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Abstract 
 

Experiments and numerical investigations on trapped electron plasmas and traveling electron 

bunches are discussed.   

A Thomson backscattering diagnostics set up was installed in the ELTRAP (Electron TRAP) device, a 

Penning-Malmberg trap operating at the Department of Physics of the University of Milano since 

2001. Here, an infrared (IR) laser pulse collides with nanosecond electron bunches with an energy 

of 1-20 keV traveling through a longitudinal magnetic field in a dynamical regime where space-

charge effects play a significant role. The backscattered radiation is optically filtered and detected 

by means of a photomultiplier tube. The minimum sensitivity of the backscattering diagnostics has 

been estimated for the present set-up configuration. Constraints on the number of photons and 

thus on the information one can obtain with the Thomson backscattering technique are 

determined by the relatively low density of the electron beam as well as by noise issues. Solutions 

to increase the signal level and to reduce the noise are briefly discussed. 

 

The generation of an electron plasma by stochastic heating was realized in ELTRAP under ultra-

high vacuum conditions by means of the application of low power RF (1-20 MHz) drives on one of 

the azimuthally sectored electrodes of the trap. The relevant experimental results are reviewed. 

The electron heating mechanism has been studied by means of a two-dimensional (2D) particle-in-

cell (PIC) code, starting with a very low electron density, and applying RF drives of various 

amplitudes in the range 1-15 MHz on different electrodes. The axial kinetic energy of the electrons 

is in general increasing for all considered cases. Of course, higher temperature increments are 

obtained by increasing the amplitude of the RF excitation. The simulation results indicate in 

particular that the heating is initially higher close to the cylindrical wall of the device. These results 

on the electron heating point in the same direction of the experimental findings, where the 

plasma formation due to the ionization of the residual gas is found to be localized close to the trap 

wall.  The simulations indicate also major heating effects when the RF drive is applied close to one 

end of the trap. Similar results are obtained for an electron plasma at higher densities, simulating 

a situation in which the RF is applied to an already formed plasma.  

 

With the aim to extend these RF studies to the microwave range, a bench test analysis has been 

performed of the transmission efficiency of a microwave injection system up to a few GHz. The 
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test was based on the use of a prototype circular waveguide with the same diameter and length of 

the ELTRAP electrode stack and of a coupled rectangular waveguide with dimensions suitable for a 

future installation in the device. 

 

Electromagnetic PIC simulations have also been performed of the electron heating effect, again 

both at very low and relatively high electron densities, applying a microwave drive with a 

frequency of approximately 3 GHz close to the center and close to one end of the trap.   

 

Both the bench test of the injection system and the numerical simulations indicate that the new 

microwave heating system will allow the extension of the previous RF studies to the GHz range.  In 

particular, the electron cyclotron resonance heating of the electrons will be aimed to increasing 

the electron temperature, and possibly its density as a consequence of a higher ionization rate of 

the residual gas. The installation of the new RF system will open up the possibility to study, e.g., 

the interaction between the confined plasma and traveling electron bunches. 
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Chapter ONE 

 

 

1.1 Overview of non-neutral plasmas 

 

A considerable progress has been made in the physics of non-neutral plasmas with the use of 

Penning traps in the last few decades. Penning traps have gained increasing importance also in the 

field of experimental nuclear physics and play an important role in many other fields, like the 

study of nuclear structure and beam physics. E.g., there are a variety of applications for trapped 

positrons in Penning-like traps, such as the study of the electron-positron plasmas, the search for 

resonance states in electron-positron scattering experiments, positron annihilation studies, the 

production of low emittance positron beams and the formation of anti-hydrogen [14-18]. In a 

different research field, the investigation of electron plasmas in carefully prepared conditions 

turns out to be equivalent to direct experiments on two-dimensional, almost dissipation-less, 

fluids. Thus, basic fluid dynamics issues often connected with a variety of applications can be 

studied using traps for electron plasmas. Non-neutral plasma physics play an important role in 

beam transport systems and coherent radiation devices such as free electron lasers, cyclotron 

auto-resonance masers and magnetrons. Pulsed electron beams are used in a wide range of 

applications, for example to generate coherent X-rays in free electron laser (FEL) and in Thomson 

back-scattering X-ray sources. Electron beams are also used to generate intense ion beams with 

electron-beam-ion-sources (EBIS). 

 

Reviews of the physics of non-neutral plasmas are available in two remarkable books by Ronald C. 

Davidson entitled “Theory of non-neutral plasmas” (Benjamin, 1974) and “Physics of non-neutral 

plasmas” (Imperial College Press and World Scientific, 2001). A general review about trapped pure 

electron plasmas can be found in the papers by T. M. O’Neil [4-10].  

  

1.2 Physics of a single-component plasma in a Penning Trap 

 

A non-neutral plasma is a many-body collection of charged particles in which there is not overall 

charge neutrality. Such systems are characterized by intense self-electric fields (space-charge 
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fields), and in high-current configurations by intense self-magnetic fields. Examples of non-neutral 

plasma systems include:  

 

1. One-component nonneutral plasmas confined in Malmberg-Penning traps.  

2. Intense charged particle beams and charge bunches in accelerators, transport lines, and 

storage rings.  

3. Coherent radiation sources (magnetrons, gyrotrons, free electron lasers).  

 

Non-neutral plasmas have a number of experimental advantages over their neutral counterparts. 

Due to the conservation of canonical angular momentum (see next section), the radial diffusion of 

a non-neutral plasma is strongly limited, allowing for theoretically infinite confinement times. 

Most experimental studies are conducted in cylindrically symmetric Penning traps, in which radial 

confinement is achieved by a homogeneous magnetic field and axial confinement is achieved by 

an externally imposed electrostatic potential well formed by negative (electrons trapping) or 

positive (ions trapping) biasing two cylindrical electrodes. The behavior of the plasma depends on 

the quality of vacuum used in the experiments. E.g., in the ELTRAP apparatus operating at the 

Department of Physics of the University of Milano, three different pumps working efficiently in 

different regimes of pressure are used to achieve ultra-high vacuum conditions. A first volumetric 

scroll pump, a turbo-molecular pump and an ion pump allow to reach a working pressure in the 

vacuum chamber of ( )98 1010 −− −  mbar. 

 

Non-neutral plasma exhibit a wide range of collective properties like neutral plasmas, such as 

plasma waves, instabilities, and Debye shielding. For example, the dispersion relation for Langmuir 

waves in a pure electron plasma is the same as that in a neutral plasma (except for the Doppler 

shift associated with the rotation of the electron plasma). Non-neutral plasma exhibit also Debye 

shielding [11, 17].  

 

1.3 Confinement theory and limitation 

 

Despite the presence of a self-repelling electric field, it is easier to confine a non-neutral plasma 

than to confine a neutral plasma. The radial confinement of a non-neutral plasma can be 

understood in terms of the total canonical angular momentum, given by 
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where , ,   i i im v r and qθ are the mass, azimuthal velocity, radial position, and charge of 

the thi particle, respectively. For a sufficiently high magnetic field, the vector potential contribution 

in the angular momentum dominates over the mechanical part.  Hence  
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For a cylindrically symmetric system, the total canonical angular momentum θP  is a constant of 

motion. Thus, the mean squared radius of a collection of like-charged particles is constant. Only a 

small fraction of the particles in such a collection can escape to a large radial position; the rest will 

always remain confined. Therefore, non-neutral plasmas are unique in the sense that the 

conservation of total canonical angular momentum provides a limitation on the allowed radial 

positions of the particles: if no external torques act on the plasma, the plasma cannot expand to 

the walls and in principle it can be confined forever. The theorem states that the sum ∑
=

N

i
ir

1

2 can 

change significantly only as a result of external torques and since the angular momentum of each 

particle depends on its sign of charge, electrons and ions can move to the wall together while the 

sum is preserved. 

 

In practice there are some additional issues with the radial confinement of a plasma within a 

Penning trap. The most important of these issues are machine construction errors, field 

imperfections and collisions with the background gas (electron-neutral collisions). E.g., a fraction 

of neutrals (typically H2) is always present inside the trap, and the collisions between the neutrals 

and the charged plasma column applies a torque which can alter the mean squared radius of the 

charged particles and allow the plasma to expand. This causes the collection of like charged 

particles to have a finite confinement time. The presence of unavoidable field imperfections is also 

the source of external torques which allow some of the plasma to reach the wall by increasing its 

mean square radius. This means that θP  is, for any realizable trap, only approximately a constant 

of the motion. However, by minimizing field errors and maintaining a good vacuum to minimize 
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the effect of neutrals, confinement times of several days have been achieved for pure nonneutral 

plasmas [4, 6].  

 

1.4 Motivation 

 

The Penning-Malmberg trap ELTRAP has been used in the past for the study of collective modes on 

low-temperature electron plasmas. Recently, the device has been modified in order to perform 

studies on the dynamics of space-charge dominated low-energy (1–20 keV) nanosecond (4–5 ns) 

electron bunches produced by a photocathode source illuminated by a pulsed ultraviolet (UV) 

laser. Plasma collective effects tend to break the spatial coherence of charged particles beams, 

determining a fundamental limit on the beam brightness obtainable in accelerating devices. The 

control and diagnostics of these collective behaviors are therefore very important to achieve and 

maintain the desired beam properties. The longitudinal dynamics of the electron bunches has 

been characterized with different diagnostics, like electrostatic pick-ups and an optical system 

based on a phosphor screen and a Charge-Coupled Device (CCD) camera. The presence of 

longitudinal space-charge effects has been evidenced even at relatively low bunch density 

of 38103.4 −×= cmnb . The minimum sensitivity of the diagnostics was estimated in two different 

set-ups of the Thomson backscattering diagnostics by measuring the noise and computing the 

expected signal with a theoretical estimate of the scattered photons in relativistic regime. In the 

first set-up the laser beam was maintained collimated and the interaction could be moved in 

principle along the drift-tube. In the second set-up the laser is focused in a particular point to 

optimize the solid angle and the number of collected photons. In the first set-up (with a collinear 

laser injection) a sensitivity of 14 photoelectrons was estimated (for a bunch laser matched 

interaction), corresponding to a density of 31110 −cm , while in a second set-up (with a focused laser 

injection) the measured sensitivity was 7 photoelectrons for a density of 310106.3 −× cm . These 

result shows that the present bunch density is three order of magnitude less than the desired 

density.  

 

The primary focus of this research work was to evaluate the sensitivity of the system installed in 

the ELTRAP device to perform the Thomson backscattering experiment. A series of upgrades have 

been implemented or are under way, aimed at increasing the signal to noise ratio (S/N). The 

solutions to increase the signal level and to reduce the noise issues are briefly discussed in chapter 
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2. These noise issues include the residual stray light of the UV and IR laser beam, the coherent 

noise produced by the IR and UV laser discharges and the electronic noise.  

 

Numerical investigations performed by means of a commercial two-dimensional particle-in-cell 

code clarify the process of generation of an electron plasma by means of the application of a RF 

electric field to one of the trap electrodes under ultra-high vacuum conditions, observed in the 

experiments at low drive frequencies (1-20 MHz) and predict the plasma heating resulting from 

high frequency (cyclotron) drives (2-3 GHz). In addition to simulation studies a bench test analysis 

has been performed of the RF transmission efficiency of a RF injection system up to a few GHz to 

be installed in the Malmberg-Penning trap (ELTRAP) for the generation and heating of an electron 

plasma. The new heating system will allow the extension of the previous RF studies to the GHz 

range.  In particular, resonant cyclotron excitation of the RF-generated plasma will be aimed at 

increasing the electron temperature and possibly its density as a consequence of a higher 

ionization rate of the residual gas. In the prospected solution the installation of the new RF system 

will open up the possibility to study, e.g., the interaction between the confined plasma and a 

traveling electron bunch.  

 

1.5 Layout of the thesis 

 

The remainder of the thesis is organized as follows:  

Chapter 2 contains a description of the Malmberg–Penning trap (ELTRAP) apparatus and the major 

tools employed in the Thomson backscattering diagnostics, an estimate of the minimum sensitivity 

of the diagnostics and the possible improvements to be implemented in order to get the desired 

signal to noise ratio (S/N).  

 

In chapter 3, studies of the wave-particle interactions in a non-neutral plasma are presented. The 

evidence of the electron plasma generation in ELTRAP by means of a low power radio frequency 

(RF) drive in the MHz range (1-20 MHz) applied on one of the trap electrodes under ultra-high 

vacuum (UHV) conditions is demonstrated. The theory of stochastic heating through a Fermi 

acceleration mechanism is also briefly examined. 

 

In chapter 4, the design of the microwave transmission apparatus is briefly described. The 

microwave injection has been studied in a prototype circular waveguide, with the same 
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geometrical parameter (diameter 9 cm and length 102 cm) as that of the electrode stack of the 

ELTRAP device. The technical issues are properly addressed. Attenuations, waveguide modes 

transform and excitation technique are described. The details of power flow measurements 

devices as well as the transmission efficiency and return loss measurements are presented to 

predict the input and output power in ELTRAP. 

 

Chapter 5 deals with Particle-In-Cell simulations of the RF heating of an electron plasma in a 

Malmberg-Penning trap. A realistic geometry of the ELTRAP device is used and the numerical 

simulations are used to clarify the underlying mechanisms involved in previous experimental 

measurements. Finally, conclusions are given in chapter 6.  
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Chapter TWO 

 

 

Experimental system and Thomson backscattering diagnostics 

 

2.1    The Malmberg-Penning trap ELTRAP 

 

The ELTRAP device installed at the Department of Physics of the University of Milano is a 

Malmberg-Penning trap, with a magnetic field up to 0.2 T, equipped with a charge coupled device 

optical diagnostics. It is intended to be a small scale facility for electron plasma and beam 

dynamics experiments, and in particular for the study of collective effects, equilibrium states, and 

the formation of coherent structures in these systems [58]. Modifications and updates have been 

implemented in ELTRAP aimed at performing studies on the dynamics of space-charge dominated 

nanosecond electron bunches traveling along the magnetic field. In particular, a Thomson 

backscattering apparatus has been developed where an infrared (IR) laser pulse collides with the 

bunched electron beam. The frequency shifted backscattered radiation, acquired by means of a 

photomultiplier (PMT), can be exploited to evaluate information on energy, energy spread and 

density of the bunch. The achievable sensitivity of the diagnostics has been estimated, and 

valuable information on the main parameters affecting the signal-to-noise (S/N) ratio has been 

obtained.  

 

In this chapter a brief description of the experimental set-up (trap electrodes assembly, vacuum 

system, magnetic field, electron source, 2D beam scanner, etc.) are given. A schematic description 

of the Thomson backscattering diagnostic for the study of nanosecond electron bunches in high 

space-charge regime and its challenging limitations as well as an estimate of the ELTRAP set-up 

minimum sensitivity of present experimental system are also presented. 

 

 

2.2 Electrode assembly 
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The electrode assembly of the ELTRAP device consists of ten OFHC (oxygen-free high conductivity) 

copper cylinders, which are mounted (independently) on a holding aluminum (Al) bar held at 

ground as shown in figure 2.1. Eight cylinders (C1 to C8) have a length of 9 cm while electrodes S2 

and S4, azimuthally sectored into two and four patches, respectively, have a length of 15 cm. All 

electrodes have a diameter of 9 cm and the inter-electrode spacing (obtained with macor 

insulators) is 1 mm. Two of the cylinders are segmented azimuthally, allowing the detection 

and/or the excitation of azimuthal charge perturbation modes: One cylinder has two insulated 

sectors, positioned 180° from each other, and the other four insulated sectors (S4, shown in figure 

2.2), at 90° from each other. The electrode stack is housed in a stainless-steel vessel kept at 

pressures in the ultra-high vacuum range ( )89 1010 −− −  mbar to reduce collisional effects. The axial 

confinement of electrons is provided by negative voltages applied to two electrodes, and the 

resulting length of the plasma column can be varied from about 18 to 80 cm. 

 
Figure 2.1 Picture and schematic of the internal OFHC electrodes assembly aligned and mounted 
on an aluminum bar, with the circuits used to measure the induced charge signals induced (e.g., 
on electrodes S2 and C4). Bottom: indicative scheme of the electrode potentials, with 
confinement between electrodes C1 and C8 biased at a negative voltage V and RF drive of 
amplitude ‘A’ on C7.  
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Figure 2.2 Picture of an azimuthally four sectored electrode, built of four insulated parts. 
 
 

The potentials on the electrodes are controlled by an eight-channel waveform generator (time 

resolution 100 ns, voltage range ±100 V). All electrodes are connected with coaxial kapton 

insulated wires, compatible with high and ultra-high vacuum situations, with an impedance of 50 

Ω. These transmission lines were measured and characterized with a reflectometry sending a pulse 

with a FWHM of 8 ns and receiving the reflected signal with an oscilloscope with 1 GHz bandwidth. 

These measurements are needed when the required bandwidth is limited by mismatches in the 

cable-feed through transitions and by the electrode capacitances. These effects becomes 

significant for frequencies greater than a few hundred MHz and are of fundamental importance in 

our case, to eliminate spurious effect of the distortions in the signal produced by the fast 

electrostatic beam diagnostics.  

 

2.3 Vacuum system 

 

A 25 cm diameter and 175 cm long vacuum tube, made of AISI 316L stainless steel to minimize 

magnetic field perturbations, encloses the electrodes. The chamber is equipped with a pumping 

system composed by three different pumps working efficiently in different regimes of pressure to 

achieve UHV conditions. A first volumetric scroll pump reduces the atmospheric pressure to about 

10−3 mbar, a turbo-pump then reduces the pressure to about 10−7 mbar and an ion pump stabilizes 

the working pressure of the vacuum chamber at ( )98 1010 −− −  mbar. The turbo and the ion pumps 

can be isolated from the main chamber by means of an electro pneumatic stainless steel valves. 

These can be used, e.g., to increase the residual gas pressure in order to study the effect of 

collisions with neutrals on transport processes. The pressure in the chamber is measured with 
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three different vacuum gauges: a convection gauge working at a pressure ≥ 10−3 mbar, a cold 

cathode Penning type gauge working at ≥ 10−8 mbar and a nude ionization gauge working below 
610− mbar. Since the pumping speed changes for different gases, the residual gas in the chamber 

should be mainly composed by molecules like Hydrogen and noble gases. Baking processes with 

heating bands that promote the degassing from the chamber walls are used to reach the final 

pressure in a shorter time. 

 

2.4 Magnetic Field 

 

The magnetic field used for the radial confinement of the electrons is generated by a normal-

conducting solenoid of length 1.5 m with an inner diameter of 32 cm, corrected by 4 shims and 16 

dipole coils, in order to obtain a large uniform magnetic field region. The solenoid consists of 

different layers of conductors connected in series and cooled by parallel water fluxes. In addition, 

the solenoid is enclosed in a soft iron cage made of two square end plates and twelves axial bars: 

this simplifies the support system, and also represents a shield against the Earth’s magnetic field. 

The solenoid current is generated and controlled by a digitally controlled power supply with a 

current drift 510 /dI A h
dt

− = 
 

, a maximum current of ≤ 600 A and a maximum voltage of ≤ 120 V.  

 

 
Figure 2.3 Schematic of the cylindrical electrodes assembly within the vacuum chamber with the 
reentrant flange, the pumping system and the solenoid with the iron yoke of ELTRAP. The iron 
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structures used to generate the magnetic field and some shims positioned at the coil ends 
concentrate the field’s lines to the axis. The coil is made of three windings connected in series.   
 

The maximum magnetic field strength obtained in the central region is 0.2 T. The field uniformity 

is better than 10−3 within a distance (from the center of the magnet) of 50 cm, and within a radius 

of 5 cm around the axis. Four additional dipolar coils are used to correct the axial direction of the 

main magnetic field. The schematic of the cylindrical electrodes assembly within vacuum chamber 

with a reentrant flange, the pumping system and the solenoid with the iron yoke of the ELTRAP 

device is shown in figure 2.3. 

 

2.5 Electron source and 2D beam scanner  

 

The source used for the generation of electron bunches is a barium-impregnated tungsten 

photocathode positioned at the end of the vacuum chamber and aligned to the geometrical axis of 

the trap. The properties of the electron bunches right after the emission are determined by the 

main parameters of the incident laser, the target (electron source) and the extraction geometry. 

We used a 337 nm ultraviolet (UV) nitrogen gas laser with a pulse duration ≤ 4 ns, an energy per 

pulse ≤ 400 mJ and a repetition rate up to 30 Hz. The laser is aligned to the source by means of 

movable UV silica mirrors. The laser beam has an original size of 7 × 7 mm reduced by a circular 

pin-hole to a diameter of 5 mm. The UV laser impinges on the photocathode mounted on an 

alumina body with an active area of diameter 6.35 mm. An internal heater, supplied by a current 

generator in the 0 – 2 A range, is used to reach the working temperature of C0 1200900 − needed 

for the surface activation of the source. The whole target and its housing are set to a negative 

electrostatic potential of 1−20 kV, so that an electron cloud is extracted out of the source as a 

quasi-monochromatic bunch by a simple extractor made of a grounded plate with a central hole of 

12 mm diameter (anode ring). Stationary beams can also be produced by thermionic emission, 

heating the photocathode at a higher temperature. The photocathode is immersed in an auxiliary 

magnetic field, generated by two Helmholtz coils, that can be raised to 50 G, with a 0.5G 

uniformity over a distance of 13mm from the emitter. This auxiliary magnetic field provides the 

initial focusing of the electrons. Then the bunch enters in the region with the main magnetic field 

where its original spot-size is radially compressed. The bunch should then interact with a high 

power Nd:Yag laser beam (≈1 J energy per pulse and 1064 nm wavelength) in the vacuum 

chamber.  
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Due to misalignments of the photocathode source and to small inhomogeneities of the magnetic 

field, the electron bunch reaches the end of the electrode stack with an appreciable offset 

(detected by means of a phosphor screen in previous experiments). The spatial matching between 

the laser beam and the electron bunch is ensured by an automated steering system. After aligning 

the IR laser beam with the trap mechanical axis, a radially movable Faraday cup is centered on the 

axis with the help of the IR laser itself. Then the bunch trajectory can be corrected by means of a 

so-called beam scanner. This is an electronic circuit that adjusts the currents flowing in two 

orthogonal sets of dipole coils in the transverse plane (by means of two synchronized sawtooth 

signals so that the bunch trajectory is steered in both X and Y directions). The two sets of 

correcting dipoles wound around the main solenoid (see figure 2.5) steer / deflect the bunch 

trajectory until the bunch transverse position reaches the interaction point. The optimal values of 

the currents are set by maximizing the electron beam charge signal detected by the Faraday cup. A 

schematic diagram of the self-alignment digitally controlled beam scanner, the electron source, 

the UV and IR laser and the Faraday cup is shown in figure 2.4 [64].  

 

 

 

 
Figure 2.4 Schematic of the digitally controlled 2D beam scanner system for the electron bunch 
alignment at focal point of the infrared laser beam on the geometrical axis of the trap. 
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2.6 Thomson Backscattering diagnostics and limitations 

 
The ELTRAP device was originally a trap for non-neutral plasmas but it was used here for the study 

of the dynamics of nanosecond electron bunches in high space charge regime with a Thomson 

backscattering diagnostics. The developments in high-power lasers, optical technologies and 

photon-counting techniques have made possible the use of this technique even in relatively low-

temperature plasmas with electron densities down to a few 31010 −cm and the minimization of the 

noise is the main challenge for the detection of lower density beams. Our typical bunch densities 

and energies allow us to study space-charge phenomena that can also be scaled to high-energy, 

high-brilliance beams of interest in the accelerator and high-energy physics community. The 

backscattering technique is a good alternative to the electrostatic diagnostics used to characterize 

beams and bunches of energies of the order or greater than a few keV. The main advantages are 

the non-perturbative nature of this diagnostics and the potential to offer a wealth of information. 

The analysis of the radiation spectrum can give information on the beam longitudinal energy and 

energy spread, while the intensity of the scattered radiation is related to the bunch density. 

  

A Thomson backscattering diagnostic apparatus has been implemented in ELTRAP, based on a 5 

ns, 1064 nm, Nd:YAG laser pulse interacting with the traveling electron bunch as shown in diagram 

2.5. Our aim is the study of bunches in the 8 10 310 10 cm−− range. A previous characterization of the 

electron bunch showed that space-charge effects are relevant even at the relatively low density of 

some 3810 −cm . Obviously, the density puts constraints on the number of photons and thus on the 

information one can obtain with the Thomson backscattering technique.  

The Thomson scattering between a photon and an electron results in a wavelength shift,  

 

β
θβλλ

+
−

=
1

cos1
is                                                   3.1 

 

where iλ and sλ  are the wavelengths of the incident and scattered radiation, 

respectively, cv=β  is the ratio between the electron velocity and the speed of light, and θ is the 

scattering angle, i.e., the angle between the directions of the incident and scattered radiation. For 

beam energies of the order of 10–20 keV, the backscattered radiation turns out to be in the visible 

range, and is detected with a photomultiplier (PMT). An Electron Tubes 9113B PMT with a 

detection range 300−800 nm is used for the optical collection of scattered photons. In order to 
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increase the solid angle and to get as close as possible to ideal backscattering conditions, the PMT 

is positioned as close as possible to the viewport and to the longitudinal axis of the machine. 

However, the volume occupation of the device limits the minimum distance from the axis to h ≥ 30 

mm. In order to reduce the stray light, filters have been placed in front of the PMT according to 

the expected spectrum of the scattered light. This filter package also limits the solid angle 

acceptance of the detector, thus reducing the relative contribution of the stray light in the 

detected signal.  

 
Figure 2.5 Sketch of the Thomson backscattering diagnostic set-up. A pulsed electron bunch is 
extracted by an UV laser beam impinging on a photocathode set at a potential of 1-20 kV. The 
bunch is focused by the axial magnetic field B ≤ 0.2 T of the trap. The trap electrode S4 can be 
used to detect the bunch crossing via induced current.  A 2D beam scanner, combined with the 
charge readout from a Faraday cup, sets the current flowing in two orthogonal sets of dipole 
coils and deflects the bunch transversally until the bunch transverse position reaches the 
desired interaction point. The radiation of an IR laser is filtered and focused onto the same 
interaction point by a suitable optical system. The backscattered radiation is optically filtered 
and detected by a photomultiplier (PMT). 
 

Indeed, although conceptually simple the realization of the Thomson backscattering experiment 

presents several complications and limitations. First of all, the main limitations is the relatively low 

density of the electron beam as well as noise issues which limit the photon detection capabilities. 

Second, the short duration and the small cross section of both electron bunches and laser pulses 

(below 1 mm) require an accurate time and space coincidence. Third, the duration of both laser 

and electron pulses requires a timing with an accuracy ≤ 1 ns. Moreover, the situation is 
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complicated by the UV laser jitter being of the order of 20 ns. The implementation of a system for 

the time coincidence, i.e., the simultaneous arrival of the electron and laser bunch in the 

interaction point, is therefore mandatory. The Faraday cup and the electrostatic signal from the S4 

electrode are used for the laser-bunch time coincidence while the beam scanner is used to 

compensate for small mismatches in the relative transverse position of electron and laser pulses 

for the space coincidence. With the present setup, the estimated sensitivity of the Thomson 

diagnostics corresponds to a detectable density beyond the yield of the photocathode source.  

Noise sources include the coherent disturbance produced by the IR and UV laser discharges and 

the noise due to the detection electronics. The electronic noises can be reduced by using suitable 

low-noise amplifiers for the PMT signal, but the detection capability of the backscattered photons 

is strongly limited by the stray light due to reflections/reemissions of the laser radiation from the 

internal structures of the trap. Suitable optical and filtering systems have been introduced to 

reduce this effect, both for the injection of the IR radiation (reducing both the laser higher 

harmonics content and the entrance of the flash lamp light), and for the detection of the scattered 

photons (limiting the bandwidth of the PMT to an interval in the visible range). Of course, the 

optimization of the noise suppression affects the intensity of the useful signal as well. To reduce 

the complication of the time coincidence system and additionally to increase the electron bunch 

density, a new UV laser has been implemented very recently, which features a higher pulse energy 

and a jitter of about 1 ns [64].  

  

2.6.1 Estimate of the minimum sensitivity 

 

In order to estimate the minimum density detectable with our Thomson backscattering set-up we 

define the sensitivity as the amplitude of the signal detected by the PMT equivalent to the noise 

i.e. the signal amplitude which is necessary to obtain a signal-to-noise ratio (S/N) equal to 1. The 

noise level is experimentally measured for the present set-up configuration and includes the 

residual stray light of the UV and IR laser beam, the coherent noise produced by the IR and UV 

laser discharges and the electronic noise. The PMT residual signal after subtracting the coherent 

noise component for three different averaging times, i.e. 0.1, 1 and 5 s, corresponding to the 

signals of 1, 10, 50 shots respectively shown in figure 2.6. The maximum computed root-mean-

square (RMS) noise level were taken for ten different measurements and the maximum values are 

1028 μV averaging on 10 shots and 736 μV averaging on 50 shots for averaging times of 1 and 5 s, 

respectively. The average is not extended to much more than 50 signals due to relatively long time 
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drifts in the stray light produced by the IR and UV lasers, which make the averaging-subtracting 

technique ineffective. To measure the expected time of the scattered light a time-resolved 

technique was used. The Faraday cup is positioned near to the laser trajectory until a portion of 

the laser beam hits the ceramic back face of the Faraday cup. The diffused light is acquired by the 

PMT and occur at a time of ≈ 2 ns before the stray light of the IR laser beam. This means that the 

scattered radiation signal would be expected to start at 28 ns. Notice that the noise level increases 

in the second part of the time window, after 30 ns, due to the IR laser reflection and induced 

fluorescence coming from the inner walls of the vacuum chamber. 

 

 
Figure 2.6 Residual background noise measured by PMT after subtracting the coherent noise for 
averaging times of 0.1 s (gray), 1 s (red) and 5 s (blue), respectively. After t = 30 ns the noise 
level increases due to the stray light produced by the laser hitting the internal structures of the 
vacuum chamber. 
 
 

The identification of the noise source is confirmed by its timing. Considering a bunch-laser 

interaction starting at 28 ns and lasting for a time of about 5 ns, a portion of the scattered 

radiation signal will be overlapped with the stray-light signal. The noise level also limits the 

maximum PMT gain to 4106×≈G . Considering these noise levels and assuming a time duration 

nst 5int =∆ for the bunch-laser interaction, the PMT gain and an impedance load Ω= 50LR  we 
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can estimate the signal level as phepheL VNtNeGRS µ100/ int =∆= , where pheN is the number of 

produced photoelectrons. Considering the condition S/N= 1 we obtain 10≈pheN averaging on 10 

shots for 1 s and 7≈pheN averaging on 50 shots for 5 s of averaging time. The minimum number 

of detectable photons is then η/pheph NN = . The minimum density can now be estimated 

computing the integral of the equation: 
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where ‘ pn ’ is the photon density of the incident laser and ‘ en ’is the electron bunch density. The 

maximum number of scattered photons occurs at cmd  10int ≈  for given a distance between the 
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PMT and the longitudinal axis h = 30 mm, and a PMT active area 28.3 cmAPMT =  of the PMT. The 

photon density is computed considering an energy of the incident laser beam of JLη 92.0≈ and 

the geometry of the laser injection optics. The bunch density is estimated for a cylindrical uniform 

electron charge distribution of radius mmrb 3.0≈  propagating rigidly with a velocity 

( )keVE
m
EV
e

e 15 2
==  and for a collinear interaction. The minimum electron density is 

310101.5 −×= cmne and 310106.3 −×= cmne averaging on 10 and 50 shots for 1 and 5 s of averaging 

time, respectively. Therefore, this is the required range of density in order to perform a Thomson 

backscattering experiment.  

 

In order to make a comparison with the typical electron density in the present experimental set-

up, the longitudinal dynamics of the bunch has been investigated as a function of the energy using 

both destructive and non-destructive methods, i.e. exploiting the aluminum coating of the 

phosphor screen as a charge collector and measuring the current induced on a sector of the S4 

(four insulated sectors) electrode by the bunch crossing. It was thus possible to estimate the 

length and in turn the longitudinal spreading of the bunch during its transport due to space charge 

effects. Both methods showed bunch lengths bL between 10 and 30 cm after transport through 

the trap for kinetic energies kE in the 1−15 keV range. The data are consistent with a rigid 

longitudinal profile mEtL kbb /2∆≅  (for this energy range the non-relativistic formula is 

consistent with the more accurate relativistic one within a few percent) for energies above 8 keV, 

while a deviation from the formula towards larger values of bL is found for lower energies, where 

we expected indeed space charge effects to become more important. 

 

With a sufficiently high resolution (obtained, e.g., by suitably focusing the IR laser beam), 

information on the bunch density profile could also be accessible .The optimization in the injection 

of the high power IR laser and in the collection of the scattered radiation are fundamental issues in 

achieving the maximum spatial resolution and maximum sensitivity. The maximum sensitivity is 

achieved when the focal point is 10 cm after the viewport. We can characterize the spatial 

resolution defining the scattering length
int.

2
dr
rL

Lv

b
s ≈ , where Lvr  is the laser spot radius on the 

viewport. As sL increases moving the focal point away from the viewport, the spatial resolution 
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decreases. In this configuration sL is about 10 mm. This an acceptable value when compared to 

typical bunch lengths of 10−30 cm.  

 

Using the transversal and longitudinal properties evaluated here we can estimate the bunch 

density in the high magnetic field region as
bb Lr

Qn 2 π
= , where Q is the bunch charge. Notice that 

the laser is focused in order to increase the interaction probability. Hence, only the charge of the 

inner, Gaussian part of the bunch will interact with the focused IR laser, therefore only this 

fraction of the total charge should be taken into account. For a set energy of 15 keV and a 

magnetic field of 0.01 tesla we get pCQ 6≅  and cmLb  29= , hence a density of 

about 38103.4 −×= cmnb . Thus, densities up to some 3810 −cm  in the high magnetic field region 

indicate that the electron bunch is not detectable with the present set-up configuration.  In figure 

2.7 the reported expected signal for a density 311106.3 −×= cmnb , i.e. ten times the value 

corresponding to S/N = 1, assuming a Gaussian profile for the detected pulse with FWHM = 5 ns 

and averaging on 50 shots. 

 

 

 

 

Figure 2.7 Expected scattered photons signal for a bunch of density 311106.3 −×≈ cm and radius 
mmrb 3.0=  in the present set-up configuration. We assume a Gaussian signal profile with a 

FWHM of 5 ns. Part of the signal is overlapped with the stray light noise (see also Fig. 2.6). 
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2.7  Improvements of the S/N ratio 

 

Further progresses are needed to increase the sensitivity of the diagnostics. In regard to noise 

reduction, the main noise component is given by the IR laser reflections/re-emissions from the 

vacuum chamber surfaces to photomultiplier (PMT). An option to reduce this source of stray light 

would be a weaker focusing of the IR laser, which would possibly prevent part of the reflections on 

the chamber walls by better laser dumping at the other extremity of the machine. Of course, the 

optimization of the noise suppression affects the intensity of the useful signal as well. This weaker 

focusing could be possible by extending longitudinally the machine on the IR laser side in such a 

way that the injection viewport were more distant from the interaction point. On the other hand, 

the maximum number of detected photons is expected for an interaction distance from the 

photomultiplier of about 10 cm. By increasing the distance intd the solid angle spanned by the 

photomultiplier would be decreased by a factor 2
int/1 d . This disadvantage could be avoided 

inserting a viewport for the PMT at cmd  10int = in the ‘extended’ set-up. Yet, although this 

solution is technically possible, due to the weaker focusing the scattering length would linearly 

increase, i.e. the longitudinal spatial resolution would decrease with 2
int/1 d , furthermore affecting 

the energy resolution.  

 

To limit the reflections from the inner surfaces of the vacuum chamber and of the internal 

electrodes to reach the PMT, a suitable light shield has been designed. This shield consists of a disc 

with a 20 mm hole mounted on the trap stack holding bar. The hole allows the IR beam 

propagation up to the laser-bunch interaction point, but its backside, structured with deep 

grooves, prevents most of the light reflected by the chamber walls to reach the PMT. It is also to 

be noted that the reduction of the overall noise level would yield the further advantage of 

increasing the (presently limited) gain of the PMT, and therefore the signal level. An improvement 

in the dynamic range can also be obtained by replacing our PMT with a different one featuring a 

better quantum efficiency in the expected wavelength range of the backscattered radiation. PMTs 

with quantum efficiencies above 10% in the visible range are commercially available.  

 

In order to increase the electron density and in turn the detectable signal we will evaluate both 

source modifications and a replacement. The present source was installed as a test one, having in 

mind its possible intrinsic limitations (namely, particle density). Yet the compactness and ease of 
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use of such a small source has been very handy in the characterization of the beam by 

electrostatic means and in the validation of the space and time coincidence systems. Furthermore 

with this source we have already observed the generation of a much larger charge (easily above 1 

nC) when the focusing of the UV laser on the photocathode is increased, but the charge is not well 

extracted. A better extraction geometry will be also evaluated for future experiments. As an 

alternative, quasi-continuous or pulsed electron sources reaching densities up to 1011cm-3 are 

already available. 

 

Finally we consider that this diagnostics can be extended at higher energies (some hundreds of 

keV), where the Thomson backscattering becomes more efficient and the scattered radiation is 

detected with higher quantum efficiency. Furthermore, light reflected by walls is not Doppler 

shifted, and is then more easily filtered out. A similar apparatus is under development as a non-

destructive diagnostics of low energy electron beams in cooling devices [73]. 

 

2.8 Conclusions and outlook 

 

In addition to the diagnostics for bunched electron beams, new diagnostic and/or control systems 

for confined electron plasmas are being developed in ELTRAP. Recently, it has been shown [25] 

that an electron plasma can be generated by means of a low-voltage (≤ 10 V peak-to-peak) RF 

drive in the 1–20 MHz range applied on an azimuthally sectored electrode of the trap under UHV 

conditions as discussed in chapter 3. A prototype microwave waveguide transmission has been 

designed and bench tested (see chapter 4). The electrostatic and electromagnetic simulation of RF 

heating and ionization process of electron plasma under ultra-high vacuum conditions has been 

analyzed also by means of a two-dimensional (2D) particle-in-cell (PIC) code (discussed in chapter 

5).  
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Chapter THREE 

 

 

Wave-particle interactions in non-neutral plasmas 

 

3.1 Introduction 

 

An electron plasma has been generated in ELTRAP without the use of a specific electron source 

(e.g., a thermo-cathode), by means of the application of  low power (≤10 V peak-to-peak) radio 

frequency (RF) drives in the 0.1-20 MHz range on an azimuthally sectored electrode of the trap 

under ultra-high vacuum (UHV) conditions [B. Paroli, F. De Luca, G. Maero, F. Pozzoli, and M. 

Romé, Plasma Sources Sci. Technol. 19, 045013 (2010)]. The generation and heating of the 

electron plasma will be repeated in the future with a RF injection system up to a few GHz, for 

which microwave waveguide transmission has been designed and tested (see chapter 4). The new 

RF system will open up the possibility to study, e.g., the interaction between the confined plasma 

and traveling electron bunches.  

 

3.2 RF electron plasma generation in a Penning–Malmberg trap 

 

In order to generate an electron plasma, the few electrons initially present in a Penning trap must 

reach a sufficiently high energy in order to ionize the residual gas in the vacuum vessel. In other 

words, the electrons must have a kinetic energy larger than the first ionization energies of the 

residual neutral components, i.e. mainly H2 or other light atmospheric gases. For these gases the 

energy threshold is between 10 and 20 eV and the peak of the ionization cross section 

approximately lies in the 70–100 eV range. Therefore, the electrons must reach an energy of some 

tens of eV to build up and sustain a plasma. That’s why it is very important to know the heating 

mechanism by which electrons can gain energy in a Penning trap. The major heating mechanisms 

are collision-less or stochastic plasma heating by electrostatic waves, and electron cyclotron 

resonance heating (ECRH).  
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3.2.1 Stochastic heating 

 

In non-neutral plasmas under ultra-high vacuum condition the electron mean free path is large 

enough for the electrons to be essentially collisionless. Let us remind that stable UHV conditions 

are obtained in ELTRAP with the use of a pre-vacuum scroll, a turbo molecular and an ion pump, 

reaching pressure values in the low 10−9 mbar, and that the electrode stack consists of ten OFHC 

cylinders each having a length and diameter of 9 cm except electrodes S2 and S4, azimuthally 

sectored into two and four patches, respectively, having a length of 15 cm. Potentials in the 

interval (-100 V - 100 V) can be applied on each cylinder by means of two 8-channel waveform 

generators (see diagram 3.1). 

      

 
Figure 3.1 Sketch (a) of the ELTRAP set-up as used for RF discharge and plasma confinement 

experiments, with a CCD camera for optical diagnostics. Sketch (b): indicative scheme of the 

electrode potentials, with confinement between electrodes C1 and C8 biased at a negative 

voltage V and RF drive of amplitude ‘A’ on electrode C6. 

 

The RF power for plasma generation and heating is given by a power supply capable of producing 

sinusoidal waveforms of amplitude ≤ 10 V and frequencies up to 80 MHz. The RF signal of the 
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power supply is directly imposed on a trap electrode suitably chosen as antenna through a 50 Ω 

impedance coaxial cable without any matching network. The power absorbed is of a few hundreds 

mW. A fraction of the electrons present in the trap can gain an energy of the order of a few tens 

eV. The ionization which results from energetic electron’s impact with the background gas is 

increasing with the continuous application of the RF signal. The electrons produced by the 

ionization of the residual gas promote the self-sustainment of the discharge necessary to obtain 

appreciable charge densities. In the experiments, these electrons were confined radially by a static 

homogeneous magnetic field of 0.1 T and axially between electrodes C1 and C8 with an applied 

voltage of -100 V. 

 

Experimentally, a quantitatively measurable plasma formation has been evidenced after ≈ 300 ms 

with the optical diagnostics. The plasma evolution over the first few hundred ms was recorded, for 

a RF amplitude of 3.8 V and a frequency of 8 MHZ applied to the C7 cylinder. After the selected 

excitation time the trapping potential of end cylinder C8 was lowered and the confined plasma 

was discharged/dumped onto a P43 three-layer aluminum-coated phosphor screen.  

 

 
Figure 3.2. Optical measurement of the transverse density profile during the discharge. The 

plasma can be observed after ≈ 300 ms. The generation takes place initially mostly in the 

periphery and successively extends to the whole space. 

 

The intensity of the light image emitted by the phosphor and detected by a charge-coupled device 

(CCD) camera with a resolution of 1344 × 1023 pixels and typical readout noise of ten electrons is 

proportional to the axially-integrated electron density n(r, θ). The plate is biased at ≈15 kV and has 
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a diameter of 11 cm, so that the whole plasma is collected on it and the energy is sufficient to 

produce an axially integrated image of the confined plasma. The screen can also be used without 

high voltage bias as a charge collector to yield the value of the total trapped charge. The charge 

density images obtained with RF excitations from 250 to 420 ms shown in figure 3.2 indicate that 

the plasma is produced mainly close to the trap wall and as time progresses it fills the central 

region of the trap. These observations are also confirmed by the radial profiles (a vertical cut 

passing through the symmetry center) of the distributions (see Figure 3.3 left). Integrating 

azimuthally the profiles, normalized to the total charge (see Figure 3.3 right) we obtain a grouping 

in three different shapes: (a) for 300−320 ms, (b) for 330−350 ms, (c) for 360−420 ms. This 

suggests the presence of complicated collective phenomena beyond a basic, continuous diffusion 

process. 

 

 
Figure 3.3: Axially-integrated density profiles during plasma formation, for times between 300 

and 420 ms. On the left, profiles along the vertical axis y, normalized to the maximum measured 

value. On the right, azimuthally-integrated profiles, normalized to the total charge. The profile 

evolution is not continuous but follows three successive shape groups: (a) for 300−320 ms, (b) 

for 330−350 ms, (c) for 360−420 ms. 

 

It is found experimentally that the amount of charge is influenced by the RF parameters as well as 

by the geometry of the trap. The plasma was generated by a continuous RF drive of amplitude 3.8 

V under different conditions, namely the length of the trapping region, the cylinder used as 
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excitation antennas and the RF excitation frequencies ranging in the interval 0.1-20 MHz with a 

resolution of 100 kHz. The experimental results are shown in figure 3.4. In the first case the 

trapping region was between the electrode C1 and C8 (long trap) while in the second case was 

between S2 and C8 (short trap). For both configurations different electrodes (cylinders) were used 

for the RF application. For each frequency value, the excitation has been applied for 4.5 s in each 

geometry, after which the trapping voltage on the C8 electrode has been lowered and the plasma 

dumped on the phosphor screen, used as charge collector.  

 

 
Figure 3.4. Total charge confined after 4.5 s. The plasma is formed and confined between C1 and 

C8 (top, long trap) or between S2 and C8 (bottom, short trap). The legend specifies the electrode 

used as antenna for the RF excitation. 

 

The discharge signal has been filtered from the random noise (typically ≤ 90 mV rms) with a digital 

low-pass filter of the third order with cutoff frequency 500 kHz. The collected charge is then 

calculated as CVQ min−= . Here Vmin is the minimum of the voltage discharge signal and C the 

capacity of the measurement system, i.e. essentially the capacity of the coaxial cable. The latter is 

obtained directly from the time constant 1/RC of the discharge, with a resistance R = 1 MΩ given 

essentially by the load of the oscilloscope. The phenomena appear to be non-resonant because a 

noticeable amount of plasma formation is detected beyond a certain threshold frequency, which 
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changes with the geometrical parameters, and occurs in broad frequency bands rather than 

resonance peaks. For each choice of the geometry and excitation antenna a threshold frequency 

exists under which no plasma is formed. Beyond this frequency, appreciable amounts of charge 

are created within wide frequency bands, whose upper cutoff is generally not as abrupt as the 

lower one. The total charge obtained in the short trap configuration is about half of that obtained 

with the long trap and no detectable plasma production has been observed with even shorter 

trapping lengths as shown in figure 3.4. 

 

In both geometries, the total charge is of the order of 1 nC corresponding to a density of ≈ 106 

cm−3 that is comparable to the densities obtained with the thermo-cathode sources used in past 

experiments [31, 32] as well as in similar set-ups [33]. The results are qualitatively in agreement 

with the one-dimensional model (electron–oscillating barrier interaction model) described below 

in that the lowermost threshold for plasma creation is obtained using the C7 electrode as RF 

antenna, while higher frequencies are needed with electrodes closer to the center of the trap. 

When the confinement length is reduced this argument is apparently no longer valid and in 

general the creation of the plasma is more difficult.   

The density growth at the trap wall is compared with a theoretical estimate of the ionization rate 

according to the law 

 

( ) ( ) ( )tnvvN
dt

tdn
n σ=                            3.5 

 

where we consider only the first ionization cross-section. At the working pressure 

of mbarP 9104 −×≈  and at room temperature the neutral density of the residual gas is 

13 39.7 10n
B

PN m
k T

−= = ×  (assuming that in the UHV conditions only molecular hydrogen is present), 

31210)( −≈ mtn  is electron density, ( ) 20 21 10 mσ ν −= ×  is the electron-impact ionization cross 

section for H2 [29] at the electron velocity
62 5 10 /

e

KTv m s
m

= ≈ × corresponding to kT = 80 eV, 

i.e. the maximum energy of the particles confined in the trap. Using the above data 

( ) 11 3.3nN v v sσ
τ

−≡ = . Figure 3.5 shows the experimental densities at the trap wall, normalized 

to the maximum measured value, grouped consistently with the three groups found before i.e. (a) 
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for 300−320 ms, (b) for 330−350 ms, (c) for 360−420 ms. Partial fits yield 

111 9.9  25.25,3.811 −−−= sandss
τ

 for groups (a), (b) and (c), respectively. In every case the 

experimental ionization appears much higher than expected. Likely, secondary production 

mechanisms play a dominant role in the plasma density growth.  

 
Figure 3.5: Ionization rate measured in terms of density growth at the trap wall, normalized to 

the maximum measured value. The data are grouped according to figure 3.3 (circles correspond 

to group (a), squares to (b) and triangles to (c)) and are fitted with exponential laws of inverse 

time constants 81.3, 25.2 and 9.9 s−1, respectively. 

 

3.2.2 Electron heating by a Fermi acceleration mechanism    

 

A Fermi-like one-dimensional model is able to explain at least qualitatively that electrons can be 

heated beyond the energy threshold of the first ionization cross section for light gases (≈ 10–20 

eV) with a low-power RF drive such as that used in the experiments. The model is sketched in Fig. 

3.1 (bottom). An electron of charge −e and mass m is confined in a square potential well of depth 

V and interacts with a square barrier of amplitude ( )tA ωsin , where ω is the frequency of the 

sinusoidal oscillation. When the electron interacts with the edges of the barrier its energy changes 

instantaneously of a quantity ( )teAEE i ωsin~ −= . This variation occurs only when the electron 
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energy exceeds the amplitude of the barrier otherwise the electron is reflected. Taking into 

account many interactions, the electron energy state ‘Ei’ at the interaction ‘i’ is written in term of 

an iterative map: 
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where ( )SLSLlk ,2,,2 21=  is a vector indicating the lengths of the regions that the particle would 

go through over a complete bounce period without being reflected at the oscillating barriers. The 

region S has been replicated for a practical reason, namely that if no reflection takes place ( )0~ >E , 

the sequence of the indexes k = (0, 1, 2, 3), i.e. the sequence of regions travelled by the particle, is 

repeated always in the same order. On the contrary, every time that the particle is reflected by an 

oscillating barrier ( )0~ <E , it crosses again the last region and the order of the sequence k is 

inverted. For the implementation of the numerical algorithm, a flag σ  is introduced that changes 

sign when a particle reflection occurs, i.e. 

 

  1 and  0E~for     0,E~for   011 =<−=>= ++ σσσσσ iiii  

 

The iteration rules for ki will then be:  
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The equation 3.6 can be solved recursively changing the amplitude A and for different values of ω. 

For a number of interactions of the order of 107−108, corresponding to a few seconds, the energy 

distribution f (E), i.e. the count of energy values ‘Ei’ recorded at the interaction instants ‘i’, tends to 

a limit that is independent of the initial phase ø of the RF drive. Figure 3.6 shows the distribution 

function f (E) varying the amplitude and the frequency of the RF drive and for a geometry 

corresponding to a potential well between the electrodes C1 and C8 and with the RF applied on 

C7. An appreciable number of electrons exceeds an energy of 10 eV for RF amplitude greater than 

1.8 V (for a drive frequency of 1 MHz), while for an amplitude of 3.8 V the electron energies are 

distributed to higher values increasing the drive frequency between 1 to 8 MHz. In both cases with 

a maximum RF amplitude of 3.8 V the electrons reach values exceeding the first ionization energy 

 

 
Figure 3.6: Limit energy distributions f(E) of a trapped electron, after 107 interactions with an 

oscillating barrier. Geometrical parameters of the ELTRAP device have been used: confinement 

between electrodes C1 and C8, RF drive on electrode C7. In the left panel, the amplitude of RF 

drive is varied while keeping the frequency at 1 MHz. In the right panel, the frequency is varied 

at a constant amplitude of 3.8 V. 

 

of the residual gas (molecular hydrogen). This model is of course a strong simplification of the real 

system because the electron motion is forced to be one-dimensional, the electrons formed in the 

trap are non-interacting and the potential square well is an ideal case. 
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A plasma density 3610 −−≈ cmn achieved by means of the stochastic heating/ionization mechanism 

is not suitable to promote a strong beam-plasma interaction. However, plasma compression 

induced by the same RF used for the electron heating can increase the plasma density of some 

orders of magnitude.  

 

The heating mechanism has been analyzed also by means of a two-dimensional (2D) particle-in-

cell (PIC) code (discussed in chapter 5). In the simulations, a realistic geometry of the apparatus is 

used, with a length of the electrode stack of 102 cm, and an internal radius of the conducting 

cylinders of 4.5 cm. The simulation studies confirm that initially the heating is higher near the wall 

of the cylinder and then extends to the whole space. Thus, it is confirmed that the RF heating is 

more effective in the outer radial part of the trap cylinder and electrons localized near to wall of 

the cylinders reach energies ≥ 20 eV, and are able to ionize the residual gas better than the 

electrons located close to the central part of the trap. A Monte-Carlo scheme is also applied in the 

PIC simulation to evaluate the ionization for different pressure values i.e. torrP 810−= , 

 10 7 torrP −= and torr -610P = for different electron densities 31237 10 105 −−× mandm , using 

hydrogen as a background gas. 
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Chapter FOUR 

 

 

Waveguide design and microwave injection bench test 

 

4.1 Waveguides 

 

Waveguides are basically a device for transporting electromagnetic energy from one region to 

another. Typically, waveguides are hollow metal tubes constructed from conductive material of 

various types and different sections such as rectangular, circular, truncated or elliptical. Our aim is 

to use an RF generator (with a frequency up to 3 GHz) in order to inject microwaves into the 

ELTRAP device. The microwaves will heat plasma electrons, which in turn will collide with the 

atoms or molecules of the residual gas in the trap, causing ionization and allowing one to obtain 

an electron plasma with a higher density and temperature. 

 

 
Figure 4.1 Sketch of a rectangular waveguide with dimensions a = 7.18 cm, b = 3.71 cm and 

length 7 cm with a coupling rod, and of a circular waveguide with a 9 cm diameter and 102 cm 

length. 

The discussion is limited to rectangular and circular waveguides. The wave will propagate under 

ultra-high vacuum conditions, guided by the walls of the waveguide and that implies certain 

conditions that must be met.  The boundary conditions for waveguides are: 
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1. The electric field must be orthogonal to the conductor surface. 

2. The magnetic field must not be orthogonal to the surface of the waveguide.  

 

The boundary conditions that apply to waveguides will not allow a TEM wave to propagate in 

these single conductor transmission lines because both the electric and magnetic field 

components would be transverse to the direction of propagation. Only higher modes in the form 

of transverse electric TEmn and transverse magnetic TMmn modes can propagate in the 

waveguide. The two subscripts (m, n) are integers that indicate the number of half-period 

variations in transverse field intensity along the ‘a’ and ‘b’ dimensions of the guide, respectively. 

 

The waveguide acts as a high pass filter and each mode has a cut off frequency (fc) below which 

the mode is attenuated and has no propagation in the waveguide. The lowest excited mode in the 

waveguide is called the dominant mode. The cut off frequencies for rectangular waveguides are 

written as  

 

  ( ) ( )Hz
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mnc
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=

εµ                4.1 

 

where a, b are the width and the height of the waveguide, and μ and ε are the permeability and 

permittivity of material inside of the waveguide, respectively. Rectangular waveguides support 

only transverse electric TEmn modes, while a circular waveguide is capable to support both 

transverse electric (TEmn) and transverse magnetic (TMmn) modes. The cut off frequencies of the 

TE and TM modes are given by 

 

                                             ( ) ( ) (Hz) 
r  2

  and  (Hz) 
r  2 π

χ
π
χ mnTM

mnc
mnTE

mnc
CfCf ×

=
′×

=                            4.2 

 

where ‘C’ is the speed of light in vacuum and ‘r’ is the radius of the circular waveguide. The 

constants mnmn and χχ   ′  are reported in table 4.1 and 4.2, respectively, and represent the nth 

zeroes (n=1, 2, 3…..) of the derivative of the Bessel function Jm of the first kind of order m (m=0, 1, 

2, 3…..).  
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The major issues to be addressed in waveguide propagation are attenuations and excitation of 

desired mode. The attenuations are determined by dielectric and conductor losses. Therefore, the 

dielectric used inside waveguides is usually air, which has a lower loss with respect to other 

insulating materials. Of course, this kind of loss becomes negligible under ultra-high vacuum 

conditions, while the loss determined by the conductor wall can be suppressed by using a metal 

tube made of a high conductive material. Furthermore, the attenuation may be improved by 

plating to reduce skin effect losses. Beside the attenuation problem another issue that requires 

attention is the excitation method (explained in section 4.3).  

 

Table 4.1 TE (modes) zeroes mnχ ′ of derivative ( ) ( ),....3,2,10 ==′′ nJ mnm χ of Bessel function ( )xJ m  

 
 

Table 4.2 TM (modes) zeroes mnχ of ( ) ( ),....3,2,10 == nJ mnmn χ of Bessel function ( )xJ m  

 
 

The electromagnetic energy from the RF source may be injected into a waveguide through a 

suitable probe. The probe diameter, length and position are very important because the size and 

shape of the probe determine its frequency, bandwidth and power-handling capability. A greater 

power-handling capability is directly related to an increased surface area. As the diameter of a 

probe increases, the bandwidth also increases. The amount of transferred energy can be reduced 

by decreasing the length of the probe.  

 

The injected electromagnetic energy propagates inside the waveguide with attenuation. The 

attenuation of a signal is given by: 
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or in terms of dBm: 

                                                     ( ) ( )
1010.log 30

1
P watt

P dBm
watt

 
= + 

 
                     4.4 

where Pinput and Poutput are the injected and output power levels [39, 83]. 

 

4.2 Waveguide design with the geometrical constraints of ELTRAP  

 

We have tested the power flow from an RF generator with a frequency up to 3 GHz in a prototype 

circular waveguide, which has the same dimensions (9 cm diameter and 102 cm length) as the 

ELTRAP electrode stack.  

 

It is necessary in particular to design a rectangular waveguide and set the appropriate coupling 

position within the geometrical constraints of the device. The electron source is located at one 

end of the device, while the other end can be used for the injection of the IR laser beam and the 

detection of the scattered radiation, and for the monitoring of the bunch dynamics with a Faraday 

cup. In the middle, sectored cylinders are used for plasma and bunch dynamics detection and 

manipulation (see figure 4.2). With these restrictions, the only suitable solution is the transverse 

injection of the microwave power close to one end of the cylindrical electrode stack. One 

advantage of this side injection is that it produces only a weak perturbation of the confining field 

of the plasma and a second advantage is that it determines a stronger heating of the electron 

plasma, as confirmed also by particle-in-cell (PIC) simulations (see chapter 5).   
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Figure 4.2 Schematic diagram of the waveguide design and coupling with the electrode stack of 

ELTRAP.    

 

In order to have a similar field configuration at the interface (T-junction) between the two 

waveguides, the maximum permitted wavelength (dominant mode) of the rectangular waveguide 

should be less or equal the cutoff wavelength of the TE11 mode in the circular waveguide, i.e.  

 

( ) ( )10, 11,
2 1.706TE TE

c crect cyl
a Dλ λ= ≤ =       4.5 

                                                                 

where in the present case D = 9 cm. This diameter puts therefore a limitation on the major axis of 

rectangular waveguide, 

 

7.677 .a cm≤  

 

It is advantageous to work just above the cut-off frequency (dominant mode) of the desired mode 

(either TEmn or TMmn) to reduce the attenuation in the waveguide (see section 4.3), and reducing 

the wavelength of the excited mode in both waveguides results in a better transition. In this 

arrangement both waves have essentially the same field configuration at the interface, and so the 

wave is able to pass easily from the rectangular to the cylindrical waveguide.  
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To avoid abrupt dimensional changes and generation of higher-order modes, the length of the 

rectangular waveguide should be twice that of the guide-wavelength i.e. 2 λg = 30.708 cm. 

However, the geometrical constraints of the vacuum chamber of the apparatus do not allow to 

use such a long waveguide. Namely, the length of the rectangular waveguide should be less than 8 

cm to be accommodated in the space between the external wall of the cylindrical electrode stack 

and the internal wall of the UHV chamber of ELTRAP as shown in figure 4.2. Thus, taking into 

account the above mentioned limitations we opted for an already available rectangular waveguide 

of dimension a = 7.18 cm, b = 3.71 cm and length 7 cm. The cut off frequency of the rectangular 

waveguide and of a circular waveguide of diameter 9 cm are as below: 

 

 
 

The general properties of the modes in the circular waveguide are similar to those for the 

rectangular waveguide. However, in contrast to the rectangular waveguide, the dominant mode in 

the circular waveguide is TE11 instead of TE10. Secondly, due to the frequency limitation at 3 GHz of 

the available RF power supply only a single polarized mode (TE10) can propagate in the rectangular 

waveguide, while in the circular waveguide both polarizations i.e. both TE11 and TM01 can be 

excited (see figures 4.3 and 4.4). The schematic diagram 4.5 shows how the power can be 

transferred from the TE10 rectangular waveguide mode to the TE11 and TM10 circular waveguide 

modes.  

 

The probe is a wire made of conductive material. Since there is no loop for current to flow in and 

create a magnetic field, the probe must be an electric field transformer. The probe is placed near 

the maximum of the field pattern of the desired mode in the waveguide. The most efficient place 
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to locate the probe is in the center of the “a” wall, parallel to the “b” wall, and one quarter-

wavelength from the shorter end of the waveguide (backshort). This is the point at which the E 

field is maximum in the dominant mode. Therefore, energy transfer (coupling) is maximum at this 

point. Note that the quarter-wavelength spacing is at the frequency required to propagate the 

dominant mode.  

 

 

In order to characterize the transmission efficiency, a suitable absorber has been put at the end of 

the circular waveguide, in order to avoid the reflection of the propagating modes (and therefore 

the generation of standing wave) due to an impedance mismatch between the waveguide and the 

free space. 

  

 
Figure 4.5 Schematic diagram of field transition from rectangular (TE10 mode) to circular        
waveguide (TE11 and TM01 modes) via T-junction.  
 

 

4.3 Waveguide mode transform, attenuation and excitation technique 

 

The schematic diagram of the microwave transmission system and the field’s transition from the 

rectangular to the circular waveguide is shown in figure 4.5. The directional coupler is a four-port 
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network waveguide device used to accurately sample the injected microwave power from the RF 

source into the device under test (waveguide). The RF signal generator is connected to port 1 of 

the directional coupler to inject the desired power into the prototype circular waveguide via a 

metal probe in the rectangular waveguide, which is connected to port 4 of directional coupler. The 

power detector connected on the auxiliary line of the directional coupler at port 2 and 3 samples a 

portion of the reflected and transmitter wave and the data are recorded on an oscilloscope 

connected to the power detector.  

 

In the T-junction it is necessary to couple the power from the rectangular waveguide to the 

circular waveguide with a low return loss. In order to achieve this result, the basic principle is to 

try to ensure that the electric and magnetic field patterns on the two sides of the junction are 

roughly similar. Since the field patterns do not usually match, some of the RF power is scattered 

into higher order modes. Provided these are in cut off, no power can propagate in them and it 

therefore remains stored as reactive energy in the region close to the junction. The mismatch 

caused by this reactance can be tuned out by the addition of matching elements (posts or irises) to 

give a good overall voltage standard wave radio (VSWR). Rather different problems arise when the 

higher order modes can propagate because significant power can then be transferred into 

undesired modes. This should not normally happen at the fundamental frequency, but it can cause 

problems at higher frequencies. With the available RF source up to 3 GHz and a ≤ 0.2 T 

homogeneous magnetic our working range is practically the fundamental frequency. When the 

rectangular waveguide is terminated into the circular one, the resulting wave has magnetic field 

lines which are approximately circular in shape, so that little field distortion happens at the interface 

as shown in figure 4.5. 

 

The field pattern for the two modes TE10 and TE20 in a rectangular waveguide is shown in figure 

4.6. 
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Figure 4.6 Field distribution inside of rectangular waveguide for TE10 and TE20 modes 

 

 

1. In both cases, E only varies in the x direction; since n = 0, it is constant in the y direction. 

2. For TE10, the electric field has a half sine wave pattern, while for TE20 a full sine wave 

pattern is observed.  

 

The field pattern for the two modes TE11 and TM01 in a circular waveguide is shown in figure 4.7.  

 

 
Figure 4.7 Field distribution inside of circular waveguide for TE11 and TM01 modes 

 

Attenuations in the waveguide commonly derive from dielectric and conductor losses. The fields 

associated with the propagating waveguide modes produce currents that flow in the walls of the 

waveguide. In ELTRAP, OFHC (oxygen-free high conductivity) copper cylinders of conductivity 

75.8 10 /c mσ = × Ω  are used. Under ultra-high vacuum conditions the dielectric loss is negligibly 

small. The wave impedance in a rectangular waveguide of the TE10 dominant mode at 3 GHz 

operating frequency is 
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The wave impedance in a circular waveguide of the TE11 dominant mode at 3 GHz operating 

frequency is: 
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where the wave propagation constant of the TE11 mode is: 
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The ratio of the transverse electric field to the transverse magnetic field for a propagating mode at 

a particular frequency is the waveguide impedance.  

 

The impedance of the TE11 mode at 3 GHz propagating in a circular waveguide with a length of l = 

1.02 m is 

 

      ( ) Ω== 09.565 tan)( 11 lZcircularZ TE β      4.9 

 

The wave impedance of the TM01 mode at 3 GHz is 
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where the wave propagation constant of the TM01 mode is 
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Finally, the impedance of the TM01 mode at 3 GHz propagating in a circular waveguide with length 

l = 1.02 m is 

 

              ( ) Ω== 901.132 tan)( 01 lZcircularZ TM β                4.12 

 

Equation 4.6 and 4.12 indicate that the impedance in a rectangular waveguide is higher than in a 

circular waveguide.  

 

 

In case of the TEmn mode, for the wave impedance given in equations 4.6 and 4.7 it results that: 

 

1. Above the cut off it is real and greater than the intrinsic impedance of the medium inside the 

      waveguide. 

2. At cutoff the impedance is infinite. 

3. Below cut off it is imaginary and inductive. This indicates that the waveguide below cutoff 

behaves as an inductor that is an energy storage element. 

 

In case of the TMmn mode, for the wave impedance as shown in equation 4.10 it results that: 

 

1. Above cut off it is real and smaller than the intrinsic impedance of the medium inside the 

waveguide. 

2. At cut off impedance is zero. 

3. Below cut off it is imaginary and capacitive. This indicates that the waveguide below cutoff 

behaves as a capacitor that is an energy storage element. 

 

In order to calculate the attenuation constant of the TE11 and TM01 modes in a copper circular 

waveguide, it is necessary to take into account the surface resistance of the circular waveguide ‘Rs’ 

which depend on the skin depth ‘δ ’ by the relation 
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The skin depth of the copper circular waveguide walls at the operating frequency of 3 GHz is 

1.20655 µm. The attenuation constant of the TE11 mode in a circular waveguide is 
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where Np is the neper. Passing to decibel,  

 

                                                   
( ) dB/m-0.0082741)(log20 11-

10 =LTE
ce α

   4.15 

 

In term of power loss   

( ) 









==

output

input
dB P

P
TEA 1011 log100082741.0-  

                                                     

     ( ) outputPTE 99917.0P 11input =     4.16 

 

The attenuation constant of the TM01 is 
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where Np is the neper. Passing to decibel,  
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In term of power loss              ( )  log1001416478.0- 1001 
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    ( ) outputPTM 99858.0P 01input =                          4.20 

 

 

Equations 4.16 and 4.20 shows that the power losses of the TE11 and TM01 modes in the circular 

waveguide is negligibly small, meaning that the position of the T-junction does not play a big role 

regarding attenuation. However equations 4.13 and 4.17 (see figures 4.8 and 4.9) indicate that for 

a constant power in the waveguide the ffc  component decreases as the operating frequency 

increases and approaches zero at infinite frequency. In the opposite case, attenuation rises very 

sharply and approaches infinity when the operating frequency decreases toward cut off but the 

approximations under which these equations were developed are not valid in the region 

immediately adjacent to the cut off wavelength  cff =  . 

 

The study of electric and magnetic field components in a circular waveguide show that the only 

tangential magnetic field component to the conducting surface of the waveguide for all these TE0n 

(n=1, 2, 3…) modes is the Hz component, while the electric field lines are circular. Therefore, these 

modes are usually referred to as circular electric modes. When the frequency increases at a 

constant power level, the Hz component decreases accordingly and simultaneously the current 

density and conductor losses on the waveguide walls also decrease and approach zero with 

increasing frequency. On the contrary, TMmn modes have a component of the electric field parallel 

to the guide axis, but a magnetic field component that is everywhere transverse to the axis. 

 

Plots of the attenuation coefficient computed from equations 4.13 and 4.17 versus the normalized 

frequency ffc  are shown for six modes for a circular waveguide of radius 1.5 cm in figure 4.8 

and radius 3 cm in figure 4.9. The cut off frequency used is the dominant TE11 mode with 

corresponding value of 5.8566 GHz in figure 4.8 and 2.9283 GHz in figure 4.9. Inside the waveguide 

the dielectric is free space and the walls are made of copper ( mc /108.5 7Ω×=σ ). 
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Figure 4.8 Attenuation for TEmn and TMmn modes in a circular waveguide of radius a=1.5 cm. 

 
Figure 4.9 Attenuation for TEmn and TMmn modes in a circular waveguide of radius a= 3 cm. 
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Another issue that requires more attention is the excitation method. The dominant mode of the 

circular waveguide is less easily excited with respect to the dominant mode of the rectangular 

waveguide. The rectangular waveguide has a relatively higher attenuation with respect to the 

circular waveguide, but it is more frequently used due to the ease of the excitation method by 

means of a suitable metal probe. An appropriate design of the metal probe diameter and length as 

well as position is necessary in order to maximize the energy exchange or transfer so that the field 

pattern matches that of the desired mode. Usually the probe is placed near the maximum of the 

field pattern of the desired mode; however, that position may be varied somewhat especially in 

the T-junction of the waveguide. In order to achieve some preferred matching in the excitation 

and detection systems it is better to tune the probe in the waveguide for maximum electric field 

intensity detecting the maximum peak signal on an oscilloscope.   

  

Although the TE0n (n=1, 2, 3…) modes are very attractive from the attenuation point of view, there 

are a number of problems associated with their excitation and retention. One of the problems is 

that the TE01 mode is not the dominant mode as shown in figure 4.4. Therefore, in order for the 

TE01 mode to be above its cut off frequency and propagate in the waveguide, a number of other 

modes like TE11, TM01, TE21, and TM11 with lower cutoff frequencies can also exist. If the operating 

frequency in waveguide is chosen well above the cutoff frequency i.e. 4.06282 GHz of the TE01 

mode then additional modes having cut off frequency lower than 4.06282 GHz can also be present 

and such a waveguide is called over mode. In order to provide a margin of safety it is better to be 

not too close to its cut off frequency. One of the problems faced with such a waveguide is how to 

excite the desired TE01 mode with sufficient purity and suppress the others. Another problem is 

how to prevent coupling between the TE01 mode and undesired modes. The presence of the 

undesired modes causes not only higher losses but also dispersion and attenuation distortion to 

the signal since each mode exhibits different phase velocity and attenuation. Irregularities in the 

inner geometry, surface, and direction (bends, non-uniform cross sections, etc.) of the waveguide 

are the main contributors to the coupling to the undesired modes. A method used to discriminate 

undesired modes and avoid coupling to them is to introduce filters inside the guide that cause 

negligible attenuation to the desired TE0n (n=1, 2, 3…) mode. These filters introduce cuts that are 

perpendicular to the current paths of the undesired modes and parallel to the current direction of 

the desired modes. Since the current path of the undesired modes is along the axis (z direction) of 

the guide and the path of the desired TE0n (n=1, 2, 3…) modes is along the circumference (φ 

direction), a helical wound wire placed on the inside surface of the guide can serve as a filter that 
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attenuates any mode that requires an axial component of current flow but propagates the desired 

TE0n (n=1, 2, 3…) modes [26, 39, 41, 91].  

 

4.4 RF power transmission in the waveguide  

 

The power that can be transmitted through a waveguide depends upon the electric field strength 

that can exist without breakdown. If this maximum allowable field strength is specified, the 

maximum power carrying capacity of the waveguide can be calculated when the wavelength and 

the size of the guide are known. The maximum power that can be carried by a rectangular 

waveguide at 3 GHz for the dominant TE10 mode is: 

             wattsab
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P 01229.01063.6
g

4
2
max

=









×=

λ
λ

              4.21 

where a=7.18cm, b=3.71 cm and Emax is the potential gradient expressed in volts per centimeter. 

Taking into account the maximum power 20 dBm = 0.1 W of the available RF signal 

generator cmvoltsE 8525.2max = . This maximum field intensity is parallel to the b dimension of 

the guide, midway between the side walls of the rectangular waveguide.   

 

Similarly the maximum power that can be carried out by a circular waveguide at 3 GHz for the TE11 

mode is: 
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( ) .993cm9 and 356471.15
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Taking into account that the maximum power of the available RF signal generator is 0.1 W = 

20dBm, the maximum filed in the circular waveguide is cmvoltsE 9528.1max = . 

 

For the magnetic TM01 mode there are two separate cases: 
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In this case cmvoltsE 93022.1max = [39, 40, 41]. 

 

4.5     Power flow measurement devices 

 

In order to measure the return loss in the prototype circular waveguide, a directional coupler, a 

data display (oscilloscope) and RF detectors that accurately detect and measure the RF power are 

needed. 

 

4.5.1 Directional coupler 

 

A directional coupler model ZABDC20-322H has been used. This is a four-port network that is 

designed to divide and distribute the RF power and also used to sample the propagating 

microwave energy for the purpose of monitoring or measuring as shown in figure 4.10. In the 

directional coupler portions of the forward and backward traveling waves (two transmission lines) 

on an auxiliary line are coupled at port 2 and port 3 through a power and the data displayed on an 

oscilloscope are stored for a subsequent analysis.  
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Figure 4.10 Schematic diagram of directional coupler 

 

 

 

The performance of a directional coupler is usually described in terms of its coupling and 

directivity. The coupling factor or coupling (C) is defined as the ratio of the transmitted power 

(incident) at the input of the main line to the power at the output in the auxiliary line. Thus, the 

coupling is a measure of how much of the incident power is being sampled, 
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-20dB 99% transmitted

-10dB 90% transmitted
  10 log

 -6dB  75% transmitted

 -3dB  50% transmitted
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 = →  
 
 
 

   4.24 

 
 

where incP  is the incident power (transmitted power) at the input port 1 and cpP is the power 

coupled at port-3 i.e. transmitted power on the auxiliary line. Note that the larger the coupling 

value, the smaller the coupled power. For example a 6 dB coupler couples out 25% of the input 
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power, similarly a 10 dB coupler couples out 10% of the input power, a 20 dB coupler couples out 

1.0% of the input power and a 30 dB coupler couples out 0.1% of the input power.  

 

The frequency dependent directivity is a measure of how well the coupler distinguishes between 

transmitted wave and reflected wave. The directivity is the ratio of the power out of the coupling 

Port-3 i.e. ( )dBP3  to the power out of the isolation port-4 i.e. ( )dBP4  expressed as: 

 

( ) ( )
( )dBP
dBP

dByDirectivit
4

3log10=  

 
 
This value indicates how effective the device is in “directing” the coupled energy into the correct 
port (i.e., into the coupled port, not the isolation port). For an ideal directional 
coupler, 04 == PPdir  and therefore the directivity is infinite [106]. 
 

 

4.5.2 Power detector calibration 

 

For the RF power measurements and control we used a power detector model ZX47-40LN. It has a 

high dynamic range from -40 dBm to +20 dBm from 10 MHz to 8 GHz. For the calibration, its input 

terminal is connected to the output of the RF generator through a RF cable and its exit terminal to 

an oscilloscope to record the data as shown in figure 4.11. A 3 GHz RF signal with a power level 

between –40 to 0 dBm was injected into the detector with a sweep time of 10 seconds. The 

recorded data have been fitted as 9876.00246.0 +−= XY , where X is the detected power in 

dBm and Y the output voltage of the power detector connected to ports 3 and 2 of the directional 

coupler. 
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Figure 4.11 Schematic diagram of the detector calibration 

 

4.6 Power flow measurements in a prototype circular waveguide  

 

The microwave transmission design is discussed in section 4.2. A length of 7 cm of the rectangular 

waveguide was selected due to the geometric constraints of the vacuum chamber of ELTRAP. The 

electrode stack of diameter 9 cm is lodged inside a cylindrical UHV chamber of diameter 25 cm, so 

that the rectangular waveguide length must be < 8 cm to be plugged perpendicularly to the 

cylindrical electrode stack as indicated in figure 4.2.  

 

Initially the transmission efficiency of a rectangular waveguide of dimensions a = 7.18 cm, b = 3.71 

and length = 31 cm ≈ 2 λg = 30.708 cm, which is the optimum dimension for a 3 GHz frequency, 
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has been analyzed. The return loss measurements have been performed according to scheme 

shown in figure 4.12.  

 

 

 
Figure 4.12 Schematic diagram of experimental set up and transmitted power from RF generator         
to output of directional coupler 
 

The RF signal of the generator has been swept between 2 GHz to 3 GHz using a power level of 20.0 

dBm and injected into port 1 of directional coupler. The signal exits from the output terminal, i.e. 

port-4, and enters into the rectangular waveguide through a copper probe. The power detector 

connected at port 3 receives a portion of the transmitted power and the data is recorded on the 

oscilloscope. Using the calibration shown in figure 4.11 the transmitted power is computed as 

 

                                                      ( ) dBmVoutputP trans
trans 02446.0

9876.0−
−=                4.25 

 

and the result is shown in figure 4.12 and for other schemes in 4.18 and 4.21. Similarly, if the 

power detector is connected at port 2 on the auxiliary line of the directional coupler then the 

power injected into the rectangular waveguide comes back into the directional coupler through 
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port-4 with a certain attenuation and a portion of the reflected power is detected through port-1. 

The reflected power is computed as 

 

                                                          ( ) dBm
V

outputP refl
refl 02446.0

9876.0−
−=                                                4.26 

 

and the result is shown in figures 4.19 and 4.22. The return loss is the ratio of the reflected to 

incident power, 
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At a detected power level of -3 dBm a fraction of 50 % of the power is reflected and 50 % 

transmitted in the circular waveguide, while at -6 dBm 25 % is reflected and 75 % transmitted. 

Similarly at -10 dBm 10 % is reflected and 90 % transmitted and at -20 dBm 1 % reflected and 99 % 

transmitted. The return loss in dB can then be calculated as the difference between the 

transmitted (incident) power ( )dBminPtrans   and the reflected power ( )dBminPrefl  and the result is 

shown in figure 4.13. Similarly for other schemes adopted for the return loss measurements as 

shown in figures 4.14 and 4.17, the results are indicated in figures 4.15, 4.16 and 4.20, 4.23 

respectively.  

 

The probe dimension plays a major role to maximize the power exchange from the RF generator 

into the rectangular waveguide. The dimensions of the copper probe (length 7 cm and diameter 

0.297 cm) have been chosen on the basis of the Smith chart impedance plot and taking into 

account the dimensions of commercially available probes compatible with an RF of 3 GHz. The 

probe has been plugged at the center of the main dimension of the rectangular waveguide on a 

movable slide along the other dimension to find the electric field intensity (3 cm from the end 

close to the circular waveguide).  

 

As mentioned in section 4.3 the impedance of the desires TE11 mode (equation 4.9) and TM01 

modes (equation 4.12) propagating in the circular waveguide are 565.09 Ω and 132.901 Ω, 

respectively, and they do not match the impedance of free space i.e. 377 Ω. This change in 
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impedance produces standing waves causing a decrease of the efficiency of the waveguide. To 

overcome this problem the end of a waveguide was closed with a suitable absorber.  

 

 
Figure 4.13 Return loss measurements of rectangular waveguide only 

 

The result in figure 4.13 shows that the rectangular waveguide of dimensions a = 7.18 cm, b = 3.71 

and length = 31 cm satisfies the desired specifications for reflection and bandwidth. It is shown in 

particular that 25.727 % of the working frequency band from 2 GHz to 3 GHz has a transmission of 

50 % (-3 dBm) and the maximum value of transmission occur at ≈ -33 dB at a frequency of ≈ 3 GHz.  

 

The effect on transmission efficiency and return loss of the rectangular waveguide (length 31 cm) 

coupled orthogonally (T-junction) with the prototype circular waveguide as well as with additional 

cylinder of length 7 cm has been investigated as shown in figure 4.14 (a) and (b). A RF signal swept 

between 2 GHz and 3 GHz at a power level of ±20.0 dBm is used and the return loss 

measurements are reported in figures 4.15 and figure 4.16, respectively.      
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Figure 4.14 Arrangement of power flow measurements with a 31 cm rectangular waveguide  

 
Figure 4.15 Return loss measurements of rectangular waveguide coupled with the circular 

waveguide 
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Figure 4.16 Return loss measurements of rectangular waveguide coupled with the circular 
waveguide and an additional cylinder 
 

The additional cylinder reduces the efficiency of transmission and also complicates the return loss 

spectrum. When the rectangular waveguide is coupled with the circular waveguide, 22.474 % of 

the frequency band from 2 GHz to 3 GHz has a transmission of at least 50 %, and the maximum 

value of the transmission occurs at ≈-28 dB at a frequency of ≈ (2.8-2.9) GHz. When the additional 

cylinder is inserted, 19.649 % of the frequency band has a transmission of 50 % of the injected 

power and the maximum value of transmission occur at ≈ -27 dB at frequency of ≈ (2.8-2.9) GHz.  

In the final configuration shown in figure 4.17 (a) and (b), the length of the rectangular waveguide 

is reduced from the optimum one (31 cm) to 7 cm, adjusted taking into account the geometrical 

constraints of the vacuum chamber of the ELTRAP apparatus. The position of the probe is tuned 

for a maximum field intensity at a distance of 2.28 cm from the end of the rectangular waveguide 

(“back-short”).  

 

The effect on transmission efficiency and return loss of the axial position of the T-junction 

between the rectangular (7 cm long) and the circular waveguide has been investigated inserting an 

additional cylinder of length 7 cm as shown in figure 4.17 (a) and (b). A RF signal swept between 2 
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GHz and 3 GHz at a power level of ±20.0 dBm is used like in the previous case. The transmitted 

(dBm) and reflected power (dBm) are reported in figures 4.18, 4.19 (scheme figure 4.17 (a)) and 

figure 4.21, 4.22 (scheme figure 4.17 (b)), respectively.   

 
Figure 4.17 Arrangement of power flow measurements compatible with geometrical constraints 

of ELTRAP.  

 
Figure 4.18 Transmitted power of rectangular waveguide compatible with geometrical 

constraints of ELTRAP coupled with the prototype circular waveguide. 
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Figure 4.19 Reflected power of rectangular waveguide compatible with geometrical constraints 

of ELTRAP coupled with the prototype circular waveguide. 

 
Figure 4.20 Return loss measurements of rectangular waveguide compatible with geometrical                       

constraints of ELTRAP coupled with the prototype circular waveguide. 
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Figure 4.21 Transmitted power of rectangular waveguide compatible with geometrical 

constraints of ELTRAP coupled with the prototype circular waveguide and an additional cylinder. 

 
Figure 4.22 Reflected power of rectangular waveguide compatible with geometrical constraints 

of ELTRAP coupled with the prototype circular waveguide and an additional cylinder. 
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Figure 4.23 Return loss measurements of rectangular waveguide compatible with geometrical                       

constraints of ELTRAP coupled with the prototype circular waveguide and an additional cylinder. 

 

The return loss measurements of the final configuration presented in figures 4.20 and 4.23 

(combined in figure 4.24) indicate that a frequency band of 35% is obtained at -3 dB at about 2.6 

GHz and a frequency band of 20.4 % at -6dB at about 2.7GHz. By introducing an additional length 

(cylinder of length 9 cm) to the prototype circular waveguide, the frequency band reduces to 

22.16% at -3dB at about 2.5 GHz and to 11.62% at -6dB at about 2.6GHz as shown in figure 4.24. 
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Figure 4.24 Return loss measurements of rectangular waveguide compatible with geometrical                       

constraints of ELTRAP coupled with 1). Prototype circular waveguide, 2). Prototype circular 

waveguide and additional cylinder (combine plot of figure 4.20 and 4.23). 

 

 

In summary, with the optimum design of the rectangular waveguide (>2λg=31 cm) the maximum 

value of the transmission occurs close to 3 GHz. When the rectangular waveguide (both with the 

optimum length and with a length of 7 cm) is coupled with the prototype circular waveguide, the 

maximum transmission efficiency reduces and shifts away from the maximum operating frequency 

of the available RF generator. When an additional length of the circular waveguide is inserted, the 

useful frequency band is also reduced. 
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Chapter FIVE 
 

 

Numerical simulations of the RF heating of a non-neutral plasma in a 

Penning-Malmberg trap 

 

5.1 Introduction 

 

The Particle-In-Cell (PIC) method is one of the most popular scheme to describe numerically the 

dynamics of a plasma. PIC methods have been in use since 1955 [20], even before the first 

FORTRAN compilers were available. The technique was initially proposed by Dawson [21] (at 

Princeton) and Oscar Buneman [22-25] (at Cambridge) and later developed by Birdsall and 

Langdon [26-27] at Berkeley.  

 

The PIC simulations presented here have been performed using the object-oriented code “OOPIC 

Pro”. The code is built on the “OOPIC” code physics kernel, which was originally developed at the 

University of California at Berkeley in 1995 by members of the plasma theory and simulation group 

(PTSG). The OOPIC physics kernel has been used by researchers around the world since 1995 to 

simulate a wide range of challenging problems. These include plasma display panels, ion 

implantation, high-power microwave devices, and next-generation particle accelerator concepts. 

The code is open source and well documented, and user corrections and improvements are 

incorporated regularly (see https://ice.txcorp.com/mailman/listinfo/oopic-users).  

 

The OOPIC code was chosen among the various PIC codes in use because of its reliability and freely 

availability and the possibility to run it on even low cost desktop computers. The code is two 

dimensional in configuration space and three dimensional in velocity space. The code includes 

electrostatic and electromagnetic field solvers, and supports both cylindrical (z, r) and Cartesian (x, 

y) geometry. The charge and current densities as well as the fields are calculated on an 

orthogonal, potentially non-uniform grid. The dynamics of the particles may be either relativistic 

or non-relativistic. Furthermore, the code may take into account RF heating phenomena, 

ionization, excitation and Monte Carlo collisions (MCC) with a variety of background gases (H, He, 

Ar, Ne, N, Xe, and Li).  

https://ice.txcorp.com/mailman/listinfo/oopic-users
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The RF electron heating in ELTRAP under conditions of ultra-high vacuum has been simulated with 

OOPIC Pro, using the cylindrical geometry (z, r). The results obtained from the simulations show 

very good agreement with the experiments conducted in ELTRAP at low drive frequencies (1-20 

MHz). In the simulations, a realistic geometry of the apparatus is used, with a length of the 

electrode stack of 102 cm, and an internal radius of the conducting cylinders of 4.5 cm. The 

electrostatic simulations of the electron heating have been performed for different RF drive 

excitation frequencies (1-15 MHz) with an amplitude of  5 and 10 V and for  different electron 

densities, 37105 −× m  and 31210 −m respectively. The RF signal is directly imposed on a trap 

electrode at two different axial positions, i.e. to cylinder C5 in the interval (0.408-0.51) m and 

cylinder C7 in the interval (0.612-0.714) m on the electrode stack.  

 

It is observed that with a continuous RF excitation the electron heating is initially higher near the 

wall of the cylinder and then it is extended to the whole space. It is also noticed that the 

temperature of the confined electrons is higher when the RF is applied at one end of the electrode 

stack, e.g. on cylinder C7, of the confinement cylinder as compared to the middle part, e.g. on 

cylinder C5, as observed also experimentally.  

 

Simulations with a residual hydrogen gas have been also performed (at pressures 10-8 torr, 10-7 

torr and 10-6 torr). In addition, electromagnetic simulations of the electron cyclotron resonance 

heating (ECRH) have also been considered, using an RF drive of 2.8 GHz, to describe the electron 

heating with the microwave system which is going to be installed in ELTRAP (see previous 

chapter).  

 

5.2 OOPIC simulation set-up 

 

The simulation parameters have been chosen according to the geometry of the ELTRAP device and 

the other data used in the RF electron plasma generation experiments described earlier. These 

parameters correspond to trap size, external homogeneous magnetic field for the radial 

confinement, static electrostatic potentials for axial confinement, RF drive parameters, initial 

electron density and temperature, etc.  

 

The simulation parameters are incorporated inside the input file of the code, which is written as a 

series of text blocks (grid block, control block, load block, etc.), see figure 5.1. The grid block is 
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used to specify the size, shape, geometry and other characteristics of the numerical grid. When 

the flag Geometry is set to 0, the code uses a cylindrical coordinate system where x1 corresponds 

to z, x2 corresponds to r, and x3 corresponds to the ignorable azimuthal φ coordinate. The lower 

and upper z (axial) coordinates x1s = 0.00 and x1f = 1.02 m correspond to the total length of the 

ELTRAP electrode stack, and the lower and upper radial coordinates x2s = 0.00 and x2f = 0.045 m 

correspond to the internal radial range of the electrodes (wall radius = 4.5 cm). The number of grid 

points in the axial and radial direction has been chosen as J=180 and K=45, respectively.  

 

The control block also contains the value of the external homogenous static magnetic (B01 = 0.1 

T), and the simulation time step in seconds. The ElectrostaticFlag parameter in control block 

allows the user to select either electrostatic or electromagnetic simulation.  

 

 
Figure 5.1 Simulation setup and input file structure of the PIC code. 

In the load block, the region where the plasma is initially located, the species (e.g. electrons), the 

density and the temperature are defined. A Maxwellian velocity distributions for each particle 
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species is considered. The number (np2c) of real particles per simulated particle (so-called “super-

particle” or “macro-particle”) is also defined in this block. In simulations that model multiple types 

of particles (for example, electrons and ions), there will be more than one species block within the 

input file. 

 

The potentials on each of the 10 cylindrical electrodes is also specified in the input file. Typically, 

on the end cylinders (C1 and C10) a potential of -100 V has been considered, while all other 

cylinders are kept at ground, except the one on which the RF drive is applied (see figure 5.1). The 

number of cells (grid points) distributions along axial (z-axis) and radial (r-axis) direction of the 

electrode stack is indicated in figure 5.2.  In each of the 10 cylinders there are 45 cells in the radial 

direction and 18 cells along the z-axis. 

 

 
Figure 5.2 Cell distributions of the electrode stack (10 cylinders) in the simulation domain of the 
PIC code.  
 
 

5.3 Electrostatic vs electromagnetic simulations 
 

In the PIC simulations the fields (E, B) are defined on the discrete grid. The position and velocity of 

each (macro-particle) vary according to the equation of motion 

 

magneticelectric BvqqE
dt
dvm )()( ×+=                                   5.1 

The dynamics of the charged particles is determined by the applied and the self-consistent fields. 

The fields are calculated from Maxwell’s equations by knowing the positions and velocities of all 

the particles. The sequence of operations described in figure 5.3 is repeated for several time steps.   

In the electrostatic simulations, the electric field is computed as φ−∇=E , where the electrostatic 

potential ‘φ’ is obtained from the Poisson equation,  
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0

2

ε
ρφ −=∇                                                                  5.2 

 

where ‘ρ’ is the charge density, computed on the grid by splitting the charge of the particles to the 

nearest grid points e.g. by linear interpolation. In the electrostatic approximation, the magnetic 

field is externally applied and is not re-calculated at each time step. 

 

 

 
 

Figure 5.3 PIC scheme for electrostatic and electromagnetic simulations  
 

 

 

In the electromagnetic simulations, the complete set of Maxwell’s equations is solved to obtain 

both the electric and magnetic field  
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where the current density is used to compute the self-consistent contribution to the magnetic 

field. The positions and velocities of the particles are used to calculate the source terms (ρ, J), 

which are interpolated to the grid. From the fields, the Lorentz force is calculated and interpolated 

back to the positions of the particles. The forces due to the electric and magnetic fields (self-

consistent fields) are used to advance the velocities of the particles, and subsequently the velocity 

is used to advance the position.  

  

5.3.1 Time step and cell size 

 

The appropriate values for grid size, time step, etc. depend on the scenario being simulated and 

the computational power available. As the cells increase in size, the error in the simulation 

becomes greater because the fields are calculated at a greater distances from the affected 

particles and small-scale variations are lost. Similarly, the larger the time step, the further the 

particles move without interaction before the field effect is recalculated, thus also increasing the 

error. In addition, the number of particles used in the simulation affects the accuracy of the 

simulation. The reduction of the number of particles in the simulation decreases the simulation 

time approximately linearly, but with too few particles the individual starting locations determined 

by the initial random distributions become too significant to the outcome of the simulation. 

Hence, the selection of these parameters is done with great care to obtain a balance between 

accuracy and performance.  

 

The time step needs to be small enough so that the fastest particles do not cross more that one 

cell per time step. It should be smaller than the smallest time scale, i.e. the cyclotron period or the 

plasma period. The time step to be used in the simulation must be within the limits set by the 

Courant condition, which states that the time sampling, dt, must be sufficiently small so that the 
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longest wavelength, propagating at the highest velocity, does not outrun the spatial grid sampling 

dx.  

 

 

Table 5.1 Particle in cell (PIC) simulation parameters 
 

Parameters 5x107 m-3 

Temperature 0.01 eV 

1012 m-3 

Temperature 1 eV 

Unit 

Debye length 0.1051 0.00743 meter 

Electron Larmor 
radius 

3.372 x 10-6 3.372 x 10-5 meter 

Bouncing time 3.888 x 10-5 3.888 x 10-6 second 

Plasma frequency 6.3498 x 104 8.98 x 106 Hertz 

J 180 180 cell 

K 45 45 cell 

np2c 8 8.247 x 104 particle 

Time step (dt) 7.144 x 10-11 7.144 x 10-11 second 

Cell size (dx1, dx2) 0.00566, 0.001 0.00566, 0.001 meter 

duration 10-4 10-4 second 

Simulation Domain 0.2 to 0.82 0.2 to 0.82 meter 

 

 

 

5.4 Electrostatic PIC simulations 

 

Experimentally, plasma generation has been detected in a cylindrical Penning–Malmberg trap in 

the ultra-high vacuum pressure regime for a large bandwidth of low-power radio frequency (RF) 

excitations (0.1–20MHz) as discussed in chapter 3. For the PIC simulations, electron plasmas of 

about 9105.6 ×≈  electrons, with trapped density ranging from 5 x 107 m-3 to 1012 m-3, 

temperature from 0.01 eV to 1 eV have been considered. The parameters in table 5.1 have been 

selected for the reasons discussed above, and are appropriate for most of the simulations done for 
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an applied magnetic field of 0.1 T, corresponding to a cyclotron period of sec1057239.3 10−×  

(2.799 GHz).   

The simulation time step has been selected as scyclotrondt 1110  144.7
5

period    −×== .  The 

number of real particles per simulation particles (np2c) is calculated by JkpVn pce ×× , where 

J  and k,,,, pce pVn are trapped electron density, simulation volume (domain), particles per 

cell 94−≈ , number of z-cells and number of k-cells respectively.  

 

 

5.5  Simulations of RF heating at low electron plasma density 
 

The RF electron heating has been evaluated using three different simulation schemes (see 

schematic diagram 5.4). Here no background gas is considered and in each simulation scheme, the 

confinement length between electrodes C1 and C10 is kept constant. The time step has been set 

at 1110144.7 −× second and the simulation is run up to 100 µs and the data saved into 22 dump 

files (each dump 5 µs). 

 

The frequencies of 1 MHz, 5 MHz, 6 MHz, 8 MHz, 10 MHz and 15 MHz and amplitude 5 volts and 

10 volts have been considered at low electron density 
37105 −×= mne  but two different 

electrodes C5 in the interval (0.408-0.51) m and cylinder C7 in the interval (0.612-0.714) m are 

used as antenna for the RF excitation. The numerical weight of the macro-particles is  82 =cnp . 

The confined electrons population can be separated into a ‘fast’ and a ‘slow’ component on the 

basis of the ratio between the electron kinetic energy and the first ionization energy of the 

residual neutral components, i.e. mainly H2. The ionization threshold is between 10 and 20 eV and 

the peak of the ionization cross section approximately lies in the 70–100 eV range. Therefore, the 

electrons must reach an energy of some tens of electron volts ( smV 610327.1 ×= ) to build up 

and sustain a plasma. This is the reason the energy (eV) range of the confined electrons have been 

categorized as (0-20) eV, (20-70) eV, (70-100) eV and 100≥  eV in table 5.2, table 5.3, table 5.4 and 

table 5.5.  

 

The confined electrons experience a change of energy after each interaction with the RF barrier. A 

net energy gain is seen in figures 5.5-5.8. The legend in each plot specifies the RF excitations 
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frequency. The axial kinetic energy is in general increasing for all considered cases, and tends to 

saturate after 50 µs approximately. Of course, higher temperature increments are obtained by 

increasing the amplitude of the RF excitation. 

    

 

 
Figure 5.4 Schematic diagram of electrostatic PIC simulations of an electron plasma formed and 
confined between C1 and C10 biased at a negative voltage -100 V and RF drive of amplitude A=5 

V and 10 V applied on 1) C5 and C7 at 37105 −× m  2) and C5 at 31210 −m . 
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Figure 5.5 Axial temperature vs time for an electron plasma density 37105 −× m  and an RF drive of 
amplitude A=5 V applied on Cylinder-5 (First simulation scheme mentioned in figure 4.4). 

 
Figure 5.6 Axial temperature vs time for an electron plasma density 37105 −× m  and an RF drive of 
amplitude A=10 V applied on Cylinder-5 (First simulation scheme mentioned in figure 4.4). 
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Figure 5.7 Axial temperature vs time for an electron plasma density 37105 −× m  and an RF drive of 
amplitude A = 5 V applied on C7 (2nd simulation scheme mentioned in figure 4.4). 

 
Figure 5.8 Axial temperature vs time for an electron plasma density 37105 −× m  and an RF drive of 
amplitude A = 10 V applied on C7 (2nd simulation scheme mentioned in figure 4.4). 
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At the end of the simulation time of sµ100 , the axial temperature of the confined electrons is 

found to increase with an increase of the applied excitation frequency from 1 MHz to 5 or 6 MHz, 

while it decreases with a further increase of excitation frequency (8 MHz, 10 MHz and 15 MHz). 

Second, it is also observed that the final temperature is higher for the choice of the C7 electrode 

as RF antenna as compared to electrode C5, which is closer to the center of the trap. 

 

It is confirmed the experimental finding that the RF heating is more effective in the outer radial 

part of the trap cylinder (see also tables 5.2-5.5).  

 

The simulation results of the axial energy profile of RF heating indicates that the heating is higher 

near to the wall of cylinder up to s 50µ , then the effect is extended toward the central region of 

the trap (see figures 5.9-5.12). The axial and radial losses the electrons for a 5V excitation 

amplitude is negligibly small for all the considered frequencies (1-15 MHz): the loss percentage is 

only 0.082 % for 8 MHz on C7 and 0.072 % for 15 MHz on C5.  However, for a 10 V amplitude the 

losses increase above 6 MHz excitation frequency. The maximum loss percentages are 14.909 % 

for 8 MHz (C7 used as antenna), 2.92 % losses for 8 MHz (C5 used as antenna), 5.252 % for 10 MHz 

(C5 used as antenna), 0.832 % for 10 MHz (C7 used as antenna), 4.025 % for 15 MHz (C5 used as 

antenna) and 3.322 % for 15 MHz (C7 used as antenna). These losses of electrons at higher 

frequencies (≥ 8MHz) tens to reduce the temperature of confined electron plasma. However, at 

higher excitation frequency (5 to 15MHz) and amplitude (5-10 V) only 1.263 % to 15.3 % of 

confined electrons have an energy range between 20 and 70 eV and only 0.005 % to 0.64 % 

between 70 and 100 eV (see tables 5.2-5.5). 
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Table 5.2. Energy (eV) range of the electrons at simulation time 100 µs, for a density 

37105 −× m and an amplitude A = 5 V of the RF drive applied on electrode C5. 

Energy 
range 
(eV)  

Number of 
electrons(%) 

of )( zuKE  

Number of 
electrons(%) 
of )( ruKE  

Number of 
electrons(%) 
of )( phiuKE  

Number of 
electrons(%) 
of )( zuKE  

Number of 
electrons(%) 
of )( ruKE  

Number of 
electrons(%) 
of )( phiuKE  

RF 1MHz of amplitude A=5 V RF 5MHz of amplitude A=5 V 
0-20 
eV 

19478 
(100%) 

19478 
(100%) 

19478 
(100%) 

18399 
(94.46%) 

19478 
(100%) 

19478 
(100%) 

20-70 
eV 

0 
(0%) 

0 
(0%) 

0 
(0%) 

1079 
(5.54%) 

0 
(0%) 

0 
(0%) 

70-100 
eV 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

100≥  
eV 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

Total 
(No,%) 

19478 
(100%) 

19478 
(100%) 

19478 
(100%) 

19478 
(100%) 

19478 
(100%) 

19478 
(100%) 

E (eV) RF 6MHz of amplitude A=5 V RF 8MHz of amplitude A=5 V 
0-20 
eV 

18194 
(93.41%) 

19478 
(100%) 

19478 
(100%) 

18378 
(94.353%) 

19478 
(100%) 

19478 
(100%) 

20-70 
eV 

1284 
(6.59%) 

0 
(0%) 

0 
(0%) 

1100 
(5.65%) 

0 
(0%) 

0 
(0%) 

70-100 
eV 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

100≥  
eV 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

Total 
(No,%) 

19478 
(100%) 

19478 
(100%) 

19478 
(100%) 

19478 
(100%) 

19478 
(100%) 

19478 
(100%) 

E(eV)  RF 10MHz of amplitude A=5 V RF 15MHz of amplitude A=5 V 
0-20 
eV 

18661 
(95.81%) 

19478 
(100%) 

19478 
(100%) 

19228 
(98.72%) 

19464 
(99.92%) 

19464 
(99.92%) 

20-70 
eV 

816 
(4.19%) 

0 
(0%) 

0 
(0%) 

221 
(1.13%) 

0 
(0%) 

0 
(0%) 

70-100 
eV 

01 
(0.005%) 

0 
(0%) 

0 
(0%) 

15 
(0.077%) 

0 
(0%) 

0 
(0%) 

100≥  
eV 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

Total 
(No,%) 

19478 
(100%) 

19478 
(100%) 

19478 
(100%) 

19464 
(99.928%) 

19464 
(99.928%) 

19464 
(99.928%) 
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Figure 5.9 The electrostatic PIC simulation of axial kinetic energy (eV) (electrons velocities in the 
axial (z) direction) of electron plasma 37105 −× m  as a function of radial position. The confined 
electrons is between C1 and C8 biased at a negative voltage -100 V and RF (MHz) drive of 
amplitude A=5 V applied on Cylinder-5 (1st simulation scheme mentioned in figure 4.4). 
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Figure 5.10 Axial kinetic energy (eV) as a function of the radius. The electron density is 
37105 −× m and the RF applied on C5 has an amplitude of A = 10 V (1st simulation scheme 

mentioned in figure 4.4). 
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Table 5.3. Energy (eV) range of the electrons at simulation time 100 µs, for a density 

37105 −× m and an amplitude A = 10 V of the RF drive applied on electrode C5. 

 

Energy 
range 
(eV) 

Number of 
electrons(%) 
of )( zuKE  

Number of 
electrons(%)
of )( ruKE  

Number of 
electrons(%)
of )( phiuKE  

Number of 
electrons (%) 

of )( zuKE  

Number of 
electrons (%) 
of )( ruKE  

Number of 
electrons(%) 
of )( phiuKE  

RF 1MHz of amplitude A=10 V RF 5MHz of amplitude A=10 V 
0-20 
eV 

19478 
(100%) 

19478 
(100%) 

19478 
(100%) 

16429 
(84.346%) 

18852 
(96.786%) 

18852 
(96.786%) 

20-70 
eV 

0 
(0%) 

0 
(0%) 

0 
(0%) 

2299 
(11.8%) 

0 
(0%) 

0 
(0%) 

70-100 
eV 

0 
(0%) 

0 
(0%) 

0 
(0%) 

124 
(0.6366%) 

0 
(0%) 

0 
(0%) 

100≥  
eV 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

Total 
(No,%) 

19478 
(100%) 

19478 
(100%) 

19478 
(100%) 

18852 
(96.786%) 

18852 
(96.786%) 

18852 
(96.786%) 

E (eV) RF 6MHz of amplitude A=10 V RF 8MHz of amplitude A=10 V 
0-20 
eV 

16488 
(84.649%) 

19478 
(100%) 

19478 
(100%) 

17015 
(87.355%) 

18909 
(97.08%) 

18909 
(97.08%) 

20-70 
eV 

2986 
(15.33%) 

0 
(0%) 

0 
(0%) 

1818 
(9.33%) 

0 
(0%) 

0 
(0%) 

70-100 
eV 

04 
(0.021%) 

0 
(0%) 

0 
(0%) 

76 
(0.39%) 

0 
(0%) 

0 
(0%) 

100≥  
eV 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

Total 
(No,%) 

19478 
(100%) 

19478 
(100%) 

19478 
(100%) 

18909 
(97.08%) 

18909 
(97.08%) 

18909 
(97.08%) 

E(eV) RF 10MHz of amplitude A=10 V RF 15MHz of amplitude A=10 V 
0-20 
eV 

16943 
(86.98%) 

18455 
(94.748%) 

18455 
(94.748%) 

18407 
(94.5%) 

18694 
(95.975%) 

18694 
(95.975%) 

20-70 
eV 

1408 
(7.229%) 

0 
(0%) 

0 
(0%) 

268 
(1.376%) 

0 
(0%) 

0 
(0%) 

70-100 
eV 

104 
(0.534%) 

0 
(0%) 

0 
(0%) 

18 
(0.092%) 

0 
(0%) 

0 
(0%) 

100≥  
eV 

0 
(0%) 

0 
(0%) 

0 
(0%) 

01 
(0%) 

0 
(0%) 

0 
(0%) 

Total 
(No,%) 

18455 
(94.748%) 

18455 
(94.748%) 

18455 
(94.748%) 

18694 
(95.975%) 

18694 
(95.975%) 

18694 
(95.975%) 
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Figure 5.11 Axial kinetic energy (eV) as a function of the radius. The electron density is 

37105 −× m and the RF applied on C7 has an amplitude of A = 5 V (2nd simulation scheme 
mentioned in figure 4.4). 
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Table 5.4. Energy (eV) range of the electrons at simulation time 100 µs, for a density 

37105 −× m and an amplitude A = 5 V of the RF drive applied on electrode C7. 

 

Energy 
range 
(eV)  

Number of 
electrons(%) 

of )( zuKE  

Number of 
electrons(%) 
of )( ruKE  

Number of 
electrons(%) 
of )( phiuKE  

Number of 
electrons(%) 
of )( zuKE  

Number of 
electrons(%) 
of )( ruKE  

Number of 
electrons(%) 
of )( phiuKE  

 RF 1MHz of amplitude A=5 V RF 5MHz of amplitude A=5 V 
0-20 
eV 

19478 
(100%) 

19478 
(100%) 

19478 
(100%) 

18187 
(93.37%) 

19478 
(100%) 

19478 
(100%) 

20-70 
eV 

0 
(0%) 

0 
(0%) 

0 
(0%) 

1291 
(6.628%) 

0 
(0%) 

0 
(0%) 

70-100 
eV 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

100≥  
eV 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

Total 
(No,%) 

19478 
(100%) 

19478 
(100%) 

19478 
(100%) 

19478 
(100%) 

19478 
(100%) 

19478 
(100%) 

E (eV) RF 6MHz of amplitude A=5 V RF 8MHz of amplitude A=5 V 
0-20 
eV 

17933 
(92.07%) 

19478 
(100%) 

19478 
(100%) 

18515 
(95.056%) 

19462 
(99.918%) 

19462 
(99.918%) 

20-70 
eV 

1545 
(7.93%) 

0 
(0%) 

0 
(0%) 

931 
(4.779%) 

0 
(0%) 

0 
(0%) 

70-100 
eV 

0 
(0%) 

0 
(0%) 

0 
(0%) 

16 
(0%) 

0 
(0%) 

0 
(0%) 

100≥  
eV 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

Total 
(No,%) 

19478 
(100%) 

19478 
(100%) 

19478 
(100%) 

19462 
(99.918%) 

19462 
(99.918%) 

19462 
(99.918%) 

E(eV)  RF 10MHz of amplitude A=5 V RF 15MHz of amplitude A=5 V 
0-20 
eV 

18862 
(96.837%) 

19478 
(100%) 

19478 
(100%) 

19227 
(98.711%) 

19478 
(100%) 

19478 
(100%) 

20-70 
eV 

615 
(3.1574%) 

0 
(0%) 

0 
(0%) 

246 
(1.263%) 

0 
(0%) 

0 
(0%) 

70-100 
eV 

01 
(0.005%) 

0 
(0%) 

0 
(0%) 

05 
(0.026%) 

0 
(0%) 

0 
(0%) 

100≥  
eV 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

Total 
(No,%) 

19478 
(100%) 

19478 
(100%) 

19478 
(100%) 

19478 
(100%) 

19478 
(100%) 

19478 
(100%) 
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Figure 5.12 Axial kinetic energy (eV) as a function of the radius. The electron density is 

37105 −× m and the RF applied on C7 has an amplitude of A = 10 V (2nd simulation scheme 
mentioned in figure 4.4). 
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Table 5.5. Energy (eV) range of the electrons at simulation time 100 µs, for a density 

37105 −× m and an amplitude A = 10 V of the RF drive applied on electrode C7. 
 

Energy 
range 
(eV) 

Number of 
electrons(%) 

of )( zuKE  

Number of 
electrons(%) 

of )( ruKE  

Number of 
electrons(%) 
of )( phiuKE  

Number of 
electrons(%) 

of )( zuKE  

Number of 
electrons(%) 

of )( ruKE  

Number of 
electrons(%) 
of )( phiuKE  

RF 1MHz of amplitude A=10 V RF 5MHz of amplitude A=10 V 
0-20 
eV 

19478 
(100%) 

19478 
(100%) 

19478 
(100%) 

16799 
(86.246%) 

19477 
(99.995%) 

19477 
(99.995%) 

20-70 
eV 

0 
(0%) 

0 
(0%) 

0 
(0%) 

2675 
(13.733%) 

0 
(0%) 

0 
(0%) 

70-100 
eV 

0 
(0%) 

0 
(0%) 

0 
(0%) 

03 
(0.0154%) 

0 
(0%) 

0 
(0%) 

100≥  
eV 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

Total 
(No,%) 

19478 
(100%) 

19478 
(100%) 

19478 
(100%) 

19477 
(99.995%) 

19477 
(99.995%) 

19477 
(99.995%) 

E (eV) RF 6MHz of amplitude A=10 V RF 8MHz of amplitude A=10 V 
0-20 
eV 

16885 
(86.687%) 

19478 
(100%) 

19478 
(100%) 

15442 
(79.279%) 

16574 
(85.091%) 

16574 
(85.091%) 

20-70 
eV 

2593 
(13.312%) 

0 
(0%) 

0 
(0%) 

1048 
(5.38%) 

0 
(0%) 

0 
(0%) 

70-100 
eV 

0 
(0%) 

0 
(0%) 

0 
(0%) 

84 
(0.431%) 

0 
(0%) 

0 
(0%) 

100≥  
eV 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

Total 
(No,%) 

19478 
(100%) 

19478 
(100%) 

19478 
(100%) 

16574 
(85.091%) 

16574 
(85.091%) 

16574 
(85.091%) 

E(eV) RF 10MHz of amplitude A=10 V RF 15MHz of amplitude A=10 V 
0-20 
eV 

17538 
(90.04%) 

19316 
(99.168%) 

19316 
(99.168%) 

18444 
(94.691%) 

18831 
(96.678%) 

18831 
(96.678%) 

20-70 
eV 

1659 
(8.517%) 

0 
(0%) 

0 
(0%) 

347 
(1.7815%) 

0 
(0%) 

0 
(0%) 

70-100 
eV 

119 
(0.611%) 

0 
(0%) 

0 
(0%) 

40 
(0.2054%) 

0 
(0%) 

0 
(0%) 

100≥  
eV 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

Total 
(No,%) 

19316 
(99.168%) 

19316 
(99.168%) 

19316 
(99.168%) 

18831 
(96.678%) 

18831 
(96.678%) 

18831 
(96.678%) 
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5.6 Simulations of RF heating at high electron plasma density 
 

The results of the electrostatic PIC simulations for an electron plasma density 31210 −m up to 

simulation time of sµ100  is presented in figures 5.13 and 5.14 (axial temperature vs time) and in 

figures 5.15-5.16 (axial kinetic energy vs radius). The number of real particles per simulation 

particles is in this case 410247.82 ×=cnp . The temperature of the confined electrons increases 

with the excitation frequency from 5 MHz to 10MHz and then decreases from 10 to 15 MHz. The 

maximum final temperatures of 30.03 eV and 40.32 eV are observed at 10 MHz for an RF drive 

amplitude of 5 V and 10 V, respectively. It is observed that for a simulation time of sµ100 the 

particle losses are 12.776 %, 12.594 %, 15.531%, 13.47% and 14.05% (of a total of 37789 initial 

macro-particles) for the frequencies 5MHz, 8MHz, 10MHz, 12MHz and 15 MHz at an amplitude of 

5 V, and 24.01%, 27.736%, 36.317%, 46.561% and 46.948% for an amplitude of 10 V.  

 

In general, it is confirmed that the RF heating is more effective in the outer radial part of the trap, 

so that the electrons localized near to wall having higher energy (≥ 20 eV) are able to ionize the 

residual gas better than the electrons located close to the central part of the trap. 

 
Figure 5.13 Axial temperature vs time for an electron plasma density 37105 −× m  and an RF drive 

of amplitude A = 5 V applied on C5 (3rd simulation scheme mentioned in figure 4.4). 
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Figure 5.14 Axial temperature vs time for an electron plasma density 37105 −× m  and an RF drive 

of amplitude A = 10 V applied on C5 (3rd simulation scheme mentioned in figure 4.4). 
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Figure 5.15 Axial kinetic energy (eV) as a function of the radius. The electron density is 

31210 −m and the RF applied on C5 has an amplitude of A = 5 V. 



86 
 
Table 5.6. Energy (eV) range of the electrons at simulation time 100 µs, for a density 

31210 −m and an amplitude A = 5 V of the RF drive applied on electrode C5.  

Energy 
range 
(eV) 

 

Number of 
electrons(%

) of )( zuKE  

Number of 
electrons(%) 

of )( ruKE  

Number of 
electrons(%) 
of )( phiuKE  

Number of 
electrons(%) 

of )( zuKE  

Number of 
electrons(%) 

of )( ruKE  

Number of 
electrons(%) 
of )( phiuKE  

RF 5MHz of amplitude A=5 V RF 8MHz of amplitude A=5 V 
0-20 
eV 

26894 
(71.169%) 

32961 
(87.224%) 

32961 
(87.224%) 

23264 
(61.563%) 

33030 
(87.406%) 

33030 
(87.406%) 

20-70 
eV 

6067 
(16.055%) 

0 
(0%) 

0 
(0%) 

9758 
(25.822%) 

0 
(0%) 

0 
(0%) 

70-100 
eV 

0 
(0%) 

0 
(0%) 

0 
(0%) 

08 
(0.0211%) 

0 
(0%) 

0 
(0%) 

100≥  
eV 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

Total 
(No, %) 

32961 
(87.224%) 

32961 
(87.224%) 

32961 
(87.224%) 

33030 
(87.406%) 

33030 
(87.406%) 

33030 
(87.406%) 

E (eV) RF 10MHz of amplitude A=5 V RF 12MHz of amplitude A=5 V 
0-20 
eV 

22144 
(58.599%) 

31920 
(84.469%) 

31920 
(84.469%) 

23661 
(62.613%) 

32699 
(86.53%) 

32699 
(86.53%) 

20-70 
eV 

9654 
(25.547%) 

0 
(0%) 

0 
(0%) 

8753 
(23.163%) 

0 
(0%) 

0 
(0%) 

70-100 
eV 

122 
(0.323%) 

0 
(0%) 

0 
(0%) 

285 0 
(0%) 

0 
(0%) 

100≥  
eV 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

Total 
(No, %) 

31920 
(84.469%) 

31920 
(84.469%) 

31920 
(84.469%) 

32699 
(86.53%) 

32699 
(86.53%) 

32699 
(86.53%) 

E(eV) RF 15MHz of amplitude A=5 V  
0-20 
eV 

26212 
(69.364%) 

32479 
(85.95%) 

32479 
(85.95%) 

20-70 
eV 

6082 
(16.095%) 

0 
(0%) 

0 
(0%) 

70-100 
eV 

184 
(0.487%) 

0 
(0%) 

0 
(0%) 

100≥  
eV 

01 
(0.0026%) 

0 
(0%) 

0 
(0%) 

Total 
(No, %) 

32479 
(85.95%) 

32479 
(85.95%) 

32479 
(85.95%) 
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Figure 5.16 Axial kinetic energy (eV) as a function of the radius. The electron density is 

31210 −m and the RF applied on C5 has an amplitude of A = 10 V. 
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Table 5.7. Energy (eV) range of the electrons at simulation time 100 µs, for a density 

31210 −m and an amplitude A = 10 V of the RF drive applied on electrode C5.  

 

Energy 
range 
(eV)  

RF 5MHz of amplitude A=10 V  RF 8MHz of amplitude A=10 V 
Number of 

electrons(%) 
of )( zuKE  

Number of 
electrons(%) 

of )( ruKE  

Number of 
electrons(%) 
of )( phiuKE  

Number of 
electrons(%) 

of )( zuKE  

Number of 
electrons(%) 

of )( ruKE  

Number of 
electrons(%) 
of )( phiuKE  

0-20 
eV 

19412 
(51.369%) 

28717 
(75.99%) 

28717 
(75.99%) 

16273 
(43.063%) 

27308 
(72.264%) 

27308 
(72.264%) 

20-70 
eV 

8880 
(23.499%) 

0 
(0%) 

0 
(0%) 

10447 
(27.646%) 

0 
(0%) 

0 
(0%) 

70-100 
eV 

425 
(1.125%) 

0 
(0%) 

0 
(0%) 

588 
(1.556%) 

0 
(0%) 

0 
(0%) 

100≥  
eV 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

Total 
(No,%) 

28717 
(75.99%) 

28717 
(75.99%) 

28717 
(75.99%) 

27308 
(72.264%) 

27308 
(72.264%) 

27308 
(72.264%) 

E (eV) RF 10MHz of amplitude A=10 V RF 12MHz of amplitude A=10 V 
0-20 
eV 

14539 
(38.4742%) 

24065 
(63.683%) 

24065 
(63.683%) 

14111 
(37.342%) 

20194 
(53.439%) 

20194 
(53.439%) 

20-70 
eV 

9002 
(23.822%) 

0 
(0%) 

0 
(0%) 

5737 
(15.182%) 

0 
(0%) 

0 
(0%) 

70-100 
eV 

523 
(1.384%) 

0 
(0%) 

0 
(0%) 

344 
(0.91%) 

0 
(0%) 

0 
(0%) 

100≥  01 
(0.00265%) 

0 
(0%) 

0 
(0%) 

02 
(0.0053%) 

0 
(0%) 

0 
(0%) 

Total 
(No,%) 

24065 
(63.683%) 

24065 
(63.683%) 

24065 
(63.683%) 

20194 
(53.439%) 

20194 
(53.439%) 

20194 
(53.439%) 

E(eV) RF 15MHz of amplitude A=10 V   
0-20 
eV 

16272 
(43.06%) 

20048 
(53.052%) 

20048 
(53.052%) 

20-70 
eV 

3559 
(9.418%) 

0 
(0%) 

0 
(0%) 

70-100 
eV 

216 
(0.572%) 

0 
(0%) 

0 
(0%) 

100≥  
eV 

01 
0.00262 

0 
(0%) 

0 
(0%) 

Total 
(No,%) 

20048 
(53.052%) 

20048 
(53.052%) 

20048 
(53.052%) 
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5.7  RF heating with a background gas  
 

In a real plasma many reactions play a role, ranging from elastic collisions, such as collisions 

between charged and neutral particles, to inelastic collisions, such as electron-neutral ionization 

collisions and even chemical reactions. However the complexity of these processes cannot be fully 

integrated into numerical codes. The OOPIC Pro code is able to treat the most fundamental 

processes such as elastic collisions, excitation and ionization of the background gas (inelastic 

interaction). In the present case, the process of ionization of the background gas due to electron-

neutral impacts has been taken into account. The incident electron loses part of its energy 

(equivalent to the ionization threshold energy), creates an ion and a secondary electron, and gets 

scattered after the collision. Hydrogen pressures of  10,10 78 torrPtorrP −− == and torr -610P =  have 

been considered in the simulations. As it was discussed about the results of the simulations with 

no background gas, the maximum RF heating is achieved for an excitation frequency of 

approximately 5 MHz. This case has therefore been selected for the electrostatic Monte-Carlo PIC 

simulations of electron neutral collisions (H2) to investigate the importance of the ionization 

process.  

The electron-neutral collision frequency can be estimated as  

2
1









=

e

eH
e

sHe m
kTn συ

                                                            5.8 

where Hn is the neutral density, 215105 cmH
e

s
−×=σ  is the typically cross section and ekT  is 

temperature in eV.  As it seen in figures 5.17 and 5.18, at the end of the simulation, the electron 

neutral (H2) collision times are 5.215 10-5 s, 5.563 10-4 s, and 5.682 10-3 s at a background pressure 

of 10-6 torr, 10-7 torr and 10-8 torr, respectively, for the case of 37105 −× m electron density and 5 V 

amplitude of the applied RF. Similarly, for the same pressures at a density of 31210 −m , figures 5.19 

and 5.20 show that the electron neutral collision times are correspondingly s510302.3 −× , 

s410272.3 −× and s310277.3 −× . Similar results for a 10 V amplitude of the RF drive are shown in 

figures 5.21-5.24. These result show that an increased collision frequency is obtained at higher RF 

drive amplitudes since the electron temperature is also higher, so that more ionization and 

secondary electrons are generated as mentioned in table 5.8 (a, b). Note also that at increasing 

pressures, electron–neutral collisions will become the dominant factor causing plasma expansion 

(the expansion rate is expected to increase linearly with the background gas pressure).  
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As discussed in chapter 3, in the experiments RF plasma formation is obtained initially in the outer 

radial part of the trap. The created positive ions may then interact with the cylindrical wall of the 

trap and get lost because for the provided static homogenous magnetic field of magnitude ≤ 0.2 T 

their Larmor radius is large. The ions are not confined also axially, since negative electrostatic 

potentials are applied at the end cylinders for the confinement of the electron plasma.  

 

 
Figure 5.17 (a) Electron axial temperature (eV) vs time for a 5 MHz excitation frequency of 
amplitude A = 5V and electron density 37105 −× m where hydrogen used as background gas at 

pressures of torrtorr 76 10,10 −− and torr810−  (b) electron neutral collision time vs. simulation 
time (s) at a pressure of torr610− . 
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Figure 5.18 For the same data as in figure 5.17, electron neutral collision time vs. simulation 

time (s) at a pressure of (c) torr710− and (d) torr810− . 
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Figure 5.19 (a) Electron axial temperature (eV) vs time for a 5 MHz excitation frequency of 
amplitude A = 5V and electron density 1012 m-3 where hydrogen used as background gas at 

pressures of torrtorr 76 10,10 −− and torr810−  (b) electron neutral collision time vs. simulation 
time (s) at a pressure of torr610− . 
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Figure 5.20 For the same data as in figure 5.19, electron neutral collision time vs. simulation 

time (s) at a pressure of (c) torr710− and (d) torr810− . 
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Figure 5.21 (a) Electron axial temperature (eV) vs time for a 5 MHz excitation frequency of 
amplitude A = 10V and electron density 5 107 m-3 where hydrogen used as background gas at 

pressures of torrtorr 76 10,10 −− and torr810−  (b) electron neutral collision time vs. simulation 
time (s) at a pressure of torr610− . 
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Figure 5.22 For the same data as in figure 5.21, electron neutral collision time vs. simulation 

time (s) at a pressure of (c) torr710− and (d) torr810− . 
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Figure 5.23 (a) Electron axial temperature (eV) vs time for a 5 MHz excitation frequency of 
amplitude A = 10 V and electron density 1012 m-3 where hydrogen used as background gas at 

pressures of torrtorr 76 10,10 −− and torr810−  (b) electron neutral collision time vs. simulation 
time (s) at a pressure of torr610− . 
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Figure 5.24 For the same data as in figure 5.23, electron neutral collision time vs. simulation 

time (s) at a pressure of (c) torr710− and (d) torr810− . 
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Figure 5.25 Axial kinetic energy (eV) vs radius (m) for an amplitude of the applied RF drive of 5V 

at 5 MHz frequency at a simulation time of sµ100 for an electron density of 37105 −× m .  
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Figure 5.26 Axial kinetic energy (eV) vs radius (m) for an amplitude of the applied RF drive of 5 V 

at 5 MHz frequency at a simulation time of sµ100 for an electron density of 31210 −m .  
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Figure 5.27 Axial kinetic energy (eV) vs radius (m) for an amplitude of the applied RF drive of 10 

V at 5 MHz frequency at a simulation time of sµ100 for an electron density of
37105 −× m .  
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Figure 5.28 Axial kinetic energy (eV) vs radius (m) for an amplitude of the applied RF drive of 10 

V at 5 MHz frequency at a simulation time of sµ100 for an electron density of
31210 −m . 
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Table 5.8 Monte-Carlo electrostatic PIC simulation of electron neutral collision. Summary of 
ionization, secondary electrons and losses at simulation time 100 µs. At t=0 the total number of 

macro-particles is 19478 and 37789 for density of (a) 
37105 −× m and (b) 

31210 −m , 
respectively. 
 

(a) Density
37105 −× m , Input temperature= 0.01 eV 

A 
volts 

Pressure= torr810−  Pressure= torr710−  Pressure= torr610−  

electrons 
losses 

 

secondary 
electrons 

 

ions electrons 
losses 

secondary 
electrons 

ions electrons 
losses 

secondary 
electrons 

ions 

5 0 1 1 0 5 5 0 52 45 

10 729 1 1 696 12 12 464 118 118 

(b) Density
31210 −m , Input temperature= 1 eV  

A 
volts 

Pressure= torr810−  Pressure= torr710−  Pressure= torr610−  

electrons 
losses 

 

secondary 
electrons 

 

ions electrons 
losses 

secondary 
electrons 

ions electrons 
losses 

secondary 
electrons 

ions 

5 4765 5 5 4760 18 18 4464 270 270 

10 9017 3 3 8876 50 50 8545 481 481 

 

 
 
5.7 Simulations of the ECRH in ELTRAP 
 
 
As indicated previously, the available microwave generator has a range of 9 kHz - 3GHz, the 

maximum magnetic field is 0.2 T and the internal radius if the cylindrical electrodes of ELTRAP is 

4.5 cm. Under these conditions, only 11 1.9522TE GHz=  and 01 2.5499TM GHz=  modes can be 

excited in ELTRAP.  

 

In the electromagnetic simulations the same spatial grid (J=180, K=45) is used like in the 

electrostatic case but the time step is reduced to s1210− (1ps) for a better accuracy and to 

respect the Courant limit. The schematic diagram of the electromagnetic PIC simulations of the 

microwave electron heating is shown in figure 5.29.  
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Figure 5.29 Schematic diagram of the electromagnetic PIC simulations of the microwave heating 
at 2.8 GHz for an electron plasma density of 37105 −×= mne  and 31210 −m .  
 

The maximum power that can be transferred to the ELTRAP electrode stack (circular waveguide) 

operating with the TE11 mode with a 2.8 GHz frequency is: 

 

 1099.1 2
max

23- wattsEaP
g










×=

λ
λ

  5.16 

where the potential gradient Emax is expressed in volts per centimeter, and the power is in watt. As 

a=4.5 cm, the guide wavelength of the TE11 mode is 
( ) cm 356471.15

8412.1
5.42

g ==
πλ and the 

free-space wavelength cm 10.706785=λ . Therefore the relation between the maximum 

power and maximum allowable field strength is    

 

2
max0.0280961  wattP E=                                             5.17 
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The maximum field strength in the TE11 mode is on the axis and the value 

is   volts/cm88658762.1max =E , when computed with the maximum power 20 dBm = 0.1 watt of 

the RF signal generator. Similarly the maximum power at 2.8 GHz for the TM01 mode is 

                 2
max2

4
3- a 1069.7 EP

g










×=

λ
λ

λ
                                                5.18 

where
( ) cm 756969.11

4049.2
5.42

g ==
πλ .  

Therefore,    2
max0.025051  P E watt=               5.19 

 

The maximum field strength in the TM01 mode is therefore   volts/cm9979631.1max =E .  

In the simulations, a continuous microwave signal of 0.04 V amplitude at 2.8 GHz is applied in the 

positions of the C5 and C7 cylinders. The simulations are run up to a time of 5µs and the data are 

saved in 12 dumps, where each dump corresponds to a time interval 5µs.  

 

 
Figure 5.30 Electron radial kinetic energy (eV) vs time for the cases indicated in the legend. The 
RF frequency is 2.8 GHz. 
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Figure 5.31 Electron azimuthal kinetic energy (eV) vs time for the cases indicated in the legend. 
The RF frequency is 2.8 GHz. 
 

 
Figure 5.32 Electron axial kinetic energy (eV) vs time for the cases indicated in the legend. The 
RF frequency is 2.8 GHz. 
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The figures 5.30-5.32 show the time evolution of the electron kinetic energy computed with the 

various velocity components (radial, azimuthal, axial). Unlike in the electrostatic simulations, in 

this case the radial and azimuthal “temperatures” of the electrons is much higher as compared to 

the axial temperature. The major heating effect is obtained when the RF power is injected from 

the position of the C7 electrode, i.e., close to one end of the trap.   

 

 
Figure 5.33 Radial kinetic energy distribution vs radius at the simulation time of 5µs. 
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Figure 5.34 Azimuthal kinetic energy distribution vs radius at the simulation time of 5µs. 



108 
 

 
Figure 5.35 Axial kinetic energy distribution vs radius at the simulation time of 5µs. 
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Table 5.9 Details on number of macro-particles and losses for the electromagnetic simulations 
 

Simulation 

density 

Total number of 

simulation electrons 

at simulation time of 

s1210−  

Electron lost when C-5 

(antenna) used for the  RF 

excitation at simulation 

time of sµ5  

Electron lost when C-7 

(antenna) used for the  RF 

excitation at simulation 

time of sµ5  

37105 −× m  19478 0 0 

31210 −m  31164 2 7 

 
 

 

Table 5.10 Details on the electron energy distribution at the simulation time of 5µs for density of 

5 x 107 m-3. 

Energy 
range 
(eV)  

RF plugging  at C5  RF plugging  at C7 
Number of 
electrons(%) 
of )( ruKE  

Number of 
electrons(%) 
of )( phiuKE  

Number of 
electrons(%) 

of )( zuKE  

Number of 
electrons(%) 

of )( ruKE   

Number of 
electrons(%) 
of )( phiuKE  

Number of 
electrons(%) 

of )( zuKE  
0-20 19062 

(97.864%) 
19110 

(98.11%) 
19477 

(99.995%) 
18793 

(96.483%) 
18894 

(97.002%) 
19478 
(100%) 

20-70 270 
(1.3862%) 

243 
(1.2475%) 

01 
(0.0051%) 

451 
(2.315%) 

402 
(2.0638%) 

0 
(0%) 

70-100 52 
(0.2669%) 

46 
(0.2362%) 

0 
(0%) 

64 
(0.3285%) 

56 
(0.2875%) 

0 
(0%) 

100≥  94 
(0.4826%) 

79 
(0.4056%) 

0 
(0%) 

170 
(0.8728%) 

126 
(0.64688%) 

0 
(0%) 

Total 
(No,%) 

19478 
(100%) 

19478 
(100%) 

19478 
(100%) 

19478 
(100%) 

19478 
(100%) 

19478 
(100%) 

 

 

 

 

 

 

 

 

 

 



110 
 
Table 5.11. Details on the electron energy distribution at the simulation time of 5µs for density 

of 1012 m-3. 

Energy 
range 
(eV)  

RF plugging  at C5 RF plugging  at C7 
Number of 
electrons(%) 
of )( ruKE  

Number of 
electrons(%) 
of )( phiuKE  

Number of 
electrons(%) 

of )( zuKE  

Number of 
electrons(%) 

of )( ruKE   

Number of 
electrons(%) 
of )( phiuKE  

Number of 
electrons(%) 

of )( zuKE  
0-20 26582 

(85.297%) 
26705 

(85.692%) 
31159 

(99.984%) 
24037 

(77.131%) 
23691 

(76.02%) 
31154 

(99.968%) 
20-70 3513 

(11.273%) 
3416 

(10.961%) 
03 

(0.0096%) 
4842 

(15.5372%) 
5133 

(16.471%) 
03 

0.00903 
70-100 420 

(1.3477%) 
434 

(1.3926%) 
0 

(0%) 
859 

(2.7564%) 
856 

(2.7467%) 
0 

(0%) 
100≥  647 

(2.076%) 
607 

(1.9477%) 
0 

(0%) 
1419 

(4.5533%) 
1477 

(4.7394%) 
0 

(0%) 
Total 
(No,%) 

31162 
(99.99358%) 

31162 
(99.99358%) 

31162 
(99.99358%) 

31157 
(99.9775%) 

31157 
(99.9775%) 

31157 
(99.9775%) 

 

Figure 5.36 Radial kinetic energy distribution vs z at the simulation time of 5µs. 
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Figure 5.37 Azimuthal kinetic energy distribution vs z at the simulation time of 5µs. 

 
Figure 5.38 Axial kinetic energy distribution vs z at the simulation time of 5µs. 
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The radial distributions of the electron kinetic energy computed with the various velocity 

components are shown in figures 5.33-5.35 and the energy distribution of the electrons is 

indicated in tables 5.10 and 5.11. The results show that energetic electrons and higher heating are 

located in the central part of the trap, and that they will able to ionize the residual background 

gas, in order to increase the overall electron plasma density. 
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Chapter SIX 

 

 

Summary 
 

One of the objectives of this research work was to estimate the sensitivity of the system installed 

in the ELTRAP device to perform a Thomson backscattering experiment (discussed in chapter 2). 

The reachable electron bunch density ( 38103.4 −×= cmnb ) does not allow one to obtain a 

detectable signal from the laser bunch interaction (with the present setup the minimum density 

should be 310106.3 −×= cmne ). Solutions to increase the signal level and to reduce the noise issues 

are briefly discussed in chapter 2. 

 

The generation of an electron plasma was realized in ELTRAP under ultra-high vacuum conditions 

by means of the application of low power RF (1-20 MHz) drives on one of the azimuthally sectored 

electrodes of the trap. The relevant experimental results have been reviewed in chapter 3.  

 

To investigate the characteristics of the electron heating, electrostatic simulations have been 

performed using a two- dimensional particle-in-cell code and a realistic geometry of the apparatus 

(chapter 5). Different excitation frequencies (1 MHz, 5 MHz, 6 MHz, 8 MHz, 10 MHz and 15 MHz) 

and amplitudes (5 V and 10 V) of the RF drive have been considered. In order to simulate the 

application of the RF drive in the middle of the trap or close to one of the plug cylinders, the 

simulations have been performed applying the RF excitation on cylinders C5 and C7. At low 

electron plasma density ( 37105 −×= mne ), simulating a situation of electron heating prior to the 

main plasma formation, the simulations show that the axial temperature of the confined electrons 

increase with the applied excitation frequency from 1 MHz to 5-6 MHz, while it decreases with a 

further increase of the excitation frequency (from 8 MHz to 15 MHz). In addition, for given 

excitation frequency and amplitude, the axial electron temperature turns out to be higher when 

the RF drive is applied close to one end of the trap. The results for the radial profiles of the 

electron axial kinetic energy indicate that the electron heating is initially stronger close to the wall 

of the trap. Later the heating effect is extended towards the central region of the trap. The 

electrons localized near to wall having higher energy (≥ 20 eV) would then be able to ionize the 
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residual gas better than the electrons located close to the central part of the trap, and this results 

is in agreement with the experimental findings (plasma formation close to the wall, evidenced 

with the optical diagnostics of ELTRAP). Similar results are obtained for an electron plasma density 

of 31210 −m , simulating a situation in which the RF is applied to an already formed plasma.   

 

Simulations with a residual hydrogen gas have been also performed (at pressures 10-8 torr, 10-7 

torr and 10-6 torr) using the same electron plasma densities, in order to investigate the importance 

of the ionization process. These Monte Carlo simulations are computationally expensive, so the 

considered final time is shorter than in the simulations performed in the absence of a residual 

background gas. The results are therefore also more qualitative, and show in particular that an 

increased collision frequency is obtained at higher RF drive amplitudes due to the higher electron 

temperature obtained, so that more ionization and secondary electrons are generated. At 

increasing pressures, electron–neutral collisions will become the dominant factor causing plasma 

expansion (the expansion rate is expected to increase linearly with the background gas pressure).  

In the prospected solution to extend the RF studies to the GHz range, a bench test analysis has 

been performed of the RF transmission efficiency of a RF injection system up to a few GHz 

(chapter 4). Using a prototype circular waveguide with the same diameter and length of the 

ELTRAP electrode stack, it has been shown that a rectangular waveguide of dimensions a = 7.18 

cm, b = 3.71 and length = 31 cm would satisfy the desired specifications for reflection and 

bandwidth. It has been computed in particular that 25.727 % of the working frequency band (from 

2 GHz to 3 GHz) has a transmission of at least 50 %, and the maximum value of transmission occurs 

at a frequency of ≈ 3 GHz. The length of the rectangular waveguide must be reduced from the 

optimum one (31 cm) to 7 cm, taking into account the geometrical constraints of the vacuum 

chamber of the ELTRAP apparatus. The return loss measurements of the adopted final 

configuration (figure 4.17) presented in figure 4.20 indicate that a frequency band of 35% can be 

obtained with a transmission of at least 50 % at about 2.6 GHz and a frequency band of 20.4 % 

with a transmission of at least 75 % at about 2.7GHz. The T-junction between the rectangular 

waveguide and the electrode stack of ELTRAP will be located close to one end of the stack, in 

order to reduce the perturbation on the confining potential of the electron plasma. It has also 

been shown in figure 4.23 that the useful frequency band is reduced, when the length of the 

prototype circular waveguide is increased on the side close to the junction with the rectangular 

waveguide (see also figures 4.15 and 4.16). Therefore, the location of the T-junction at one end of 

the trap has also the advantage of a larger useful transmission frequency band. 

 



115 
 
Electromagnetic PIC simulations have been performed of the ECRH heating in ELTRAP. The 

generation of a 2.8 GHz signal from a cylindrical antenna (simulating the real situation of the 

injection into the electrode stack of ELTRAP of a microwave signal from an external rectangular 

waveguide) has been considered. Unlike in the electrostatic simulations, in this case the radial and 

azimuthal “temperatures” of the electrons increase much more than the axial temperature. The 

major heating effect is obtained when the RF power is injected from the position of the C7 

electrode, i.e., close to one end of the trap.  

 

The new microwave heating system will therefore allow the extension of the previous RF studies 

to the GHz range.  In particular, resonant cyclotron excitation of the RF-generated plasma will be 

aimed to increasing the electron temperature and possibly density as a consequence of a higher 

ionization rate of the residual gas. The installation of the new RF system will open up the 

possibility to study, e.g., the interaction between the confined plasma and a traveling electron 

bunch. 
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