EXISTENCE AND CONCENTRATION OF SEMI-CLASSICAL
SOLUTIONS FOR DIRAC EQUATIONS WITH CRITICAL
NONLINEARITIES

YANHENG DING* AND BERNHARD RUF'

Abstract. We study the semi-classical ground states of the Dirac equation with critical nonlin-
earity:

—iho - Vw + afw + V(z)w = W(z)(g(|w|) + |w|)w
for z € R3. The Dirac operator is unbounded from below and above so the associate energy functional

is strongly indefinite. We develop an argument to establish the existence of least energy solutions
for h small. We also describe the concentration phenomena of the solutions as i — 0.
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1. Introduction. This paper aims to study the existence and concentration phe-
nomena of semiclassical ground states for the stationary Dirac equation with critical
nonlinearities:

3
—ih Y apdpw + afw + V(x)w = W (z) (g(|w]) + [w|)w (1.1)

k=1

with w : R® — C?. Equation (1.1) is a first order partial differential equation on
R?; the relevant Sobolev embedding is H/?(R3,C*) ¢ L3(R3,C%), i.e. the Sobolev
critical growth is 3. Thus the term |w|w has critical growth, while g(|w|)w is assumed
to be superlinear and subcritical as |w| — oo. In (1.1), % denotes Plank’s constant,
Oy = a%k, a > 0 is a constant, oy, as, a3 and B are 4 X 4 complex matrices:

o I 0 _ 0 Ok o
B_(O _I>7 ak_(o_k 0 )7 k_17273
0 1 0 —i 1 0
01<1 O>a 02<Z' 0)3 03<0 _1>7

and V, W : R® — R are continuous functions. In the sequel, for notational conve-
nience, we will write & = (o, a2, 3) and -V =Y, | o0, as well as

with

Ti=minV, ¥ :={zcR¥: V(z)=r1},
Too := liminf V(z),

|z|—00
m:=maxW, ¥ :={zecR®: W(x)=n},
Too := limsup W (zx).

|z] =00
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Our arguments depend crucially on these numbers and sets.

Equation (1.1) or the more general one
—tha - Vw + afw + M (x)w = Fy,(z,w), (1.2)
arises when one seeks standing wave solutions of the nonlinear Dirac equation
—ihOyp = icha - Vi — mc2 B — V(2) + Gy (2,1). (1.3)

Such equations have been widely used to build relativistic models of extended particles
by means of nonlinear Dirac fields. Different functions G model various types of self-
couplings [25]. Assuming that G(xz,e%¢) = G(z,7) for all § € [0,27], a standing
wave solution of (1.3) is a solution of the form t(t,z) = e % w(z). It is clear that
P (t, x) solves (1.3) if and only if w(z) solves (1.2) with a = me, M(z) = V(z)/c+ ply
and F(z,w) = G(z,w)/c.

Several papers have been devoted to the study of the existence of solutions of
(1.2) under various hypotheses on the potential functions and the nonlinearity (see
[18] for a review). In [5] the authors studied the problem with M(z) = w € (—a,a)
and the nonlinearity (the so-called Soler model)

F(w) = %H(ﬂ}w) , He C*(R,R) , H(0) =0, ww:= (Bw,w)cs ,

by using shooting methods. Such kind of nonlinearities were later studied in [17],
where for the first time variational methods were applied to such problems (in fact,
[17] also considered certain more general super-linear subcritical F'(w) independent of
x). If the equation is periodic, that is, M (x) and F(x,w) depend periodically on x,
by using a critical point theory the paper [7] established also the existence and mul-
tiplicity of solutions of (1.2) with scalar potentials of the type M(z) = V(z)5. Con-
cerning non-periodic potentials (typically, Coulomb-type potentials), [15] considered
some asymptotically linear nonlinearities, and [16] treated superlinear and subcritical
nonlinearities with mainly the limits of M (x) and F(x,w) existing as |z| — co.

For small A, the standing waves are referred to as semi-classical states. To describe
the transition from quantum to classical mechanics, the existence of solutions wpy, it
small, possesses an important physical interest. Recently, the paper [14] studied the
existence of a family of ground states of the problem

—iha - Vw + afw = W(z)|w|?*w, (g€ (2,3))

for all & small, and showed that the family concentrates around the maxima of W(z)
as h — 0.

To our knowledge, there are no results studying the existence and concentration
phenomenon of semiclassical solutions for nonlinear Dirac equations involving the
critical exponent of the relevant Sobolev embedding. Since the pioneering paper
by Brezis-Nirenberg [8] on elliptic boundary value problems involving the critical
Sobolev exponent, there have been a large number of works in this direction. In
particular, many papers have been devoted to studying critical Schrédinger equations
(not semiclassical case), see, e.g. [30] and the references therein.

The main objective of this paper is to study such situations for critical Dirac
equations. For describing our study we present first some special consequences of the
more general results of the paper. First, consider the problem

—iha - Vu+ afu = W (z)(|u|?? + |u|)u. (1.4)
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THEOREM 1.1. Let q € (2,3) and assume that W satisfies
(Wo) W € CHR3,R), inf W > 0, and 7 > 7o
Then there exists mo > 0 such that, if 7T > mg, for sufficiently small i > 0, (1.4)
possesses a least energy solutions wy € [)ysq Whs. If additionally VW is bounded,
then wy, satisfies: -
(a1) There exists a mazimum point xy of |wy| with %11)16 dist(zp, W) = 0, such that,

for some ¢,C >0
c
fun(@)| < Cexp (= 5o —anl). (L5)

(ag) Setting vy (x) := wr(hx + x1), for any sequence h — 0, vy converges in H' to
a least energy solution of

—io - Vv +afv = m([v]972 + |v])v.

In fact, one can choose

64 \ (4=2)/23-q)
o= a(sS/?)

)

where here (and in the sequel) S is the best Sobolev embedding constant:
Slul2e < |Vul2. for u € H'(R?),

and 7y, denotes the least energy of the ground state for the superlinear subcritical
equation (which exists, see [17, 16])

—ia - Vu+ Bu = |u|?7 %u. (1.6)
We also consider the equation with linear potential
—iha - Vu+ afu+ V(z)u = |u|7 2u + |ulu. (1.7)

THEOREM 1.2. Let g € (2,3) and assume that V satisfies 7 > —a and
(Vo) Ve CYR3,R), V(z) <0 and T < Too-
Then there is 7o > 0 such that, if (a + 7Too)'2751 < 79, for sufficiently small h >
0, (1.7) possesses a least energy solutions wp € (5o Wt If additionally VV is
bounded, and either 12 > 5q or (a + 7)127%4 < 79, then wy, satisfies:
(a1) There exists a mazimum point xp, of |wy| with }ilif% dist(xn, V) = 0, such that,
for some ¢,C > 0, (1.5) holds.
(az) Setting vp(z) := wp(hx +z1), for any sequence h — 0, vy, converges in H' to
a least energy solution of

—io- Vv +afv +7v = (|v]77? + |v|)v.

In fact, one may take 719 = a12_5q7r072(37q)

above.

where mg is the number defined

What will happen if 7 = —a?

THEOREM 1.3. Let (Vp) be satisfied, 7 = —a and q € (2,3). Then for sufficiently
small b > 0, (1.7) possesses a least energy solutions wy, € (\yo Wh*. In addition,
wy — 0 in H' as h — 0.
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REMARK 1.4. The concentration phenomena showed in Theorems 1.1 and 1.2
can be re-described as follows: There is o > 0 such that, for any given é,r > 0, there
exists hg > 0 satisfying

sup |wp(x)| >0
TEN, ()

sup |wp(z)| <6
TENE ()

provided 0 < h < hg, where o =V in case (Vo) and of = W in case (Wy), N, (&)
denotes a neighborhood of </ with radius r, and N5(&/) = R3\ N,.(&).

Our argument is variational: the semiclassical solutions are obtained as critical
points of an energy functional f 5 associated to an equivalent problem of (1.1). Differ-
ent from the Laplacian in the Schrédinger equation, the Dirac operator is unbounded
from above and below. As a result, the functional F j is strongly indefinite and, hence,
possesses an infinite-dimensional linking structure instead of a Mountain-Pass. Our
arguments will be based on a suitable functional analytic framework. The linking
structure yields a minimax value ¢y for F . Since the problem is posed on the whole
space R3, [ does not satisfy the general Palais-Smale condition, and so it cannot
be directly concluded that ¢ is a critical value. This will be checked via a reduced
functional I, with Nehari manifold .4%, which is such that ¢ is nothing but the min-
imum of I on A%;. Comparing with [14], since the solutions depend not only on
the linear potential but also on the nonlinear one, the present arguments are more
delicate. One new ingredient is a comparison of ¢; with the least energy of a class
of limit problems. Another is an estimate for ¢ through a discussion about some
auxiliary functionals. And the third is a boundedness estimate for the maximum of
the semiclassical ground states. Since either the linear part or the nonlinear one is
not invariant under the R3-group action, such an estimate enables us to establish the
concentration phenomena.

2. The main results. Now we describe more precisely the main results. Writing
€ = h, we are concerned with the equation

—iga- Vw + afw + V(z)w = W(z)(g9(|w]) + |w|)w. (2.1)

On the nonlinear field, writing G(|w|) := Olw\ g(s)sds, we consider the following
hypotheses:
(g1) 9(0) =0, g€ C1(0,00), ¢'(s) > 0 for s > 0, and there exist p € (2,3), c; >0
such that g(s) < ci(1+sP72) fors >0 ;
(g2) there exist ¢ > 2, 0 > 2 and co > 0 such that cos? < G(s) < §g(s)s* for all
5>0.
Clearly, the power function g(s) = 592 for s > 0 satisfies these assumptions. Set

2/(qg—2
_— (53/260/@ )>q_2
q 6’Yq )

where ¢ and ¢y are the constants from (gz), and v, is the least energy of (1.6). On
the linear fields we will use the following hypotheses:
(Py) V, W e CY{R3 R), V(z) <0, infW >0;
» a+7e0 \ 12759/ o 2(3—q) .
(Py) 7> —a and (=) (E) <Rg;
(P1) m> 7o and ;reuyryl V(z) < Too; or
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(P2) T < Too and max W(x) > meo.
zeY

These conditions suffice for the existence of semiclassical solutions. In order to show
the concentration phenomenon we require a further technical assumption:
(P3) VV and VW are bounded, and

a-+T\12— a —
( )12 5q(7)2(3 q) <Rq '

either 5qg <12, or
a T

THEOREM 2.1. Let (g1)-(g2), (Po)-(Py), and either (Py) or (Py) be satisfied.
Then, for sufficiently small € > 0, (2.1) possesses a least energy solution w. €

ﬂszz whs.
If additionally (P3) also holds and ¥ N W # 0, then w. satisfies:

(a1) There exists a mazimum point x. of |we| with liH(l) dist(ze, ¥ N H#') =0, such
E—r

that, for some ¢,C >0
c
< — Zla—x.|). .
|we (2)] < Cexp ( E|ac ac5|) (2.2)

(az) Setting ve(x) := we(ex + x.), ve converges in H' (up to subsequences) to a
least energy solution of

—ia- Vo +afv+7v =m(g(|v]) + [v])v. (2.3)

More generally, also if ¥ N # # () is not necessarily satisfied, we can describe
certain concentration phenomena. To this end we introduce the following notations:
in case (P1) set 7, = mingey V(z) and

Ay ={zeW Ve)=r,t U{z ¢ ¥ : V() <Tw};
in case (P) set m, = max,cy W(z) and
Ay ={z eV : Wk)=m,t U{x¢ ¥V : W(x)>m}.

Obviously, <7, and .2, are bounded. Moreover, if ¥ N# # () then &, = o, = V' NY .

First, consider the equation with the nonlinear potential W leading the behavior.
THEOREM 2.2. Let (g1)-(92), (Po)-(By) and (P1) be satisfied. Then, for suf-
ficiently small € > 0, (2.1) possesses a least energy solution we € [\ysq whs, If
additionally (Ps) also holds, then w. satisfies: -
(a1) There exists a mazimum point x. of |we| with i% dist(ze, ) = 0, such
that (2.2) holds. for some constants ¢,C > 0.
(ag) Setting ve(z) := we(ex+xc), for any sequence x. — xg ase — 0, v, converges
in H' to a least energy solution of

—ia - Vo +aBv+ V(zg)v = W(zo) (g(|v]) + [v])v. (2.4)

Next, consider the equation with the linear potential V' leading the behavior.

THEOREM 2.3. Let (91)-(g2), (Po)-(Py) and (Py) be satisfied. Then for suffi-
ciently small ¢ > 0, (2.1) possesses a least energy solution we € [\ysq Whs. If in
addition also (Ps) holds, then w. satisfies

(a1) There exists a mazimum point z. of |w.| with 31_13% dist(xe, o,) = 0, such that,

for some ¢,C > 0, (2.2) holds.
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(ag) Setting ve(x) = we(ex+x), for any sequence x. — xg ase — 0, ve converges
in H' to a least energy solution of (2.4).
It is clear that Theorem 2.1 is a consequence of Theorems 2.2 and 2.3.
REMARK 2.4. We point out that if both (P1) and (P2) are satisfied, then in
general it happens that (2.1) possesses two families of semiclassical ground states,
one concentrating on <7, and another on <.

Finally, we consider the case (P;) with 7 = —a.
THEOREM 2.5. Let (g1)—(g2), (Po) and (Py) be satisfied. Assume 7 = —a. Then,
for sufficiently small € > 0, (2.1) possesses a least energy solution we € (\y5q whs,

Moreover, w, — 0 in H' ase — 0.

Theorem 2.2 applies to the equation (2.1) with (V5) and W (z) being constant, in
particular, Theorem 1.1 is a corollary of Theorem 2.2. Likely, Theorem 2.3 applies to
the equation (2.1) with (Wp) and V (x) being constant, so Theorem 1.2 is a particular
case of Theorems 2.3. It is clear that Theorem 1.3 is a special case of Theorem 2.5.

REMARK 2.6. The formulas in (150) and (P3) are equivalent, respectively, to

)

12—5qy 1/2(3—q)
> a(Ry (7))

o a(R‘l (a + 7-)12—5(1)1/2(3—(1).

4 a

(The latter follows from the former if 12 > 5q; this is why we made the assumption
only if 12 < 5q.)

Observe that, setting u(z) = w(ex), Ve(z) = V(ex) and We(z) = W{(ex), the
equation (2.1) is equivalent to the following
—ia - Vu+ afu + Ve(z)u = We(2)(g9(|ul) + |u])u (2.5)
We will in the sequel focus on these equivalent problems.

3. Variational setting. In what follows by |- |, we denote the usual L9-norm,
and (-,-)2 the usual L%-inner product. Let A, = —ic - V + af3 denote the selfadjoint
operator on L?(R3,C*) with domain D(4,) = H'(R3,C*). A Fourier analysis shows
that 0(A,) = 0.(As) = R\ (—a,a) where o(-) and o.(-) denote the spectrum and
continuous spectrum. Thus the space L? possesses the orthogonal decomposition:

L’=L &L, u=u +u"

so that A, is negative definite (resp. positive definite) in L™ (resp. LT). Let E :=
D(|Aq|*?) = H'/? be equipped with the inner product

(u,0) = R(|AalPu, | Aa]'?0)2

and the induced norm |ju|| = (u,u)'/2, where |A,| and |A,|'/? denote respectively the
absolute value of A, and the square root of |A,|. Since 0(4,) C R\ (—a,a), one has

alul3 < ||lul|? for all u € E. (3.1)

Note that this norm is equivalent to the usual H'/2-norm, hence E embeds contin-
uously into L7 for all ¢ € [2,3] and compactly into L]  for all ¢ € [1,3). It is clear
that E possesses the following decomposition

E=E-®FE"t with E*t=EnL?,
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orthogonal with respect to both (-,-)2 and (-,-) inner products. This decomposition
induces also a natural decomposition of L4, hence there is by > 0 such that

bq|ui|g < |ull for all u € E. (3.2)
In the sequel, set Rt = [0, 00), and define, for any u € ET \ {0},
E, .= E &Ru, E,:=FE @Rtu.
Let S and S, denote the folllowing Sobolev embedding constants:
Slufg < [Vul3

, forallue H' .
Solulp < [ | 1Val? + JuP

LEMMA 3.1. Let As := —ia-V 4+ 68 for all 6 # 0. Denoting p, = 6/(3 — 2t) for
t €[0,1], one has |ul,, < S™2||As|tuls.

Proof. See [7]. We consider two interpolation couples {Yp, Y1} and {Xo, X7} with
Yo = L2, Y, = L% and X, = L? = D(|4;]°), X1 = D(|As|). Let Y\ = Yy + Y3 be
equipped with the norm

llul|+ == inf{|jv]s + |wl|¢ : v=v+w, v € Yy, we Y},
and X = Xy + X; be equipped with the norm
Julls i= inf{Jols + wllx, : w=v+w, v e Xo, we Xy},

Consider the (complex) interpolation spaces Y; = LP* and X; = D(]As|"). Let o :
X+ — Y, be the embedding operator. Then +(X;) C Y; and the Sobolev embedding
theorem yields |[2]|z(x, v;) < S~/2. The Calderén-Lions interpolation theorem ([26])
now implies #(X;) C Y; and

lellzce, v < el g vy Iz vy = lz vy = $77%

ending the proof. O

REMARK 3.2. 1) We note in particular that S*?|ul3 < ||(—ia - V + 68)|"/%ul3
for any 6 and all u € E.
2) One verifies similarly that, for any p € [2,3),

5©6=2p)/p 5215(471)) lul2 < [|As|*2ulf3.

1/2
Syl apy lul2 < 11 As]2ull3.

In virtue of the assumptions (g1) — (g2), for any 6 > 0 with § < (a — 7)/4, there
exist 75 > 0,¢s > 0 and ¢§ > 0 such that
g(s) < forall 0 < s <rg;
G(|ul) > cslul® — |ul* for all u € C4 (3.3)
G(lul) < dJuf?* + cslulP for all u € C*.
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Denote f(s):=g(s) + s for s > 0, and

Ju|

Fllul)i= [ Fls)sds = Gllul) + 5 ul®

0

On E we set a(u,v) := (|Aa|"?(ut —u7),[Aq["?v), = (uT —u~,v), and a(u) =
a(u,u) = [[u™]|*—|lu"||%. In the sequel, for convenience, we will write also [p; (Aqu, v)
for a(u,v). Define the functional

+3 [ V@l = [ W@
= 5P =) + 5 [ Vi@l - / W) F(Ju).

Plainly, ®. € C?(E,R).
LEMMA 3.3. Critical points of ®. are solutions of (2.5).
Proof. Observe that, for any u,v € E,

P (u) =

l\')\)—l w\

d
£¢a(u + sv)’

*%a(uv)Jr?R V (u,v) §R/ We(x) f(Jul){u, v)

=0

= (ut —uv) + R / We (@) (ul)) (u,v).

Let u € E be a critical point of ®.. For any real vector v € C§°(R?,R?) one has
formally

0=t =)+ R [ (Vila) = Welaf(Jub) o)

= (R(Aqu) + Va(Ru) — Wef(Jul)(Ru), ),

and

0

(= i) + 8 [ (Vo) = Wela)(fu) s v)
R3
(S(Aut) + Va(Su) — W f(Jul) (Sw), v),.

Hence, for any general v € C§°(R3,C*), there holds
0= (Aau + Veu — We f(Jul)w, v)2

which implies that u is a weak solution of (2.5). Now a standard regularity argument
shows that u is in fact a solution of (2.5). |

Note that the functional V. (u) := [ps We(2)F(|u|) is weakly sequentially lower
semi-continuous, and P’ is Weakly sequentlally contlnuous
It is easy to check by using (3.1) — (3.3) that the functional ®. possesses the
linking structure:
LEMMA 3.4. @, possesses the linking structure:
1) There existr > 0 and p > 0 both independent of € such that ®.|g+(u) > 0 and
P.|g+ > p, where Bf = {u € ET: |lul| <7} and Sif = {u e E* lul| = r};



Semi-Classical Solutions for Dirac Equations 9

2) For any e € E* \ {0}, there exist R, > 0 and C' = C, > 0 both independent
of € such that ®.(u) < 0 for allu € E, \ B and max ®.(E.) < C.
Define the following minimax value (see [23, 28, 6])

ce:= inf max &.(u)= inf max P (u).
e€EH\{0} ucEe e€E\{0} uek,

As a consequence of Lemma 3.4 we have

LEMMA 3.5. There is C' > 0 independent of € such that p < c. < C.

Proof. By 1) of Lemma 3.4 and the definition of ¢. one has c. > p. Take e € ET
with ||e]| = 1. It follows from 2) of Lemma 3.4 the following

CsSCECGa

ending the proof. O

Recall that a sequence {u,} C E is said to be a (PS)., ¢ € R, sequence for
o, if . (u,) — ¢ and PL(u,) — 0, and D, is said to satisfy the (PS). condition
if any (PS). sequence for ®. has a convergent subsequence. With Lemma 3.4 and
by a linking argument it follows that ®. has a (PS).. sequence (see e.g. [13, 28]).
Obviously, if @, satisfies the (P.S). condition then ¢, is a critical value. Unfortunately,
since there is no compact embedding from H'/?(R?) into LP(R?), the (PS) condition
does not in general hold, and we have to go through a more delicate analysis.

Motivated by Ackermann [1] (see also [16, 23, 28]), we consider, for a fixed u € E™T,
the map ¢, : E~ — R defined by

du(v) = D (u + ).

Observe that, for any v,w € E~ (recalling that —7 = |V]),

sl = = ol + [ Vi@l = ¥ e+ o)
s—“ZTuwn W (o), ul,

and in addition

o

Pu(v) <
Therefore, there is a unique he(u) € E~ such that

¢u(he(u)) = max ¢y (v).

It is clear that
0 = ¢/, (he(w))v
— (he(u),v) + R | V(@) (u+ he(u),v) — U_(u+ he(u))v

R3

for all v € E~, and

v#Eh(u) S D(u+tv) < Pe(u+ he(u)).
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For any u € ET and v € E~, setting z = v — he(u) and £(t) = ¢, (h-(u) +t2), one

has (1) = ¢y (v),£(0) = ¢y (he(u) and ¢/(0) = 0. Thus £(1) — £(0) = fol(l — )" (t)dt.
This implies that

Gu(v) — bu(he(u))
1
/(1f@a(h()+m»[ St

/(1—t(||z|2 [ vl + [ W@+ e + ezl

£+ he(w) + 2] .
e O T ) 1 2] (W“*hf(“)“z’”))dt

hence,

D (u+ he(uw)) — P (u+v)

= 5 (1l - [ v@l=P)
/ / (1=OW. ( (|t + he(u) + tz])|2] (3.4)

f(Ju+ he(u) + t2]) )
|u+ he(u) + t2| (R(u + he(u) + 12, 2)) )

Define I, : ET — R by
I (u) = ®c(u+ he(u))
= 5l = el?) + 5 [ V@t bl = Wet+ o)
Set
Ne={ue ET\{0}: Il(u)u=0}

LEMMA 3.6. For any u € E* \ {0}, there is a unique t = t(u) > 0 such that

t(u)u € Az.
Proof. See [1, 14, 16]. 0
LEMMA 3.7. We have
=

Proof. Indeed, given e € ET | if u = v+se € E, with ®.(u) = max,cp, Pc(z) then
the restriction @.|p, of ®. on E, satisfies (P.|g, ) (u) = 0 which implies v = h.(se)
and I (se)(se) = PL(u)(se) = 0, i.e. se € AZ. Thus inf I. (A7) < ¢.. On the other
hand, if w € A then (P, |g, ) (w4 he(w)) = 0 s0 ¢ < maxyep,, Pe(u) = I.(w). Thus
inf I (AZ) > c.. This proves the desired conclusion. O

LEMMA 3.8. For any e € ET \ {0}, there is T, > 0 independent of ¢ > 0 such
that t. < T, fort. > 0 satisfying t.e € ;.

Proof. Since I’ (t.e)(t.e) = 0 one sees that the restriction of @, satisfies (P.|g, ) (t-e+
he(tee)) = 0. Thus

O, (t.e + he(tee)) = max . (w).

wekE,
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This, together with Lemma 3.7 and 2) of Lemma 3.4, implies the desired conclusion.
0

Let J# :={u € E: ®L(u) = 0} be the critical set of ®.. It is easy to see that if
K.\ {0} # 0 then

ce = inf{®.(u): uwe #\{0}}

(see an argument of [16]). Using the same iterative argument of [17, Proposition 3.2]
one obtains easily the following

LEMMA 3.9. Ifu € J; with |P.(u)] < Cy and |ula < Cy, then, for any s € [2,00),
u € WHS(R3) with ||u||lw1.s < Ay where Ay depends only on Cy,Cy and s.

Let # be the set of all least energy solutions of ®.. If u € # then & .(u) = c.
and a standard argument shows that ., is bounded in E, hence, |u|s < Cs for u € .7,
some Cy > 0 independent of €. Therefore, as a consequence of Lemmas 3.7 and 3.9
we see that, for each s € [2,00), there is Cs > 0 independent of € such that

lullwis < Cs  for all u € . (3.5)

This, together with the Sobolev embedding theorem, implies that there is Co > 0
independent of £ with

[t|]oo < C  for all u € . (3.6)

4. Preliminary results. For proving our main theorems, we need some results
on related autonomous equations. Recall that G(|u|) > ¢olu|?, ¢ € (2,3). For any
i€ (—a,a) and v > 0, consider the equation

—io- Vu+ afu+ pu = v(g(lu]) + Jul)u, ue HY(R3,CY). (4.1)

Its solutions are critical points of the functional

Tiulw): =3 [ (o Vot ad ) —v [ (GGl + gluf?)

defined for u € E. Let v}, denote the linking level of T},
PROPOSITION 4.1. vy, is altained provided p < 0 and

(‘H“)lHq (9)2(3_Q) <R,. (4.2)

a v

In order to prove this proposition we require a series of discussions.
4.1. The subcritical equation. Consider
—ia - Vu+ afu+ pu = vg(|u))u, we H'(R® CH). (4.3)

The solutions are critical points of the functional

T = 5 (1P = 1 1?) + 5 [l =v [ Gl

defined for u = u~ +u* € E = E~ ® ET. Denote the critical set, the least energy,
and the set of least energy solutions of I, as follows

L ={ueE: T, (u) =0}
Vv = 10f{T, (u) : v e £, \ {0}},
L@MV = {u S gﬂy : pr(u) = ’yu/l/) |u(0)‘ = |u‘oo}
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The following lemma is from [16].
LEMMA 4.2. There hold the following
i) Lo 0, Y >0, and Ly C(\yog WH;
1) Y s attained, and X, is compact in H'(R3,C*);
i1i) there exist C,c > 0 such that

lu(z)| < Cexp (—clz|) for allz € R, u € R
As before we introduce the following notations:

Fuw BT = BT Tw(ut fuw(u) = max Ly (u+v);

Juw BT = R, Juw(u) =T (u+ Fuw(u));

My, = {u e ET\{0}: J, (u)u = 0}.
Plainly, critical points of .J,,, and I',,,, are in one to one correspondence via the injective
map u — u+ _#,,(u) from E* into E. Clearly, J,,, has the Mountain-pass structure.

Notice that, similar to (3.4), for u € ET, v € E~ and z = v — _#,,,(u), there
holds

F(u+ Zu(u) —Tp(u+v)
=50 =) v [ [ a-o(ats su@reb

g(Ju+ Fu(w) +1z))

+
|+ Fw (u) + 2]

(R{u+ 2 (u) + tz, z>)2) .

It is not difficult to check that, for each u € ET\{0}, there is a unique t = t(u) > 0
such that tu € .#,,, (see Lemma 3.6, or [1, 16]).
LEMMA 4.3. Let u € My, be such that Jy,(w) = Y. Then

max Iu(w) = Juw(u).

Proof. Clearly, since u + _#,,(u) € E,,

Jur() = Dy (a4 (1)) < max Ty ()

On the other hand, for any w = v + su € E,,

1 1 n
T (w) = sllsull® = s [[v]* + Slv + sul3 — ’// G(Jv + sul)
2 2 2 -
<Tu(su+ Zu(su) = Ju(su).
Thus, since u € A,,,,

r v < v = v )
max Ly (w) < max Jy, (su) = Juw (u)

giving the conclusion. a

LEMMA 4.4. Let pj € (—a,a) andv; > 0, j = 1,2, with min{po—p1, v1—ve} > 0.
Then Yy, vy < Yuawe- If additionally max{us — p1, v1i — 2} > 0 then Yy < Yuows-
In particular, Yu,v; < Yuow; of 1 < pr2, and Yy, v, > Yy if V1 < V.
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Proof. Let u € Z),0, with T}, () = Y450, and set e = ut. Then

7#21/2 = F#2V2 (U) = LréaE}‘( F#2V2 (U})
e

Let ug € E. be such that ', ,, (vo) = maxy,eg, Iy, (w). One has

Ypave = FHzl/z (u) > F#2V2 (UO)

1
=T (00) + 52 = gl + (02 = 2) [ Gl

1
> G+ 5002 = )lulf + (1 = 2) [ Glluo)

as claimed. 0
For later use, define, for ¢ € (2, 3),

T, := inf max M
u€E+\{0} veE~ |u+v[2

where a1(z) = [ps(A12,2), and consider the equation
—ia - Vu+ Bu = |u|?%u (4.5)

with the least energy functional defined by

nww=ﬂmw—§mz

and the least energy denoted by v,. Set as before the induced map 7, : ET — E~,
the functional J, € C2(ET,R) : J,(u) = y(u+ _Z,(u)), and the manifold ..

LEMMA 4.5. For any q € (2,3), T, is achieved at some u which is a least energy
solution of the equation (4.5). Moreover,

_ ( 297, )(q*2)/q
q — q-— 9 .

Proof. Set, for any u € ET,

(u+v)
o (v) = ﬁ and Ty,(u) = Jnax Yu(v).

If w e E~ with ¢, (w) = Ty(u), then, for v € E—,

0 =y}, (w)v
2

_ 2
fm%[al(u+w,v)|u+w|q

—ay(u+w)|u+ w|3_q/ lu +w|?T 2 (u + w)@}
R3
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and
1" 2 2
Y, (w)[v,v] = m% ar(v)|u+wly
2
— (¢ —2)a1(u+ w)|u +w|3*q /R3 |u + w|q*4 ((u —|—w)@)
2
+<q—2)a1(u+w)lu+wl2’2q(/ [+ w]"2(u + w))
RS
— et [ o2
]RS
2
< M%[al(“)“w'q

— a1 (u+w)|u +w|?9 / |u + w|q_2|v|2] .
R3
Here we have used the estimate (by Holder inequality)
2 2
( |u+w|q_2(u+w)ﬁ> < |u+w|g/ |u+w|q_4<(u+w)5) .
R3 R3

and a1 (u+w) > 0 (since T, (u) > 0). Therefore, 1, attains its maximum at a unique
point.
Observe that
a1 (w) . )

T,= inf max 5 = R
ueET\{0} weB, |wl|2 weEH\{0} wek, |02

If the function

ar(w
) = 20
w3
attains its maximum on B, at w € E,, setting @ = m,(w)/@ Dw/|w|,, then

My, (W) = my(w) and, for any v € Ey,

1/(a—2)
:Mﬁ}e[al(mu)—/ |w|q—2m]
|w|q R3

This implies that w € .#, consequently,

. q—2 \a/(a—2) _ q—2 q/(q—2)
< e —
g < Tq() 5 (mu(w)) 5 (mu(w)) ,

q—2

hence, T, > (m)(q_m/q.

On the other hand, let z be a least energy solution of (4.5), z = 2T + 27, 27 =
Fq(z). Take u = z". One has m,(z) = |2]¢"2. Plainly, one checks as above that,
forve E™,

vty = 2t = [ ] =0
|z|q R3
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and
" - 2 2 2—q q—21,,12
Yy (27)[v, 0] SW% a1(v)]z]; — a1(2)|2] . |27 v]*] -
q
Therefore,
o ai(z) o [ 2q74\(@=2)/a

Tq(z )* ‘Z|2 *|Z|Z *<q_2) )

completing the proof. ]

LEMMA 4.6. If g(s) = cos™2 and pu < 0, then the corresponding least energy of
(4.3) denoted by v, (q) satisfies

2(3—q) _
YV (@) < (a+ 1) 5= (cou) T2y, (4.6)
Proof. Observe that, setting z(z) = u(z/(a + p)), (4.3) is equivalent to

v
a—+

—ia-v,z+/3z+£(1—ﬁ)z= PEDE (4.7)

with energy functional defined by

1 n 9 v
Tuu(e) = qar(a) + ol = = [ G(eD)

and the least energy denoted by 7, /,, where z = (21, 22) € C* x C2. One has

Yuvr = (a + /~L)72'Yu/u' (4'8)

Now assume g(s) = cgs? 2 and p < 0. We denote by v,,,(q) the least energy
corresponding to (4.7). Let z be a least energy solution of (4.5), u =z, and ¢, € E,,
with '/, (eq) = max,ep, 'y, (v). Then by Lemma 4.5,

’Yv/u(‘I) < Fu/u(eq)

g2 (a—i—u) ( anquzlg)qu
2¢ \ ¢ leql2
<c4-2 (a + u) T
- 2q coV

a—+ p =3
= ( ) g

ColV
This, jointly with (4.8), yields the desired conclusion (4.6). ad

4.2. The critical equation (4.1). We now turn to the critical problem. Define
s L and A, vy, = inf g, T, ete. as before.
Observe that, for p € R,

/<(A - > L_MHAaI”QuIE if u>0 o
o+ p)u,ut —ut) > .
e “+“W1W25 if < 0
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LEMMA 4.7. v}, 1s attained if

Yo <L = s¥2 (a+”)3.
v 612 a

Proof. Let {u,} be a (PS). sequence with ¢ = v, T’y (un) — ¢ and FZ;,(Un) —
0 as n — oo. It is not difficult to check that {u,} is bounded in E. By Lions’
concentration principle [21], {u,} is either vanishing or non-vanishing.

Assume that {u,} is vanishing. Then |u,|s — 0 for s € (2,3). By (¢1), (g2) one
gets

. 1 . 1
T (n) = 3T = 5 [ (a0} + o)
R3
or
/ ((Ag + p)tun, un) < 6¢+ o(1).
R3
Similarly,
/ lu,|? < e +o(1).
R3 14
Moreover,
ot it =y = [ Junfun (i} = ) < 1),

RS RS

Thus,

|1 Aa + 1" Punl3 < vl 3l = ug |3 + o(1)

which, together with (4.9) and Lemma 3.1, implies

. *753/2(a+u)3
=7 62 a ’

a contradiction.
Therefore, {u,} is non-vanishing, that is, there exist r,6 > 0 and z,, € R?® such
that, setting v, () = u,(x + x,), along a subsequence,

/ |vp|? > 6.
B, (0)

Without loss of generality we assume v,, — v. Then v # 0 and is a solution of (4.1).
And so v, is attained. |

Now the combination of Lemma 4.6 and Lemma 4.7 gives the proof of Proposition
4.1.

Proof of Proposition 4.1. Observe that

Vv < Vv < Vv (@)
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If

2(3=q)

(a4 p) 7 ()i 2y < 07,
that is, (4.2) is satisfied, then v, < £* so it is attained by Lemma 4.7.

As a consequence of Proposition 4.1 we see
LEMMA 4.8. If u and v satisfy (4.2) then

Ly, ={ue E: I, (u) =0} £0,
Vo = {7, (w) : we L5\ {0},

and Z};, ={u € Ly : T}, (u) =7, [u(0)] = |u[} is compact in E.
Moreover, the following lemma is obvious.
LEMMA 4.9. Let, for j =1,2, p; € (—a,0] and v; > 0.
i) If min{pe — p1, v1 —wvo} >0 then vy, <75,
2) Assume min{us — 1, v1 — v} > 0, and either the pair (p1,v1) or the pair
(12, v2) satisfies (4.2). Then vy, . < Vpyu,-

4.3. Auxiliary functionals. Assume that the sequence of functions V. and
W. e CNL®[R3R),0< e <1, satisfy
(x) w@ :=sup, , [Vo(z)| < a, inf., We(z) > 0; Vi(z) = pand We(z) — v
uniformly on bounded sets of z as ¢ — 0 with v}, achieved (e.g. p and v
satisfying (4.2)).
Consider the equation

—iov - Vu + afu + Ve(z)u = W.(x) (g(Ju]) + |u|)u (4.10)
for u € H*(R3,C*). Denote

1

b.0) = (2 = )+ 5 [ V@il = [ W@,

As before, define the associated ¢, J@, ete.

Note that, setting VO(z) = Vi(z) — p and W0(z) = v — W.(z), we have by
definition

b(0) =T +3 [ V2@ + [ WP, (411)

LeEMMA 4.10. limsupé. <7,
e—=0

Proof. In virtue of Lemma 4.8, let u = v~ +u™ € X#,,,, a least energy solution

of (4.1) and set e = u't. Tt is clear that e € #;,, Z;,(e) =u™ and J},(e) = 7},
There is a unique t. > 0 such that t.e € JV One has

ée < I(tee). (4.12)

It is clear that {t.} is bounded, hence, without loss of generality we can assume
te >tgase — 0.
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Observe that (4.11) induces that
<<i>€(tae + he(tee)) — Do (tee + /,f,,(tae)))
+ (Thultee + 7 (t0)) = Ty (tee + hie(toc)))
=3 [ V@ e+ helize)? ~ e+ 55, 0) o

2 R
+ /RS W2 (@) (F(Jte + he(tee)) — F(|tee + 7, (te)])).

Since, denoting z. = 75, (tee) — he(tce),

|tee + Bs(tee)‘z — |tee + f:u(tee)lg = |Z€|2 —2R(tee + /:u(t66>7 Ze)

and
F(|tee + he(tee)|) — F(|tee + 75, (t€)])
=F(|tee + 7, (tc€) — ze|) — F(|tee + 7,5, (t<€)])
= — f(tee + 7, (tee))R{tee + 7, (te), 2c) + Kc(2)
with

Ko(o)s= [ (=) (ftee+ 7o) = szl

f(Jtee + /u*u(tae) )
ltee + /;Tu(tse) — 82|

(Ritee + 7, (te) = 52, —2.))" ) ds
we get from (4.13) (remark that W2 (z) < v)
(Beltee + heltee) — Beltee + 75 (1ec))
(T (tee + 75 (t26)) = T (e + he(tee)) )
<5 [ V@Il [ V@ltet gtz (814
% [ W@ (e + St ltee + £ (1))

+v K. (z).
R3

Remark that one has, similar to (4.4) (with z replaced by z),
FZu(tee + j:y (tee)) — FZu (tee + ils (tee))

4.15
= %(stw - N|Ze‘§) + V/]R3 K.(x) ( )

and, by the representation (3.4) with ®. replaced by P,

Bu(tee + h(tec)) — Deltee + 7y, (1) > 5 (|12 - / RAGIEADE
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Thus (4.14) (jointly with (g1)) implies
l2ell” — @[3

— Oq; e * €), z
%/V( Jtee+ 77 (te), )

IN

R [ Wowglltee + e+ 7 (1) )
RB
[ ve@)litee + Fteol

o [ Woltet 7 (to)]ed
R

IN

(4.16)

o [ W@l + £ 0P e
R3
0 0 2 * 2\ /2
e [ (V2@ + 2@ tee + 77 ) F) el

(p—1)/p
ral [ IW@P et giar)” .

Since t. — to and e is exponentially decaying, we have for ¢ = 2, p,

limsup/ [tee + /:V(teeﬂq =0
|| >R

R—

which implies that
[ 2@l @ Piee + 0P
_ 0(y 0(y 2 e * (4 e)|2
([ ot L)@ wem e + ol
< [ W@l W@ e + £ o
|z|<R

+ 03/ [tee + /ﬂfl,(zfeeﬂ2
|z|>R
=o(1)
as € — 0, and similarly

/RS |W50(x)|”/(p‘1)\tge + 75 (tee)P = o(1)

as € — 0. Thus, since w < a by the assumption (x), it follows from (4.16) that
zell = [[he(tee) — Z,(tee)|| = 0, that is, he(tee) — _Z,5,(toe). Consequently,

/ VO(z)|tee + he(te)|*> = 0 and WO(x)F(|tee + he(tee)]) — 0
R3 R3
as € — 0. This, jointly with (4.11), implies
O (tee + he(tee)) =T, (tee + he(tee)) + o(1)
=TI}, (tee + 7,5, (toe)) + o(1),
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that is,
I(tee) = J}, (toe) + o(1)
as € — 0. Recalling that by Lemma 4.3
J:V(toe) < gé%x F:v(v) = J:l/(e) = ’YZLN
we obtain, jointly with (4.12),
;% éE S Ehi}%) jf(tfe) = J;V(toe) S PY:;,I/
as claimed. 0

Below, for p € [T, 7o) and v € [T, 7], We set

Vi(z) = max{p, V(o)
W¥(z) := min{v, W(x)},

and let V¥ (z) = VH*(ex), WY (x) = W¥(ex). Consider the functional

82 (0) = 5 (10 I = [0 ) + 5 [ VE@IE = [ W2 @) F(u)

with A, ¢ and so on as before. By definition and Lemma 4.9,

Yir S Woyw©) < We©)ywr(0)- (4.17)

Moreover, observe that
v * 1 v
© ) =Ty () + 5 [ (VA@) =l + [ = W @)F(ul).
R3 R3

This, together with Lemma 4.10, shows that if 1 and v satisfy (4.2) then

Y < ¢ and  limsup el < Y ywe (o) - (4.18)
e—0
and particularly
lin'(l) ct =1y, i V(0) <pand W(0)>wv. (4.19)
E—r

5. Proofs of the main results. We are now giving the proofs of the main
results on the critical equation:

—ia - Vu+ afu+ Vo(z)u = We () f(Ju))u, ue H' (R CY (5.1)

where f(|ul) = g(|u[) + |u| with g satisfying (g1) and (g2). Recall that, by assumption,
V(z) < 0 hence |V]s = —7. Observe that, by (Fp) and (4.2),

Y <L, for v € [moo, m| and p < 7o sufficiently close to 7o . (5.2)

Note also that, for any zo € R?, setting V(z) = V(z 4 x¢) and W (z) = W (z + x),
if w(x) is a solution of

—ica - Vb + afi + V()i = W (z) f(|d]),

then w(x) := w(x — zq) solves (5.1).
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5.1. Proof of Theorem 2.2. Assume (Py) — (Py) and (P,) are satisfied. By
virtue of the above observation, without loss of generality, we can assume that 0 € #
such that V(0) = mingey V(z). Then # = W(0) and  := V(0) < 7. Consider the
functional P..

LEMMA 5.1. Assume (Py)-(Py) and (Py) are satisfied. Then c. is attained for
small .

Proof. Given € > 0, let ux, € AZ be a minimizing sequence: I.(ug) — c.. By the
Ekeland variational principle we can assume that wuy, is, in addition, a (PS)., sequence
for I. on 7. A standard argument shows that uy is in fact a (PS).. sequence for I,
on E* (see, e.g., [23, 30]). Then wy = ug + h-(ux) is a (PS).. sequence for . on
E: & (wg) — c. and PL(wg) — 0 as k — oo. It is easy to see that {wy} is bounded
in £. We can assume without loss of generality that wyp — w. € J in E. If w. #0
then clearly ®.(w.) = c.. So we are going to check that w. # 0 for all ¢ > 0 small.

Assume by contradiction that there is a sequence ¢; — 0 with w., = 0. Then
wp — 0in E and L® for s € [2,3], wy — 0 in Lj, for s € (1,3), and wi(z) — 0
a.e. in x € R3. Observe that 7o, > k by (P1). By (F), one can choose x < p1 < Too
satisfying

(a:u>12—5q <%)2(3—q) <R, (5.3)

for any v € (7o, m). Consider the functional ®£¥. Remark that V/(0) = p and
WY (0) = v, thus

X 13 v
’Y/,LV 6].;1§0 CEJ (5'4)
by (4.19). Let t), > 0 be such that tyu), € A2/, Then {t;} is bounded and we may

assume t, — tg as k — oo. By (P1), the set O, := {x € R® : V.(x) < p or W.(z) > v}
is bounded. Remark that @, (txur + hLY (teur)) < I, (ux). We obtain

C’;’;’ < Ié‘j”(tkuk) = @’s‘j’(tkuk + h?;j(tkuk))
1
= @ (g + P (tgane)) + / (V@) = Ve, () + B2 ()
R
b [ W) = W2 (@) Pt + 122 g
R

1
<L)+ [ Ve ) e+ 2 )

<

+ / (ng (JC) — V)F(|tkuk + h?;’(tkuk)D
O.

J

=ce; +o(1)
as k — oo, hence,
ct” < ey (5.5)

On the other hand, let v, € </VE§”’ be a minimizing sequence for ItV and set z, =
v + hgj”(vk). Denoting E, = E~ ® RT vy, since V¥ >V and W* < W, one has

I (o) = max LY (z) > max ., (2).
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Consequently, c.; < c£7. This, together with (5.4) and (5.5), yields

o o s
Vo = Eljlgo ckV = Eljlgo Ce;- (5.6)
Now, since mo, < 7, we can take mo, < 17 < v < 7. We see by Lemma 4.9 and (5.6)
the following
* * R T %
’Y,uyl < ’Y,uyg - 61]'1210 Csj - ’Y’U‘l/17
a contradiction. 0

Remark that, by Lemma 3.9, the critical point u. corresponding to c. satisfies
Us € mSZQWLS.

From the last argument of the proof of Lemma 5.1 (just below (5.5)), we see also
the following

LEMMA 5.2. limsup,_,q c. < limsup,_,qct”™ =7} for any p > & satisfying (5.3)
with v = .

REMARK 5.3. It is not difficult to check that .7 is compact for all small € > 0.
Indeed, assume by contraction that, for some €; — 0, S, is not compact in E. Let
u), € Sz, withuj, — 0 asn — oo. As done in proving the above Lemma 5.1, one gets
a contradiction.

For the later use, letting D = —ia- V, we write (5.1) as

Du = —afu — Vo(x)u + We(x) f(Ju|)u.

By Lemma 3.9, u € Ng>2Wh* for any u € #.. Acting the operator D on the two
sides of the above representation and noting that D? = —A we get

Au= (a® = VZ(z))u+re(z, [u)u

where
re(w, |ul) == DVe(@) + 2Ve (@) We (@) f (Jul) — We(2)? f([ul)?
_ (DWE(x) Ful) + £ (JLTDWE(x)wu,Dw)
Letting
U w0
sgnu = |ul
0 ifu=0,

by Kato’s inequality ([11]), there holds
Alu| > R[Au(sgnu)]

Observe that

%[Dvg(x)um ~0
and
f'(lul)

Jul

%{(DWs(x)fﬂu) n WE(a:)é)?(u,Du))uu} —0.

Jul
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Hence
u
| fuurs | = (20) = Wl ()W) )l

We obtain

Alul > (a® = V2(@))u| + (2Va(z) = We(@) f([u)) We (@) f([ul)|ul. — (5.7)
This, together with (3.6), implies in particular that there is A > 0 satisfying

Alu| > —Alul.
It then follows from the sub-solution estimate [20, 27] that
u@| < Co [ July)ldy (53)
Bl(:E)

with Cj independent of z and u € %, € > 0, where By (z) = {y € R3: |y| < 1}.

Now we turn to the concentration. Thus assume that (Ps) also holds. Thus, by
Proposition 4.1, v is attained.

LEMMA 5.4. Assume additionally that (Ps) also holds. Let u. € S.. There is
a mazimum point ye of |uc| such that ;1_{% dist(eye, ) = 0, and for any sequence

£Ye = Yo, Ve () := us(x + ye) converges in H' to a least energy solution of

—ia- Vv + abv + V(yo)v = W(yo) f(|v])v. (5.9)

Proof. The proof will be carried out in several steps.

Step 1) Given arbitrarily a sequence £; — 0 as j — oo, let u; € .5 = .7Z,. Then
{u;} is bounded. A concentration argument shows that {u;} is either varnishing or
non-varnishing.

If {u;} is varnishing then |u;|s — 0 for s € (2,3). Note that, by Lemma 5.2,
limsup,_, cc; <7}, for p close sufficiently to 7. Recall that (see Proposition 4.1
and Lemma 4.7)

§3/2 (GJFN)?’ _ 53/2 (a+Too)3' (5.10)

*
Ty < 672 672
o0

a a

It is not difficult to check that As before (see Lemma 4.7) that ®2°(u;) := @7 (u;) —
c (some ¢ <), and @gj/ (uj) = 0. By (g1) and (g2) one gets

/ ((Aq + VI )uj, uy) < 6e; +o(1)
R3
and
/ WZe= (2)|u> < 6e., + o(1).
R3

Moreover,

[ e+ Vg ) = [ W @lusl < o).
R3 R3
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Then (recalling that V(z) < 0 hence [V=|o = 7o)

a+ Too

ol < [ (Aot Vg =)
< (602, Pm2L3S ™ P g2+ (1)

that is,

- 53/2 (a—i—roo)?’
c ’

~ 6md, a
contradicting to (5.10).

Therefore {u;} is non-varnishing, that is, there exist a sequence {y}} C R® and
constants r > 0,0 > 0 such that

lim inf lu;|* > 4.
I B (y))
Set
0y(@) = uy(x + ).
Then v; solves, denoting VEJ. (z) = V(ej(z +yj)) and Wej (z) = Wi(ej(z+y})),
—ia- Vo + afv; + Ve, ()v; = We, (@) f(|v;])v; (5.11)
with least energy (using the notations of the previous section)

Cey = (i)sj (v5)

-:3/<Aav],vj>+v( )oj* — /Wsj F(fs)

/ We, (2)F(Jo; )

where F(|u|) = 3 f(|u])|u[* = F(|u]). Plainly,
e, = 0o, (v)) = @, (ug) = co).
Additionally, v; = v # 0 in F and v; — v in L] _ for s € [L, 3).
Since V' and W are bounded, we can assume without loss of generality that
V(ejy;) — Vo and W(egjy}) — Wy as j — oo. Since VV is bounded, one sees that,
given arbitrarily r > 0, for any = € B,.(0),

1
\V(ejz +ejy;) — Viejy))l = ‘ / VV (ejy; + sejr)ejrds| < [VV|ore;.
0

This implies that Vaj () = Vo as j — oo uniformly on bounded sets of . Similarly,

Waj (x) = Wy as j — oo uniformly on bounded sets of z. It then follows from (5.11)
that, for any ¢ € C§°,

0= lim [ ((Aa+ V., (2)v; — W, () f(jvj])v;, )

Jj—oo Jrs

B /RS<(A<1 + Vo)u — Wo f(u|)u, @),
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Thus u solves
—ia - Vu+ afu+ Vou = Wo f(Jul)u (5.12)
with the energy

N 1
(@) =3 [ (v +Voluf? = [ Wo(ul)

- / WoF (Jul) > 7w
]RS

By a Fatou’s lemma,

/ WoF (Ju]) < lim WaJ( ) F(|v;])

j—oo Jrs3
which implies
* . *
Vow, (1) < jlggo Cey < MWoWo-
Therefore,

lim c.; = Iy w, (W) = 7v,w, (5.13)

Jj—o0

and

tim [ W, @) P = [ WoP(u) = i,

]‘)OO R

Let 7 : [0,00) — [0, 1] be a smooth function satisfying n(s) = 1if s <1, n(s) =0
if s > 2. Define () = n(2|z|/j)u(z). One has

lu—v;]| =0 and [u—9;[s =0 asj— oo (5.14)

for s € [2,3]. Setting z; = v; — 0, one checks easily that, along a subsequence,

i | [ W @ (Pl - Pz - F(1)] =0 (5.15)
and
i | [ W@l - 10505 - f0Do)g| =0 G10)

uniformly in ¢ € E with [|¢]| <1 (see [2, 13, 30]). Using the exponentially decay of
u, (5.14), and the facts that V. (@) = Vo, W, ;(x) = Wy as j — oo uniformly on any
bounded set of x, one checks easﬂy the followmg

[ V@) = [ Vol
/WEJ F () —>/ WoF (|u]),
R3
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Consequently, by (5.15),

Q. (25) = ‘i)e](’l’] 11\/0WO()
+ g W, () (F(|lv;]) = F(lz]) = F(I15,])) + o(1)
o(1)

as j — oo, which implies that &, ;(2;) = 0. Similarly, by (5.16),

/ Wy () (el = £(0zDz — £(023D2)7 + o)

as j — oo uniformly in ||¢|| < 1, which implies that ‘iﬂgj (zj) = 0. Therefore,

/ We, (2)F(|2])-

/Wa, F(lz D[ = 0.

This, together with (gs), shows

Notice that {|z;|e} is bounded so fRS e )f(|z]|)|zj+ — 2z |> < C*. As a conse-
quence, we get

(14 2 sl <l )2 +§R/ Ve, @25 = 27)
(o) (e — )+ R / W )2 5

1/2
/ W, (@)1= 1)

that is, ||z;]| = 0 which, together with (5.14), yields v; = u in E as j — oo.
In order to verify that v; — u in H', observe that by (5.11) and (5.12)
Agzj = We, (@) f(|v;))v; — Wof (Ju))u — (Ve (z)v; — Vou).

By the exponential decay of v and the uniform estimate (3.6), it is easy to show that
|Aqzj|2 — 0. Therefore v; — w in H*.

Step 2) vj(z) — 0 as |z| — oo uniformly in j € N. Assume by contradiction that
the conclusion does not hold. Then by the sub-solution estimate there exist o > 0
and z; € R? with |z;| — oo such that o < |v;(z;)| < Co fBl \"u]| Since v; — u in

H' one gets

o—gco/ \vj|gco/ |uj—u|+co/ lul
Bi () Bi(z;) Bi(z;)

, 9 1/2
SC(/ |vj—u\> +C0/ lu| — 0,
R3 Bi(z;)
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a contradiction.

Step 3) {e;y;}; is bounded. Assume by contradiction that €;|y}| — oo (along
a subsequence). Then Vj > 7o and Wy < 7 (by (Py)) which, together with Lemma
4.9 (noting that 7y, . attains), implies vy, y, > 7, for any p € [7,75]. On the
other hand, choosing p close to 7 satisfying (5.3), it follows from (5.13) and Lemma
5.2, im. ;0 ¢c; = 1y,w, and im0 cc; < 7}, hence ¥y, 1y, < Yur, a contradiction.
Therefore, we can assume €;y; — yo, Vo = V(yo) and Wy = W (yo). So, u(z) is a
least energy solution of (5.9). Now by Step 2 it is easy to see that one may assume
that y; = v} is a maximum point of |u;|.

Step 4) {ey:}c is bounded. Assume by contradiction that there is e; — 0 with
€;ly;| — oo where y; is a maximum point of |u;| (y; = ye;, uj = uc,;). Repeating the
above arguments one sees that any relative subsequence y; of y; and v;(z) = u;(z+y})
satisfies that v;(z) — 0 as |z| — oo uniformly in j € N and {e;y} is bounded (Step
2), 3)). Consequently, €;|y; — y}| > €;ly;| — &;|y;| — oo, particularly, |y; — yj| — oco.
Then, max |u;| = |u;(y;)| = [v;(y; — ¥;)| — 0, a contradiction.

Step 5) lime_,odist(eye, Ay) = 0. It is sufficient to check that yo € «%,. By
virtue of Proposition 4.1 and (Ps), %, is archived, it hence follows from (4.18) that

jlggo Cei = jlir{.lo S W wn(0) = WOW(©O) = Yams

which, together with (5.13), shows

ry‘*/(yo)W(yo) S 7’:77'

Since m > W(yp) one has V(yo) < k. If 71 = W(yp), i.e., yo € #, there must be
V(yo) = K (because k = miny V). If W(yy) < 7 then we must have V(yy) < x. In
conclusion, yg € .

The proof is hereby complete. O

LEMMA 5.5. There exists C > 0 such that for all j € N

luj(z)| < CeV@/2la=uil  yjeN
where w = a? — 72
Proof. By the Step 2 of the proof of Lemma 5.4 we may take 6 > 0 and r > 0
such that |v;(z)| < § and

vy w
el 5]
R [re, o leales | < Sl
for all || > r,j € N. This, together with (5.7), implies
Alv;| > §|vj| for all |z| > r,j € N.

Let I'(y) = I'(y,0) be a fundamental solution to —A +w/2 (see, e.g., [27]). Using the
uniform boundedness, one may choose I' so that |v;(y)| < $T'(y) holds on |y| = r, all
Jj€N. Let z; = |v;| = §T". Then

Az; = Alv;| - %Ar

w w w
> §(|Uj| - §F) = 5%
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By the maximum principle we can conclude that z;(y) < 0 on |y| > r. It is well known
that there is C’ > 0 such that I'(y) < C' exp(—+/w/2]y|) on |y| > 1. We see that

v; (y)| < Cexp(—v/w/2lyl)

for all y € R? and all j € N, that is,

luj(z)] < Cexp(—v/w/2lz —y;|)

forall z € R® and all j € N

The proof is completed. ]

Proof. [Proof of Theorem 2.2] Writing ¢ = ¢; and going back to the equation
(2.1) with the variable substitution x +— x /e, we set

we(x) = ue(x/e) and z. = eye.

Then w; is a least energy solution of (2.1) for all & small, and w. € Wb for all s > 2
by Lemma 5.6. It is clear that z. is a maximum point of |w.|, and the conclusions
(a1) and (az) follow from Lemma 5.5 and Lemma 5.4, respectively. |

5.2. Proof of Theorem 2.3. Assume (Py)-(Py) and (Py) are satisfied. We can
assume, without loss of generality, that 0 € ¥ such that W (0) = max,ecy W (z). Then
V(0) =7 and 7 > k := W(0) > 7. Consider the functional ®.. We verify similarly
to Lemma 5.1 the following existence.

LEMMA 5.6. Let (g1)-(g2), (Po)-(Py) and (Py) be satisfied. Then c. is attained
for all small € > 0.

Proof. Given € > 0, let up € .4 be a minimizing sequence of I. and set wy =
ug + he(ug) which is a (PS).. sequence for ®. on E. We may assume wy — w, € ¢
in E. If w. # 0 then clearly ®.(w.) = ¢. and we are done.

Assume by contradiction that there is a sequence ¢; — 0 with w., = 0. Then
wy = ug + he;(ug) = 0in E and L® for s € [2,3], wp — 0in L}, for s € (1,3). and

wi(z) — 0 a.e. for z € R®. By (By), one can choose T < i < Too satisfying (5.3) for
any v € [m, m|. In particular, take v = £ and consider the functional ®£%. Since
V£(0) < pand W (0) = k, and mu and k satisfy (5.3), it follows from (4. 19) that

loc

R A%
e’ = Yuw:
As before, letting ¢, > 0 be such that tpus € 1/1/5’;”“, and O, := {r € R® : V.(z) <
wor W.(x) > k}, we obtain

1
cl <IEF(tgur) < I, (uk) + 5/0 (1 = Ve, (@) [twun, + BES (tpus) |2

J

+ / (W., (x) — k) Fltru + hE% (tyur)))
O,

g
=c; +o(1)

as k — oo, hence, ekt < ¢y, consequently,

'YW < hm Ce;-
hde el
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On the other hand, let vy € A** be a minimizing sequence for I** and set E, =
E~ ®Rtuv. Since V# >V and W* < W, one has

T2 (vk) = max ©27(z) > max &c(2),

so ¢ < k. Therefore, the above discussion yields

* 1 K 1
= m c¢.. = 11Im Cg,.
ryl”ﬁ EJ'A)O i €j —0 <

In particular, for any 7 < p1 < p2 < 7o so that (5.3) holds for p = pq and p = uo,
one obtains the following

* * . *
< = lim ¢, =
’Yll,lli ’Yll.zli €;—0 €j ’yllll*i7

a contradiction. |
As a by-product of the above argument we have

LEMMA 5.7. limsup,_,q ce < limsup,_,qct™ = for all p satisfying (5.3).
We also point out that the above argument applies directly to verify that % is
compact for all small € > 0.

Now we study the concentration phenomenon under additionally (Ps;). Such an
assumption implies particularly that +%, is archived.

LEMMA 5.8. Assume additionally that (Ps) is satisfied. Let u. € . There is
a mazimum point y. of |uc| such that ggr%) dist(eye, ) = 0, and for any sequence

£Ye — Yo, Ve (1) := uc(x + y-) converges in H' to a least energy solution of

—ic- Vo +afo + V(yo)v = W(yo)h(|v])v.

Proof. We are sketchy along the lines carried out previously for Lemma 5.4.

Step 1) Let u; € & = 7., with 5 — 0. Then {u;} is bounded and non-
vanishing. There exist a sequence {y}} C R® and constants 7 > 0,8 > 0 such that

lim inf lu;|* > 4.
Jee Br(y;)

Then v;(x) = uj(x + ) is a least energy solution of
—ia - Vvj + aBv; + ng (z)v; = Waj (@) f(lvj|)v;
where \7Ej (x) =V(ej(z + y;)) and WEJ. (x) =W(ej(z + yg)) The least energy
b, =0, (v)) = ., (uy) = ce,

- / We, (2)F(lus))-
R(}

Moreover, v; = v #0in F, v; = w in L]

5. for s €[1,3), and u solves

—ia - Vu+ afu + Vou = Wy f (Ju])u
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with the energy

ORI ST
By the Fatou’s lemma one gets

Jim ce; = D, (1) = iy, (5.17)

and

i [ W@ P () = [ WoP(ul) = i,

Jj—oo Jr3
Using these facts one sees as before that, in fact, v; — u in H'.

Step 2) vj(x) — 0 as |z| — oo uniformly in j € N. This follows from (5.8) and
the convergence of v; — u in H'.

Step 3) {e;y;}; is bounded. Assume by contradiction that e;]yi| — oo. Then
Vo > Too > 7 and Wy < o < K, which implies v, 0 > 7ore > Vimee = Vi
for any p € [7,7o). On the other hand, choosing p < 7o satisfying (5.3), it follows
from (5.17) and Lemma 5.7, that lim., o cc; = vy, w, and lime; o ce; < 7, hence
Yowoe < Vjws & contradiction. Therefore, we can assume Ejyg- — Yo, Vo = V(yo) and
Wo = W(yo). Now by Step 2 it is easy to see that one may assume that y; =y is a
maximum point of |u;].

Step 4) {eye}e is bounded.
Step 5) lim._,q dist(eye, 2%, ) = 0. It is sufficient to check that yo € o,. By (Ps)
and (4.18)

jh}olo Ce; = jlggo L S Wrw0) = WOyWw(©0) = Yrs

which, jointly with (5.17), implies

’Y‘*/(yo)W(yo) S ’y:”'

Since V' (yo) > 7, one has W(yo) > k. If V(yo) = &, l.e. yo € ¥, then W(yg) = K
because Kk = maxy W. If yg ¢ ¥ then there must be W (yy) > k. This proves that
Yo € 42{1#

The proof is hereby complete. 0

Now repeating the arguments of Lemma 5.5 we obtain

LEMMA 5.9. There exists C' > 0 such that for all ¢ small

luc(z)| < Ce™Ve/2le=vel Vz e R

Proof. [Proof of Theorem 2.3] Define
we(z) =u(x/e) and z. = eye.

Then w, is a least energy solution of (2.1) for all £ small, z. is a maximum point of
|we|, and the conclusion (a;) and (az) follow from Lemma 5.9 and Lemma 5.8. O
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5.3. Proof of Theorem 2.5. Proof. [Proof of Theorem 2.5] Consider the func-
tional ®..

Step 1. For each & > 0, there is 6. > 0 such that [|[u®|? + [o, Vo(z)|u®|? >
Sc|lu®||?. This implies that ®. possesses the linking structure. Let c. denote the
linking level of ®..

Step 2. There is ¢ > 0 independent of e such that ®. satisfies (PS). condition for
all ¢ < ¢. The proof is somewhat usual, see [16, Lemma 3.6] or [13] for example.
Step 3. Setting VH#(x) = max{u, V(z)} for p € (0,7x), v = inf W, one has

1

D () < @) = / (i V0B + VA (), w) / W) (fu])

g&)g(u) = 1 /ﬂ@g((—ia -V +aB+V¥x))u, u) — VCQ/

q
5 1

Let ¢t and ¢t denote the linking levels respectively of ®% and ®#. The arguments of
Lemma 4.10 are applicable (using (4.4) instead of (4.15)) to ®#, which yields

limsup ¢ < vy
e—0

This, jointly with Lemma 4.6, implies that

2(3—q)

limsup é¢ < (a4 p) =2 (coz/)q;—r‘tz’yq.
e—0

Thus

lim lim ¢ =0
e—=>0pu——a

Take po > —a such that c#° < ¢ for all € small. Sice ¢, < c¥, we see that, for all €

small, (2.1) has a ground state solution u, with ®.(u.) =¢. - 0ase — 0.

Step 4. Finally, similarly to the last argument of the step 1 of Lemma 5.4, one
checks that u. — 0 in H'. The proof is hereby complete. a0
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