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HIGHLIGHTS

* A ‘cradle to grave’ E-LCA was used for 750 ml bottle of a Sardinian white wine.
« The phases of vine planting, distribution and final disposal are included in the LCA.
 Hot-spots are glass bottle production and vine planting due to diesel consumption.
 The impact categories more affected by transport were AP, EP, POCP and GWP.
 Improvements were a lighter glass bottle or the use of polylaminate container.
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The aim of this study was to deepen the assessment of the environmental impacts of a white wine produced in
Sardinia (FU 750 ml), performing an attributional LCA. The system boundaries were extended, from ‘cradle to
gate’ (partial LCA) of a previous study, to ‘cradle to grave’ (total LCA), in order to identify the environmental
impacts occurring along the wine life cycle stages (vine planting, grape production, wine production, bottling
and packaging, distribution, final disposal of the glass bottle).

Some assumptions were made in order to quantify the environmental impact of the transportation phase, regard-

Keywords: : X .

Life cycle assessment ing the few data which were available.

Winemaking Inventory data were mainly collected through direct communication with the Company involved in the study.
‘Cradle to grave’ Results showed that the environmental performance of wine was mostly determined by the glass bottle produc-
Sardinia tion (for all impact categories except ozone layer depletion). The second contributor was the agricultural phase,

which included two sub-phases: vine planting and grape production. Results showed that the vine planting sub-
phase was not negligible given its contribution to the agricultural phase, mainly due to diesel fuel consumption.
Transportation impact was found to be relevant for long distance distribution (USA); the impact categories more
affected by transport were acidification, eutrophication, photochemical oxidation and global warming potential.
Suggested opportunities to reduce the overall environmental impact were the introduction of a lighter glass
bottle or the substitution of the glass bottle with a polylaminate container.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Over the past two decades, the worldwide awareness regarding
environmental issues has consistently increased: consumers are now
changing their behaviour to integrate environmental considerations
into lifestyle choices. The environmental aspect is now one of the vari-
ables taken into consideration by consumers during the purchasing
process. In some cases, consumers are willing to pay a premium for
environmentally friendly products (Barber et al., 2009). As mentioned
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by Berners-Lee et al.'s (2011) businesses of all sizes are increasingly
looking to modify their actions to manage their impact, to protect
their reputations and to prepare for tighter regulations. Over the last
few years, the evaluation and communication of products with environ-
mental impacts, by means of an eco-label, are starting to gain ground
within the agro-food sector. The farm-gate approach has the advantage
of encouraging the use of best practices in each production stage,
allowing, on the one hand, the reduction of emissions which are directly
controlled by the farmer and, on the other hand, the creation of policies
that are applicable at the company level (Dick et al., 2008). The agricul-
tural sector is considered, after fossil fuels, the main cause of greenhouse
gas emissions. According to the last published IPCC report, the agricul-
tural sector is the second responsible for global GHG production, emit-
ting between 5.1 and 6.2 Gt CO; eq., which corresponds to the 10-
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12% of total anthropogenic GHG emissions and, including forestry activ-
ities, and is responsible for 50% and 70% of methane (CH4) and nitrous
oxide (N,O) emissions, respectively, and for 25% of the carbon dioxide
production (CO,) (Smith et al., 2007).

This is due to direct emissions deriving from agricultural operations,
for example carbon dioxide (CO,) emissions from the use of diesel by
tractors and irrigation equipment or emissions from agricultural inputs
used (e.g. fertiliser, herbicides and pesticides).

However, it is important to consider indirect emissions generated
off-farm as a result of the manufacturing of inputs used on the farm,
for example GHG emissions from the use of natural gas in the produc-
tion of commercial fertiliser and chemicals. As stated by Coderoni and
Bonati (2013), the agricultural sector will represent one third of
European emissions by 2050 (if decarbonisation of other sectors has
not yet occurred). Therefore, the relevance of the agricultural sector in
climatic policy is expected to increase.

The wine sector must deal with this scenario, and emissions associ-
ated with both the productive phase and the distribution phase must be
considered. With regard to the latter, it must be highlighted that wine
largely contributes to the global agro-food trade: in 2011, 10 million t
of wine were exported all over the world and wine is the 19th highest
agro-food product exported by quantity and the 7th by value (1000$)
(FAOSTAT).

The whole supply chain must therefore be considered in order to
take into account all impacts deriving from wine production, as sug-
gested for other agro-food sectors (Iribarren et al., 2010; Berners-Lee
etal, 2011).

Protocols for the evaluation of wine emissions are currently being
set up by important Institutions, like the International Organisation of
Vine and Wine (OIV).! Therefore, the whole industry must address
this issue in the very near future, private companies included.

Italy is one of the leading wine producing countries, with more than
42 million hl produced in 2011 (OIV (International Organisation of Vine
and Wine), 2013), and plays a dominant role among the traditional
exporting countries, according to FAO data (2011), accounting for 23%
of global wine exports. The UK, the United States and Germany are its
main buyers (Istat-Coeweb, 2010).

Nowadays, we are witnessing the rise of a “green competition” in the
international wine trade. Environmental issues are in fact not only pop-
ular both in traditional wine importing countries (e.g. the United
Kingdom) and in global larger markets (e.g. the United States), but
also in countries that have been recently gaining a share of the export
market (e.g. Australia, New Zealand and South Africa) and in tradition-
ally net exporting countries (e.g. France).

Hence, there is interest in analysis that assesses the environmental
impacts linked to the production of an Italian bottle of wine that is wide-
ly sold in markets where the interest on environmental issues is grow-
ing and other competitors are embracing environmental management
systems (as Hardie (2000) pointed out, Australian wine producers).

In this context, it is important to be able to assess the environmental
load linked to wine production. As mentioned by Zamagni et al. (2012),
the European Commission states that “LCAs provide the best framework
for assessing the potential environmental impacts of products currently
available” (CEC, 2003). LCAs might be conducted by an industry sector
in order to identify areas where improvements can be made, in environ-
mental terms. In recent years, a number of major companies have cited
LCAs in their marketing and advertising, to support claims that their
products are ‘environmentally friendly? or even ‘environmentally supe-
rior’ to those of their rivals (World Resource Foundation).

1 Pattara et al. (2012b) used the OIV guidelines as a methodological basis in their cradle
to gate study.

2 Examples are Soave Consortium in Italy and Taylors Wines in South Australia
(Lambert, 2010).

Life cycle assessment (LCA) is a standardised methodology used for
estimating the environmental burdens associated with the life cycle of
products or processes (ISO, 2006a,b). This methodology is considered
to be effective for evaluating environmental performance in the food
and beverage sector (Andersson, 1998; Cerutti et al., 2011; Gonzalez-
Garcia et al., 2013a,b), and, of course, in the viticulture and vinification
sectors. Several studies have been carried out in order to assess the
environmental performance of wine using the life cycle assessment
approach (e.g. Zabalza et al., 2003; Notarnicola et al., 2003; Aranda
et al., 2005; Montedonico, 2005; Gonzalez et al., 2006; Ardente et al.,
2006; Petti et al., 2006; Rugani et al., 2009; Carta, 2009; Colman and
Paster, 2009; Schlich, 2010; Petti et al., 2010; Gazulla et al., 2010;
Barry, 2011; Bosco et al., 2011; Pattara et al., 2012a; Point et al., 2012;
Vazquez-Rowe et al., 2012; Comandaru et al., 2012; Neto et al., 2013;
Vazquez-Rowe et al., 2013; Benedetto, 2013; Villanueva-Rey et al.,
2013).

As can be seen from Rugani et al. (2013), some of them adopted a
‘cradle to grave’ perspective, with the inclusion of the distribution phase
(e.g. Gazulla et al., 2009; Point et al., 2012; Neto et al., 2013), while others
preferred a ‘cradle to gate’ approach, without taking into consideration
the distribution (e.g. Vazquez-Rowe et al., 2012; Benedetto, 2013). With
some exceptions (Montedonico, 2005; Pizzigallo et al., 2008; Rugani
et al., 2009; Carta, 2009; Bosco et al., 2011; Comandaru et al., 2012;
Benedetto, 2013), the vine planting phase represents a stage of the
wine life cycle that is rarely considered in wine LCA studies due to a
lack of data.

According to these studies, the production of glass bottles and the
viticulture phase are environmentally relevant in the overall wine life
cycle.

Over the years, more and more importance has been given to the
assessment of the life cycle as a whole: therefore, the interest has shifted
from partial® to total* LCA, as already outlined on another occasion
(Benedetto et al., 2013). For this reason, this study proposes the evalu-
ation of environmental impacts associated with the production of a
white wine produced in Sardinia by Sella & Mosca, including additional
stages of the production process compared to a previous study
(Benedetto, 2013).

The aim of this study was to deepen the assessment of the environ-
mental impacts of a white wine produced in Sardinia (FU 750 ml),
performing an attributional LCA. The system boundaries were extended
from ‘cradle to gate’ (partial LCA) to ‘cradle to grave’ (total LCA), in order
to identify the environmental impacts occurring along the wine life
cycle stages (vine planting, grape production, wine production, bottling
and packaging, distribution, final disposal of the glass bottle). The anal-
ysis was performed on Vermentino wine produced by one of the biggest
companies in Europe (Sella & Mosca), which exports its wine all over
the world, won the award for the Eco-friendly winery in 2012 and
was named winery of the year in 2013 in the Gambero Rosso Guide.
This company, founded more than one century ago, has more than
550 ha of vineyard and produces approximately 7 million bottles per
year; the production of Vermentino “La Cala”, which was selected for
this study because it represents a flagship product of the company's
portfolio, amounts to 500,000 bottles per year.

3 The PEF Guide (2012) specifies that ‘cradle to gate’ is “a partial product supply chain,
from the extraction of raw materials (cradle) up to the manufacturer's “gate”. The distribu-
tion, storage, use stage and end-of-life stages of the supply chain are omitted” (p. 75); the
‘gate to gate’ and ‘gate to grave’ LCAs are also partial (p. 76). The same definition is includ-
ed in the ENVIFOOD Protocol Environmental Assessment of Food and Drink Protocol
(2012, p. 13).

4 ‘Cradle to grave’ LCA is referred to: “a product's life cycle that includes raw material ex-
traction, processing, distribution, storage, use, and disposal or recycling stages. All relevant
inputs and outputs are considered for all of the stages of the life cycle” (PEF Guide, p. 75);
in the ENVIFOOD Protocol, this definition is reported for the cradle to grave inventory as “a
complete life cycle of a product which includes all the consecutive and interlinked stages
of a product system from material acquisition through to end-of-life” (p. 13).
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Fig. 1. System boundaries.
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Table 1
Data inventory for vine planting (data related to FU).
Units
Inputs
Diesel fuel g 69.51
Lubricating oil g 2.08
Compost g 2.64
Potassium chloride g 121
Fertiliser P,05 mg 396.72
Steel g 391
Concrete g 74.45
Fungicides® mg 33.46
Pesticides® mg 3145
Dinitroaniline-compounds® mg 2.08
Cyclic N-compounds? mg 2.98
[Sulfonyl]urea-compounds® mg 7.93
Acetamide-anillide-compounds’ mg 6.45
Glyphosate mg 21.82
Dithiocarbamate-compounds® mg 65.03
Water m> 0.01
Outputs
Vineyard m? 1
Emissions to air
Carbon dioxide (diesel) g 11.71
Carbon monoxide (diesel) mg 64.79
Particulate mg 9.74
Hydrocarbons mg 12.77
Nitrogen oxides g 0.11
Dinitrogen monoxide (fertiliser) mg 2.07
Ammonia (fertiliser) mg 22.48
Glyphosate mg 218
Dinitrophenol mg 0.49
Mancozeb mg 324
Morpholine mg 030
Dimethomorph mg 0.57
Benzophenone mg 0.20
Metiram mg 3.26
Pyraclostrobin mg 0.21
Carfentrazone-ethyl mg 0.30
Sulphur g 0.025
Metalaxyl-M mg 0.65
Copper oxychloride mg 4,68
Quinoline mg 0.83
Copper oxide mg 0.89
Emissions to water
Nitrate (fertiliser) g 0.12
Phosphate (fertiliser) mg 7.03
Glyphosate mg 218
Dinitrophenol mg 0.49
Mancozeb mg 324
Morpholine mg 030
Dimethomorph mg 0.57
Benzophenone mg 0.20
Metiram mg 3.26
Pyraclostrobin mg 0.21
Carfentrazone-ethyl mg 0.30
Sulphur g 0.025
Metalaxyl-M mg 0.65
Copper oxychloride mg 4,68
Quinoline mg 0.83
Copper oxide mg 0.89
Emissions to soil
Glyphosate mg 16.35
Dinitrophenol mg 371
Mancozeb mg 24.32
Morpholine mg 223
Dimethomorph mg 426
Benzophenone mg 148
Metiram mg 2445
Pyraclostrobin mg 1.56
Carfentrazone-ethyl mg 223
Sulphur g 0.19
Metalaxyl-M mg 4.84
Copper oxychloride mg 35.06
Quinoline mg 6.21
Copper oxide mg 6.69
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2. Material and methods Table 2
Data inventory for grape production (data related to FU).
2.1. Goal and scope definition Units
. .. . A Inputs
The environmental performances of a Sardinian wine (Vermentino) Diesel fuel g 121
were assessed using the LCA methodology. Lubricating oil g 0.36
The selected functional unit (FU) was a bottle (750 ml) of Fertiliser (N) mg 135
Vermentino white wine produced by a large company, Sella & Mosca. E:E::Z: 5%85)) ;“g 83 "
. . . . . 2 .
The studied system (Fig. 1) was not restricted to the wine makmg Fungicides® ¢ 034
process but also included the agricultural phases of vine planting and Pesticides” g 317
grape production, as well the final disposal of packaging (glass bottle). Dinitroaniline-compounds® mg 21
. H d
The present study was carried out at two levels: Cyclic N-compounds mg 30
[SulfonylJurea-compounds® mg 80
. . . 4 o c
1 Level A ignored the wine transportation phase; ‘éfetim‘df‘a“'"‘de‘“’mpo““ds 63 -
. . . yphosate g ..
2 Level B included the wine transportation phase. Dithiocarbamate-compounds® . 066
HDPE (bins) mg 46.28
Water m’ 0.10
2.2. Inventory Land m? .
Data concerning field operations and the wine making process were Outputs
directly obtained from the company involved in the analysis. Fore- P r‘é‘isczs 1 Lo
ground data were integrated with database information (Ecoinvent Emissligons to air € ’
version 2.2 (Frischknecht et al., 2007); LCA Food DK (Nielsen et al., Carbon dioxide (diesel) g 38
2003)). Carbon monoxide (diesel) g 0.26
Data concerning grape production and wine making processes refer Particulate mg 40
to 2012, which can be considered an average year since grape produc- :if;gceir';i?;es ;"g 58 2
tion has remained approximately constant over the last 5 years. Dinitrogen monoxide (fertiliser)” mg 8.09
Ammonia (fertiliser)" mg 90
2.2.1. LCI of agricultural phase Glyphosate mg 23
The vine planting phase lasts for approximately three years, after I\D/Imlm’p};en"l mg 3§ s
. . . . . . . ancoze m; .
which the vineyard starts being productive. A vineyard is considered Morpholine m§ 3
to be productive for 27 years (information provided by the company), Dimethomorph mg 5.75
and vines at the end of their lifetime are used to produce energy. The Benzophenone mg 2
analysis carried out did not take into account the end of life of the Metiram mg 33
vinevard Pyraclostrobin mg 2
y ) . . . Carfentrazone-ethyl mg 3
Table 1 reports a data inventory for the vine planting phase; Table 2 Sulphur . 026
shows a data inventory for the grape production phase. Metalaxyl-M mg 6.5
For the agricultural phase (both for vine planting and grape produc- Copper oxychloride mg 30
tion), the emissions due to fertiliser were included: nitrogen emissions 8”1“0““ " mg g
K . . . s . opper oxide mg
to air aqd water ( Fhmtrogen monoxide (dll‘ECF and indirect emissions), Emissions to water
ammonia and nitrate) were computed using the IPCC (2006a,b) Nitrate (fertiliser)" P 048
(a) emission factors; phosphate emissions were calculated in accor- Phosphate (fertiliser) mg 1
dance with Smil (2000). Since grape stalk is spread onto the field as a Glyphosate mg 23
fertiliser, the emissions due to its use were also computed. The nitrogen I\D/[l::ltcrgfe}fml r{:i 33 s
content in grape stalk was calculated in accordance with Rossini et al. Morpholine mg 3
(2010). Dimethomorph mg 5.75
In order to calculate pesticide emissions precisely, it is necessary to Benzophenone mg 2
have data regarding, among others, the way in which a pesticide is Metiram mg 33
applied and the meteorological conditions during application (EMEP/ Pyraclostrobin me 2
. . o Carfentrazone-ethyl mg 3
EEA, 2013). Since all of these data were not available, the emission fac- Sulphur ¢ 026
tors used can be considered as first estimates. Pesticide emissions into Metalaxyl-M mg 65
the air, water and soil were estimated in accordance with Margni et al. Copper oxychloride mg 30
(2002) and Audsley (1997). According to these studies, the fraction of g';;;‘:r”;; ” 25 g
acti\{e ingredignt entering the soil is assumed to bg 85% of the total Emissions to soil
applied quantity; 5% remains on the plant and 10% is emitted into the Glyphosate g 0.17
air. The run-off of the active ingredient from the soil into the water is Dinitrophenol mg 375
assumed to be a maximum of 10% of the applied dose. Regarding fuel mancﬁzib & 2%4
.. . . orpholine mg -
use, the emissions that each machine generates for field operations Dimethomorph g 4513
Benzophenone mg 15
Notes to Table 1: Metiram g 0.24
483 Meptyldinocap, spiroxamina, dimethomorph, metrafenone, quinoxifen, spirotetramat ?ali?giiic:)tzg—ethyl rrgg ;35
b Sulphur, copper oxychloride, copper hydroxide. Sl\/lllilt)ahlz)r(yl-M rgng 4;32
¢ Pyraclostrobin. C hlorid 0'23
4 Carfentazone-etile opper oxychioride & ’
e Fluf ’ Quinoline mg 30
£ ulenoxuron. Copper oxide mg 67.5

Metalaxil M.
& Mancozeb, metiram.
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Table 3 Table 4
Data inventory for wine making (data related to FU). Data inventory for bottling and packaging (data related to FU).
Units Units
Inputs Inputs
Harvested grapes kg 1.071 Wine 1 0.75
Liquid sulphur dioxide mg 64.3 White glass kg 0.56
Liquid nitrogen g 037 Cork g 35
Bentonite g 035 Paper for labels g 1
LPG g 0.64 Corrugated board g 66.7
Water (tap) kg 534
Electricity MJ 04 Outputs
Product
Outputs Bottle of wine p 1
Products Waste
Wine 1 0.75 Glass g 14
Marc and lees kg 027
Stalks kg 0.05
Emissions
Egﬁﬁzﬁljfszgf‘[ﬂfg’;‘ ) § ?:;gs White glass bottles were assumed to be manufactured out of
Dinitrogen monoxide (LPG) mg 0.003 approximately 61% recycled glass. This value was retrieved from the
Methane (LPG) mg 0.03 Ecoinvent database (version 2.2) for white packaging glass.
Waste
Wastewater kg 534

were estimated using data from the Swiss Federal Office for the Envi-
ronment (DETEC (Federal Department of the Environment, Transport,
Energy and Communications)).

No change in the overall soil carbon content was assumed because
the fields were previously dedicated to vine cultivation.

2.2.2. LCI of wine making phase

Carbon sequestration by grape vines and the subsequent release of
CO, during fermentation were excluded from the analysis (Notarnicola
et al.,, 2003; Carta, 2009; Benedetto, 2013; Rugani et al., 2013). Moreover
the PEF Guide reports that “credits associated with temporary (carbon)
storage or delayed emissions shall not be considered in the calculation of
the default EF impact categories” (p. 36). On the other hand, emissions of
ethanol were included as they are known to contribute to photochemi-
cal oxidation (Notarnicola et al., 2003; Pizzigallo et al., 2008; Vazquez-
Rowe et al,, 2012; Point et al., 2012; Neto et al,, 2013). Ethanol emissions
were estimated using the United States Environmental Protection
Agency (USEPA) (1995) emission factor.

Air emissions associated with liquefied petroleum gas (LPG) use
were estimated using emission factors from IPCC (2006b).

Table 3 reports a data inventory for the wine making phase.

2.2.3. L for the bottling and packaging phase

Since this phase takes place within the winery, it was not possible to
acquire specific data regarding electricity use for the bottling and pack-
aging subsystem. Therefore, the entire electricity consumption was
assigned to the wine making stage based on the assumption that only
a small proportion of the total energy is attributable to bottling and
packaging (Guidetti, 2005; Bosco et al., 2011).

The same considerations were made for water use. Table 4 reports
the inventory of the bottling and packaging phase.

Notes to Table 2:

a Meptyldinocap, spiroxamina, dimethomorph, metrafenone, quinoxifen, spirotetramat
48.

b Sulphur, copper oxychloride, copper hydroxide.

¢ Pyraclostrobin.

d Carfentazone-etile.

e Flufenoxuron.

f Metalaxil M.

g Mancozeb, metiram.

h Emissions due to the spread of grape stalk were included.

2.24. Glass bottle disposal

Different waste scenarios for glass bottle were considered, coherent-
ly with distribution destinations; therefore, three waste scenarios were
chosen: Italian, European and American. In Italy, 34% of the glass is
landfilled and 66% is recycled (Co.Re.Ve.), while in Europe an average
of 32% of the glass is landfilled and 68% is recycled (FEVE (The
European Container Glass Federation)), and 72% of the glass is landfilled
and 28% is recycled in the United States (CRI (Container Department
Institute)).

2.2.5. Allocation

During the wine making process, other products besides wine are
produced: marg, lees and stalks. Marc and lees are sold to a distillery;
stalks are, as previously mentioned, spread on the field.

An allocation was made on an economic basis since the economic
value best reflects the relative importance of the different co-products
within the wine industry (Gazulla et al., 2010). Table 5 reports the
economic allocation factors used, as well as the mass share of each co-
product, as indicated by the company.

2.2.6. Transport

To date, few studies have included the distribution phase in wine life
cycle assessments; among them, the following could be cited: Aranda
et al. (2005); Ardente et al. (2006); Gonzalez et al. (2006); Petti et al.
(2006); CIV (2008); Gazulla et al. (2010); Barry (2011); Bosco et al.
(2011); Point et al. (2012); and Burja and Burja (2012). Since transport
can be relevant in the overall environmental impact of wine (Colman
and Paster, 2009; Saxe, 2010; OIV (International Organisation of Vine
and Wine), 2013), it was decided to include this phase in our study,
following the guidelines established by the Product Environmental
Footprint (PEF) Guide (Manfredi et al., 2012).

Wine bottles are distributed within national borders and abroad.
Due to the lack of information regarding international distribution, the
transportation phase was neglected in the Level A analysis, with the
aim of not reducing the reliability of the results.

Table 5
Allocation factors and mass share.

Product Mass % Economic allocation factor (%)
Wine 70 99.95

Marc and lees 25 0.05

Stalk 5 0
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Fig. 2. Itinerary from Alghero to Porto Torres (by road) and from Porto Torres to Genoa (by sea). Common itinerary for all distribution destinations outside Sardinia.

Source: Autorita Portuale di Olbia e Golfo Aranci

Some assumptions were made in order to perform the Level B anal-
ysis, in order to have an estimation of the transportation phase impacts,
and their role in the overall wine life cycle assessment.

Apart from Sardinian distribution, which was performed only by
road transportation, the distribution in all other destinations (within
national borders (the Italian peninsula), and abroad) presented two
common aspects (Fig. 2):

1 Transportation by road from Alghero (where the company is located)
to Porto Torres;
2 Transportation by sea from Porto Torres to Genoa.

As for national distribution (Sardinia and the Italian peninsula),
the specific destination (final destination or distribution centre) was

available. Thus, it was possible to calculate the accurate amount of
kilometres covered by the product both overland and by sea.
Information regarding international distribution was limited to des-
tination countries and transportation means (Autorita Portuale di
Genova). Therefore, it was possible to calculate the accurate number
of kilometres covered by the product overland and by sea only until
the Genoa port. Since no other precise information (from Genoa to the
final destinations) was available, it was decided to calculate an “average
point” of destination within each country. Instead of taking as a destina-
tion point the capital of the country or a place in the middle of the coun-
try, it was decided to estimate an average destination place, calculated
by taking into account the distance from Genoa to the ten most populat-
ed cities of each country (Office for National Statistics; FSO (Federal
Statistical Office); Statistical Offices of the Linder). Therefore, the

Table 6
Distribution destinations and transportation means.
Transportation means % total production
National distribution Sardinia Cagliari Lorry > 32 t 9.7 30
Carbonia-Iglesias 03
Nuoro 0.2
Ogliastra 0.1
Oristano 16
Olbia-Tempio 49
Sassari 59
Medio Campidano 7.2
Peninsula Frascati (Roma)? Lorry > 32 t, container ship 6.8 22
Canale (Cuneo)?® 15.2
National distribution Europe England Lorry > 32 t, container ship 55 48
Germany 383
Switzerland 4
United States Lorry > 32 t, container ship 52.2

2 Distribution centre.
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Table 7
Parameters and respective changes considered in the sensitivity analysis.
Default  Range
value Min Max
kg N,O-N/kg N
Fertiliser ~ N,O emission factor from all N inputs 0.01 0.003 0.03
used (direct emissions)
N,0 emission factor from N volatilization ~ 0.01 0.002 0.05
and re-deposition
N0 emission factor from leaching 0.0075 0.0005 0.025
Share of N which is
transferred
Volatilization for synthetic fertiliser 0.10 0.03 0.30
Volatilization for organic fertiliser 0.20 0.05 0.50
N losses by leaching 030 0.10 0.80
LPG used mg/MJ
CO, emission factor 63,100 61,600 65,600
CH,4 emission factor 1 0.3 3
N,O0 emission factor 0.1 0.03 03

destination point obtained represents an average place within the most
populated cities of each country considered (Supplementary data: Ta-
bles 1, 2 and 3). The assumption made as the basis of this decision
was as follows: imported wine is more likely to be in demand in cities
with a higher number of inhabitants.

As for U.S. distribution, nautical miles from Genoa to New York port
were calculated; New York port was selected, among all American ports,
as the most connected to the port of Genoa (Genoa Port Authority Offi-

Table 8

cial Data, 2012). Due to the lack of information, the U.S. distribution was
only considered until the port of New York; transport from the port to
other possible destinations was excluded. Table 6 lists the destinations
of wine bottles, both within national borders and abroad, and the trans-
portation means considered in the analysis in accordance with the
information provided by the company.

2.3. Impact assessment

SimaPro (version 7.3.2) was used to model the life cycle of
Vermentino wine. Consistently with other studies (Aranda et al.,
2005; Petti et al., 2010; Gazulla and Raugei, 2010; Vazquez-Rowe
etal.,2012; Point et al., 2012; Benedetto, 2013), the following impact
categories were selected to evaluate the environmental impact of the
wine under study: global warming potential (GWP), acidification poten-
tial, eutrophication potential, photochemical ozone creation potential,
ozone layer depletion (ODP) and abiotic depletion. LCIA was carried
out using the CML baseline 2000 method (Guinée et al., 2002).

24. Sensitivity analysis

A set of parameters was changed and its influence on the results was
evaluated. The most uncertain parameters were taken into account to
run the sensitivity analysis. Consistently with Neto et al. (2013), in the
agricultural phases, the parameters associated with the emission of
nitrogen compounds due to fertiliser use were considered. For the wine
production phase, the emission factors of carbon dioxide, methane and

Results (expressed in absolute values and in percentage of contribution) from the characterisation step presented for each impact category.

Impact categories Units Agricultural phase Wine making phase Bottling and packaging Total value
Value % over total Value % over total Value % over total
Abiotic depletion kg Sb eq. 2.57E—03 34.19 7.61E—04 10.10 4.19E—03 55.71 7.53E—03
Acidification kg SO, eq. 1.52E—03 2213 8.46E—04 12.29 4.51E—03 65.58 6.88E—03
Eutrophication kg PO4-eq. 3.22E—04 35.75 1.67E—04 18.55 4.12E—04 45.70 9.02E—04
Global warming (GWP100) kg CO; eq. 1.69E—01 16.86 2.74E—01 27.23 5.62E—01 55.91 1.01E400
Ozone layer depletion (ODP) kg CFC-11 eq. 1.58E—07 71.04 5.51E—09 248 5.89E—08 26.48 2.23E—07
Photochemical oxidation kg CoHy eq. 7.54E—05 28.12 9.74E—05 2831 1.60E — 04 49.77 3.44E—-04

Contribution to environmental impact (%)

1
i

Abiotic depletion Acidification

O Agricultural phase

Eutrophication

O Wine making phase

Photochemical
oxidation

Global warming  Ozone layer depletion
(GWP100) (ODP)

B Bottling and packaging phase

Fig. 3. Contribution of each phase (agricultural, wine making and bottling and packaging phase) to produce one bottle of wine.
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Fig. 4. Contribution of vine planting and grape production to the agricultural phase impact.

dinitrogen monoxide related to the use of LPG were changed. The emis-
sion factors both for fertiliser emissions and LPG emissions were modified
within the range defined in the IPCC (2006a,b) (minimum and maximum
value). The analysis was carried out considering, firstly, all minimum
values of emission factors and, secondly, all maximum values (Table 7).

3. Results and discussion
3.1. Level A

Table 8 reports the total and relative impact values per FU linked to
the three processes under study: the agricultural phase (vine planting
and grape production), the wine making phase and the bottling and
packaging phase. Fig. 3 shows the contribution of each phase to the pro-
duction of one bottle of wine. The wine bottle disposal accounted for
less than 0.5% of the overall environmental impact for all of the impact
categories, so it was not considered a relevant process.

The bottling and packaging phase represented the main contributor
to all impact categories except for ozone layer depletion, for which the
agricultural phase played the most important role. The principal
carrier of environmental impact was glass bottle production, for all
impact categories (consistent with the results obtained by Petti
et al. (2006)).

Although the system boundaries were changed compared to the
previous study (Benedetto, 2013), the use of glass bottles remains a
key node in the company production process.

As for the agricultural phase and the wine making phase, the follow-
ing considerations could be made. Abiotic depletion is due to the
consumption of fossil-based energy resources, mainly used in the agri-
cultural phase (as diesel fuel) and, secondly, in the wine making phase
(as electricity consumption and LPG use). Acidification, which is mostly
related to the emission of SO, and NOy to air, was, for the major part,
caused by the use of electricity and diesel fuel and by diesel combustion
for agricultural operations. Eutrophication was primarily associated
with emissions due to fertiliser use in the agricultural phase and with
wastewater produced during the wine making process. With regard to
GWP, the main contributors were diesel fuel production and consump-
tion (agricultural phase) and electricity consumption (wine making
phase). ODP impacts were primarily associated with the emissions
related to the production of pesticides used in the agricultural phase.
For photochemical oxidation, the contributions of the agricultural

phase (due to diesel fuel and pesticide production) and the wine mak-
ing phase (due to ethanol emissions during the fermentation process)
were similar.

With respect to other studies (Neto et al., 2013; Vazquez-Rowe et al.,
2012), the contribution to the overall impact assessment of the agricul-
tural phase and the wine making phase was lower for all impact catego-
ries except ODP (which was found to be consistent). On the other hand,
the burden of bottling and packaging was higher.

The lower amount of fertilisers used and wastewater produced in
the present study may have determined a reduction of the eutrophica-
tion associated with agricultural and wine making phases. The same
consideration could be stated for abiotic depletion, acidification and
GWHP; in these cases, the inputs involved were electricity and LPG
(lower with respect to the above mentioned studies) and diesel fuel
consumption (lower with respect to the study carried out by Neto
et al. (2013)). As for the GWP value (1.01 kg CO,-eq./bottle), it was
found to be consistent with the results obtained by Ardente et al.
(2006), Gazulla et al. (2010) and Bosco et al. (2011), which lie between
0.6 and 1.3 kg CO,-eq./bottle, and the results obtained in other wine-
related studies (Vazquez-Rowe et al., 2013) in which the GHG emissions
per bottle were between 0.65 and 1.17 kg CO,-eq.

As already specified, the agricultural phase of the present study
included two sub-phases: vine planting and grape production. The

Table 9
Sensitivity analysis results, calculated for the characterisation step, expressing the changes
for each impact category with respect to the reference case.

Impact categories Agricultural  Wine making Bottling and Total
phase phase packaging variation %
Variation %  Variation % Variation %
Abiotic depletion 0 0 0 0
Acidification —6.51, 0 0 —1.44,
+19.13 +4.20
Eutrophication —19.13, 0 0 —6.84,
+50.78 +18.20
Global warming —1.79, —0.02,+003 0 —0.31,
(GWP100) +7.08 +1.20
Ozone layer 0 0 0 0
depletion (ODP)
Photochemical 0 0 0 0
oxidation
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Fig. 5. Results with the inclusion of the transportation phase (percentage contribution to each impact category of the bottle of wine production and transportation phase).
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contributions of these sub-phases are shown in Fig. 4. Vine planting
had a great influence on the environmental performance of the
whole agricultural phase. The main contributor in the vine planting
phase to the impact categories considered was the production of die-
sel fuel needed for field operations (above all: land preparation and
trellis laying), which is consistent with the results obtained by Petti
et al. (2006), Bosco et al. (2011) (for the GWP category impact)
and Benedetto (2013). The contribution of diesel fuel production to
environmental impact varied between 85% (abiotic depletion) and
40% (eutrophication).

The agricultural phase is the stage where the largest sensitivities
were found. The variation of the sensitivity parameters had large effects
on the eutrophication impact category, which was primarily associated
with emissions due to the use of fertilisers. Changes in parameters relat-
ed to the emission of nitrogen compounds resulting from the use of
organic and synthetic fertilisers affected eutrophication. Changes in
the emission factors for LPG combustion resulted in small changes for
global warming. Pesticide emissions were not found to be relevant,
regardless of the percentage value used to calculate them. Table 9
shows the results of the sensitivity analysis.

3.2. Level B

The results obtained with the inclusion of the transportation phase
are shown in Fig. 5 and in the Supplementary documents (Tables 5, 6
and 7). The impact due to the distribution of one bottle of wine within
national borders (Italy) was maximum (5%) for acidification and eutro-
phication. Data concerning the transportation phase in Italy were pro-
vided by the company; therefore, the results were considered reliable.

As for international distribution (Europe, Italy excluded, and USA),
the environmental burden associated with transportation increased, as
expected. In particular, transportation by sea over long distances
(USA) appeared to have a relevant impact on almost all of the impact
categories taken into consideration: 41% for acidification, 33% for eutro-
phication, 29% for photochemical oxidation, 12% for global warming
potential and 10% for abiotic depletion. Data concerning international
distribution were, however, estimated; therefore, the results obtained
have to be considered a rough indication of the role played by the trans-
portation phase on the overall life cycle of a bottle of wine.

100

The comparison between level A and level B results is shown in
Fig. 6. Distribution within national borders caused an increase in envi-
ronmental impacts of less than 5% with respect to the A scenario for
all of the impact categories. European distribution determined a worse
environmental performance in every impact category considered, in
particular for abiotic depletion (14% increase with respect to level A
results), global warming potential (12%) and ozone layer depletion
(10%). US distribution was responsible for a consistent increase in the
environmental burden, especially for acidification, eutrophication and
photochemical oxidation impact categories. It has to be taken into
account that the results for US distribution would have been worse if
road transportation within the country had also been taken into
account.

4. Conclusions

The study carried out evaluates the environmental impacts associat-
ed with viticulture, vinification, bottling and packaging in a Sardinian
winery. The results showed that the environmental performance of a
bottle of Vermentino wine was mostly determined by glass bottle pro-
duction. Therefore, a reasonable option to reduce the environmental
impact of the product would be to use a lighter glass bottle (Aranda
et al.,, 2005; Point et al., 2012; Cleary, 2013) or to substitute the glass
bottle with an aseptic carton, although this alternative would require
an impact analysis on the chemical and flavour characteristics of the
wine (Montedonico, 2005). A study carried out by Pasqualino et al.
(2011) showed in fact that, between the glass and aseptic carton
options for juice packaging, the second solution had a lower impact on
the two environmental categories considered (GWP and Cumulative
Energy Demand). The adoption of a lighter container (lighter glass bot-
tle or aseptic carton) would benefit the distribution phase as well; this
advantage is proportional to the distance of transportation required.
The distribution phase was shown to affect the environmental results
as the distance of transportation increased.

The availability of vine planting data allowed us to perform an envi-
ronmental analysis on the whole agricultural phase involved in the pro-
duction of grapes. The results showed that the vine planting sub-phase
was not negligible given its contribution to the agricultural phase.

The results obtained were compared with other wine-related LCA
studies. However, as stated by Neto et al. (2013), the results are not
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Fig. 6. Comparison between level A and level B results.
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easily comparable due to the methodological options available (i.e. the
method used to estimate emissions) and the different protocols used
to produce the wine. Therefore, harmonised rules allowing a compari-
son of the results of different studies are needed.
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