichs inequality

for all ϕ ∈ V holds

aI,E(ϕ, ϕ) =

∫
Ω

(∇ϕ)TDI,E(x)∇ϕdx

≥ α|ϕ|21 ≥ min{ α
2c
,
α

2
}‖ϕ‖2

H1(Ω),

if ψ is constant, aI,E(ϕ, ψ) = 0 for every ϕ ∈ H1(Ω). Now we are able to formulate

the variational problem for the Bidomain system given in (3.13).

Given v0 ∈ L2(Ω) and w0 ∈ L2(Ω)N , with N is the number of unknowns in the

ODEs system, and II,Eapp ∈ L2(Ω × (0, T )) satisfying the compatibility condition:

find uE ∈ L2(0, T ; H̃), vM ∈ H1(0, T ;H1(Ω)) and w ∈ L2(0, T ;L2(Ω)N) such that
∂w
∂t
∈ L2(0, T ;L2(Ω)N) so that ∀t ∈ (0, T )

cm
∂
∂t

(vM , ϕ) + aI(vM + uE, ϕ) + (iion(vM , w), ϕ) = (IIapp, ϕ) ∀ϕ ∈ H1(Ω)

aI(vM , ϕ) + a(uE, ϕ) = 0 ∀ϕ ∈ H1(Ω)
∂
∂t

(w,ψ)− (R(vM , w), ψ) = 0 ∀ψ ∈ L2(Ω)

(vM(0), ϕ) = (v0, ϕ) ∀ϕ ∈ H1(Ω)

(w(0), ψ) = (w0, ψ) ∀ψ ∈ L2(Ω).

We remark that the equations (vM(0), ϕ) = (v0, ϕ) ∀ϕ ∈ H1(Ω) and (w(0), ψ) =

(w0, ψ) ∀ψ ∈ L2(Ω) are equivalent to vM(x, 0) = v0(x) and w(x0) = w0(x) a.e..

Analogously the variational formulation of the Monodomain model (3.18) reads

as follows.

Given v0 ∈ L2(Ω) and w0 ∈ L2(Ω)N , with N the number of unknowns in the

ODEs system, and Iapp ∈ L2(Ω×(0, T )) satisfying the compatibility condition: find

vM ∈ H1(0, T ;H1(Ω)) and w ∈ L2(0, T ;L2(Ω)N) such that ∂w
∂t
∈ L2(0, T ;L2(Ω)N)
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so that ∀t ∈ (0, T )
cm

∂
∂t

(vM , ϕ) + a(vM , ϕ) + (iion(vM , w), ϕ) = (Iapp, ϕ) ∀ϕ ∈ H1(Ω)
∂
∂t

(w,ψ)− (R(vM , w), ψ) = 0 ∀ψ ∈ L2(Ω)

(vM(0), ϕ) = (v0, ϕ) ∀ϕ ∈ H1(Ω)

(w(0), ψ) = (w0, ψ) ∀ψ ∈ L2(Ω).

Under a suitable choice of the ionic model and regularity assumptions on the

domain, Ω at least of class C1,1, on the conductivity coefficients, DI,E Lipschitz

in Ω, and on the initial data, it is possible to prove the well-posedness of the

Bidomain model. In this respect, the first work was by Colli Franzone and Savaré

in 2002 [22], if the Bidomain system is coupled with a membrane model such as the

cubic-like FitzHugh-Nagumo [42, Chapter 5], then extended in 2009 by Veneroni

[81] to more general and realistic models, taking the form of the Luo-Rudy I model.

In the same year, Bourgault et al. [12] verified the existence and uniqueness of a

global solution for the coupling of the Bidomain system with FitzHugh-Nagumo,

Aliev-Panfilov [1] and MacCulloch [65] models.



Chapter 4

Basics of Isogeometric Analysis

Isogeometric Analysis (IGA) is a method for discretization of partial differ-

ential equations, introduced in [39], with the aim of bridging the gap between

computer-aided design (CAD) and the finite element method (FEM), determined

by the need of generating a computational mesh. In fact, the geometrical rep-

resentation provided by CAD technology need to be modified in order to obtain

geometries compatible with the FEM discretization. IGA is based on a unique

geometrical representation under the isoparametric paradigm, adopting the same

spline or Non-uniform rational B-spline (NURBS) basis function used to design

domain geometries in CAD to construct both trial and test spaces in the discrete

variational formulation of differential problems.

In this work we consider only NURBS-based IGA, not only because NURBS are

a standard tool in CAD but also for their mathematical properties. In particular

NURBS can exactly represent some common geometries, e.g. conic sections provide

globally smooth basis functions, and offer new refinements possibilities beside h−
and p− refinements. However, other computational geometry technologies could

be adopted to represent the geometries, recently improvements have been done in

the direction of IGA based on T-splines [68, 7], a generalization of NURBS.

This chapter is devoted to the introduction of the univariate and multivariate

B-spline basis functions and related spaces, the NURBS basis function, function

space, and the NURBS geometrical map F. We consider the case of geometries

that can be modelled as a single patch, i.e. a domain topologically representable

by a geometrical mapping of a hypercube reference domain.

A more complete presentation can be found in [23].

48
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4.1 B-splines

NURBS are a standard tool for describing and modelling curves and surfaces

in CAD. They are built from B-splines and therefore a discussion of B-splines is a

natural starting point for their study.

4.1.1 Univariate B-splines

Univariate B-splines are piecewise polynomial curves composed of linear combi-

nations of B-splines basis functions; the coefficients are points in the space referred

to as control points.

In order to define B-spline basis functions, we introduce the knot vector, a set

of non-decreasing real numbers

Ξ = {0 = ξ1, ξ2, ..., ξn+p+1 = 1},

where p is the order of the B-spline and n is the number of basis functions (and

control points) necessary to describe it. A knot vector represents coordinates

in the one dimensional parametric space interval [0,1], referred also as a patch,

while (ξi, ξi+1) is referred as the knot span. If knots are equally-spaced in the

parametric space, they are said to be uniform. Knot values may be repeated, the

number of times a knot is repeated is indicated as the multiplicity of the knot. The

multiplicity of knot values important implications for the property of the basis, in

particular for the regularity. We assume that Ξ is an open knot vector, i.e., the

first and the last p+ 1 knots are repeated.

Given a knot vector B-spline basis functions are defined recursively starting

with piecewise constant (p = 0)

B0
i (ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise
(4.1)

Bp
i (ξ) =

ξ − ξi
ξi+p − ξi

Bp−1
i (ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Bp−1
i (ξ). (4.2)

This is known as the Cox-de Boor recursion formula. When there are repeated

knots, some of the denominators in (4.2) may be zero. We then adopt the conven-

tion that 0/0=0 and (c/0) ·0 = 0. Since Bp
i will be identically zero when ξi+p = ξi,

this means that any term with the denominator equal to zero may be ignored.

Important properties of B-spline basis functions are:
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1. They constitute a partition of unity, that is for all ξ ∈ Ω̂

n∑
i=1

Bp
i (ξ) = 1. (4.3)

2. Each function is non-negative, i.e., Bp
i (ξ) ≥ 0 ∀ξ ∈ [0, 1].

3. The general basis function Bp
i has the support in p+ 1 knot spans

supp(Bp
i ) ⊆ [ξi, ξi+p+1]; (4.4)

moreover, at most p+ 1 basis functions have support in each knot span.

4. If a knot has multiplicity m, with 1 ≤ m ≤ p + 1, then the B-spline basis

functions have p − m continuous derivatives at that knot. p − m = −1 is

allowed and stands for a discontinuity.

If a knot is repeated p times, the C0 basis is interpolatory. In particular basis

functions formed from an open knot vector are interpolatory and discontinuous at

the end of the parametric domain, and at the corner of the patch, in more than

one dimension, defining the patch boundary. A further consequence of the use

of open knot vectors in multiple dimensions, is that the boundary of a B-spline

object with r parametric dimensions is itself a B-spline object of dimension r− 1.

An example of quadratic B-spline basis in one dimension, derived from the knot

vector Ξ = {0, 0, 0, 0.2, 0.4, 0.6, 0.8, 0.8, 1, 1, 1}, is shown in Fig. 4.1. Since it is

an open knot vector the first and last basis functions are interpolatory, while the

continuity at interior knots ξi is C1, except for the repeated knot 0.8 where the

continuity is C0.

The space of splines is denoted by

Ŝ ≡ Ŝ(Ξ, p) := span{Bp
i , i = 1...n}. (4.5)

4.1.2 Multivariate B-splines

Let Ω̂ = (0, 1)r be an open parametric domain referred as a patch. For any α,

1 ≤ α ≤ d, we define the following d knot vectors

Ξα = {0 = ξ1, α, ξ2, α, ..., ξnα+pα+1, α = 1};
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0.2 0.4 0.6
0

1

0.8 0.8  0 0 0 1 1 1

Figure 4.1: Quadratic (p=2) basis function for the open, non-uniform knot vector

Ξ = {0, 0, 0, 0.2, 0.4, 0.6, 0.8, 0.8, 1, 1, 1}.

associated with them, there is a mesh Q, that is, a partition of the patch into

r-dimensional open knot spans, or elements

Q ≡ Q(Ξ1, ...,Ξr) := {Q = ⊗rα=1(ξiα,α, ξiα+1,α)|Q 6= ∅ pα + 1 ≤ iα ≤ nα − 1}.
(4.6)

Having set the element size to hQ := diam(Q) for all Q ∈ Q, we define the mesh

size h as

h := max{hQ : Q ∈ Q}. (4.7)

The multivariate B-spline basis functions are defined by tensor product as

Bp1,...,pr
i1,...,ir

:= ⊗dα=1B
pα
iα,α

. (4.8)

Thanks to the tensor product structure, several properties satisfied by the uni-

variate B-spline basis functions still hold for the multivariate case. In particular,

the basis functions are piecewise polynomials, pointwise non-negative and consti-

tute a partition of unity. As for their supports, they are the tensor product of the

relative univariate supports, being still compact. For what concerns the regularity,

in all the elements Q ∈ Q the basis functions are C∞−continuous, while across

each internal d − 1 dimensional face it reaches a regularity of the order equals to

the maximum order of continuity of the derivatives across this face.

The tensor product spline space is

Ŝ ≡ S(Ξ1, ...,Ξd, p1, ..., pr) := span{Bp1,...,pr
i1,...,ir

, iα = 1...nα, α = 1, .., r}. (4.9)

For the sake of notation, we denote the degree as p, underlying p = (p1, ..., pr),

and we introduce the multi-index i = (i1, ..., ir) that belongs to the set

I := {i = (i1, ..., ir) : 1 ≤ iα ≤ nα, 1 ≤ αleqr}. (4.10)
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4.1.3 B-spline geometries

B-spline curves in Rd are built by taking a linear combination of univariate

B-spline basis functions. The vector-valued coefficients of the basis functions are

called control points and piecewise linear interpolation of these points gives the

control polygon. These are analogous to nodal coordinates in finite element analysis

in the fact they are the coefficients of the basis functions, but the non-interpolatory

nature of the basis does not lead to a concrete interpretation of the control point

values. Thus, given the univariate basis {Bp
i }ni=1 over the parametric domain Ω̂

and Ci ∈ Rd corresponding control points, a piecewise polynomial B-spline curve

is given by

C : Ω̂→ Ω ⊂ Rd, C(ξ) =
n∑
i=1

CiB
p
i . (4.11)

We can identify several properties of the B-spline curve from the definition,

others, concerning regularity and locality, follow from the properties of B-spline

basis functions.

• B-spline curves of degree p have continuous derivatives of order p− 1 in case

of non-repeated knots or control points, repeating a knot or control point k

times decreases the number of continuous derivatives by k;

• Locality : due to the compact support of the B-spline basis functions, moving

a single control point can affect the geometry of no more than p+1 elements

of the curve;

• Convex hull property : a B-spline curve is completely contained within the

convex hull defined by its control points. For a curve of degree p, we define

the convex hull as the union of all of the convex hulls formed by p + 1

successive control points.

• Affine covariance: an affine transformation of a B-spline curve is obtained

by applying the transformation directly to the control points.

• Variation diminishing property: there is no plane having more intersection

with the B-spline curve than it has with the control polygon.

By exploiting the tensor product nature of the multivariate B-spline basis func-

tions, it is possible to define geometrical entities in the physical space Rd of di-

mension r, with 1 ≤ r ≤ d.
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Given r knot vectors Ξα = {0 = ξ1, α, ξ2, α, ..., ξnα+pα+1, α = 1} for α = 1, ..., r,

we consider the associated multivariate B-spline basis {Bp
i } and a set of

∏
nα

control points {Ci}. A r−dimensional B-spline entity in Rd is defined by the

geometrical map

F : Ω̂→ Ω ⊂ Rd F(ξ) =
∑
i∈I

CiB
p
i . (4.12)

We remark that the locality and regularity properties still hold, as well the

affine covariance and the convex hull ones. The elements in the physical domain

are obtained from (4.12) as the image of the elements in Ω̂, so we can define the

physical mesh in Ω

K := {K = F(Q)|Q ∈ Q}. (4.13)

4.2 Non-Uniform Rational B-Splines

A NURBS in Rd is the projective transformation of a B-spline in Rd+1, it offers

great flexibility and precision for handling both analytic and modelled shapes; in

fact NURBS are commonly use in CAD. A more complete treatment can be found

in a standard textbook such as [31].

4.2.1 NURBS basis functions

Starting from a knot vector Ξ = {0 = ξ1, ..., ξp+n+1 = 1}, we associate to the

corresponding B-spline basis function {Bp
i }n1 a set of strictly positive real numbers

{ωi}n1 , called weights. We then introduce a piecewise polynomial function, called

weighting function, as

ω : Ω̂→ R ω(ξ) :=
n∑
i=1

ωiB
p
i . (4.14)

The univariate NURBS basis functions {Ri}ni=1 are defined as

Ri : Ω̂→ R Ri(ξ) :=
ωiBi(ξ)

ω(ξ)
. (4.15)

Each basis function is a piecewise rational function defined in the parametric do-

main Ω̂. It is a convention to refer to the degree of the NURBS basis function as

to the degree of the associated B-spline basis {Bp
i }ni=1.

As the NURBS functions are constructed from the B-spline basis, they inherit

most of the B-spline basis functions properties. In fact, at each knot with m
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multiplicity they are Cp−m continuous, moreover, if we consider an open knot

vector then the first and the last NURBS basis functions are interpolatory at the

extrema of the parametric interval. The basis {Ri}ni=1 still constitutes a partition

of unity; each basis function is everywhere pointwise non-negative and has compact

support in p + 1 knot spans, i.e. supp(Rp
i ) ⊆ [ξi, ξi+p+1], and at most p + 1 basis

functions are non-zero on each knot span.

The univariate NURBS space on the parametric domain Ω̂ = [0, 1] is denoted

as

N̂ ≡ N̂ (Ξ, p) := span{Rp
i , i = 1...n}. (4.16)

Similarly, we can define multivariate NURBS basis functions and related NURBS

space. Given an integer r, we consider r a knot vectors Ξα, with α = 1, ..., r,

and the associated multivariate B-spline basis {Bp
i }i∈I . Assigned a set of weights

{ωi}i∈I , we also define the weighting function over the parametric domain Ω̂ =

[0, 1]r as

ω : Ω̂→ R ω :=
∑
i∈I

ωiBi, (4.17)

which is positive and is smooth on each element, along with its reciprocal. This

lead to the definition of the NURBS basis functions {Ri}

Ri : Ω̂→ R Ri(ξ) :=
ωiBi(ξ)

ω(xi)
. (4.18)

whose properties can be deduced from those of the multivariate B-splines. Finally,

the NURBS space over the patch is

N̂ ≡ N (Ξ1, ...,Ξr,p) := span{Ri, i ∈ I}. (4.19)

4.2.2 NURBS geometries

NURBS entities can be described from both a geometric and an algebraic point

of view. From a geometrical perspective, a NURBS geometry in Rd is obtained by

the projective transformation of a B-spline entity in Rd+1 onto a hypersuperface

in Rd. The resulting object corresponds with the physical domain Ω ⊂ Rd.

Given a B-spline curve Cω, as (4.11), called projective curve defined through

the univariate B-spline basis {Bp
i }ni=1 and the control points {Cω

i }ni=1 ⊂ Rd+1 (we

assume that the d+1th coordinate of each point is positive), called projective control

points the projection of Cω onto the hyperplane {(x1, ..., xd+1) ∈ Rd+1|xd+1 = 1} is

a rational function defined as NURBS curve in Rd. We obtain the control points,
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Figure 4.2: Circle in R2 constructed by projective transformation of piecewise quadratic B-

spline in R2, see [23]. (left) Projective transformation of projective control points yields control

points. (right) Projective transformation of B-spline curve yields NURBS curve.

{Ci}ni=1 , of the NURBS curve by performing the same transformation to the

projective control points

(Ci)j :=
(Cω

i )j
ωi

, for j = 1...d, with ωi := (Cω
i )d+1, (4.20)

where (Ci)j is the j-th component of the vector Ci and ωi is referred to as the

i-th weight. Given the weights, we have the weighting function ω (4.17) and we

can compute the NURBS curve C component-wise by

C : Ω̂→ R (C(ξ))j =
(Cω(ξ))j
ω(ξ)

, for j = 1...d. (4.21)

In particular, conic section can be exactly represented by the projective transfor-

mation of a piecewise quadratic B-spline, as illustrated in Fig. 4.2, where a circle

in R2 is obtained by the projection of a piecewise quadratic curve in R3. From

Fig. 4.2, we remark that the B-spline curve clearly has four points of only C0-

continuity. This means that the knot values at these locations have multiplicities

of two, nevertheless the circle itself has no obvious points of reduced continuity.

Frequently, the maximum level of continuity is restricted by the shape of the pro-

jective curve rather than the curve itself, see [23].

An algebraic point of view allows to construct NURBS entities and spaces,

ignoring the projective geometry, by means a set of control points and NURBS

basis functions introduced in Sec. 4.2.1. Given multivariate NURBS basis functions

{Rp
i }i∈I defined in Ω̂ = [0, 1]r and a set of control points {Ci}i∈I ⊂ Rd, a r-

dimensional NURBS geometry in Rd is represented by the geometrical map

F : Ω̂→ Ω ⊂ Rd F(ξ) =
∑
i∈I

CiR
p
i . (4.22)
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The properties of NURBS geometries derive from the ones of the NURBS basis

functions. In particular, the regularity and locality properties still hold, as well as

the affine covariance, convex hull and variation diminishing properties.

Hereafter we consider the case r = d, that is the dimension of the parametric

space is the same of the physical domain.

The NURBS geometrical map F is the parametrization of the physical domain

Ω. We assume that F is invertible with smooth inverse on each element of the

physical mesh K ∈ K, (4.13).

Finally the space V of NURBS on Ω is defined as the push-forward of the

NURBS space N on the patch,

V := span{Rp
i ◦ F−1, i ∈ I}. (4.23)

4.3 Refinements

One of the most interesting aspects of B-splines and NURBS spaces is the

way the basis may be enriched while leaving the underlying geometry and its

parametrization intact. We recall the refinement procedures that can be performed

within B-splines and NURBS framework. In particular, two kind of refinement,

knot insertion (or h-refinement) and degree elevation (or p-refinement), are affine

with those used in FEM. However there is a third choice, referred as k-refinement,

peculiar to the B-spline and NURBS basis. We briefly recall these procedure for

univariate B-spline basis. For detailed description, we refer to [23].

Knot insertion

Knot insertion is the analogue of h-refinement in finite element method. The

main point here is that knots can be inserted without changing a curve geomet-

rically or parametrically. Given a knot vector Ξ = {ξ1, ..., ξn+p+1}, we consider a

knot to be inserted in Ξ,

barξ ∈ [ξk, ξk+1). By appliying the recursive formula (4.2) to the extended knot

vector Ξ̄ = {ξ1, ...ξk, ..., ξ̄, ξk+1, ..., ξn+p+1}, a new set of n+ 1 basis functions is ob-

tained. The new control points {C̄i}n+1
i=1 are constructed from linear combination

of the original control points {Ci}ni=1 by

C̄i = αiCi + (1− αi)Ci−1, (4.24)
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where

αi =


1 1 ≤ i ≤ k − p,
ξ̄ − ξi
ξi+p − ξi

k − p+ 1 ≤ i ≤ k,

0 1 + 1 ≤ i ≤ n+ p+ 2.

(4.25)

Knot values already present in the knot vector may be repeated in this way, thereby

increasing their multiplicity, but the continuity of the basis will be reduced. How-

ever, continuity of the curve is preserved by choosing the control points as in (4.24)

and (4.25).

In practical applications, the geometry of the physical domain Ω is frequently

described on a mesh of relatively few elements, while the computation of an ap-

proximate solution to the problem is performed on a refined mesh (in order to

achieve desired accuracy). Therefore, it is possible to fix the description of the

geometry at a coarse mesh, this means that the weighting function ω (4.17) and

the geometrical map F are assigned on coarse spaces, and are the same for every

h. When the mesh and the spaces are refined the weights are selected so that

w stays fixed in a similar way, the control points are adjusted such that F re-

mains unchanged. Thus the geometry and its parametrization are held fixed in

the refinement process. See Fig.4.3 for an illustration of this idea.

Degree elevation

Analogously to p-refinement in FEM, we can elevate the polynomial degree of

the basis functions; we refer to this process as degree elevation or p-refinement. As

for knot insertion, it is performed in such a manner that both the parametrization

and the geometry of the original curve are preserved. Since we want to preserve also

the regularity of the basis in the whole domain, it follows that, when performing

a degree elevation, the multiplicity of each existing knot has to be increased by

one, without inserting any additional knots. The implementation of this kind of

refinement is, in general, less straightforward than knot insertion. We refer to [64]

for suitable algorithms.

k-refinement

The fact that order elevation and knot insertion procedures do not commute,

introduces the possibility of a new refinement strategy, called k-refinement, which

has not analogue in FEM, see [23]. Let us consider a B-Splines basis of degree p.
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Figure 4.3: h−refinement with NURBS.

If a knot insertion is performed, when adding a new knot ξ̄, the basis functions in

this knot are Cp−1-continuous. This regularity in ξ̄ is preserved if we subsequently

elevate the degree to q ≥ p with the multiplicity of each knot, including ξ̄, increased

accordingly. On the other hand, we can first perform order elevation, until the

polynomial degree is q and then insert a new knot value ξ̄. In this case the number

of non-zero knot spans is still the same as before, but the basis functions are

now Cq−1-continuous in ξ̄, instead of only Cp−1-continuous, the regularity attained

according to the previous procedure. The latter procedure is referred to as k-

refinement.

4.4 Approximation properties

In this section we provide some approximation results of B-splines and NURBS,

reported in [6], focusing only on the issues necessary for our subsequent analysis

of Schwarz preconditioners, see Chapter 6. We firstly need to recall some results

concerning the interpolation theory of NURBS. The interpolation result is based

on the introduction of a support extension Q̃ of an element Q in the mesh Q
over the parametric domain, as the union of the supports of basis functions whose
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support intersect the element itself. This last induces naturally the definition of a

physical support extension of an element K of the physical mesh K, as the image

of the support extension of Q through F, i.e. if K = F(Q) then K̃ := F(Q̃). We

consider shape regular mesh, i.e., the ratio between the smallest edge of Q ∈ Q
and its diameter hQ is bounded, uniformly with respect to Q and h, recall that h is

the global mesh size (4.7). This implies that the mesh is locally quasi-uniform the

ratio of the sizes of two neighbouring elements is uniformly bounded. Moreover, in

order to take into account the regularity across the common (d − 1)-dimensional

face between two adjacent elements Q1 and Q2, the [6] the authors define the so

called bent Sobolev spaces of order m ∈ N denoted by Hm

Let denote by Π̂ the standard projector on the spline space, introduced in [67,

Chapter 12], defined as

Π̂ v :=

n1...nd∑
i1=1,...,id=1

(λi1...idv)Bi1...id ∀v ∈ [L2(0, 1)]d, (4.26)

where the λi1...id are dual basis functional, that is

λj1...jdBi1...id = 1 if jα = iα ∀1 ≤ α ≤ d

= 0 otherwise.

The properties of this operator can be summarized in the following lemmas, proved

in [67] and [6], respectively.

Lemma 1. We have

Π̂s = s ∀s ∈ Ŝ (4.27)

‖ Π̂v ‖L2(Q)≤‖ v ‖L2(Q̃) ∀v ∈ L2((0, 1)d and ∀Q ∈ Q. (4.28)

Lemma 2. Given the operator Π̂ defined in (4.26) and 0 ≤ k ≤ l ≤ p + 1; then

for all Q ∈ Q

|v − Π̂v|Hk(Q) ≤ Chl−kQ |v|Hl(Q̃, ∀v ∈ Hl(Q̃ ∩ L2((0, 1)d). (4.29)

The following lemma gives estimates for the change of variable from the patch

to the physical domain

Lemma 3. Let m be a non-negative integer, Q ∈ Q and K = F(Q). For all
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v ∈ Hm(K) it holds that

|v ◦ F|Hm(Q) ≤ C|| detDF−1||1/2L∞(K)

m∑
j=0

||DF||L∞(Q)
j|v|Hj(K) (4.30)

|v|Hm(K) ≤ C||detDF||1/2L∞(K)||DF||−mL∞(Q)

m∑
j=0

|v ◦ F|Hj(Q) (4.31)

(4.32)

where C is a constant that depends on the weighting function and its reciprocal on

Q̃ and uniformly bounded with respect to the mesh size.



Chapter 5

The discrete Bidomain system

5.1 Spatial discretization

Various spatial discretization techniques have been applied to the cardiac bido-

main problem, most notably finite difference methods (FDM) [72], finite volume

methods (FVM) [34] and finite element methods (FEM) [17]. In general, FDM are

easiest to implement, but the methods do not accommodate complex boundaries

as naturally as FEM or FVM do. Both FVM and FEM have been used to model

electrical activity in anatomically realistic models of the atria and the ventricles.

The heart is an organ with a complex structure. Obtaining a representation

that encompasses the required anatomical and structural details that is also suit-

able for computational studies can therefore be challenging. Several groups have

created detailed geometrical models of the ventricles, which have subsequently

been used in finite element computations of cardiac electrophysiology and me-

chanics. The more detailed models include the contributions from the Auckland

group [55, 46, 75]; it has presented models of geometry and fibers orientation for

canine and pig ventricles. These models were based on structured grids with cubic

Hermite interpolation functions. Geometries represented with Hermite interpo-

lation have C1 continuity across the interface between adjacent elements because

they share nodal variables, including first derivatives. This provides cubic Hermite

meshes a smooth representation of shapes with relatively few elements, as desired

for the simulation of soft tissue mechanics.

Here we will present an alternative approach, based on isogeometric analysis.

The shape of the left ventricular myocardium can be likened to that of an

eggshell with its top cut off: the aortic and mitral valve openings represent the

rim (the base) and the wall is thickest at the greatest circumference (the equator)

61
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and thinnest at the bottom (the apex). The use of such a model has been suggested

by Streeter and Hanna [78]. Thus, representing the left ventricle as a family of

truncated ellipsoid gives a better overall approximation of the geometry. However

for small part of ventricle a cartesian slab can also be adopted. In Figure 5.1 these

two possible approximations are shown.

(a) (b)

Figure 5.1: a) cartesian slab; b) ellipsoidal domain.

The parametric equations for an ellipsoidal domain are
x = a(r) cos(θ) cos(φ) φmin ≤ φ ≤ φmax
y = b(r) cos(θ) sin(φ) θmin ≤ θ ≤ θmax
z = c(r) sin(θ) 0 ≤ r ≤ 1

where a(r) = a1 + r(a2− a1), b(r) = b1 + r(b2− b1) and c(r) = c1 + r(c2− c1), with

ai, bi, ci, i = 1, 2 given coefficients determining the main axes of the ellipsoid. This

representation allow us to control the orientation of the fibers, namely, they rotate

intramurally linearly with the depth for a total amount of 120◦ proceeding, when

the point of view is from the epicardial side, counter-clockwise from epicardium to

endocardium. More precisely, in a local reference system {eφ, eθ, er} at a point

x ∈ Ω, the fiber direction {al and the direction normal to the laminae, introduced

in Sec. 3.1, are given by

al = eφ cosα(r) + eθ sinα(r), an = eφ sinα(r)− eθ cosα(r),

where α is the rotation angle defined as

α(r) =
2

3
π(1− r)− π

4
, 0 ≤ r ≤ 1.
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For a slab of cardiac tissue, described in the usual cartesian coordinate system,

the fiber rotation is given by

al = ex cosα(r) + ey sinα(r), at = ez an = ex sinα(r)− ey cosα(r),

with the transmural parameter r := |z/c|, denoting by c the thickness of the slab.

We therefore introduce the spline space living in the parametric domain

V̂ := span{Bp1...pd
i1...id

, iα = 1, ..., nα, 1 ≤ α ≤ d} (5.1)

Since the single patch domain Ω is a NURBS region, we need a geometrical map

F : (0, 1)d → Ω in order to define the physical space

V := span{Rp1...pd
i1...id

◦ F−1, i = 1, . . . , iα = 1, . . . , nα, 1 ≤ α ≤ d}

= { v̂
ω
◦ F−1 ∀v̂ ∈ V̂ }. (5.2)

Let us denote by

Nh = dim(V̂ ) = dim(V ),

the dimension of the spaces, and let {ϕ̂i}Nhi=1 be a basis for V̂ . Then due to the

assumption on the parametrization F, we can define a basis for V as follows

{ϕi =
ϕ̂i
ω
◦ F−1}Nhi=1.

Semidiscrete problem for Bidomain and Monodomain are obtained by applying a

standard Galerkin procedure. Let M = [mij], A = [aij] and AI,E = [aI,Eij ] be the

symmetric mass and stiffness matrices. All these coefficients are given by values of

the integrals over Ω, that are numerically approximated by a suitable quadrature

rule. In order to describe this rule, we introduce K̂ := {K̂i}Nei=1, a partition of

the parametric domain into Ne nonoverlapping subdomains, that we refer to as

the elements. The assumption on F ensure that also the closure of Ω can be

partitioned into nonoverlapping elements K = {Ki = F(K̂i)}Nei=1. We assume that

a quadrature rule is defined on every element of K̂ and it is determined by a set

of nk nodes and by their corresponding weights

{x̂rs}nks=1 ⊂ K̂ {wrs}nks=1 ⊂ R s = 1, ..., Ne.

Recalling that the integral of a generic function f ∈ L1(Kr) can be written as∫
Kr

fdx =

∫
K̂r

f(F(x̂))|det(DF(x̂rs))|dx̂ ≈
nk∑
r=1

wrsf(xrs)|det(DF(x̂rs))| (5.3)
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where DF is the Jacobian matrix of F and xrs := F(x̂rs) are the images of the

quadrature nodes in the physical domain. The coefficients of the mass and stiffness

matrices are computed numerically as

mij =

∫
Ω

ϕiϕj ≈
Ne∑
r=1

nk∑
s=1

wrsϕi(xrs)ϕj(xrs)|det(DF(x̂rs))| (5.4)

aij =

∫
Ω

(∇ϕj)TDI∇ϕi ≈
Ne∑
r=1

nk∑
s=1

wrs(∇ϕTj D∇ϕi)(xrs)|det(DF(x̂rs))|, (5.5)

aI,Eij =

∫
Ω

(∇ϕj)TDI,E∇ϕi ≈
Ne∑
r=1

nk∑
s=1

wrs(∇ϕTj DI,E∇ϕi)(xrs)|det(DF(x̂rs))|.

(5.6)

i, j = 1 . . . Nh.

Let iion be the vector of the coefficients of the L2 projection of iion into V computed

as

(iion)i :=

∫
Ω

iion(vM , w)ϕidx ≈
Ne∑
r=1

nk∑
s=1

wrsiion(vM(xrs), w(xrs))ϕi(xrs)|det(DF(x̂rs))|

(5.7)

i = 1, ..., Nh and analogously for II,Eapp, Iapp. Denoting by vM and uE the vectors of

the degree of freedom of the isogeometric approximation of vM and uE, respectively,

the matrix form of the semidiscrete Bidomain problem reads as follows{
cmM

∂vhM
∂t

+ AI(vM + uE) + iion(vM ,w) = IIapp
AIvM + (AI + AE)uE = 0

while for the Monodomain, we obtain

cmM
∂vhM
∂t

+ AvM + iion(vM ,w) = Iapp

For both models, the equations are coupled with semidiscrete approximations of

the gating and concentration systems.

5.2 Time discretization

We now describe the time discretization scheme employed for solving Bidomain

and Monodomain model coupled with the Luo-Rudy I ionic model. This is per-

formed by a decoupled semi-implicit method as proposed in [3], consisting of the

two following steps.
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Step 1. Given the transmembrane potential at the previous step vnM , we first

solve the ODEs system for the gating and ionic concentration variables.

The ODE integration approach is based on the Rush-Larsen method. In 1978

[66] they proposed this new method for solving cardiac cell models numerically

based on the HH formalism. This method exploits the fact that many of the

equations of the cell model systems can be written as

dy

dt
= α(vM)(1− y)− β(vM)y =

y − y∞
τy

(5.8)

y∞ =
α

α + β
(5.9)

τy =
1

α + β
(5.10)

where the rate constant functions α and β are nonlinear functions of the membrane

potential, while the equation is linear in y. By assuming that the membrane

potential is constant over each time step, it is possible to derive an update formula

based on the exact solution of scalar linear ODEs:

yn+1 = y∞ + (yn − y∞) exp

(
−4tn
τy

)
. (5.11)

Step 2 Once wn+1 is computed, a semi-implicit scheme is applied to the

reaction-diffusion part, see [3], by using the implicit Euler method for the dif-

fusion term, while the nonlinear reaction term Iion is treated explicitly.

Summarizing the operator of the full evolution system is split by first solving

for the gating and concentration variables, given the transmembrane potential at

step n, and then solving for vn+1
M and un+1

E of the Bidomain system satisfying

cm
∆t
M(vn+1

M − vnM) + AI(v
n+1
M + un+1

E ) + iion(vnM ,w
n+1) = IIapp

AIv
n+1
M + (AI + AE)un+1

E = IIapp + IEapp

(5.12)

while for the Monodomain, we solve only for vn+1
M :

cm
∆t
M(vn+1

M − vnM) + A(vn+1
M ) + iion(vnM ,w

n+1) = Iapp. (5.13)

An adaptive time step scheme is very useful when simulating a complete heart

beat, permitting varying ∆t in the different phases of an action potential. In fact

during the depolarization it is better to use a very short time step, which could
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then increase during the plateau, before again decreasing during depolarization.

The adaptive time-stepping strategy employed is based on controlling the trans-

membrane potential variation, checking its value at fixed points of the domain, for

instance at the quadrature nodes. Therefore, let M be the set of these selected

points in Ω and vnx the value of the isogeometric approximation at n-th time step

of the transmembrane potential at x ∈ M, i.e., vnx =
∑Nh

i=1 vnM ϕi(x). We define

∆v := max{|vnx − vn+1
x |, x ∈ M} and ∆vmin = 0.005 mV, ∆vmax = 0.5 mV,

∆tmin = 0.05 ms and ∆tmax = 6 ms

• if ∆v < ∆vmin, ∆tnew = vmax
∆v

∆told if ∆tnew < ∆tmax;

• if ∆v > ∆vmax, ∆tnew = vmin
∆v

∆told if ∆tnew > ∆tmin.

We remark that this semi-implicit treatment leads to the solution of a linear system

at each time step. For Bidomain and Monodomain problem the iteration matrices

of the system are respectively

Abido :=

(
γ

[
M 0

0 0

]
+

[
AI AI
AI AI + AE

])
(5.14)

and

Amono = γM + A (5.15)

with γ := cm
∆t

. We remark that Amono is symmetric positive definite, whereas Abido
is a symmetric but positive semidefinite matrix, having a zero eigenvalue associated

to the (0,1)T eigenvector. Therefore as in the continuous Bidomain model, vn+1
M

is uniquely determined by the given initial and boundary conditions, while un+1
E

is determined only up to the same additive time-dependent constant related to a

reference potential. Since we consider bounded domains, we can determine this

constant by imposing

MuE
n+1 = 0, (5.16)

which is the discrete counterpart of (3.12).

5.3 Variational formulation of the stationary Bido-

main problem

In order to introduce Schwarz preconditioners in the next chapter for the dis-

crete Bidomain system, we rewrite (5.12) as an elliptic variational problem, see

[60, 61].
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We first define the following spaces

Ṽ := {uE ∈ V : 1TMuE =

∫
Ω

uE = 0} (5.17)

U := V × Ṽ = {u = (uI ,uE) : uI ∈ V, uI ∈ Ṽ }. (5.18)

We note that the solution of (5.12) is equivalent to the following problem.

Problem 1. Pb1 Given f ∈ L2(Ω), find u = (uM ,uE) ∈ U such that

Abidou =

(
F

0

)
where F = {Fk} = {

∫
Ω
fϕkdx}, with {ϕk} the basis of the space V .

Lemma 4. The bilinear form (( · , · )) : U × U → R defined as

((u,w)) :=

∫
Ω

∇(vM + uE)∇(wM + wE) +

∫
Ω

∇uE∇wE +

∫
Ω

vMwM

is an inner product on U .

Denoting by ||| · ||| : U × U → R+ the norm induced by (( · , · )), i.e.,

|||u|||2 =

∫
Ω

(∇(vM + uE))2 +

∫
Ω

(∇uE)2 +

∫
Ω

(vM)2,

we can easily prove the following lemma.

Lemma 5. Let abido( · , · ) : U × U → R be a symmetric bilinear form defined as

abido(u,w) :=

∫
Ω

(∇(vM+uE))TDI∇(wM+wE)+

∫
Ω

(∇uE)TDE∇wE+γ

∫
Ω

vMwM ,

with γ as defined in section 5.2. Then abido is continuous and elliptic with respect

to the norm ||| · |||.

Proof. The lemma follows from the uniform ellipticity condition (3.29) and the

definition of ||| · |||. To establish continuity, we have

abido(u,w) ≤ max{CI , CE, γ}((u,w))

≤ C|||u||| |||w|||,

while ellipticity follows from

abido(u,u) ≥ min{αI , αE, γ}((u,u))

≥ α|||u|||2.



5.3 Variational formulation of the stationary Bidomain problem 68

We now define the following elliptic variational problem.

Problem 2. Pb2 Given f ∈ L2(Ω), find u ∈ Uh such that

abido(u,w) = (f,wM) ∀w ∈ U. (5.19)

Finally, we find

Lemma 6. Pb1 and Pb2 are equivalent.

Proof. Pb1⇒Pb2.

If u is the solution of Pb1, then{ ∫
Ω

(∇vM)TDI∇φ+ γ
∫

Ω
vMφ+

∫
Ω

(∇uE)TDI∇φ = (f, φ) ∀φ ∈ V∫
Ω

(∇vM)TDI∇ψ +
∫

Ω
(∇uE)TDI∇ψ +

∫
Ω

(∇uE)TDE∇ψ = 0 ∀ψ ∈ V

and ∀ψ ∈ Ṽ ; summing these last equations we get (5.19).

Pb1⇐Pb2. If u is a solution of Pb2 then ∀(wM ,wE) ∈ V × V it holds that∫
Ω

(∇(vM + uE))TDI∇(wM + wE) +

∫
Ω

(∇uE)TDE∇wE + γ

∫
Ω

vMwM = (f,wM).

(5.20)

Choosing wE ≡ 0, we obtain∫
Ω

(∇(vM + uE))TDI∇wM + γ

∫
Ω

vMwM = (f,wM) ∀wM ∈ V,

whereas if wM ≡ 0, we have∫
Ω

(∇(vM + uE))TDI∇wE +

∫
Ω

(∇uE)TDE∇wE = 0 ∀wE ∈ Ṽ .

The last equality holds for all wE ∈ V , since it holds for wE ≡ 1.



Chapter 6

Schwarz preconditioners

6.1 Abstract theory of Schwarz preconditioners

We recall the main results of the abstract convergence theory of Schwarz meth-

ods (see [79] and [53]).

Let U be a finite dimensional Hilbert space with the inner product (· , ·). Given

a symmetric elliptic bilinear form

a( · , · ) : U × U → R

and f ∈ U ′ , consider the following problem.

Find u ∈ U such that

a(u, v) = f(v) ∀v ∈ U.

Given a basis for U , this problem is equivalent to solving the linear system

Au = f (6.1)

where A is the stiffness matrix associated with the bilinear form a( · , · ). We use

the same notation for functions and corresponding vectors of degrees of freedom.

Now we consider the subspaces Um, m = 0, ..., N and the interpolation operators

RT
m : Vm → V. (6.2)

In addition we assume that V admits the following decomposition

V = RT
0 V0 +

N∑
m=1

RT
mVm. (6.3)

69
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This decomposition is not necessarily a direct sum of subspaces; Vm, m = 0, ..., N

do not need to be subspaces of V and the decomposition of a function needs not

be unique.

We introduce local symmetric, positive definite, bilinear forms on each sub-

spaces

ã( · , · ) : Vm × Vm → R m = 0, ..., N, (6.4)

and the corresponding local stiffness matrices, Ãm, associated with them.

We say that we use exact local solvers, if we chose

ã(um, vm) = a(RT
mum, R

T
mvm), um, vm ∈ Vm. (6.5)

Then,

Ãm = RmAR
T
m. (6.6)

Schwarz operators are defined by

Pm = RT
mP̃m : V → RT

mVm ⊂ V, m = 0, ..., N, (6.7)

where P̃m : V → Vm is defined by

ã(P̃mu, vm) = a(u,RT
mvm) vm ∈ Vm. (6.8)

In case of exact solvers, it holds

a(Pmu,R
T
mvm) = a(u,RT

mvm) vm ∈ Vm.

We have the following lemma, see [79, Section 2.2]

Lemma 7. The Pm can be written as

Pm = RT
mÃ
−1
m RmA 0 ≤ m ≤ N. (6.9)

It is selfadjoint with respect to the scalar product induced by a( · , · ) and positive

semidefinite. If (6.5) holds, then it is a projection, i.e.,

P 2
m = Pm.

Given a set of subspace and local bilinear forms, we can define the additive

Schwarz operator as

Pas :=
N∑
m=0

Pm. (6.10)
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We note that Pas is a preconditioned operator for the original operator A. In fact

Pas = A−1
as A, A−1

as =
N∑
m=0

RT
mÃ
−1
m Rm.

Therefore, the original system (6.1) can be written as

Pasu = gas, (6.11)

where gas = A−1
as f . Pas is symmetric and, under suitable assumptions, positive

definite, and we can then use the conjugate gradient methods for the solution of

(6.11). We need bounds for the condition number of Pas, in order to analyze its

convergence. It is enough to make the following three assumptions.

Assumption 6.1. (Stable decomposition) There exists a constant C0, such

that u ∈ V admits a decomposition

u =
N∑
m=0

RT
mum, {um ∈ Vm, 0 ≤ m ≤ N}

such that
N∑
m=0

ãm(um, um) ≤ C2
0a(u, u).

Thus, we have the following result, see [79, Lemma 2.5].

Lemma 8. Under Assumption 6.1 it holds

a(Pasu, u) ≥ C2
0a(u, u), u ∈ V.

Therefore Pas is invertible.

A stable decomposition provides a positive estimate from below of the smallest

eigenvalue of Pas, recalling that the condition number of Pas can be written as

κ(Pas) =
λmax(Pas)

λmin(Pas)
,

where

λmax(Pas) = sup
u∈V

a(Pasu, u)

a(u, u)
, λmin(Pas) = inf

u∈V

a(Pasu, u)

a(u, u)
.
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Assumption 6.2. (Strengthened Cauchy-Schwarz inequalities) There exist

0 ≤ εmn ≤ 1, 1 ≤ m,n ≤ N , such that

|a(RT
mum, R

T
nun)| ≤ εmna(RT

mum, R
T
mum)

1/2
a(RT

nun, R
T
nun)

1/2
,

for um ∈ Vm and un ∈ Vn. Let ρ(E) be the spectral radius of E := {εmn}.

Assumption 6.3. (Local stability) There exists ω > 0, such that

a(RT
mum, R

T
mum) ≤ ωãm(um, um), um ∈ Im(P̃m) ⊂ Vm, 0 ≤ m ≤ N.

If exact local solvers are used, ω = 1.

Assumption 4.2, 4.3 provide an upper bound for λmax(Pas), see [79, Lemma2.6] .

Lemma 9. Under Assumption 6.2 and 6.3, we have

a(Pasu, u) ≤ ω(ρ(E) + 1)a(u, u), u ∈ V.

Therefore Pas is invertible.

Combining the previous Lemmas, we have

Theorem 6.1.1. Let Assumptions 6.1, 6.2 and 6.3 be satisfied. Then it holds the

following bound for the condition number of the additive Schwarz operator

κ(Pas) ≤ C2
0ω(ρ(E) + 1).

6.2 Isogeometric overlapping Schwarz precondi-

tioners for the Bidomain system

In this section, we construct an isogeometric overlapping additive Schwarz pre-

conditioner for the Bidomain system, using the general framework developed in

[9] for elliptic problem, and in [60] [61] for the Bidomain system discretized using

the finite elements method.

We first describe the subdomains and subspaces decomposition in one dimen-

sion for the B-splines space in parametric space, and then extend them by using

tensor products to two and three dimensions and also for NURBS space in the

physical space.

As usual, d is the dimension of the physical domain. For any integer α with

1 ≤ α ≤ d, we define a decomposition of the reference interval Î by selecting from
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the open knot vector {ξ1,α = 0, ..., ξnα+p+1,α = 1} a subset of Nα + 1 nonrepeated

interface knots {ξimα ,α,mα = 1, ..., Nα + 1|ξi1,α = 0, ξiNα+1,α = 1}. Thus, the

closure of Î can be decomposed into Nα interval in the following way

¯̂
I = [0, 1] =

⋃
mα=1,..,Nα

Îmα,α Îmα,α := (ξimα ,α, ξimα+1,α). (6.12)

We assume that each Îmα,α has a similar diameter on order H.

For each of the interface knots ξimα ,α there exists at least one index smα,α
(strictly increasing in mα) such that 2 ≤ smα,α ≤ nα − 1, and satisfying smα,α <

imα < smα,α+p+1, so that the support of the support of the basis function Bp
smα,α

intersects both Îmα−1,α and Îmα,α.

In order to build an overlapping decomposition of Î, let r ∈ N be an integer

counting the basis functions shared by adjacent subdomains. We are able to define

Nα subspaces {V̂mα,α}Nαmα=1 forming an overlapping decomposition of V̂ , as

V̂mαα := span{Bp
j,α(ξ)|smα,α − r ≤ j ≤ smα+1,α + r} mα = 1, ..., Nα. (6.13)

For r = 0 the overlap is minimal, consisting of just one common basis function

between the subspaces. With r, we define another parameter

δ := h(2r + 2) (6.14)

related to the width of the overlapping region; we will refer to it as the overlap

parameter.

Recalling that the support of a general basis functionBp
i,α(ξ) consists of the

interval (ξi,α, ξi+p+1,α), we define the extended subdomains Î ′mα,α by

Î ′mα,α :=
⋃

Bpj,α∈V̂mα,α

supp(Bp
j,α) = (ξsmα,α−r,α, ξsmα+1,α+r+p+1,α). (6.15)

In addition, we need to define further extended subdomains Î ′′mα,α

Î ′′mα,α :=
⋃

supp(Bpj,α)∩Î′mα,α 6=∅

supp(Bp
j,α). (6.16)

Finally we build the coarse space V̂0,α from the nonoverlapping decomposition

{Îmα,α}Nαmα=1. Let

Ξ0,α = {ξ1,α, ..., ξp,α, ξi1,α, ξi2,α, ..., ξiNα−1,α, ξiNα ,α, ξiNα+1,α, ..., ξiNα+p+1,α} (6.17)
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such that ξ1,α = ξp,α = ξi1,α = 0 and ξiNα+1,α = ξiNα+2,α = ... = ξiNα+p+1,α = 1, and

let {
◦
B
p

i,α}
N0,α

i=1 be the corresponding N0,α basis function

V̂0,α = span{
◦
B
p

i,α, i = 1...N0,α}. (6.18)

In more than one dimension, we proceed by using tensor product; we define

subdomains, overlapping subdomains, and extended supports. Let N :=
∏d

1 Nα,

for m = 1, ..., N

Ω̂m ≡ Ω̂m1,...,md := ⊗dα=1Îmα Ω̂′m ≡ Ω̂′m1,...,md
:= ⊗dα=1Î

′
mα (6.19)

Ω̂′′m ≡ Ω̂′′m1,...,md := ⊗dα=1Î
′′
mα mα = 1, ..., Nα, α = 1, .., d. (6.20)

The local and the coarse subspaces are then

Ûm := V̂m × V̂m with

V̂m ≡ V̂m1,...,md := span{Bp
i1,...,id

, smα−r ≤ iα ≤ smα+1 +r, α = 1, ..., Nα}; (6.21)

Û0 = V̂0 ×
˜̂
V0 with

V̂0 := span{
◦
B
p

i1,...,id
, iα = 1...N0,α, α = 1, ..., Nα} and

˜̂
V0 := V̂0 ∩

˜̂
V . (6.22)

The subdomains in the physical space are defined as the image of the subdo-

mains in the parameter space under the mapping F,

Ωm = F(Ω̂m), Ω′m = F(Ω̂′m) Ω′′m = F(Ω̂′′m) (6.23)

The decomposition of the NURBS space V and therefore of U in the physical

domain is trivial:

Um := Vm × Vm with

Vm ≡ Vm1,...,md := span{Rp
i1,...,id

◦ F−1, smα − r ≤ iα ≤ smα+1 + r, α = 1, ..., Nα};
(6.24)

Û0 = V̂0 ×
˜̂
V0 with

V0 := span{
◦
R
p

i1,...,id
◦F−1, iα = 1...N0,α, α = 1, ..., Nα} and Ṽ0 := V0 ∩ Ṽ .

(6.25)

We are now able to construct a two-level overlapping Additive Schwarz method

for problem (5.12).
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We remark that U0 ⊂ U , whereas Um is not a subset of U , m = 1, ..., N . We

therefore define the interpolation operators Im : Um → U by

given u = (vM , uE) ∈ Um, Imu = (Im,Mu, Im,Eu) := (vM , uE −
1

|Ω|

∫
Ω

uE),

(6.26)

whereas I0 : U0 → U is simply the embedding operator. We define the local

projectors operators for m = 0, ..., N

T̃m : U → Um

by

abido(T̃mu, v) = abido(u, Imv) ∀v ∈ Um.

Defining Tm = ImT̃m, the 2-level Overlapping Additive Schwarz operator is then

TOAS := T0 +
N∑
m=1

Tm. (6.27)

6.3 A convergence rate analysis

In the following section, we extend the results for IGA overlapping additive

Schwarz preconditioner to a bound for condition number of the operator TOAS.

We first make the following two assumptions on the mesh and subdivision.

• the parametric domain in each extended subdomain Ω̂′′m is uniform, i.e.,

there exist a real number h = h(Ω̂′′m) such that all elements in Ω̂′′m have a

diameter which is on the order of h, i.e., bounded from above and below by

Ch for constant C which is the same for all the subdomains ;

• the overlap index r is bounded from above by a fixed constant.

We will adopt the following notation: given two real numbers a and b we write

a . b when a ≤ Cb for a generic positive constant C independent of the knot

vectors.

Interpolation operators

For any integer α, 1 ≤ α ≤ d, given any function v ∈ V̂ , we define its restriction

to the univariate spline space of degree p generated by the open knot vector Ξα

vα(ηα) := v(η) ∀η ≡ (η1, ..., ηd) ∈ Ω̂ (6.28)
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vα can be represented as a linear combination of {Bi,α}ni=1, in particular, there

exist {ciα,α}nαiα=1 such that

vα =
nα∑
iα=1

ciα,αB
p
iα,α

(6.29)

We define the operators Π̂mα,α : V̂ → V̂ mα = 1, ..., Nα as follows

Π̂mα,αv :=

smα+1,α+r∑
iα=smα,α−r

diα,αciα,αB
p
iα,α

(6.30)

where

diα,α =


r−smα,α+1+iα

2r+2
if smα,α − r ≤ iα ≤ smα,α + r

1 if smα,α − r + 1 ≤ iα ≤ smα+1,α − r − 1
smα+1,α+r+1−iα

2r+2
iα ≥ smα+1,α − r

(6.31)

We remark that we are assuming that the overlap index r is not too large, i.e.,

smα,α + r + 1 ≤ smα+1,α − r − 1. (6.32)

It easy to check that we have

v =
Nα∑

mα=1

Π̂mα,αv. (6.33)

We are now able to build the interpolation operator by Π̂m : V̂ → V̂m

Π̂mv = Π̂m1,1 ◦ ... ◦ Π̂md,dv. (6.34)

Now we give a technical result useful in the following, see ([9, Theorem 4.1])

Lemma 10. For all v ∈ V̂ , it holds that

‖Π̂mv‖L2(Ω̂′m) ≤ C‖v‖L2(Ω̂′′m). (6.35)

The following result holds.

Theorem 6.3.1. The condition number of the 2-level additive Schwarz precondi-

tioned isogeometric operator TOAS (6.27) is bounded by

κ2(TOAS) ≤ C

(
1 +

H

δ

)
,

where δ := h(2r + 2) is the overlap parameter and C is a constant independent of

h,H,N and δ but not of p and k.
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Proof. The proof follows by using the general abstract theory [79, Chapter 2].

1. Since we use exact solvers, the local stability assumption holds true with

ω = 1.

2. By using a standard coloring argument the strengthened Cauchy-Schwarz

inequality holds, with a constant bounded from above by the number of

colors.

3. We are left with proving a stable decomposition for our subspace decompo-

sition.

We start by presenting a stable splitting for the case of splines in the parametric

domain.

Let Π̂0 the standard quasi-interpolant into the space V̂0.

Given û = (v̂M , ûE) ∈ Û , we define

û0 = (v̂0,M , û0,E) := (Π̂0v̂M , Π̂
0ûE) ∈ Û0 (6.36)

ûm = (v̂m,M , ûm,E) := (Π̂m(v̂M − v̂0,M), Π̂m(ûE − û0,E)). (6.37)

It easy to check that we have the splitting

û =
N∑
m=0

Imûm. (6.38)

We have to show that there exists a constant C such that for very û ∈ Û (6.38)

satisfies
N∑
m=0

|||ûm|||2 ≤ C2|||û|||2 (6.39)

where ||| · ||| is the norm defined in Sec. 5.3.

We can bound each scalar component as in the proof of scalar elliptic problems

(see [9])

N∑
m=0

|v̂m,M |2H1(Ω̂)
.
(
1 + H

δ

)
|v̂M |2H1(Ω̂)

(6.40)

N∑
m=0

|ûm,E|2H1(Ω̂)
.
(
1 + H

δ

)
|ûE|2H1(Ω̂)

. (6.41)
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Thus, using Young’s inequality and the bounds (6.40) and (6.41), it holds that

N∑
m=0

|v̂m,M + ûm,E|2H1(Ω̂)
.

N∑
m=0

|v̂m,M |2H1(Ω̂)
+

N∑
m=0

|ûm,E|2H1(Ω̂)
(6.42)

.

(
1 +

H

δ

)
(|v̂M |2H1(Ω̂)

+ |ûE|2H1(Ω̂)
) (6.43)

.

(
1 +

H

δ

)
(|v̂M + ûE|2H1(Ω̂)

+ |ûE|2H1(Ω̂)
). (6.44)

It now remains to estimate the L2-norm of v̂m,M . Since v̂m,M ∈ V̂m for all m =

1, ..., N its support is contained in Ω̂′m. Then applying Lemma 10 and the stability

of the quasi-interpolant Π̂0 (4.28), we obtain

||v̂m,M ||2L2(Ω̂)
= ||v̂m,M ||2L2(Ω̂′m)

(6.45)

. ||v̂M − v̂0,M ||2L2(Ω̂′′m)
(6.46)

. ||v̂M ||2L2(Ω̂′′m)
. (6.47)

Since the last bound hold for allm, includingm = 0, and each point of the extended

subdomains Ω̂′′m is covered by a uniformly bounded number of subdomains, by a

standard coloring argument gives the inequality

N∑
m=0

||v̂m,M ||2L2(Ω̂)
. ||v̂M ||2L2(Ω̂)

. (6.48)

Adding (6.48) and the bounds (6.44) and (6.41), we have

N∑
m=0

|||ûm|||2 .
(

1 +
H

δ

)
|||û|||. (6.49)

Finally we present the stable splitting for the NURBS in the physical domain.

By definition of the space V we have

V =

{
v̂

ω
◦ F−1; v̂ ∈ V̂

}
where ω is the weight function. Let u be any function in V , then there exists û

such that u = (û/ω) ◦ F−1. Introducing the functions in Vm by

vm,M =
v̂m,M
ω
◦ F−1 um,E =

ûm,E
ω
◦ F−1 ∀m = 0, .., N, (6.50)
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we obtain the splitting u =
∑N

m=0 Imum from (6.38).

Applying a standard change of variables (4.32) from Ω to Ω̂, (6.47) and (6.40) and

finally mapping back into Ω, tanks to (4.31), we obtain

N∑
m=0

|vm,M |2H1(Ω) .
N∑
m=0

‖v̂m,M‖2
H1(Ω̂)

(6.51)

.

(
1 +

H

δ

)
|v̂M |2H1(Ω̂)

+ ‖v̂M‖2
L2(Ω̂)

(6.52)

.

(
1 +

H

δ

)(
|vM |2H1(Ω) + ‖v̂M‖2

L2(Ω)

)
. (6.53)

Analogously for the second component of um

N∑
m=0

|um,E|2H1(Ω) .
N∑
m=0

‖ûm,E‖2
H1(Ω̂)

(6.54)

.

(
1 +

H

δ

)
|v̂M |2H1(Ω̂)

+ ‖ûM‖2
L2(Ω̂)

(6.55)

.

(
1 +

H

δ

)
|uE|2H1(Ω) (6.56)

where in (6.56) we can apply Poincaré’s inequality, since uE has zero mean value.

Finally applying the triangle and Young’s inequalities, it holds

N∑
m=0

|vm,M + um,E|2H1(Ω) ≤
N∑
m=0

(|vm,M |H1(Ω) + |um,E|H1(Ω))
2 (6.57)

.
N∑
m=0

|vm,M |2H1(Ω) +
N∑
m=0

|um,E|2H1(Ω) (6.58)

.

(
1 +

H

δ

)(
|vM |2H1(Ω) + ‖vM‖2

L2(Ω) + |um,E|2H1(Ω)

)
(6.59)

.

(
1 +

H

δ

)(
|vM + uE|2H1(Ω) + ‖vM‖2

L2(Ω) + |um,E|2H1(Ω)

)
.

We obtain a stable decomposition

N∑
m=0

(
|vm,M + um,E|2H1(Ω) + |um,E|2H1(Ω) + ‖vm,M‖2

L2(Ω)

)
.

(
1 +

H

δ

)
(|vM + uE|2H1(Ω) + |uE|2H1(Ω)+ ‖vM‖2

L2(Ω)). (6.60)



Chapter 7

Numerical Results

The numerical results presented hereafter concern the 3D Monodomain and

Bidomain models on portion of truncated ellipsoids, representing a simplified ven-

tricular geometry, or on a cartesian slab, representing a cardiac wedge. The geom-

etry is combined with an analytical representation of the cardiac fiber architecture

as detailed in Chapter 5. The ionic model considered in this implementation is the

LuoRudy Phase I ionic model [50], with its original parameters, while the main

parameters of the cardiac tissue model are reported in Table 7.1. The numerical

simulations are carried out using our MATLAB code that employs the IMEX time

discretization and IGA space discretization described in Chapter 5; our IGA code

is based on the library GeoPDEs [25]. The details of the implementation of the

Bidomain preconditioning strategy are as follows: at each time step, we solve the

Bidomain or Monodomain discrete system with the PCG iterative method with

stopping criterion based on the control of the 2-norm of the current residual, nor-

malized with respect to the 2-norm of the initial residual and with tolerance set

to 10−6. As initial guess we use the solution from the previous time step; other

choices of initial guesses for the Bidomain model were investigated in [83]. The

PCG iterations are accelerated with the Overlapping Additive Schwarz (OAS)

preconditioners described in Chapter 6, with overlap index r specified in each test.

The computations are carried out on a workstation equipped with a 2.2 GHz

AMD Dual-Core Opteron processor and 8 GB RAM. To the best of our knowledge,

these are the first isogeometric simulations of cardiac reaction-diffusion models on

2D and 3D domains.

80
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χ = 103 cm−1, Cm = 10−3mF/cm2

Monodomain σml = 1.2 · 10−3Ω−1 cm−1, σmt = 2.5562 · 10−3Ω−1 cm−1

parameters

Bidomain σEl = 2 · 10−3Ω−1 cm−1, σIl = 3 · 10−3Ω−1 cm−1

parameters σEt = 1.3514 · 10−3Ω−1 cm−1, σIt = 3.1525 · 10−4Ω−1 cm−1

σEn = σEt /2, σIn = σIt /10

Initial value u0
I = 84 mV, u0

E = 0 mV v0
M = 84 mV

Table 7.1: Parameters calibration for the numerical tests.

7.1 A complete heartbeat with the Monodomain–

LR1 model

We start our simulations with the Monodomain model, coupled with LR1 mem-

brane model, and simulate a complete heartbeat on a large portion of a half trun-

cated ellipsoid described by the parametric equations
x = a(r) cos(θ) cos(φ) φmin ≤ φ ≤ φmax
y = b(r) cos(θ) sin(φ) θmin ≤ θ ≤ θmax
z = c(r) sin(θ) 0 ≤ r ≤ 1,

where a1 = b1 = 1.5, a2 = b2 = 2.7 and c1 = 4.4 c2 = 5 all in cm, φmin = 0,

φmax = 2π, θmin = −3
8
π, θmax = π

8
. The fibers rotate counterclockwise from

epicardium to endocardium for a total amount of 120◦. The axially symmetric

coefficients of the 3D conductivity tensor are reported in Table7.1. The external

stimulus of 250mA
cm3 lasting 0.5 ms is applied in a small volume located at the center

of the first quarter of the ventricle. In the IGA discretization, we use NURBS of

polynomial degree three with C2 continuity, even if, in order to obtain our ellip-

soidal domain, the knots located at φ = π
2

have multiplicity two. For this reason,

we cannot solve the linear system with a minimal overlap and we choose to apply

the 1-level OAS preconditioner with overlap r = 1. The fine mesh is 24 × 16 × 4

while the number of subdomains is 24 = 6× 4× 1. It is well known that the Mon-

odomain system is quite better conditioned than the Bidomain system. However,

the conditioning of both systems worsen on deformed domains and using an over-

lapping preconditioner can improve the performance considerably. The number

of PCG iterations per time step and the condition number of the preconditioned

operator are reported in Table7.2, which compares the variation of the condition
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Figure 7.1: Time course of PCG iteration counts (left) and time step size (right) during a

complete heartbeat: comparison between unpreconditioned CG (left) and 1-level OAS PCG

(right) by solving the Monodomain-LR1 model with a fine mesh 24 × 16 × 4 and 6 × 4 × 1

subdomains.

number during a complete heartbeat (300 ms) by using 1-level OAS PCG and

unpreconditioned CG. This variation is strictly related to the time step size (∆t),

that changes according to the adaptive strategy described in Chapter 5, as shown

in Fig. 7.1, and follows the different phases of the ventricular action potential.

We remark that the depolarization phase is computationally the most intense;

nevertheless 1-level OAS keeps the condition numbers quite uniform for the whole

duration of the cycle, see Table 7.2.

In Fig. 7.2, we show some isochrones of the activation and repolarization time

on our half ventricle. The activation time is defined at each quadrature point x as

Phase Unpc. 1-level OAS

it. κ2 it. κ2 = λmax/λmin
phase 0 206 5.6e3 9 κ2 = 4.29/0.77

phase 1-2 13 24.1 8 κ2 = 4.29/0.76

phase 3 10 18.66 7 κ2 = 4.29/0.77

Table 7.2: Complete heartbeat simulation of the Monodomain-LR1 model. Comparison be-

tween unpreconditioned CG and 1-level OAS PCG with respect to average number of PCG

iterations per time step, condition number (κ2) and extreme eigenvalues ( λmax, λmin).
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Unpc. 1-level OAS 2-level OAS

N it. k2 it. k2 = λmax/λmin it. k2 = λmax/λmin
2× 2× 1 175 4.98e3 21 65 = 4.0/6.09e− 2 12 11.07=4.74/4.12e-1

3× 3× 2 185 4.44e3 44 331 = 8.0/2.41e− 2 22 32.13=8.60/2.72e-1

4× 4× 3 206 6.32e3 61 627 = 8.0/1.27e− 2 23 31.90=8.63/2.73e-1

5× 5× 4 247 8.89e3 78 1020 = 8.0/7.8e− 3 23 32.09=8.64/2.69e-1

6× 6× 5 297 1.2e4 94 1507 = 8.0/5.3e− 3 23 31.60=8.64/2.27e-1

Table 7.3: Bidomain-LR1 OAS preconditioners on a 3D ellipsoidal domain. Scalability test:

condition number (κ2), values of the extreme eigenvalues (λmax, λmin) and iteration counts (it.)

as a function of the number of subdomains N, for fixed H/h = 4, p = 3, k = 2 and r = 0.

Unpreconditioned CG (left), 1-level OAS (middle) and 2-level OAS (right) preconditioners.

the unique time instant ta during the upstroke phase of the action potential such

that vM(x, ta) = −50mV; similarly, the repolarization time is the unique time

instant tr after the upstroke such that vM(x, ta) = −65mV.

7.2 Bidomain–LR1 model: scalability test

We now consider the Bidomain model described in Sec. 3.1 and perform 30

time steps of 0.05 ms each, solving iteratively the discrete Bidomain system at

each time step by unpreconditioned CG and the 1-level and 2-level OAS PCG. We

consider the 3D NURBS domain shown in Fig.7.3, decomposed into an increasing

number of subdomains (from 2 × 2 × 1 to 6 × 6 × 5). We choose the IGA fine

and subdomain mesh sizes such that their ratio is kept fixed at H
h

= 4, and we fix

p = 3, k = 2 and the minimal overlap r = 0. Table 7.3 shows that, as expected,

unpreconditioned CG and 1-level OAS preconditioner (without a coarse problem)

have condition numbers growing with N , while the 2-level OAS preconditioner is

essentially scalable. Additional results, for p = 3, 2 and k = p − 1, are plotted in

Fig.7.4; they confirm that the 2-level preconditioner is optimal, and that κ2 grows

linearly with an increasing ratio H
h

.

We now consider the same NURBS domain of Fig 7.3, and increase the over-

lap index r for the 2-level OAS preconditioner. The results reported in Table 7.4

confirm that the condition number and the iteration counts improve with increas-

ing r, except in case of generous overlap, r = p, because the excessive overlap

size between subdomains increases considerably the maximal eigenvalue λmax (as
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Figure 7.2: Epicardial view (upper panels), midwall view (center) and endocardial view (lower

panels) of the activation (left column) and repolarization (right column) time contourplot, com-

puted by solving the Monodomain-LR1 model with 1-level OAS PCG with a fine mesh 24×16×4

and 6× 4× 1 subdomains. The colorbar denotes the range of values displayed on the surface.
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Figure 7.4: Optimality of 2-level OAS preconditioner for the Bidomain-LR1 model:

plot of the condition number as a function of H
h

, for p = 2, 3 and k = p− 1.
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2-level OAS

r=0 r=1 r=p

N it. κ2 = λmax/λmin it. κ2 = λmax/λmin it. κ2 = λmax/λmin
2× 2× 1 16 11.07=4.74/4.28e-1 13 11.69=4.99/4.27e-1 10 6.23=4.99/8.0e-1

3× 3× 2 29 32.83=8.59/2.2.62e-1 21 14.07=9.99/7.1e-1 22 18.74=18.74/1.00

4× 4× 3 30 33.79=8.61/2.54e-1 22 15.88=10.37/6.53e-1 22 19.63=19.89/1.01

5× 5× 4 32 33.91=8.61/2.54e-1 30 16.96=10.43/6.4e-1 29 30.07= 31.28/1.04

Table 7.4: Bidomain-LR1 OAS preconditioner on a 3D ellipsoidal domain. Scalability test:

condition number (κ2), extreme eigenvalues (λmax, λmin) and iteration counts (it.) as a function

of the number of subdomains N for fixed H/h = 4 and 2-level OAS preconditioners with different

overlap index r = 0, 1, p.

predicted by the coloring argument in the abstract Schwarz theory upper bound).

Table 7.5 illustrates another test performed by increasing the number of sub-

domains from N = 4 to N = 144, in order to form increasing ellipsoidal domains

Ω (depicted above the table), while the fine mesh is chosen so as to keep the ratio
H
h

= 4 fixed. For these tests we choose a random right hand side and a zero initial

guess. The numerical results confirm the scalability of the 2-level OAS precon-

ditioner and the non-scalability of both 1-level OAS and unpreconditioned CG.

In Table 7.6, we study the performance of 2-level OAS for increasing polynomial

degree p from 2 up to 7 in the IGA Bidomain-LR1 discretization with 1/h = 32,

N × N = 2 × 2, using both minimal and generous overlap. 2-level OAS with

generous overlap (r = p) performs much better than with minimal overlap since

its condition numbers and iteration counts seem to be bounded by a constant

independent of the polynomial degree p.

7.3 Discontinuous conductivity coefficients

We now investigate the robustness of the OAS preconditioner with respect to

jumps discontinuities of the conductivity coefficients. Similar Bidomain tests were

carried out for the BBDC methods in [83] and for AMG preconditioners in [63].

We consider a quarter of truncated ellipsoid decomposed into 6×6×2 subdomains,

and we vary the magnitude of the Bidomain conductivity coefficients σI,Et,l,n by seven
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Unpc. 1-level OAS 2-level OAS

N it. k2 it. κ2 = λmax/λmin it. κ2 = λmax/λmin
2× 2× 1 765 2.85e4 14 10.34 = 4.0/3.87e− 1 11 5.72=4.98/8.71e-1

4× 4× 1 1236 4.92e4 27 58.61 = 4.82/8.23e− 2 10 6.62=5.05/7.62e-1

6× 6× 1 1539 7.30e4 35 1.42e2 = 4.88/3.44e− 2 9 6.27=5.04/8.04e-1

8× 8× 1 1949 1.01e5 47 2.66e2 = 4.86/1.83e− 2 8 5.53=4.95/8.95e-1

10× 10× 1 2180 1.14e5 55 4.52e2 = 8.0/1.08e− 2 8 5.50=4.95/9.01e-1

12× 12× 1 2307 1.25e5 63 6.67e2 = 4.87/7.30e− 3 8 5.50=4.95/9.01e-1

Table 7.5: Bidomain-LR1 OAS scalability tests on increasing ellipsoidal domains: condition

numbers (κ2), extreme eigenvalues (λmax, λmin) and iteration counts (it.) as a function of the

number of subdomains N for fixed H/h = 4, p = 3, k = 2 and minimal overlap r = 0. Unpre-

conditioned CG (left), 1-level (middle) and 2-level (right) OAS preconditioners.

2-level OAS

r=0 r=p

p it. k2 = λmax/λmin it. k2 = λmax/λmin
2 9 3.8=4.04/1.06 9 3.833=4.28/1.12

3 12 8.61=4.09/0.47 10 4.55=4.69/1.03

5 14 25.25=4.20/1.66e-1 12 4.94=4.97/1.01

7 19 112.26=4.36/3.8e-2 12 4.82=4.99/1.03

Table 7.6: Bidomain-LR1 OAS preconditioner in 2D parametric domain: condition numbers

(κ2), extreme eigenvalues (λmax, λmin) and iteration counts (it.) as a function of the spline

polynomial degree p, for minimal and maximal overlap. Fixed 1/h = 32, N ×N = 2× 2.
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Figure 7.5: Ellipsoidal domain for the discontinuous conductivity coefficients in the Bidomain-

LR1 model: in the green region the conductivity coefficients are multiplied by a factor ρ = 10i,

i = −5,−4, . . . , 1, 2

order of magnitude (from 10−5 to 102) only in a central layer, corresponding to a

central part of the midwall, as shown in Fig. 7.5.

Table 7.7 reports the condition number, extreme eigenvalues and iteration

count for unpreconditioned CG and 2-level OAS. The results show that the con-

dition number is independent of the coefficient jumps, even if these jumps are

located inside the subdomains. Since the conductivity coefficients in the definition

of the tensor are of the order of 10−3, a multiplication for ρ < 10−3 simulates a

region of no conduction, as depicted in Fig. 7.6, reporting the activation times for

a Bidomain-LR1 2D simulation on a slab [0, 1]2 with a stimulus delivered at the

center of the domain, and with a region of discontinuous conductivity coefficients

located at [0.25, 0.45]× [0.25, 0.75].
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unpc 2-level OAS

ρ it. k2 it. κ2 = λmax/λmin
10−5 668 1.6e5 20 35.11 = 8.56/0.24

10−4 659 1.52e5 20 35.12 = 8.56/0.24

10−3 519 0.56e5 20 35.11 = 8.56/0.24

10−2 613 1.08e5 20 35.10 = 8.56/0.24

10−1 466 0.40e5 20 34.70 = 8.46/0.24

1 420 0.29e5 20 35.09 = 8.61/0.24

101 382 0.24e5 20 32.70 = 8.63/0.26

102 395 0.25e5 20. 25.66 = 8.65/0.34

Table 7.7: 2-level OAS and unpreconditioned CG iteration counts and condition numbers in

presence of jump discontinuities of magnitude ρ in the Bidomain conductivity coefficients. IGA

discretization with N = 6× 6× 2 subdomains and H
h = 4, p = 3, k = 2.

Figure 7.6: Activation time isochrones for a Bidomain - LR1 test with a central region of

discontinuous conductivity coefficients with ρ = 10−3 (left panel) and without discontinuities

(right panel).
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7.3.1 Transmural ischemia

We solve the Bidomain-LR1 model with 2-level OAS preconditioner, on the

ellipsoidal domain in Fig. 7.3, with a transmura ischemic region of dimensions

located at the center.

Ischemia is a restriction in bloody supply to tissue. The three main pathophys-

iological conditions of myocardial ischaemia are elevated extracellular potassium,

acidosis and anoxia, whose effects on membrane potential are elevation of resting

potential and reduction of upstroke velocity and action potential duration (APD).

We can distinguish three stages of ischemia: moderate, corresponding to the first

5-7 minutes, with an elevation of extracellular potassium [K+]o to about 10 mM;

early severe, after 10-12 minutes, with a second increase of [K+]o; and severe,

characterized by the occurrence of gap junction uncoupling and irreversible cell

damage.

We simulate an excitation process starting by applying a stimulus of 200 µA/cm3

for 0.5 ms on a small area at the center of the epicardium. As proposed in [19],

the ischemic condition is modelled by increasing the extracellular concentration of

potassium in the LR1 model from 5.4 mM (control) to 10.5 mM (moderate) to

20 mM (severe) and reducing the conductivity coefficients in the ischemic region

as indicated in Table 7.8 (see [38]), hence the conductivity coefficients present

discontinuities on the boundaries of the ischemic region.

Normal tissue

σIl = 3 · 10−3Ω−1cm−1 σEl = 2 · 10−3Ω−1cm−1

σIt = 3.1525 · 10−4Ω−1cm−1 σEt = 1.3514 · 10−3Ω−1cm−1

σIn = 3.1525 · 10−5Ω−1cm−1 σEn = 6.757 · 10−4Ω−1cm−1

Ischemic tissue

σIl = 3 · 10−4Ω−1cm−1 σEl = 1 · 10−3Ω−1cm−1

σIt = 6.305 · 10−6Ω−1cm−1 σEt = 3.3785 · 10−4Ω−1cm−1

σIn = 6.305 · 10−7Ω−1cm−1 σEn = 1.6892 · 10−4Ω−1cm−1

Table 7.8: Conductivity coefficients used in the numerical simulation of transmural

ischemia.

Accoording to the previous test, the condition number is independent of coef-

ficients jumps, as reported in Table 7.9 .

Fig. 7.7 and Fig. 7.8 report the isochrones of activation, repolarizatione and

APD= tr − ta on epicardium, midwall and endocardium in normal condition and
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2-level OAS

it. κ2 = λmax/λmin
Control 23 31.44 = 8.64/0.27

Moderate 23 31.10 = 8.64/0.28

Severe 23 33.58 = 8.64/0.25

Table 7.9: 2-level OAS iteration counts and condition numbers in case of control and ischemia

(moderate and severe). IGA discretization with N = 6 × 6 × 5 subdomains and H
h = 4, p = 3,

k = 2.

in case of a severe ischemia. We can observe the effects on the spread of excitation

and repolarization of an ischemia. On epicardial plane isochrones of activation

are elliptical with the major axis along the fiber direction, becoming rounded

proceeding on the ischemic section. Repolarization starts first at the center of the

ischemic area, and the APD distribution show a minimum in the region repolarized

first.
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Figure 7.7: Epicardial view (first row) midwall view (second row) and endocardial view (third

row) and 3d view of the activation (left column) repolarization (center) and APD (rigth column)

isochrones in presence of severe ischemia, computed by solving the Bidomain-LR1 model with

2-level OAS PCG with a fine mesh 24 × 24 × 20 and 6 × 6 × 5 subdomains, p = 3, k = 2. The

colorbar denotes the range of values displayed on the surface.
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Figure 7.8: Epicardial view (first row) midwall view (second row) and endocardial view (third

row) and 3d view of the activation (left column) repolarization (center) and APD (rigth column)

isochrones in presence of severe ischemia, computed by solving the Bidomain-LR1 model with

2-level OAS PCG with a fine mesh 24 × 24 × 20 and 6 × 6 × 5 subdomains, p = 3, k = 2. The

colorbar denotes the range of values displayed on the surface.
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7.4 Conclusions

We have developed 2-level overlapping additive Schwarz preconditioners for the

Bidomain system discretized by NURBS-based IGA. In Chapter 6, we have proved

that the resulting solvers are scalable and have an optimal convergence rate de-

pending linearly on the ratio H
δ

, between the subdomain and the overlap sizes. The

results of three dimensional numerical tests have confirmed our convergence rate

bound analysis. The simulations have shown that the good convergence properties

hold for discontinuous conductivity coefficients, which could be present in some

pathological phenomena involving for example ischemic regions inside the cardiac

tissue.

The promising results that we have obtained encourage future developments

such as:

• extension of h−version analysis of the convergence rate bound to p−analysis;

• extending the 2-level additive algorithms and IGA analysis to 2-level multi-

plicative and hybrid versions;

• the construction and analysis of non-overlapping domain decomposition IGA

solvers, in particular BDDC and FETI-DP preconditioners, for the Bidomain

system;

• the study of coarse solvers based not only on h−coarsening but also on

p−coarsening, i.e. employing a polynomial degree p lower than the degree of

the NURBS approximation space;

• the parallel implementation of the solvers studied in the this thesis using

parallel machines with distributed memory (possibly including the latest

accelerators based on GPU and Phi processors);

• the use of multipatch NURBS geometries, allowing us to represent for ex-

ample an idealized biventricular heart as in Fig. 7.9 and to investigate the

spread of excitation in a more realistic and complete cardiac geometry.
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Figure 7.9: Idealized biventricular geometry obtained from ellipsoidal patches.



Appendix A

Luo-Rudy I ventricular model

Luo-Rudy model equations:

Fast Na+ current (INa)

INa = gNam
3 h j (v − ENa)

where gNa = 23 mS/cm2, ENa = 54.4 mV, and the gating variables m,h, j satisfy

ordinary differential equations (2.4) with coefficients

αm = 0.32
47.13 + v

1− exp (−47.13− v)
, βm = 0.08 exp

(
−v
11

)
,

αh =

{
0 v ≥ −40

0.135 exp (0.079 v) + 3.1 · 105 exp (0.35 v) v < −40,

βh =

 0.13

(
1 + exp

(
10.66 + v

−11.1

))
v ≥ −40

3.56 exp (0.079 v) + 3.1 · 105 exp (0.35 v) v < −40,

αj =

{
0 v ≥ −40

−1.2714 · 105 exp (0.244 v)− 3.474 · 105 exp (−0.04391 v) v < −40,

βj =


0.3

exp (−2.535 · 10−7v)

1 + exp (−0.1 (32 + v))
v ≥ −40

0.1212
exp (−0.01052 v)

1 + exp (−0.1378 (40.14 + v))
v < −40.

96
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Slow inward current (Isi)

Isi = gsid f (v − Esi) ,

where gsi = 0.09mS/cm2, Esi = 7.7− 13.0287 log ([Ca]i) , [Ca]i is the intracellular

calcium concentration satisfying the ordinary differential equation

d [Ca]i
dt

= 0.07
(
10−4 − [Ca]i

)
− 10−4Isi,

and d, f are gating variables satisfying (2.4) with coefficients

αd = 0.095
exp (−0.01 (v − 5))

1 + exp (−0.072 (v − 5))
, βd = 0.07

exp (−0.017 (v + 44))

1 + exp (0.05 (v + 44))

αf = 0.012
exp (−0.008 (v + 28))

1 + exp (0.15 (v + 28))
, βf = 0.0065

exp (−0.02 (v + 30))

1 + exp (−0.04 (v + 20))
.

Time-dependent K+ current (IK)

IK = gKXXi (v − EK) ,

where gK = 0.282 mS/cm2, EK = −77 mV, X is a gating variable satisfying (2.4)

with coefficients

αX = 0.0005
exp (0.083 (v + 50))

1 + exp (0.057 (v + 50))
, βX = 0.0013

exp (−0.06 (v + 20))

1 + exp (−0.04 (v + 20))
,

and Xi is an additional variable given by

Xi =

 2.837
exp (0.04 (v + 77))− 1

(v + 77) exp (0.04 (v + 35))
v > −100

1 v ≤ −100.

Time-independent K+ current (IK1)

IK1 = gK1K1∞ (v − EK1) ,

where

gK1 = 0.6047

√
[K]0
5.4

, vK1 = vNa

log

(
[K]0
[K]i

)
log

(
[Na]0
[Na]i

) ,
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with the constant ion concentrations [K]0 = 5.4, [K]i = 145, [Na]0 = 140, [Na]i =

18 (all in mM), and

K1∞ =
αK1

αK1 + βK1

,

where

αK1 =
1.02

1 + exp (0.2385 (v − vK1 − 59.215))
,

βK1 =
0.49124 exp (0.08032 (v − vK1 + 5.476)) + exp (0.06175 (v − vK1 + 594.31))

1 + exp (−0.5143 (v − vK1 + 4.753))

Plateau K+ current (IKp)

IKp = gKp Kp (v − EKp) ,

where gKp = 0.0183 mS/cm2, EKp = EK1 and

Kp =
1

1 + exp ((7.488− v) /5.98)

Background current Ib

Ib = gb (v − Eb) ,

where gb = 0.03921 mS/cm2 and Eb = −59.87 mV.



Appendix B

Severi et al. 2012 sinoatrial model

Membrane potential

dV

dt
= −Itot

C

Itot = If + IKr + IKs + Ito + INaK + INaCa + INa + ICaL + ICaT + IKACh

Ion Currents

x∞ : Steady-state curve for a gating variable x

τx : Time constant for a gating variable x

αx and βx : Opening and closing rates for channel gating

Hyperpolarization-activated, “funny” current (If )

If = (IfNa + IfK)

IfNa =
y2 ·Ko

Ko+Kmf

· gfNa · (V − ENa) IfK =
y2 ·Ko

Ko+Kmf

· gfK · (V − EK)

with gfNa = gfK = 0.03µS, Kmf = 45 mM, and y is the gating variable of

activation satisfying (2.7) with coefficients

y∞ =
1

1 + e

V + 52.5

9

99
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τy =
0.7

0.0708 · e
− (V + 5)

20.28 + 10.6 · e
V

18

.

L-type Ca2+ current (ICaL)

ICaL = (IsiCa + IsiK + IsiNa)

IsiCa =
2 · PCaL · V

RT
F
·

1− e

−2 · V
RT
F


·

Casub − Cao · e
−2 · V
RT
F

 · dL · fL · fCa

IsiK =
0.000365 · PCaL · V

RT
F
·

1− e

−V
RT
F


·

Ki−Ko · e
−V
RT
F

 · dL · fL · fCa

IsiNa =
0.0000185 · PCaL · V

RT
F
·

1− e

−V
RT
F


·

Nai −Nao · e
−V
RT
F

 · dL · fL · fCa

with PCaL = 0.2 nA/mM whereas dL, fL and fCa are the gating variables of ac-

tivation, inactivation and inactivation calcium-dependent, respectively, satisfying

(2.7) with coefficients

dL∞ =
1

1 + e

− (V + 20.3)

4.2

τdL =
0.001

αdL + βdL

αdL =
−0.02839 · (V + 41.8)

e

− (V + 41.8)

2.5 − 1

− 0.0849 · (V + 6.8)

e

− (V + 6.8)

4.8 − 1

βdL =
0.01143 · (V + 1.8)

e

V + 1.8

2.5 − 1
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fL∞ =
1

1 + e

V + 37.4

5.3

τfL = 0.001 ·

44.3 + 230 · e
−

V + 36

10

2


fCa∞ =
KmfCa

KmfCa + Casub
τfCa =

0.001 · fCa∞
αfCa

T-type Ca2+ current (ICaT )

ICaT =
2 · PCaT · V

RT
F
·

1− e

−2 · V
RT
F


·

Casub − Cao · e
−2 · V
RT
F

 · dT · fT

with PCaT = 0.2 nA/mM whereas dT , fT are the gating variables of activation

and inactivation, respectively, satisfying (2.7) with coefficients

dT∞ =
1

1 + e

− (V + 38.3)

5.5

τdT =
0.001

1.068 · e
V + 38.3

30 + 1.068 · e
− (V + 38.3)

30

fT∞ =
1

1 + e

V + 58.7

3.8

τfT =
1

16.67 · e
− (V + 75)

83.3 + 16.67 · e
V + 75

15.38

Rapidly activating delayed rectifier K+ current (IKr)

IKr = gKr · (V − EK) · (0.9 · paF + 0.1 · paS) · pi
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with gKr = 0.00021637 µS, where paF and paS are the gating variables of fast and

slow inactivation, respectively, while pi is the inactivation variable. All the gating

variables satisfy (2.7) with coefficients

pa∞ =
1

1 + e

− (V + 14.8)

8.5

τpaF =
1

30 · e
V

10 + e

−V
12

τpaS =
0.84655

4.2 · e
V

17 + 0.15 · e
−V
21.6

dpaS

dt
=
pa∞ − paS

τpaS

pi∞ =
1

1 + e

V + 28.6

17.1

τpi =
1

100 · e
−V

54.645 + 656 · e
V

106.157

Slowly activating delayed rectifier K+ current (IKs)

IKs = gKs · (V − EK) · n2

with gKs = 0.001657 µS and n is a gating variable of activation satisfying (2.7)

with coefficients

n∞ =

14

1 + e

− (V − 40)

9

14

1 + e

− (V − 40)

9

+ 1 · e
−V
45

τn =
1

28

1 + e

− (V − 40)

3

+ e

− (V − 5)

25
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Ach-activated K+ current (IKACh)

IKACh =

 gKACh · (V − EK) ·

1 + e

V + 20

20

 · a, if ACh > 0

0, otherwise

with gKACh = 0.00864 µS and a is a gating variable satisfying (2.4) with coefficients

a∞ =
αa

αa + βa

αa =
3.5988− 0.0256

1 +
0.0000012155

(1 · ACh)1.6951

+ 0.0256

βa = 10 · e0.0133·(V+40)

τa =
1

αa + βa

Transient outward K+ current (Ito)

Ito = gto · (V − EK) · q · r

with gto = 0.002 µS and q and r are the gating variables of activation and inacti-

vation, respectivey satisfying (2.7) with coefficients

q∞ =
1

1 + e

V + 49

13

τq = 0.001 · 0.6
(

65.17

0.57 · e−0.08·(V+44) + 0.065 · e0.1·(V+45.93)
+ 10.1

)
r∞ =

1

1 + e

− (V − 19.3)

15

τr = 0.001 · 0.66 · 1.4 ·
(

15.59

1.037 · e0.09·(V+30.61) + 0.369 · e−0.12·(V+23.84)
+ 2.98

)
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Na+ current (INa)

INa = gNa ·m3 · h · (V − Emh)

with gNa = 0.0125 µS and m and h are gating variables satisfying (2.4) with

coefficients

Emh =
RT

F
· ln Nao + 0.12 ·Ko

Nai + 0.12 ·Ki

E0m = V + 41

δm = 1 · 10−5 mV

dm

dt
= αm · (1−m)− βm ·m

αm =

 2000, if |E0m| < δm
200 · E0m

1− e−0.1·E0m
, otherwise

βm = 8000 · e−0.056·(V+66)

dh

dt
= αh · (1− h)− βh · h

αh = 20 · e−0.125·(V+75)

βh =
2, 000

320 · e−0.1·(V+75) + 1

Na+ −K+ pump current (INaK)

INaK = INaKmax·

(
1 +

(
KmKp

Ko

)1.2
)−1

·

(
1 +

(
KmNap

Nai

)1.3
)−1

·

1 + e

− (V − ENa + 110)

20

−1



105

Na+ − Ca2+ exchanger current (INaCa)

INaCa =
KNaCa · (x2 + ·k21− x1 · k12)

x1 + x2 + x3 + x4

x1 = k41 · k34 · (k23 + k21) + k21 · k32 · (k43 + k41)

x2 = k32 · k43 · (k14 + k12) + k41 · k12 · (k34 + k32)

x3 = k14 · k43 · (k23 + k21) + k12 · k23 · (k43 + k41)

x4 = k23 · k34 · (k14 + k12) + k14 · k21 · (k34 + k32)

k43 =
Nai

K3ni+Nai

k12 =

Casub
Kci

· e

−Qci · V
RT
F

di

k14 =

Nai
K1ni

·Nai
K2ni

·
(

1 +
Nai
K3ni

)
· e

Qn · V
2 · RT

F

di

k41 = e

−Qn · V
2 · RT

F

di = 1 +
Casub
Kci

·

1 + e

−Qci · V
RT
F +

Nai
Kcni

+
Nai
K1ni

·
(

1 +
Nai
K2ni

·
(

1 +
Nai
K3ni

))

k34 =
Nao

K3no+Nao

k21 =

Cao
Kco

· e

Qco · V
RT
F

do

k23 =

Nao
K1no

·Nao
K2no

·
(

1 +
Nao
K3no

)
· e

−Qn · V
2 · RT

F

do
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k32 = e

Qn · V
2 · RT

F

do = 1 +
Cao
Kco

·

1 + e

Qco · V
RT
F

+
Nao
K1no

·
(

1 +
Nao
K2no

·
(

1 +
Nao
K3no

))

Ca2+ release flux (Jrel) from SR via RyRs

Jrel = ks ·O · (Cajsr − Ca− sub)

kCaSR = MaxSR− MaxSR−MinSr

1 +

(
EC50SR
Cajsr

)HSR
koSRCa =

koCa

kCaSr
kiSRCa = kiCa · kCaSR

dR

dt
= kim ·RI − kiSRCa · Casub ·R−

(
koSRCa · Ca2

sub ·R− kom ·O
)

dO

dt
= koSRCa · Ca2

sub ·R− kom ·O − (kiSRCa · Casub ·O − kim · I)

dI

dt
= kiSRCa · Casub ·O − kim · I

(
kom · I − koSRCa · Ca2

sub ·RI
)

dRI

dt
= kom · I − koSRCa · Ca2

sub ·RI − (kim ·RI − kiSRCa · Casub ·R)

Intracellular Ca2+ fluxes

Jdiff : Ca
2+ diffusion flux from submembrane space to myoplasm;

Jtr: Ca
2+ transfer flux from the network to junctional SR;

Jup: Ca
2+ uptake by the SR.

Jdiff =
Casub − Cai

τdifCa

Jtr =
Cansr − Cajsr

τtr

Jup =
Pup

1 +
Kup

Cai
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Ca2+ buffering

fCMi: Fractional occupancy of calmodulin by Ca2+ in myoplasm

fCMs: Fractional occupancy of calmodulin by Ca2+ in subspace

fCQ: Fractional occupancy of calsequestrin by Ca2+

fTC : Fractional occupancy of the troponin-Ca2+ site by Ca2+

fTCM : Fractional occupancy of the troponin-Mg2+ site by Ca2+

fTMM : Fractional occupancy of the troponin-Mg2+ site by Mg2+

dfCMi

dt
= δfCMi

δfCMi = kfCM · Cai · (1− fCMi)− kbCM · fCMi

dfCMs

dt
= δfCMs

δfCMs = kfCM · Casub · (1− fCMs)− kbCM · fCMs

dfCQ

dt
= δfCQ

δfCQ = kfCQ · Cajsr · (1− fCQ)− kbCQ · fCQ
dfTC

dt
= δfTC

δfTC = kfTC · cai · (1− fTC)− kbTC · fTC
dfTMC

dt
= δfTMC

δfTMC = kfTMC · Cai · (1− (fTMC + fTMM))− kbTMC · fTMC

dfTMM

dt
= δfTMM

δfTMM = kfTMM ·Mgi · (1− (fTMC + fTMM))− kbTMM · fTMM

Dynamics of Ca2+ concentrations in cell compartements

dCai

dt
=

(
Jdiff · Vsub − Jup · Vnsr

Vi
− (CMtot · δfCMi + TCtot · δfTC + TMCtot · δfTMC)

)
dCasub

dt
=

(
Jrel · Vjsr
Vsub

−
(
ISiCa + ICaT − 2 · INaCa

2 · F · Vsub
+ JCadif + CMtot · δfCMs

))
dCansr

dt
= Jup −

Jtr · Vjsr
Vnsr

dCajsr
dt

= Jtr − (Jrel + CQtot · δfCQ)
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Dynamics of intracellular Na+ concentration

dNai
dt

= −INa + IfNa + IsiNa + 3 · INaK + 3 · INaCa
(Vi + Vsub) · F
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