A priori bounds for superlinear problems involving the N-Laplacian*

Sebastián Lorca, Bernhard Ruf and Pedro Ubilla

Abstract

In this paper we establish a priori bounds for positive solution of the equation $$
-\Delta_{N} u=f(u), \quad u \in H_{0}^{1}(\Omega)
$$ where Ω is a bounded smooth domain in \mathbb{R}^{N}, and the nonlinearity f has at most exponential growth. The techniques used in the proofs are a generalization of the methods of Brezis-Merle to the N-Laplacian, in combination with the Trudinger-Moser inequality, the Moving Planes method and a Comparison Principle for the N-Laplacian.

Keywords and phrases: a priori bounds; moving planes; Trudinger-Moser inequality.

AMS Subject Classification: 35J20 and 35J60.

1 Introduction

This paper is concerned with a priori bounds for positive solutions of equations involving the N-Laplacian and superlinear nonlinearities in bounded domains in \mathbb{R}^{N}. More precisely, we consider

$$
\left\{\begin{align*}
-\Delta_{N} u & =f(u) & & \text { in } \Omega \tag{1.1}\\
u & >0 & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

where Ω is a strictly convex, bounded and smooth domain in \mathbb{R}^{N}, and $\Delta_{N} u=$ $\operatorname{div}\left(|\nabla u|^{N-2} \nabla u\right)$ is the N-Laplacian operator. On the function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$we assume that it is a locally Lipschitz function satisfying the following hypotheses:

[^0]$\left(f_{1}\right) \quad f(s) \geq 0$, for all $s \geq 0$,
and either
$\left(f_{2}\right)$ there exists a positive constant d such that
$$
\liminf _{s \rightarrow+\infty} \frac{f(s)}{s^{N-1+d}}>0
$$
and
$\left(f_{3}\right)$ there exist constants $c, s_{0} \geq 0$ and $0<\alpha<1$ such that
$$
f(s) \leq c e^{s^{\alpha}}, \text { for all } s \geq s_{0}
$$
or
$\left(f_{4}\right)$ there exist constants $c_{1}, c_{2}>0$ and $s_{0}>0$ such that
$$
c_{1} e^{s} \leq f(s) \leq c_{2} e^{s}, \text { for all } s \geq s_{0}
$$

The main result is the following
Theorem 1.1 (A priori bound). Under the assumptions $\left(f_{1}\right)$ and either $\left(f_{2}\right)$ and $\left(f_{3}\right)$ (subcritical case) or $\left(f_{4}\right)_{(c r i t i c a l ~ c a s e) ~ t h e r e ~ e x i s t s ~ a ~ c o n s t a n t ~}^{C}>0$ such that every weak solution $u \in W_{0}^{1, N}(\Omega) \cap C^{1}(\Omega)$ of Equation (1.1) satisfies

$$
\begin{equation*}
\|u\|_{L^{\infty}(\Omega)} \leq C \tag{1.2}
\end{equation*}
$$

A priori bounds for superlinear elliptic equations have been a focus of research in nonlinear analysis in recent years. On the one hand, such results give interesting qualitative information on the positive solutions of such equations; on the other hand they are also useful to obtain existence results via degree theory.

It seems that the first general result for a priori bounds for superlinear elliptic equations is due to Brezis-Turner [5], 1977. They considered the equation

$$
\begin{cases}-\Delta u=g(x, u) & \text { in } \Omega \tag{1.3}\\ u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

and proved an a priori bound under the (main) hypothesis

$$
0 \leq g(x, s) \leq c s^{p}, p<\frac{N+1}{N-1}
$$

Their method is based on the Hardy-Sobolev inequality.
In 1981, Gidas and Spruck [8] considered Equation (1.3) under the assumption

$$
\lim _{s \rightarrow \infty} \frac{g(x, s)}{s^{p}}=a(x)>0 \quad \text { in } \bar{\Omega}
$$

and proved a priori estimates under the condition

$$
1<p<\frac{N+2}{N-2}=2^{*}-1
$$

using blow-up techniques and Liouville theorems on \mathbb{R}^{N}.
In 1982, De Figueiredo - P.L. Lions - Nussbaum [9] obtained a priori estimates under the assumptions that Ω is convex, and $g(s)$ is superlinear at infinity and satisfies

$$
g(s) \leq c s^{p}, 1<p<\frac{N+2}{N-2}, \quad \text { (and some technical conditions). }
$$

Their method relied on the moving planes technique, see [7], to obtain estimates near the boundary, and on Pohozaev-type identities.

Due to the results by Gidas-Spruck and De Figueiredo-Lions-Nussbaum it was generally believed that the result of Brezis-Turner was not optimal. But surprisingly, Quittner-Souplet [14] showed in 2004 that under the general hypotheses of BrezisTurner their result is optimal; in fact, they give a counterexample with a $g(x, s)$ with strong x-dependence.

Concerning to the m-Laplace case, Azizieh-Clément [3] studied the problem

$$
\begin{cases}-\Delta_{m} u=g(x, u) & \text { in } \Omega, \tag{1.4}\\ u>0 & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

They obtain a priori estimates for the particular case $1<m<2$, assuming $g(x, u)=g(u)$, with $C_{1} u^{p} \leq g(u) \leq C_{2} u^{p}$, where $1<p<N(m-1) /(N-m)$ and Ω is bounded and convex.

The more general case $1<m \leq 2$ was considered by Ruiz [16]; he studied problem (1.4) where g is as in Azizieh-Clement but depends on x; also, he does not need Ω convex. In these two works, a blow-up argument together with a non existence result of positive super solutions, due to Mitidieri-Pohozaev [13], are used.

Recently, Lorca-Ubilla [12] obtained a priori estimates for solutions of (1.4) for more general nonlinearities g. They only require $0 \leq g(x, u)<C u^{p}, \quad 1<p<$ $N(m-1) /(N-m)$, together with a superlinearity assumption at infinity. In this case the blow-arguments used by Azizieh-Clément and by Ruiz are not sufficient to obtain a contradiction. However using an adaptation of Ruiz's argument, which consists in a combination of Harnack inequalities and local L^{q} estimates, it is possible to get the a priori estimate.

The above mentioned results are for $N>2$; for $N=2$ one has the embedding $H_{0}^{1}(\Omega) \subset L^{p}$, for all $p>1$, but easy examples show that $H_{0}^{1}(\Omega) \nsubseteq L^{\infty}(\Omega)$. Thus, one may ask for the maximal growth function $g(s)$ such that $\int_{\Omega} g(u)<\infty$ for $u \in H_{0}^{1}(\Omega)$. This maximal possible growth was determined independently by Yudovich, Pohozaev and Trudinger, leading to what is now called the Trudinger inequality: it says that for $u \in H_{0}^{1}(\Omega)$ one has $\int_{\Omega} e^{u^{2}} d x<+\infty$.

So, one can ask whether in dimension $N=2$ one can prove a priori estimates for nonlinearities with growth up to the Trudinger-Moser growth. This is not the case, however some interesting result for equations with exponential growth have been proved in recent years. First, we mention the result of Brezis-Merle [4] who proved in 1991 that under the growth restriction

$$
c_{1} e^{s} \leq g(x, s) \leq c_{2} e^{s}
$$

one has: if $\int_{\Omega} g(x, u) d x \leq c$, for all $u>0$ solution of Equation (1.1), then there exists $C>0$ such that

$$
\|u\|_{\infty} \leq C
$$

for all positive solutions.
This is not quite an a priori result yet; however, from the boundary estimates of De Figueiredo - Lions - Nussbaum one obtains, assuming that Ω is convex (and adding some technical assumptions) that the condition $\int_{\Omega} g(x, u) \leq c$ of BrezisMerle is satisfied. Hence, on convex domains the Brezis-Merle result yields indeed the desired a priori bounds. We note also that Brezis-Merle give examples of nonlinearities $g(x, s)=h(x) e^{s^{\alpha}}$ with $\alpha>1$ for which there exists a sequence of unbounded solutions.

Our Theorem 1.1 is motivated by the result of Brezis-Merle. We recall that in dimension N the Trudinger inequality gives as maximal growth $g(s) \leq e^{|s|^{N /(N-1)}}$, while our result shows that for a priori bounds it is again the exponential growth $g(s) \sim e^{s}$ which is the limiting growth to obtain a priori bounds.

The paper is organized as follows: in section 2 we obtain uniform bounds near the boundary $\partial \Omega$, using results of Damascelli-Sciunzi [6]. In section 3 we show that the boundary estimates yield easily a uniform bound on $\int_{\Omega} g(x, u)$. In section 4 we discuss the "subcritical case", i.e. when assumptions $\left(f_{2}\right)$ and $\left(f_{3}\right)$ hold, while in section 5 we prove the a priori bounds in the "critical case", i.e. under assumption $\left(f_{4}\right)$.

2 The boundary estimate

In this section we obtain a priori estimates on a portion of Ω including the boundary.

Proposition 2.1 Assume $\left(f_{2}\right)$ or the left inequality in $\left(f_{4}\right)$. Then there exist positive constants r, C such that every weak solution $u \in W_{0}^{1, N}(\Omega) \cap C^{1}(\Omega)$ of Equation (1.1) verifies

$$
u(x) \leq C \text { and }|\nabla u(x)| \leq C, x \in \Omega_{r}
$$

where $\Omega_{r}=\{x \in \Omega: d(x, \partial \Omega) \leq r\}$.

Proof. For $x \in \partial \Omega$, let $\eta(x)$ denote the outward normal vector to $\partial \Omega$ in x. By Damascelli-Sciunzi [6], Theorem 1.5, there exists $t_{0}>0$ such that $u(x-t \eta(x))$ is nondecreasing for $t \in\left[0, t_{0}\right]$ and for $x \in \partial \Omega$. Note that t_{0} depends only on the
geometry of Ω. Following the ideas of de Figueiredo, Lions and Nussbaum's paper [9] one now shows that there exists $\alpha>0$, depending only on Ω, such that

$$
\begin{aligned}
& u(z-t \sigma) \text { is nondecreasing for all } t \in\left[0, t_{1}\right], \\
& \text { where }|\sigma|=1, \sigma \in \mathbb{R}^{N} \text { verifies } \sigma \cdot \eta(z) \geq \alpha, z \in \partial \Omega
\end{aligned}
$$

and $t_{1}>0$ depends only on Ω.
Since $u(z-t \sigma)$ is nondecreasing in t for z and σ as above, for all $x \in \Omega_{\epsilon}$ we find a measure set I_{x}, and positive numbers γ and ϵ (depending only on Ω) such that
(i) $\left|I_{x}\right| \geq \gamma$
(ii) $I_{x} \subset\left\{x \in \Omega: d(x, \partial \Omega) \geq \frac{\varepsilon}{2}\right\}$
(iii) $u(y) \geq u(x)$, for all $y \in I_{x}$.

We now use Piccone's identity (see [2]), which says that if v and u are C^{1} functions with $v \geq 0$ and $u>0$ in Ω, then

$$
|\nabla v|^{N} \geq|\nabla u|^{N-2} \nabla\left(\frac{v^{N}}{u^{N-1}}\right) \nabla u
$$

We apply this inequality with $v=e_{1}$, the first (positive) eigenfunction of the N Laplacian on Ω, and $u>0$ a (weak) solution of $-\Delta_{N} u=f(u)$. We assume that e_{1} is normalized, i.e. $\int_{\Omega} e_{1}^{N}=1$. Then we have (observe that $\frac{e_{1}^{N}}{u^{N-1}}$ belongs to $W_{0}^{1, N}(\Omega)$ since u is positive in Ω and has nonzero outward derivative on the boundary because of Hopf's lemma, see [17])

$$
c \geq \int_{\Omega}\left|\nabla e_{1}\right|^{N} d x \geq \int_{\Omega}|\nabla u|^{N-2} \nabla u \nabla \frac{e_{1}^{N}}{u^{N-1}}=\int_{\Omega} \frac{f(u) e_{1}^{N}}{u^{N-1}}
$$

Thus condition $\left(f_{2}\right)$ (or condition $\left(f_{4}\right)$) implies $\int_{\Omega} u^{d} e_{1}^{N} \leq \widetilde{C}$, and so

$$
\eta^{N} \int_{\Omega \backslash \Omega_{\frac{e}{2}}} u^{d} \leq \widetilde{C}
$$

where $e_{1}(z) \geq \eta>0, z \in \Omega \backslash \Omega_{\frac{\varepsilon}{2}}$. By (ii), given $x \in \Omega_{\epsilon}$, we have

$$
\eta^{N} \int_{I_{x}} u^{d} \leq \widetilde{C} .
$$

Now since $u^{d}(x)\left|I_{x}\right| \leq \int_{I_{x}} u^{d}$ by (i) and (ii), we have $u^{d}(x) \leq \frac{\tilde{C}}{\gamma \eta^{N}}$, and so $u(x) \leq C^{\prime}$, for all $x \in \Omega_{\epsilon}$. Finally by Lieberman [11] (see also Azizieh and Clément [3]) we have

$$
\begin{equation*}
u \in C^{1, \alpha}\left(\Omega_{\frac{\varepsilon}{2}}\right) \text { with }\|u\|_{C^{1, \alpha}\left(\Omega_{\frac{\varepsilon}{2}}\right)} \leq C . \tag{2.1}
\end{equation*}
$$

3 Uniform bound on $\int_{\Omega} f(u)$

In this section we show that the boundary estimates yield easily a bound on the term $\int_{\Omega} f(u) d x$, for all positive solutions of Equation (1.1).

Proposition 3.1 Suppose estimate (2.1) holds. Then there exists a positive constant C such that for every weak solution of Equation (1.1) we have

$$
\begin{equation*}
\int_{\Omega} f(u) \leq C \tag{3.1}
\end{equation*}
$$

Proof. Let $\psi \in C_{0}^{\infty}(\Omega)$ such that $\psi \equiv 1$ on $\Omega \backslash \Omega_{\frac{\varepsilon}{2}}$. We have

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{N-2} \nabla u \nabla \psi=\int_{\Omega} f(u) \psi \tag{3.2}
\end{equation*}
$$

Using

$$
\int_{\Omega \backslash \Omega_{\frac{\varepsilon}{2}}} f(u) \leq \int_{\Omega} f(u) \psi
$$

and the a priori estimates in $\Omega_{\frac{\varepsilon}{2}}$, see (2.1), we get

$$
\int_{\Omega \backslash \Omega_{\frac{\varepsilon}{2}}} f(u) \leq \int_{\Omega}|\nabla u|^{N-2} \nabla u \nabla \psi=\int_{\Omega_{\frac{\varepsilon}{2}}}|\nabla u|^{N-2} \nabla u \nabla \psi \leq C .
$$

Hence the estimate (3.1) is proved.
We also state here an adaptation of Theorems 2 and 6 in [15] to the N-Laplace operator Δ_{N} which will be useful in the sequel.
Lemma 3.2 Let $u \in W_{l o c}^{1, N}(\Omega)$ be a solution of

$$
-\Delta_{N} u=h(x) \text { in } \Omega .
$$

where $h \in L^{p}(\Omega), p>1$. Let $B_{2 R} \subset \Omega$. Then

$$
\|u\|_{L^{\infty}\left(B_{R}\right)} \leq C R^{-1}\left(\|u\|_{L^{N}\left(B_{2 R}\right)}+R K\right)
$$

where $C=C(N, p)$ and $K=\left(R^{N(p-1) / p}\|h\|_{L^{p}(\Omega)}\right)^{1 /(N-1)}$.

4 Subcritical Case

In this section, we prove Theorem 1.1 under the assumptions $\left(f_{1}\right),\left(f_{2}\right)$ and $\left(f_{3}\right)$, i.e. in the subcritical case.

The proof will be based on Hölder's inequality in Orlicz spaces (cf. [1]): Let ψ and $\widetilde{\psi}$ be two complementary N-functions. Then

$$
\begin{equation*}
\left|\int_{\Omega} h g\right| \leq 2\|h\|_{\psi}\|g\|_{\tilde{\psi}} \tag{4.1}
\end{equation*}
$$

where $\|h\|_{\psi}$ and $\|g\|_{\tilde{\psi}}$ denote the Luxemburg (or gauge) norms.
We first prove the following inequality:

Lemma 4.1 Let $\gamma>0$; then

$$
s t \leq s(\log (s+1))^{1 / \gamma}+t\left(e^{t^{\gamma}}-1\right), \text { for all } s, t \geq 0
$$

Proof. Consider for fixed $t>0$

$$
\max _{s \geq 0}\left\{s t-s(\log (s+1))^{1 / \gamma}\right\}
$$

In the maximum point s_{t} we have

$$
t=\left(\log \left(s_{t}+1\right)\right)^{1 / \gamma}+\frac{s_{t}}{\gamma\left(s_{t}+1\right)}\left(\log \left(s_{t}+1\right)\right)^{\frac{1}{\gamma}-1} \geq\left(\log \left(s_{t}+1\right)\right)^{1 / \gamma}
$$

and hence $e^{t^{\gamma}} \geq s_{t}+1$. Thus

$$
\begin{aligned}
\max _{s \geq 0}\left\{s t-s(\log (s+1))^{1 / \gamma}\right\} & =s_{t} t-s_{t}\left(\log \left(s_{t}+1\right)\right)^{1 / \gamma} \\
& \leq s_{t} t \leq t\left(e^{t^{\gamma}}-1\right)
\end{aligned}
$$

Note that for the N-function $\psi(s)=s(\log (s+1))^{1 / \gamma}$, the complementary N function $\widetilde{\psi}(t)$ is by definition given by

$$
\widetilde{\psi}(t)=\max _{s \geq 0}\left\{s t-s(\log (s+1))^{1 / \gamma}\right\}
$$

The above Lemma shows that $\varphi(t):=t\left(e^{t^{\gamma}}-1\right) \geq \widetilde{\psi}(t)$, for all $t \geq 0$, and hence $\|g\|_{\tilde{\psi}} \leq\|g\|_{\varphi}$, and so the Hölder inequality (4.1) is valid also for the gauge norm φ in place of $\widetilde{\psi}$:

$$
\begin{equation*}
\left|\int_{\Omega} h g\right| \leq 2\|h\|_{\psi}\|g\|_{\varphi} \tag{4.2}
\end{equation*}
$$

Let now $u \in W_{0}^{1, N}(\Omega)$ be a weak solution of (1.1), denote

$$
\gamma=\frac{N}{N-1}-\alpha, \quad \text { and } \beta=\frac{\alpha}{\gamma}
$$

and consider

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{N}=\int_{\Omega} f(u) u=\int_{\Omega} \frac{f(u)}{u^{\beta}} u^{1+\beta} \leq \int_{\Omega} \frac{f(u)}{u_{\beta}} \chi_{u} u^{1+\beta}+c \tag{4.3}
\end{equation*}
$$

where χ_{u} is the characteristic function of the set $\{x \in \Omega: u(x) \geq 1\}$. By (4.2) we conclude that

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{N} \leq 2\left\|u^{1+\beta}\right\|_{\varphi}\left\|\frac{f(u)}{u^{\beta}} \chi_{u}\right\|_{\psi}+c \tag{4.4}
\end{equation*}
$$

We now estimate the two Orlicz-norms in (4.4):

First note that there exists $d_{\gamma}>0$ such that $\varphi(t)=t\left(e^{t^{\gamma}}-1\right) \leq e^{d_{\gamma} t^{\gamma}}-1$, and hence

$$
\begin{align*}
\left\|u^{1+\beta}\right\|_{\varphi} & =\inf \left\{k>0: \int_{\Omega} \varphi\left(\frac{u^{1+\beta}}{k}\right) \leq 1\right\} \\
& \leq \inf \left\{k>0: \int_{\Omega}\left(e^{d_{\gamma}\left(\frac{u^{1+\beta}}{k}\right)^{\gamma}}-1\right) \leq 1\right\} \tag{4.5}\\
& =\inf \left\{k>0: \int_{\Omega}\left(e^{d_{\gamma} \frac{u^{N}-1}{k \gamma}}-1\right) \leq 1\right\},
\end{align*}
$$

since $(1+\beta) \gamma=\gamma+\alpha=N /(N-1)$. Now recall the Trudinger-Moser inequality which says that

$$
\begin{equation*}
\sup _{\|u\|_{W_{0}^{1, N}} \leq 1} \int_{\Omega} e^{\alpha|u|^{N /(N-1)}} d x \quad<+\infty, \text { if } \alpha \leq \alpha_{N} \tag{4.6}
\end{equation*}
$$

where $\alpha_{N}=N \omega_{N}^{1 /(N-1)}$, and ω_{N} is the measure of the unit sphere in \mathbb{R}^{N}. Thus, if we take $k^{\gamma}=\frac{d_{\gamma}}{\alpha_{N}}\|\nabla u\|_{L^{N(\Omega)}}^{N /(N-1)}$ in (4.5), we see that the last integral in (4.5) is finite, and it becomes smaller than 1 if we choose $k^{\gamma}=c\|\nabla u\|_{L^{N}(\Omega)}^{N /(N-1)}$, for $c>0$ suitably large, since φ is a convex function. Thus, we get

$$
\left\|u^{1+\beta}\right\|_{\varphi} \leq c\|\nabla u\|_{L^{N}(\Omega)}^{\frac{N}{N-1} \frac{1}{\gamma}} .
$$

Next, we show that $\frac{\alpha}{\gamma}=\beta$ and (3.1) imply

$$
\left\|\frac{f(u)}{u^{\beta}} \chi_{u}\right\|_{\psi} \leq \int_{\Omega} d f(u) \leq C .
$$

Indeed, assumption $\left(f_{3}\right)$ implies

$$
\begin{aligned}
\left\|\frac{f(u)}{u^{\beta}} \chi_{u}\right\|_{\psi} & =\inf \left\{k>0: \int_{\Omega} \frac{f(u)}{k u^{\beta}} \chi_{u}\left(\log \left(1+\frac{f(u)}{k u^{\beta}} \chi_{u}\right)\right)^{\frac{1}{\gamma}} \leq 1\right\} \\
& \leq \inf \left\{k>1: \int_{\Omega} \frac{f(u)}{k u^{\beta}} \chi_{u}(\log (1+f(u)))^{\frac{1}{\gamma}} \leq 1\right\} \\
& \leq \inf \left\{k>1: \int_{\Omega} \frac{f(u)}{k u^{\beta}} \chi_{u}\left(\log \left(c e^{u^{\alpha}}\right)\right)^{\frac{1}{\gamma}} \leq 1\right\} \\
& \leq \inf \left\{k>1: \int_{\Omega} \frac{f(u)}{k} d u^{\frac{\alpha}{\gamma}-\beta} \leq 1\right\} \\
& \leq \int_{\Omega} d f(u) \leq C .
\end{aligned}
$$

Hence, joining these estimates, we conclude by (4.4) that

$$
\|\nabla u\|_{L^{N}(\Omega)}^{N} \leq C\|\nabla u\|_{L^{N}(\Omega)}^{\frac{N}{N-1}}+c .
$$

Finally, note that $\alpha<1$ implies that $\frac{N}{N-1} \frac{1}{\gamma}<N$, and so

$$
\begin{equation*}
\|\nabla u\|_{L^{N}(\Omega)} \leq C_{N}, \tag{4.7}
\end{equation*}
$$

for any solution positive $u \in W^{1, N}(\Omega)$, with C_{N} depending only on N and Ω.
To obtain also a uniform L^{∞}-bound, we proceed as follows: Let $p>1$, then given $\varepsilon>0$ there exists $C(\varepsilon)$ such that

$$
p s^{\alpha} \leq \varepsilon s^{\frac{N}{N-1}}+C(\varepsilon) .
$$

Thus we can estimate

$$
\int_{\Omega}|f(u)|^{p} \leq C_{1}(\varepsilon) \int_{\Omega} e^{\varepsilon|u|^{\frac{N}{N-1}}}
$$

Now, choosing $\epsilon>0$ such that $\varepsilon C_{N}^{N /(N-1)} \leq \alpha_{N}$, the estimate (4.7) and the Trudinger-Moser inequality imply

$$
\int_{\Omega}|f(u)|^{p} \leq C_{1}(\varepsilon) \int_{\Omega} e^{\varepsilon C_{N}^{C_{N}^{N-1}}}\left|\frac{u}{\|\nabla u\|_{L^{N}(\Omega)}}\right|^{\frac{N}{N-1}} \leq C
$$

And so, since $\int_{\Omega}|f(u)|^{p} \leq C$, we have by Lemma 3.2 that $\|u\|_{L^{\infty}(K)} \leq C=C(K)$ for every compact $K \subset \subset \Omega$. We are finished, since in Section 3 we have proved a priori estimates near the boundary.

5 Critical Case

In this section, we will prove Theorem 1.1 under assumptions $\left(f_{1}\right)$ and $\left(f_{4}\right)$. It is convenient to introduce the following number

$$
\begin{equation*}
d_{N}=\inf _{X \neq Y} \frac{\left.\left.\langle | X\right|^{N-2} X-|Y|^{N-2} Y, X-Y\right\rangle}{|X-Y|^{N}} . \tag{5.1}
\end{equation*}
$$

By Proposition 4.6 of [10] we know that $d_{N} \geq\left(\frac{2}{N}\right)\left(\frac{1}{2}\right)^{N-2}$. Also, by taking $Y=0$ we see that $d_{N} \leq 1$.

We will use the following standard comparison result
Lemma 5.1 Suppose that $u, v \in W^{1, N}(\Omega) \cap C(\bar{\Omega})$ verify $-\Delta_{N} u \leq-\Delta_{N} v$ weakly in Ω, that is

$$
\left.\left.\int_{\Omega}\langle | \nabla u\right|^{N-2} \nabla u-|\nabla v|^{N-2} \nabla v, \nabla \phi\right\rangle \leq 0,
$$

for all $\phi \in W_{0}^{1, N}$ such that $\phi \geq 0$ in Ω. If $u \leq v$ on $\partial \Omega$, then $u \leq v$ in Ω.

Proof.

By taking $\phi=(u-v)^{+}$we get

$$
\left.d_{N} \int_{\{u \geq v\}}|\nabla(u-v)|^{N} \leq\left.\int_{\{u \geq v\}}\langle | \nabla u\right|^{N-2} \nabla u-|\nabla v|^{N-2} \nabla v, \nabla(u-v)\right\rangle \leq 0,
$$

where d_{N} is given by (5.1). This inequality implies $u \leq v$ in Ω.
We also need the following results by Ren and Wei [15] (Lemmas 4.1 and 4.3), which generalize the corresponding inequality for $N=2$ of Brezis-Merle.

Lemma 5.2 Let $u \in W^{1, N}(\Omega)$ verifying $-\Delta_{N} u=h$ in Ω and $u=0$ on $\partial \Omega$, where $h \in L^{1}(\Omega) \cap C^{0}(\Omega)$ is nonnegative. Then, for every δ with $0<\delta<N \omega_{N}^{\frac{1}{N-1}}$

$$
\int_{\Omega} e^{\frac{\left(N \omega_{N}^{\frac{1}{N-1}}-\delta\right)}{\|h\|_{L^{1}(\Omega)}^{1-1}}|u|} \leq \frac{N \omega_{N}^{\frac{1}{N-1}}|\Omega|}{\delta}
$$

where ω_{N} denotes the surface measure of the unit sphere in \mathbb{R}^{N}.
Lemma 5.3 Let $u \in W^{1, N}(\Omega)$ verifying $-\Delta_{N} u=h$ in Ω and $u=g$ on $\partial \Omega$, where $h \in L^{1}(\Omega) \cap C^{0}(\Omega)$ and $g \in L^{\infty}(\Omega)$. Let $\phi \in W^{1, N}(\Omega)$ such that $\Delta_{N} \phi=0$ in Ω and $\phi=g$ on $\partial \Omega$. Then, for every δ with $0<\delta<N \omega_{N}^{\frac{1}{N-1}}$

$$
\int_{\Omega} e^{\frac{\left(N \omega_{N}^{\frac{1}{N-1}}-\delta\right) d_{N}^{\frac{1}{N-1}}}{\|h\| \|_{L^{1}(\Omega)}^{N-1}}}|u-\phi| \quad \leq \frac{N \omega_{N}^{\frac{1}{N-1}}|\Omega|}{\delta} .
$$

Proof of Theorem 1.1 (critical case)
Suppose by contradiction that there is no a priori estimate, then there would exist a sequence $\left\{u_{n}\right\}_{n} \subset W^{1, N}(\Omega) \cap C^{1, \alpha}(\bar{\Omega})$ of weak solutions of (1.1) such that $\left\|u_{n}\right\|_{L^{\infty}(\Omega)} \rightarrow \infty$. Observe that by Proposition 3.1 there exists a constant C such that $\int_{\Omega} f\left(u_{n}\right) \leq C$.

We may assume that $f\left(u_{n}\right)$ converges in the sense of measures on Ω to some nonnegative bounded measure μ, that is

$$
\int_{\Omega} f\left(u_{n}\right) \psi \rightarrow \int_{\Omega} \psi d \mu, \text { for all simple functions } \psi \text {. }
$$

As in [4], let us introduce the concept of regular point. We say that $x_{0} \in \Omega$ is a regular point with respect to μ if there exists an open neighborhood $V \subset \Omega$ of x_{0} such that

$$
\int_{\Omega} \chi_{V} d \mu<N^{N-1} \omega_{N}
$$

Next, we define the set A as follows: $x \in A$ if and only if there exists an open neighborhood $U \subset \Omega$ of x such that

$$
\int_{\Omega} \chi_{U} d \mu<N^{N-1} \omega_{N} d_{N}
$$

where d_{N} is the constant introduced in (5.1).
Because $d_{N} \leq 1$, we have that the set A contains only regular points. Also, note that there is only a finite number of points $x \in \Omega \backslash A$; in fact, if $x \in \Omega \backslash A$ then

$$
\int_{B_{R}(x)} d \mu \geq N^{N-1} \omega_{N} d_{N}, \text { for all } R>0 \text { such that } B_{R}(x) \subset \Omega,
$$

which implies $\mu(\{x\}) \geq N^{N-1} \omega_{N} d_{N}$. Hence, since

$$
\sum_{x \in \Omega \backslash A} \mu(\{x\}) \leq \mu(\Omega)=\int_{\Omega} d \mu \leq C
$$

the set of points in $\Omega \backslash A$ is finite.
Before finishing the proof we need two claims.
Claim 1. Let x_{0} be a regular point, then there exist C and R such that for all $n \in \mathbb{N}$

$$
\left\|u_{n}\right\|_{L^{\infty}\left(B_{R}\left(x_{0}\right)\right)} \leq C
$$

Proof of Claim 1. We divide the proof into two cases.
Case 1: $x_{0} \in A$
By the definitions of the set A and the measure μ, there exist R, δ and $n_{0}>0$ such that for all $n>n_{0}$ we have

$$
\begin{equation*}
\left(\int_{B_{R}\left(x_{0}\right)} f\left(u_{n}\right)\right)^{\frac{1}{N-1}}<\left(N \omega_{N}^{\frac{1}{N-1}}-\delta\right) d_{N}^{\frac{1}{N-1}} \tag{5.2}
\end{equation*}
$$

Let ϕ_{n} be satisfying

$$
\left\{\begin{aligned}
-\Delta_{N} \phi_{n} & =0 \text { in } B_{R} \\
\phi_{n} & =u_{n} \text { on } \partial B_{R}
\end{aligned}\right.
$$

Then $\phi_{n} \leq u_{n}$ in B_{R} by Lemma 5.1. Since $c \geq \int_{\Omega} f\left(u_{n}\right) \geq c_{1} \int_{\Omega} e^{u_{n}}$ by $\left(f_{4}\right)$, we have $\int_{\Omega} u_{n}^{N}<C^{\prime}$ and thus $\int_{\Omega} \phi_{n}^{N}<C^{\prime}$. Now, by using Lemma 3.2 we have

$$
\begin{equation*}
\left\|\phi_{n}\right\|_{L^{\infty}\left(B_{\frac{R}{2}}\right)} \leq C R^{-1}\left(\left\|\phi_{n}\right\|_{L^{N}\left(B_{R}\right)}+c\right) \leq C^{\prime \prime} \tag{5.3}
\end{equation*}
$$

By applying Lemma 5.3, we get

$$
\int_{B_{R}} e^{\frac{\left(N \omega_{N}^{\frac{1}{N-1}}-\delta^{\prime}\right)}{\left\|f\left(u_{n}\right)\right\|_{L^{1}\left(B_{R}\right)}^{\frac{1}{N-1}}} d_{N}^{\frac{1}{N^{-1}}}\left|u_{n}-\phi_{n}\right|}<\frac{N \omega_{N}^{\frac{1}{N-1}} R^{N} C}{\delta^{\prime}}
$$

for any $\delta^{\prime} \in\left(0, N \omega_{N}^{1 /(N-1)}\right)$. Taking δ^{\prime} small enough we have by (5.2) that $q=\frac{\left(N \omega_{N}^{\frac{1}{N^{-1}}}-\delta^{\prime}\right)}{\left\|f\left(u_{n}\right)\right\|_{L^{1}\left(B_{R}\right)}^{\frac{1}{N-1}}} d_{N}^{\frac{1}{N-1}}>1$, and hence we get

$$
\int_{B_{\frac{R}{2}}} e^{q\left|u_{n}-\phi_{n}\right|} \leq \int_{B_{R}} e^{q\left|u_{n}-\phi_{n}\right|}<K
$$

By (5.3) we conclude that $\int_{B_{\frac{R}{2}}} e^{q u_{n}} \leq K^{\prime}$, and by $\left(f_{4}\right)$ we get $\int_{B_{\frac{R}{2}}} f\left(u_{n}\right)^{q}<K$. Again by Lemma 3.2 we infer

$$
\begin{aligned}
\left\|u_{n}\right\|_{L^{\infty}\left(B_{\frac{R}{4}}\right)} & \leq C R^{-1}\left(\left\|u_{n}\right\|_{L^{N}\left(B_{\frac{R}{2}}\right)}+R K\right) \\
& \leq K_{1}
\end{aligned}
$$

where $K_{1}=K\left(R,\left\|u_{n}\right\|_{L^{N}\left(B_{\frac{R}{2}}\right)},\left\|f\left(u_{n}\right)\right\|_{L^{q}\left(B_{\frac{R}{2}}\right)}\right)$
Case 2: $x_{0} \notin A$
Since $\Omega \backslash A$ is finite we can choose $R>0$ such that $\partial B_{R}\left(x_{0}\right) \subset A$. Taking $x \in \partial B_{R}\left(x_{0}\right)$, by case 1 there is $r=r(x)$ such that for all $n \in \mathbb{N}$

$$
\left\|u_{n}\right\|_{L^{\infty}\left(B_{r(x)}(x)\right)} \leq c(x)
$$

This implies by compactness, for some $k \in \mathbb{N}$

$$
\partial B_{R} \subseteq \bigcup_{i=1}^{k} B_{r\left(x_{i}\right)}\left(x_{i}\right)
$$

Now, if $y \in \partial B_{R}$, then $y \in B_{r\left(x_{i_{0}}\right)}\left(x_{i_{0}}\right)$, for some $1 \leq i \leq k$. Hence

$$
\left\|u_{n}\right\|_{L^{\infty}\left(\partial B_{R}\right)} \leq \max _{i=1, \cdots, k} C\left(x_{i}\right)=: K \text { for all } n \in \mathbb{N} .
$$

Let U_{n} be the solution of

$$
\left\{\begin{aligned}
-\Delta_{N} U_{n} & =f\left(u_{n}\right) \text { in } B_{R} \\
U_{n} & =K \text { on } \partial B_{R},
\end{aligned}\right.
$$

which is equivalent to

$$
\left\{\begin{aligned}
-\Delta_{N}\left(U_{n}-K\right) & =f\left(u_{n}\right) \text { in } B_{R} \\
U_{n}-K & =0 \text { on } \partial B_{R} .
\end{aligned}\right.
$$

Therefore

$$
U_{n} \geq u_{n}, \quad \text { on } \quad B_{R}
$$

by Lemma 5.1. Thus by applying Lemma 5.2 we have

$$
\begin{equation*}
\int_{B_{R}} e^{\frac{\left(N \omega_{N}^{\frac{1}{N-1}}-\delta^{\prime}\right)}{\left\|f\left(u_{n}\right)\right\|_{L^{1}}^{\frac{1}{N-1}}}\left|U_{n}-K\right|} \leq \frac{N \omega_{N}^{\frac{1}{N-1}} C R^{N}}{\delta^{\prime}} \tag{5.4}
\end{equation*}
$$

for any $\delta^{\prime} \in\left(0, N \omega_{N}^{1 /(N-1)}\right)$.
Since x_{0} is a regular point, there exist $R_{1}<R$ and $n_{0} \in \mathbb{N}$ such that for every $n>n_{0}$ we have for some $\delta>0$

$$
\left(\int_{B_{R_{1}}\left(x_{0}\right)} f\left(u_{n}\right)\right)^{\frac{1}{N-1}}<N \omega_{N}^{\frac{1}{N-1}}-\delta
$$

Taking $\delta^{\prime}>0$ sufficiently small, we have

$$
1<q=\frac{N \omega_{N}^{\frac{1}{N-1}}-\delta^{\prime}}{N \omega_{N}^{\frac{1}{N-1}}-\delta}<\frac{N \omega_{N}^{\frac{1}{N-1}}-\delta^{\prime}}{\left\|f\left(u_{n}\right)\right\|_{L^{1}}^{\frac{1}{N-1}}}
$$

and hence by (5.4)

$$
\int_{B_{R_{1}}} e^{q\left|U_{n}-K\right|}<C, \text { and then } \int_{B_{R_{1}}} e^{q U_{n}}<K^{\prime}
$$

this implies

$$
\int_{B_{R_{1}}} e^{q u_{n}} \leq K^{\prime \prime \prime}
$$

and therefore by $\left(f_{4}\right)$

$$
\int_{B_{R_{1}}} f\left(u_{n}\right)^{q} \leq K(q), \text { and also }\left\|u_{n}\right\|_{L^{N}\left(B_{R_{1}}\right)} \leq C
$$

Hence, by Lemma 4.1

$$
\begin{aligned}
\left\|u_{n}\right\|_{L^{\infty}\left(B_{\frac{R_{1}}{2}}\right)} & \leq C R_{1}^{-1}\left(\left\|u_{n}\right\|_{L^{N}\left(B_{R_{1}}\right)}+C\left\|f\left(u_{n}\right)\right\|_{L^{q}\left(B_{R_{1}}\right)}\right) \\
& <K^{\prime \prime \prime} .
\end{aligned}
$$

This finishes the proof of Claim 1.
Next, we define

$$
\Sigma=\{x \in \Omega: x \text { is not regular for } \mu\} .
$$

We note that $\Sigma \subset \Omega \backslash A$ where A is defined in the proof of Theorem 1.1. Hence, also Σ has finitely many elements.

The second claim is
Claim 2. $\Sigma=\emptyset$.
Proof of Claim 2. Arguing by contradiction, let us assume that there exists $x_{0} \in \Sigma$ and $R>0$ such that

$$
B_{R}\left(x_{0}\right) \cap \Sigma=\left\{x_{0}\right\}
$$

We recall that u_{n} verifies

$$
\left\{\begin{aligned}
-\Delta_{N} u_{n} & =f\left(u_{n}\right) & & \text { in } B_{R}\left(x_{0}\right) \\
u_{n} & >0 & & \text { on } \partial B_{R}\left(x_{0}\right)
\end{aligned}\right.
$$

By the previous claim and because all the points are regular in $B_{R}\left(x_{0}\right) \backslash\left\{x_{0}\right\}$, passing to a subsequence we can assume that $u_{n} \rightarrow u C^{1}$-uniformly on compact subsets of $B_{R}\left(x_{0}\right) \backslash\left\{x_{0}\right\}$. Consider the function $w(x)=N \log \frac{R}{\left|x-x_{0}\right|}$, which satisfies

$$
\left\{\begin{aligned}
-\Delta_{N} w & =N^{N-1} \omega_{N} \delta_{x_{0}} & & \text { in } B_{R}\left(x_{0}\right) \\
w & =0 & & \text { on } \partial B_{R}\left(x_{0}\right)
\end{aligned}\right.
$$

For $k>0$, and define the functions

$$
T_{k}(s)=\left\{\begin{array}{lll}
0 & \text { if } & s<0 \\
s & \text { if } & 0 \leq s \leq k \\
k & \text { if } & k<s
\end{array}\right.
$$

Consider now the functions given by $z_{n}^{(k)}=T_{k}\left(w-u_{n}\right)$; because the functions u_{n} are positive we have that $z_{n}^{(k)} \in W_{0}^{1, N}\left(B_{R}\right)$, and $z_{n}^{(k)}\left(x_{0}\right)=k$, for all $n \in \mathbb{N}$. Also

$$
z_{n}^{(k)} \rightarrow z^{(k)}= \begin{cases}T_{k}(w-u), & \text { if } x \neq x_{0} \\ k, & \text { if } x=x_{0}\end{cases}
$$

Note that $z^{(k)}$ is a measurable function. We have

$$
\begin{equation*}
\int_{B_{R}}\left(|\nabla w|^{N-2} \nabla w-\left|\nabla u_{n}\right|^{N-2} \nabla u_{n}\right) \nabla z_{n}^{(k)}=N^{N-1} \omega_{N} k-\int_{B_{R}} f\left(u_{n}\right) z_{n}^{(k)} \tag{5.5}
\end{equation*}
$$

Now set $d \mu_{n}=f\left(u_{n}\right) d x$; then we may apply the following Proposition which is a generalization of Fatou's Lemma (see e.g. Royden, Real Analysis, Proposition 11.17):

Proposition: Suppose that μ_{n} is a sequence of (positive) measures which converges to μ setwise, and g_{n} is a sequence of measurable, nonnegative functions that converge pointwise to g. Then

$$
\liminf _{n \rightarrow \infty} \int g_{n} d \mu_{n} \geq \int g d \mu
$$

Hence, we can write

$$
\int_{B_{R}} f\left(u_{n}\right) z_{n}^{(k)} d x=\int z_{n}^{(k)} d \mu_{n}
$$

and conclude that

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} \int_{B_{R}} f\left(u_{n}\right) z_{n}^{(k)} & =\liminf _{n \rightarrow \infty} \int z_{n}^{(k)} d \mu_{n} \\
& \geq \int z^{(k)} d \mu \\
& \geq \int_{\left\{x_{0}\right\}} z^{(k)} d \mu \\
& \geq N^{N-1} \omega_{N} k
\end{aligned}
$$

where we have used that $z^{(k)}\left(x_{0}\right)=k$ and $\mu\left(x_{0}\right) \geq N^{N-1} \omega_{N}$, because $x_{0} \in \Sigma$.
Thus we obtain from (5.5) that for all $k \in \mathbb{N}$

$$
\int_{B_{R}}\left(|\nabla w|^{N-2} \nabla w-|\nabla u|^{N-2} \nabla u\right) \nabla z^{(k)} \leq 0
$$

that is

$$
\int_{B_{R} \cap\{0 \leq w-u \leq k\}}\left(|\nabla w|^{N-2} \nabla w-|\nabla u|^{N-2} \nabla u\right) \nabla(w-u) \leq 0, k \in \mathbb{N}
$$

By inequality (5.1) we obtain

$$
d_{N} \int_{B_{R} \cap\{0 \leq w-u \leq k\}}|\nabla(w-u)|^{N} \leq 0, k \in \mathbb{N}
$$

Finally, letting $k \rightarrow \infty$, we conclude that

$$
d_{N} \int_{B_{R}}\left|\nabla(w-u)^{+}\right|^{N} \leq 0
$$

Because we know that $(w-u) \leq 0$ on ∂B_{R}, the above inequality implies that $w \leq u$ in $W_{0}^{1, N}\left(B_{R}\right)$, and therefore we conclude that

$$
\begin{aligned}
\liminf _{n \rightarrow+\infty} \int_{B_{R}} f\left(u_{n}\right) & \geq \liminf _{n \rightarrow+\infty} \int_{B_{R}} c_{1} e^{u_{n}} \\
& \geq c_{1} \int_{B_{R}} e^{u} \\
& \geq \int_{B_{R}} \frac{C}{\left|x-x_{0}\right|^{N}}=+\infty
\end{aligned}
$$

This is a contradiction and the proof of Claim 2 is complete.

To finish the proof of Theorem 1.1, we observe that there exists a sequence x_{n} of points in Ω such that $u_{n}\left(x_{n}\right)=\left\|u_{n}\right\|_{L^{\infty}(\Omega)}$ and we can assume that $x_{n} \rightarrow x_{0}$. Because we have an priori estimate near the boundary of Ω, we have $x_{0} \in \Omega$. It is easy to see that for all $R>0$ we have

$$
\lim _{n \rightarrow+\infty}\left\|u_{n}\right\|_{L^{\infty}\left(B_{R}\right)}=+\infty
$$

By Claim 1, we conclude that x_{0} is not a regular point, but this is impossible by Claim 2. Hence there are no blow-up points.

Sebastián Lorca
Universidad de Tarapacá
Instituto de Alta Investigación
Casilla 7D, Arica, Chile
slorca@uta.cl

Bernhard Ruf
Dip. di Matematica, Università degli Studi
Via Saldini 50, I-20133 Milano, Italy
ruf@mat.unimi.it

Pedro Ubilla

Universidad de Santiago de Chile
Casilla 307, Correo 2, Santiago, Chile
pubilla@usach.cl

References

[1] R. Adams, J. Fournier, Sobolev spaces, second ed., Academic Press, 2003
[2] W. Allegretto, Y.X. Huang, A Picone's identity for the p-Laplacian and applications Nonlinear Anal., 327 (1998), pp. 819830.
[3] C. Azizieh, P. Clément, A priori estimates and continuation methods for positive solutions of p-Laplace equations, J. Differential Equations, 179 (2002), no. $1,213-245$.
[4] H. Brezis, F. Merle, Uniform estimates and blow-up behavior for solutions of $-\Delta u=V(x) e^{u}$ in two dimensions, Commun. in Partial Differential Equations, 16 (1991), 1223-1253.
[5] H. Brezis, R.E.L. Turner, On a class of superlinear elliptic problems, Comm. PDE 2 (1977), no. 6, 601-614.
[6] L. Damascelli, B. Sciunzi, Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations J. Differential Equations, 206 (2004), no. 2, 483-515.
[7] B. Gidas, W. N. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), no. 3, 209-243.
[8] B. Gidas, J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations 6 (1981), no. 8, 883-901.
[9] D. de Figueiredo, P. L. Lions, R.D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures et Appl., 61 (1982), 41-63.
[10] S. Kichenassamy, L. Veron, Singular solutions of the p-Laplace equation, Math. Annalen 275, (1986), 599-615
[11] L. G. M. Liebermann, Boundary regularity for solutions of degenerate elliptic equations Nonlinear Anal. TMA 12 (1988), pp. 12031219.
[12] S. Lorca, P. Ubilla, Positive solutions of a strongly non-linear problem involving the m-Laplacian via a priori estimates, preprint.
[13] E. Mitidieri, S. I. Pohozaev. Yang, Nonexistence of positive solutions for quasilinear elliptic problems, Proc. Steklov Inst. Math., 227 (1999), pp. 186216.
[14] P. Quittner, Ph. Souplet, A priori estimates and existence for elliptic systems via bootstrap in weighted Lebesgue spaces, Arch. Ration. Mech. Anal. 174 (2004), 49-81
[15] X. Ren, J. Wei, Counting peaks of solutions to some quasilinear elliptic equations with large exponents J. Differential Equations 117 (1995), no. 1, 2855.
[16] D. Ruiz, A priori estimates and existence of positive solutions for strongly nonlinear problems, J. Diff. Eq. 199 (2004), no. 1, pp. 96-114.
[17] J.L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191-202.

[^0]: *supported by FONDECYT 1080430 and 1080500

