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1. ABSTRACT 
 

An accurate DNA replication is essential to prevent genome instability events, 

such as mutations and chromosomal rearrangements that are hallmarks of 

neoplastic transformation and cancer onset. A dedicated branch of the DNA 

damage checkpoint maintains the integrity of replicating chromosomes by 

stabilising replication forks in the presence of genotoxic agents, thus ensuring 

cell viability. Upon fork collapse, budding yeast checkpoint mutants 

experiencing replication stress accumulate aberrant replication intermediates, 

such as gapped and hemireplicated molecules, as well as four-branched 

structures known as reversed forks. Aberrant replication intermediates are 

potentially harmful for the cells since they are thought to trigger unscheduled 

recombination events that cause genome rearrangements. In this PhD thesis, I 

examined checkpoint-dependent mechanisms controlling fork stability, and I 

provide in vivo evidence that positive supercoiling accumulating ahead of 

replication forks is the main mechanical force driving fork reversal. Thus, 

DNA topology is a critical determinant of replication fork stability in vivo. 

Furthermore, a 2D-gel screening for enzymatic activities involved in the 

metabolism of collapsed forks, revealed a novel role for the Sae2 and Dna2 

endonucelases in replication intermediates processing. 
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2. INTRODUCTION 

 

2.1 The yeast Saccharomyces cerevisiae cell cycle and 

the DNA damage checkpoint. 

 

The cell cycle is an ordered succession of events that subsequently occur with 

the final goal of proliferation. During the cell cycle from a mother cell two 

daughter cells are generated, that possess all the information to repeat the 

process. Thus, during cell division, all cellular components must be duplicated 

and transmitted correctly to the newborn cell. The most important element is 

the genetic information, which must be accurately duplicated in a process 

called DNA replication. The two copies are then segregated carefully to the 

two daughter cells. DNA synthesis and chromosome segregation take place in 

two distinct phases of the cell cycle, the first during S-phase, while the latter 

occurs during mitosis (or M phase), where the cells physically divide in a 

process termed cytokinesis. Those two phases are separated by two additional 

gap phases, called G1 and G2, in which cells undertake all the metabolic 

reactions necessary for the next cell cycle stage (Figure 1). The cell cycle can 

be therefore divided in four phases: the G1, in which the synthesis of 

cytoplasmatic proteins takes place, the S-phase of DNA replication, the G2 

phase, in which the preparation of the mitotic apparatus and the synthesis of the 

membrane proteins occur, and the final M phase, where chromosomes 

segregate and cells divide.  
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Figure 1. Schematic representation of the budding yeast mitotic cell cycle. S. 

cerevisiae cell cycle is divided into G1, S, G2 and M phases. DNA replication occurs 

during S-phase and at the end of the M phase the mother cell divides giving rise to two 

daughter cells. Each phase can be identified by analysing the cell morphology: G1 

cells are characterized by an oval shape, from which at the beginning of the S-phase a 

bud emerges that becomes progressively elongated and grows until M-phase onset, 

where the division of the cells takes place. 

(adapted from http://www.csb.ethz.ch/research/dynamic)                                                                                     

      

The duplication of the genetic material is a process crucial for cell life and it 

must be tightly regulated to prevent errors during replication or unbalanced 

segregation of the chromosomes that lead to mutations and chromosomal 

aberrations causing genetic diseases and cancer onset (Hartwell and Kastan, 

1994). To preserve the integrity of the genome, cells have developed specific 

mechanisms of surveillance that control the order and timing of cell cycle 

transitions, orchestrating the cellular response to DNA damages and/or events 

that perturb replication, referred to as DNA damage checkpoint (Hartwell and 

Weinert, 1989; Elledge, 1996). The checkpoint pathways were initially 

http://www.csb.ethz.ch/research/dynamic
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described as limited to the transduction of a signal required to arrest the cell 

cycle progression, thus providing time for the cells to repair DNA lesions 

(Hartwell and Weinert, 1989). However, the current believe is that the 

checkpoint acts as a much more complex response that cooperates with 

multiple cellular pathways to modulate the cellular physiology with the final 

objective to sustain cell viability and genome integrity (Branzei and Foiani, 

2009; Labib and De Piccoli, 2011). The checkpoints pathway is very well 

conserved throughout eukaryotes and acts in different phases of the cell cycle: 

in late G1, in S and in G2/M.  

 

 

2.2 DNA replication. 

 

DNA replication, occurring in the S-phase of the cell cycle, is a semi-

conservative process, since each strand of the double helix serves as a template 

for the synthesis of a complementary strand. Thus, the final product of this 

process are two identical double stranded helices, each of the two composed by 

a parental strand and a newly synthetised one.  

 

In budding yeast DNA replication begins at specific chromosomal regions, 

named Origins of Replication. Each replication origin is specified by a 

conserved region of 100-200 base pairs (bp) named autonomous replicating 

sequence (ARS), which serves as binding site for the Origin Recognition 

Complex (ORC) that promotes the recruitment of additional factors that start 
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replication (Bell et al., 1993). Architectural studies revealed that each ARS is 

characterized by a modular structure of three elements essential for ARS 

functioning (Dubey et al., 1996): domain “A”, consisting of 11-bp consensus 

sequence known as ACS (ARS consensus sequence), essential for activation 

and recognised by ORC; as well as domain “B”, which is more variable and 

constitutes the region for DNA unwinding and domain “C”, that contains sites 

for the binding of transcription factors (Bell et al., 1993). In contrast to yeast, 

replication origins in higher eucaryotes are not so well defined and they do not 

seem to require specific sequences for initiation. However, despite some 

differences, the mechanisms and the molecules ensuring a correct replication 

initiation have been conserved throughout evolution (Errico et al., 2010).  

 

To duplicate their rather big genomes in a limited time, eukaryotic cells have 

developed mechanisms that allow the initiation of replication from multiple 

sites, leading to the establishment of several individual replicons that are 

activated during S-phase. This mechanism is finely regulated to guarantee that 

the duplication of each part of the genome occurs only once every round of cell 

cycle. This temporal regulation enabled the characterisation of the replication 

origins according to the time of their firing: “early replication origins” are 

activated in the early S-phase, while “late replication origins” are fired later 

(Raghuraman et al., 2001). Furthermore, some late origins might be activated 

exclusively under specific situations, such as the dormant replication origins, 

that are fired only in the presence of damages or, alternatively, they remain 

silent (Diffley and Labib, 2002). 
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In budding yeast, origin firing is a multi-step process, orchestrated by the 

cyclin dependent kinase Cdc28 and the B-type cyclins (Clbs) (Dutta et al., 

1997). DNA synthesis requires  the binding of the ORC complex to the origins 

of replication (Bell and Stillman, 1992). The ORC complex is composed by six 

proteins, named Orc1-6 and “marks” the origins, remaining attached to them 

during the entire cell cycle. This complex acts as an initiation factor to recruit 

additional proteins, such as Cdc6 (Cocker et al., 1996), the “origin loading 

factor” essential for the binding to the origin of the helicase Minichromosome 

Maintainance Complex (MCM). Those factors together with additional 

components such as Cdc45, form the “pre-replicative complex” (Santocanale 

and Diffley, 1996; Santocanale and Diffley, 1997). Pre-replicative complex 

formation depends on the inactivation at the end of mitosis of Clb-Cdc28 

kinase and cannot occur until Clbs are degraded. Thus, it is permitted to occur 

once per cell cycle since Clb-Cdc28 triggers initiation and also prevents re-

replication by blocking the assembly of new complexes. At the very end of G1 

phase, Clb-Cdc28 kinase activation changes the conformation of the pre-

replicative complex, forming the pre-initiation complex (Zou and Stillman, 

1998). Then, protein kinase Cdc7/Dbf4 – dependent phosphorylation of the 

MCM complex is required to activate the origin and the MCM complex 

facilitates the loading of the initiation complex (Mimura and Takisawa, 1998), 

including primase and DNA polymerase . The initiation complex forms in 

turn the replication bubble, allowing the unwinding of DNA mediated by the 

MCM complex (Asparicio et al., 1997) and replication can start.  

 

Replication is mediated by a large protein complex called replisome (Yao and 

O’Donnell, 2010). Upon origin activation two replication forks are established. 
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Replicative helicases unwind the duplex generating the free template to 

duplicate and the ssDNA formed in this way is covered by RPA to stabilize it 

and protect it from breakage. Replication forks proceed bi-directionally into 

flanking DNA until they encounter forks emanated from proximal origins thus 

engaging replication termination.   

DNA synthesis is carried out continuously in the leading strand primarily by 

polymerase  (Pol ) from a single initiation event, while it is discontinuous at 

the lagging strand, where it is initiated by the Pol- primase complex, formed 

by the RNA polymerase and the DNA polymerase  that synthesize the RNA 

primers and a short DNA segment, extended by Pol  as a succession of 

Okazaky fragments (Hubscher and Seo, 2001; Kunkel and Burgers, 2008). This 

occurs due to the anti-parallel nature of the template and the catalytic ability of 

the DNA polymerases to synthetise DNA exclusively in the 5’ to 3’ direction. 

A primase activity is required to synthetise RNA primers at both leading and 

lagging strand. As mentioned, DNA replication is a potential source of genome 

instability, due to the possible misincorporation of nucleotides and because 

DNA polymerase  is vacant of a proofreading activity. Thus, on the leading 

strand, Pol is displaced by the replication factor C (RFC), proliferating cell 

nuclear antigen (PCNA) and Pol , so that a processive polymerisation 

complex is assembled (Kunkel and Burgers, 2008). On the lagging strand, the 

complex composed by Pol and the RNA primase generates frequent RNA 

primers and is subsequently displaced by Pol  through RFC and PCNA 

polymerase switching mechanisms that favour a processive synthesis of DNA 

(Burgers, 2009). During synthesis on the lagging strand, DNA polymerases  

reaches the end of a previous Okazaky fragment, marginally displacing its end 

into a single stranded DNA flap structure that is subsequently removed. 
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Furthermore, the RNA portion present in each RNA-DNA segment at Okazaky 

fragments needs to be eliminated to form a linear DNA duplex. Okazaky 

fragment processing is crucial for cell duplication and proliferation (Figure 2).  

 

 

Figure 2. Schematic illustration of proteins acting at the fork during replication. 

Two DNA polymerases are actively synthesizing at the fork. Leading strand 

polymerase moves continuously to generate the daughter DNA molecule, whereas on 

the lagging strand the polymerase synthesizes DNA discontinuously, producing 

Okazaki fragments. Both polymerases attachment to the template is favored by 

accessory proteins, such as the sliding clamp and the clamp loader. DNA helicases are 

powered by ATP hydrolysis to open the DNA helix ahead of the replication fork, 

exposing ssDNA filaments for polymerases to copy. DNA topoisomerases facilitate 

DNA helix unwinding ahead of the fork branching point. In addition to the template, 

DNA polymerases require a pre-existing RNA end, provided by the primer segment, 

onto which to add the nucleotides. Primases produce a short RNA molecule onto 

which the DNA polymerase adds nucleotides. The ssDNA exposed at the fork is 

covered by single-strand DNA-binding protein RPA complexes (adapted from 

Cimprich and Cortez, 2008).  

 

 

Multiple nucleases, including Dna2 and Exo1, are involved in Okazaky 

fragment processing (Bae et al., 2000; Sun et al., 2003). The current model 
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comprises different steps and strategies to remove primer RNA and create 

ligatable nicks (Bae et al., 2001), that can be summarised in the following 

steps: i) DNA-RNA synthesis by pol primase; ii) Elongation of the RNA-

DNA primer after polymerase switching (pol  to pol  with the help of 

PCNA) and extension of the primer by pol ; iii) flap formation by 

displacement DNA synthesis by pol - the size of the flap determines further 

processing, with short flaps directly processed by Fen1, while long flaps 

processed by sequential action RPA-dependent of Dna2, which removes the 

majority of the flap, and Fen1 or other nucleases, such as Exo1 or pol , which 

create nicks at the remaining part of the flap; vi) sealing of the nicks by a ligase 

and formation of a continuous double stranded DNA.  
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2.3 The topology of replicating chromosomes. 

 

Topological constraints related to DNA originate mainly from the fact that the 

two DNA strands in the double helix intertwine many times. Most of the DNA 

metabolic processes necessitating  nucleic acid access require the untangling of 

the two strands. The simplest considerable scenario is a linear DNA molecule 

in which untangling can be obtained by free rotation of the DNA ends. 

However, nuclear DNA is constrained by topological domain barriers, so that 

relaxation by the free rotation of the ends is not possible. Examples of 

topological domains are represented by circular DNAs, such as the bacterial 

chromosome, that is a covalently closed structure, and by the chromatin loops 

attached to the nuclear cellular matrix organizing eukaryotic chromosomes.  

 

The topological state of DNA influences different cellular processes, such as 

DNA replication and transcription. DNA replication requires the unwinding of 

the parental DNA filaments wrapped around each other in a double helix, so 

that each filament can be used as template for the synthesis of the new 

complementary strand by DNA polymerases. Replicative helicases unwind 

DNA generating as a consequence of the overwinding of the parental duplex in 

the unreplicated DNA regions in front of the replication fork. The torsional 

energy formed in this way accumulates as positive supercoiling (Figure 3a). 

Thus, positive supercoiling generated during DNA synthesis distributes along 

unreplicated DNA portions as helical overwinding, but its diffusion is 

precluded by topological barriers. The tension accumulated as positive 
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supercoiling ahead of the replication fork obstacles  the progression of the fork, 

counteracting duplex unwinding by helicases. This scenario is complicated by 

topological transitions taking place if the replication fork can rotate at it 

branching point (Wang et al., 2002). In that case, positive supercoiling 

accumulated ahead of the replication fork  can be distributed to the replicated 

DNA portions, generating intertwinings between the replicated duplexes, 

giving rise to crossings termed precatenanes (Figure 3b). 

 

 

Figure 3. Topological problems associated to replication. The replication 

machinery is depicted as a blue rod and discontinuous bars represent topological 

domain barriers, such as sites of attachment of the nuclear membrane with chromatin. 

The topological transitions at replication forks depend on whether the replication 

machinery can rotate or not along the helical axis. (a) If the replication machinery is 

immobile, positive supercoiling accumulates ahead of the replication fork. (b) If the 

replication machinery is permitted to rotate along the helical axis, then this turning 

permits the distribution of positive supercoiling to the region behind the fork, leading 

to the intertwining of the duplicated DNA helices (from Wang et. al, 2002).   
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Similarly, transcription by RNA polymerase (RNAP) affects the topological 

state of chromosomes. An RNAP machinery prevented from rotation around 

the helix forces the DNA rotation while proceeding, thus generating positive 

and negative supercoiling ahead and behind the transcription bubble (Figure 

4A) (Liu and Wang, 1987). Alternatively,  if RNAP would rotate constrains 

will not be formed, but the nascent RNA would entangle around the duplex 

(Figure 4B). 

 

 

Figure 4. Topological problems associated to transcription. Similarly to what 

described for replication,  the topology of transcription differs depending on whether 

the transcription machinery is permitted to rotate or not around DNA axis. An 

immobile RNAP generates positive and negative supercoiling in front and behind the 

transcription bubble, respectively (A). Rotation of the transcription machinery would 

twist nascent RNA around the DNA template behind the transcription bubble (B)  

(adapted from Bermejo et al., 2012).  

 

The local changes in DNA topology described have functional consequences 

on different cellular processes and therefore cells have developed a specialized 

subset of nucleases, called DNA topoisomerases (Wang, 2002; Champoux, 

2001), that finely regulate the degree of supercoiling in the cell. DNA 

topoisomerases resolve topological constrains by introducing temporary 

cleavages in the DNA backbone that are resealed at the end of the process. In 
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this reaction, the formation of a gap is coordinated with the passage of a single 

helix or an entire duplex through it, therefore changing the DNA topology and 

relaxing the domains.  

 

There are two families of DNA topoisomerases, type I and type II, which 

catalyse single or double strand DNA breakage, respectively. Type I 

topoisomerases, differently from type II, do not require ATP hydrolysis for 

their activity and are further subdivided into IA and IB subfamilies. Enzymes 

belonging to the IA group are characterized by a so called “enzyme-bridging” 

mechanism that involves the passage of one strand through its opposite (Tse 

and Wang, 1980) and their activity is directed towards negatively supercoiled 

DNA, while type IB uses a “strand rotation” mechanism that involves the free 

rotation of the duplex strands (Stewart et al., 1998). Type IB enzymes can relax 

both positive and negative supercoils. Type II topoisomerases hydrolyse ATP 

and both type IIA and IIB mediate the passage of the entire duplex through a 

double stranded gap of the same or a different DNA molecules (Roca et al., 

1996). Beside the relaxation of positive and negative supercoils, this category 

of enzymes can also decatenate dsDNA entanglements, such as DNA 

precatenanes (Wang et al., 2002).  

S. cerevisiae Top1, a type IB enzyme, and Top2, a type IIA enzyme, can 

sustain the progression of the replication machinery (Kim and Wang, 1989; 

Bermejo et al., 2007). Top1 and Top2 travel with replication forks during DNA 

synthesis, likely coordinating positive supercoiling and precatenanes relaxation 

(Bermejo et al., 2007). In budding yeast Top1 is dispensable for cell viability, 

while Top2 inactivation causes cells death (Wang et al., 1996). Of notice, 
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contemporary inactivation of both topoisomerases precludes DNA replication 

(Bermejo et al., 2007).  

 

2.4 The replication checkpoint stabilizes stalled 

replication forks. 

 

An accurate completion of DNA replication is crucial to maintain genome 

integrity. However, during S-phase, different endogenous and exogenous 

factors can interfere with replication fork progression, generating replication 

stress. Replication stress can be described as a situation in which different 

impediments cause replication forks to slow down and stall. Topological 

constraints (Bermejo et al., 2012), DNA lesions (Paulovich et al., 2006), 

clashing with transcription (Bermejo et al., 2011), oncogene over-expression 

(Di Micco et al., 2006) and depletion of dNTPs pool (Zhao et al., 2001) have 

been described as causes of replication stress. Mechanistic insight on how the 

DNA damage checkpoint acts to preserve genome integrity upon replication 

stress comes mainly from the model organism Saccharomyces cerevisiae 

(Perego et al., 2000). Cells experiencing replication stress induced by 

genotoxic agents activate a dedicated branch of the DNA damage checkpoint, 

termed replication checkpoint or S-phase checkpoint, that stabilises stalled 

replication forks promoting the functional integrity of the replication 

machinery (Lucca et al., 2004; Cobb et al., 2005). When the replication stress 

is overcome, checkpoint proficient cells are able to resume DNA synthesis 

(Lopes et al., 2001). ssDNA accumulating at stalled replication forks due to 

uncoupling between DNA unwinding by helicases and the progression of DNA 
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polymerases triggers checkpoint activation upon replication inhibition (Sogo et 

al., 2002). ssDNA can also be generated by Exo1 exonucleolytic activity 

(Cotta-Ramusino et al., 2005), as well as by other unidentified factors (Branzei 

and Foiani, 2009). The checkpoint response is mediated by a complex cascade 

of evolutionary conserved proteins that can be divided into sensors, mediators 

and effectors (Longhese et al., 2003). Two parallel pathways respond to 

different kind of genotoxic stresses: the ATM/Tel1 kinase is activated by the 

presence of DSBs, while the ATR/Mec1 activity is mainly responsible for cell 

survival upon treatment with agents that interfere with the progression of 

replication forks, such as the replication inhibitor hydroxyurea (HU). Extended 

ssDNA patches exposed upon replication inhibition are coated by RPA 

(replication protein A) (Sogo et al., 2002), which recruits the apical checkpoint 

kinase Mec1/ATR associated to Ddc2 (Zou and Elledge, 2003). Once 

activated, Mec1 phosphorylates Mrc1, a structural component of the replication 

fork, required for replisome stabilisation and transduction of the checkpoint 

signal (Katou et al., 2003). Mrc1, in turn, mediates Rad53 effector kinase 

activation (Alcasabas et al., 2001), that hyper-autophosphorylates and gets 

fully activated to reach its targets (Pelliccioli and Foiani, 2005), thus promoting 

cell survival and genome integrity. Of notice, Rad53 is essential for the 

checkpoint response upon fork blockage in the presence of genotoxic agents 

(Foiani et al., 2000). There is evidence indicating that Rad53 and Mec1 are 

involved in replisome stability upon replication stress, thus preventing forks 

collapse (Desany et al., 1998).  

The S-phase checkpoint so activated can accomplish different functions 

(Figure 5). Initially it delays the progression through mitosis by modifying key 

cell cycle regulators, so preventing premature segregation of partially 
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replicated chromosomes (Krishnan et al., 2004; Putnam et al., 2010). 

Furthermore, it up-regulates dNTP pools, thus counteracting mutagenic events 

and favouring genome integrity (Chabes et al., 2003). Checkpoint activation 

also represses late/dormant origins firing through not yet fully understood 

mechanisms, thus limiting the number of replication forks susceptible to 

destabilization (Tercero and Diffley, 2001; Lopes et al., 2001). In addition, the 

checkpoint pathway modulates the DNA repair.  

Replication fork stabilization is thought to be the most relevant function for 

cell viability in conditions inducing replication stress (Tercero et al., 2003). 

Replication forks are intrinsically fragile structure prone to accumulate breaks 

since during replication they expose ssDNA, which is fragile and prone to 

prime unscheduled recombination events (Johnson and O’Donnell, 2005; 

Branzei and Foiani, 2010).  

 

 

Figure 5. Schematic cartoon of S-phase checkpoint response signalling and 

functions. When replication forks stall, for instance due to dNTPs pool depletion, 

helicase and polymerases uncouple, generating ssDNA, which is covered by RPA 

complexes. The presence of RPA brings Mec1, through its with Ddc2, to the stalled 
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forks. The checkpoint signal reaches effector kinase Rad53 through the adaptor 

function of Mrc1. Rad53, once activated, acts at different levels: it is responsible for 

replication fork stability, it prevents premature entry in mitosis and  inhibits both late 

origins firing and unscheduled homologous recombination events (adapted from 

Segurado and Tercero, 2009).  

 

In checkpoint defective mutants, such as rad53 cells, failure to stabilize stalled 

replication forks and consequent detachment of replisome proteins from fork 

DNA is retained as the main cause of lethality after exposure to the replication 

inhibitor hydroxyurea (Lopes et al., 2001; Sogo et al. 2002; Segurado and 

Diffley, 2008). Replication fork breakdown and dissociation of replisome 

factors is referred to as fork collapse. Collapsed forks are extremely harmful 

structures, since they can be engaged in structural changes and prime 

chromosomal rearrangements.  

A hallmark of fork collapse in checkpoint mutant is the accumulation of 

reversed forks, which can be observed by electron microscopy. Reversed forks 

are formed through re-annealing of nascent strands to generate four way 

junctions named “chicken feet” (Sogo et al., 2002). Reversed forks counteract 

the resumption of DNA synthesis and therefore are thought to represent 

terminal events contributing to the loss of viability of these mutants (Figure 6). 

Furthermore, collapsed forks undergo additional pathological transitions, 

accumulating ssDNA-gapped and hemi-replicated molecules due to nucleolytic 

processing (Cotta-Ramusino et al., 2005; Sogo et al., 2002) that favours 

unscheduled recombination events (Myung et al, 2002) and further nucleolytic 

cleavages, contributing to the accumulation of DNA breaks and priming 

chromosomal rearrangements (Branzei and Foiani, 2009).  
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Figure 6. Replication fork collapse in checkpoint mutants. Red dots represent the 

replisome. See text for details. Reversed forks visualised by electron microscopy 

(Sogo et al., 2002) are shown, as well as schematic representations of  2D gel patterns 

in wild type (WT) and rad53 cells. Canonical replication intermediates and  reversed 

forks, migrating along a spike signal, are depicted.  
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2.5 Homologous recombination factors and replication 

fork protection. 

 

Recent evidence suggests that homologous recombination proteins play a 

crucial role in the protection of stalled replication forks independently from 

their most characterized function in the HR-mediated repair pathways 

(Costanzo, 2011). In addition to their role in repairing ssDNA gaps and DSBs, 

recombination components might contribute to fork stability mainly by two 

mechanisms: first, protecting the fork from extensive nuclease resection; 

second, promoting forks restart. Little is known on the role of HR factors 

during replication and most of the current knowledge focuses on their function 

in DNA repair pathways. However, it has been reported that during bacterial 

DNA replication, nascent strands are transiently engaged by HR factors at 

damaged forks to restart DNA synthesis (Courcelle et al., 1999) and HR factors 

protect the new filaments from endonucleolytic cleavage, thus counteracting 

chromosomes fragmentation (Chow et al., 2004). Recent studies show that 

vertebrate RAD51 and BRCA2 are recruited to arrested forks (Hashimoto et 

al., 2010; Schlacher et al., 2011; Sirbu et al, 2011). These factors have been 

proposed to limit the length of ssDNA gaps left behind the replisome and are 

extended by Mre11 in an attempt to favour post-replicative repair (Costanzo, 

2011). Intriguingly, BRCA2 and RAD51 exert this function independently 

from DSBs repair pathways, supporting the idea that they might besides 

potentially repairing lesions arising at stalled forks, directly promote fork 

stability (Aze et al., 2013).  
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An important function attributed to HR proteins is to restart blocked replication 

forks in the presence of impediments that affect replisome progression (Michel 

et al., 2007). In E. coli, arrested replication forks can be resumed by a 

recombination-dependent error-free pathway (Michel et al., 2004), that allows 

cells to reload a functional replisome at collapsed forks (Kogoma et al., 1997). 

This mechanism occurs sequentially through recombination proteins (such as 

RecA) dependent fork remodelling into an intermediate structure bound by the 

PriA. This transition permits the re-loading of the replisome (Sandler et al., 

2000). The key intermediate generated during this process is a regressed fork, 

structurally similar to the HJs forming during homologous recombination, that 

can be restored by regressing the reversion or by endonucleolytic activities 

(McGlynn and Lloyd 2000; Courcelle et al., 2003). In eukaryotes mechanisms 

that rebuilt the replisome have been recently proposed.  

In Schizosaccharomyces pombe recombination factors restart forks arrested at 

artificial replication fork barriers independently of the formation of DSBs 

(Lambert et al., 2010). Accordingly, a recent study in human cells suggests that 

Rad51 promotes replication fork restart after stalling due to HU treatment and 

this role is distinct from the DSB repair (Petermann et al., 2010).  

 

In S. cerevisiae replication fork restart have been described to occur through a 

pathway that mediates DNA synthesis from a single DSB end, called break-

induced replication (BIR) (Llorente et al., 2008). This pathway is exclusively 

Rad52-dependent and could promote fork repair starting from a one-ended 

break, in a “one-ended recombination event”. The homologous duplex is 

invaded by the free end, forming a D-loop structure that becomes an 

unidirectional replication fork, thus re-starting DNA synthesis (Paques et al., 

1999). For efficient restart, the BIR pathway requires most of HR pathway 
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genes as well as DNA polymerases and components of the replicative helicases 

(Lydeard et al. 2010). However, the replication apparatus built by the BIR 

pathway is highly mutagenic. Thus, the lethality arising from DSBs is rescued 

at the expense of genetic stability (Deem et al. 2011).  

Different lines of evidence support a role for S. cerevisiae recombination 

proteins in processes coupled with replication. Recombination genes mutants 

are sensitive to drugs that impede replication fork progression, such as HU 

(Hartman and Tippery, 2004), suggesting that those factors are required for an 

appropriate cellular response to fork stalling. This observation is in agreement 

with recent data showing that cells defective in Rad52 or Rad51 recombination 

proteins function accumulate small ssDNA gaps at and behind replication 

forks, indicating a role for those factors in promoting continuous DNA 

synthesis (Hashimoto et al., 2010). Furthermore, Rad52 foci numbers increase 

in mutants of replication factor genes (Lisby et al., 2001) and Rad52 sustains 

the viability of these mutants (Symington et al., 1998). This evidence indicates 

that recombination factors could be either necessary to protect DNA from 

degradation or to resume replication. However, in some circumstances 

homologous recombination factors might be deleterious for replication, if not 

properly regulated. For instance, Rad52 foci formation is observed only in 

checkpoint deficient cells when experiencing replication stress (Lisby et al., 

2004), suggesting that under this conditions a functional checkpoint inhibits 

recombination factors-mediated fork processing, likely avoiding the transition 

from stalled to collapsed forks. Intriguingly, upon ablation of recombination 

factors, aberrant structures are not detected at replication forks (Lopes et al., 

2001). These data suggest that yeast recombination factors act at stalled 

replication forks, although their function is still unclear.  
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In higher eukaryotes, inactivation of recombination factors causes lethality at 

the initial steps of development (West et al., 2003), hinting at a crucial role for 

those proteins in protecting genome integrity. As mentioned, the function of 

HR factors in repairing DSBs and protecting the replication fork are separable 

in mammals (Petermann et al., 2010; Schlacher et al., 2011), suggesting that  

specialised homologous recombination machineries could be devoted to both 

fork protection and fork restart, while others might mediate the DSBs repair. 

Current data support the notion that recombination factors play important roles 

at stalled forks and that they might directly contribute to forks stability 

(Lambert et al., 2007; Peterman et al. 2010). However, mechanistic insight on 

their contribution to replication is lacking. 
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2.6 The multiple roles for DNA nucleases in protecting 

genome stability. 

 

DNA nucleases are key enzymes that influence many aspects of the DNA 

metabolism, on a wide variety of substrates according to their specificity. As 

mentioned before, DNA experiences different exogenous and endogenous 

environmental stresses that can modify its structure, potentially leading to 

genome instability. Unusual structures arising during recombination or 

replication must be properly resolved to avoid alterations in the DNA sequence 

or chromosomal rearrangements. To execute this task, cells have developed a 

high number of nucleases that function in different cellular processes, either 

alone or in complexes, metabolising DNA intermediates that arise during 

unperturbed or aberrant DNA replication. As previously mentioned (see section 

1.2), during replication a specific subset of nuclease activities is involved in 

nascent strands proof-reading, thus avoiding nucleotide misincorporation, 

while others are engaged in the removal of flaps forming during lagging strand 

synthesis. The latter function involves Exo1 and Dna2, two nucleases that 

counteract reversed forks in cells experiencing replication stress, in S. 

cerevisiae and S. pombe, respectively (Cotta-Ramusino et al., 2005; Hu et al., 

2012).  

 

Other nucleases deal with the presence of DNA damages. The HR-mediated 

DSB repair pathways are well characterised in budding yeast. DSB repair starts 

with the recognition of lesions that can be then processed to generate RPA-
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coated ssDNA, which stimulates the activation of the DNA damage checkpoint 

response and DNA repair by homologous recombination error free pathway. 

During the initial stages of repair, lesions are nucleolytically processed into 

intermediate structures by a 5’ strand degradation that generates 3’ ssDNA 

overhanging tails, in a process called 5’-3’ resection (Paques et al., 1999; 

Mazon et al., 2010). As mentioned, ssDNA coated by RPA complexes 

contributes to DNA damage checkpoint signalling by recruiting and activating 

the Mec1/ATR checkpoint kinase (Zou et al., 2003). DSB processing begins 

with a first step of resection mediated by the conserved Mre11-Rad50-

Xrs2/Nbs1 (MRX/N) complex that together with endonuclease Sae2/CtIP 

catalyses a limited removal of oligonucleotides from the 5’strand (Zhu et al., 

2008; Mimitou et al., 2008). Further extensive resection relies on the activity of 

other nucleases, such as the 5’-3’ exonuclease Exo1 or, alternatively, the 

endonuclease/helicase Dna2 in concert with the STR complex, composed by 

Sgs1-Top3-Rmi1 (Mimitou et al., 2009). This second step of resection 

generates long stretches of ssDNA that constitute nucleofilaments engaged in 

homology search strand invasion reactions mediated by Rad51 and Rad52 

(Bianco et al., 1998). Interestingly, the activity of nucleases is not limited to 

DNA ends processing, but also in facilitating the engagement of additional 

factors to the lesion. For instance, Mre11 is required to recruit the repair factors 

to the break (Shim et al., 2010). The coordinated activities of these nucleases 

are crucial since mutants carrying their contemporary ablation fail to perform 

homologous recombination repair (Zhu et al., 2008; Mimitou et al., 2008).  

 

Noteworthy, nucleases are characterized by a certain degree of “plasticity”, as 

they can play different roles in multiple pathways. For instance, a novel role 

for S. cerevisiae Mre11 and Sae2 nucleases in preventing the accumulation of 
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cruciform structures at terminal forks approaching a DSB has recently emerged 

(Doksany et al, 2009). Impairment of Mre11 or Sae2 function leads not only to 

the accumulation of aberrant replication intermediates, but also results in 

further fork processing by yet unidentified nucleases.  

 

Other categories of nucleases deal with the presence of more complex DNA 

structures, such as branched molecules (i.e. DNA junction structures or flaps), 

that can form in multiple cellular processes, such as DNA synthesis or 

recombination repair (Schwartz and Heyer, 2011). For example, late steps of 

DSB repair by HR require the physical resolution of the connection established 

between sister chromatids by four-way joint molecules, named Holliday 

junctions. These structures are physiological intermediates of DSB repair and 

are resolved by a subset of structure selective nucleases (SSEs) that are highly 

conserved through evolution (Figure 7).  

 

 

Figure 7. Schematic representation of the domains conservation and 

architectural features of structure selective nucleases. Domains are identified as 

written in the key box, N/D, not discovered. (from Schwartz and Heyer, 2010).   
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Some SSEs preferentially recognise four branched structures and therefore are 

named HJ resolvases. Interestingly, reversed forks resemble HJs and therefore 

might represent potential targets for those enzymes. The first nuclease 

described as HJ resolvase in S. cerevisiae was Mus81 (Boddy et al., 2001). 

Budding yeast Mus81 cleaves Holliday Junctions in vitro (Fricke et al., 2005), 

although it posses specificity also for other types of DNA junctions that can 

form during the processing of stalled or collapsed forks, as well as nicked HJs, 

D-loops and 3’flaps (Osman and Whitby, 2007). Accordingly, budding yeast 

cells lacking Mus81 are sensitive to drugs that cause fork stalling, such as HU 

(Blanco et al., 2010). Moreover, Mus81 mutants show chromosomal   

rearrangements (Smith et al., 2004). The role for Mus81 in the maintenance of 

genome stability was linked to stalled forks cleavage as part of the adaptation 

to prolonged replication arrests (Osman and Whitby, 2007). Supporting this 

idea, Mus81 is required to restart blocked replication forks in human cells 

experiencing replication stress. In this context Mus81 converts potentially 

harmful structures in intermediates suitable for repair by HR (Hanada et al., 

2006; Hanada et al., 2007). However, in some contexts, Mus81-dependent 

cleavage replication fork can favour unscheduled HR events and trigger 

genome instability. S. pombe Mus81 is inhibited through phosphorylation by 

the checkpoint kinase Cds1 in response to replication stress (Kai et al., 2005). 

Accordingly, recent data show that human MUS81 specifically cleaves 

reversed forks also in checkpoint deficient cells experiencing oncogene over-

expression, thus triggering genome instability (Neelsen et al., 2013). Thus, 

Mus81-mediated processing is crucial for the maintenance of genome stability 

and this function seems to be conserved among different organisms.  

Budding yeast Mus81 activity in the resolution of HJs partially overlaps in vivo 

with the one of a second resolvase named Yen1 (Tay et al., 2010; Blanco et al., 
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2010). Accordingly, mus81yen1 double mutants are more sensitive than the 

singles mutants to agents that disturb fork progression (Tay et al., 2010; Blanco 

et al., 2010). Furthermore, MUS81 and GEN1, the human homologue of yeast 

Yen1, cooperate in chromosomes segregation in the absence of BLM helicase 

and concomitant depletion of these resolvases leads to chromosome 

abnormalities (Wechsler et al., 2011). However, Mus81and Yen1 are not the 

only nucleases in yeast that show specificity towards structures arising at 

replication forks. Mus81 shares preference for branch replication fork-like 

substrates with another SSE named Slx4 (Fricke et al., 2003). Slx4 processes 

aberrant structures arising upon fork stalling at replication fork barriers 

(Kaliraman et al., 2002) and it seems to function as a platform in the 

recruitment of specific factors to replication-associated lesions (Rouse, 2009). 

Slx4 is targeted by the DNA damage checkpoint promoting the formation of 

dimers with Slx1 in response to replication blocks and DSBs (Flott et al., 

2007). Furthermore, Slx4 also interacts with Rad1-Rad10, another structure 

specific endonucleases complex, involved in DNA repair (Flott et al., 2007). 

This interaction occurs independently from Slx1 and facilitates the removal of 

the non-homologous tails during HR (Toh et al., 2010).  

 

These data indicate the presence of a complex network of nucleases that can be 

regulated by the checkpoint response according to the different cellular 

requirements. These nucleases can play a wide range of roles in genome 

integrity maintenance, through their association with multiple partners and due 

to their different substrate specificities.  
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3. MATERIAL AND METHODS  

 

3.1 S. cerevisiae strains. 

 

Strains are listed in Table 1. All the strains used are isogenic derivatives of 

W303-1A (Thomas and Rothstain, 1989). Deletion strains were generated 

using PCR-base gene disruption strategy (Wach et al., 1994), while rad53 

mutants were constructed integrating a rad53-K227A-KanMX4 cassette into 

the RAD53 locus. All the strains used for the experiments were mating type a.  

 

Table 1. Genotypes of the strains used in this study.  

Strain Number Genotype Reference 

wt CY7028 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1 

Lab 

collection 

rad53 CY7031 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, rad53K227A 

Kan-r 

Lab 

collection 

exo1 CY10342 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, exo1::HIS This study 

rad53exo1 CY10343 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, rad53K227A 

Kan-r, exo1::HIS This study 

wt Inc CY7812 

MATa-inc, hmldelta::ADE1, 

hmrdelta::ADE1 ade1-100, ade2-1, 

ura3,trp1-1, leu2-3, leu2-112, his3-11, 

his3-15, can1-100, GAL, PSI+ 

ade3::GAL::HO Δ chrIII [41800-41839] 

::HOsite INC::HPH, BAR1::TRP 

Lab 

collection 

wt Cut CY7814 

MATa-inc, hmldelta::ADE1, 

hmrdelta::ADE1 ade1-100, ade2-1, ura3, 

trp1-1, leu2-3, leu2-112, his3-11, his3-15, 

can1-100, GAL, PSI+ ade3::GAL::HO Δ 

chrIII [41800-41839] ::HOsite::HPH, 

Lab 

collection 
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BAR1::TRP 

rad53 Inc CY10102 

Mata-inc, hmldelta::ADE1, 

hmrdelta::ADE1 ade1-100, ade2-1, ura3, 

trp1-1, leu2-3, leu2-112, his3-11, his3-15, 

can1-100, GAL, PSI+ ade3::GAL::HO Δ 

chrIII [41800-41839] ::HOsite INC::HPH, 

BAR1::TRP, rad53K227A Kan-r  

Lab 

collection 

rad53 Cut CY8385 

Mata-inc, hmldelta::ADE1, 

hmrdelta::ADE1 ade1-100, ade2-1, ura3, 

trp1-1, leu2-3, leu2-112, his3-11, his3-15, 

can1-100, GAL, PSI+ ade3::GAL::HO Δ 

chrIII [41800-41839] ::HOsite::HPH, 

BAR1::TRP, rad53K227A Kan-r  

Lab 

collection 

wt Inc exo1 CY11584 

MATa-inc, hmldelta::ADE1, 

hmrdelta::ADE1 ade1-100, ade2-1, 

ura3,trp1-1, leu2-3, leu2-112, his3-11, 

his3-15, can1-100, GAL, PSI+ 

ade3::GAL::HO Δ chrIII [41800-41839] 

::HOsite INC::HPH, BAR1::TRP, 

exo1::HPH This study 

wt Cut exo1 CY11586 

MATa-inc, hmldelta::ADE1, 

hmrdelta::ADE1 ade1-100, ade2-1, ura3, 

trp1-1, leu2-3, leu2-112, his3-11, his3-15, 

can1-100, GAL, PSI+ ade3::GAL::HO Δ 

chrIII [41800-41839] ::HOsite::HPH, 

BAR1::TRP, exo1::HPH This study 

rad53 Inc 

exo1 CY11585 

Mata-inc, hmldelta::ADE1, 

hmrdelta::ADE1 ade1-100, ade2-1, ura3, 

trp1-1, leu2-3, leu2-112, his3-11, his3-15, 

can1-100, GAL, PSI+ ade3::GAL::HO Δ 

chrIII [41800-41839] ::HOsite INC::HPH, 

BAR1::TRP, rad53K227A Kan-r, 

exo1::HPH This study 

rad53 Cut 

exo1 CY11587 

Mata-inc, hmldelta::ADE1, 

hmrdelta::ADE1 ade1-100, ade2-1, ura3, 

trp1-1, leu2-3, leu2-112, his3-11, his3-15, 

can1-100, GAL, PSI+ ade3::GAL::HO Δ 

chrIII [41800-41839] ::HOsite::HPH, 

BAR1::TRP, rad53K227A Kan-r , 

exo1::HPH This study 

top2-1top1 CY10344 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, top2-1 This study 

rad53 

top2-1top1 CY10347 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, rad53K227A 

Kan-r, top2-1 This study 

pYesGAL CY11589 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, pYes2 This study 

pYesGALTop2 CY11593 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, rad53K227A 

Kan-r, pYes2 This study 

rad53pYes 

GAL CY11597 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, pYcpTop2- This study 
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Gal1 

 

rad53pYes 

GALTop2 

 

CY11601 

 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, rad53K227A 

Kan-r, pYcpTop2-Gal1 

 

This study 

wt GAL1 CY12285 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1,  pYcp-Gal1 This study 

wt GAL1TOP1 CY12286 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1,  pYcpTop1-

Gal1 This study 

rad53GAL1 CY12287 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, rad53K227A 

Kan-r, pYcp-Gal1 This study 

rad53 

GAL1TOP1 CY12288 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, rad53K227A 

Kan-r, pYcpTop1-Gal1 This study 

rad53mus81 CY10916 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, rad53K227A 

Kan-r, mus81::HPH This study 

rad53mus81

exo CY10917 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, rad53K227A 

Kan-r, exo1::HIS, mus81::HPH This study 

mus81 CY10914 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, mus81::HPH This study 

mus81exo CY10915 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, exo1::HIS, 

mus81::HPH This study 

rad53yen1 CY10908 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, rad53K227A 

Kan-r, yen1::NAT This study 

rad53yen1

exo CY10912 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, rad53K227A 

Kan-r, exo1::HIS, yen1::NAT This study 

yen1 CY10907 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, yen1::NAT This study 

yen1exo CY10909 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, exo1::HIS, 

yen1::NAT This study 

yen1exo1

mus81 CY10911 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, exo1::HIS, 

yen1::NAT, mus81::HPH This study 

yen1mus81 CY10910 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, This study 
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DUN1::DUN1-3HA-TRP1, yen1::NAT, 

mus81::HPH 

exo1mus81 CY10915 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, mus81::HPH, 

exo1::HIS This study 

exo1yen1 CY10909 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, yen1::NAT, 

exo1::HIS This study 

rad53slx1

exo CY12289 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, rad53K227A 

Kan-r, exo1::HIS, slx1::HIS This study 

rad53slx1

exoyen1 CY12290 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, rad53K227A 

Kan-r, exo1::HIS, slx1::HIS, yen1::NAT This study 

rad53slx1

exomus81 CY12291 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, rad53K227A 

Kan-r, exo1::HIS, slx1::HIS, mus81::HPH This study 

rad53slx1

exomus81

yen1 CY12292 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, rad53K227A 

Kan-r, exo1::HIS, slx1::HIS, 

mus81::HPH, yen1::NAT This study 

rad53rad1 CY11938 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, rad53K227A 

Kan-r, rad1::NAT This study 

rad53rad1

exo CY11939 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, rad53K227A 

Kan-r, exo1::HIS, rad1::NAT This study 

rad53sae2 CY11669 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, rad53K227A 

Kan-r, sae2::HPH This study 

sae2 CY11672 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, sae2::HPH This study 

sae2exo1 CY11671 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, exo1::HIS, 

sae2::HPH This study 

rad53exo1

sae2 CY11670 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, rad53K227A 

Kan-r, exo1::HIS, sae2::HPH This study 

rad53mre11 CY11877 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, rad53K227A 

Kan-r, mre11::NAT This study 

mre11 CY12254 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, mre11::NAT This study 
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mre11exo CY12256 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, mre11::NAT, 

exo1::HIS This study 

rad53mre11

exo CY11878 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, rad53K227A 

Kan-r, exo1::HIS, mre11::NAT This study 

dna2-1 CY11836 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, dna2-1 This study 

exo1dna2-1 CY11837 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, dna2-1, 

exo1::HIS This study 

rad53dna2-1 CY11788 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, rad53K227A 

Kan-r, dna2-1 This study 

rad53exo1
dna2-1 CY11789 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, rad53K227A 

Kan-r, exo1::HIS, dna2-1 This study 

rad52 CY10672 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, rad52::HPH This study 

rad53rad52 CY10675 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, rad53K227A 

Kan-r, rad52::HPH This study 

rad51 CY10905 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, rad51::NAT This study 

rad53rad51 CY10906 

MATa ADE2+ CAN1+, ura3-1, his3-11, 

leu2-3,112, trp1-1, RAD5+, 

DUN1::DUN1-3HA-TRP1, rad53K227A 

Kan-r, rad51::NAT This study 

 

 

3.2 Growing media for Saccharomyces cerevisae cells. 

 

3.2.1 Complete medium. 

 

Yeast extract   10g 

Peptone   20g 
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H2O    up to 1000 ml 

(Added glucose/other sugars at 2% final concentration before using). 

 

3.2.2 Minimum medium.  

 

Misturozzo (Thr, Phe, Ile, Lys, Arg, Tyr, Ini, Ade)  16 ml  

  

YNB 10X       40 ml 

H2O        up to 600 ml 

(Added glucose/other sugars at 2% final concentration before using). 

(Other amino acids can be added before using at the final concentration of 

25mg/ml). 

 

3.2.3 YNB (Yeast Nitrogen Base). 

YNB (Difco)   6.7 g 

H2O    up to 1000 ml 

 

 

3.2.4 Sporulation medium (VB). 

Na Acetate   13.6 g 

KCl    1.9 g 

NaCl    1.2 g 

MgSO4   0.35 g 

Agar    15 g 

H2O    up to 1000 ml 
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3.2.5 Solid medium. 

Add agar at the final concentration of 2% to the right media.  

 

3.3 List of buffers. 

Buffer G2 (digestion buffer): 800 mM guanidine HCl, 30 mM Tris-Cl pH 8.0, 

30 mM EDTA pH 8.0, 5% Tween-20, 0.5% Triton X-100. 

Buffer QBT (equilibration buffer): 750 mM NaCl, 50 mM MOPS pH 7.0, 15% 

Isopropanol, 0.15% Triton X-100. 

Buffer QC (wash buffer): 1.0 M NaCl, 50 mM MOPS pH 7.0, 15% 

Isopropanol. 

Buffer QF: (elution buffer) 1.25 M NaCl, 50 mM Tris-Cl pH 8.5, 15% 

Isopropanol. 

Denaturing solution (Blot#1): NaOH 0.5 M, NaCl 1.5 M.  

Blot#2: 1 M AcNH4, 0.02 M NaOH. 

NIB Buffer: Glycerol 17%, MOPS 50 mM, K-acetate 150 mM, MgCl2 2 mM, 

Spermidine 500 mM, Spermine 150 mM, pH 7.2. 

SSC 20 X: NaCl 3M, Sodium citrate 0.3M, pH 7.5.  

TAE: Tris Acetate 0.04 M, EDTA 0.001M.  

TBE: Tris base 89 mM, Boric acid 89 mM, EDTA 2mM.  

TE: Tris-HCl 10 mM, EDTA 1 mM, pH 7.4.  

Washing solution I: SSC 2X, SDS 1%. 

Washing solution II: SSC 0.1X, SDS 0.1%. 

FACS Buffer solution: TrisHCl 200 mM, NaCl 200 mM, MgCl2 80 mM. 
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3.4 Growth conditions, cell cycle arrest and drug 

treatment. 

For FACS and 2D gel analysis, strains were grown at the reported temperatures 

in YPDA medium (unless indicated) over night to reach a density of 1x10
7
 

cells/ml in the morning. Cells synchronisation in G1 phase was achieved by 

addition of 4 g/ml -factor to the cultures. G1 arrest efficacy was evaluated 

by cellular morphology and the release was performed by a first centrifugation 

of the cells, washing with fresh YPD, second round of centrifugation and re-

suspension of the cells in fresh medium in the presence or not of HU 

(concentrations used described according to the experiment).  

 

3.5 Amplification of deletion cassettes by PCR.  

To delete genes, specific deletion cassettes (different markers) were 

constructed by PCR.  

PCR reaction mix:  

100 l Dynanzyme buffer 10X  

100 l dNTPs (20 mM) 

10 l cassette template specific for marker (10ng/l) 

20 l Primer reverse (20 mM) 

20 l Primer forward (20 mM) 

10 l Dynanzyme 
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740 l ddH20 

Total final volume: 1000 l 

PCR conditions: 

3’ 94°C 

30’’ 94°C, 30’’ 42°C 1’30’’ 72°C (x 8 cycles) 

30’’ 94°C, 30’’ 58°C, 1’30’’ 72°C (x 30 cycles) 

7’ 72°C 

PCR products were analysed on a 1% agarose/TAE gel and resuspended in TE 

1X to a final concentration of 1 g/l. DNA was precipitated adding 1/10 

Sodium Acetate (NaAc) 3 M and 2.5 volume of iced EtOH 100% and 

centrifuging (10 minutes, maximum speed, equal to 13 200 rpm, 4°C). Pellets 

were washed with 1 ml of EtOH 70% and re-centrifuged (2 minutes, max 

speed, 4°C), dried and re-suspended in sterile TE 1X to reach a final 

concentration of 1 g/l. Different DNA quantities were then used for 

transformations from this stock solution.  

 

 

3.6 High efficiency Lithium Acetate (LiAc) yeast 

transformation. 

To generate gene deletion mutants, a high efficiency LiAc transformation 

protocol as described (Gietz et al., 2007) was used. 
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Strains to be transformed were grown in 50 ml YPDA in  flasks over night and 

diluted to 5x10
6
 cells/ml. Cells were centrifuged (4000 rpm, 3 minutes, RT) 

and pellets were washed with 25 ml of sterile water. Cells were centrifuged 

again, resuspended in 1 ml of LiAC/TE (0.1 LiAc / TE 1X) and transferred to a 

1.5 ml Eppendorf sterile tube. Cells were centrifuged (max speed, 15 seconds, 

RT) and pellets were resuspended in a final volume of 500 l LiAc (0.1 M). 

Cells were vortexed to get an homogenous suspension and 50 l were aliquot 

in sterile 1.5 ml Eppendorf tubes and used for each transformation. Single 

strand DNA from salmon sperm testes was used as carrier. Before adding the 

ssDNA  to the transformation mixtures, it was boiled at 95°C for 5 minutes. 

Cells were centrifuged (max speed, 15 seconds, RT) and the transformation 

mix was added in the following order: 

240 l polyethylene glycol - PEG 4000 (50% water)  

36 l LiAC 1 M 

10.5 single stranded DNA (9.5 g/ml) 

X l DNA (usually 1-5 l from 1 g of the PCR product of deletion) 

73.5-X l DNA sterile water 

360 l: total final volume.  

Transformations reaction were vortexed for one minute until the cell pellets 

were completely mixed and incubated for 40 minutes at 42°C. After the heat 

shock, cells were centrifuged (6000 rpm, 15 seconds), transformations mix 

were discarded and cells were resuspended in 200 l sterile water and plated 

with sterile rods to distribute the cells on the selective plates. In case of clonat, 

kanamicyn and  hygromycin markers, after the heat shock and the discard of 

the transformations mixture, cells were resuspended in 5 ml YPDA and grown 
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for around 4 hours before plating, thus  giving them the time to develop the 

resistance against the antibiotics. The plates were incubated at the permissive 

temperature for growth and analysed by colony PCR for deletions.  

 

3.7 Colony PCR (Polymerase chain reaction).  

Approximately 1 l of cells were collected with a yellow tip and resuspended 

in 3 l 20 mM NaOH in a PCR tube. The solutions so prepared were then 

boiled at 99°C for 10 minutes and kept at 4°C. For the PCR reaction, the 

following mix was added to each boiled solution: 

2.5 l dNTPs (20 mM) 

0.625 l Oligo forward (20 M) (specific for gene deletion) 

0.625 l Oligo reverse (20 M) (specific for gene deletion) / 0.625 l Oligo 

marker reverse (20 M) (specific for marker) 

2.5 l Dynanzyme buffer 10X 

25 l final volume  

The PCR conditions used were the followings: 

5’ 95°C 

1’ 95°C, 1’ 55°C, 1’ 72 °C (for 35 cycles) 

7’ 72 °C 

PCR products were analysed on a 1% agarose/TAE gel. 
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3.8 HU sensitivity spot assay.  

Cells were grown in YPDA at 28°C (unless differently stated, as in the case of 

temperature sensitive dna2-1strains) on “96 multi-well plates” over night to 

reach stationary phase. 10 fold serial dilutions were made and plated on YPDA 

medium or YPDA containing HU at the indicated concentrations. Plates were 

then incubated at 28 °C (unless differently indicated).  

  

3.9 FACS analysis. 

Cellular DNA content can be determined by FACS or fluorescence activated 

cell sorter. FACS analysis was performed using a Beckton Dickinson 

fluorescence activated cell analyzer, as described by Foiani et al., 2000. 2 ml of 

1X10
7
 culture cells was centrifuged, blocked with 1 ml of 70% ethanol (EtOH) 

/Tris 250 mM pH 7.6 and incubated for 1 hour at room temperature (or, 

alternatively, stored at 4 °C). Cells were then centrifuged for 1 minute at max 

speed and resuspended in 500 l of 50 mM Tris HCl pH 7.5 containing 50 L 

of Rnase A (10 mg/ml) for one hour at 37°C, to degrade RNA. Then, cells 

were centrifuged and resuspended in 500 l of FACS buffer solution (TrisHCl 

200 mM/NaCl 200 mM/ MgCl2 80 mM) containing 50 L of Propidium Iodide 

(0.5 mg/ml) for staining. 200 ml of cell suspension was added to 1 ml TrisHCl 

50 mM pH 7.6, sonicated to separate the cells for 8 seconds at 25% and used 

for FACS analysis. The remaining cells were stored at -20°C for further 

analysis.  
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3.10 Neutral/Neutral 2D gel electrophoresis procedure.  

Bidimensional DNA electrophoresis developed by Brewer and Fangnam 

(1987) is a technique that allows the analysis of the intermediates of replication 

arising in a specific DNA fragment. When a DNA portion is replicated, it 

assumes structures that differ by mass and shape. 2D gel technique allows the 

separation and the identification of branched DNA molecules according to their 

mass and shape complexity, so that different signals can generate on a second 

dimension gel run (Figure 8). The monomer spot signal corresponds to DNA 

fragments in which DNA is un-replicated. When an active origin of replication 

fires bi-directionally inside the fragment, bubbles shaped structures with 

increased mass are generating, as the fork proceed toward the end of the 

fragment. In case the replication origin is not precisely positioned in the center 

of the analyzed DNA region, one fork of the bubbles will exit the fragment 

before the other, generating a Y-shaped structure. A second scenario that 

generates Y-shaped structures is when the fragment is passively replicated, so 

that a replication fork enters from one extremity. Depending on their 

dimension, Y-shaped molecules migrate along the small Y’s or the big Y’s arc. 

However, in checkpoint rad53 mutants HU treated, small Y’s signal 

corresponds to the processing by endonucleolytic activities of the stalled fork. 

X-shaped molecules, such as four branched structures usually forming during 

recombination processes, migrate along the spike axes. As explained in details 

in the results section, checkpoint rad53 mutants HU treated accumulate four 

way junction molecules, called fork reversals, that migrate as a diffuse cone 

signal, generated by the presence of a mixed population of cruciform 

intermediates of replication spanning from fully duplicated molecules to 

structures of lower mass generated by nucleases resection activity. In the 
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absence of EXO1 nuclease processing, rad53 mutants accumulate reversed 

forks of constant mass, that migrate as X-shape intermediates along the spike 

axes. All the 2D-gel experiments shown in the present PhD thesis were 

repeated at least twice and the DNA was digested with NcoI restriction 

enzyme, unless differently indicated.  

 

 

Figure 8. Image of the replication intermediates detectable by 2D gel analysis. 

Replication intermediates arising in rad53 cells experiencing replication stress are 

indicated by red arrows. See text for details.  

 

3.10.1 DNA extraction and in vivo psoralen crosslinking. 

During the time course, 200 ml of 1x10
7 

cells culture were collected for each of 

the time points selected for the 2D gel analysis. 2 ml of Sodium Azide 10% 

were added to the samples that were kept in ice. At the end of the experiment, 

the collected samples were centrifuged (5000 rpm, 5 minutes, 4°C), 

supernatants were discarded and then pellets were washed once with 20 ml of 

ice-cold water.   
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Then, the psoralen crosslink procedure was performed. Psoralens efficiently 

intercalate in the double strand DNA and upon irradiation with ultraviolet (UV) 

light (366 nm) form covalent crosslinks between pyrimidines of opposite 

strands. Psoralen derivatives easily penetrate the membranes of living cells and 

Trimethylpsoralen (TMP) is the most commonly used for in vivo crosslinking 

of DNA (Wellinger and Sogo, 1998). Pellets were re-suspended in 5 ml of ice-

cold water and transferred  into  6 - wells plates. The plates were kept in ice 

during all the cross-linking procedure. Four cycles of the following passages 

were performed: 

 

1.  300 l of psoralen solution (0.2 mg/ml Trioxalen, SIGMA in 100% 

Ethanol, stored at -20 °C and keep in dark, dissolved by stirring) were 

added to each well containing the cells and mixed carefully with cut 

blue tips. Plates were covered with aluminum to avoid contact with 

light and incubated for 5 minutes at dark. 

2. Samples were then irradiated for 10 minutes in a Stratalinker 

(Stratagene) with 365 nm bulbs at a distance of 2-3 centimeters from 

the bulbs.   

3. Steps 1 and 2 were repeated for three times (one hour total time of the 

crosslinking procedure, 5 minutes at dark and 10 minutes of 

irradiation, each cycle).  

Samples were transferred from  the 6- wells-plates  into 50 ml Falcon tubes and 

each well was then washed twice with 5 ml of ice-cold water to collect all the 

cells and avoid loss of material. Cells were centrifuged (4000 rpm, 3 minutes) 

and the dry pellets were stored at -20°C until genomic DNA extraction.  
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3.10.2 DNA extraction procedure with the Qiagen genomic Kit. 

Cells were re-suspended into 5 ml of cold NIB buffer (nuclear isolation buffer) 

and kept in ice. An equal amount of glass beads was added to the pellets re-

suspended in NIB. Falcon tubes were vortexed for 30 seconds at maximum 

speed and kept in ice after each round of mechanical break. This procedure was 

repeated for 15 cycles. Cells were collected into JA 25.50 tubes and the beads 

were washed with 5 ml of NIB buffer (twice). Then, after centrifugation  (8000 

rpm, 10 minutes, 4°C), pellets were re-suspended in 5 ml of buffer G2. 100 l 

of RNAse A (10mg/ml) were added and samples were incubated in a water 

bath for at least 30 minutes at 37°C, mixing gently sometimes. 

After 30 minutes, 100 l of Proteinase K (20mg/ml) were added and samples 

were incubated for 1 hour at 37°C, mixing sometimes. Lysates were 

centrifuged (5000 rpm, 5 minutes, 4°C) and  supernatants were diluted in 5 ml 

of equilibration buffer (QBT). Then supernatants were loaded on Qiagen Tip 

100 G anion exchange columns, pre-equilibrated with 4 ml of buffer QBT. 

Columns were washed twice with 7.5 ml of buffer QC and eluted in corex glass 

tubes with 5 ml of buffer QF previously warmed at 50°C. DNA was 

precipitated adding 3.5 ml of isopropanol at RT and centrifuging (25 minutes, 

4°C, 8000 rpm) in a Beckman JS 13.1 swing out rotor. Supernatants were 

collected in clean corex tubes and kept O/N at -20°C to favor the precipitation 

of residual DNA. The following day those supernatants were re-centrifuged 

and it was proceed as for the pellets (see above). Pellets were dried and DNA 

was re-suspended into 150 l of sterile TE 1X, that was left O/N in agitation. 

Genomic DNA preparations were stored at 4° C. 
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3.10.3 DNA digestion. 

10 g of the DNA was digested O/N with the restriction enzymes required. 

Digestion times longer than 18 hours were avoided due to star activity. The 

digestion reactions were added 1/8 of the digestion volume of Potassium 

Acetate 2.5 M and 1 volume of isopropanol (RT). Tubes were inverted several 

times and centrifuged (10 minutes, max speed, RT). Pellets were washed with 

500 l of EtOH 75%, dried on velvet papers and re-suspended in 20 l TE1X 

for at least 1 hour. Before loading, 5l of loading dye 20X were added to the 

samples.  

 

3.10.4 DNA electrophoresis.  

During a first dimension gel run, the DNA digested fragments are separated 

according to their mass, in conditions that minimize the contribution of shape 

to the mobility (low agarose concentration, low voltage, no ethidium bromide). 

First dimension gel (0,35% agarose, Low EEO, US Biological in TBE 1X, NO 

ethidium bromide) was poured at 4°C (it takes approximately 30 minutes to 

solidify). 20 l of loading dye 6X were loaded into the wells to check their 

integrity. The wells were then washed with TBE 1X buffer to remove the dye 

and the samples were loaded alternating empty lanes to avoid cross 

contamination after excision of singular lanes for the second dimension run.  

25 1 of 1 Kb marker were loaded in the first and in the last well of the gel. 

First dimension was run at RT, 50 V, at time dependent on the size of the DNA 

fragment analyzed (for 3.4 Kb fragment, around 19 hours are required for a 
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good separation, while for a 5 kb fragment 21 hours are recommended). 

Subsequently, the first dimension gel was stained with ethidium bromide 

(0.3g/ml) for 30 minutes and the lanes were separated by cut and so that each 

gel lines included the linear and the replicated size of the fragment of interest.  

The gel slides were then placed in the second dimension gel, rotated at 90° 

with respect to the direction of the first dimension. The gels for the second 

dimension are run in conditions that maximize the effect of shape complexity: 

high agarose concentration (0.9%), high voltage (250 Volts) and with ethidium 

bromide addition (0.3 g/ml). Second dimension gels were poured at RT and 

run at 4°C in TBE 1X buffer containing ethidium bromide (0.3 g/ml), until 

the linear DNA line was 1 cm distance from the end of the gel. Then gels were 

cut up starting from that point 10 cm slides. DNA was de-crosslink by 

irradiating 10 minutes with 265 nM UV lamps.  

 

3.10.5 Southern blot.  

Prior to blotting, second dimension gels were treated as follows: 5 minutes in 

0.25 M HCl and then washed with RX water to obtain depurination; 20 minutes 

in 0.5 M NaOH, 1.5 M NaCl to denature and 20 minutes in 1 M AcNH4, 0.02 

M NaOH to neutralize. Gene screen neutral transfer membranes (Perkin Elmer) 

were equilibrated in SSC 10X for at least one hour and gels were blotted O/N 

using SSC 10X solution. Then, DNA was fixed to the membrane by UV cross 

linking using a Stratalinker (Stratagene).  
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3.10.6 Hybridization procedure.  

The membranes were subjected to hybridization with a specific radiolabeled 

probe. 50 ng of purified DNA probe was labeled with 50 Ci of 32P dCTP 

using a prime kit (Prime-a-Gene labeling system, Promega). During the 

preparation of the radiolabelled probe, the membranes were rinsed 

prehybridized with 50 ml of Hybridisation solution 1X (SIGMA) for at least 30 

minutes at 65°C in a rotating tube. The probe was boiled 10 minutes at 99°C 

and added to 20 ml of pre-hybridization mix. Hybridization was prolonged at 

65°C O/N. Filters were then washed twice for 15 minutes with washing 

solution I (500 ml 2X SSC, 1% SDS) at 65°C and twice for 15 minutes each 

with washing solution II (500 ml 0.1 X SSC, 0.1% SDS) at 42°C. Signals were 

detected using a Phosphorimager Molecular Storm 820. 
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4. RESULTS 

 

The aim of my PhD project was the analysis of the determinants that drive the 

replication fork collapse in checkpoint mutants, such as rad53, under 

replication stress conditions. As described in the introduction, when replication 

forks collapse, the replisome detaches from the template DNA at the 

replication fork and the nascent strands re-anneal together by homology base-

pairing, generating the so-called reversed forks (RFs) (Sogo et al., 2002). 

Reversed forks are four-way junctions, which resemble Holliday junctions 

(HJs), intermediate structures generating during the homologous recombination 

repair pathway (Symington and Gautier, 2011). Reversed forks are a potential 

source of genome instability since they are processed by nucleolytic activities 

into hemireplicated and gapped molecules containing ssDNA stretches (Sogo 

et al., 2002), that preclude the completion of replication and cause replication 

forks loss of functionality (Pelliccioli and Foiani, 2005). In addition, these 

enzymatic reactions facilitate the engagement of reversed forks in unscheduled 

homologous recombination events, favoring gross chromosomal 

rearrangements and loss of genetic information (Cobb et al., 2005). In 

checkpoint mutants these events can account for the loss of viability in the 

presence of genotoxic agents, such as the replication inhibitor hydroxyurea 

(Sogo et al., 2002). To study how the checkpoint preserves the integrity of the 

replication forks, I used the budding yeast Saccharomyces cerevisiae as a 

model system. The kinase deficient rad53-K227A mutants, from now on rad53, 

bear a single amino acid substitution sufficient to render cells checkpoint 

deficient (Fay et al., 1997). rad53 cells are highly sensitive to the replication 
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inhibitor hydroxyurea that induces replication stress by depleting deoxy-

ribonucleotide (dNTPs) pools.  

The identity and mechanism of action of the factors involved in fork 

stabilization are still obscure, thus the aim of the present work is to elucidate 

them. In particular, the main questions we asked were: (1) Does the topology 

of the replicating chromosomes influence replication fork stability? (2) Which 

is the identity of the endonucleases that resect collapsed forks? (3) Does the 

homologous recombination pathway play any role in reversed forks formation 

and/or replication fork stability?.  

 

4.1 Visualizing reversed forks in vivo.   

 

Reversed forks are cruciform structures that, as other replication intermediates, 

can be visualized by electron microscopy (EM) and neutral/neutral two 

dimensional gel electrophoresis (2D gels) techniques (Sogo et al., 2002; Cotta-

Ramusino et al., 2005). My first aim was to set appropriate 2D gels 

experimental conditions for the detection of fork reversal events. Thus, I 

conducted a pilot experiment following the conditions described by Cotta-

Ramusino and colleagues (2005), which had demonstrated that the 

endonuclease Exo1 counteracts fork reversals in S. cerevisiae. I arrested rad53 

and rad53exo1 mutants in G1 and I released them in the presence of 200 mM 

hydroxyurea, taking samples for 2D-gel analysis at 90 and 120 minutes after 

release. Accordingly with the report cited above, rad53 mutants accumulated 

reversed forks that migrate as a diffuse cone signal, arising by a mixed 

population of cruciform replication intermediates ranging from fully duplicated 
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molecules to structures of lower mass generated by Exo1-dependent resection 

events (Figure 9). Upon EXO1 deletion rad53 mutants accumulate X-shaped 

intermediates of equal mass, resembling the X-shaped sister chromatid 

junctions observed in wild type cells, previously interpreted as hemicatenaned 

sister chromatids (Lopes et al., 2001; Cotta-Ramusino et al., 2005) (Figure 9).  

 

 

Figure 9. Replication intermediates in wt, rad53 and rad53exo1cells following 

HU treatment in the absence of psoralen crosslink. 2D gel analysis of replication 

intermediates accumulating in the ARS305 region in wt, rad53 and rad53exo1 cells 

90 and 120 minutes after release from an -factor induced G1 block into S-phase in 
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the presence of 200 mM HU. Black arrowheads indicate the position of unresected X-

shaped intermediates, while the yellow ones of the cone signal.  

 

 

In order to better preserve the topological transitions occurring at replication 

forks, I conducted 2D-gel experiments, stabilising replication intermediates by 

in vivo psoralen crosslinking (Figure 10A) (Lopes et al., 2001; Doksani et al., 

1999). rad53 mutants showed a cone signal, corresponding to Exo1-resected 

reversed forks, at all the time points analysed (Figure 10A). In contrast, 

rad53exo1 mutants accumulated fully duplicated X-shaped molecules that 

migrated along a spike (Figure 10A). This signal can be interpreted as un-

resected reversed forks, as supported also by electron microscopy data (Lopes 

et al., 2001). In wt and exo1 cells replication origins fired, as indicated by the 

bubbles and big Y’s signals, but cruciform intermediates did not accumulate 

(Figure 10A).  

Therefore, stabilising replication intermediates in vivo by psoralen treatment 

allowed us to preserve reversed fork cruciforms in EXO1-deleted rad53 

mutants, different from the X-shaped hemicatenated junctions that were not 

observed in wt cells (see figure 9). Thus, the transition in the 2D-gel signals 

from a cone signal (correspondent to resected RFs) to a spike signal 

(correspondent to intact RFs) reflects the lack of reversed forks structures 

processing in vivo.  

Intriguingly, under these experimental conditions and at late time points (180 

minutes), we noticed the accumulation of branched intermediates with lower 

mass, that form a prominent signal along the small Y’s-arc in rad53exo1 

mutants (Figure 10A). This signal could be interpreted as the product of 
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nucleolytic branch cleavages at the collapsed forks (see Figure 22) and it was 

previously observed in other checkpoint deficient cells (Doksani et al., 2009). 

rad53 mutants are sensitive to HU concentrations much lower than 200 mM 

(Pike et al., 2003). I carried out the 2D-gel analysis treating the cells with 25 

mM HU to analyse if fork reversal also takes place in checkpoint mutants at 

lower concentrations of the drug (Figure 10B). Of notice, both rad53 and 

double mutant rad53exo1 accumulated X-molecules migrating along the 

spike signal to an equal extent (Figure 10B), while intermediates migrating in 

the cone signal were almost not visible. This experiment suggests that Exo1 

has a minor contribution to reversed fork processing at lower HU 

concentrations, although reversed forks still form in checkpoint defective 

mutants.  
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Figure 10. Replication forks reversal and resection in rad53 and rad53exo1 cells 

following psoralen crosslink. (A) Fork collapse and resection following HU 

treatment: schematic representation of fork transitions (the blue circle represents the 

replisome) and 2D-gel analysis of replication intermediates accumulating in the 

ARS305 region in WT, exo1, rad53 and rad53exo1 cells 90, 120 and 180 minutes 

after release from an -factor induced G1 block into S-phase in the presence of 200 

mM HU. Red arrowheads indicate the position of the fork branch-cleavage, while the 

white ones indicate X-shaped reversed forks. (B) 2D gel analysis of replication 

intermediates accumulating at the ARS305 region in WT, rad53, exo1 and 

rad53exo1 cells at the indicated times (minutes) after release into S-phase in the 

presence of 25 mM HU. White arrowheads indicate the position of  reversed forks.   
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I performed a 2D gel recovery experiment to evaluate reversed fork stability 

upon removal of HU from the culture medium. I treated rad53 and 

rad53exo1mutants with 200 mM HU for three hours, I washed the cells from 

the drug and released them in fresh YPDA medium for additional three hours, 

taking samples for 2D gel analysis at each hour (Figure 11). Bulk genomic 

DNA content analysis by FACS revealed that both mutants are unable to 

synthesize DNA during the recovery from the HU treatment and do not 

proceed further in the cell cycle (Figure 11B). Of notice, double mutants 

rad53exo1accumulated reversed forks upon HU treatment, that persisted 

after the removal of the drug and the release in fresh medium along all the time 

points considered until the end of the experiment (Figure 11A). In contrast, 

rad53 cells accumulated aberrant replication intermediates, as indicated by the 

presence of the cone and the small Y signals, that progressively disappeared 

within time after the washing from the drug, likely due to Exo1-dependent 

metabolism (Figure 11A).  
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Figure 11. EXO1 deletion results in a longer persistence of reversed forks during 

recovery to HU in checkpoint mutants. (A) 2D gel analysis of replication 

intermediates accumulating in ARS305 in rad53 and rad53exo1mutant cells arrested 

in G1, treated with 200 mM HU for 3 hours and release in S-phase in fresh YPDA 

medium at 90, 120 and 180 minutes. (B) FACS analysis.  

 

 

This experiment suggests that reversed forks formed in rad53 mutants 

experiencing replication stress are progressively degraded in an Exo1-

dependent fashion.  
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4.2 Analysis of the topological determinants modulating 

fork stability.   

 

4.2.1 An experimental system for the analysis of the topological 

relaxation. 

 

In vitro data show that reversed forks can form spontaneously at positively 

supercoiled plasmids upon replisome dissociation (Postow, Ullsperger et al., 

2001). This observation implies that the accommodation of the energy 

accumulating as torsional stress (or positive supercoiling) in un-replicated 

DNA portions during template unwinding could drive the re-annealing of the 

parental strands and cause the formation of reversed forks (Postow, Ullsperger 

et al., 2001). In turn, the regression of the fork branching point could displace 

the nascent strands, favoring their base-pairing by homology (Postow, Crisona 

et al., 2001). These data made us reason that these transitions could occur also 

in vivo in checkpoint mutants in conditions of replicative stress, when the 

replisome is not stably attached to the replication fork (Lucca et al., 2004; 

Cobb et al., 2005). The hypothesis we considered was the following: if the 

stability of the replication forks in rad53 mutants is susceptible to the 

topological stress accumulating during the replication of chromosomal 

topological domains, induction of a double stranded DNA break, relaxing DNA 

topology by creating a discontinuity in the helix that allows the rotation of the 

free ends, should counteract forks reversal  (Figure 12). 
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Figure 12. Schematic representation of the expected result on replication fork 

reversal of DNA topology relaxation by induction of a double strand break. 

Regions between yellow bars indicate a domain topologically isolated from the rest of 

the chromosome. We reasoned that if the stability of the replication fork does depend 

on the topological context, reliving this topology by introducing a DSB should 

suppress fork defects occurring in rad53 mutants.  

 

To further investigate and elucidate those cellular processes influencing 

replication fork stability by altering the topological state of replicating 

chromosomes, I took advantage of a genetic system that allows the relaxation 

of the topological tension accumulated within a region between replication 

forks and a highly transcribed gene. This experimental system comprises an 

ectopic consensus sequence for the HO endonuclease inserted between the 

early origin of replication ARS305 (2 Kb distant) and the most proximal 

transcribed gene PDI1, on chromosome III (Doksani et al., 2009). In this 

system, the gene coding HO is placed under the galactose inducible GAL1 

promoter, so that the presence of this sugar in the medium causes HO 

endonuclease over-expression and the induction of a single un-reparable 

Double Strand Break (DSB) (Lee et al., 2000).   
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I combined strains carrying the HO site, referred to as “HO-cut” strains, with 

checkpoint deficient allele rad53 and  I generated, as controls, strains carrying 

a mutated version of the HO site that cannot be cut by HO, referred to as “HO-

inc” strains. As a control of the specificity of potential effects on the topology 

of the ARS305 region, I also analyzed the replication intermediates emanating 

from a second early replication origin, ARS202, which is topologically isolated 

from the ARS305 domain since it is located on a different chromosome and 

therefore not affected by the induction of the break. I designed a restriction 

strategy that allowed visualizing both ARS305 and ARS202 forks using the 

same restriction enzymes digestion (Figure 13).  

 

 

Figure 13. Schematic representation of the 2D gel strategy used to analyze the 

effect of DSB-induced topological simplification on fork reversal. The position of 

the HO-endonuclease and HindIII and PstI restriction enzymes on the regions on 

chromosome II and III analyzed is indicated. 

 

To test the efficiency of DSB induction, I conducted a pilot experiment using 

wt-inc, wt-cut, rad53-inc and rad53-cut mutant strains. I arrested cells in G1 

with -factor, I waited until at least 80% of the culture was in G1 and  I added 

galactose to the media for one hour to induce HO expression. I released the 

cells in S-phase in 25 mM of HU and I took samples 60 minutes after the 

release (Figure 14). In “cut” strains a DNA 4 kb fragment correspondent to the 

presence of the cut was observed in over a 90% of cells, while it was not 

present in the “inc” strains (Figure 14). This indicates that DSBs are efficiently 

induced during the G1 arrest prior to origin firing.  



68 

 

 

 

Figure 14. DSBs formation efficiency. Southern blot analysis to monitor DSBs 

formation efficiency in WT and rad53 mutant strains, carrying a HO cut site (cut) or 

non - cuttable version (inc). HO cut was induced by addition of galactose to the 

culture medium when approximately 80% of the cells were arrested in G1. Genomic 

DNA was double digested with HindIII and PstI restriction enzymes and analyzed by 

southern blot with ARS305 probe. In the HO strains, the presence of a 4 kb-fragment is 

detected as a consequence of the break.  

 

4.2.2 Fork reversal is counteracted by double strand break-

induced topological relaxation. 

To test the in vivo contribution of topological relaxation on fork regression in 

checkpoint mutants, I compared by 2D gels replication fork collapse and 

progression in control strains (wt-inc and rad53-inc) and strains carrying the 

HO cut site (wt-cut and rad53-cut). I arrested the cells in G1 and I induced 

DSBs formation adding galactose to the medium for one hour, to give the cells 

the time to over-express the HO endonuclease. I released the cells into S-phase 

in the presence of 25 mM HU and I analyzed replication intermediates at early 

origin ARS305 at 60, 90 and 120 minutes after release. I observed that in wild 



69 

 

type cells ARS305 origin fires, regardless the presence or absence of the break, 

as indicated by the presence of big Y intermediates (Figure 15). In contrast, in 

HU-treated HO-inc rad53 cells X-shaped intermediates corresponding to 

reversed replication fork accumulate (Figure 15). Of notice, DSB induction 

strongly reduced reversed-fork increase in HO-cut rad53 mutants at each of the 

time points considered (Figure 15). This experiment suggests that resolving the 

topological constrains accumulated during replication counteracts reversed 

forks formation, implicating that  positive supercoiling might be a driving force 

causing fork reversal in vivo. 

 

 

Figure 15. DSB induction counteracts fork reversal in rad53 mutants. 2D gel 

analysis of replication intermediates in WT HO-inc, WT HO, rad53 HO-inc and rad53 

HO cells following -factor dependent arrest in G1, DSB induction by galactose 

addition, and release into S-phase in the presence of 25 mM HU.  

 

To validate this result and control that the observed reduction in reversed forks 

accumulation was specific for the presence of the break, I hybridized the same 

membranes with a probe specific for ARS202, located on chromosome II. In 

both wild type strains (inc and HO) ARS202 origin fired, as indicated by the 

presence of bubble-shaped replication intermediates (Figure 16). Similarly, 



70 

 

ARS202 fired in both HU-treated  HO-inc rad53 and HO-cut rad53 cells, but in 

contrast to what observed for ARS305, the accumulation of X-shaped 

intermediates was equally detected in checkpoint mutant strains regardless the 

induction of a DSB in ARS305 (Figure 16).   

Figure 16. Forks reversal decrease is specific for the presence of the DSB. 2D gel 

analysis of replication intermediates in WT HO-inc, WT HO, rad53 HO-inc and rad53 

HO cells following -factor dependent arrest in G1, DSB induction by galactose 

addition and release into S-phase in the presence of 25 mM HU.  

 

Quantification of reversed forks at ARS305 and ARS202 in rad53 cells 

indicated an equal proportion (with a ratio of approximately 1) in HO-inc 

strains, while a dramatic decrease (ratios from 0.4 to 0.6) was observed in HO-

strains (Figure 17). These data showed that the reduction in forks reversal 

accumulation detected in HO-cut rad53 mutants is specific for the presence of 

the break, since ARS202, located in a different topological context, was not 

affected.  
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Figure 17. Spike signal ratio between ARS305/ARS202 in rad53 inc and HO 

strains. Histograms indicating the ratio (in arbitrary units) between reversed forks 

signal intensities at ARS305 and ARS202 detected in rad53 mutants at the time points 

considered. The experiment was repeated twice. 

 

 

Thus, this experiment suggests that local positive supercoil accumulation 

drives for reversal when replisome stability is challenged in checkpoint 

deficient cells. 

 

4.2.3 Reduction in reversed fork accumulation upon DSB 

induction is not affected by ablation of EXO1.  

I noticed that HO-cut rad53 mutant strains accumulated a slight “cone-like 

shadow” close to the spike signal. I had previously shown that Exo1 does not 

have a significant contribution to reversed forks processing at 25 mM HU 

(Figure 10B), however Exo1 could play a role in the resection of the DSB 

generated in this kind of experiment. To exclude the possibility that the 

reduction in the reversed forks observed was somehow related to DSBs 

resection, I deleted EXO1 in wt-inc, wt-cut, rad53-inc and rad53-cut strains to 
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visualize replication intermediates in these mutants upon HU treatment. I 

arrested in G1 the cells, added galactose to the media to induce the activation 

of HO endonuclease and I took samples at 45, 60 and 90 minutes after release. 

I observed the firing of ARS305 in both exo1-HO-inc and exo1-cut strains, 

as indicated by the presence of the large Y-intermediates signal (Figure 18A). 

Accordingly with the data obtained in the previous experiment, comparing HU-

treated mutants exo1-HO-inc rad53 and exo1-cut rad53, I observed a strong 

reduction in the accumulation of X-shaped intermediates in the latter (Figure 

18A), shown also by the quantification of the signals (Figure 18B). This 

experiment demonstrates that the decrease in reversed forks accumulation upon 

induction of a DSB is independent of Exo1-mediated resection. Therefore, this 

experiment further reinforces the idea that positive supercoiling can act as a 

driving force for replication fork reversion.  
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Figure 18. DSB-dependent reduction in reversed-fork accumulation is not 

affected by ablation of EXO1. (A) 2D gel analysis of replication intermediates in 

EXO1 deleted strains exo1HO-inc, exo1 HO, rad53exo1 HO-inc and rad53exo1 

HO following an -factor dependent arrest in G1, DSB induction by galactose 

addition, and release into S-phase in the presence of 25 mM HU. (B) Quantification of 

the spike signal intensities at ARS305 in the different time points is shown. The 

experiment was repeated twice. 

 

4.2.4 Cruciform structures accumulate in checkpoint-proficient 

cells following genetic inactivation of Top1 and Top2.  

To further investigate the role of topology on replicating chromosomes 

stability, I performed complementary experiments to test the effect on 

replication forks of the concomitant inactivation of DNA topoisomerase I - 

Top1 - and DNA topoisomerase II - Top2, expected to entirely preclude 

topological constrains resolution. As previously described in the introduction 

section, these two enzymes are entirely responsible for the removal of positive 
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supercoiling arising during DNA replication, thus sustaining the elongation 

step of this process (Wang, 2002). 

 

Since TOP2 is an essential gene in the yeast S. cerevisiae, I took advantage of a 

conditional allele top2-1, in which the enzyme is inactivated at a temperature 

of 37 °C. I compared the replication intermediates in top1top2-1 and 

top1top2-1rad53 mutant strains by 2D gel. I released the cells previously 

arrested in G1 at the permissive temperature of 25°C for 30 minutes to allow 

replication to start and then I performed a second release by shifting at the non-

permissive temperature of 37°C. I observed the accumulation of X-shaped 

molecules in top1top2-1 cells, both in checkpoint proficient and deficient 

backgrounds, upon Top2 inactivation (Figure 19A). Progressive X-shaped 

molecules accumulation was also shown by quantification of the 2D gel signals 

(Figure 19B). These data show that inactivation of both Top1 and Top2 leads 

to the accumulation of replication intermediates with a 2D gel migration 

pattern compatible with reversed forks (Bermejo et al., 2007) even in the 

absence of HU treatment and in checkpoint proficient cells. Thus, this 

experiment strongly sustains  the idea that the topological context can affect the 

stability of replication forks further supporting the notion that accumulation of 

mechanical strains is the main cause of forks reversal in vivo. 
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Figure 19. X-shaped molecules resembling reversed forks accumulate upon 

contemporary inactivation of Top1 and Top2 activities. (A) 2D gel analysis of 

replication intermediates at ARS305 region in top1top2-1 and top1top2-1rad53 

cells released from an -factor induced G1 block into S-phase at 25 ºC (permissive 

temperature for the top2-1 allele). After 30 minutes cells were transferred to fresh 

medium pre-warmed to 37 ºC, in order to inactivate Top2, and samples were collected 

at the indicated time points and psoralen cross-linked. White arrowheads indicate the 

position of cruciform molecules migrating as spike signals. (B) Quantification of the 

spike signal intensities at the different time points (minutes) is shown. The experiment 

was repeated twice.  
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4.2.5 Over-expression of Top2 reduces reversed-fork 

accumulation.  

 

I proceeded analysing the effects of over-expressing Top2 on replication 

intermediates in checkpoint mutants experiencing replication stress. An 

increase of Top2 levels is expected to reduce the steady-state levels of positive 

supercoiling leading to an overall relaxation of the DNA within replicated 

topological domains. I arrested in G1 strains wt and rad53 carrying an empty 

vector PYESGAL1 (e/v) or a vector over-expressing DNA topoisomerase II 

under the control of the galactose promoter GAL1 (Figure 20A). I added 

galactose to the media to induce Top2 over-expression (Bermejo et al., 2007) 

and I released the cells in 25 mM HU. Comparing the replication intermediate 

profiles, I observed a reduction in reversed-fork accumulation in checkpoint- 

defective cells over-expressing Top2 (Figure 20B). Thus, reducing the 

topological stress in vivo counteracts replication fork reversal, further 

supporting the hypothesis that topology is a key player in mediating this 

process.  
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Figure 20. TOP2 over-expression counteracts reversed-fork accumulation.  (A) 

2D gel analysis of replication intermediates in WT empty vector (pYESGAL), WT 

GALTOP2, rad53 empty vector (pYESGAL) and rad53 GALTOP2 strains released 

from an -factor induced G1 block into S-phase in the presence 25 mM HU. (B) 

Quantification of the spike signal intensities detected at ARS305 in the corresponding 

time points analysed is shown. The experiment was repeated twice.  

 

Noteworthy, TOP1 over-expression also partially decreased reversed forks 

accumulation (Figure 21A and B), although the effect is less evident than the 

one observed upon over-expression of TOP2. 
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Figure 21. TOP1 over-expression marginally counteracts reversed-fork 

accumulation.   

(A) 2D gel analysis showing replication intermediates at ARS305 of WT empty vector 

(WT-GAL1), WT GALTOP1, rad53 empty vector (rad53GAL1) and rad53 GAL1TOP1 

strains released from an -factor induced G1 block into S-phase in the presence 25 

mM HU. (B) Quantification of the spike signal (arbitrary units) intensities detected at 

ARS305 in the corresponding time points analysed is shown. The experiment was 

repeated twice.  

 

 

 

In both the experiments, and more noticeable upon Top1 over-expression, we 

detected the residual presence of reversed forks, suggesting a partial 

persistence of topological constrains not fully eliminated by topoisomerases 

over-production in these strains.  

Altogether these data constitute the first in vivo demonstration indicating that 

the torsional strain accumulated during replication is a determinant driving the 

collapse and reversion of replication forks.  
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4.3 Identification of nucleases acting on collapsed 

replication forks.   

 

4.3.1 An “educated guess 2D screen”. 

In checkpoint mutants, stalled replication forks undergo pathological events 

due to the formation of aberrant replication intermediates that become exposed 

to unscheduled nucleolytic processing (Cotta-Ramusino et al., 2005; Sogo et 

al., 2002). These events likely contribute to abrogate replication fork re-start 

and viability in checkpoint mutants after exposure to HU (Lopes et al., 2001; 

Sogo et al. 2002; Segurado and Diffley, 2008). As mentioned previously, the S. 

cerevisiae endonuclease Exo1 is a well characterized example of this as it 

processes reversed forks into gapped and hemireplicated structures (Cotta-

Ramusino et al., 2005; Sogo et al., 2002) leading to the formation of DNA 

double strand breaks and extended single stranded DNA patches, that might 

provide templates for unscheduled recombination events at replication forks 

(Cobb et al., 2005).  

As described previously (see section 4.1), two prominent phenotypes are 

observed when comparing replication intermediates of rad53exo1 and rad53 

cells treated with 200 mM HU. First, a transition from a cone signal, 

correspondent to resected forks, to a spike signal, correspondent to unprocessed 

reversed forks. Second, the accumulation of a prominent small Y’s signal 

during time, compatible with a branch cleavage at the fork junction by an 

unknown factor “X” (Figure 22).  
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Figure 22. Interpretation of the 2D gel pattern observed in HU treated 

rad53exo1 mutants. Un-resected cruciform reversed forks (in blue) generate a spike 

signal, while cleavage of a branch of regressed forks by unknown factors would give 

rise to Y-like structure intermediates characterized by lower mass (in red), that 

migrate along the small Y’s arc.  

 

 

Nevertheless, a faint cone signal evidencing residual nucleolytic resection 

events is detected in rad53exo1mutants (Figure 10A), strongly suggesting 

the involvement of additional factors in collapsed forks processing. 

Consistently, ablating EXO1 is not sufficient to suppress checkpoint mutants’ 

sensitivity to HU (Segurado and Diffley, 2008). The identity of additional 

nucleases acting at collapsed forks remains elusive.  

The second part of this work was aimed at unmasking novel players involved 

in collapsed fork metabolism and loss of functionality. More precisely, I aimed 

at identifying an endonuclease “X” able to mediate the branch-cleavage 

transition observed at forks in rad53exo1 mutants. To reach this purpose, I 

designed an “educated guess” 2D gel screen, analysing by 2D gel 

electrophoresis, the effects on the structure of replication intermediates of the 

ablation of candidate nucleases in rad53 or rad53exo1genetic backgrounds.  
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The identification of the factors that contribute to replication forks loss of 

functionality under replication stress conditions is an extremely relevant matter 

as it might shed light on the mechanisms that generate pathological 

chromosomal rearrangements and the consequent loss of genome integrity 

observed in checkpoint mutants.  

 

4.3.2 2D-gel screen: experimental conditions and first 

candidates. 

All the experiments carried on in this part of the project focused on the early 

origin ARS305 and I adopted the following experimental conditions: cells arrest 

in G1 by -factor treatment, release in S-phase in the presence of 200 mM HU, 

sampling at late time points (90, 120,180 minutes) and in vivo psoralen 

crosslink.  

 

The first candidates I decided to test were members of the Structure Specific 

Endonucleases (SSEs) family, Mus81, Yen1, Slx1 and Rad1. These enzymes 

are the sole Holliday Junctions resolvases currently known in S. cerevisiae, and 

act specifically on different kinds of DNA four way junction structures (Swartz  

et al., 2011). Cells have developed a wide range of conserved structure specific 

nucleases characterized by different substrate specificities in order to resolve 

DNA joint molecules, such as Holliday junctions (HJs), as well as flaps or 

various structures arising at both damaged replication forks or during 

unperturbed replication (Schwartz et al., 2011). Reversed forks are four-way 

junctions molecules that resemble HJs and can acquire conformations 

resembling other structurally analogue intermediates arising during 

physiological cellular processes, such as repair and replication, thus favoring 
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unscheduled chromosome rearrangements and genome instability (Branzei and 

Foiani, 2010). Furthermore, in cells lacking a functional checkpoint, structure 

specific endonucleases generate aberrant replication intermediates by 

endonucleolytic cleavage upon anticipation of mitotic entry due to premature 

CDK1 inactivation (Neelsen et al., 2013). 

Thus, I reasoned that these enzymes, able to recognize and resolve four way-

junction structures, were likely candidates to mediate the collapsed fork branch 

cleavage observed in rad53exo1 mutants, since they biochemically target 

these kind of DNA joint molecules (Figure 23).  

 

 

 

Figure 23. Schematic representation of the preferred substrates of structure 

specific endonucleases.  Mus81, Yen1, Slx1 and Rad1 incision sites are indicated by 

red triangles.  
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4.3.3 The structure specific endonucleases Mus81, Yen1, Slx1 

and Rad1 are dispensable for collapsed forks branch cleavage. 

 

4.3.3.1 Analysis of Mus81 role in collapsed fork processing.  

 

The Saccharomyces cerevisiae Mus81 nuclease is able to in vitro cleave DNA 

branched structures that resemble replication forks (Whitby et al., 2002) and its 

depletion makes the cells sensitive to chemicals that interfere with fork 

progression, such as HU (Blanco et al., 2010).  

Intriguingly, Schizosaccharomyces pombe Mus81 is regulated by the Rad53 

homolog Cds1 during replication stress (Kai et al., 2005) and process stalled 

replication forks in the absence of a functional DNA replication checkpoint 

(Froget et al., 2008; Doe et al., 2002). Recent data show that MUS81 ablation 

increases fork reversal accumulation upon oncogene over-expression in human 

cells (Neelsen et al., 2013).  

To analyze the contribution of Mus81 to collapsed fork processing, I performed  

2D gel analyses in rad53, rad53mus81, rad53exo1mus81 and 

rad53exo1mus81 mutants. Although the signals detected were very low, I 

failed to observe differences between replication intermediate patterns of rad53 

and rad53mus81 cells (Figure 24), which accumulate resected replication 

forks with time. Deletion of MUS81 did not change the replication 

intermediates profile of EXO1-ablated checkpoint mutants as both the strains 

accumulated spike and prominent small Y signals with equivalent intensity and 
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kinetics (Figure 24). These observations suggest that MUS81 is dispensable for 

the branch cleavage of collapsed forks.  

 

 

Figure 24. Replication intermediates in MUS81- and EXO1- ablated checkpoint-

deficient cells: (A) 2D gel analysis of replication intermediates accumulating in 

rad53, rad53mus81, rad53exo1 and rad53mus81exo1 cells 90, 120 and 180 
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minutes after release from an -factor induced G1 block into S-phase in the presence 

of 200 mM HU. (B) FACS analysis.  

 

 

Accordingly, MUS81 depletion does not contribute to the viability of 

checkpoint mutants in the presence of HU, either in rad53 or rad53exo1 

backgrounds (Figure 25). However, intriguingly, MUS81 ablated mutants 

proceed further into S-phase as judged by the FACS analysis (Figure 24 B), 

suggesting that Mus81 could counteract bulk chromosome replication under 

these conditions. 

 

 

Figure 25. Effect of MUS81 ablation on checkpoint mutants HU sensitivity. Serial 

dilutions of wt, exo1, mus81, exo1mus81, rad53, rad53exo1, rad53mus81 

and rad53exo1mus81 cells plated in the absence or presence of 2.5 and 5 mM HU.   

 

 

Altogether, these data suggest that Mus81 does not mediate branch cleavage 

transitions at collapsed replication forks in checkpoint mutants.  
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4.3.3.2 Analysis of Yen1 role in collapsed fork processing. 

 

Yen1 was recently reported as a novel HJ resolvase in S. cerevisiae (Ip et al., 

2008). Interestingly, Yen1 target-specificity is directed preferentially towards 

HJs structures and less for flaps or replication fork structures (Ip et al., 2008). 

To analyze the possible contribution of Yen1 to collapsed fork processing, I 

performed 2D gel experiments on YEN1 ablated strains combined with rad53 

and rad53exo1 mutants. The replication intermediates profile did not show 

evident differences neither between rad53 and rad53yen1, nor between 

rad53exo1yen1 and rad53exo1yen1 mutant cells (Figure 26).  
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Figure 26. Replication intermediates in the absence of YEN1 and EXO1 in  

checkpoint deficient cells. (A) 2D-gel analysis of replication intermediates 

accumulating in rad53, rad53yen1, rad53exo1  and rad53yen1exo1 cells  90, 

120 and 180 minutes after release from an a-factor induced G1 block into S-phase in 

the presence of 200 mM HU. White arrowheads indicate the “double spike signal” 

(see text for details). (B) FACS analysis.  
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Furthermore, YEN1 ablation did not affect the sensitivity to HU of rad53 and 

rad53exo1 mutants (Figure 27).  

 

 

Figure 27. yen1 cells HU sensitivity. Serial dilutions of wt, exo1, yen1, 

exo1yen1, rad53, rad53exo1, rad53yen1 and rad53exo1 yen1 cells plated in 

the absence or presence of  2.5 and 5.0 mM HU.   

 

 

These data suggest that Yen1 endonucleolytic activity is dispensable for the 

branch fork cleavage. Intriguingly, we noticed in this experiment the presence 

of a “second spike signal” accumulating in both psoralen - treated rad53 and 

rad53yen1 mutants, that was more prominent in the latter (Figure 26). Even if 

the nature of the intermediates migrating in this second X-spike is yet to be 

determined, the observed difference upon YEN1 deletion might hint at the 

involvement of Yen1 in collapsed fork processing. Yen1 substrates, however, 

would be different than the one initially considered.  
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4.3.3.3 Analysis of possible Mus81 and Yen1 redundancy of 

function in collapsed fork metabolism.  

 

Since Mus81 and Yen1 functionally overlap in DNA repair in yeast and in the 

resolution of HJs in vivo also in mammals  (Tay et al., 2010; Wechster et al., 

2011), I reasoned that the presence of either functional Yen1 or Mus81 could 

have masked a phenotype in rad53mus81and rad53yen1mutants, 

respectively. Of notice, deletion of YEN1 in a mus81background increases 

the cells sensitivity to drugs that impede replication fork progression, such as 

HU (Blanco et al., 2010), reinforcing the idea that they might share common 

functions.  

Therefore, to exclude this possibility, I analyzed replication intermediates in 

rad53 and rad53exo1 mutants combined with the ablation of both the HJs 

resolvase proteins Mus81 and Yen1. I compared by 2D gel analysis replication 

intermediates accumulated in wt, triple mutant mus81exo1yen1 and 

rad53exo1mus81yen1 and rad53exo1mutants. Wt cells fired replication 

origins and replication forks proceeded out of the fragment, as indicated by the 

presence of bubble and big-Y arcs (Figure 28A). The same pattern occurs in 

triple nuclease mutant mus81exo1yen1, although the detection of 

replication intermediates is reduced perhaps due to a faster replication fork 

progression, as suggested also by the FACS analysis (Figure 28A and B), and 

similarly to what previously noticed upon MUS81 deletion. I failed to observe 

differences between the replication intermediate profiles of rad53exo1 

double mutants and rad53exo1mus81yen1 quadruple mutants, which 
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accumulate a prominent small Y’s signals of comparable as intensity along the 

time course (Figure 28A).  

 

 

 

Figure 28.  Replication intermediates in strains ablated for YEN1 and/or MUS81:  

(A) 2D gel analysis of replication intermediates accumulating in wt, 
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exo1mus81yen1, rad53exo1 and rad53exo1mus81yen1 cells 90, 120 and 

180 minutes after release from an -factor induced G1 block into S-phase in the 

presence of 200 mM HU. (B) FACS analysis.  

 

Furthermore, differences were not observed in the HU sensitivity of 

rad53exo1 mutants upon contemporary ablation of MUS81 and YEN1 (Figure 

29).  

 

 

 

Figure 29. mus81 combined with yen1 cells HU sensitivity. Serial dilutions of 

wt, exo1mus81, exo1yen1, exo1mus81 yen1, rad53, rad53exo1mus81, 

rad53exo1yen1 and rad53exo1yen1mus81 cells plated in the absence or 

presence of 5 and 7.5 mM  HU.   

 

These data allowed us to exclude a redundancy in activity of MUS81 and YEN1 

in the collapsed fork branch cleavage.  

 

Intriguingly, I observed that exo1yen1mus81 triple mutants exhibited a 

synthetic sensitivity to low concentrations of HU when compared with 

exo1yen1 or exo1mus81 cells (Figure 21). This evidence suggests that 

upon HU treatment structures might form requiring nucleolytic processing by 

either of these enzymes to promote survival in cells having a functional 
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checkpoint response. In line with this reasoning, the slow growth phenotype 

observed in the triple mutant could be related to such structures, perhaps 

forming during the repair of spontaneous damages generated during 

replication. In addition, further sustaining this idea, we observed that 

checkpoint proficient cells lacking contemporary Mus81 and Yen1 activity are 

extremely sensitive to high concentration of HU (Figure 30), suggesting that 

the two enzymes might act redundantly in the processing of aberrant 

intermediates of replication in cells experiencing replication stress.  

 

 

 

Figure 30. mus81yen1 and exo1 cells combined HU sensitivity. Serial 

dilutions of wt, mus81, yen1, exo1exo1yen1mus81, yen1mus81, 

exo1mus81 and exo1yen1 cells plated in the absence or presence of 50 and 100 

mM  HU.   
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4.3.3.4 Analysis of possible Mus81, Yen1 and Slx1 redundancy 

of function in collapsed fork metabolism.  

 

It is possible that additional endonucleases could act redundantly at the level of 

collapsed forks. Another good candidate is the structure specific complex 

composed by the heterodimer Slx1/Slx4 that shows branched DNA structure 

specificity in vitro (Fricke and Brill, 2003), with strong preference for 

structures such as Y-forks, 3’-5’ flaps, replication forks and also HJs. 

Furthermore, Slx4 is a checkpoint target during DNA damage repair after 

exposure to campotechin (CPT) and HU in S. cerevisiae (Flott and Rouse, 

2005) and this gene is required for correct chromosome segregation in 

mammals, together with MUS81 and GEN1 (Wechster et al., 2011).  

To analyze possible redundant roles in the observed branch cleavage transition 

with the previously analyzed proteins, I deleted SLX1 in cells bearing 

rad53exo1alleles alone or combined with mus81yen1 mutations and I 

scored for replication intermediates by 2D gels (Figure 31). All the 

rad53exo1mutant strains bearing slx1, slx1yen1, slx1mus81 or 

slx1yen1mus81 mutations showed a prominent small Y signal, comparable 

as intensity with the one observed in rad53exo1mutants (Figure 31). 

Furthermore, in the same strains reversed forks accumulation followed the 

same kinetics (Figure 31). 
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Figure 31. Replication intermediates in the combined absence of YEN1, SLX1 and 

MUS81 in exo1rad53 mutant cells: 2D gel analysis of replication intermediates 

accumulating in rad53exo1slx1, rad53exo1slx1yen1, rad53exo1slx1mus81 

and rad53slx1exo1mus81yen1 cells 90, 120 and 180 minutes after release from 

an -factor induced G1 block into S-phase in the presence of 200 mM HU.   

 

This result suggests that Slx1 is dispensable for collapsed fork processing and 

does not share a role with Mus81 and Yen1 in this process.   
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4.3.3.5 Analysis of Rad1 contribution to collapsed fork 

processing.  

 

A last protein described to have Holliday junction resolvase activity in 

S.cerevisiae is Rad1. This protein is a structure specific endonuclease 

(Bardwell et al., 1994) that recognizes bubble, flapped substrates and HJ 

structures in vitro (Habraken et al., 1994). As Mus81, it belongs to the XPF 

superfamily of endonucleases and participates to DSBs repair in S. cerevisiae 

(Moore et al., 2009). To investigate a putative role for Rad1 in collapsed fork 

processing, I analyzed replication fork intermediates in rad53, rad53rad1, 

rad53exo1and rad53exo1rad1 mutant strains. I did not detect differences 

in the replication intermediate profiles in strains deleted for RAD1, nor in a 

rad53 or rad53exo1 backgrounds, suggesting that Rad1 is dispensable for 

collapsed forks processing (Figure 32).  
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Figure 32. Replication intermediates accumulating in checkpoint deficient cells in 

the absence of RAD1 and EXO1. (A) 2D gel analysis of replication intermediates 

accumulating in rad53, rad53rad1, rad53exo1  and rad53rad1exo1 cells 90, 120 

and 180 minutes after release from an -factor induced G1 block into S-phase in the 

presence of 200 mM HU. (B) FACS analysis.  
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Overall the data obtained allow me to propose that the structure specific 

endonucleases Mus81, Yen1, Slx1 and Rad1 are not involved in collapsed 

forks metabolism in checkpoint mutants exposed to replicative stress and, 

specifically, do not mediate the branch cleavage observed in rad53exo1 

mutants. Alternatively, these enzymes might share redundant roles with other 

enzymes yet to be characterized. 

 

 

4.3.4 Sae2 processes stalled replication forks in checkpoint-

defective cells, independently from Mre11.  

 

Sae2 and Mre11 work as a complex at the initial steps of DSB repair pathways 

(Klein et al, 2008; Clerici et al., 2005; D. D’Amours et al., 2001) and were 

previously proposed as candidates for processing collapsed forks (Branzei and 

Foiani, 2009). Of notice, a recent paper reported the accumulation of a 

prominent small Y-signal at forks that approach double strand breaks in 

mre11 and sae2 mutants (Doksani et al., 2009). The migration of these Y-

signal intermediates highly resembled the one observed in rad53exo1 

mutants. Furthermore, Sae2 possesses an endonuclease activity that enables it 

to cleave DNA branched structures in vitro also in the absence of Mre11 

(Lengsfeld et al., 2007). In higher eucaryotes, Mre11 is involved in processing 

replication forks to generate ssDNA stretches thought to promote the restart of 

collapsed forks (Hashimoto et al., 2010; Trenz et al., 2006).  

To test Sae2 contribution in collapsed fork metabolism, I deleted SAE2 in 

rad53 and rad53exo1 mutant backgrounds and scored for replication 

intermediates by 2D gels. 
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I observed a transition from the cone signal detected  in the rad53 single 

mutants to a spike signal in sae2cells (Figure 33), resembling the pattern 

described for EXO1 ablation. This transition was evidenced by quantification 

of the replication intermediate signals (Figure 33B).  

 

 

Figure 33. Sae2-dependent reversed forks processing in rad53 HU treated cells. 

(A) 2D gel analysis of replication intermediates accumulating in rad53, rad5sae2, 

rad53exo1 and rad53exo1 sae2 cells  90, 120 and 180 minutes after release from 

an -factor induced G1 block into S-phase in the presence of 200 mM HU. Spike 

signal is indicated by white arrowheads, while in red the small Y’s signal. 
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Quantification of the spike/cone ratio signal (B) and of small /big Y’s (C) is shown. 

The experiment was repeated twice. 

 

This result suggests that Sae2 processes collapsed replication forks in rad53 

cells experiencing replication stress; the residual cone signal observed in 

rad53sae2 cells could be due to Exo1-dependent resection. Noteworthy, 

rad53exo1sae2 cells showed a marked increase accumulation of small Y-

shaped intermediates if compared to rad53exo1 mutants (Figure 33C). This 

suggests that Sae2 and Exo1 have overlapping roles in reversed fork processing 

and that this activity counteracts fork branch cleavage reactions. Small Y arc 

intermediates accumulation in rad53sae2 mutants is somewhat delayed if 

compared to rad53exo1 cells. This raises the possibility that Exo1 might be 

more efficient in promoting the resection events preventing branch cleavage 

and that Sae2 might take over when Exo1 is absent. These data suggest the 

existence of a SAE2 and EXO1- dependent pathway that processes collapsed 

replication forks. In support of this idea, the combined depletion of SAE2 and 

EXO1 results in synthetic sensitivity to response to HU in a checkpoint 

proficient context (Figure 34).  

 

 

Figure 34. Synthetic sensitivity to HU of sae2 and exo1 alleles. Serial dilutions 

of wt, sae2Δ, exo1Δ and exo1Δsae2Δ cells plated in the absence or presence of 100, 

150 and 200 mM HU.  
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Searching for additional players that might contribute to this pathway, Mre11 

seemed a good candidate, since it works in a complex with Sae2 in the DSBs 

repair pathway, mediating very early resection steps prior to Exo1 contribution 

(Klein et al, 2008).  

Therefore, I analyzed replication intermediates by 2D gel in strains carrying 

MRE11 deletion combined with rad53 and rad53exo1 mutations (Figure 35). 

Double rad53mre11 mutants showed a faint small-Y signal resulting from the 

proposed reversed fork branch cleavage, as compared to rad53 cells (Figure 

35). This observation suggests a contribution of Mre11 in reversed fork 

processing, less important however than the one of Exo1 or Sae2. In support to 

this idea, the contemporary depletion of Mre11 and Exo1 does not significantly 

alter the cells viability in hydroxyurea (Figure 36).  However, double deletion 

of MRE11 and EXO1 in checkpoints mutants did not affect the branch cleavage 

transition and small Y signal accumulated with comparable intensities (Figure 

35).  
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Figure 35. Mre11 marginally contributes to reversed forks processing: (A) 2D gel 

analysis of replication intermediates accumulating in rad53, rad53mre11, 

rad53exo1 and rad53mre11 exo1 cells 90, 120 and 180 minutes after release from 

an -factor induced G1 block into S-phase in the presence of 200 mM HU. (B) FACS 

analysis.  
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Figure 36. HU sensitivity of cells bearing exo1and mre11. Serial dilutions of wt, 

exo1, mre11 and exo1 mre11cells plated in the absence or presence of 5 and 7.5 

mM  HU.   

 

 

Overall, these data indicate that Mre11 does not play a prominent role in 

protecting replication fork integrity. More work will be required to address 

whether Sae2 functions independently from Mre11 in this process.  

 

 

 

4.3.5 Dna2 counteracts reversed forks in checkpoint-defective 

mutants.  

 

Dna2 is a very well conserved endonuclease/helicase involved in DNA 

replication (Braguglia et al., 1998) and Okazaky fragments processing (Bae 

and Seo, 2000). The biochemical role of Dna2 is to cut long flaps generated by 

excessive strand displacement during replication. Therefore, it is reasonable to 

think that in the absence of Dna2 processing activity, long flaps could bind 

together forming more complex structures, such as reversed forks, in the 

absence of checkpoint control. Moreover, S. pombe Dna2 was proposed to be 

targeted by the checkpoint kinase Cds1 to counteract forks reversal through its 
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nuclease activity (Hu et al., 2012) and the mechanism suggested is that Dna2 

resects the nascent strands, preventing their annealing (Hu et al., 2012).  

 

Since DNA2 is an essential gene, I used a thermo-sensitive allele dna2-1, 

defective in both helicase and endonuclease functions (Budd et al., 1995). The 

dna2-1 allele is inactivated at the non-permissive temperature of 33°C and in 

these conditions replication can start but cannot proceed (data not shown). Of 

notice, I observed that dna2-1 mutant cells are sensitive to the replication 

inhibitor hydroxyurea (see below), indicating that Dna2 is required for the 

cellular response to agents that stall the replication forks also in S. cerevisiae. 

In S. pombe, Dna2 inactivation is sufficient to drive fork reversion even in the 

presence of a functional checkpoint response (Hu et al., 2012). Interestingly, 

Exo1 and Dna2 are involved in Okazaky fragment processing maturation and 

are thought to cooperate to this process (Bae et al., 2000). Therefore, to better 

elucidate the role of Dna2 in response to replicative stress, I analyzed by 2D 

gels the replication intermediates accumulating in wt, dna2-1, exo1 and dna2-

1exo1 mutants after treatment with HU (Figure 37). In wt cells, origins fired 

and replication forks progressively moved out of the analyzed fragment, as 

shown by the presence of the bubbles and big Y’s arcs, which became very 

faint at 180 minutes after release. A similar pattern occurred in dna2-1 mutant 

cells, although the signals correspondent to the replication intermediates were 

fainter and started to disappear earlier, at 120 minutes, suggesting that in this 

mutants the forks are proceeded faster at least at initial steps (Figure 37A), as 

suggested also by the FACS analysis (Figure 37B). I did not observe aberrant 

replication intermediates, suggesting that in the presence of replicative stress S. 

cerevisiae Dna2 is dispensable to prevent forks reversal in a checkpoint 

proficient context. EXO1-ablated cells showed a replication intermediate 
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pattern similar to the one observed in wt cells, while double mutant 

exo1dna2-1 resembled dna2-1 single mutants (Figure 37A). Aberrant 

replication intermediates were not detected in double mutant strains, suggesting 

that the contemporary inactivation of EXO1 and DNA2 is not sufficient to 

induce forks reversal in this context.  

 

 

Figure 37. Dna2 inactivation does not result in forks reversal in checkpoint 

proficient cells. (A) 2D gel images of replication intermediates accumulating in wt, 

dna2-1, exo1 and dna2-1exo1 cells 90, 120 and 180 minutes after release from an 

-factor induced G1 block into S-phase at 33°C in the presence of 200 mM HU. (B) 

FACS analysis.  
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These data suggest that DNA2 inactivation in a checkpoint proficient 

background does not cause fork reversion, as occurs in S. pombe (Hu et al., 

2012), not even in combination with Exo1 ablation. Accordingly, EXO1 

deletion does not affect the HU sensitivity of dna2-1 mutants (Figure 38), 

considering the severe slow growth phenotype of dna2-1exo1 double mutants.  

 

 

Figure 38. dna2-1 HU sensitivity is not affected by EXO1 deletion.  Serial dilutions 

of wt, exo1Δ, dna2-1 and dna2-1exo1Δ cells plated in the absence or presence of 50, 

100, 150 and 200 mM HU at 23 °C. 

 

 

I proceeded analyzing the effect of DNA2 inactivation in the absence of a 

functional checkpoint. I performed 2D gel experiments comparing replication 

intermediates profiles of rad53 and dna2-1rad53 mutants, also in combination 

with EXO1 deletion (Figure 39). Upon the conditional inactivation of Dna2 by 

temperature shift, I observed a prominent presence of intermediates migrating 

in the X-shaped spike likely corresponding to unprocessed reversed forks in 

dna2-1rad53 cells if compared to single rad53 mutants (Figure 39), in which a 

marked cone signal is detectable.  
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Figure 39. Dna2-dependent reversed forks processing in rad53 HU treated cells. 

(A) 2D gel images of replication intermediates accumulating in rad53, rad53dna2-1, 

rad53exo1and rad53exo1dna2-1 cells 90, 120 and 180 minutes after release from 

an -factor induced G1 block into S-phase at 33°C in the presence of 200 mM HU. 

White arrows indicate reversed forks accumulation. (B) Quantification of the 

spike/cone ratio signal (arbitrary units) as intensities detected in correspondence of the 

time points analyzed is shown. The experiment was repeated twice. (C) FACS 

analysis.  
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This observation suggests that Dna2 contributes to reversed forks processing. 

In dna2-1rad53 double mutants, residual nucleolytic processing is still 

observed, likely due to Exo1- or/and Sae2- dependent activities. Furthermore, 

triple mutant dna2-1exo1rad53 showed a slight reduction in replication 

intermediates intensity, perhaps due to the fragility of the replication forks in 

those cells, that are very sick and slow growing, since they are contemporarily 

deprived of two crucial factors in Okazaky fragments processing. However, 

both dna2-1exo1rad53 mutants, as exo1rad53 cells, accumulated small Y’s 

to comparable levels, suggesting that Dna2 is not involved in the branch fork 

cleavage of collapsed forks. In accordance, DNA2 and EXO1 ablation did not 

confer synthetic sensitivity to HU (Figure 40). 

 

 

 

Figure 40. rad53dna2-1 HU sensitivity is not affected by EXO1 ablation. Serial 

dilutions of rad53, dna2-1rad53, rad53exo1Δ, rad53exo1Δdna2-1 cells plated in the 

absence or presence of  0.5, 1.0 and 1.5 mM HU and grown at 23°C.  

 

In summary, these data indicate that in the absence of a functional checkpoint 

and in conditions of replicative stress, Dna2 might counteract forks reversal, 

but is dispensable for branch cleavage transitions. It is reasonable to think that 

upon DNA2 inactivation cells accumulate structures - likely flaps - that could 

be relevant for driving reversed forks formation and in this scenario the activity 

of Dna2 in removing those flaps is crucial to avoid the homology base pairing 

of the nascent strands. Furthermore, branch cleavage transitions are still 
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observed in HU-treated  rad53exo1 cells upon DNA2 inactivation, suggesting 

that Dna2 is not involved in this cleavage. 

 

4.4 Homologous recombination factors involvement in 

replication fork stability. 

 

In prokaryotic cells, fork re-start by replisome reassembly after replication 

arrest by DNA damages depends on homologous recombination mechanisms, 

in a process called recombination-dependent replication (RDR) (Kogoma, 

1997). An alternative pathway mediates a direct restart of replication after fork 

processing into a HJ intermediate (Michel et al., 2004; McGlynn et al., 2002). 

Intriguingly, S. cerevisiae yeast cells lacking Rad51 and Rad52, the factors 

initiating HR repair pathways, are sensitive to HU, although the underlying 

mechanisms are poorly understood (Lambert et al., 2007).  

In this part of the project, I asked whether homologous recombination plays a 

role in the stability of stalled forks challenged by HU treatment and whether 

such role might interplay with the DNA damage checkpoint response.  

 

 

4.4.1 Homologous recombination is dispensable for forks 

reversal.  

To analyse the involvement of homologous recombination on reversed forks 

formation, I constructed strains combining rad52 and rad53 mutations and 

scored for intermediates of replication in the presence of 25 mM HU (Figure 

41). I could not observe significant differences on the replication intermediates 
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pattern of rad52and rad53 mutants, if compared to those of wt and 

rad53rad52 cells, respectively (Figure 41). However, I observed a lower 

replication intermediate signal in both RAD52 deletion strains, probably due to 

the intrinsic fragility of the replication forks in the absence of the protein. 

Noteworthy, double mutant rad53rad52 and rad53 cells accumulate reversed 

forks in similar proportions when compared to other replication intermediates 

(Figure 41). These data indicate that, as proposed previously (Lopes et al., 

2003), Rad52 is not required for the reversion of replication forks challenged 

by HU treatment observed upon fork collapse in checkpoint mutants.  
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Figure 41. Homologous recombination is not required for reversed forks 

formation. 2D gel analysis of replication intermediates at ARS305 region 

accumulating in wt, rad52, rad53 and rad53rad52 cells 90, 120 and 180 minutes 

after release from an -factor induced G1 block into S-phase in the presence of 25 

mM HU.  

 

4.4.2 RAD51 and RAD52 mutants are differentially sensitive to 

HU.  

Interestingly, I noticed that in checkpoint proficient cells single deletion 

rad52 mutants were very sensitive to low doses of HU (Figure 42), such as 

5.0 or 7.5 mM, while rad51 mutants show HU sensitivity only at high doses, 

such as 50 mM (Figure 43). These data suggest that Rad52 and Rad51 might 

play different roles in the cellular response to HU-induced replication stress. At 

low concentrations of the drug, survival after HU treatment seems dependent 

on Rad52 and not on Rad51. There are repair pathways that depend on Rad52 

but not on Rad51, such as SSA or BIR, that could mediate cells viability in the 

presence of low concentrations of HU. At higher concentrations of the drug, 

instead, both Rad51 and Rad52 are required for cells viability, suggesting that 

when replication is further challenged by a more pronounced dNTPs depletion 

additional Rad51-dependent HR pathways are required for survival.  

 

 

Figure 42. rad52 and rad51 alleles sensitivity to low doses of HU in checkpoint 

proficient and deficient backgrounds. Serial dilutions of wt, rad51, rad52, 
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rad53,  rad53rad51 and rad53rad52 cells plated in the absence or presence of 2.5, 

5 or 7.5 mM HU.  

 

 

 

Figure 43. rad52 and rad51 cells sensitivity to high doses of HU. Serial dilutions 

of wt, rad51 and rad52 cells plated in the absence or presence of 50, 100 or 200  

mM HU.  

 

Noteworthy, I observed that double rad53rad52 mutants are more sensitive to 

very low doses of HU (1.5 mM) than rad53 cells (Figure 44). This non-

epistatic interaction suggests the existence of two alternative pathways for cells 

viability in the presence of replication stress HU-induced, one Rad52-

dependent and the other Rad53-dependent, and therefore Rad52-dependent 

mechanism might protect fork stability through mechanisms independent of the 

DNA damage checkpoint pathway. 

 

 

Figure 44. rad52 and rad53 alleles HU sensitivity is not epistatic. Serial dilutions 

of wt, rad52, rad53 and rad53rad52  cells plated in the absence or presence of 0.5, 

1.5 or 2 mM HU.  
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4.4.3 RAD51 and RAD52 are required for S-phase progression 

in the presence of replication stress.  

 

To further characterize the role of Rad52 and Rad51 in replication fork 

stability, I analysed the impact of the absence of these HR factors on S-phase 

progression in the presence of replicative stress. Thus, I performed an 

experiment in which I released wt, rad51 and rad52 cells from a G1 block 

in the presence of 50 mM HU for four hours and I analysed the DNA content 

by FACS (Figure 45). Wild type cells were able to replicate their genomic 

DNA in the presence of the drug reaching a 2C DNA content by 180 minutes 

and by 210 minutes cells divided and engaged a second round of replication. I 

observed, however, that both rad52 and rad51 mutants exhibited a delayed 

progression through S-phase of the cell cycle with cells not having reached a 

2C DNA content by 240 minutes (Figure 45). These data suggest that RAD51 

and RAD52 are required to support bulky genomic replication and normal 

progression through S-phase in conditions of replication stress.  
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Figure 45. Rad51 and Rad52 are required for DNA replication in the presence of 

HU. wt, rad52 and rad51 cells were arrested in G1 and released into 50 mM HU. 

Samples were collected at the indicated time points for FACS analysis. 

 

 

 

4.4.4. RAD51 and RAD52 mutants are required for replication 

resumption after replication stress. 

 

I conducted an experiment, aimed at understanding if homologous 

recombination factors are required to stabilize replication forks in the presence 

of HU, in which I analysed the cell cycle progression during the recovery from 

replication stress. I treated wt, rad51 and rad52 cells, pre-synchronized in 

G1, with 200 mM HU for one hour and, after washing of the drug, released the 

cultures in fresh YPDA medium. I took samples for FACS analysis for up to 

two hours (Figure 46). In these conditions, wt cells recover from the drug 



114 

 

treatment and complete bulk DNA synthesis by 60 minutes and by 90 minutes 

cells divided and engaged a new round of replication. rad52 and rad51 

mutants resumed DNA replication and reached a 2C DNA content with timings 

similar to those of wild type cells. However these mutants arrested with a 2C 

DNA content failing to undergo mitotic division and start a new round of 

replication (Figure 46).  

 

 

 

 

 

Figure 46. Rad51 and Rad52 are required for recovery from HU treatment. Wt, 

rad52 and rad51 cells were arrested in G1, released into 200 mM HU for one hour, 

washed, and then transfer to fresh YPDA medium for 2 hours. Samples were collected 

for FACS analysis.  
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This observation suggests that even if the bulk of genome replication is 

completed upon HU treatment in the absence of either Rad51 or Rad52, 

problems might arise leading to the persistence of structures precluding 

chromosomes segregation and proper cell cycle progression. 

 

These data, taken together, suggest that RAD52 and RAD51 are important to 

preserve the integrity of replication forks in the presence of HU-induced 

replication stress. Further work will be required to characterize the role of these 

HR factors in fork protection. However, the results here presented suggest that 

HR might act independently of the DNA damage checkpoint and that Rad52-

mediated pathways might play a prominent role in fork stabilization, as Rad52 

ablation renders cells sensitive to very low HU doses, while Rad51 ablation 

does not.   
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5. DISCUSSION 
 

The mechanisms driving replication fork collapse and reversal are still poorly 

understood and matter of intense study. Two alternative hypotheses were 

proposed that picture forks reversal as the result of topological transitions: one 

as the consequence of positive supercoiling accumulation (Postow et al., 2001, 

Bermejo et al. 2011), while the second as the result of hemicatenanes junctions 

run-off at stalled forks (Lopes et al., 2003; Cotta-Ramusino et al.; Bermejo et 

al., 2007). It has also been predicted, based on in vitro data, that specialized 

enzymes could mediate forks reversal. The budding yeast Rad5 helicase, as 

well as its mammalian ortholog HLTF, presents such activity in vitro (Blastyak 

et al., 2007, Achar et al., 2011). Moreover, in checkpoint defective mutants 

collapsed forks are engaged in pathological resection events mediated by 

nucleolytic activities, (Sogo et al., 2002; Cotta-Ramusino et al., 2005), 

although the precise identity of the enzymes carrying out those transitions are 

still unknown. In this work, I attempted to shed light on the events mediating 

replication fork collapse, as well as on the pathological transitions that take 

place at collapse forks and prime chromosomal rearrangements in checkpoint 

mutants.  
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5.1 DNA topology: the engine of fork reversal.   

In the first part of this work, I showed that the cellular machinery modulating 

the topology of replicating chromosomes plays a crucial role on replication 

fork stability and therefore genome integrity. In particular, the observation that 

simplifying DNA topology in vivo counteracts reversed fork accumulation in 

checkpoint mutants supports the hypothesis that the mechanical strain 

accumulated as positive supercoiling during replication represents the main 

cause of forks reversion.   

In vitro positive supercoil accumulating in partially replicated circular plasmids 

can determine reversed forks formation (Postow et al., 2001). Here, I support 

this notion by providing three lines of evidence arguing that positive supercoil 

is per se a crucial determinant of fork reversal in checkpoint mutants 

experiencing HU-induced replication stress. First, I showed that induction of a 

DSB between an origin of replication and a transcribed gene, thus relaxing a 

chromosomal topological domain, is sufficient to counteract forks reversal. 

Second, I showed that reversed fork accumulation is reduced upon over-

expression of Top2 and, to a lesser extent, by over-expression of Top1. 

Increasing Top2 or Top1 steady state levels should shift supercoiled DNA 

segments towards a topologically relaxed state. Lastly, I observed that 

precluding topological constrains resolution, by contemporary inactivation of 

Top1 and Top2 (Bermejo et al., 2007), induces the accumulation of abnormal 

X-shaped replication intermediates, likely representing reversed forks in 

unperturbed cells, even in a checkpoint proficient context. Taken together, 

these experiments support the idea that a tight regulation of DNA topology 
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simplification is essential to promote the stability of replication forks. This 

applies to forks challenged by dNTP pools reduction and checkpoint defects 

and might be also valid for cells replicating their DNA in the absence of 

exogenous agents and with an integrate checkpoint response. In agreement 

with our data, positive supercoiling accumulation, rather than replisome run-off 

at topoisomerase-mediated nicks, has recently been shown to be the  cause of 

replication fork arrest and loss of cellular viability in cells treated with the 

Top1-poison camptothechin (CPT) (Koster et al., 2007). Furthermore, electron 

microscopy experiments showed that Top1-poisoning induces forks reversal 

formation in yeast cells, as well as in mammalian and Xenopus cells (Ray-

Chaudhuri et al., 2012), suggesting that efficiently and timely resolution of 

topological stress is a requirement for the stabilization of replication fork along 

the evolution.  

Moreover, a mechanism has been proposed by which cells can simplify 

chromosomal topology to promote replication fork progression and stability. In 

vivo topological domain barriers are likely to establish when transcribed 

chromosomal regions physically associate with Nuclear Pore Complexes 

(NPCs). Transcribed chromatin engagement at NPCs, known as “gene gating” 

limits the diffusion of topological changes by preventing the rotations of the 

DNA double helix around each other (Bermejo et al., 2012). The topological 

tension generated when replication forks approach NPC-associated 

chromosomal regions was proposed to be resolved by the Mec1/ATR 

checkpoint, that targets the Mlp1 nucleoporin to detach transcribed genes from 

the NPCs (Bermejo et al., 2011), thus dismantling the topological domain so 

generated. In agreement, formation of reversed forks was also recently 

observed in checkpoint deficient human cells experiencing replication stress 
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due to oncogene over-expression (Neelsen et al., 2013), which has been 

proposed to be caused by an increase in unscheduled encounters between 

replication and transcription machineries (Bermejo et al. 2012). 

All this evidence, together with the data presented in this thesis, indicate that 

fork reversal is tightly connected to the regulation of the topological constrains 

arising at replicating chromosomes. In agreement with this view, I showed, in 

addition, that Rad52 and Rad51 homologous recombination is dispensable for 

the accumulation of reversed forks, indicating that fork reversal is 

mechanistically independent of recombinational repair pathways, as previously 

suggested (Lopes et al. 2003). 

These data imply that the transitions driving the annealing of nascent strands at 

stalled replication forks would not depend on enzymatic activities, as occurs 

for instance in the formation of HJs by strand invasion, but rather depend on 

mechanical forces exerted by the torsional stress accumulated as positive 

supercoiling ahead of replication forks. Of notice, homologous recombination 

factors seem dispensable for fork reversal also in higher eukaryotes, such as 

Xenopus eggs and human cells (Ray-Chaudhuri et al., 2012; Neelsen et al., 

2013).  
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5.2 Rad51 and Rad52: guardians of replication fork 

stability?  

While not playing a role in mediating fork reversal, the results in this work 

provide evidence that budding yeast homologous recombination factors are 

crucial for the cellular response to replication stress. I observed that both 

Rad52 and Rad51 are required for cell viability in the presence of HU, 

although at low concentrations of the drug survival is solely dependent on 

Rad52, suggesting that Rad52 - dependent pathways can deal with low levels 

of replications stress, but upon major fork stalling Rad51 is also engaged to 

sustain viability. In S. cerevisiae two main Rad52 - dependent homologous 

recombination repair pathways that do not require Rad51 have been described: 

single strand annealing (SSA) and break induce replication (BIR). SSA takes 

place in the absence of homologous donor sequences and it is restricted to 

DSBs that arise between directed repeats (Ataian and Krebs, 2006). BIR is 

involved in fork restart and engages broken chromosomes that present only one 

end, intermediates that could prominently form upon fork collapse (Kraus et 

al., 2001). It is reasonable to think that at low HU concentrations BIR-related 

mechanisms might act to sustain stalled forks functionality. Interestingly, 

Rad51-mediated mechanisms of replication fork restart upon replication stress 

that do not depend on the HR pathway have also been described in higher 

eukaryotes (Petermann et al., 2010). Of notice, rad52 is not epistatic with 

rad53 for sensitivity to low concentrations of HU, suggesting that these factors 

might act as part of two independent pathways contributing to fork stability.  
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As mentioned, I speculate that at higher HU concentrations severe genome 

wide fork stalling requires the activity of additional homologous recombination 

pathways mediated by Rad51 and Rad52. Accordingly, both rad52and 

rad51 cells treated with high HU concentrations do not proceed normally 

through S-phase, probably due to defects in stabilizing replication forks. These 

mutants, however, can complete the bulk of genome replication following 

arrest in HU and removal of the drug. In these conditions rad52and rad51 

cells do not proceed into mitosis nor initiate a new round of replication. This 

suggest that in the absence of Rad51 or Rad52 abnormal structures might 

accumulate at replication forks precluding the completion of chromosome 

duplication and further advancement in the cell cycle. Resumption of DNA 

synthesis in these mutants upon removal of the drug could reflect a necessity 

for HR factors to stabilize replication forks in the presence of the drug only. 

Alternatively, the bulk of genomic DNA replication could be accomplished by 

firing of late replication origins, which would establish forks that could then 

proceed unchallenged in the absence of the drug (Santocanale et al., 1999).  

The role of HR factors in sustaining replication fork stability remains 

intriguing. These factors could directly protect replication forks by stabilizing 

ssDNA tracks accumulating as a result of helicase and polymerases 

uncoupling, thus counteracting the formation of DNA breaks. Such role in 

preventing fork collapse, independently of DSBs repair events, has recently 

been proposed in higher eukaryotes (Hashimoto et al., 2010; Schlacher et al., 

2011). In agreement with this possibility, electron microscopy data reported the 

accumulation of extensive ssDNA gaps at replication forks fork in budding 

yeast cells ablated of Rad52 or Rad51. These gaps were proposed to provide 
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harmful substrates for uncontrolled endonucleolytic resection (Hashimoto et 

al., 2010). 

Altogether, the evidence provided in this work support recent data in higher 

eukaryotes proposing a direct role for recombination factors Rad51 and Rad52 

in the protection of replication fork integrity. The precise mechanisms by 

which recombination factors fulfill this task remain to be elucidated. 

 

5.3 Reversed forks: protective or terminal structures? 

Our data and recent studies, evidence that reversed forks readily form upon 

accumulation of positive supercoiling in eukaryotes perhaps reflecting the 

conservation of topology-modulating and replication machineries along 

eukaryotic cells (Wang et al., 2002; Bermejo et al., 2007; Ray-Chaudhuri et al., 

2012; Neelsen et al., 2013). Whether reversed fork structures are pathological 

or physiological intermediates is still a matter of debate.  

In bacteria four branched molecules forming at reversed forks have been 

described mainly as intermediate structures in the restart of replication forks 

stalled by DNA damages. In this view, fork reversal represents a physiological 

intermediate of forks rescue, rather than a pathological intermediates of 

replication accumulating when mechanisms preventing fork collapse fail. An 

important consideration to take into account is that in bacteria replication is 

completed from a single origin. Therefore, mechanisms ensuring fork restart 

might be crucial as replication cannot be completed by forks emanating from 

other origins as in the case in eucaryotes (Michel et al., 2004). In human cells, 

forks reversal have been observed during unperturbed replication, although 
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very rarely, and were interpreted as transient events (Neelsen et al., 2013). It 

was proposed that reversed forks in higher eucaryotes could be relatively 

common replication intermediates, but they could represent potentially 

dangerous structures and be thus quickly dismantled (Neelsen et al., 2013).  

Reversed forks are common intermediates in cells experiencing replication 

stress and in the absence of a functional checkpoint response. Reversed forks 

form upon treatment with sub-lethal doses of camptotechin and DNA breaks 

together with checkpoint activation when their formation is suppressed by 

inhibition of the Poly ADP-ribose polymerase (PARP) pathway (Ray-

Chaudhuri et al., 2012). This observation led to the suggestion that upon Top1 

poisoning transient reversal might be part of a PARP-mediated fork protection 

mechanism bypassing checkpoint activation. However, higher CPT doses are 

lethal for the cells (Ray-Chaudhuri et al., 2012), raising the possibility that 

reversed forks can only be tolerated as fork-restart intermediates at low levels 

of torsional stress. In this line, it was recently shown that human cells 

accumulate reversed forks upon oncogene over-expression in the absence of 

detectable DNA breaks and without fully activating the DNA damage 

response. In this context, reversed forks are tolerated for a limited number of 

cell cycles, before the induction of a delay in cell proliferation (Neelsen et al., 

2013).  

In the absence of a functional DNA checkpoint, reversed forks might represent 

terminal structures counteracting forks restart and prone to generate further 

aberrant intermediates (Sogo et al., 2002), consequently contributing to cells 

lethality following replication stress. In accordance with this view, checkpoint 

deficient human cells do not proceed in the cell cycle and accumulate reversed 

forks, together with chromosomal breaks, upon oncogene over-expression 
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(Neelsen et al., 2013). Mechanisms of fork restart in the absence of a functional 

checkpoint have not been described so far and mutations able to suppress fork 

reversal positively affect checkpoint deficient cells survival to replication stress 

inducing drugs (Bermejo et al., 2011). Therefore, reversed forks likely 

represent pathological structures whose formation at stalled forks, if not 

prevented through modulation of DNA topology, can cause cells death.  

However, a critical issue for cell viability upon fork collapse in checkpoint 

mutants might be the processing of reversed forks by unscheduled nucleolytic 

activities (Sogo et al., 2002; Cotta-Ramusino et al., 2005; Neelsen et al, 2013). 

Recently, Mus81 has been shown to be the main cause of cell lethality due to 

reversed forks cleavage upon premature mitotic entry, in checkpoint defective 

human cells (Neelsen et al, 2013). In budding yeast, Exo1 resects reversed 

forks (Cotta-Ramusino et al., 2005). I observed the formation of reversed forks 

also in the presence of lower concentrations of HU and in these conditions 

intermediates resulting from Exo1 processing were not observed. This 

observation might imply the nucleolytic processing is primed by prolonged 

fork stalling and is concomitant with replication forks collapse. 
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5.4 Exo1: the Maestro of fork resection.  

Collapsed forks are characterized by the appearance of aberrant replication 

intermediates, such as gapped or hemireplicated structures, thought to underlie 

loss of cell viability and genome instability in checkpoint mutants (Cotta-

Ramusino et al., 2005; Sogo et al., 2002). The S. cerevisiae Exo1 exonuclease 

actively metabolizes collapsed forks, and is thought to generate extended 

ssDNA patches (Cotta-Ramusino et al., 2005), that could interfere with fork 

restart and the completion of chromosomes duplication (Pellicioli and Foiani, 

2005). Exo1 is a phosphorylation target of Rad53 (Smolka et al., 2007) and it 

was proposed that checkpoint activation induced by telomere erosion down-

regulates its nuclease activity (Morin et al., 2008). It is therefore assumed that, 

in cells experiencing replication stress, checkpoint activation inhibits Exo1 to 

prevent deleterious processing of stalled forks. In this view, Exo1-mediated 

resection events, observed in rad53 mutants, leading to the accumulation of 

extended ssDNA tracks, could provide substrates for unscheduled 

recombination events. A similar role for Exo1 was proposed in the metabolism 

of replication forks collapsing upon topological stress accumulation by 

inactivation of Top1 and Top2 (Bermejo et al., 2007). Exo1 binds replication 

forks in the presence of replication stress both in wild type cells and rad53 

mutants (Cotta-Ramusino et al., 2005), suggesting that also in a checkpoint 

proficient context Exo1 activity might be finely modulated to preserve fork 

integrity. A possibility is that Exo1 prevents abnormal transitions at replication 

forks during unperturbed replication. Noteworthy, Exo1 plays a role in 

Okazaky fragments processing (Sun et al., 2003).  
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My analysis of replication intermediates accumulating at collapsed forks after 

in vivo stabilization by psoralen crosslink revealed that additional activities can 

engage stalled forks. However, Exo1 seem to have a prominent role in fork 

processing: first, upon fork collapse aberrant intermediates progressively 

disappear in rad53 cells. This effect might be mainly due to Exo1-mediated 

resection as intermediates seem more stable in rad53exo1 mutants. Second, 

additional aberrant replication intermediates accumulate in checkpoint 

defective cells upon EXO1 ablation. Prominently, X-shaped intermediates 

consistent with unresected reversed forks and small-Y shaped intermediates, 

likely resulting from branch-cleavage reactions of reversed forks, were 

observed.  

The reported persistence of unresected X-shaped reversed forks in exo1 

mutants, argues that Exo1 is the main activity metabolizing these structures. 

Given its 5’-3’ exonucleolytic activity, Exo1 could engage the double stranded 

extremity of the reversed branch formed by nascent strand annealing or engage 

the 5’ ends of Okazaki fragments at the lagging strand (Figure 47).  

 

 

Figure 47. Schematic representation of Exo1 putative substrates at collapsed 

forks. In checkpoint deficient cells, reversed forks, here depicted in blue, are 

processed by Exo1 (yellow packman) following 5’-3’ polarity. Red arrows indicate 
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putative substrates suitable for Exo1 nucleolytic activity (i.e. DNA ends and 5’ flaps 

arising during lagging strand replication).  

 

Intermediates consistent with nucleolytic resection are observed in EXO1 

ablated cells, indicating that additional nucleases can process collapsed forks. 

The data here presented indicate that Sae2 and Dna2 nucleases might resect 

stalled forks even in cells in which Exo1 is active. The fact that multiple 

enzymes act on collapsed forks might explain why deletion of EXO1 does not 

rescue rad53 cells viability in the presence of HU (Securado and Diffley, 

2008), as additional activities seem to generate aberrant structures precluding 

fork restart. In this view, genetic inactivation of these enzymes (i.e. Exo1, Sae2 

and Dna2) might suppress the lethality of checkpoint cells exposed to HU. This 

analysis, however, is hampered by the redundant roles played by these 

enzymes during unperturbed replication.  

 

EXO1 ablation leads to the accumulation of X-shaped reversed forks and 

small-Y shaped intermediates in rad53 mutants. Thus, Exo1 likely counteracts 

reversed fork accumulation by resecting nascent strands. This resection could 

take place prior to reversion, thus limiting the capacity of nascent strands to 

base-pair. Alternatively, Exo-1 mediated resection of annealed nascent strands 

would eventually resolve the four-way junction. Accumulation of Y-shaped 

intermediates in rad53exo1mutants suggests that Exo1-mediated resection 

counteracts branch cleavage reactions at reversed forks (Figure 48). In this 

scenario, Exo1-dependent processing might generate intermediate structures 

bearing ssDNA disrupting the continuity of the DNA joint structure, which 

might preclude its cleavage by HJ resolvases (Figure 48). 
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Figure 48. Schematic representation of Exo1 nucleolytic processing of collapsed 

forks in rad53 cells and correspondent intermediate of replications observed by 

2D gel. In rad53 mutants topological mediated formation of reversed forks is 

counteracted by Exo1 – dependent nucleolytic activity, likely through resection of 

DNA nascent ends. The disruption of the four branched structure continuity so formed 

might counteract also further nuclease processing. See text for details.  
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In this work, I could not unmask the identity of the X-nuclease mediating the 

predicted branched cleavage of reversed forks. Thus, the biological 

significance of small-Y shaped intermediates formation in rad53exo1 mutants 

remains unclear. These intermediates might represent pathological structures 

that arise in the absence of fork protection and their formation might thus be 

favored in the absence of Exo1- and Sae2-mediated resection (see below). In 

this view, these structures might be the consequence of eventual cellular 

attempts to repair collapsed forks.  

 

Therefore the function of Exo1 at stalled forks remains open. It could be 

viewed as a “Ying and Yang” role: is Exo1 aberrantly processing intermediates 

arising at collapsed forks or, alternatively, is it eliminating intermediates that 

could prime aberrant repair attempts leading to chromosomal rearrangements?. 

Further work will be necessary to address these non-mutually exclusive 

hypotheses. 
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5.5 Sae2: a novel player in replication fork processing. 

I found that the Sae2 nuclease contributes to the metabolism of collapsed forks. 

Deletion of SAE2 in rad53 mutants leads to the accumulation of X-shaped 

reversed forks migrating as a spike signal, on the expense of “cone” signal 

intermediates. This observation suggests that Sae2 can engage reversed fork 

structures upon fork collapse. This is a novel role for Sae2, which was 

previously implicated in early steps in the HR DSBs repair pathway (Mimitou 

and Symington, 2008). Sae2 is a checkpoint target phosphorylated by Mec1 

and Tel1, also during unperturbed cell cycles (Baroni et al., 2004). Sae2, as 

Exo1, bears a 5’- 3’ nuclease activity (Lengsfeld et al., 2007). It is therefore 

reasonable to think that Sae2 might process the reversed forks extruding branch 

(Figure 49), which resembles a double stranded chromosome, a substrate 

engaged by the enzyme during DSBs repair.  

 

 

Figure 49. Schematic representation of Sae2 putative substrates at collapsed 

forks. Reversed forks, here depicted in blue, are processed by Sae2 (black scissors) 

following 5’-3’ polarity. Red arrows indicate putative substrates suitable for Sae2 

nucleolytic activity (i.e. DNA ends and small gaps or nicks generated by the enzyme).  
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2D gel analysis showed that depletion of SAE2 favors the accumulation of 

small-Y intermediates. This suggests that this enzyme plays a role in reversed 

forks resection thus counteracting branch cleavage reactions at collapsed forks. 

Accumulation of small Y’s signal in sae2 cells was however less evident than 

in EXO1 ablated cells, suggesting that Sae2 carries out reversed forks resection 

less efficiently than Exo1. However, upon deletion of both SAE2 and EXO1, 

accumulation of branched cleaved small-Y molecules was strikingly increased, 

suggesting that both enzymes cooperate in reverse fork processing, and that in 

their absence branch cleave reactions are highly favored. Although other 

possibilities cannot be excluded, it is reasonable to think that Sae2 generates 

nicks or short ssDNA gaps thus providing entry points for Exo1 resection 

(Figure 50). A similar function has been proposed for Sae2 in DSB processing 

(Nicolette et al., 2010). 

 



132 

 

 

Figure 50. Schematic representation of the cooperative activity of Sae2 and Exo1 

at collapsed forks in rad53 mutants.  Reversed forks might be initially processed by 

Sae2, thus creating intermediates suitable for Exo1 processing. However, Exo1 would 

catalyze the same process in the absence of Sae2 activity.  

 

Our data indicate that Mre11, which can act as a partner of Sae2 in DSBs 

processing, is unlikely to play a role in reversed fork resection. This notion is 

in agreement with previous reports (Cotta-Ramusino et al., 2005). Furthermore, 

I found that Mre11 is dispensable for branch cleavage reactions at collapsed 

forks. These data hint at a function of Sae2 in collapsed fork processing 
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separable from Mre11’s. Sae2 and Mre11 cooperation has been extensively 

characterized in DSB repair and terminal fork protection (Mimitou et al., 2008; 

Doksany et al., 2009). However, different lines of evidence suggested unrelated 

roles for these enzymes (Lisby et al., 2004, Baroni et al., 2004). Interestingly, 

human EXO1 was shown to preferentially bind CtIP, the human homologue of 

Sae2, but not MRE11, both in unperturbed cells and in cells treated with CPT 

or HU (Eid et al., 2010). Moreover, concomitant depletion of CtIP and EXO1 

in cells treated with CPT leads to chromosomal rearrangements (Eid et al., 

2010). It would be therefore very interesting to clarify the possible mechanistic 

cooperation between the two enzymes in collapsed forks processing. 

Intriguingly, it was described that Sae2 and Mre11 cooperate in the 

stabilization of replication forks approaching DSBs in the template (i.e. 

terminal forks), in a mechanism also involving the checkpoint kinase Tel1 

(Doksany et al., 2009). Upon ablation of either these enzymes, terminal forks 

show X-shaped intermediates consistent with forks reversal and small Y 

shaped molecules resembling the proposed branch cleavage intermediates 

accumulating in rad53exo1 or rad53sae2 cells. It was proposed that branch 

cleavage reactions take place as part of the unrescuable terminal forks 

dismantling when processing by Sae2/Mre11 cannot occur (Doksany et al., 

2009). Based on the observations here reported, it is possible to think that a 

pathway equivalent to the one acting on terminal forks might attempt the 

dismantling of collapsed forks, thus avoiding the engagement of reversed forks 

in further genotoxic events.  

Importantly, sae2andexo1 are synthetic for HU sensitivity, suggesting that 

they share a common role in maintaining the integrity of forks challenged by 

replication stress in checkpoint proficient cells. These observation suggest that 
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Exo1 and Sae2 share a role in processing aberrant intermediates arising at 

stalled forks that if not metabolized by the enzymes would preclude replication 

re-start. Alternatively, aberrant structures could be stabilized at stalled forks 

when Exo1 does not take part in Okazaky fragments metabolism that might 

require Sae2 processing to preserve forks functionality.  

An important consideration previously mentioned is that eukaryotic cells, 

differently from procaryotes, can rescue collapsed forks by the firing of 

additional origins, and therefore it is reasonable to think that fork dismantling 

could be favored, as opposed to attempting re-start through HR-mediated 

mechanisms. In line with this idea, we observed that the endonucleolytic 

processing of collapsed forks occurs preferentially after long exposure to high  

HU concentrations, when reversed forks are likely to represent terminal 

structures. At lower doses of HU, intermediates compatible with reversed forks 

resection are not observed, suggesting that a more pronounced DNA synthesis 

inhibition promotes the formation of substrates for deleterious Exo1- and Sae2-

mediated and branch cleavage relations. 

In conclusion, the data here presented suggest a novel function for Sae2 in fork 

processing, in addition to the more prominent role exerted by Exo1.  
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5.6 DNA2: an alternative to reversion? 

Dna2 acts as nuclease in multiple cellular processes relevant for genome 

stability, such as DNA synthesis and DSBs processing (Bae et al., 2000; Zhu et 

al., 2008). During lagging strand maturation Dna2 cuts long RPA-coated 5’ 

flaps (Bae et al., 2001) in coordination with Fen1 and Exo1. Dna2 also 

contributes to DSBs repair by cooperating in DNA resection downstream of the 

MRX complex and Sae2, in a pathway that mutually excludes Exo1 (Mimitou 

and Symington, 2008; Zhu et al., 2008). Additionally, loss of function DNA2 

mutants are sensitive to hydroxyurea and both human and fission yeast Dna2 

are involved in the response to replication stress (Hu et al., 2012; Peng et al., 

2012).  

 

Dna2 was identified in our educated 2D gel screening as a novel factor 

processing reversed forks in rad53 mutants. Considering the nature of Dna2 in 

vitro substrates, it is reasonable to think that this enzyme could act on nascent 

strands at “long flaps” forming at Okazaky fragments or at reversed branch 

double stranded DNA ends upon the action of additional nucleases. Dna2 could 

cleave nascent strands thus eventually precluding base pairing upon their 

displacement from the parental strands (Figure 51).  
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Figure 51. Schematic representation of Dna2 putative substrates at collapsed 

forks. Reversed forks, here depicted in blue, are counteracted by Dna2 (green star) 

activity. Red arrows indicate putative substrates suitable for Dna2 (i.e. DNA ends and 

5’ flaps arising during lagging strand replication).  

 

  

S. pombe Dna2 was proposed to counteract fork reversal in checkpoint 

proficient cells experiencing replication stress. SpDna2 cleaves in vitro 

substrates resembling precursors of fork regression and reversed forks were 

observed by electron microscopy in dna2 mutants treated with HU (Hu et al., 

2012). In contrast, I did not observe reversed forks accumulation in budding 

yeast dna2 mutants, suggesting that Dna2 function is dispensable to stabilize 

stalled forks in this organism. A possible explanation for this apparent 

discrepancy may reside in the regulation exerted by the DNA damage response 

in fission yeast. SpDna2 is targeted by the Rad53 homolog Cds1. Dna2 

phosphorylation is thought to promote its association to replication forks upon 

replication stress (Hu et al., 2012). While S. cerevisiae Dna2 has been proposed 

to act as a checkpoint sensor stimulating Mec1 activity (Kumar et al., 2013), 

regulation of its activity by the DNA damage response has not been reported to 

date.  
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A key issue that remains open is which is of Dna2 biochemical activities is 

relevant in the processing of stalled replication forks, since Dna2 can act both 

as nuclease and helicase. S. pombe Dna2 was suggested to directly counteract 

reversed fork formation by nucleolytic resection of the nascent strands (Hu et 

et., 2012). I observed an increase in reversed forks accumulation in HU treated 

dna2-1rad53 cells, although I did not discriminate whether the exonucleolytic 

resection or the helicase unwinding activity is relevant to this function. While 

Xenopus laevis and human Dna2 have been implicated in fork stabilization 

(Wawrousek et al., 2010; Peng et al., 2012), the Xenopus protein helicase 

activity is not as efficient as the nuclease’ one in vitro (Liao et al., 2008). 

Altogether, these evidences suggest that Dna2 nucleolytic, rather than helicase, 

function might be relevant for stalled replication forks dynamics.  

I showed that Dna2 is dispensable for the branch cleavage of reversed forks 

observed in rad53exo1 mutants. As in the case of Exo1 and Sae2, it can be 

argued that Dna2-mediated resection of collapsed forks counteracts branch 

cleavage by an “endonuclease X”. I found that dna2-1exo1 double mutants 

exhibit a higher hydroxyurea sensitivity than the corresponding single mutants. 

Even if dna2-1exo1 display growth defects in the absence of HU, this 

observation suggests that Dna2 and Exo1 play independent roles in fork 

protection upon HU treatment. This situation resembles what occurs in the 

processing of DSBs, where the two enzymes work in two independent 

pathways (Mimitou et al., 2009).  
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5.7 Nucleases: a complicated puzzle.  

As mentioned in the introduction, a wide variety of substrate specific nucleases 

act to preserve genome integrity. Thanks to recent discoveries, their number, 

partners and functions in different metabolic pathways are increasing every day 

and to dissect the bundle of pathways cooperating in these networks is like to 

compose a complicated puzzle.  

In summary, the data collected in this work suggest that Exo1 is a major player 

in reversed forks metabolism. I report that also endonucleases Dna2 and Sae2 

counteract forks reversal in checkpoint mutants. This evidence hints at the 

presence of a novel pathway in which Exo1 and Sae2 might cooperate in 

stalled replication forks processing. The structural nature and biological 

significance of small-Y intermediates, predicted to result from branch 

cleavage, remain elusive as well as the identity of a putative nuclease “X” that 

would mediate this transition. The data here presented exclude that S. 

cerevisiae HJs resolvases Mus81 and Yen1, as well as the Rad1 and Slx1 

nucleases solely contribute to this process. I cannot, however, exclude the 

possibility that these enzymes act redundantly in mediating this cleavage. 

Moreover, HJ resolvases are a matter of intense investigation in recent years, 

and novel factors, perhaps the ones mediating the observed branch cleavage 

reactions, might be discovered and characterized in the next future. 
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