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“The fact that we live at the bottom of a deep gravity well, on the surface of a gas 

covered planet going around a nuclear fireball 90 million miles away and think this to 

be normal is obviously some indication of how skewed our perspective tends to be.”  

 

― Douglas Adams, The Salmon of Doubt: Hitchhiking the Galaxy One Last Time 
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ABSTRACT 
 

 

 About one third of acute myeloid leukemias (AML) is characterized by the 

aberrant cytoplasmic localization of nucleophosmin (NPM1), a ubiquitously 

expressed phosphoprotein that acts as a molecular chaperone and shuttles between 

nucleus and cytoplasm. Although several animal models have been generated to 

unravel the mechanism of action of the cytoplasmic mutant NPMc+, it remains poorly 

understood.  

In this thesis, we identified a novel function of both wild type NPM1 and NPMc+ in the 

modulation of Wnt signaling during zebrafish development and primitive 

hematopoiesis. The injection of NPMc+ and human NPM1 mRNAs in one cell stage 

zebrafish embryos reveals an opposite effect of the two proteins in the modulation of 

the Wnt signaling: NPM1 can inhibit the pathways whereas the mutant can activate it. 

Furthermore, NPM1 and NPMc+ have an opposite effect on the expression of dkk1b, a 

well known inhibitor of the Wnt pathway, and the co-injection of NPM1 and NPMc+ 

mRNA rescues the phenotype, suggesting a dominant negative effect of the mutant on 

the wild-type. Through whole mount in situ hybridization, markers of hematopoiesis 

have been studied revealing that the myeloproliferative effect of NPMc+ can be 

overcome by the co-injection of dkk1b, suggesting that the mutant can act by 

activating the pathway. 

Moreover, we generated an NPMc+ expressing mammalian in vitro system using a 

non-transformed hematopoietic/progenitor cell line (EML-C1). Although NPMc+ is 

strongly and stably expressed in EML-C1, we did not observe any phenotype or 

alteration in Wnt signaling.  
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Taken together, data presented in this thesis showed that NPMc+, the leukemogenic 

mutant of NPM1, is able to act in a dominant negative fashion on NPM1 and displays a 

myeloproliferative effect  during primitive zebrafish hematopoiesis. We showed that 

the proliferative effect of NPMc+ can be overcome by the simultaneous inhibition of 

the Wnt pathway through overexpression of dkk1b, suggesting that NPMc+ can 

activate Wnt signaling and that the pathway may be involved in the mechanism of 

NPMc+ AML establishment and/or progression. 
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1. HEMATOPOIESIS 

 

  

 Hematopoiesis is the process through which hematopoietic stem cells (HSC) give 

origin to all mature blood cells. These can be divided in two groups: myeloid and 

lymphoid lineages. The first group includes erythrocytes, platelets, monocytes, 

granulocytes (i.e. neutrophils, eosinophils and basophils) and mast cells, the second 

gives rise to natural killer (NK) cells, B and T lymphocytes. Dendritic cells can derive 

from both the myeloid and the lymphoid lineages [1].  

HSCs are multipotent cells, able to divide asymmetrically, giving origin to another 

HSC (self-renewal) and a committed progenitor that can differentiate toward the 

myeloid or lymphoid lineages (pluripotency) [2].  

Hematopoietic stem cells and progenitors can be identified by the expression of 

specific surface proteins that function as markers. The use of fluorescent antibodies 

directed against such surface markers, combined with the fluorescence activated cell 

sorting (FACS) technique allows the isolation of different populations of blood cells. 

In 1988, Spangrude et al tried to identify a minimal set of markers to define and 

isolate the HSC compartment [3]. Since then, different combinations have been 

adopted and optimized to isolate HSCs and progenitors, both in human and mouse.  

Three types of HSCs have been detected in the mouse, according to the classical 

model of hematopoiesis [4]. Long-term HSCs (LT-HSCs) are the more undifferentiated 

cells, capable of reconstructing and sustaining the hematopoietic system of a lethally 

irradiated mouse for the rest of its lifetime; they have a low rate of proliferation and 

usually reside in the G0 phase of the cell cycle. Conversely, short-term HSCs (ST-HSCs) 
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are actively proliferating cells that are able to sustain hematopoiesis for a limited 

period of time, namely 6-8 weeks. The third pool of HSCs is composed of committed 

progenitors, called multipotent progenitors (MPPs): they are actively proliferative 

cells that have lost self-senewal ability and give rise to the progenitors of the myeloid 

and the lymphoid lineages. LT-HSCs, ST-HSCs and MPPs form the LSK compartment 

(c-Kit+, Sca-1+, Lin−), as they share the expression of two markers of stemness, c-Kit 

and Sca-1, but do not express a panel of 5 lineage specific surface markers, consisting 

of Gr1 (granulocytic), Mac1 (monocityc/macrophagic), TER119 (erythroid), B220 (B 

lymphocytic), CD3e (T lymphocytic). The three LSK populations are distinguishable 

by the different expression of two markers, CD34 and FLT3: LT-HSCs are defined as 

LSK CD34− FLT3−, ST-HSCs are LSK CD34+ FLT3− while MPPs are LSK CD34+ FLT3+. 

Cells directly deriving from the division of MPPs form two groups of progenitors, the 

common lymphoid progenitors (CLPs) and the common myeloid progenitors (CMPs), 

responsible of the lymphoid and myeloid lineages, respectively. CLPs were identified 

for the first time in 1997, by Kondo et al. [5], as Lin−IL-7R+Thy-1−Sca-1loc-Kitlo. The 

CLP population is composed of oligopotent cells which have lost the ability of forming 

myeloid cells and present a strongly decreased expression of the stemness markers, 

c-Kit and Sca-1. It is the first population along the hematopoietic cascade that express 

the receptor for IL-7, an important and necessary cytokine for the B and T 

differentiation.  

A few years later CMPs were isolated and identified as Lin− Thy1− IL7Rα− Sca1− c-Kit+ 

FcγRIlo CD34+ [6].They give rise to more committed cells, the granulocyte and 

macrophage progenitors (GMP) which are defined as Lin− Thy1− IL7Rα− Sca-1− c-Kit+ 

FcγRIhi CD34+ and differentiate into granulocytes and monocytes, and the 

megakaryocyte and erythrocyte progenitors (MEP), which  can be isolated by the 
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combination of Lin− Thy1− IL7Rα− Sca-1− c-Kit+ FcγRIlo CD34− and give rise to 

megakaryocytes/plateles and red blood cells [1, 7].  

In the human hematopoietic cascade, long-term and short term HSCs have not been 

identified, but one pool of HSCs is generally defined by a CD34/CD90 positive and 

CD38/Lin/CD45Rα negative phenotype (CD34+ CD38− Lin− CD90+ CD45Rα−). The 

MPP population is identified by the loss of CD90 expression (Lin− CD34+ CD38− CD90− 

CD45Rα−). As in the mouse, in the human hematopoietic cascade two common 

progenitor populations have been identified: the CMP (Lin− CD34+ CD38+ IL-3Rαlo 

CD45Rα−), responsible for the myeloid lineage, and the CLP (Lin− CD34+ CD38+ 

CD10+) which accounts for B and T lymphocytes and NK cells [1].    

In a recent paper, new insights into the distinction between HSC and MPP have been 

provided suggesting that HSCs can be identified by the specific expression of CD49f, 

whose expression is lost in MPP [8].  

 

Figure 1. Hematopoietic cascade. Hematopoiesis may be depicted as a cascade, starting with 

hematopoietic stem cells that gives origin to progenitors at different differentiation stages and in turn 

to all blood lineages. HSC = hematopoietic stem cell, MPP = multipotent progenitor, CLP =  common 

lymphoid progenitor, NK = natural killer, CMP = common myeloid progenitors, GMP = granulocyte-

macrophage progenitors, MEP = megakaryocyte-erythrocyte progenitors. From [7]. 
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2. ACUTE MYELOID LEUKEMIA 

2.1. Classification of AML 

 Acute myeloid leukemia (AML) is a group of clinically and molecularly 

heterogeneous diseases characterized by the presence of immature white blood cells 

(myeloblasts) in the bone marrow and peripheral blood. AML pathogenesis is 

associated with abnormal cell proliferation, block in differentiation and/or 

suppression of apoptosis. Infiltration of the bone marrow with leukemic blasts 

interferes with the normal production of blood cells, causing anemia, fatigue, 

increased risk of infections and bleeding [9]. 

AML can be classified according to two different systems: the FAB and WHO 

classifications. The French-American-British (FAB) method is based on histologic and 

cytogenetic parameters and distinguishes 8 main subtypes of AML based on the 

morphology and maturation of leukemic blasts [10, 11]. 

 

Table 1. FAB classification of AML 

Type FAB categories 

M0 Undifferentiated acute myeloblastic leukemia 

M1 Acute myeloblastic leukemia with minimal maturation 

M2 Acute myeloblastic leukemia with maturation 

M3 Acute promyelocytic leukemia 

M4 Acute myelomonocytic leukemia 

M4eo Acute myelomonocytic leukemia with eosinophilia 

M5 Acute monocytic leukemia 

M6 Acute erythroid leukemia 
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M7 Acute megakaryocytic leukemia 

 

The FAB classification does not supply information about the prognostic perspective 

of the disease. Conversely, the classification of the World Health Organization (WHO) 

is based not only on the genetics but also on immunophenotypic, clinical and 

prognostic aspects, subdividing AML into 7 main categories and several 

subcategories. 

 

Table 2. WHO classification of AML 

WHO categories 

Acute myeloid leukemia with recurrent genetic abnormalities 

Acute myeloid leukemia with myelodysplasia-related changes 

Therapy-related myeloid neoplasms 

Acute myeloid leukemia, not otherwise specified 

Myeloid sarcoma 

Myeloid proliferations related to Down syndrome 

Blastic plasmacytoid dendritic cell neoplasm 

 

 

2.2. Two-hit model 

 It is well accepted that many of the leukemic mutations are not able to generate 

AML per se, but at least two independent mutations (“hits”) are necessary for disease 

establishment.  

Kelly and Gilliland described the different genetics of chronic and acute myeloid 

leukemia: while chronic myeloid leukemias (CMLs) are caused by constitutively 

activated tyrosine kinases that confer a proliferative advantage to hematopoietic 
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progenitors, AMLs are characterized by a cooperation between mutations in the 

tyrosine kinases and alterations in the differentiation process and only when the two 

processes, proliferation and differentiation, are altered, AML may develop [12].  

Indeed, more than one function - proliferation, apoptosis, differentiation - needs to be 

altered to start the leukemogenic process. AML mutations are indeed classified in four 

groups depending on the cellular function which they are involved in [13]: 

• Class I: genes involved in signal transduction. Mutations in these genes 

generally lead to an increase of cellular proliferation. Examples of class I genes 

are FLT3 and c-KIT; 

• Class II: mutations affecting genes involved in differentiation, such as RUNX1, 

PU.1 and RARα, which cause a block in cell differentiation; 

• Class III: epigenetic modifiers, e.g. IDH 1/2, TET2, DNMT3A; 

• Class IV: mutations in oncosuppressor genes, namely TP53 and WT1. 

 

2.3. Clonal heterogeneity in AML 

 AML patients harbor several mutations in their leukemic blasts: some of which 

are necessary for leukemia development and progression (driver mutations) while 

the majority are stochastic mutations due to hyper-proliferation, but confer no 

selective advantage to the leukemic clone (passenger mutations). 

 A recent advance in leukemia research includes the aim to unravel the dynamics of 

disease progression by understanding the timing of appearance of mutations during 

clonal evolution, thereby identifying which mutations are initiating events or 

cooperating alterations [14]. Stem/progenitor cells possess several genetic 

abnormalities that can be considered as passenger mutations that accumulate over 

time. These mutations are not able to initiate leukemogenesis. The appearance of a 

driver mutation affecting one of the 4 classes of genes mentioned in paragraph 2.2 
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gives a proliferative advantage to the “mutated” cell that then expands into a clone. 

The original, founding clone possesses all the passenger mutations of the pre-

leukemic cells and the initiating mutation. Subclones develop from the first and 

subsequent clones by acquisition of further passenger and driver mutations, 

increasing the genomic complexity of AML blasts at the time of diagnosis. A recent 

study comparing mutations found in AML blasts of 6 patients versus their normal 

counterpart showed that 32 out of 51 mutations were already present in non-

leukemic hematopoietic stem cells [15]. Interestingly, 7 out of 13 mutations typically 

found in AML, such as TET2 and NPM1, are present in non-leukemic cells, which the 

authors define as “preleukemic” stem cells [15], prone to gaining a proliferative 

advantage and become leukemic stem cells. 

Similar studies were performed to compare the clonal heterogeneity at the onset and 

at relapse of the disease. Ding and collaborators analyzed results of whole genome 

sequencing of samples of 8 AML patients, comparing mutations in the relapse versus 

the primary leukemia. They suggest two possible clonal evolution patterns in relapse: 

either the same initiating clone of the primary leukemia gains new mutations and 

evolves in the relapse clone, or a new subclone of the initiating cell emerges by 

gaining new mutations, thus evolving into the relapse initiating clone. Further 

analyses support the first hypothesis, suggesting that small subclones of the primary 

leukemia can bypass chemotherapy and develop into the relapse-responsible clones 

[16]. These studies are generating a new outlook on leukemia progression and 

relapse by challenging the concept of tumor clonality.  

 

 

 

 



 

 

3. Nucleophosmin and acute myeloid leukemia

3.1. NPM1 and NPMc+ 

 Nucleophosmin (NPM1), also called 

phosphoprotein of the nucleoplasmin family of chaperones. 

NPM1 gene which is formed by 12 exons and localizes

chromosome 5. Due to alternative splicin

more highly expressed and displays

mainly in the nucleoplasm and whose biological significance is still mostly unknown.

NPM1 can shuttle between the nucleus and the cytoplasm

balance between signals in the protein sequence: 

one nuclear localization signal (NLS) 

Figure 2. NPM1 and NPMc+. Cartoon representing domains and cellular localization signals of the two 

NPM1 isoformes, called B23.1 and B23.2. B23.1 is the most abundant within the cells, whereas B23.2 

lacks a C-terminal domain. The altered C

depicted in orange. From [18] 

 

NPM1 is involved in a wide range of fun

transport of pre-ribosomal particle

biogenesis, centrosome duplication and 

keeping with its chaperone activity, it 
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Nucleophosmin and acute myeloid leukemia 

 

, also called B23 or numatrin, is a ubiquitously expressed 

of the nucleoplasmin family of chaperones. NPM1 is encoded by 

ich is formed by 12 exons and localizes in the long arm of the 

chromosome 5. Due to alternative splicing, two isoforms are reported: B23.1

displays a nucleolar localization, and B23.2, 

whose biological significance is still mostly unknown.

NPM1 can shuttle between the nucleus and the cytoplasm [17], controlled by

signals in the protein sequence: two nuclear export signals

(NLS) and one nucleolar localization signal (NoLS)

 

Cartoon representing domains and cellular localization signals of the two 

NPM1 isoformes, called B23.1 and B23.2. B23.1 is the most abundant within the cells, whereas B23.2 

terminal domain. The altered C-terminal domain present in NPMc+, also called NPMmut, is 

ed in a wide range of fundamental cellular processes, among them

ribosomal particles across the nuclear membrane and 

biogenesis, centrosome duplication and response to stress (reviewed in

activity, it interacts with histones, enhancing DNA 

is a ubiquitously expressed 

NPM1 is encoded by 

in the long arm of the 

B23.1, that is 

, localized 

whose biological significance is still mostly unknown. 

, controlled by the 

two nuclear export signals (NES), 

(NoLS).  

Cartoon representing domains and cellular localization signals of the two 

NPM1 isoformes, called B23.1 and B23.2. B23.1 is the most abundant within the cells, whereas B23.2 

led NPMmut, is 

among them 

 ribosome 

(reviewed in[19]). In 

enhancing DNA binding 
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and the assembly of nucleosomes [20]. NPM1 has also been reported to interact with 

and control the localization and stabilization of well known tumor suppressors 

including p53[21], Arf [22] and Fbw7γ[23] , suggesting its involvement in 

proliferative and apoptotic pathways. 

NPM1 is over-expressed in a variety of cancers, including gastric, ovarian and colon 

carcinomas, and its overexpression is associated with an increase in cellular survival, 

caused by the inhibition of pro-apoptotic pathways (reviewed in [19]). Mutations of 

the gene as well as chromosomal translocations are characteristics of myeloid and 

lymphoid disorders: it has been suggested that NPM1 can help the dimerization and 

oligomerization process of derived oncogenic fusion proteins, namely NPM-ALK, 

NPM-RARα and NPM-MLF1 [24].  

 

3.2. NPMc+ AML 

 Mutations in NPM1 are detected in approximately 30% of AML and it is the most 

common genetic alteration found in the large group of AML without chromosomal 

translocations (normal karyotype, NK-AML) [25]. So far, more than 40 mutations 

have been described, the vast majority in the last exon of NPM1: the most frequent 

mutation, called mutation A, encompasses around 70% of cases and consists of the 

insertion (duplication) of a TCTG tetranucleotide after the position 959 of the NPM1 

coding sequence [26]. All mutations cause a frameshift in the 3’ region of the gene, 

resulting in the loss of one or both tryptophan residues at positions 288 and 290. This 

modification leads to the disruption of the NLS and the formation of a de novo NES, 

thus altering the balance of the localization signals. Consequently, the protein 

encoded by the mutated NPM1 gene is mislocalized to the cytoplasm [27-29]. The 

name of the mutated protein, NPMc+, and the associated leukemia, NPMc+ AML, 
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derive from the cytoplasmic localization of the mutated NPM1 protein in AML 

patients’ blasts [30].  

NPMc+ AML has been introduced as a provisional entity under the “Acute myeloid 

leukemia with recurrent genetic abnormalities” category in the 2008 version of WHO 

classification of hematopoietic diseases [31]. Conversely, based on the FAB 

classification, NPMc+ AMLs are present in all subtypes except for M3, but it is more 

frequent in the more mature myelomonocytic subtypes M4 and M5 [25, 32]. NPM1 

mutations are mutually exclusive with recurrent leukemic chromosomal 

translocations, such as AML1-ETO and PML-RARα [33]. Some evidence suggests that 

NPMc+ is a primary mutation in the disease: it is often the only alteration found in 

leukemic blasts [34] and when present, other genetic alterations can be detected only 

in a fraction of the leukemic clone, suggesting that they may represent secondary 

events in leukemic progression [35].  

Moreover, NPMc+ AMLs are often CD34 negative [36] and are strongly associated 

with the appearance of FLT3-ITD (internal tandem duplication of the fms-related 

tyrosine kinase 3 gene) [25]: FLT3-ITD+ AMLs have a poor prognosis compared to 

FLT3-ITD- due to a different response to chemotherapy [32, 37-39].  

NPMc+ AML is characterized by a specific gene expression profile: members of 

homeobox genes of group A and B, as well as MEIS1 and PBX3 are overexpressed 

[40]. Other genes involved in the maintenance of hematopoietic stem state are 

positively modulated [40], suggesting that the mutation appears in an early 

progenitor, as supported also by the multi-lineage involvement [41]. Moreover, it is 

associated with a specific miRNAs profile, in part regulating Hox genes [42, 43]. 
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3.3. NPMc+ in the establishment of the disease  

 The mechanism of action of NPMc+ in the establishment and/or progression of 

the disease is still not completely understood. However, the balance between the 

amounts of wild-type (wt) and mutant proteins and protein dosage seem to play an 

important role.  

As reported by Grisendi et al. [44], NPM1 haploinsufficiency leads to an increased 

genomic instability, suggesting a decrease in NPM1 function in centrosome 

duplication during mitosis. Moreover, the authors showed that lack of one allele is 

sufficient per se for erythroid and megakaryocytic dysplasia, features of human 

myeloproliferative neoplasms [44]. In AML patients, the situation is less striking: 

correct centrosome duplication seems to be maintained, as suggested by the strong 

association of NPMc+ AML with normal karyotype. Nonetheless, the function may be 

partially impaired, as supported by the low number of numerical chromosome 

alterations found in patients.  

Decrease of the wt function and the concomitant presence of the mutant form can  

interfere with the correct function of pathways controlling DNA damage. NPM1 is 

indeed able to interact and control the localization and stabilization of regulators of 

genome stability, namely p53, HDM2 (and its murine counterpart MDM2) and ARF. 

ARF is generally sequestered in the nucleolus via NPM1 and is released upon stress 

stimuli in order to stabilize p53 in the nucleoplasm, leading to activation of pathways 

of apoptosis, cell cycle arrest and/or senescence. It has been proposed that part of the 

leukemogenic potential of NPMc+ resides in the maintenance of its interactions with 

partners of wt NPM1, thereby delocalizing partner proteins to the cytoplasm and 

interfering with their function. In the case of ARF, NPMc+ delocalizes the protein to 

the cytoplasm, increasing its instability and its degradation and thus impairing p53 

functions [45]. The expression of NPMc+ also leads to the cytoplasmic delocalization 
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of Fbw7γ, a regulator of c-Myc that interacts with NPM1: Fbw7γ is no longer able to 

contribute to the ubiquitination and degradation of c-Myc, whose cellular level 

increases, promoting cell proliferation [23].    

NPMc+ might have a dominant negative effect on its wt counterpart: the mutant form 

can interact with the wt, leading to a decrease in the nuclear pool of NPM1 and 

limiting the amount of protein available for the completion of its functions [27, 29]. 

The relevance of a fine control on NPM1 dosage was demonstrated by in vitro 

experiments: in fact, overexpression of  NPM1 enhances cell growth and inhibits 

apoptosis [19]. Maggi and coworkers  demonstrated that NPM1 levels correlate with 

and control the rate of protein synthesis: decreased levels of NPM1 diminished the 

nuclear export of both the 40S and 60S ribosomal subunits while a modest increase of 

NPM1 enhanced the export of newly synthesized rRNAs; the authors concluded that 

NPM1 itself is rate limiting in this process [46].  

NPM1 can directly and indirectly regulate transcription. It contributes to the control 

of chromatin accessibility due to its activity as a histone chaperone and its role in 

nucleosome assembly. It recruits histone acetyl transferases (HATs) and deacetylases 

(HDACs) to chromatin, thus regulating the acetylation state of DNA [47], and it acts as 

modulator of specific transcription factors like YY1 and NF-κB [48, 49]. Moreover, 

NPM1 interacts with hexamethylene bis-acetamide-inducible protein (HEXIM1), an 

inhibitor of the elongation of Polymerase II (PolII) transcripts: NPMc+ delocalizes 

HEXIM1 to the cytoplasm, with an enhancement of PolII transcription [50]. 

Other studies describe diverse functions of NPM1 and NPMc+. For example, Sagawa 

and colleagues confirmed that NPM1 is deposited on mRNA and influences mRNA 3’ 

end processing and nuclear export [51]. In 2013, Noguera et al. identified a novel 

interactor of NPM1: both the wt and the mutant proteins can bind to herpes virus-

associated ubiquitin specific protease (HAUSP) [52]. In the cytoplasm, HAUSP 
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regulates the deubiquitination of PTEN, helping its entry into the nucleus. The 

binding of NPM1 and NPMc+ to HAUSP inhibits its effect on PTEN, which is degraded 

through the proteasome. The authors conclude that this mechanism of nuclear PTEN 

depletion can contribute to survival and proliferation of leukemic cells [52]. 

In summary, NPM1 is a pleiotropic protein with multiple functions in cell homeostasis 

and its mutant NPMc+ may therefore be capable of interfering with multiple cellular 

processes.  

 

3.4. NPMc+ animal models 

 Several animal models have been generated to elucidate the molecular 

mechanism underlying the development of AML bearing NPM1 mutations.  

The ablation of the Npm1 gene in mice results in embryonic lethality between E11.5 

and E12.5: Npm1‒/‒ embryos are smaller in size compared to wt and show 

developmental defects, including deficient anterior brain organogenesis and 

hematopoietic defects [44, 53]. In particular, they have a reduced number of 

hematopoietic precursors and a decreased number of blood islands in the yolk sac; 

the differentiation ability of hematopoietic precursors is also impaired [44]. A milder 

phenotype is showed by a homozygous hypomorphic mutant, Npm1hy/hy, confirming 

the important role of NPM1 in development of brain and blood [44]. Heterozygous 

Npm1+/‒ mice are  viable and show features of human myelodysplastic syndrome 

(MDS), such as increased mean corpuscular volume and abnormal platelet count [44].  

Cheng and coworkers described the first mouse model carrying NPMc+ in which 

NPMc+ expression was driven by a human myeloid promoter (MRP8) and led to 

features of myeloproliferation in bone marrow and spleen, as shown by enhancement 

of the mature granulocyte/monocyte (Mac1+, Gr1+ cells) compartment [54]. A 

myeloproliferative phenotype was reported also in zebrafish: knockdown of 
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endogenous npm1a in zebrafish embryos resulted in a reduction in the number of 

myeloid cells that was specifically rescued by human NPM1, while the expression of 

NPMc+ in zebrafish embryos led to expansion of primitive and definitive 

hematopoietic cells [55]. 

In 2011, Vassiliou and collaborators described the leukemic phenotype of a 

conditional knock-in mouse model carrying a humanized mutation of NPM1: the 

region surrounding the TCTG mutation in the exon12 of NPMc+ was inserted in the 

corresponding region of exon 11 of Npm1 [56]. The peculiarity of this model is that 

the mutated allele is controlled by the endogenous promoter of Npm1, maintaining 

the balance of mutated versus wt alleles. These mice showed enhancement of Hox 

gene expression, a feature shared with NPMc+ AML in humans [40], and 

myeloproliferation followed by development of late-onset AML, suggesting that 

NPMc+ is not sufficient per se for leukemic transformation but requires additional 

mutations [56]. Taking advantage of the Sleeping Beauty system, the authors 

identified known and not yet described cooperating mutations, such as for example, 

mutations in Nf1 and Nup98 genes [56].  

One of the known cooperating mutation of NPMc+ in leukemia establishment is FLT3-

ITD. Mice carrying both the NPMc+ and FLT3-ITD mutations developed AML with 

short latency as reported in two independent studies [57, 58].  

The interaction of hematopoietic stem cells (HSC) with their niche also appears to be 

important for the myeloproliferative effect of NPMc+. A recent knock-in mouse model 

that mimics the human mutation showed the downregulation of CXCR4/CXCL12 

related genes, suggesting that a modification in the HSC/niche interaction could be 

part of the mechanism of action of NPMc+[59].  
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4. WNT SIGNALLING 

4.1. Canonical and non-canonical pathways 

 A common feature of many subtypes of AML is the deregulation of Wnt signaling, 

which has a pivotal role in the maintenance of HSCs and in differentiation of blood 

cells [60]. 

The Wnt pathway is activated by lipid-modified extracellular molecules, the Wnt 

ligands, that bind to receptors at the membrane of responding cells, triggering 

modification in the cellular structure and gene/protein expression profile. 19 genes in 

murine and human genomes encode different Wnt ligands that bind to members of a 

family of seven-pass transmembrane receptors called Frizzled, which transmit the 

signal inside the cell.  

In the absence of Wnt ligands, β-catenin, the main effector of the so-called canonical 

pathway, is sequestered in a multiprotein cytoplasmic complex (“destruction 

complex”) which includes AXIN, Adenomatous Polyposis Coli (APC), glycogen 

synthase kinase 3 beta (GSK3β) and casein kinase 1 (CK1). β-catenin is 

phosphorylated by GSK3β and CK1, ubiquitinated by beta-transducing repeat-

containing protein (βTRCP) and then degraded in the proteasome [60-62]. 

The pathway becomes active when the Wnt ligand binds to the receptor. This binding 

causes activation of the receptor and phosphorylation of the co-activator LRP5/6 by 

GSK3β and CK1: together with the scaffold protein DVL (Dishevelled), they recruit 

AXIN to the membrane, resulting in the stabilization of β-catenin and its accumulation 

in the cytoplasm. β-catenin can then enter the nucleus and bind to transcriptional co-

activators of the TCF/LEF1 family to direct the expression of target genes, such as 

CyclinD1, AXIN and TCF [63]. 
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Figure 3. Canonical Wnt signaling. Not active (a) and active (b) canonical Wnt signaling are depicted 

in these two panels. When the pathway is not active, β-catenin is phosphorylated within the 

destruction complex formed by APC, GSK3β, CK1α and other scaffold proteins. Phosphorylated and 

ubiquitinated β-catenin is degraded throught proteasome. The activation of the pathway avoids the 

formation of the destruction complex, β-catenin accumulates and activates the expression of target 

genes. DKK1 = Dickkopf homologue 1, LRP5/6 = LDL-receptor-related protein 5/6, DVL = mammalian 

homologue of Drosophila Dishevelled, APC = adenomatous polyposis coli, PP2A = protein phosphatase 

2A, GSK3β = glycogen synthase kinase 3β, CK1 = casein kinase 1, AXIN1 = axis inhibition protein 1,β-

TRCP = β-transducin-repeat-containing protein, GRG/TLE = Groucho/transducin-like enhancer, HDAC 

= histone deacetylase, CTBP = C-terminal binding protein, TCF = T-cell factor, ICAT = cell autonomous 

inhibitor of β-catenin and TCF, PYGO = Pygopus, LGS = legless. From [63]. 

 

Different Wnt ligands such as Wnt5a and Wnt4 are able to activate other signaling 

pathways, defined as non-canonical. The two better characterized non-canonical 

pathways are the Wnt - Ca2+ and the planar cell polarity (PCP) pathways. In the first, 

the interaction between the Wnt ligand and the receptor leads to an increase of 

intracellular calcium concentration with the subsequent activation of calcium-

sensitive enzymes, such as PKC and CaMKII. In the PCP pathway, ligand-receptor 

binding results in the activation of RHOA and RAC leading to the activation of JNK 

kinase and cytoskeleton rearrangement [64].  
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Figure 4. Non canonical Wnt signaling. Wnt ligands are able to activate pathway that do not have β-

catenin as principal effector. Planar cell polarity pathway (a) leads to the activation of JNK (Jun N-

terminal kinase) and the expression of JUN target genes and to alteration in the cellular cytoskeleton. 

Wnt – Ca2+ signaling (b) is based on the increase of intracellular concentration of calcium and the 

activation of Ca2+ - sensible enzymes, namely CAMKII (calcium calmodulin mediated kinase II) and PKC 

(protein kinase C). DVL = mammalian homologue of Drosophila Dishevelled, DAAM = Dishevelled-

associated activator of morphogenesis, RHOA = RAS homologue gene-family member A, RAC1 = ras-

related C3 botulinum toxin substrate 1, ROCK = RHO-associated coiled-coil-containing protein kinase 

1, PtdInsP2 = phosphatidylinositol-4,5-bisphosphate, PLC = phospholipase C, PDE6 = 

phosphodiesterase 6, DAG = diacylglycerol, CDC42 = cell-division cycle 42, InsP3 = inositol 

trisphosphate, NFAT = nuclear factor of activated T cells, AP1 = activator protein 1. From [63]. 

 

4.2. Inhibition of the canonical Wnt pathway 

 The canonical Wnt pathway can be inhibited by physiological molecules and 

chemical compounds. Dickkopf (DKK) is a family of secreted proteins, rich in 

cysteines, that recognize and bind to the LRP5/6 co-receptor, preventing its 

interaction with Frizzled and inhibiting the activation of the receptor itself [65]. Four 

members of the family are encoded in the human genome (three in mouse), called 

DKK1-4, and elicit different effects on Wnt signaling, probably through the interaction 

with another receptor called Kremen [66].  The first member of the family, DKK1 is 

the orthologue of the Xenopus dkk1, whose effect on the canonical pathway and on 

the vertebrate development has been extensively studied. In 1998, Glinka and 
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colleagues described dkk1 as a potent Wnt inhibitor and a head inducer, showing that 

its over-expression lead to the formation of a secondary head [67]. Dkk1 is necessary 

for head formation also in mammals, as shown by Mukhopadhyay et al. [68] in mice.  

DKKs are not the only inhibitors of the pathway. Wnt ligands can bind to secreted 

forms of the frizzled molecules, called Secreted Frizzled Related Proteins (SFRPs), 

avoiding the interaction with the transmembrane receptor and thus attenuating the 

signal [69]. Other inhibitors are Wnt inhibitory factor (WIF), which binds to Wnt 

ligands , and ICAT (inhibitor of β-catenin and TCF-4) that interacts with  β-catenin 

preventing its interaction to TCF/LEF complex [70]. 

A large series of compounds that act as Wnt signaling inhibitors has been discovered 

or developed. First, antibodies against the Wnt ligands or the Frizzled receptors can 

easily block or reduce the signal, but other components of the pathway can also be 

targeted [70]. NSC668036 is a chemical compound that recognizes and binds to the 

PDZ domain of DVL, inhibiting its role as scaffold protein in the recruitment of AXIN 

and APC to the membrane [70]. β-catenin is also a target: non-steroidal anti-

inflammatory drugs, such as indomethacin and sulindac derivates, can 

indirectly decrease the level of total β-catenin, modulating the signal [71, 72]. 

Finally, two other groups of compounds can inhibit the pathway: the inhibitors of 

Wnt response (IWR), which interact with and stabilize Axin and therefore the entire 

destruction complex, and the inhibitors of Wnt production (IWP), which interact with 

Porcupine, a protein involved in the secretion of Wnt ligand, thereby decreasing their 

release in the extracellular environment [70]. 
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4.3. Wnt in development 

 Wnt pathways are involved in many developmental processes. Wnt signaling is 

indeed fundamental for the specification of the dorso-ventral and antero-posterior 

axis in the developing embryo. 

Early Wnt signaling is important for dorso-ventral axis formation: experiments 

conducted in Xenopus and zebrafish showed that the accumulation of β-catenin in the 

dorsal nuclei of the fertilized eggs is fundamental for the formation of the organizer, a 

region that dictates the future dorso-ventral patterning of the embryo [73, 74].  

Moreover, Wnt molecules in the ventral region of the embryo at gastrulation 

indirectly limit expression of organizer specific genes, like chordin [74, 75]. 

Evidence that the overexpression of Wnt8 through two different techniques (mRNA 

or plasmid injection) gives rise to different phenotypes (secondary axis formation in 

the first case, posteriorization of the embryo in the latter) suggests that the 

involvement of Wnt signaling in development is stage-specific [73].  

 

Figure 5. Effect of Wnt pathway during early development. Activation of Wnt signaling before 

gastrulation plays an important role in the determination of the dorso-ventral axis, with Wnt pathway 

components that are more present in the dorsal region of the embryo, together with BMP pathway. 

After gastrulation, Wnt signaling dictates the antero-posterior fate: Wnt pathway is more active in the 
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posterior part of the embryos where it activates late target genes which are necessary for ventral and 

posterior mesoderm formation. β-cat = β-catenin, BMP = bone morphogenetic pathway, Cdx = caudal 

type homeobox, Vent = ventral expressed homeobox, Gbx = gastrulation brain homeobox, Msx = 

muscle segment homeobox. From [73].  

 

Formation of the antero-posterior axis is determined by two gradients of molecules in 

a later stage of development, after gastrulation: a group of Wnt ligands, activators of 

the pathway, are expressed in the posterior part of the embryos while an opposite 

gradient of Wnt inhibitors, like Frzb and Dkks, springs from the region of the head 

and counteracts the posteriorizing effect of Wnts [73, 74]. The role of Wnt in antero-

posterior specification has been proved also in mammals by the phenotype of 

knockout mice lacking genes involved in the Wnt pathway [73, 74]. 

Non-canonical Wnt signaling, in particular the PCP pathway, is involved in an 

important step in the early stages of development. Cellular remodeling and 

movement are fundamental processes for the correct formation of the embryos 

during vertebrate development, and their deregulation leads to mislocalization of 

future adult tissues: groups of cells belonging to the three germ layers are localized 

correctly by movements of convergence and extension (CE movements). Wnt11 and 

Wnt5a are necessary for the correct formation of the head because of their 

involvement in CE processes [76, 77]. 

  

4.4. Wnt in hematopoiesis 

 The first evidence of Wnt signaling activation in hematopoiesis emerges from a 

study in 1997, which demonstrated that Wnt ligands were expressed in murine fetal 

liver [78]. Further studies revealed that Wnt ligands and receptors are expressed in 

the murine yolk sac, aorta-gonad-mesonephros and fetal liver, sites of murine 

primitive hematopoiesis [79]. Gain- and loss-of-function experiments confirmed the 

importance of Wnt signaling in mammalian primitive hematopoiesis. First, treatment 



39 

 

with Wnt10b increased proliferation of murine fetal liver hematopoietic progenitors 

in vitro [78], while Wnt3a-/- mice showed a strong reduction of hematopoietic 

progenitors in fetal liver and embryonic lethality [80]. Recently, Clements and 

collaborators demonstrated that the expression of Wnt16 is required for the 

beginning of definitive hematopoiesis [81].  

Wnts are indeed expressed in HSCs and their microenvironment: Van den Berg and 

coworkers showed that three Wnt ligands, Wnt2, Wnt5a and Wnt10b, are expressed 

in human bone marrow cells and, in particular Wnt5a is expressed in a pool of HSCs 

and progenitors [82], while Wnt3a, Wnt5a and Wnt10b are expressed in murine bone 

marrow [83]. In a recent paper, Luis and collaborators took advantage of the Axin2LacZ 

reporter mice to analyze canonical Wnt signaling activation in different 

hematopoietic populations: this model allows the identification of cells expressing 

AXIN2, a well known target of the β-catenin dependent pathway. They showed that 

Wnt signaling presents different levels of activation in different subsets: Wnt is mildly 

activated in HSCs and progenitors and strongly activated in thymocytes, while it is 

reduced or absent in mature myeloid cells and along the B lineage [84].  

To better analyze the role of Wnt signaling in hematopoiesis, several gain- and loss-

of-function experiments have been conducted. One of the first studies revealed that 

transduction of a constitutively active β-catenin in Bcl2 expressing hematopoietic 

stem/progenitor cells increased both proliferation in vitro and repopulation capacity 

in lethally irradiated mice [85]. More recently, activation of Wnt signaling by 

administration of a GSK3β inhibitor has been reported to enhance engraftment of 

both murine and human HSCs [86, 87]. Huang and coworkers described a dual effect 

of GSK3β inhibition, an expansion of HSCs and the concomitant decrease of their 

reconstitution ability [88]. Similar results were obtained in transgenic mice which 

expressed a stabilized form of β-catenin: transient expansion of HSCs, differentiation 
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block and defects in reconstitution [89, 90]. Conversely, the combination of pro-

survival pathways (Akt activation through PTEN deletion) and Wnt signaling 

activation enhances HSCs self-renewal and reconstitution capability [91]. Moreover, 

another model, the ApcMin/+ mouse which carries a mutated form of APC, showed 

enhanced repopulation ability of HSCs [92].  

Conflicting results were also obtained by loss-of-functions experiments. For example, 

conditional deletion of β-catenin using a Vav-Cre transgene did not impair the 

formation of HSCs but affected their reconstitution ability [93] whereas using an IFN-

inducible Mx-Cre transgene, β-catenin deletion did not affect either the self-renewal 

or the reconstitution ability of HSCs [94]. Inhibition of Wnt signaling was achieved 

also by overexpression of DKK1 in the osteoblastic stem cell niche by Fleming and 

collaborators, showing a decrease in the self-renewal capability of HSCs [95].  

The recent paper by Luis and colleagues demonstrated that different levels of Wnt 

activation have specific effects at different steps of the hematopoietic cascade. 

Combining three different alleles of Apc, the authors obtained five Wnt signaling 

levels in vivo [84]. Low levels of Wnt activation drive the maintenance of self-renewal 

and reconstitution capacities of HSCs, as shown by competitive limiting dilution 

transplantation assay, but these properties of HSCs are inhibited by intermediate and 

high levels of Wnt activation. An intermediate level of Wnt activation enhances 

myeloid differentiation, as shown by the increased number of 

granulocyte/macrophage (GM) and macrophage (M) colony-forming units (CFU) in 

methylcellulose assay and the expansion of the GMP compartment, without affecting 

the number of differentiated myeloid cells. Conversely, the highest level of Wnt 

activation leads to a strong reduction in the number of colonies, suggesting that when 

the signaling is too high, the hematopoietic process is impaired [84]. This new model 

can explain the conflicting phenotypes that resulted from different strategies in gain- 
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and loss-of-function experiments; for example, the expression of a constitutively 

active form of β-catenin can induce a high activation of Wnt pathway that leads to 

exhaustion of HSC pool [89, 90], while in the conditional β-catenin knock-out model, 

which does not show effects on HSC behavior [94, 96, 97], a residual amount of 

protein (70% and 25%, [60]) may be sufficient to sustain HSC self-renewal and 

repopulation ability.  

 

4.5. Wnt pathway in acute myeloid leukemia 

 Wnt signaling is involved not only in physiological steps of hematopoiesis but its 

alteration is part of the leukemogenic process. 

Wnt signaling can be altered by epigenetic modifications: alteration in methylation 

status of Wnt inhibitors, namely sFRPs and Dkks genes, was detected in AML cell lines 

and patients, suggesting an upregulation of the Wnt pathway in AML [98, 99].  

In recent years, correlation between leukemia-associated lesions and alteration of 

Wnt signaling has been assessed. Müller-Tidow and collaborators analyzed the effect 

of the expression of three leukemia-associated fusion proteins, AML1-ETO, PML-

RARα and PLZF-RARα [100] and demonstrated that the fusion proteins induce 

expression of γ-catenin, a homologue of β-catenin. γ-catenin in turn activates TCF and 

LEF transcriptional activity and modulates expression of Wnt target genes, namely c-

Myc and CyclinD1 [100]. Moreover, inhibition of the pathway through the expression 

of a dominant negative form of TCF4 decreases cell growth in AML1-ETO expressing 

Kasumi-1 cell line [100]. Another group confirmed the ability of the AML associated 

fusion proteins to induce the expression of γ-catenin by directly activating its 

promoter and in turn γ-catenin can increase the replating efficiency of HSCs [101].  

Wang and collaborators demonstrated that a leukemic model expressing MLL-AF9 

displays an increase of unphosphorylated, active β-catenin in GMPs; they also showed 
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that expression of a constitutively active form of β-catenin in a leukemic mouse model 

driven by the combination of HoxA9 and Meis1 contributes to the establishment of 

AML in recipient mice [102]. Interestingly, deletion of β-catenin decreased self-

renewal of leukemia initiating cells and impaired leukemia development in 

transplanted mice [102].  

Other studies revealed that canonical Wnt signaling is involved also in the 

development of mixed-lineage leukemia (MLL) leukemic stem cells: β-catenin 

knockdown decreased proliferation in a MLL human cell line and the  frequency of 

CFU blasts in MLL patients [103]. The authors also demonstrated that resistance to 

GSK3β inhibitors of MLL leukemic stem cells depends on β-catenin [103]. 

 

 

5. Zebrafish as a tool for hematopoiesis and leukemia 

5.1. Overview 

 Zebrafish has become a powerful model in recent years thanks to its interesting 

features: the large number of eggs, the external fecundation and the transparency of 

the embryo. It has a short life cycle: in 24-36 hours, precursors of major organs are 

formed [104] and it becomes adult in three months. 

Several techniques of forward and reverse genetics can be applied to easily modify 

the zebrafish genome. Large scale mutation screening based on chemical mutagens, 

like N-ethyl-N-nitrosourea (ENU), or modified retroviruses allowed the discovery of 

genes involved in hematopoiesis: an example is the kugelig (kgg) mutant that 

presents a mutation in cdx4, a gene involved in the regulation of Hox genes, and 

shows severe anemia and a shortened tail [105].  

Genes can be targeted by the use of morpholino or by the ZFNs (zinc finger nucleases) 

technique. Morpholinos are small oligonucleotides designed to recognize and bind to 
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the AUG region or splicing boundaries of defined mRNAs: the first inhibits the 

formation of the corresponding protein avoiding the interaction of the ribosome 

machinery with AUG, the latter interferes with splicing and leads to the formation of 

shorter mRNAs and truncated proteins. Morpholinos are generally used to study the 

effect of the knockdown of the gene of interest in early embryogenesis: they are 

injected into one-cell stage embryos and their effect is maintained for up to 5 days, by 

which degradation and dilution make them insufficient to maintain the knockdown. 

Before the introduction of the ZFNs technique, reverse genetics was based on 

chemical or retroviral mutagenesis followed by screening of mutations in the gene of 

interest, very similar to the forward genetic approach. Nowadays, the use of modified 

zinc finger nucleases enables cutting of double strand DNA within a gene of interest 

and knocking out the gene after imperfect DNA repair [106]. 

Zebrafish has been used as a model to study hematopoiesis and leukemia: zebrafish 

hematopoiesis (described in paragraph 5.2) is similar to the mammalian 

hematopoietic cascade and the accessibility of the embryos from the early stages of 

development allows a detailed analysis of the formation of the embryonic 

hematopoietic system. Moreover, the easy manipulation of the embryo, the existence 

of transgenic and mutant strains and the short life cycle permit faster readouts when 

compared to the mouse system.  

Two examples of human fusion proteins that have been studied in zebrafish are 

AML1-ETO [107] and NUP98-HOXA9 [108]. AML1-ETO expression leads to defects in 

hematopoiesis and blood circulation: cytological and molecular studies revealed an 

accumulation of  immature cells resembling leukemic blasts, and alterations in gene 

expression parallel to those detected in human AML1-ETO derived AML [107]. AML1-

ETO was used to screen for new chemical-modifiers for the effect of the oncoprotein 

on hematopoiesis, revealing the involvement of COX-2–  and β-catenin–dependent 
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pathways in its leukemogenic mechanism [109]. These studies demonstrate that the 

generation of leukemia models in zebrafish helps to uncover the molecular 

mechanism of the disease. 

 

5.2. Zebrafish hematopoiesis 

 Similarly to what occurs in mammals, zebrafish hematopoiesis can be divided 

into distinct waves. Primitive hematopoiesis accounts for the formation of myeloid 

and erythroid precursor cells in the early stages of the embryo, and takes place in two 

locations, the anterior lateral mesoderm (ALM) and posterior lateral mesoderm 

(PLM), which later in development give origin to the rostral blood island (RBI) and 

the intermediate cell mass (ICM), respectively. A later step of primitive hematopoiesis 

(“intermediate hematopoiesis”) takes place in a tissue located in the posterior region 

of the embryo, the posterior blood island (PBI), where a group of erythromyeloid 

committed progenitors arises. These cells are able to differentiate into both 

erythrocytes and myeloid cells. Definitive hematopoiesis is responsible for the 

formation of all lineages, myeloid and lymphoid, present in the adult fish [110].  

 

Figure 6. Areas of primitive hematopoiesis in zebrafish embryo. Primitive hematopoiesis occurs in 

different regions along the embryo’s body.  At 10 hpf expression of tal1, an hematopoietic/endothelial 

markers appears in the anterior lateral mesoderm (ALM, depicted in red) and posterior lateral 

mesoderm (PLM, depicted in blue). The ALM develops in the rostral blood island (RBI) while the PLM 

gives rise to the intermediate cell mass (ICM). A transient waves of blood cells production occurs in the 

posterior blood island (PBI) at 24 hpf. Pictures modified from [111] 
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Primitive hematopoiesis begins at 10 hours post fertilization (hpf) when groups of 

cells forming two stripes in the ALM and in PLM of the embryo start to express tal1 

(also called scl). Two major hypothesis have been proposed for the identity if these 

tal1+ cells: they could be either hemangioblasts, namely precursors of both 

hematopoietic stem cells and endothelial progenitors, suggesting a common origin for 

blood cells and vessels, or parallel populations of angioblasts and primitive 

hematopoietic progenitors [112]. In any case, hematopoietic precursors in ALM and 

PLM start to express a panel of markers, which are mostly transcription factors 

orchestrating hematopoiesis, like tal1, lmo2 and gata2 [112, 113]. 

 

 

Figure 7. Primitive and definitive zebrafish hematopoiesis. Zebrafish hematopoiesis may be 

divided in three distinct waves. Primitive hematopoiesis starts at about 10 hpf (hours post 

fertilization) in two areas, the ALM (anterior lateral mesoderm) and the PLM (posterior lateral 

mesoderm); it gives origin to myeloid (depicted in blue) and erythroid cells (depicted in red). A 

transient phase of both myeloid and erythroid cells production occurs later in PBI (posterior blood 

island) area. Definitive hematopoiesis starts at 24 hpf in the AGM (aorta gonad-mesonephros) where 

hematopoietic progenitors expressing c-myb and runx1 appear. Hematopoietic progenitors (depicted 

in grey) then migrate towards definitive hematopoietic sites, thymus nad kidney marrow, after a 

transient phase of blood cells production in the caudal hematopoietic tissue. The definitive 

hematopoiesis accounts for the formation of all the zebrafish blood lineages: myeloid (blue) and 

erythroid (red) cells, lymphocytes (green), thrombocytes (yellow). Modified from [114]   

At the stage of five somites, approximately 12 hpf, a subpopulation of cells in the PLM 

starts to express gata1, a transcription factor governing erythroid differentiation. 
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Cells begin differentiating in proerythroblasts and enter the blood stream at around 

24 hpf. Circulating cells can be easily identified by the expression of alas2,  α and β 

hemoglobin chain genes [112, 113].  

At early stages of development a small population of cells in ALM starts to express 

pu.1 and to differentiate in myeloid cells. These myeloid precursors give rise to 

macrophages that migrate rostrally and spread on the yolk sac and along the 

embryo’s body. pu.1 is expressed also in the ICM and the PBI where its function in 

myeloid differentiation is counteracted by gata1. The reciprocal inhibition of the two 

transcription factors regulates the fate of cells in these two regions: in ICM gata1 is 

predominant and only a small subpopulation differentiates into neutrophils, while in 

the PBI a majority of myeloid cells is generated [110]. 

Definitive hematopoiesis starts at about 24 hpf when cells from the ventral wall of the 

dorsal aorta start to express c-myb and runx1, markers of definitive hematopoietic 

progenitors. The endothelium of the dorsal aorta corresponds to the aorta gonad-

mesonephros (AGM) region in the mouse embryo as the first site of adult HSCs 

formation. In zebrafish, HSCs emerge directly from the aortic floor through a runx1-

depending process that is called endothelial-hematopoietic transition (EHT). EHT 

involves the bending and exiting of single endothelial cells into the sub-aortic space, 

transforming into hematopoietic cells [115, 116]. Around 48 hpf, c-myb+ runx1+ cells 

move towards the caudal hematopoietic tissue (CHT) in the posterior region of the 

embryo [117, 118]. Later, starting from 3-4 days post fertilization (dpf), 

hematopoietic progenitors are present in the thymus where they give rise to T 

lymphocytes, and in the pronephros. In adults, hematopoiesis takes place in the 

kidney, where HSCs are intercalated among the renal tubules, giving rise to 

erythrocytes (from 5 dpf), which differently to the mammals maintain the nucleus, B 

lymphocytes (from 19 dpf), granulocytes and  monocytes (from 7 dpf) [112, 113].  
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AIM OF THE PROJECT 

 

 

The aims of this project were: 

a. to analyze the effect of both NPM1 and NPMc+ on zebrafish development and 

primitive hematopoiesis; 

b. to recapitulate the effects of NPMc+ in a mammalian in vitro system, in an 

attempt to dissect the molecular mechanism underling the NPMc+ derived 

Wnt modulation. 

To fulfill the first aim, we focused our attention on processes of zebrafish 

development that are known to be controlled by Wnt signaling. In particular, we 

analyzed the maintenance of correct convergence and extension movements at early 

developmental stages to study the effect of NPMc+ on non canonical Wnt signaling, 

while canonical Wnt signaling modulation was studied through the expression of 

dkk1b, a target of maternal signaling which is able to inhibit the zygotic Wnt pathway. 

Moreover, we took advantage of the TOP:GFP transgenic strain to monitor the 

activation of the canonical Wnt pathway in more developed embryos. Again, given the 

involvement of NPMc+ in leukemia, we analyzed the expression of hematopoietic 

markers (namely gata2, lmo2 and tal1 for hematopoietic precursors, gata1 for the 

erythoid lineage, pu.1 for myeloid precursors, l-plastin and mpx for mature myeloid 

cells). 
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In the second part of the project, we characterized a retrovirally infected  

immortalized murine hematopoietic stem/progenitor cell line that expresses NPMc+. 

NPMc+ cells were studied for their proliferation and myeloid differentiation capacity, 

expression level of Wnt target genes and response to Wnt activation and inhibition. 

Finally, we analyzed activation of Wnt signaling in AML patients’ blasts, through the 

analysis of expression of Wnt target genes and components of the canonical Wnt 

pathway.  
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Zebrafish strains and maintenance 

Tüebingen wild-type and transgenic Tg(gata1:dsRED)[119], Tg(mpx:GFP)[120], 

Tg(TOP:GFP)[121] zebrafish strains were maintained and bred according to standard 

procedures [122].  

 

Antisense morpholino oligonucleotides and RNA injection 

Antisense morpholino oligonucleotide was designed (GeneTools, LLC) against the 

exon2-intron2 splice site of npm1a (Splicing Block MO, SBmo). (5′-

CAGTTCACAACCTGTAAAACATAAA-3′). 

 Zebrafish dkk1b, human NPM1 and NPMc+ cDNAs were cloned into pCS2+ plasmid. 

10 µg of each construct were digested with NotI, purified with PCR purification kit 

(QIAGEN) and used as template for and in vitro transcription using the mMessage 

mMachine SP6 kit (Ambion) to generate capped RNAs. Zebrafish embryos were 

microinjected at 1 cell stage into the yolk using a combination of the following: 120 pg 

synthetic human NPM1 mRNA, 100 pg of NPMc+ mRNA, 50 pg of dkk1b mRNA and 10 

ng of SBmo-npm1a; mRNAs and morpholino were diluted in Danieu medium (8 mM 

NaCl, 0.7mM KCl, 0.4 mM MgSO4, 0.6 mM Ca(NO3)2, 5.0 mM HEPES pH 7.6) with 1% 

rhodamine-dextran to assess the accuracy of the injection procedure. Injected and 

control gata1:dsRED transgenic embryos were directly viewed at the microscope at 

indicated stages. 

 

Whole-mount in situ hybridization  

The mRNA probes were synthesized as follows: 1 μg of each vector was lineared with 

the corresponding restriction enzyme and in vitro transcribed with T7, T3 or SP6 
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RNA polymerase as reported in table 3. To produce digoxigenin (DIG) labeled mRNA 

probes the DIG-RNA labeling mix (Roche) was used. 

 

Table 3. Vector name, restriction enxyme and RNA polymerase used for probe synthesis 

Probe Vector Restriction Enzyme RNA Polymerase 

rx3 pBS-SK XbaI T7 

pax2a pGEM-3 zf(+/-) BamHI T7 

ntl pBS-KS HindIII T7 

dlx3 pBS-SK XbaI T7 

hgg1 pBS-SK XhoI T3 

dkk1b pSPORT1 SalI SP6 

gata2 pCRII-TOPO BamHI SP6 

pu.1 pBK-CMV EcoRI T7 

tal1 pBK-CMV SalI T7 

lmo2 pBK-CMV EcoRI T7 

l-plastin pSPORt1 EcoRI SP6 

 

Embryos were dechorionated at indicated stages using pronase (Sigma) diluted in E3 

water and fixed overnight at 4°C with 4% paraformaldehyde (PFA) in phosphate-

saline buffer (PBS) solution. Whole mount in situ hybridization was performed as 

previously described by Thisse et al. [123]. Probes were recognized by an alkaline 

phosphatase conjugated anti-Digoxigenin antibody (Roche) and signal was detect 

with NBT/BCIP solutions. Embryos were then immersed in 85% glycerol, flat-

mounted and viewed with a Leica stereomicroscope. 
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Immunoperoxidase staining 

In Tg(TOP:GFP) and Tg(mpx:GFP) transgenic embryos, the GFP expression was 

revealed with an antibody against GFP (TP401, Torrey Pines Biolabs) and 

subsequently by colorimetric reaction using peroxidase, conjugated to the secondary 

antibody, and 3,3'-Diaminobenzidine (DAB).  

 

Cell lines  

EML-C1,  purchased from ATCC (CRL-11691), and derived cell lines were maintained 

in Iscove’s Modified Dulbecco Medium (IMDM) medium supplemented with 20% 

(v/v) of heat inactivated horse serum, 15% (v/v) of BHK/MKL conditioned medium 

as a source of SCF, 2 mM L-glutamine, 100 U/mL penicillin and 100 μg/mL 

streptomycin. OCI-AML2 and OCI-AML3 were maintained in α-MEM medium 

supplemented with 20% heat inactivated calf serum, 2 mM L-glutamine, 100 U/mL 

penicillin, and 100 μg/mL streptomycin. 

Phoenix cells were maintained in DMEM medium supplemented with 10% heat 

inactivated calf serum, 2 mM L-glutamine, 100 U/mL penicillin, and 100 μg/mL 

streptomycin and transfected with MSCV-GFP-empty vector, MSCV-GFP-NPMc+, 

pBABE-puro-empty vector and pBABE-puro-DKK1 plasmids following the 

manufacter’s protocol. Cell supernatant containing retroviral particles was collected 

and concentrated by addition of PEG 8000 overnight and pelletted for 45 minutes at 

3000 RPM. EML-C1 cells were infected with spin infection in 24-well plates that were 

centrifuged for 45 minutes at 1800 RPM. Infected cells were then sorted with an Aria 

Cell Sorter (BD Bioscience) or selected by administration of puromycin.  
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Dkk1 cloning  

p53-/- MEFs mRNA was retrotranscribed using the ImProm-II™ Reverse 

Transcription System (Promega), following manufacturer’s instruction. Full-length 

cDNA was amplified by PCR using the Phusion high-fidelity DNA polymerase kit 

(NEB). PCR primers were designed to carry EcoRI and BamHI restriction enzyme 

recognition sites at their 5’ end. Sequences of primers are the following: forDkk1 - 5’-

CGGGATCCCGATGATGGTTGTGTGTGCAGC-3’ and revDkk1 - 5’-

CGGAATTCCGTTAGTGTCTCTGGCAGGTGT-3’. PCR products were separated in a 1% 

agarose gel and the band corresponded to the expected length of 840nt was cut and 

the DNA was isolated using the QIAquick PCR purification kit (QIAGEN) following 

manufacturer’s instruction. Insert and pBABE DNA were digested with EcoRI and 

BamHI restriction enzymes for 90 minutes at 37°C and enzymes were inactivated by 

20 minutes at 65°C. In order to avoid  empty plasmid reformation plasmid, linearized 

vector was dephosphorylated by Antarctic Phosphatase (NEB). The ligation reaction 

was performed by incubating 100 ng of digested and dephosphorylated vector and 16 

ng of digested insert  with T4 DNA ligase (NEB) overnight at 16°C. Ligation product 

was transformed in bacterial competent cells; colonies were grown in 2 ml of LB 

media with 100 μg/ml of ampicillin overnight at 37°C on a shaking incubator; DNA 

plasmid was extracted using the QIAprep Spin Miniprep kit (QIAGEN)  and  digested 

with EcoRI and BamHI in order to control that the insert was present  Further, a DNA 

sequencing was done in order to control the correct sequence of the insert. 

 

Myeloid cell differentiation 

EML-C1 cells were differentiated along the myeloid lineage in IMDM medium 

supplemented with 20% (v/v) horse serum, 8% BHK/MKL conditioned medium as 

SCF  source, 8%  WEHI 3B conditioned medium as IL3  source, and 5 μM of all-trans 
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retinoic acid (ATRA) (medium A). Cells treated in medium A for three days 

differentiate into promyelocytes. Cells were then washed and further differentiated in 

IMDM medium supplemented with 20% horse serum and 10ng/ml of GM-CSF 

(Peprotech) (medium B).  

 

Flow cytometry and FACS analysis 

To assess the expression of surface markers, cells were harvested, washed twice with 

cold 1X PBS, blocked for 30 minutes with FcR blocking reagent (Miltenyi Biotech) 

diluted 1:100 in 2% BSA 1X PBS and incubated for 30 minutes with following 

fluorochrome-conjugated antibodies: anti-mouse c-kit-PE, anti-mouse Sca-1-PE-Cy7, 

anti-mouse CD11b-PE-Cy7, anti-mouse Gr-1-PE-Cy7 (eBioscience). Anti-mouse 

IgG2b-PE and anti-mouse IgG2a/b-PE-Cy7 were used as isotype controls. Antibodies 

were diluted 1:100 (PE-conjugated antibodies) or 1:200 (PE-Cy7 – conjugated 

antibodies) in a volume of 100 μl. Cells were then washed twice with cold PBS and 

analyzed with a BD FACScalibur flow cytometer (BD Bioscience). Analyses were 

performed and elaborated using CellQuest software (BD Bioscience). 

 

Western blot 

Cells were harvested and washed three times in PBS,  lysed in laemmli buffer (63 mM 

Tris-HCl pH 6.8,  10% glycerol, 2% SDS, 0.1% β-mercaptoethanol) and stored at -

20°C. 15 to 30 μg of whole cell lysate were loaded in 10-12% sodium dodecyl sulfate -

polyacrylamide gels and separated through gel electrophoresis (SDS-PAGE). 

Separated proteins were then transferred to Protrane nitrocellulose membranes (GE 

Healthcare) or PVDF membranes (Millipore) for antibody probing. Membranes were 

incubated with either 5% non-fat milk or 5% BSA in TBST for one hour at room 

temperature (RT) or overnight at 4°C, then incubated for variable times with the 



58 

 

suitable antibodies diluted in either 5% non-fat milk or 5% BSA in 1X TBST, washed 

with TBST and incubated with a dilution of 1:20000 of secondary antibody for one 

hour at RT. The antibody was then  visualized using enhanced chemiluminescence 

(ECL) western blotting detection reagents (Amersham) followed by autoradiography. 

These antibodies were used: T26 mouse anti-NPMc+ [124], mouse anti-CyclinD1 

(1:2000, Cell signaling, cat. 2926), rabbit anti-phosphoPKC (1:1000, Cell signaling cat. 

9371), rabbit anti-Dkk1 (1:500, Santa Cruz Biotechnology, cat. sc-25516), mouse anti-

vinculin (1:10000 Sigma). 

 

Quantitative real-time polymerase chain reaction (qPCR) 

Cells were harvested, washed twice in cold PBS and  RNA was extracted using the 

QIAGEN RNeasy kit. RNA was quantified with Nanodrop and 500 ng – 1 μg of 

template RNA was retrotranscribed into cDNA using random primers and the 

ImProm-II™ Reverse Transcription System (Promega). 20 ng of the resulting cDNA 

were used for each real-time PCR reaction with 0.4 μM primers, 10 μl of SYBR Green 

Fast Reaction Mix (Applied Biosystem) diluted in a final volume of 20 μl. 

Accumulation of fluorescent products was monitored by real-time PCR using the 

7500 Fast Real-Time PCR System (Applied Biosystems). Sequences of primers are 

reported in tables 4, 5 and 6. 

 

Table 4. Sequences of primers used to analyzed Wnt target genes  and Wnt components in 

murine cells 

 Forward Reverse 

Axin1 GGGCCCCCTCAAGTAGAC CCCTCCAAGATCCATACCTG 

Axin2 GGTTCCGGCTATGTCTTTGC CAGTGCGTCGCTGGATAACTC 

Tcf7 CAGCTCCCCCATACTGTGAG TGCTGTCTATATCCGCAGGAA 
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Ctnnb GCAGCAGCAGTTTGTGGA TGTGGAGAGCTCCAGTACACC 

Gsk3β TTCTACAGGACAAGCGATTTAAGA CGGACTATGTTACAGTGGTCTAGC 

Dvl ACTTCACCCTCCCTCGAAA GAGGAGCCAGGGTAAGCAG 

Ccnd1 GAGATTGTGCCATCCATGC CTCCTCTTCGCACTTCTGCT 

Tbp CTGGAATTGTACCGCAGCTT TCCTGTGCACACCATTTTTC 

 

 

Table 5. Sequences of primers used to analyze Wnt target genes and Wnt components in 

patients’ blasts. 

 Forward Reverse 

MYC CACCAGCAGCGACTCTGA GATCCAGACTCTGACCTTTTGC 

CCND1 GAAGATCGTCGCCACCTG GACCTCCTCCTCGCACTTCT 

AXIN2 ACAACAGCATTGTCTCCAAGCAGC GCGCCTGGTCAAACATGATGGAAT 

AXIN1 ATGGAGCTCTCCGAGACAGA TAGTACGCCACAACGATGCT 

CTNNB GCTTTCAGTTGAGCTGACCA CAAGTCCAAGATCAGCAGTCTC 

TBP CGGCTGTTTAACTTCGCTTC CACACGCCAAGAAACAGTGA 

 

Table 6. Sequences of primers used to analyze Hox genes in murine cells 

 Forward Reverse 

HoxA1  CCTTGGCAGTGGCGACTCT GCGCAGGATTGGAAAGTTGT 

HoxA4 CCGGAGAATGAAGTGGAAGAAA GCCGAGGCAGTGTTGGAA 

HoxA5 TAGTTCCGTGAGCGAACAATTC GCTGAGATCCATGCCATTGTAG 

HoxA6 CCTATTTTGTGAATCCCACTTTCC CAGCTGGCCCAAGAAGGA 

HoxA7 ACGCGCTTTTTAGCAAATATACG GGGTGCAAAGGAGCAAGAAG 

HoxA9 CCGAACACCCCGACTTCA TTCCACGAGGCACCAAACA 

HoxA10 CACAGGCCACTTCGTGTTCTT TTGTCCGCAGCATCGTAGAG 
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HoxB2 GCTCGCCGAGTGTCTGACTT AATGTCGACTCCTTGATTGATGAA 

HoxB5 GGGCAGACTCCACAGATATTCC GGGTCAGGTAGCGATTGAAGTG 

HoxB6 TTCCTATTTCGTGAACTCCACCTT CCGCATAGCCAGACGAGTAGA 

HoxB9 TGTCCATTTCTGGGACGCTTA GAACACCGGCGCTTTGG 

 

Murine primary stroma  

Bones of 6 to 8 weeks old C57BL/6J mice were taken and crushed. The resulting cell 

suspension was passed through a 70 μM cell strainer (BD Bioscience), cells were 

washed and resuspended in IMDM medium supplemented with 12.5% heat 

inactivated calf serum, 12.5% heat inactivated horse serum, 2 mM L-glutamine, 5x10-

5 M β-mercaptoethanol and 5x10-7 M hydrocortisone (Sigma), 100 U/mL penicillin, 

and 100 μg/mL streptomycin. Cells were plated in 15 mm Petri dishes and medium 

was changed once a week to support growth of bone marrow stroma cells. 

 

Long-term culture-initiating colonies (LTC-IC) 

Primary stromal cells were seeded in 6-well plates at a concentration of 500000 cells 

/ml. After two days, cells were irradiated with 15 Gy using a Faxitron 43855F and left 

in culture for another 2 days. After this time the medium was changed and NPMc+ or 

control MSCV cells were seeded on top of them; half of the medium was changed once 

a week during the long-term culture assay. After 6 weeks, cells were harvested and 

diluted 1 to 10 in M3236 methylcellulose containing medium (Stem Cell technologies) 

supplemented with 20% heat-inactivated horse serum, 50 ng/ml of SCF, 2 ng/ml of 

IL-3, 2 ng/ml of IL-6, 10 ng/ml of GM-CSF (Peprotech) and seeded in 35 mm culture 

plates for 7 days.  
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Colony-forming unit (CFU) assays 

Cells were cultured at the density of 1.0 × 103/ml in M3236 methylcellulose 

containing medium supplemented with 20% heat-inactivated horse serum and either 

50 ng/ml of SCF for CFU-Blast or 50 ng/ml of SCF and 2 ng/ml of IL-3 for CFU-GM. 

Colonies were counted with  ImageJ software after 7 (CFU-GM) or 14 days (CFU-

Blast). 

 

BrdU incorporation and cell cycle analysis 

Cells were incubated in growth medium containing 33 μM of bromodeoxyuridine 

(BrdU) for 15 minutes, then washed in PBS and permeabilized in cold 70% ethanol 

for 30 minutes. Cells were washed, denatured with 2 N HCl (denaturing solution) for 

25 minutes at RT and neutralized with 0.1M Sodium Borate for 2 minutes at RT. They 

were then incubated in a 1:5 dilution of mouse anti-BrdU antibody in 1% BSA for 1 

hour at RT,  washed, incubated in a 1:50 dilution of Cy3-conjugated anti-mouse 

secondary antibody in 1% BSA for 1 hour at RT, resupended in a solution of 2.5 µg/ml 

of propidium iodide (PI) and 250 µg/ml RNase and incubated overnight at 4°C. BrdU 

incorporation was read with a BD FACScalibur flow cytometer (BD Bioscience). 

Analyses were performed and elaborated using CellQuest software (BD Bioscience). 

 

Immunoprecipitation 

OCI-AML2 and OCI-AML3 cells were harvested, washed in cold PBS and lysed in the 

indicated buffer supplemented with protease and phosphatase inhibitors. Whole cells 

lysates were quantified with Bradford and aliquots of 1 mg were diluted in a total 

volume of 600 μl in the corresponding buffer. 4 μg of anti-NPM1 (Invitrogen), anti-

NPMc+ [124], anti-GRP78 (Abcam, cat. ab21685) or control antibodies (anti-V5, santa 
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cruz, cat.  sc-271944; anti-flag, Sigma, cat. F3165)were added to the solution and 

incubated overnight at 4°C. The following day, 50 μl of sepharose conjugated beads or 

dynabeads were resuspended in the corresponding buffer and added to the solution 

for 1 hour. Beads were pulled down, washed three times with the corresponding 

buffer and the immunoprecipitate was separared from the beads by adding 30 μl of 

blue laemmli (loading buffer – laemmli buffer supplemented with bromophenol blue) 

and incubated for 5 minutes at 95°C. Samples were then loaded on a polyacrilamide 

gel for coomassie staining using the Novex Colloidal Blue Staining kit (Invitrogen) or 

for western blot. 

The composition of buffers used for protein work was: 

- Buffer1: 50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 1mM DTT, 0.5% 

NP-40 

- Buffer2: 25 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM EDTA, 0.5% NP-40  

- Modified RIPA: 50 mM Tris-HCl pH 7.6, 150 mM NaCl, 0.5% NP-40 

- RIPA: 50 mM Tris-HCl pH 8, 150 mM NaCl, 1% NP-40, 0.1% SDS, 0.5% sodium 

deoxycholate 
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1. NPM1 and NPMc+ modulate Wnt signaling in zebrafish 

development and primitive hematopoiesis 

1.1. Effect of NPM1 and NPMc+ expression on zebrafish morphology 

 Previous works in our group revealed that PRDM5, a transcription factor 

belonging to the PRDM gene family, negatively modulates Wnt signaling during 

zebrafish development [125]. Further mass spectrometry analysis showed that 

PRDM5 interacts with NPM1 (data not published). We therefore decided to analyze 

whether NPM1 and its leukemogenic mutant NPMc+ could in turn modulate Wnt 

signaling. 

We injected increasing amount of human NPM1 and NPMc+ mRNA in one-cell stage 

embryos, in order to identify the maximum quantity of mRNA that gives a phenotype 

without a toxic effect. Embryos were injected with 50 pg, 100 pg, 150 pg and 200 pg 

of either NPM1 and NPMc+ mRNAs and their morphology was analyzed at 24 hours 

post fertilization (hpf).  

As reported in figure 8, NPM1 injected embryos were divided into 3 classes based on 

their morphology. The first class was composed of embryos showing the strongest 

phenotype, namely a small head and small tail, in some cases with unrecognizable 

anatomical structures (fig. 8A). These embryos might be affected by the injection 

itself or their morphology was the result of a large amount of mRNA that was 

absorbed from the yolk into the developing embryo, impairing its early development. 

The second class included embryos which were partially affected by mRNA injection 

(intermediate phenotype) and showed a general reduction of the body and of the tail 

in particular (fig. 8B). The third class was composed of embryos which did not display 

any major morphological abnormalities and were quite similar to the wild-type (fig. 
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8C-D). Around 120-150 pg of in vitro transcribed mRNA of human NPM1 were 

injected into one-cell stage zebrafish embryos in the following experiments, 

representing the concentration that allowed us to obtain a mild phenotype without 

any toxic effect. 

 

 

Figure 8. NPM1 mRNA injection in zebrafish embryos. Wild-type embryos were injected at one-cell 

stage with increasing amount of NPM1 mRNA. Embryos were observed at 24 hpf and classified 

according to their morphology. Stronger phenotypes correspond to a stronger rhodamine signal. A-C: 
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examples of embryo’s morphology for each class; D: uninjected control; E. percentage of embryos 

classified each morphological classes upon injection of 50 pg, 100 pg, 150 pg or 200 pg of NPM1 mRNA. 

 

In parallel, embryos were injected with 4 quantities of in vitro transcribed mRNA of 

the most common NPM1 mutation isolated from AML patients (mutation A), which 

we referred to as NPMc+: NPMc+ mRNA injected embryos were divided in three 

classes, depending on their morphology. Class I comprised all embryos with the 

strongest phenotype, frequently with unrecognizable body structures (fig. 9A). Class 

II was composed of embryos with defects in the body and the head: they were 

characterized by a shorter body, a stocky tail and an enlarged posterior 

hematopoietic region, located posteriorly to the end of the yolk extension (fig. 9B). 

Class III included embryos similar to wild-type (fig. 9C). NPMc+ injection resulted in a 

stronger phenotype when injected in the same concentration as the wild-type, 

therefore a concentration of 100 pg was used to inject one cell-stage embryos in the 

following studies. 
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Figure 9. NPMc+ mRNA injection in zebrafish embryos. Wild-type embryos were injected at one-

cell stage with increasing amount of NPMc+ mRNA. Embryos were observed at 24 hpf and classified 

according to their morphology. Stronger phenotypes correspond to a stronger rhodamine signal. A-C: 

examples of embryo’s morphology for each class; D: uninjected control; E. percentage of embryos 

classified each morphological classes upon injection of 50 pg, 100 pg, 150 pg or 200 pg of NPMc+ 

mRNA. 

 

To assess the hypothesis of an involvement of NPM1 and eventually of its mutant 

NPMc+ in Wnt modulation, we compared the effect of NPM1 and NPMc+ expression 

and endogenous npm1a knockdown to dkk1b mRNA injection, whose effect in 

zebrafish development is well characterized [126]. Dkk1 is a known inhibitor of the 
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canonical Wnt pathway [67], whose overexpression in zebrafish leads to the 

anteriorization of the embryos body resulting in smaller tails and bigger heads.  

At 28 hpf, NPM1 injected embryos showed a reduction of the body size, as compared 

to control embryos at the same developmental stage (fig. 10B). After the injection of 

100pg of NPMc+ mRNA, we indeed observed embryos characterized by a smaller 

head compared to wild-type controls, in some cases lacking eyes, and a globally 

posteriorized phenotype (Fig. 10C). Silencing of the endogenous homologue of NPM1, 

npm1a, was achieved through the injection of 10 ng of a splice-blocking morpholino 

oligonucleotide (SBmo-npm1a) designed to recognize the boundary between npm1a 

exon 2 and intron 2: morphants (morpholino-injected embryos) did not display a 

strong phenotype but only a minor reduction of head and eyes size (fig. 10D). As 

expected, overexpression of dkk1b resulted in anteriorized embryos, which displayed 

defects in the posterior region of their body (fig. 10E).  

Interestingly, co-injection of NPMc+ and dkk1b partially rescued the anteriorized 

phenotype giving rise to embryos with a big head compared to controls but with 

milder defects in the tail and the posterior region of the embryos (fig. 10F). These 

observations suggested a positive modulation of Wnt signaling by NPMc+ which could 

partially counteract the effect of the Wnt inhibitor dkk1b. 
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Figure 10. Morphology of injected embryos at 28 hpf. Zebrafish embryos were uninjected (A), 

injected with 120 pg NPM1 mRNA (B), 100pg NPMc+ mRNA (C), 10 ng npm1a-SBmo (D), 50 pg dkk1b 

mRNA (E), a mix of NPMc+ and dkk1b mRNAs (F) and a mix of NPMc+ and NPM1 mRNAs (G). 

 

NPMc+ may well exert a dominant negative effect on the wild-type function [27]. 

Therefore,  we investigated whether co-injection of NPM1 with NPMc+ could rescue 

the NPMc+ phenotype. Embryos expressing both NPMc+ and NPM1 showed a wild-

type morphology (fig. 10G), confirming the opposite effect of the two mRNAs on 

zebrafish development and supporting the hypothesis of a dominant negative 

function of NPMc+ on the wild-type counterpart. 
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1.2. NPM1 and NPMc+ modulate CE movements during zebrafish 

gastrulation 

 The phenotype observed after NPM1 or NPMc+ expression could be the 

consequence of a block of convergence and extension (CE) movements during 

gastrulation, which are partially controlled by non-canonical Wnt pathway, in 

particular the planar cell polarity (PCP) pathway [76]. To test this hypothesis, whole 

mount in situ experiments with a cocktail of two cRNA probes, hgg1 and dlx3, were 

performed to analyze the non-canonical Wnt pathway in NPM1 or NPMc+ expressing 

embryos.  

In control embryos at 90% epiboly stage, hgg1 identifies the hatching gland, which 

corresponds to the rostral mesendoderm. In not injected embryos, its expression was 

confined to the anterior part of the embryo and was centered in the border between 

the neural and the non neural ectoderm, highlighted by dlx3 expression at the animal 

pole of the embryo (fig. 11A). Embryos injected with either NPMc+ mRNA (fig. 11B) 

or SBmo-npm1a (fig. 11C) showed a narrower region of the future neural plate. 

Moreover, the hatching gland was positioned anteriorly to the neural plate border 

(fig. 11B-C). Conversely, the injection of NPM1 mRNA led to an expansion of the 

neural plate region and the inclusion of the hatching gland in the presumptive neural 

ectoderm (fig. 11D). Surprisingly, a similar effect was found after over-expression of 

dkk1b: the hatching gland was embodied in the neural ectoderm that completely 

surrounded the yolk (fig. 11E); although dkk1b is an inhibitor of the canonical 

pathway, it is also involved in the PCP pathway [126]. Overexpression of dkk1b led to 

an expansion of the future neural ectoderm which enclosed the hatching gland. Dkk1b 

overexpression was able to partially revert the effect of NPMc+: embryos still 

presented an anteriorization of the hatching gland with respect to non-injected 



72 

 

embryos but the neural plate region shrank to normal size (fig. 11F). Percentage of 

embryos that maintained wilt-type phenotype is reported in figure 11G. 

 

 

Figure 11. Analysis of convergence and extension movements. A-F: whole-mount in situ 

hybridization for hgg1 and dlx3, marking the rostral mesendoderm (hg) and the neural border (b) 

respectively (A). White dashed lines mark the dlx3 signal, corresponding to the neural and non-neural 

ectoderm border. All embryos are at 90% epiboly, dorsal view. AP: animal pole; VP: ventral pole. 

Embryos were injected with 120 pg NPMc+ mRNA (B), 50 pg npm1a-SBmo (C), 100 pg NPM1 mRNA 

(D) 50 pg dkk1b mRNA (E) and co-injected with a mixture of NPMc+ and dkk1b mRNAs (F). G: 

Percentage of embryos showing a phenotype similar to control. 
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1.3. NPMc+ modulates canonical Wnt signaling at gastrulation 

 Canonical Wnt signaling is involved in the formation of the anteroposterior axis 

of specific organs (e.g. central nervous system, retina) and of the whole embryo body 

[73, 127, 128]. Thus, modulation of Wnt signaling by NPM1 and NPMc+ could be 

revealed by a modification of the respective positions of three different regions in the 

anterior neuroectoderm during gastrulation of the zebrafish embryo: the 

eye/telencephalon, the mid-hindbrain border and the notochord, identified by the 

expression of rx3, pax2a and ntl, respectively [128].   

The expression of NPMc+ and, to a lesser extent, the injection of SBmo-npm1a 

reduced the distance between the regions highlighted by the three probes, indicating 

a reduction of the distance between the eye/telencephalon and the mid-hindbrain 

border. This effect implied activation of the canonical Wnt pathway and, indeed, the 

effect of NPMc+ was rescued by the co-injection of dkk1b mRNA. The over-expression 

of NPM1 yielded a slight increase in the distance between the two region that do not 

appear to be significant when compared to control (fig. 12A-F). Percentage of 

embryos similar to wild-type is reported in figure 12G.  
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Figure 12. Analysis of gastrulation movements. A-F. Whole mount in situ hybridization for rx3 , 

pax2a and ntl, markers of the eye field and telencephalon region (et), midhindbrain boundary (mhb) 

and notochord (n), respectively (A). White lines mark the distance between eye field and mid-

hindbrain boundary. All embryos are at 90% epiboly, dorsal view. AP: animal pole; VP:ventral pole. 

Embryos were injected with 100 pg NPMc+ mRNA (B),10 ng npm1a-SBmo (C), 120 pg NPM1 mRNA 

(D), 50 pg dkk1b mRNA (E) and co-injected with a mixture of NPMc+ and dkk1b mRNAs (F). G: 

Percentage of embryos showing a phenotype similar to control. 
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1.4. NPM1 and NPMc+ regulate dkk1b expression at early stages of 

zebrafish development  

 Since injection of NPM1 mRNA in zebrafish embryos resulted in a phenotype 

similar to that observed after dkk1b overexpression, we investigated whether NPM1 

and NPMc+ could have an effect on dkk1b expression during early stages of 

development. Dkk1b is indeed an inhibitor of the pathway but, at early stages of 

development, it is also a target gene of the pathway [73]. Therefore, we analyzed the 

effect of NPM1 and NPMc+ on endogenous dkk1b expression at 30% epiboly by in situ 

hybridization with a RNA DIG-labeled probe.  

In uninjected embryos used as control, dkk1b was expressed dorsally, in the region 

that corresponds to the organizer (fig. 13A). Overexpression of NPM1 led to a broader 

distribution of dkk1b as compared to wild-type controls: dkk1b expression was 

extended to the ventral  region of the embryos (fig. 13B). On the contrary, both the 

expression of NPMc+ and SBmo-npm1a injection strongly decreased dkk1b signal, 

which appeared milder and narrower than in control embryos (fig. 13C-D). The 

similarity in the effect elicited by NPMc+ expression or knockdown of the endogenous 

protein further suggests a dominant negative effect of the mutant over the wild-type 

NPM1 protein. Injection of NPM1 mRNA rescued the effect of both NPMc+ and SBmo-

npm1a (fig. 13E-F), confirming that the downregulation of dkk1b expression was a 

consequence of NPMc+ expression or npm1a ablation. Moreover, NPMc+ could 

counteract the expression of exogenous dkk1b (fig. 13G-H), suggesting that NPMc+ 

could modulate the level of both endogenous and exogenous dkk1b. Percentage of 

embryos similar to wild-type is reported in figure 13I. 
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Figure 13. dkk1b expression at 30% epiboly (4.7 hpf). Whole-mount RNA in situ hybridization for 

dkk1b at 30% epiboly. Embryos are shown in lateral view and were injected with 120 pg NPM1 mRNA 

(B), 100 pg NPMc+ mRNA (C), 10 ng npm1a-SBmo (D), 50 pg dkk1b mRNA (G) and a combination of 

SBmo-npm1a and NPM1 mRNA (E), NPMc+ mRNA and NPM1 mRNA, (F) NPMc+ mRNA + dkk1b mRNA 

(H). I: Percentage of embryos showing a phenotype similar to control. 

 

 

 

1.5. NPM1 and NPMc+ modulate canonical Wnt signaling 

NPM1 and NPMc+ modulate canonical Wnt signaling at early stages of development 

by regulating the expression of the Wnt inhibitor dkk1b. To investigate whether 
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modulation of the pathway was maintained in older embryos, we analyzed the effect 

of NPM1 and NPMc+ injection in the Tg(TOP:GFP) transgenic strain. In Tg(TOP:GFP) 

fish, expression of the GFP reporter gene is controlled by four enhancers and the 

basal promoter of lef1, a β-catenin-dependent transcription factor [121]: the GFP 

signal is therefore a sign of canonical Wnt signaling activation. Due to the low level of 

fluorescence in the transgenic embryos, GFP expression was revealed at 28 hpf using 

an anti-GFP antibody and DAB staining in embryos injected with NPMc+ mRNA, 

SBmo-npm1a or dkk1b mRNA. The presence of NPMc+ increased the β-catenin signal 

(fig 14A-B), and to a lesser extent, a similar effect was obtained by the knockdown of 

endogenous npm1a with SBmo-npm1a (fig. 14C). 

 

Figure 14. Canonical Wnt activation in 28 hpf embryos. DAB-staining for GFP expression in 

TOP:GFP embryos at 28 hpf. Embryos are shown in dorsal view, anterior at the left, and were injected 
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with 100 pg NPMc+ mRNA (B), 10 ng npm1a-SBmo (C), 50 pg dkk1b mRNA (D) and a combination of 

NPMc+ mRNA + dkk1b mRNA (E) and SBmo-npm1a + dkk1b mRNA (F). G: Percentage of embryos 

showing a phenotype similar to control. 

 

Overexpression of dkk1b strongly decreased the GFP signal (fig. 14D); however, when 

dkk1b mRNA was co-injected with NPMc+ mRNA the signal was rescued (fig. 14E), 

suggesting that the presence of NPMc+ could lead to activation of Wnt signaling in 

more differentiated embryos as well, overcoming dkk1b-dependent inhibition. 

Moreover, downregulation of endogenous npm1a also counteracted the effect of 

dkk1b overexpression, as shown by the partial rescue of the GFP signal (fig. 14F). 

Percentage of embryos similar to wild-type is reported in figure 14G. 

These results show that modulation of canonical Wnt signaling by NPM1 and NPMc+ 

is maintained at later stages of zebrafish development. 

 

 

1.6. Expansion of the hematopoietic progenitor pool after NPMc+ 

expression is Wnt-dependent  

 Since NPMc+ is specific to AML, we next focused our attention on the 

hematopoietic compartment during development.  

Whole mount in situ hybridization experiments were performed with the aim of 

analyzing the expression of known hematopoietic markers in zebrafish embryos 

expressing NPMc+. Hematopoietic markers were analyzed at different time points, 

according to their expression pattern: gata2, tal1 and lmo2 in early hematopoietic 

progenitors, pu.1 in myeloid progenitors, gata1 in cells of the erythroid lineage, l-

plastin and mpx in differentiated myeloid cells, monocyte/macrophages and 

granulocytes, respectively [113]. A scheme of the markers used to identify different 
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cell types is outlined in figure 15, with the corresponding timing of expression during 

zebrafish development. 

 

Figure 15. Cartoon of hematopoietic marker expression during primitive hematopoiesis in 

zebrafish. Timing of expression of hematopoietic markers is depicted for hematopoietic markers 

expressed in the posterior hematopoietic region of zebrafish embryos during primitive hematopoiesis. 

 

The injection of NPMc+ in one-cell stage embryos led to increased expression of gata2 

at the stage of 15 somites (approximately 16.5 hpf), revealing an expansion of the 

pool of primitive progenitors (fig. 16B). The signal was, instead, faint in dkk1b 

overexpressing embryos (fig. 16C), but co-injection of dkk1b and NPMc+ mRNAs 

rescued the phenotype (fig. 16D). Percentage of embryos showing an expression of 

gata2 similar to wild-type is reported in figure 16E. 
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Figure 16. Analysis of hematopoietic progenitors in 15 somite embryos. A-D. Whole-mount in situ 

hybridization for gata2 in 15s embryos, dorsal and posterior view. Embryos were injected with 100 pg 

NPMc+ mRNA (B), 50 pg dkk1b mRNA (C) and co-injected with NPMc+ and dkk1b mRNAs (D). E: 

Percentage of embryos showing a phenotype similar to control. 

 

The other two markers that identify early progenitors, tal1 (fig. 17A-E) and lmo2 (fig. 

17F-J), displayed the same expression pattern at 24 hpf as described above for gata2 

at 15 somites. Taken together, these data suggest that this effect of NPMc+ depends 

on its capacity to activate Wnt signaling.  

The knock down of endogenous npm1a had a similar effect to NPMc+ mRNA injection 

on tal1 and lmo2 expression: both hematopoietic progenitor markers showed an 

increased expression (figures 17C and 17H) further supporting the hypothesis of a 

dominant negative effect of NPMc+ on the wild-type. For each marker the percentage 

of embryos displaying unaltered phenotype is reported in figure 17K (tal1) and 17L 

(lmo2). 
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Figure 17. Analysis of hematopoietic progenitors in 24 hpf embryos. A-E: Whole-mount in situ 

hybridization for tal1 in 24 hpf embryos. F-J: Whole-mount in situ hybridization for lmo2 in 24 hpf 

embryos. Embryos are shown in lateral view, anterior to the left. Embryos were injected with 120 pg 

NPMc+ mRNA (B, G), 10 ng SBmo-npm1a (C, H), 50 pg dkk1b mRNA (D, I) and co-injected with NPMc+ 

and dkk1b mRNAs (E, J). K-L: Percentage of embryos showing a phenotype similar to control for tal1 

(K) and lmo2 (L). 

 

Primitive myeloid precursors, characterized by expression of the pu.1 transcription 

factor [113], were studied in embryos at the stage of 15 somites. The pool of pu.1 

positive cells was strongly increased in NPMc+ injected embryos (fig. 18B) but not 

affected by the injection of the morpholino against the endogenous npm1a (fig. 18C). 

Pu.1 expression was decreased in dkk1b overexpressing embryos; moreover, injection 

of dkk1b mRNA led to the dispersion of the few pu.1 positive cells in the posterior 

region of the embryos (fig. 18D). The co-injection of NPMc+ with dkk1b only partially 

rescued the phenotype (fig. 18E). It appears, therefore, that NPMc+ expression leads 
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to an increase in the pool of myeloid precursors, as defined by pu.1 expression, at 

early stages of development. In figure 18F the percentage of embryos maintaining a 

phenotype similar to control is reported.  

 

 

Figure 18. Analysis of myeloid progenitors in 15 somites embryos. A-E: Whole-mount in situ 

hybridization for pu.1 in 15 somite embryos, dorsal and posterior view. . Embryos were injected with 

100 pg NPMc+ mRNA (B), 10 ng of SBmo-npm1a (C), 50 pg dkk1b mRNA (D) and co-injected with 

NPMc+ and dkk1b mRNAs (E). F: Percentage of embryos showing a phenotype similar to control. 

 

In conclusion, these experiments showed that NPMc+ expression led to an expansion 

of the pool of progenitor cells during primitive zebrafish haematopoiesis and this 

effect was rescued by overexpression of dkk1b, suggesting that the phenotype 

depends on Wnt signaling activation. 

 



83 

 

1.7. NPMc+ expression does not affect myeloid differentiated cells 

 To assess if the increase in the number of progenitor cells observed at the stage of 

15 somites and 24 hpf corresponds to the expansion of one or more types of mature 

blood cells, we performed in situ hybridization experiments for markers of 

differentiated cells. In NPMc+ injected embryos, the numbers of both 

monocytes/macrophages (l-plastin+) and neutrophils (mpx+) were similar or slightly 

decreased compared to wild type controls (fig. 19A-D). The injection of dkk1b mRNA 

provoked an apparent expansion of the pool of differentiated myeloid cells (fig. 19E-

F), which may, however, result from the dramatic decrease in tail length. Co-injection 

with the mutant reverted the phenotype back to wild-type (fig. 19G-H). Percentage of 

embryos with control-like phenotype is reported in figure 19I for l-plastin and 19J for 

mpx. The expansion of the pool of hematopoietic progenitors was, therefore, not 

strictly connected to an increase in the number of more differentiated cells, even if 

NPMc+ could rescue the effect of dkk1b overexpression in monocytes and 

neutrophils. The effect of the morpholino is still to be addressed. 
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Figure 19. Analysis of mature myeloid cells in 33 hpf embryos. A-H. Whole-mount in situ 

hybridization for l-plastin (A, C, E, G) and DAB-staining for GPF in 24 hpf mpx:GFP embryos (B, D, F, H). 
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Arrows indicate areas of GFP expressing cells in mpx:GFP injected and control embryos. Embryos were 

shown in lateral view, anterior to the left. Embryos were injected with  100 pg NPMc+ mRNA (C-D), 50 

pg dkk1 mRNA (E-F) and co-injected with NPMc+ and dkk1 mRNAs (G-H). I-J: Percentage of embryos 

showing a phenotype similar to control for l-plastin (I) and mpx (J). 

 

1.8. NPMc+ partially rescues dkk1b-derived depletion in the erythroid 

lineage during primitive erythropoiesis 

 The effect of NPMc+ on erythropoiesis was investigated by expression of the 

corresponding mRNA in gata1:dsRED embryos: in this system, the expression of 

dsRED is under the control of the gata1 promoter, thus marking cells that express the 

erythropoietic marker gata1. Upon NPMc+ expression, the pool of cells expressing 

gata1 was slightly increased at 24 hpf (fig. 20A, B) suggesting that the erythroid 

lineage was partially affected by the presence of NPMc+. On the contrary, the 

injection of dkk1b mRNA had a strong negative effect, with a considerable decrease of 

the gata1+ cells (fig. 20C). The co-injection of the two mRNAs enhanced the 

expression of gata1 compared to dkk1b alone, but positive cells were more 

concentrated in the primitive hematopoietic region (fig. 20D), confirming that NPMc+ 

partially rescued the effect of overexpression of dkk1b in zebrafish embryos. Figure 

20E shows the percentage of embryos with unaltered phenotype compared to 

control.   
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Figure 20. Expression of the erythrocytic marker gata1 in 24 hpf embryos. A-D. gata1 expression 

gata1:dsRED embryos at 24 hpf, lateral view, anterior to the left. Embryos were injected with 100 pg 

NPMc+ mRNA (B), 50 pg dkk1b mRNA (C) or co-injected with NPMc+ and dkk1b mRNAs (D). E: 

Percentage of embryos showing a phenotype similar to control. 

 

Taken together, our results suggest that both NPM1 and its leukemogenic mutant 

NPMc+ modulate Wnt signaling during zebrafish development, albeit in opposite 

ways: NPM1 attenuates Wnt-derived signals, whereas NPMc+ activates both 

canonical and non-canonical Wnt pathways. Furthermore, NPMc+ causes an 

expansion of the hematopoietic progenitor pool during primitive zebrafish 

hematopoiesis, and this phenotype derives from the modulation of Wnt signaling, 

since it is rescued by the overexpression of the Wnt inhibitor dkk1b.  

 

 

2. An in vitro system to stably express NPMc+ 

 

2.1. Characterization of NPMc+ expressing cell line 

 

2.1.1. Proliferation ability of NPMc+ expressing cells 

 In order to better analyze the effect of the mutant on Wnt signaling in 

hematopoiesis, we decided to generate an in vitro mammalian model. To this end, we 
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expressed the NPM1 mutant in a murine hematopoietic stem/progenitor cell line, 

EML-C1, to analyze the effect of NPMc+ on proliferation, differentiation and 

expression of Wnt genes. EML-C1 is a Stem Cell Factor (SCF) - dependent cell line 

generated after expression of a dominant negative form of the retinoic acid receptor α 

(RARα), which blocks the differentiation towards the myeloid and lymphoid lineages 

,in mouse bone marrow cells [129]. Treatment with different cocktails of cytokines 

allows EML-C1 cells to overcome the block and differentiate into erythrocytes, 

monocytes/macrophages, granulocytes or lymphocytes [129, 130]. In particular, a 

three day treatment with retinoic acid (atRA) in presence of IL-3 and SCF (medium A) 

induces myeloid differentiation of EML-C1 cells to the promyelocytic stage. 

Differentiated cells can then be obtained in a medium containing Granulocyte 

Monocyte - Colony Stimulating Factor, GM-CSF, (medium B) for 3-10 days and are 

called EPRO (EML-derive PROmyelocytes). EPRO cells can further differentiate to 

neutrophils by the addiction of atRA to medium B or to monocytes/macrophages with 

12-O-tetradecanoylphorbol-13-acetate (TPA) administration (figure 15) [129, 130].  

 

Figure 21. Schema of EML-C1 myeloid differentiation protocol. EML-C1 cells are maintained 

undifferentiated in a SCF-rich medium. EML-C1 cells may be differentiated in a IL-3, retinoic acid 

(atRA) rich medium (medium A). After 3 days in medium A, EML derived promyelocytes (EPRO) are 

maintained in a GM-CSF containing medium (medium B) and can be further differentiate to 

neutrophils, by the addition of ATRA, or monocytes, by the addition of 12-O-tetradecanoylphorbol-13-

acetate TPA [129, 130].  
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EML-C1 cells were retrovirally infected with MSCV-IRES-GFP vector containing the 

cDNA of mutation A of NPM1 (NPMc+ cells) where the oncogene and GFP expression 

are driven by a 5’ LTR promoter. As a control, a cell line bearing the empty vector 

(MSCV cells)  was generated. Infected cells were isolated by FACS-sorting based on 

GFP expression and expression of NPMc+ was detected with western blot. As 

reported in figure 22, NPMc+ expression in EML cells was comparable to that 

observed in OCI-AML3, a patient-derived cell line which carries the NPM1 mutation A.  

 

Figure 22. Expression of NPMc+ in the MSCV-NPMc+ infected EML-C1 cells. Western blot showed 

the expression levels of NPMc+ in FACS sorted pool of infected cells. MSCV cells were used as negative 

control and OCI-AML3 as positive control. Vinculin was used as loading control. 

 

 

No differences in terms of proliferation and myeloid differentiation were observed in 

EML-C1 cells expressing NPMc+  as compared to the control cells. As shown in  figure 

23, the growth curve of NPMc+ expressing cells was comparable to control. Moreover, 

NPMc+ did not affect cell cycle: BrdU incorporation followed by FACS analysis did not 

detect any differences in cell cycle progression or apoptosis (Fig. 24).  
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Figure 23. Growth curve of NPMc+ expressing cells compared to control. NPMc+ and MSCV cells 

were seeded at 50000 cells/ml and counted each day. The number of NPMc+ (red line) and MSCV (blue 

line) cells per ml per day is reported . 

 

Figure 24. Proliferation analysis of NPMc+ expressing cells. BrdU incorporation analysis for 

NPMc+ and MSCV cells. Representative plots are depicted in the upper part of the figure. Percentage of 

cells in different cell cycle phases are reported in the table. One experiment out of three is reported.  

 

2.1.2. Myeloid differentiation ability of NPMc+ expressing cell line 

 Next, we assessed the myeloid differentiation ability of NPMc+ expressing cells 

versus control cells. Differentiation of EML-C1 cells was detected by the decrease of 

stemness markers, c-kit and sca-1, and the increase in the percentage of cells 

expressing myeloid markers, namely mac-1 (also known as CD11b) and gr-1 after 

cytokine treatment. MSCV cells showed a mild increase of the myeloid markers at day 
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A3 (third day of medium A). In the second medium cells in differentiation were 

selected with the rapid increase of the percentage of cells expressing mac-1 and gr-1 

(about 95-100%). c-kit remained high (80-100%) while sca-1 expressing cells 

decreased to 40-30%. NPMc+ expressing cells showed a very similar trend and no 

significant differences were reported in the percentage of positivity for four analyzed 

markers. In figure 25, an example of FACS results of cells in differentiation is 

reported: cells were monitored along the differentiation process and sample for FACS 

analysis were kept at the end of the incubation in the first medium with atRA (A3) 

and during the GM-CSF – based selection (B2 and B4). At each time point, cells were 

incubated with primary antibody conjugated with fluorocromes in order to identify 

the percentages of the cell population expressing c-kit, sca-1, mac-1 and gr-1, which 

are depicted in blue, red, green and purple in figure 25. 

 

Figure 25. FACS analysis of myeloid differentiation of MSCV and NPMc+ cells. c-kit, sca-1, mac-1 

and gr-1 were analyzed at the beginning of differentiation and during the differentiation protocol. A3 

corresponds to the third day in medium A, B2 and B4 to the second and fourth day in medium B. The Y 

axis represents the percentage of positive cells for each surface marker. 

 

 

2.1.3. Clonogenic efficiency of NPMc+ expressing cells 

 In order to further characterize the NPMc+ expressing cell line, we performed a 

clonogenic assay. Cells were grown in methylcellulose medium in the presence of SCF 

and IL-3 for granulocyte-macrophage colony-forming units (CFU-GM corresponding 

to committed progenitors) or SCF alone for blast colony-forming units (CFU-Blast - 

corresponding to more primitive progenitors) [131]. Colonies were counted after 7 
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and 14 days, respectively. Results showed a slight increase in the number of CFU-GM 

colonies of NPMc+ expressing cells compared to MSCV. The same positive trend was 

detected in the number of CFU-Blast but in both cases the increase was not 

statistically significant (Figures 26 and 27 ).  

 

Figure 26. Clonogenic assay. MSCV and NPMc+ were maintained in methylcellulose medium 

containing SCF and IL-3 for 7 days. Number of colonies was counted using Imagej software.  

 

Figure 27. Clonogenic assay. MSCV and NPMc+ were maintained in methylcellulose medium 

containing SCF for 14 days. Number of colonies was counted using ImageJ software. 

 

Taken together, our results suggest that expression of NPMc+ does not affect either 

proliferation or myeloid differentiation of EML-C1 cells. 

0

10

20

30

40

50

60

70

MSCV #1 NPMc+ #1 MSCV #2 NPMc+ #2 MSCV #3 NPMc+ #3

n
u

m
e

b
r 

o
f 

co
lo

n
ie

s 
(/

1
.0

x
1

0
3

ce
ll

s)

CFU-GM

0

5

10

15

20

25

30

35

40

MSCV #1 NPMc+ #1 MSCV #2 NPMc+ #2 MSCV #3 NPMc+ #3

n
u

m
e

b
r 

o
f 

co
lo

n
ie

s 
(/

1
.0

x
1

0
3

ce
ll

s)

CFU-Blast



92 

 

 

 

2.1.4. Wnt genes and Hox genes expression levels in NPMc+ cell line 

 In order to study the effect of NPMc+ on the activation of Wnt signaling in our in 

vitro system, quantitative RT-PCR analysis of Wnt target genes was performed. We 

focused our attention on genes involved in the pathway (Gsk3β, Dvl and Ctnnb [63]) 

and genes that are direct targets of Wnt in other systems (Ccnd1 [132]) or both (Tcf7 

[133], Axin1/2 [134]). 

  

Figure 28. Expression levels of Wnt target genes and Wnt pathway component. Quantitative PCR 

analysis were performed to assess the expression levels of canonical Wnt target genes and Wnt 

pathways components at steady state. TBP was used as normalizer.  

 

As shown in the graph of figure 28, analyzed genes did not show an altered 

expression level in NPMc+ expressing cells compared to control. We concluded that 

NPMc+ expression in EML-C1 cells did not alter the Wnt target genes at steady state.  

One of the characteristics features of NPMc+ AML is the upregulation of Hox genes, in 

particular of group A and B [40]. In order to study the effect of NPMc+ expression on 

the level of Hox genes in EML-derived cell line, we performed a quantitative RT-PCR. 

We chose to analyse those Hox genes that were reported as upregulated in Alcalay et 
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al. [40], namely HoxA1, HoxA4, HoxA5, HoxA6, HoxA7, HoxA9, HoxA10, HoxB2, HoxB5, 

HoxB6, HoxB9. Levels of analyzed Hox genes was undetectable both in the NPMc+ 

expressing and control cells. 

 

2.2. Generation and characterization of a cell line expressing both 

NPMc+ and Dkk1  

 A possible explanation for the lack of modulation of Wnt genes in  NPMc+ cells is 

that Wnt signaling may be constitutively active in EML-C1 cells, and further activation 

by NPMc+ may therefore be irrelevant. To better investigate the effect of inhibition of 

Wnt signaling in EML-C1 cells, in particular of the canonical pathway, and the 

relationship between DKK1 and NPMc+ that was observed in zebrafish development 

and primitive hematopoiesis, we generated a double infected EML-C1 cell line 

carrying NPMc+ and overexpressing DKK1. Total RNA of p53-/- MEFs was reverse 

transcribed to cDNA, amplified by PCR and cloned into the pBABE retroviral vector to 

obtain the pBABE-DKK1 vector. pBABE and pBABE-DKK1 vectors were used to infect 

EML-C1 cells: as shown in the blot in figure 29, after puromycin selection, the bulk of 

infected cells overexpressed DKK1. 

 

Figure 29. Expression of DKK1 in pBABE-DKK1 infected EML-C1 cells. Western blot showed the 

expression levels of DKK1 in the population of infected cells. pBABE cells were used as negative 

control. Vinculin was used as loading control. 
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The DKK1 cell line was then infected with MSCV-IRES-GFP and MSCV-IRES-GFP-

NPMc+ vectors and sorted in order to generate double transfected cell line expressing 

NPMc+ and DKK1. In figure 30 a western blot is reported showing the expression 

level of NPMc+ and DKK1 in the NPMc+ - DKK1 cell line.  

 

Figure 30. Expression of NPMc+ and DKK1 in double infected cells. Western blot showed the 

expression levels of NPMc+ and DKK1 in the population of double infected cell lines. pBABE-MSCV cells 

were used as negative control. Vinculin was used as loading control. 

 

Despite the good expression of both NPMc+ and DKK1, as shown by the western blot, 

the cell lines did not differ massively from the controls for proliferation ability: in 

figure 31, an example of growth curve for NPMc+ DKK1 expressing cells and control 

cell lines (empty vector) is reported.  
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Figure 31. Growth curve of NPMc+ and DKK1 expressing cells compared to controls. MSCV – 

pBABE, NPMc+ - pBABE, MSCV – DKK1 and NPMc+ - DKK1 cells were seeded at 50000 cells/ml and 

counted each day. The Y axis represents the number of cells per ml of medium. 

 

The four cell lines were monitored also for their myeloid differentiation ability: either 

overexpression of DKK1 alone or with NPMc+ did not alter the myeloid 

differentiation ability of cells, as detected by FACS analysis of surface markers (data 

not shown). 

We expected an effect on the proliferative capacity of EML-C1 cells by overexpressing 

DKK1, an inhibitor of the canonical Wnt pathway, which is indeed known to be 

important for cell proliferation. The lack of any effect of DKK1 overexpression on 

EML-C1 cell line could be attributed to the characteristics of DKK1 itself and the way 

of action on the pathway: DKK1 is a diffusible molecule in the medium. EML-C1 cell 

are rapidly growing cells and the growing medium has to be changed very often, 

therefore the concentration of DKK1 in the medium may never reach an effective 

threshold to exert an effect. In order to study the effect of Wnt inactivation on EML-C1 

cells and NPMc+ expressing cells we decided to take advantage of chemical inhibitors, 

as reported in section 2.4. 
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2.3. Response of NPMc+ expressing cells to Wnt signaling activation 

 In the previous sections, we described cell lines which highly expressed NPMc+ 

without showing any apparent change in their behavior, namely their proliferation 

and differentiation abilities. Moreover, we did not detect any effect of NPMc+ 

expression on Wnt signaling in the described experimental conditions. Next, we 

verified whether the effect of NPMc+ on Wnt signaling might be apparent only when 

the pathway is at least partly active, assuming that NPMc+ might not be able to 

activate the pathway by itself, but might potentiate other activators. 

To this aim, chemical compounds and recombinant Wnt proteins are available. 

Considering that chemical compounds such as 6-bromoindirubin-3'-oxime (BIO) are 

used in literature but are not Wnt specific, we analyzed the response of control EML-

C1 cells and NPMc+ expressing cells to the addition of two murine recombinant Wnt 

ligands, Wnt3a and Wnt5a in the growth medium. Wnt3a activates the canonical Wnt 

pathway, which leads to the enhancement of the unphosphorylated (active) β-catenin 

and the expression of Wnt target genes, such as Ccnd1 and Axin2. Wnt5a acts on both 

the planar cell polarity (PCP) and the Wnt-Ca2+ non-canonical pathways. 

Cells were grown in presence and absence of either Wnt3a and Wnt5a and monitored 

every 24 hours in order to analyze the effect of Wnt activation on cellular 

proliferation. The number of cells counted was plotted in the graph in figure 32: 

MSCV cells do not show any difference in their proliferation in the presence of Wnt3a 

(green) compared to untreated cells (blue), as happens for NPMc+ expressing cells 

without (red) or in the presence of Wnt3a (purple). Wnt3a incubation does not have 

any effect on NPMc+ expressing cells proliferation when compared to control. 
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Figure 32. Growth curve of MSCV and NPMc+ expressing cells treated with Wnt3a. NPMc+ and 

MSCV cells were seeded at 50000 cells/ml in Wnt3a containing medium (500 ng/ml) and counted each 

day. The number of NPMc+ (purple line) and MSCV (green line) cells per ml per day is reported . 

Untreated cells (red and blue lines) were used as control. 

 

MSCV and NPMc+ cells were incubated with Wnt5a for 5 days and counted each day 

to analyze the proliferation ability of NPMc+ expressing cells in the presence of the 

ligand responsible for the activation of non canonical pathway. The presence of 

Wnt5a in the growth medium did not have effect on cellular proliferation (figure 33): 

proliferation of Wnt5a treated MSCV cells and NPMc+ cells (green and purple lines, 

respectively) was similar to not treated cells (blue and red lines, respectively). 

Therefore, no difference of proliferation ability was detected between Wnt5a - 

treated NPMc+ expressing cells (purple line) and control (green line).  
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Figure 33. Growth curve of MSCV and NPMc+ expressing cells treated with Wnt5a. NPMc+ and 

MSCV cells were seeded at 50000 cells/ml in Wnt5a containing medium (500 ng/ml) and counted each 

day. The number of NPMc+ (purple line) and MSCV (green line) cells per ml per day is reported . 

Untreated cells (red and blue lines) were used as control. 

In order to study the effect of Wnt3a and Wnt5a on the myeloid differentiation ability 

of NPMc+ expressing and control cells, we treated cells with the highest amount of 

ligands that did not result in toxicity before the induction of differentiation. We 

performed experiments on non-infected EML cells in order to identify the duration of 

Wnt treatment that causes a maximal response in cells. To measure activation by 

Wnt3a, the best readout would be the level of active β-catenin. Unfortunately, we had 

technical problems with the antibody, so we measured the levels of cyclin D1, a direct 

target of the canonical pathway. To assess Wnt5a activity, we analyzed the levels of 

phosphorylation of Protein Kinase C (PKC), a downstream effector of the PCP 

pathway. EML-C1 cells were incubated with 500 ng/ml of Wnt3a or 500 ng/ml of 

Wnt5a for 48 hours and samples for protein extraction and western blot were kept. 

The stronger response to Wnt3a was obtained after 12 hours of incubation, as shown 

by the blot against CyclinD1 in figure 34, while an incubation of  48 hours is necessary 

to see an increase in the phosphorylation of PKC (figure 35). 
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Figure 34. Expression of Cyclin D1 in EML-C1 cells upon Wnt3a stimulation. Western blot showed 

the expression levels of Cyclin D1 at different time points after addition of Wnt3a in growth medium. 

Vinculin was used as loading control. 

 

Figure 35. Expression of phosphorylated PKC in EML-C1 cells upon Wnt5a stimulation. Western 

blot showed the expression levels of phosphorylated PKC at different time points after the addition of 

Wnt5a to the growth medium. Vinculin was used as loading control. 

 

MSCV and NPMc+ cells were then incubated with either Wnt3a for 12 hours or Wnt5a 

for 48 hours prior to induction of myeloid differentiation. Expression of surface 

markers was analysed by FACS at the beginning of the induction of differentiation and 

during the differentiation process, as already described in 2.1.2 section of “Results”. 

The percentage of cells expressing c-kit, sca1, mac-1 and gr-1 were very similar 

between MSCV and NPMc+ cells, as already described in the previous section of the 

results. We did not detect any response of NPMc+ expressing cells regarding their 

myeloid differentiation potential in the presence of Wnt ligands, Wnt3a and Wnt5a, 

compared to untreated NPMc+ cells and to treated control cells (MSCV), as reported 

in figure 36 and 37. 

We concluded that incubation with either Wnt3a and Wnt5a did not alter the 

behavior of EML-C1 cells,  either expressing NPMc+ or not.  
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Figure 36. FACS analysis of myeloid differentiation of MSCV and NPMc+ cells treated with 

Wnt3a. c-kit, sca-1, mac-1 and gr-1 were analyzed at the beginning of differentiation and during the 

differentiation protocol. A3 corresponds to the third day in medium A, B4 to the fourth day in medium 

B. The Y axis represents the percentage of positive cells for each surface marker. A: untreated MSCV 

cells; B: Wnt3a treated MSCV cells (500 ng/ml); C: untreated NPMc+ cells; D: Wnt3a treated NPMc+ 

cells (500 ng/ml). 



101 

 

 

 

Figure 37. FACS analysis of myeloid differentiation of MSCV and NPMc+ cells treated with 

Wnt5a. c-kit, sca-1, mac-1 and gr-1 were analyzed at the beginning of differentiation and during the 

differentiation protocol. A3 corresponds to the third day in medium A, B4 to the fourth day in medium 

B. The Y axis represents the percentage of positive cells for each surface marker. A: untreated MSCV 

cells; B: Wnt5a treated MSCV cells (500 ng/ml); C: untreated NPMc+ cells; D: Wnt5a treated NPMc+ 

cells (500 ng/ml). 

 

 

2.4. Response of NPMc+ expressing cells to indomethacin treatment 

 The positive modulation of Wnt signaling by NPMc+ seen in the zebrafish could 

be indirect, namely due to a lack of or a decreased response to Wnt inhibition. To 

study the response of NPMc+ expressing cells to Wnt inhibition, we treated cells with 

indomethacin, a chemical inhibitor of Wnt signaling. Indomethacin has been used to 

inhibit the canonical pathway as it was shown to indirectly decrease the protein level 

of β-catenin, thus affecting the downstream transcriptional program. We treated cells 

with increasing amounts of indomethacin for 48 hours in order to obtain the 

concentration which triggers an effect without affecting cellular viability. Control cells 
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were incubated with a concentration of indomethacin ranging from 100 μM up to 

1mM. After 24 hours, cells treated with 600 μM or higher concentrations of 

indomethacin shown signs of apoptosis and no live cells were detected at 48 hours. 

We therefore choose to treat NPMc+ expressing cells with 500 μm of indomethacin 

and we analyzed the expression level of Wnt genes (Ctnnb, Axin2, Tcf7, Ccnd1) 24 and 

48 hours of treatment.  

Control cells did not respond massively to indomethacin treatment, as shown by the 

modest decrease in expression of Axin2 and Ccnd1 (encoding Cyclin D1) in MSCV cells. 

The effect of Wnt inhibitor is stronger on Ctnnb (encoding β-catenin) and Tcf7 

expression, which after 24 hours of indomethacin treatment decreased respectively 

by approximately 20% and 60%. After 48 of treatment, Ccnd1 and Axin2 levels 

returned similar to untreated cells, while Ctnnb and Tcf7 were still downregulated. A 

very similar trend was observed in NPMc+ expressing cells. Axin2 and Ccnd1 

expression levels were unchanged after 24 hours and 48 hours. Tcf7 and Ctnnb were 

downregulated after both 24 and 48 hours of treatment at levels comparable to those 

of control cells (MSCV). In figure 38 and 39, results of one representative experiment 

out of 4 are reported.  

 

Figure 38. MSCV cells response to indomethacin treatment. MSCV cells were incubated in EML 

growth medium supplemented with 0.5 μM of indomethacin for 24 and 48 hours. Cells were harvested 
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and expression levels of Axin2, Ccnd1, Tcf7 and Ctnnb were analyzed by qPCR and compared to 

untreated cells. Tbp was used as normalizer.  

 

Figure 39. NPMc+ cells response to indomenthacin treatment. NPMc+ cells were incubated in EML 

growth medium supplemented with 0.5 μM of indomethacin for 24 and 48 hours. Cells were harvested 

and expression levels of Axin2, Ccnd1, Tcf7 and Ctnnb were analyzed by qPCR and compared to 

untreated cells. Tbp was used as normalizer.  

 

Taken together our results suggest that expression of NPMc+ in EML-C1 cells does not 

result in modulation of Wnt signaling. 

 

2.5. Stroma interaction 

 In the bone marrow, hematopoietic stem cells are physiologically surrounded by 

a plethora of cells that form the hematopoietic niche. These cells are responsible for 

the homeostasis of HSCs by releasing molecules that are necessary for the 

maintenance of stem cells characteristics. In turn, cells within the niche receive 

signals for the niche behavior.  

In vitro studies limit the analysis of the effect of the microenvironment on the 

behavior of hematopoietic stem and progenitor cells, in terms of proliferation, 

differentiation and gene expression program. To mimic the presence of the 

microenvironment, cells can be grown in the presence of recombinant proteins that 
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are known to be released in the niche, or grown in contact with primary stroma or on 

a layer of a stroma-derived cell line.  

We studied whether the interaction with the microenvironment might be important 

for NPMc+ functions. To mimic the complexity found in the bone marrow 

microenvironment and HSC niche, we performed a LTC-IC assay. NPMc+ expressing 

EML-C1 cells and control cells were maintained in contact with primary stroma 

derived from bone marrow cells of C57/B6 mice for 5 weeks, then diluted 1 to 10 and 

grown on methylcellulose medium. After one week the number of colonies derived 

from NPMc+ expressing and control cells were counted.  

 

Figure 40. Long-term culture-initiating cell assay. Number of colonies of MSCV and NPMc+ grown 

in methylcellulose medium after prolonged interaction with murine primary BM stroma. 1.0 x 104 

cells/well were seeded on irradiated primary stroma in a 6-well plate. 

 

In two out of three experiments, total number of colonies of NPMc+ expressing cells 

was higher than control derived colonies (figure 40, experiments 1 and 2); however, 

only in one case the difference was statistically significative (figure 40, experiment 2 

p-value<0,05). 

 

 

3. Wnt pathway in NPMc+ AML patients 

 As described in the introduction, activation of Wnt signaling has been described 

in different subtypes of leukemias, but not for NPMc+ AML. As reported in the first 
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part of the “Results” section, we found a connection between NPMc+ and Wnt 

signaling during zebrafish early development and primitive hematopoiesis. The 

attempts to investigate the positive modulation of Wnt signaling by NPMc+ in an 

established murine cell line, namely EML-C1, were not successful. We then decided to 

analyze the activation of Wnt signaling in blasts from NPMc+ AML patients.  

The first challenge was the choice of the appropriate control. Wnt signaling is indeed 

modulated by the expression of other leukemogenic oncoproteins [100], thus, the 

comparison of NPMc+ AMLs versus other AMLs would not give reliable results. For 

these reasons, we did not compare the level of Wnt target genes in NPMc+ AML 

samples to other AML samples but to normal human CD34+ cells, granulocytes and 

monocytes isolated from peripheral blood of healthy donors. 

We decided to focus our attention on the canonical Wnt signaling to analyze the 

expression of well-known and widely activated target genes of this pathway: c-MYC, 

CCND1 (CyclinD1). Patient RNA was retrotranscribed to cDNA and analysed through 

qPCR. Both c-MYC and CCND1 are generally downregulated in NPMc+ AML patients 

(figure 41 and 42).  

 

Figure 41. CCND1 expression in NPMc+ AML patients compared to CD34+ cells of healthy 

donors. TATA binding protein (TBP) was used as normalizer. 
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Figure 42. CCND1 expression in NPMc+ AML patients compared to CD34+ cells of healthy 

donors. TBP was used as normalizer. 

 

NPMc+ blasts are cells blocked along the myeloid lineage but NPMc+ AML cases are 

most frequent among the M4-M5 AML, characterized by more differentiated leukemic 

blasts. For this reason, we compared c-MYC and CCND1 expression level in NPMc+ 

AML blasts to monocytes (CD14+ cells) of healthy donor. c-MYC was highly 

overexpressed in NPMc+ AML samples compared to CD14 positive cells (10 out of 13 

samples > 2 fold change, figure 43); CCND1 was overexpressed in 12 out of 13 NPMc+ 

samples (figure 44).  
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Figure 43. cMYC expression in NPMc+ AML patients compared to CD14+ cells of healthy donors. 

TBP was used as normalizer. Dashed line correspond to 2-fold change. 

 

Figure 44. CCND1 expression in NPMc+ AML patients compared to CD14+ cells of healthy 

donors. TBP was used as normalizer. Dashed line correspond to 2-fold change. 
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We then analyzed the expression levels of three component of Wnt pathway, AXIN2, 

AXIN1 and CTNNB (β-catenin). CTNNB encodes β-catenin, the main effector of the 

canonical Wnt pathway. AXIN1 and AXIN2 are components of the destruction 

complex, which controls the cytoplasmic concentration of β-catenin. Moreover, AXIN2 

is a target of the pathway through a negative feedback loop.  

Expression levels of CTNNB were analysed in 20 patients’ samples of NPMc+ AML: in 

10 out of 20 samples an overexpression of CTNNB was detected (threshold of 2-fold), 

while 4 of them showed a lower expression of CTNNB compared to CD34+ cells 

(figure 45). 

 

Figure 45. CTNNB expression in NPMc+ AML patients compared to CD34+ cells of healthy 

donors. TBP was used as normalizer. Dashed line correspond to 2-fold change. 

 

Comparing expression level of AXIN1 and AXIN2 in NPMc+ AML samples to CD34+ 

cells from healthy donors, we observed that AXIN2 was generally overexpressed in 

NPMc+ blasts (figure 46). AXIN1 was, instead, variably expressed (figure 47): 6 out of 
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20 samples presented an overexpression > 2-fold, while 2 patients showed a 

downregulation of AXIN1 (< 0.5-fold compared to CD34+ cells). 

 

Figure 46. AXIN2 expression in NPMc+ AML patients compared to CD34+ cells of healthy donors. 

TBP was used as normalizer. Dashed line correspond to 2-fold change. 

 

Figure 47. AXIN1 expression in NPMc+ AML patients compared to CD34+ cells of healthy donors. 

TBP was used as normalizer. Dashed line correspond to 2-fold change. Black line corresponds to 0,5-

fold change. 
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Taken together, our results showed that level of Wnt target genes are quite variable 

in individual samples, suggesting that Wnt signaling might be activated by NPMc+ in 

NPMc+ AML blasts.  

 

4. Set up of immunoprecipitation protocol for endogenous NPM1 and 

NPMc+ in OCI-AML3 cell line 

 The different cellular localization of NPM1 and its mutant NPMc+ suggests that 

the two proteins could interact with different partners. While NPM1 has been 

reported to interact with nucleic acids and play a role in maturation and stabilization 

of mRNAs [51, 135], this association has not yet shown for NPMc+. In order to 

identify NPMc+ specific interactors and to gain insight into the possible mechanism of 

NPM1 and NPMc+ modulation of Wnt signaling, we set up a protocol to 

immunoprecipitate either the wt or the mutant version of NPM1. The studies 

conducted so far to identify NPM1 interactors were based on its overexpression in 

non-hematopoietic cell lines, namely MEFs, U2OS and Hela cells [21, 22]. We decided 

to investigate the interactors of NPM1 and NPMc+ in a more physiological situation, 

immunoprecipitating either NPM1 or NPMc+ in the OCI-AML3, a patient derived cell 

line that carries the NPM1 mutation A in heterozygosity.  

We took advantage of two antibodies that recognize the two proteins: a commercial 

antibody for the wild-type NPM1 and the T26 antibody, which was developed in our 

institute, for NPMc+ [124].  

We tested the capability of the two antibody to immunoprecipitate their targets. The 

anti-NPMc+ antibody is able to precipitate NPMc+ from the OCI-AML3 cell line (figure 

48B, lane 10), which carries mutation A, but does not specifically precipitate any 

protein of the same size  in the OCI-AML2 cell line (48B, lane 11), which does not 
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carry the mutation. Unluckily, the antibody pulled down a great amount of debris or 

not specific interactions at this concentration (1:50 dilution). NPMc+ was 

undetectable in the unbound fraction (48A lane 10), suggesting that the majority of 

the NPMc+ pool was bound by the antibody in these experimental conditions. 

 

Figure 48. Immunoprecipitation capacity of anti-NPM1 and anti-NPMc+ antibodies. Anti-NPM1 

and anti-NPMc+ antibodies were tested for their capacity to bind NPM1 and NPMc+. Antibodies were 

incubated in the presence of whole cell lysates of OCI-AML2 and OCI-AML3 cells and complexes were 

immunoprecipitated with sepharose beads. Both unbound (A, C) and immunoprecipitated fractions 

were loaded on a polyacrilamide gel and blotted with anti-NPMc+ (A-B) and anti-NPM1 (C-D) to reveal 

the presence of the proteins. Inputs correspond to 10% of the quantity of whole cell lysate used for 

each IP and unbound corresponds to 1/30 of the IP solutions. Anti-V5 and anti-flag were used as 

negative controls. OCI-AML2 was used as negative control in NPMc+ immunoprecipitation.    

 

The commercial anti-NPM1 antibody was able to precipitate NPM1 from both OCI-

AML2 (figure 48D, lane9) and OCI-AML3 (figure 48D, lane8) cells. A relevant amount 

of NPM1 remained in the unbound fraction of OCI-AML2 lysate (figure 48C, lane 9), 
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while NPM1 was undetectable in the unbound fraction of the OCI-AML3 lysate (figure 

48C, lane 8).  

We then assessed the cross reaction of the two antibodies. A faint band was 

detectable in figure 48B, lane 8, in correspondence of the IP for NPM1 blotted with 

NPMc+: the presence of the band would suggest a cross-reaction of the NPM1 

antibody for NPMc+. Otherwise, it might be explained by the co-precipitation of a part 

of NPMc+ protein pool with NPM1, given the interaction between the two proteins. 

Similarly, we detected two faint bands in correspondence of the immunoprecipitation 

performed with NPMc+ antibody (figure 48D, lanes 10 and 11) which might be due 

either to cross reaction of the antibody or co-precipitation of NPM1 interacting with 

NPMc+. 

Next, we tested different lysis conditions to obtain the largest amount of protein 

while maintaining the interactions with peptidic and nucleotidic partners of NPM1 

and NPMc+. Buffer 1, buffer 2, modified RIPA and RIPA buffers differ slightly for Tris 

and sodium chloride concentrations, presence and concentration of detergents 

(sodium dodecyl sulfate or NP-40), presence of DTT or sodium deoxycholate. 1 mg of 

lysates of OCI-AML2 and OCI-AML3 cells were incubated with 4 μg of anti-NPM1; the 

immunoprecipitated was then analyzed in a gel, stained with coomassie blue. 
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Figure 49. Lysis Buffers test. Different lysis conditions were tested in order to optimize the amount 

of immunoprecipitated protein. The highest amount of NPMc+ protein was detected in the line 2 in 

both the coomassie blue stained gel and the western blot, corresponding to the immunoprecipitation 

performed with Buffer 1.  

 

In figure 49, the results of the immunoprecipitation of NPMc+ in 4 different buffers 

were reported. The highest quantity of NPMc+ protein was pulled down with buffer 1 

and RIPA buffer, which indeed corresponded to the buffers that extracted the highest 

quantity of protein (western blot). We chose to continue the IP setting with Buffer 1, 

while RIPA buffer might be too strong to maintain the interations within proteins. A 

preliminary experiment of immunoprecipitation followed by mass spectrometry was 

performed. 

Most of the detected proteins are highly expressed and were probably false positives, 

suggesting that an increase in the stringency of the experimental conditions or in the 

whole protocol has to be made. In fact validation of one putative partner included in 

the mass spectrometry results, the 78 kDa Glucose-regulated protein (GRP78), by the 

reverse IP performed with a specific antibody recognizing did not revealed any 

interaction of GRP78 with NPMc+ (figure 50). 
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Figure 50. Immunoprecipitation of GRP78. Anti-GRP78 immunoprecipitation was blotted with anti-

GRP78 and anti-NPMc+ antibodies. Inputs correspond to 10% of the quantity of whole cell lysate used 

for each IP and unbound correspond to 1/30 of the IP solutions.  

 

We are currently optimizing the protocol in order to increase the specificity of 

protein-protein interactions. First, we will introduce a step of formaldehyde fixation 

of the OCI-AML2 and OCI-AML3 cell lines in order to stabilize interactions of NPM1 

and NPMc+ with their respective partners. Furthermore, we will change the beads for 

the precipitation step, from sepharose beads to magnetic beads, which strongly 

decreased the non-specific binding., and we will scale up the starting amount of 

lysate, from 3-5 mg up to 10 mg or more. 
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 Leukemogenesis derives from an alteration of hematopoiesis, which normally 

leads from a pool of progenitors and stem cells (HSC) to the formation of all blood 

lineages. Homeostasis and maintenance of HSCs require their interaction with cellular 

components and signaling molecules of the hematopoietic niche. Cellular signaling 

pathways, such as Notch and Wnt, play a pivotal role in this process and their 

alteration may contribute to the leukemogenic process.  

Bertrand et al. demonstrated that functional Notch signaling is dispensable for 

primitive hematopoiesis but it is required for definitive hematopoiesis [136, 137]. 

Notch signaling is important for the expression of hematopoietic markers like Runx1 

[137], Gata2 [138]and Tal1 [138]. Its role in adult hematopoiesis is less clear but it 

has been shown that Notch activation has the potential to increase the pool of 

multipotent progenitors [139, 140].  

The role of Wnt signaling in hematopoiesis and leukemogenesis has been extensively 

studied. Interestingly, different approaches resulted in opposite conclusions: on one 

hand the expression of a constitutively active form of β-catenin in HSCs of Bcl2-

transgenic mice led to an increase of their proliferation and repopulation abilities 

[85] while a stable form of β-catenin led to a transient expansion of the hematopoietic 

stem cell compartment and its subsequent exhaustion [89, 90].  

As hypothesized some years ago by Scheller et al [90] and then demonstrated by Luis 

and colleagues [84], fine tuning of Wnt signaling is necessary for hematopoiesis and 

for the maintenance of hematopoietic stem cells. Alteration of Wnt signaling may 
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therefore result in an increase of HSC proliferation as well as in the block of 

hematopoiesis when the pathway is too strongly activated [84].  

Wnt signaling is indeed active in AML: MLL-AF9 [102], AML1-ETO [141] and PML-

RARα [101] activate Wnt signaling, suggesting an involvement of this pathway in 

establishment and/or progression of the disease. 

Connection with Wnt signaling has not yet been described in NPMc+ AML, a subtype 

of AML characterized by the cytoplasmic mislocalization of the nucleolar protein 

NPM1. We showed that both NPM1 and its leukemia-associated mutant, NPMc+, are 

able to modulate in opposite fashion Wnt signaling during embryonic development 

and to enhance the proliferation of hematopoietic progenitors in vertebrates. We also 

tried to recapitulate these findings in a mammalian in vitro system to dissect the 

mechanism underlying the modulation of Wnt by NPMc+.  

 

 NPMc+ expression leads to myeloproliferation 

 Several models of NPMc+ AML have been generated in the attempt of elucidate 

the leukemogenic mechanism of the mutant protein; however its function is still not 

clearly understood. We took advantage of the accessibility and transparency of 

zebrafish embryos to analyze the effect of NPMc+ expression in zebrafish 

hematopoiesis, and in particular in the establishment of hematopoiesis in the early 

stages of development.  

NPMc+ expression leads to an increase in the pool of hematopoietic precursors at 

early and late stages of primitive hematopoiesis, as shown by the increased 

expression of gata2, lmo2 and tal1 (fig. 16 and 17).  

In primitive zebrafish hematopoiesis, hematopoietic progenitors can differentiate 

toward the myeloid and the erythroid lineages only. We found that NPMc+ expression 

is associated with an increase in the pool of myeloid precursors (fig. 18) that did not 
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result in the expansion of more differentiated cells (l-plastin, mpx expressing cells, fig. 

19), suggesting that the proliferative effect of NPMc+ could be restricted to 

progenitors in primitive hematopoiesis. 

We observed also a modest increase in the pool of erythroid cells when NPMc+ mRNA 

was injected into embryos (fig.20).  

Our results confirmed the effect described by Bolli and collaborators triggered by 

NPMc+ expression in zebrafish primitive hematopoietic precursors [55]. Conversely, 

it does not lead to increase in proliferation of more differentiated cells in our system. 

The signal derived from l-plastin, a marker of monocytes and macrophages was not 

modified by NPMc+, as shown by in situ hybridization experiments, while anti-GFP 

immunostaining analysis in mpo:GFP zebrafish embryos injected with NPMc+ mRNA 

did not show an alteration in the number of neutrophils (fig. 19).  

A proliferative effect on hematopoietic progenitors was also observed after the 

downregulation of endogenous npm1a, suggesting that part of the effect of NPMc+ in 

the leukemogenesis processes might derive from the negative regulation of the wild-

type.  

 

 NPMc+ has a dominant negative effect on NPM1 

 Our observations provide new evidence supporting the hypothesis of a dominant 

negative function of NPMc+ on NPM1. We showed that the expression of NPMc+ or 

the knockdown of wild-type npm1a  by injection of a morpholino gave origin to 

similar effects such as decreased dkk1b expression  at the beginning of gastrulation 

(fig. 13) and alteration of convergence extension movements governed by non-

canonical Wnt signaling (fig. 11).  

Moreover, the co-injection of human NPM1 mRNA could rescue the effect of either 

NPMc+ mRNA injection or the injection of the morpholino designed against 
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endogenous npm1a. The mechanism underlying this dominant negative effect 

remains elusive. A possible explanation might be the delocalization of the wild-type 

protein from the  nucleus to the cytoplams: the injection of NPM1 mRNA and the 

subsequent increase in the wild-type protein might modify protein dosage and 

balance, with a higher amount of wild-type protein that can remain in the nucleus and 

fulfill its functions. 

On the other hand, the two proteins may compete for the same interactors, which, in 

the presence of NPMc+, are sequestered in cytoplasm and no longer available in the 

nucleus. Finally, interactions between NPMc+ and new partners could be part of the 

readout of NPMc+ presence within the cell: the different localization of NPMc+ might 

help its interaction with molecules that are not physiologically bound by NPM1.  

 

 NPM1 and NPMc+ modulate Wnt signaling in zebrafish development 

 NPMc+ expression during zebrafish development and hematopoiesis produced 

effects that were in most cases rescued by the co-injection of an inhibitor of canonical 

Wnt signaling, suggesting that NPMc+ might positively modulate the pathway.  

NPMc+ expression may be partially compensated by co-expression of dkk1b in early 

phases of development in determining the position of future neuroectoderm through 

convergence and extension movements (fig. 11). Even though dkk1b is an inhibitor of 

canonical Wnt signaling, it has been reported to be involved in convergence extension 

movement, which are instead governed by non canonical PCP pathway [126]. 

Therefore, NPMc+ might deregulate the PCP pathway during gastrulation and its 

effect is partially rescued by dkk1b overexpression (fig. 11). Also NPM1 

overexpression has an effect on PCP pathway (fig. 11). Interestingly, the effect on the 

dimensions of future neuroectoderm were very similar to those observed after the 
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dkk1b injection, suggesting that NPM1 has an inhibitory effect on the pathway (fig. 

11). 

Activation of canonical Wnt signaling has different effects at different time points 

during zebrafish development. A distinction has to be made between the maternal 

and the zygotic Wnt pathway: in the first case, components of the Wnt signaling of 

maternal origin are present in the egg and the yolk and are necessary for the first 

phases of the zygote development. Zygotic genes are indeed expressed starting from 

the mid-blastula transition (MBT, around 3.5 hpf) [111], at the beginning of the 

maternal to zygotic transition (MZT). During MZT, zygotic products gradually replace 

maternal factors, which disappear within 6 hpf [142].  

Canonical Wnt signaling is controlled by maternal determinants and/or zygotic 

factors, depending on the stage of analysis. Interestingly, Shinya et al. demonstrated 

that dkk1b is a target of pre-MBT Wnt signaling (maternal) but can negatively control 

the zygotic post-MBT Wnt signaling [143]. We observed a decrease of dkk1b 

expression at 30% epiboly (before MBT) (fig. 13), suggesting a negative modulation 

of NPMc+ on maternal Wnt signaling, which in turn might positively regulate the 

zygotic signaling, maybe through the decrease in dkk1b. Further experiments on the 

expression of maternal and zygotic genes have to be performed to demonstrate this 

hypothesis. Moreover, like NPMc+, NPM1 may modulate maternal Wnt signaling. 

Knockdown of the endogenous npm1a resulted in a phenotype similar to NPMc+ 

expression, characterized by a strong decrease in dkk1b expression, while the 

overexpression of the human wild-type form strongly increased and expanded the 

area of dkk1b expression (fig. 13). Therefore, NPM1 might enhance maternal Wnt 

signaling, still supporting the dominant negative effect of NPMc+ on NPM1. 

NPMc+ and NPM1 were also able to alter zygotic Wnt pathway activation, as shown 

by the modulation of GFP signal in TOP:GFP transgenic embryos (fig. 14). In this 
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transgenic strain the expression of GFP is controlled by a promoter that is recognized 

and bound by the TCF/LEF family of β-catenin co-activator. Therefore, the expression 

of GFP is an indirect signal of canonical wnt signaling activation. In this system, 

NPMc+ is able to increase the  GFP derived signal and to partially rescue the 

inhibition caused by the dkk1b overexpression (fig. 14). dkk1b inhibition is rescued 

also by the co-injection of the morpholino against npm1a (fig. 14).  

As shown by the partial reversion of the phenotype upon dkk1b co-injection, the 

myeloproliferative effect of NPMc+ might be partially due to its ability to modulate 

the Wnt pathway. Whether the alteration in the hematopoietic progenitor pool is a 

direct effect of Wnt signaling governing hematopoiesis or a wider effect on the overall 

development of the embryo remains unknown: alteration of Wnt signaling might 

modify the cell fate at earlier stages, namely expansion of the mesendoderm region 

that will develop into hemogenic tissue. The importance of Wnt activation in 

vertebrate primitive hematopoiesis has been proposed by Tran et al: the canonical 

Wnt pathway, in particular the wnt4 ligand derived signal is necessary for 

maintenance and specification of primitive hematopoietic cells in Xenopus laevis 

[144]. Wnt signaling is, therefore, important not only in definitive and adult 

hematopoiesis [145] but also in primitive hematopoiesis.  

 

 NPMc+ expression does not alter the phenotype of a murine 

hematopoietic stem/precursor cell line 

 Despite the modulation of Wnt signaling that we observed in zebrafish 

development after the injection of NPMc+ mRNA, we did not succeed in recapitulating 

these observations in an in vitro mammalian system.  

An attempt to express NPMc+ in primary murine progenitors (ckit+, sca+, lin- cells, 

KSL cells) was made in the lab, but the expression level of NPMc+ was extremely low. 
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We chose to express NPMc+ in an immature cell line which can be easily differentiate 

toward the myeloid lineage. Moreover, NPMc+ associated leukemia is characterized 

by multilineage involvement: Pasqualucci et al showed that the mutation in NPM1 is 

present in myeloid, erythroid, and megakaryocytic cells but not in fibroblasts in 

NPMc+ AML patients, suggesting that the founding mutation appears in an early 

progenitor or a stem cell [41]. We took advantage of the EML-C1 cell line, a murine 

hematopoietic stem/progenitor cell line capable of differentiating along both the 

myeloid and lymphoid lineages.  

As opposed to other hematopoietic cell lines, EML-C1 cells tolerate the expression of 

NPMc+ without any sign of massive apoptosis (fig. 22 and 24). However, the NPMc+ 

expressing cell line did not present any significant difference in growth (fig. 23), 

myeloid differentiation capabilities (fig. 25) or in the level of expression of Wnt genes 

(fig. 28) when compared to its control counterpart, the empty vector infected cell line. 

Moreover, EML-C1 cells appeared to be difficult to stimulate with activators and 

inhibitors of Wnt signaling (fig. 32-33, 36-37), leading to the conclusion that EML-C1 

cells  might not be the suitable model to analyze the modulation of Wnt signaling that 

we observed in zebrafish.  

The lack of effect of NPMc+ expression may be due to the differentiation status of the 

cell line. EML-C1 cells are a mixture of ST-HSC (CD34+) and progenitor (CD34-) cells 

[146]: the effect of NPMc+ might be relevant and evident only in more 

undifferentiated (LT-HSC) or more differentiated (myeloid committed progenitors) 

cells.  

Another reason may be the ratio of NPM1/NPMc+ protein dosage. As suggested in the 

literature, protein dosage and the balance between the wild-type and the mutant 

protein are important for leukemogenesis [147]. NPMc+ AML patients present a 

mutation in only one allele of NPMc+: a double mutation of NPM1 is not tolerated 
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[148]. In our in vitro system, NPMc+ is expressed at high levels but two copies of the 

wild-type version remain in the cellular genome. Moreover, the first mouse model of 

NPMc+ which developed leukemia was obtained by substitution of the an internal 

region of one of the two alleles of NPM1 with the corresponding mutated region [56], 

while the expression of NPMc+ in less controlled way leads to a myeloproliferative 

phenotype and does not result in leukemia [54]. Thus, regulation of NPMc+ 

expression levels needs to be finely tuned. 

The lack of a physiological niche has to be considered as another possible cause for 

the absence of phenotype in an in vitro system. Chou et al. showed that perturbation 

of the hematopoietic niche is detected in a recent knock-in mouse model carrying a 

mutated murine Npm1. NPMc+ effect might not be cell autonomous, or only partially 

cell autonomous: in this case, an in vitro system will never be a correct method to 

study NPMc+ function.  

Finally, the hypothesis that the ability of NPM1 and NPMc+ to regulate both the 

canonical and the non canonical Wnt signaling might be limited to zebrafish 

embryonic development, or more generally to embryonic development, should be 

considered. Indeed, the analyses and the study performed in the in vivo model are 

related to developing embryos, a stage in which Wnt signaling is of pivotal 

importance [74]. Moreover, the effect of either the presence of NPMc+ or the 

knockdown of npm1a were studied in primitive hematopoiesis and their effect could 

be attenuated in adult hematopoiesis.  

 

 Wnt signaling in NPMc+ AML blasts 

 We analyzed the expression level of Wnt target genes and Wnt components in 

leukemic blasts from patients with NPMc+ AML. In this system, the choice of a 

negative control was of pivotal importance. Patients’ blasts were compared to human 
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hematopoietic progenitors, sorted from a healthy donor on the basis on their 

expression of CD34, and to mature monocytes and granulocytes.  

CCND1 and c-MYC are indeed Wnt target genes but are very generic, and as expected, 

were highly expressed in CD34+ cells (fig. 41-42). On the contrary, AXIN2 is expressed 

in the patients’ blasts at a higher level compared to CD34+ cells (fig. 46). AXIN2 is 

indeed a widely accepted target gene of the canonical Wnt pathway, forming a 

negative feedback loop aimed to restrict the signaling. The other two analyzed genes, 

AXIN1 (fig. 47) and CTNNB (fig. 45), did not present the same clear trend: thus, we 

cannot conclude that Wnt signaling is activated by NPMc+ in blasts.  

We cannot compare NPMc+ AML to other AML, given the widespread involvement of 

Wnt signaling in leukemias. Moreover, among the NPMc+ AML samples, the analysis 

is complicated by the unclear genomic landscape. NPMc+ AML is indeed associated 

with normal karyotype, but NPMc+ is not the only mutation found at diagnosis: 

mutations in NPM1 are often associated with (FLT3-ITD) and mutations in DMT3A. 

We cannot, therefore, exclude that alteration of Wnt signaling and/or inhibition of the 

pathway might derive from other mutations acquired later during the leukemogenic 

process. 

 

 Conclusions and perspectives 

 In conclusion, we describe a yet unknown function of nucleophosmin, which 

behaves as an inhibitor of canonical Wnt signal during vertebrate embryonic 

development. Its leukemogenic mutant, NPMc+, activates both canonical and non-

canonical Wnt pathways and leads to an expansion of the pool of hematopoietic 

progenitors in a Wnt-dependent manner. Our results suggest an involvement of Wnt 

activation in the establishment of NPMc+ AML, as has been shown for other 

leukemias. In order to demonstrate that canonical Wnt signaling is involved in the 
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myeloproliferative effect of NPMc+, treatment of zebrafish embryos with chemical 

Wnt activator (LiCl, BIO) as well as inhibitors (indomethacin) will be perfomed. 

Treatment could be easily performed adding the chemical compound in the tank 

water as described in Yin et al. for another Wnt inhibitor [149]. 

Interestingly, the effect of NPMc+ and NPM1 on hematopoiesis might be an indirect 

effect caused by an alteration of the dorso-ventral and antero-posterio identity. In the 

definition of the anteroposterior identity, an important role is also played by Hox 

genes and their upstream modulators, including the caudal-related (Cdx) genes. 

Zebrafish mutants for Cdx genes have a bloodless phenotype, revealing their role in 

directing mesodermal cells toward the hematopoietic fate [150], and canonical Wnt 

signaling has been shown to regulate the Cdx/Hox axis [151]. The characteristic 

activation of Hox genes in NPMc+ AML [40] may, therefore, partly derive from 

activation of canonical Wnt signaling. Taking advantage of the zebrafish systems, new 

insights into the mechanism of alteration of Hox genes in NPMc+ AML will be 

provided. 
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APPENDIX 1 

 

 

Table 7. Patients’s information. For each NPMc+ AML patient, information regarding FAB 

classification and FLT3 mutation are reported. 

 FAB classification FLT3-ITD 

PT1 M5a yes 

PT2 M5a yes 

PT3 M2 no 

PT4 M1 yes 

PT5 M4 no 

PT6 M2 no 

PT7 M5b no 

PT8 M2 yes 

PT9 M2 no 

PT10 M5b no 

PT11 M4 yes 

PT12 M5a no 

PT13 M2 no 

PT14 M4 no 

PT15 M2 no 

PT16 M5b no 

PT17 M5b no 

PT18 M1 no 

PT19 M5 no 

PT20 M4 no 
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