
FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI
DIPARTIMENTO DI INFORMATICA

DOTTORATO DI RICERCA IN INFORMATICA

SCUOLA DI DOTTORATO IN INFORMATICA, XXVI CICLO

Dependability in Cloud Computing

TESI DI DOTTORATO DI RICERCA DI

Ravi Jhawar

RELATORE

Prof. Vincenzo Piuri

CORRELATORE

Prof. Pierangela Samarati

DIRETTORE DELLA SCUOLA DI DOTTORATO

Prof. Ernesto Damiani

Anno Accademico 2012/13

ii

Abstract

The technological advances and success of Service-Oriented Architectures and the Cloud
computing paradigm have produced a revolution in the Information and Communications
Technology (ICT). Today, a wide range of services are provisioned to the users in a flexible
and cost-effective manner, thanks to the encapsulation of several technologies with modern
business models. These services not only offer high-level software functionalities such
as social networks or e-commerce but also middleware tools that simplify application
development and low-level data storage, processing, and networking resources. Hence,
with the advent of the Cloud computing paradigm, today’s ICT allows users to completely
outsource their IT infrastructure and benefit significantly from the economies of scale.

At the same time, with the widespread use of ICT, the amount of data being generated,
stored and processed by private companies, public organizations and individuals is rapidly
increasing. The in-house management of data and applications is proving to be highly
cost intensive and Cloud computing is becoming the destination of choice for increasing
number of users. As a consequence, Cloud computing services are being used to realize
a wide range of applications, each having unique dependability and Quality-of-Service
(Qos) requirements. For example, a small enterprise may use a Cloud storage service
as a simple backup solution, requiring high data availability, while a large government
organization may execute a real-time mission-critical application using the Cloud compute
service, requiring high levels of dependability (e.g., reliability, availability, security) and
performance. Service providers are presently able to offer sufficient resource heterogeneity,
but are failing to satisfy users’ dependability requirements mainly because the failures and
vulnerabilities in Cloud infrastructures are a norm rather than an exception.

This thesis provides a comprehensive solution for improving the dependability of Cloud
computing – so that – users can justifiably trust Cloud computing services for building,
deploying and executing their applications. A number of approaches ranging from the use
of trustworthy hardware to secure application design has been proposed in the literature.
The proposed solution consists of three inter-operable yet independent modules, each
designed to improve dependability under different system context and/or use-case. A
user can selectively apply either a single module or combine them suitably to improve
the dependability of her applications both during design time and runtime. Based on the
modules applied, the overall proposed solution can increase dependability at three distinct
levels. In the following, we provide a brief description of each module.

iv

The first module comprises a set of assurance techniques that validates whether a given
service supports a specified dependability property with a given level of assurance, and
accordingly, awards it a machine-readable certificate. To achieve this, we define a hierarchy
of dependability properties where a property represents the dependability characteristics
of the service and its specific configuration. A model of the service is also used to verify
the validity of the certificate using runtime monitoring, thus complementing the dynamic
nature of the Cloud computing infrastructure and making the certificate usable both at
discovery and runtime. This module also extends the service registry to allow users to
select services with a set of certified dependability properties, hence offering the basic
support required to implement dependable applications. We note that this module directly
considers services implemented by service providers and provides awareness tools that
allow users to be aware of the QoS offered by potential partner services. We denote this
passive technique as the solution that offers first level of dependability in this thesis.

Service providers typically implement a standard set of dependability mechanisms that
satisfy the basic needs of most users. Since each application has unique dependability
requirements, assurance techniques are not always effective, and a pro-active approach to
dependability management is also required. The second module of our solution advocates
the innovative approach of offering dependability as a service to users’ applications and
realizes a framework containing all the mechanisms required to achieve this. We note
that this approach relieves users from implementing low-level dependability mechanisms
and system management procedures during application development and satisfies specific
dependability goals of each application. We denote the module offering dependability as
a service as the solution that offers second level of dependability in this thesis.

The third, and the last, module of our solution concerns secure application execution.
This module considers complex applications and presents advanced resource management
schemes that deploy applications with improved optimality when compared to the algo-
rithms of the second module. This module improves dependability of a given application
by minimizing its exposure to existing vulnerabilities, while being subject to the same
dependability policies and resource allocation conditions as in the second module. Our
approach to secure application deployment and execution denotes the third level of de-
pendability offered in this thesis.

The contributions of this thesis can be summarized as follows.

• With respect to assurance techniques our contributions are: i) definition of a hi-
erarchy of dependability properties, an approach to service modeling, and a model
transformation scheme; ii) definition of a dependability certification scheme for ser-
vices; iii) an approach to service selection that considers users’ dependability re-
quirements; iv) definition of a solution to dependability certification of composite
services, where the dependability properties of a composite service are calculated on
the basis of the dependability certificates of component services.

• With respect to offering dependability as a service our contributions are: i) definition

v

of a delivery scheme that transparently functions on users’ applications and satisfies
their dependability requirements; ii) design of a framework that encapsulates all the
components necessary to offer dependability as a service to the users; iii) an approach
to translate high level users’ requirements to low level dependability mechanisms;
iv) formulation of constraints that allow enforcement of deployment conditions in-
herent to dependability mechanisms and an approach to satisfy such constraints
during resource allocation; v) a resource management scheme that masks the affect
of system changes by adapting the current allocation of the application.

• With respect to security management our contributions are: i) an approach that
deploys users’ applications in the Cloud infrastructure such that their exposure to
vulnerabilities is minimized; ii) an approach to build interruptible elastic algorithms
whose optimality improves as the processing time increases, eventually converging
to an optimal solution.

vi

Acknowledgements

I would like to use the occasion of this thesis to thank all the people who have helped and
supported me, in different ways, during my PhD.

First and foremost, I would like to sincerely thank my advisors, Prof. Vincenzo Piuri
and Prof. Pierangela Samarati. I am really grateful to them for introducing me to scientific
research and for their constant presence, guidance, and support over the years. I would
like to express them my gratitude for giving me all the opportunities and for graciously
taking care of me not just academically but also personally. They always compassionately
forgave my mistakes and motivated me in all situations. I consider myself very privileged
to be one of their PhD students. Their passion for scientific research, work ethics, hard
work and attention to details provide excellent role models for me.

I would like to thank Prof. Sabrina De Capitani di Vimercati, Prof. Ernesto Damiani,
Dr. Claudio Ardagna and Dr. Sara Foresti for their answers to all my questions, for
precious advices, and for encouraging me in all situations.

I would like to sincerely thank Prof. Sushil Jajodia for giving me the opportunity to
visit the Center for Secure Information Systems, George Mason University, VA, USA. I
am very grateful to him for his support and advices, and for providing a stimulating an
enjoyable working atmosphere.

I will always be indebted to Dr. Kamal Jajodia for all the kindness, generosity, caring
and concern that she has shown me. I would like to sincerely thank her for all that she
has done for me.

I would like to thank Prof. Massimiliano Albanese and Dr. Marco Santambrogio for
their help on the various aspects of the work presented in this thesis.

I am grateful to Prof. Vijay Atluri, Prof. Javier Lopez and Prof. Laurence Yang, the
referees of this thesis, for having dedicated their precious time to review the thesis and
whose valuable comments helped improving the presentation of this work.

I am grateful to my family for giving me the opportunity to pursue a PhD, and for their
constant love and support. Their teachings have always been and will be a fundamental
reference point for me.

Finally, I would like to thank my friends Mohammad Aktaruzzaman, Paolo Arcaini,
Ruggero Donida Labati, Angelo Genovese, Giovanni Livraga and Massimo Rivolta.

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions of the Thesis . 4

1.2.1 Dependability Certification of Services 5
1.2.2 System-Level Dependability Management 6
1.2.3 Secure Application Execution in IaaS Clouds 7

1.3 Organization of the Thesis . 8

2 Related Work 9
2.1 Open Source Cloud Computing Solutions 9
2.2 Dependability Approaches in Cloud Computing 12

2.2.1 Failure Characteristics of Cloud Environment 12
2.2.2 Dependability Techniques in Cloud Computing 14

2.3 Dependability-Oriented Resource Management Schemes 19
2.3.1 Initial Allocation of Virtual Machines 20
2.3.2 Runtime Adaption of Virtual Machine Allocation 22

2.4 Web Services Dependability Evaluation . 24
2.5 Chapter Summary . 25

3 Dependability Certification of Services 27
3.1 Introduction . 27

3.1.1 Chapter Outline . 28
3.2 Reference Scenario and Basic Concepts . 29

3.2.1 Reference Scenario . 29
3.2.2 Basic Concepts . 30

3.3 Service Modeling . 33
3.3.1 WSDL-based Model . 33
3.3.2 WSCL-based Model . 33

3.4 Certification Model . 36
3.4.1 Markov-based Representation of the Service 36
3.4.2 Assurance Level . 40

3.5 Dependability Certification Process . 42
3.5.1 Offline Phase . 43
3.5.2 Online Phase . 44
3.5.3 Dependability Certificate Life-cycle 46

x Contents

3.6 Dependability Certificate-Based Service Selection 47

3.7 Certifying Business Processes . 49

3.7.1 Modeling a Service Composition . 49

3.7.2 Certification Scheme for Business Processes 50

3.8 Chapter Summary . 53

4 System-level Dependability Management 55

4.1 Introduction . 55

4.1.1 Chapter Outline . 56

4.2 Motivating Scenario and Basic Concepts . 56

4.2.1 Motivating Scenario . 57

4.2.2 Basic Concepts . 57

4.3 Resource Manager . 59

4.4 Dependability Delivery Scheme . 60

4.4.1 Design Stage . 61

4.4.2 Runtime Stage . 63

4.5 Dependability Manager: Architecture Framework 64

4.5.1 Client Interface . 65

4.5.2 DMKernel . 65

4.5.3 Replication Manager . 67

4.5.4 Fault Detection/Prediction Manager 69

4.5.5 Fault Masking Manager . 69

4.5.6 Recovery Manager . 70

4.5.7 Messaging Monitor . 71

4.6 Chapter Summary . 71

5 Supporting the notion of Dependability as a Service 73

5.1 Introduction . 73

5.1.1 Chapter Outline . 75

5.2 Mapping Users’ Requirements to Dependability Mechanisms 75

5.2.1 Analysis of Failure Characteristics of System Components 76

5.2.2 Analysis of Dependability Metrics 78

5.2.3 Deployment Levels in Cloud Infrastructures 81

5.2.4 Analysis of dep sol Behavior under Different Configurations 83

5.2.5 Dependability Policy Selection Scheme 85

5.3 Integrating Dependability Policy Conditions within the IaaS Paradigm . . . 88

5.3.1 Resource Allocation Objective . 89

5.3.2 Resource Allocation Constraints . 90

5.4 Delivering Dependability Support . 96

5.4.1 Virtual Machine Consolidation . 97

5.4.2 Virtual Machine Provisioning . 98

Contents xi

5.4.3 Adaptive Resource Management . 104
5.5 Simulation Results . 107

5.5.1 Virtual Machine Consolidation . 107
5.5.2 Virtual Machine Provisioning . 109
5.5.3 Adaptive Resource Management . 110

5.6 Chapter Summary . 113

6 Secure Application Deployment and Execution 115
6.1 Introduction . 116

6.1.1 Chapter Outline . 117
6.2 System Model . 117
6.3 Mission Deployment using A∗ . 119

6.3.1 Data Structure and Cost Function 120
6.3.2 State-space Exploration Scheme . 122
6.3.3 Experimental Evaluation . 124

6.4 Mission Deployment using an Elastic Algorithm 126
6.4.1 A∗ with Weighted Heuristics . 127
6.4.2 Elastic Task Allocation Algorithm 128
6.4.3 Experimental Evaluation . 130
6.4.4 Adaptive Mission Deployment using an Elastic Algorithm 132

6.5 Mission Protection . 134
6.6 Chapter Summary . 137

7 Conclusions 139
7.1 Summary of the Contributions . 139
7.2 Future Work . 140

7.2.1 Dependability Certification of Services 141
7.2.2 Dependability Management . 141
7.2.3 Secure Application Execution . 142

Bibliography 143

A Publications 157

xii Contents

List of Figures

3.1 An example of a hierarchy of dependability properties 31
3.2 An example showing the STS-based service models of the storage service . . 35
3.3 Pruning rules for interface and implementation states of Mλ 37
3.4 An example of pruning activity applied on the model in Figure 3.2(b) . . . 38
3.5 An example of model Mon of the storage service, obtained after applying

join states, map policy, and integrate absorbing states to operation write

of model Mπ in Figure 3.4(b) . 39
3.6 An example of a certification model for operation write in Figure 3.2(a) . . 42
3.7 An example of a composition in the eShop business process 52

4.1 Graph generated by the Resource Manager 59
4.2 Dep unit realizing the heartbeat based failure detection mechanism 61
4.3 An example of resource graph generated by the Resource Manager 64
4.4 Architectural overview of the Dependability Manager 67
4.5 Architectural overview of the Replication Manager 68
4.6 An example of a workflow, represented as a sequence diagram illustrating

the interaction among all the components of the DM for a single user request 70

5.1 Cloud infrastructure showing different deployment levels 77
5.2 Fault tree models for server, network and power failures 78
5.3 An example of a Markov model for semi-active replication 79
5.4 An example of a Markov model for semi-passive replication 80
5.5 An example of a Markov model for passive replication 81
5.6 Availability at different deployment levels with varying number of replicas . 84
5.7 Performance at different deployment levels with varying number of replicas 85
5.8 An example of mapping generated by p:V→H function 90
5.9 An example of a Cloud infrastructure with network latency values for each

network connection and service provider’s constraints (the shaded nodes
forbid allocation of user’s VM instances) . 93

5.10 An example of users’ resource requirements and network latency constraints 95
5.11 VM allocation on a host using the vector dot-product method 97
5.12 VM provisioning with Capacity, Forbid, Restrict, Count, Distribute and

Latency constraints . 99
5.13 The Forward Allocate function of the VM provisioning algorithm 100
5.14 An example illustrating allocation of VMs on hosts using DM’s provisioning

algorithm . 102

xiv List of Figures

5.15 Pseudo-code algorithm for generating a new configuration plan 105
5.16 Number of hosts used by each consolidation algorithm, for each input class,

with 100 VM instances of 2 dimensions . 108
5.17 Number of hosts used by FFDProd, FFDExp and Dot product algorithms,

with varying number of dimensions . 109
5.18 Time to compute allocation for different sizes of users’ applications 110
5.19 Time to compute the new configuration, varying number of hosts and tasks 111
5.20 Percentage increase in availability due to reconfiguration 112
5.21 Percentage change in term of response time/performance degradation due

to reconfiguration . 113

6.1 State-space tree for a network with four hosts and mission with three tasks 120
6.2 A∗ state space exploration algorithm . 122
6.3 State-space tree expanded using A∗ traversal algorithm 123
6.4 Number of search steps with varying number of hosts 124
6.5 Processing time to compute allocation: (left) with varying number of hosts

for different sizes of missions and (right) with varying number of tasks for
different sizes of the infrastructure . 125

6.6 Processing time in logarithmic scale: (left) with varying number of hosts
for different sizes of missions and (right) with varying number of tasks for
different sizes of the infrastructure . 125

6.7 Optimality of allocation, i.e., the approximation ratio with varying number
of hosts for different sizes of missions . 126

6.8 Elastic task allocation algorithm . 129
6.9 Number of states expanded during each iteration 131
6.10 Total execution time varying ε value . 132
6.11 Example of an attack graph including possible hardening actions, initial

conditions, intermediate conditions, and exploits 134

List of Tables

3.1 Summary of operations realized by eShop partner services 30
3.2 An example of dependability certificates and client’s requirements 48

5.1 Availability of users’ applications using dep sols with different replication
schemes and deployment scenarios . 83

5.2 An example of dependability properties of dep sols and user’s requirements 87
5.3 An example of constraints on the mapping function 92
5.4 An example of the working of the VM provisioning algorithm 103

6.1 Example scenario for mission deployment 123
6.2 Vulnerability differential values . 123

xvi List of Tables

1
Introduction

Individuals and enterprises are increasingly resorting to Cloud computing services for
storage, processing, and management of their data and applications. This practice of
relying on utility-based service-oriented computing is effective only when the users have
some assurance that the dependability of their data and applications is not at risk. In this
context, fault tolerance, high availability and security become of paramount importance
for the users, and become pressing issues that need to be addressed.

This thesis is concerned with the definition of a comprehensive solution for improving
the dependability of users’ applications that leverage Cloud computing services. In the
remainder of this chapter, we give the motivation and outline of this thesis.

1.1 Motivation

The increasing demand for flexibility in obtaining and releasing computing resources in a
cost-effective manner has resulted in a wide adoption of the Cloud computing paradigm.
This computing model offers several benefits to the users (application and data owners)
with respect to traditional in-house management. First, users are relieved from buying
expensive software licenses and hardware, and recruiting skilled personnel to administer
and maintain computing resources, thus providing significant economic savings. Second,
users can access their data and applications using any device providing Internet connec-
tivity. Third, the availability of an extensible pool of resources provide incentives for the
users to deploy applications with high scalability and processing requirements.

In general, the Cloud computing architecture consists of a stack of services at three
distinct layers. While the services in the bottommost Infrastructure-as-a-Service (IaaS)
layer provision low-level computational resources and allow users to store, execute, and
manage their data and applications, the services belonging to the Platform-as-a-Service
(PaaS) layer provide a set of middleware tools that simplify application development and
deployment. The topmost Software-as-a-Service (SaaS) layer makes a wide range of high-
level web services available to the users which, when coupled with standard XML-based
protocols, allow for the design and dynamic composition of applications and business

2 1. Introduction

processes. However, this architecture has significantly changed the dimension of risks in
two respects. First, failures and vulnerabilities in the physical infrastructure, or services
at a given layer, affect services not only in the same layer but also in the layers above it.
For example, a failure in the storage service may impact several PaaS and SaaS services.
This implies that a given solution must now take into account the risks across all the layers
in the Cloud. Second, failures and vulnerabilities are typically outside the control scope of
the users’ organization. This results in an increasing concern among users about the risks
that may affect the functional and non-functional properties of their applications, and
a given solution must allow users to rely on techniques that address their dependability
concerns at different levels.

This thesis concerns with the definition of a comprehensive solution for reducing the
risks of using Cloud computing services. In particular, our goal is to improve the depend-
ability of Cloud computing, so that the use of SaaS, PaaS and IaaS services for building,
deploying, and executing applications can justifiably be trusted. A number of approaches
ranging from the design of trustworthy hardware to secure application development have
been proposed in the literature. Our approach consists in designing three inter-operable
yet independent modules, each making different assumptions on the system context, use
cases and desired dependability features. Based on the modules applied, the proposed
solution allows users to improve the dependability of their applications progressively at
three distinct levels. A brief outline of different modules of the overall solution is provided
in the following.

• Dependability assurance of services. As the first step, we consider Cloud computing
services in their present form (where dependability mechanisms are implemented by
service providers), and provide a set of assurance techniques that validate, verify and
certify dependability properties of services. Such assurance techniques allow users
to be aware of the Quality of Service (QoS) offered by a given service, and increases
users’ confidence regarding the dependability of their partner services. This module
allows users to select services satisfying their dependability requirements, and con-
sequently, provides the basic support necessary to realize dependable applications.
Assurance techniques denote the first level of dependability solution offered in this
thesis (see Chapter 3). We note that awareness tools are necessary in our context
because, at present, there is neither a clear solution that allows verification of SLAs
at runtime nor a unified framework that selects services based on dependability
properties.

• Dependability management. Service providers typically implement a standard set of
dependability mechanisms that satisfy the basic needs of most users. However, a
Cloud computing service may host a wide range of applications, each with unique
dependability requirements. This implies that simple assurance techniques may not
be sufficient and a more pro-active approach that satisfies specific dependability
goals of individual applications is necessary.

1.1. Motivation 3

Based on the above observation, we put forward an innovative notion of offering
dependability as a service, allowing users to apply desired dependability properties
for each application without having to implement low-level mechanisms. We achieve
this by translating high-level users’ requirements to low-level dependability policies
and resource allocation conditions, and integrating such policies and conditions in the
resource management process. This module provides higher level of dependability
when compared to assurance techniques since Cloud services are managed to satisfy
specific dependability goals of each application. Our techniques offering dependability
as a service denote the second level of dependability solution offered in this thesis (see
Chapters 4, 5). We note that this flexible solution also overcomes users’ difficulties
in implementing dependable applications particularly arisen due to high complexity
and abstraction layers of Cloud computing.

• Secure application execution. As the third step, we consider complex applications,
and present advanced resource management schemes that deploys applications with
improved optimality when compared to algorithms at second level. In particular, the
aspect of secure application execution improves dependability of a given application
by minimizing its exposure to existing vulnerabilities, while being subject to same
dependability policies and resource allocation conditions as in the second level. This
module denotes the third level of dependability solution offered in this thesis (see
Chapter 6). We note that a solution to secure application deployment is necessary
because: existing security solutions either design the infrastructure using network
hardening tools or develop applications using security measures, but fail to take into
account the complex interdependencies between the infrastructure, users’ applica-
tions, and residual vulnerabilities in the system. This implies that it is not possible
to remediate all existing vulnerabilities and applications have to be executed on the
infrastructure containing multiple and interdependent vulnerabilities.

The three aforementioned modules together provide a comprehensive solution for im-
proving the dependability of Cloud computing. Users can rely on solutions corresponding
to each aspect either individually or complement them with one another, based on their
specific dependability goals. For example, a user can simply implement the functional
aspects of her application and rely on the techniques offering dependability as a service to
improve its reliability and availability. She can rely on techniques for secure application
execution to further improve dependability and robustness. In contrast, a SaaS provider
can implement her service using a set of dependability mechanisms by relying on services
satisfying her dependability requirements, based on assurance techniques.

There are many real-world scenarios that need our dependability solution to safely
benefit from Cloud computing. We outline two examples of great practical relevance.

E-commerce applications. A major factor in the evolution of the Web has been the
widespread diffusion of electronic commerce (e-commerce) applications. Such applications

4 1. Introduction

comprise online shopping, banking, and other financial services that foster the ability of
customers to purchase, sell, and distribute goods and services over the Internet. Tradition-
ally, the primary concern in the development of e-commerce was to provide a dependable
infrastructure through solutions for secure and reliable data exchange and systems for
prevention of unauthorized accesses. However, with the advent of Cloud computing, the
focus has shifted from mere server-side static solutions to development of approaches that
allow users in selectively adopting dependability tools that address their specific business
requirements.

• If the e-Commerce business owner do not have confidence that its dependability
requirements are not satisfied in the envisioned Cloud, they may not shift their
critical business processes to external Cloud computing services.

• Failures and vulnerabilities in the Cloud infrastructure may become a bottleneck for
the e-Commerce business owner, and requires flexible solutions of acquiring desired
dependability properties for its applications.

Scientific and mission-critical applications. Generally, scientific applications involve
processing intensive calculations (e.g., matrix multiplications, image and signal processing)
and require highly available systems. Traditionally, these needs have been addressed by
using high-performance computing solutions and installed facilities such as clusters and
super computers, which are difficult to setup, maintain, and operate. On the other hand,
Cloud computing provides scientists a new extensible model of utilizing compute, storage,
and middleware resources, while changing the dimension of risks for applications. This
situation requires new solutions for selecting dependable services, flexibly acquiring fault
tolerance properties, and securely operating applications in the Cloud infrastructure. Such
requirements directly apply also for mission-critical applications.

From the above description, it is straightforward to see that dependability problems en-
visioned for e-Commerce systems apply also for scientific and mission-critical applications
scenario (with varying intensity), and demands user-centric solutions and technologies for
guaranteeing dependability.

1.2 Contributions of the Thesis

The contributions of this thesis are centered on three related topics:

1. Definition of dependability certification scheme for Cloud computing services;

2. Definition of an innovative approach to dependability management, where users’
applications can obtain desired dependability properties from an additional service,
offered by a third party;

1.2. Contributions of the Thesis 5

3. Definition of an application-centric framework that integrates vulnerability and re-
source management schemes to improve dependability of complex applications.

The remainder of this section discusses our original contributions in detail.

1.2.1 Dependability Certification of Services

The definition of assurance techniques increasing users’ confidence that a service complies
with their dependability requirements becomes of utmost importance in the context of
Cloud computing and web services. A suitable technique to address this concern is based
on certification [31]. Originally certification schemes targeted static and monolithic soft-
ware, and produced human-readable certificates to be used at installation time [128, 55].
In this thesis, we define an approach that supports machine-readable certificates that
verify dependability properties of services with a given level of assurance and prove
service robustness against a set of failures. The main characteristics of our certification
scheme can be summarized as follows.

Definition of a hierarchy of dependability properties. We start by defining a
hierarchy of dependability properties that are the target of our certification scheme.
First, dependability attributes that represent the general purpose dependability char-
acteristics of the service under certification are considered. Then, a concrete property
enriches the dependability attributes with a set of attributes that refer to the threats
the service proves to handle, the mechanisms used to realize the service, or to a specific
configuration of the mechanisms that characterizes the service to be certified. Finally,
according to the attribute type and its value, a partial or total order relationship is defined.

Service modeling. The complete modeling of the service under certification represents
a fundamental step to realize dependability certification, and serves as the basis to carry
out the validation process. We present a modeling approach that allows generation of a
model of the service as a Symbolic Transition System (STS), based on i) the dependability
property to be certified and ii) the information released by the service provider in the Web
Service Description Language (WSDL) interface and/or the Web Service Conversation
Language (WSCL) document. The service model succinctly represents the functional
and dependability properties of the service, and serves as the starting point to generate a
certification model in the form of a discrete-time Markov chain. The certification model
is then used to validate whether the service supports a given dependability property with
a given level of assurance.

Certification scheme. We define an approach to property validation and certifica-
tion as a two phase process. The first phase validates the dependability properties
of the service before it is actually deployed in the Cloud, and issues a certificate

6 1. Introduction

based on the initial validation results. The second phase monitors the certified prop-
erties of the service at runtime, and updates the certificate based on real validation results.

Dependability driven service selection. Our certification scheme provides a solution
where services satisfying user’s requirements can be searched and selected at runtime
based on their dependability certificates. In particular, we extend standard service
registries to incorporate the dependability metadata in the form of certificates and to
support the service selection process.

Certification of composite services. A user typically implements her applications as a
composition of different services, provided by different suppliers. In this thesis, we extend
the modeling approach and certification scheme for single services to give a solution for
the runtime certification of dependability properties of composite services.

1.2.2 System-Level Dependability Management

We advocate a new dimension where users’ applications deployed using IaaS can ob-
tain required dependability properties from a third party. The main contributions of
the thesis in the direction of realizing the notion of dependability as a service are as follows.

Dependability management framework. Our approach consists in realizing general
dependability mechanisms as independent modules such that each module transparently
functions on the users’ applications. We enrich each module with a set of metadata that
characterizes its dependability properties, and the metadata is used to select mechanisms
that satisfy users’ requirements. This approach allows users to implement highly
available and reliable applications without having to implement low level dependability
mechanisms. Building on this approach, we design a framework that encapsulates all
the components necessary to offer dependability as a service to the users, and integrates
easily with existing Cloud infrastructures.

Analysis of dependability mechanisms. To offer the dependability service effectively,
we provide an approach to measure the effectiveness of each dependability module in
different configurations. In particular, we estimate the level of reliability and availability
that can be obtained using each dependability module by taking into account the failure
behavior of the infrastructure components, the correlation between individual failures,
and the impact of each failure on the user’s applications. This analysis allows us to define
a search algorithm that identifies mechanisms satisfying users’ requirements.

Resource allocation satisfying dependability constraints. We first categorize
and formalize several constraints that users and service providers may want to specify
with respect to security, reliability and availability of the service. Such constraints

1.2. Contributions of the Thesis 7

allow enforcement of deployment conditions inherent to the dependability mecha-
nism selected according to the users’ requirements. We then address the satisfaction
of such constraints in the overall problem of resource allocation in the Clouds offering IaaS.

Adaptive resource management. Cloud computing environment is highly dynamic
and requires runtime monitoring of the delivered service. When system changes affect
the desired dependability output for a given users’ application (e.g., reduction in the
availability due to a server crash), the affect of such changes are masked using algorithms
that adapt the current allocation of the application, ensuring delivery of a solution that
maintains users’ requirements also during runtime.

1.2.3 Secure Application Execution in IaaS Clouds

We present a solution wherein, first, the current vulnerability distribution of the Cloud
is considered and users’ applications are deployed so as to minimize their exposure to
vulnerabilities. Then, network hardening techniques are applied to protect deployed
applications from possible cyber-attacks. The following is our contribution in this respect.

Secure application deployment as a task allocation problem. We provide an
approach that enables deployment of users’ applications in the Cloud infrastructure such
that their exposure to network vulnerabilities is minimized. First, we model the secure
application deployment problem as a task allocation problem with an application-centric,
security-oriented objective, that is subject to dependability constraints. Then, we provide
a state-space search algorithm that finds near-optimal allocations in time-efficient manner.
We also introduce a heuristic to improve the performance of the search algorithm without
significantly degrading the quality of the solutions.

Elastic resource management. In contrast to existing resource management algorithms
that must run for at least a given period of time to provide a feasible solution, we present
an approach to build elastic algorithms that i) provide an initial sub-optimal result rather
quickly and their optimality improves as the processing time increases, ii) converge to an
optimal solution eventually, and iii) can be interruptible. Such algorithms are useful in
many real-world scenarios, particularly involving mission-critical applications, where the
processing time available for resource management algorithms is very limited and often
varying. In this direction, we present a resource management scheme that consists of two
elastic algorithms, each operating in a different phase with respect to application deploy-
ment and execution. First, for a given user request, our elastic task allocation algorithm
computes an execution plan for the user’s application so as to minimize the application’s
exposure to existing vulnerabilities. Second, our elastic redeployment algorithm is invoked
when the monitoring system detects an anomaly. The redeployment algorithm, instead of
computing an allocation from scratch, adapts the application’s current allocation so as to

8 1. Introduction

minimize the impact of system changes. It also dynamically adjusts the optimality level
of the allocation solution based on the magnitude of system changes.

1.3 Organization of the Thesis

In this chapter, we discussed the motivation and the main objectives of our work, and
described the major contributions of this thesis. The remaining chapters are structured
as follows.

Chapter 2 discusses the state of the art of fault tolerance and security techniques in the
context of Cloud computing, relevant to the objectives of the thesis. It presents the cur-
rent proposals for improving dependability in Cloud computing, web services and service
oriented architectures, and the problem of resource management in IaaS Clouds.

Chapter 3 presents our dependability certification scheme for web services and business
processes. This chapter illustrates some basic concepts, our approach to service modeling,
and the certification process. It also describes how to integrate our system within existing
service-based infrastructures in order to match services satisfying users’ requirements.

Chapter 4 illustrates an approach and the conceptual framework that allows provisioning
of dependability as a service to users’ applications deployed in IaaS Clouds.

Chapter 5 provides a set of techniques involving the analysis of dependability mecha-
nisms and the Cloud infrastructure, search algorithms that allow users to apply desired
dependability properties on their applications only by providing high level requirements,
and some system management schemes that together realize the notion of dependability
as a service.

Chapter 6 formulates the secure application deployment problem as a task allocation
problem and presents a state-space search scheme to solve it. This chapter also discusses
an approach to transform best-fit search algorithms to elastic algorithms, particularly in
the context of application deployment and adaptive resource management in Cloud com-
puting.

Chapter 7 summarizes the contributions of this thesis and outlines future work.

Appendix A reports a list of publications related to the work illustrated in this thesis.

2
Related Work

This chapter discusses some preliminary concepts and state-of-the-art approaches pro-
posed in the literature related to the areas of dependability in Cloud computing. Sec-
tion 2.1 discusses important features of widely used Cloud computing managers in order
to develop an understanding on the underlying system architecture and relevant technical
challenges. Section 2.2 then discusses dependability approaches adopted in the context of
Cloud computing. In particular, we investigate the failure behavior of various system com-
ponents, and dependability techniques that exploit virtualization technology for software
rejuvenation and management of crash and byzantine faults. Section 2.3 surveys resource
management schemes that aim at improving dependability of users’ applications. We note
that our approach of offering dependability as a service (Chapters 4, 5) and secure appli-
cation deployment (Chapter 6) is based on the virtualization and resource management
techniques. Finally, Section 2.4 summarizes existing solutions that test, evaluate, and
certify dependability properties of services.

2.1 Open Source Cloud Computing Solutions

The development of Cloud computing solutions has brought several technical challenges
to application developers. These challenges are generally grouped in three main areas:
negotiation, decision, and operation. The challenges related to how application developers
interface with the Cloud belong to the negotiation area. It also includes description
of Cloud offerings, and the definition of the programmability level that a given Cloud
solution offers. The decision area copes with the main problem posing realization of any
Cloud solution. For example, it concerns with how virtual resources are being scheduled
in order to meet users’ requirements. Finally, the operation area is associated with the
enforcement of decisions and communication between various Cloud elements. In the
following, we discuss main characteristics of three most widely used open source Cloud
computing managers in order to develop an understanding on the Cloud architectures
and corresponding technical challenges.

10 2. Related Work

Eucalyptus. Eucalyptus [45] is the most widely used open source Cloud computing
framework that provides resources for experimental instrumentation and study. According
to [98], the Eucalyptus project incorporates four characteristics that differentiates it from
other Cloud computing solutions: i) Eucalyptus is designed to be simple and intuitive, and
does not require dedicated resources; ii) Eucalyptus is designed to encourage third-party
extensions through modular software framework and language-agnostic communication
mechanisms; iii) The external interface of Eucalyptus is based on the Amazon’s API, in
particular, Amazon EC2; and iv) Eucalyptus provides a virtual network overlay that not
only isolates network traffic of different users but also allows clusters to appear to be part
of the same local network.

Eucalyptus architecture is hierarchical, containing four high level components, where
each component is implemented as a stand-alone web service.

• Node Controller (NC): runs on every node that is destined for hosting virtual ma-
chine instances. An NC is responsible to query and control the system software
(operating system and hypervisor) and for conforming requests from its respective
Cluster Controller. The main task of the node controller is to collect essential infor-
mation, such as node’s physical resources (e.g., number of cores and available disk
space) and the state of virtual machine instances, and forward this information to
its Cluster Controller (CC). NC is also responsible for assisting CC to control vir-
tual machine instances on given a node, verifying authorization, confirming resource
availability and executing requests with the hypervisor.

• Cluster Controller (CC): generally executes on a cluster front-end machine, or any
machine that has network connectivity to two nodes: one running NCs and another
running the Cloud Controller (CLC). A CC is responsible to collect/report infor-
mation about and schedule VM execution on specific NCs and to manage virtual
instance network overlay.

• Storage Controller (Walrus): is a data storage service that provides mechanisms
for storing and accessing virtual machine images and user data. Walrus is based
on web services technologies and compatible with Amazon’s Simple Storage Service
(S3) interface.

• Cloud Controller (CLC): is the entry-point for the users into the Cloud. Its main
goal is to offer and manage the underlying virtualized resources. CLC is responsible
for querying node managers for resources’ information, making scheduling decisions,
and implementing them by requests to CC. This component is composed by a set
of web services which can be grouped into three categories, according their roles:
resource services, data services, and interface services.

Nimbus. Nimbus[97] is licensed under the terms of the Apache License to turn clusters
into Infrastructure as a Service (IaaS) Cloud, and mainly focuses on scientific applica-

2.1. Open Source Cloud Computing Solutions 11

tions. This solution allows users to allocate and configure remote resources by deploying
virtual machines, known as Virtual Workspace Service (VWS), where a VWS is the virtual
machine manager that different front-ends can invoke. To deploy applications, Nimbus of-
fers a “Cloudkit” configuration that consists of a manager service hosting and an image
repository. The workspace components are as follows.

• Workspace service: is a web service that supports two front-ends: Amazon EC2 and
WSRF. It provides security by means of GSI authentication and authorization.

• Workspace control: is responsible for controlling virtual machine instances, man-
aging and reconstructing images, integrating a virtual machine to the network and
assigning IP and MAC addresses. The workspace control tools operates with the
Xen and KVM hypervisors.

• Workspace resource management: manages different virtual machines, but it can be
replaced by other technologies such as OpenNebula.

• Workspace pilot: provides virtualization with a few changes in the cluster operation,
handles signals and administration tools.

OpenNebula. OpenNebula [94] is an open-source toolkit used to build private, public
and hybrid Clouds. It has been designed to be integrated with networking and storage
solutions and to fit into existing data centers. The OpenNebula architecture is based on
three basic technologies that enable provisioning of services on a distributed infrastructure:
virtualization, storage and network. All resource allocation is done based on predefined
policies. The Cumulus Project [135] is an academic proposal based on OpenNebula that
intends to provide virtual machines, virtual applications and virtual computing platforms
for scientific applications. The Cumulus design is a layered architecture with three main
entities: Cumulus front-end, OpenNebula front-end, and OS Farm, and focuses on reaching
scalability and autonomy of data centers.

• Cumulus front-end: is the access point for a Cumulus system and is responsible for
handling virtual machine requirements.

• OpenNebula front-end: provides an interface to manage the distributed blade servers
and the resources for virtual machines deployment. Cumulus uses Network Infor-
mation System to administer a common user system and Network File System to
manage shared directory. OpenNebula was merged with secure infrastructure solu-
tions, such as Lightweight Directory Access Protocol and Oracle Cluster File System.

• OS Farm: is a tool for virtual machine template management that operates to
generate and to store Xen VM images and virtual appliances.

12 2. Related Work

2.2 Dependability Approaches in Cloud Computing

Dependability concept usually consists of three parts: the threats affecting dependability,
the attributes of dependability, and the means by which dependability is achieved. The
threats identify the errors, faults, and failures that may affect a system. The attributes
integrate different aspects of dependability and include the basic concepts of availability,
reliability, safety, confidentiality, integrity, and maintainability. Other attributes such as
security are included by combining various attributes (e.g., confidentiality, integrity and
availability). Finally, the means define the categories of mechanisms, such as fault preven-
tion, fault tolerance, and fault removal, that can be used to achieve system dependability.

In general, a failure represents the condition in which the system deviates from fulfilling
its intended functionality or the expected behavior. A failure happens due to an error;
that is, due to reaching an invalid system state. The hypothesized cause for an error is
a fault which represents a fundamental impairment in the system. The notion of faults,
errors and failures can be represented using the following chain:

. . .Fault→ Error→ Failure→ Fault→ Error→ Failure . . .

Fault tolerance is the ability of the system to perform its function even in the presence of
failures, and serves as a means to improve dependability. It is utmost important to clearly
understand and define what constitutes the correct system behavior so that specifications
on its failure characteristics can be provided and consequently a fault tolerant system be
developed. In this section, we first discuss the fault model in Cloud computing environ-
ments in order to develop an understanding on the numbers as well as the causes behind
recurrent system failures (Section 2.2.1). Then, we discuss state-of-art dependability tech-
niques particularly based on the virtualization technology (Section 2.2.2).

2.2.1 Failure Characteristics of Cloud Environment

Vishwanath et al. [132] and Gill et al. [51] use data mining techniques to describe the
failure behavior of server and network components respectively. Their studies are based
on the statistical information derived from large-scale data center failure logs. The key
findings of their works is summarized below.

Failure behavior of servers. Vishwanath et al. [132] studied the server failure and
hardware repair behavior using a large collection of servers (approximately 100,000 servers)
and corresponding data on part replacement such as details about server configuration,
when a hard disk was issued a ticket for replacement, and when it was actually replaced.
Key observations derived from this study are as follows:

• 92% of the machines do not see any repair events but the average number of repairs
for the remaining 8% is 2 per machine (20 repair/replacement events contained in 9

2.2. Dependability Approaches in Cloud Computing 13

machines were identified over a 14 months period). The annual failure rate (AFR)
is therefore around 8%.

• For an 8% AFR, repair costs that amount to 2.5 million dollars are approximately
spent for 100,000 servers.

• About 78% of total faults/replacements were detected on hard disks, 5% on RAID
controllers and 3% due to memory failures. 13% of replacements were due to a
collection of components (not particularly dominated by a single component failure).
Hard disks are clearly the most failure-prone hardware components and the most
significant reason behind server failures.

• About 5% of servers experience a disk failure in less than 1 year from the date when
it is commissioned (young servers), 12% when the machines are 1 year old, and 25%
of the servers sees hard disk failures when it is 2 years old.

Interestingly, based on the Chi-squared automatic interaction detector methodology,
none of the following factors: age of the server, its configuration, location within the rack
and workload run on the machine were found to be a significant indicator for failures.
Comparison between the number of repairs per machine (RPM) against the number of
disks per server in a group of servers (clusters) indicates that i) there is a relationship
in the failure characteristics of servers that have already experienced a failure, and ii)
the number of RPM has a correspondence to the total number of disks on that machine.
It can be inferred using these statistics that, robust fault tolerance mechanisms must
be applied to improve the reliability of hard disks (assuming independent component
failures) to substantially reduce the number of failures. Furthermore, to meet the high
availability and reliability requirements, applications must reduce utilization of hard disks
that have already experienced a failure (since the probability of seeing another failure on
that hard disk is higher).

Failure behavior of the network. Similarly to the study on failure behavior of servers,
Gill et al. [51] performed a large scale study on the network failures. A link failure happens
when the connection between two devices on a specific interface is down and a device failure
happens when the device is not routing/forwarding packets correctly (e.g., due to power
outage or hardware crash). Key observations derived from this study are as follows:

• Among all the network devices, load balancers (LBs) are least reliable with failure
probability of 1 in 5 and Top of Rack switches (ToRs) are most reliable with a failure
rate of less than 5%. The root causes for failures in LBs are mainly the software
bugs and configuration errors (as opposed to the hardware errors for other devices).
Moreover, LBs tend to experience short but frequent failures. This observation
indicates that low-cost commodity switches provide sufficient reliability.

14 2. Related Work

• The links forwarding traffic from LBs have highest failure rates; links higher in the
topology (e.g., connecting access routers) and links connecting redundant devices
have second highest failure rates.

• The estimated median number of packets lost during a failure is 59K and median
number of bytes is 25MB (average size of lost packets is 423Bytes). Based on prior
measurement studies (that observe packet sizes to be bimodal with modes around
200Bytes and 1,400Bytes), it is estimated that most lost packets belong to the lower
part (e.g., ping messages or ACKs).

• Network redundancy reduces the median impact of failures (in terms of number of
lost bytes) by only 40%. This observation is against the common belief that network
redundancy completely masks failures from applications.

The overall data center network reliability is therefore about 99.99% for 80% of the links
and 60% of the devices.

Failure behavior of various system components can also be analyzed based on mod-
els defined using fault trees and Markov chains (see Chapter 5). The rationale behind
such modeling is twofold: i) to capture the user’s perspective on component failures, that
is, understand the behavior of user’s applications that are deployed in the virtual ma-
chine instances under system component failures and ii) to define the correlation between
individual failures and the boundaries on the impact of each failure.

2.2.2 Dependability Techniques in Cloud Computing

In general, the faults can be classified in different ways depending on the nature of the
system. Since, in this section, we are interested in typical faults that appear as failures
to the end users, we classify the faults into two types similarly to other distributed sys-
tems: i) crash faults that cause the system components to completely stop functioning
or remain inactive during failures (e.g., power outage, hard disk crash), and ii) byzantine
faults that leads the system components to behave arbitrarily or maliciously during failure,
causing the system to behave unpredictably incorrect.

The most widely adopted methods to achieve fault tolerance against crash faults and
byzantine faults are as follows:

• Checking and monitoring: The system is constantly monitored at runtime to validate,
verify and ensure that correct system specifications are being met. This technique,
while simple, plays a key role in failure detection and subsequent reconfiguration.

• Checkpoint and restart: The system state is captured and saved based on pre-defined
parameters (e.g., after every 1024 instructions or every 60 seconds). When the system
undergoes a failure, it is restored to the previously known correct state using the
latest checkpoint information (instead of restarting the system from start).

2.2. Dependability Approaches in Cloud Computing 15

• Replication: Critical system components are duplicated using additional hardware,
software and network resources in such a way that a copy of the critical components
is available even after a failure happens. Replication mechanisms are mainly used
in two formats: active and passive. In active replication, all the replicas are simul-
taneously invoked and each replica processes the same request at the same time.
This implies that all the replicas have the same system state at any given point of
time (unless designed to function in an asynchronous manner) and it can continue to
deliver its service even in case of a single replica failure. This method is also called
as hot standby. In passive replication, only one processing unit (the primary replica)
processes the requests while the backup replicas only save the system state during
normal execution periods. Backup replicas take over the execution process only
when the primary replica fails. This method is called as cold standby. The N +M
technique of adding M standby hosts to spares for N working hosts to accommodate
up to M failures is the most popular solution.

In the following, we discuss dependability techniques that exploit attributes of the
virtualization technology to handle system failures (e.g., [29, 78, 116, 123, 122]). We
discuss this aspect in detail because our solution to offer dependability as a service uses
virtualization to transparently operate on the user’s applications (see Chapter 4). In
particular, we discuss three lines of research: virtualization-based software rejuvenation,
dependability against crash faults, and dependability against byzantine faults.

Software rejuvenation. Software rejuvenation is a proactive fault management
technique that aims at cleaning the system’s internal state so as to prevent the occurrence
of severe failures due to the phenomena of software aging or transient failures [125]. A
number of solutions have applied software rejuvenation techniques to Cloud Computing
and virtualization. Thein et al. [123] propose a technique that can increase the availability
of application servers using virtualization, clustering, and software rejuvenation. Their
solution uses analytical models to analyze multiple design choices when a single physical
server and dual physical servers are used to host multiple virtual machines. The results
of their study demonstrate that integration of virtualization, clustering, and software
rejuvenation increases availability, manageability and savings from server consolidation,
without significantly decreasing the uptime of critical services. Moura Silva et al. [116]
propose a similar approach based on automated self-healing techniques that claims to
induce zero downtime for most of the cases. In their solution, software aging and transient
failures are detected through continuous monitoring of system data and performability
metrics of the application server. In [125], Trivedi et al. are propose stochastic models
that help to detect software aging and determine optimal times to perform rejuvenation.
Models are constructed using workload and resource usage data collected from the
UNIX operating system over a period of time. Their measurement-based models help in
development of strategies for software rejuvenation triggered by actual measurements.

16 2. Related Work

Thein et al. [122] propose another rejuvenation technique for application servers using
stochastic models and the virtualization technology. In particular, the authors present
stochastic modeling of a single physical server, that is used to host multiple virtual
machines, configured with the specified technique. Their modeling scheme is intended
as a general model which captures various characteristics of the application server,
failure behavior, and performability measures. Kourai et al. [78] present a technique
called warm-VM reboot for fast rejuvenation of VMMs that enables efficiently rebooting
only a VMM by suspending and resuming VMs without accessing the memory images.
This technique is based on two mechanisms, on-memory suspend/resume of VMs and
quick reload of VMMs. Warm-VM reboot technique reduces downtime and prevents the
performance degradation due to cache misses after the reboot.

Dependability against crash faults. A number of solutions that improve the depend-
ability of users’ applications using virtualization are based on checkpoint and restart, mon-
itoring, and dynamic replication schemes [103, 49, 133, 46, 29, 119, 92]. For instance, the
Google File System [49] creates new file “chunks” when the number of available copies is
below a specified threshold, and commercial tools such as VMWare High Availability [133]
allows a virtual machine on a failed host to be reinstantiated on a new machine. Nagarajan
et al. [92] present a proactive fault tolerance technique for Message Passing Interface (MPI)
applications by exploiting the Xen hypervisor’s live migration mechanism. In particular,
their approach consists in migration of MPI tasks from a health-deteriorating node to a
healthy one without stopping the MPI task during most of the migration. Experimental
results demonstrate that live migration hides migration costs and limits the overhead to a
few seconds. Mishra et al. [89] provide a high-level approach for autonomic management
of system availability. Their approach involves real-time evaluation monitoring and man-
agement, and the monitoring data collected during operation is used to populate a set
of analytical models. However, their approach focuses on static system architectures and
assumes that the underlying availability models are built manually at system design time.
Finally, Freiling et al. [46] introduce an extensible grammar that classifies the states and
transitions of VM images. The grammar can also be used to create rules for recovery and
high availability, by exploiting virtualization for simplified fault tolerance.

Similarly to the above solutions, the approach of leveraging virtualization to handle
system failures and to improve the dependability of users’ applications is central to the
work presented in this thesis. In particular, our work is based on the schemes that can be
applied independently to the application and underlying hardware, offering high levels of
transparency and generality. Here, a detailed description of a technique (called Remus [29])
that combines checkpointing, live migration, and replication schemes to tolerate crash
faults in the Cloud is discussed as an example.

In Remus, the system or user application that must be protected from failures is first
encapsulated in a VM (say active VM or the primary), and the following operations are
performed at the VM level to obtain paired servers that run in active-passive configuration.

2.2. Dependability Approaches in Cloud Computing 17

1. Checkpoint the changed memory state at the primary and continue to next epoch
of network and disk request streams.

2. Replicate system state on the backup.

3. Send checkpoint acknowledgement from the backup when complete memory check-
point and corresponding disk requests have been received.

4. Release outbound network packets queued during the previous epoch upon receiving
the acknowledgement.

Remus achieves high-availability by frequently checkpointing and transmitting the
state of the active VM on to a backup physical host. The VM image on the backup
is resident in the memory and may begin execution immediately after a failure in the
active VM is detected. The backup only acts like a receptor since the VM in the backup
host is not actually executed during fail-free periods. This allows the backup to concur-
rently receive checkpoints from VMs running on multiple physical hosts (in an N-to-1
style configuration) providing a higher degree of freedom in balancing resource costs due
to redundancy. In addition to generality and transparency, seamless failure recovery can
be achieved i.e., no externally visible state is lost in case of a single host failure and re-
covery happens rapidly enough that it appears only like a temporary packet loss. Since
the backup is only periodically consistent with the primary replica using the checkpoint-
transmission procedure, all network output is buffered until a consistent image of the host
is received by the backup, and the buffer is released only when the backup is completely
synchronized with the primary. Unlike network traffic, the disk state is not externally
visible but it has to be transmitted to the backup as part of a complete cycle. To address
this, Remus asynchronously sends the disk state to the backup where it is initially buffered
in the RAM. When the corresponding memory state is received, complete checkpoint is
acknowledged, output is made visible to the user, and buffered disk state is applied to the
backup disk.

Remus is built on Xen hypervisor’s live migration machinery [25]. Live migration is a
technique using which a complete VM can be relocated onto another physical host in the
network (typically a LAN) with a minor interruption to the VM. While Remus provides
an efficient replication mechanism, it employs a simple heartbeat based failure detection
technique that is directly integrated within the checkpoint stream. Experiments shown
that the protocol is practically deployable but not well suited for applications that are
very sensitive to network latencies.

Dependability against byzantine faults. Byzantine Fault Tolerance (BFT) protocols
are powerful approaches to obtain highly reliable and available systems. Zhang et al. [140]
propose the following system architecture. A request made to the Cloud system will consist
of a flow through which the request will be served and returned to the requester. This flow

18 2. Related Work

consists of primary selection, replica selection, request execution, primary updating, and
replica updating, operations. The primary selection is a selection of the primary node or
a resource to which the initial request will go to. This depends on the QoS requirements
of the request which in turn depends on how critical the request is. After this, the replica
selection is performed where, up to 3f+1 replicas are selected by the primary from a pool
which is sorted with the best QoS rating. Next, the requests are executed by the primary
and all the replicas and the results are sent to the primary, who performs an analysis on
the result and decide whether to perform primary or replica update.

Wood et al. [137] identify that despite numerous efforts, most BFT systems are too
expensive for practical use (no commercial data centers have employed BFT techniques),
and argue that the dominant costs are due to the hardware performing service execution
and not due to running the agreement protocol. For instance, a toy application running
null requests with the Zyzzyva BFT approach [77] exhibits a peak throughput of 80K
requests/second while a database service running the same protocol on comparable hard-
ware exhibits almost three times lower throughput. Based on this observation, ZZ, an
execution approach that can be integrated with existing BFT state machine replication
(SMR) and agreement protocols is presented in [137]. The prototype of ZZ is built on
the BASE implementation [26] and guarantees BFT while significantly reducing resource
consumption costs during fail-free periods.

The design of ZZ is based on the virtualization technology and targeted to tolerate
byzantine faults while reducing the resource provisioning costs incurred by BFT protocols
during fail-free periods. The cost reduction benefits of ZZ can be obtained only when BFT
is used in the data center running multiple applications so that sleeping replicas can be
distributed across the pool of servers and higher peak throughput can be achieved when
execution dominates the request processing cost and resources are constrained. These
assumptions make ZZ a suitable scheme to be applied in a Cloud computing environment.

The BFT execution protocol reduces the replication cost from 2f+1 to f+1 based on
the following principle:

• A system designed to function correctly in an asynchronous environment will provide
correct results even if some of the replicas are outdated.

• A system designed to function correctly in the presence of f byzantine faults will,
during fault-free period, remain unaffected even if up to f replicas are turned off.

The second observation is used to commission only f+1 replica to actively execute requests.
The system is in a correct state if the response obtained from all f+1 replica is the same.
In case of a failure (i.e., when responses do not match), the first observation is used to
continue system operation as if the f standby replicas were slow but correct replicas.
To correctly realize this design, the system requires an agile replica wake-up mechanism.
To achieve this, the system exploits virtualization technology by maintaining additional
replicas (VMs) in a “dormant” state, which are either pre-spawned but paused VMs or

2.3. Dependability-Oriented Resource Management Schemes 19

the VM that is hibernated to a disk. There is a trade-off in adopting either method. Pre-
spawned VM can resume execution in very short span (in the order of few milliseconds)
but consumes memory higher resources, whereas, VMs hibernated to disks incur greater
recovery times but occupy only storage space.

2.3 Dependability-Oriented Resource Management
Schemes

Traditionally, to ensure resource availability, QoS and dependability to hundreds of ap-
plications in the Cloud under fluctuating workloads, server failures, and network con-
gestion, dedicated servers were allocated to applications and server capacity was often
over-provisioned. However, the use of dedicated hardware not only lead to poor energy
usage, but also made it difficult to react to system changes. Furthermore, the growing
number of under-utilized servers increased operating costs such as system management,
energy consumption of servers, and network and cooling infrastructure costs.

In the last decade, the virtualization technology has emerged as a very effective ap-
proach to address these issues by de-coupling physical servers from the resources needed
by applications. In particular, virtualization provides an efficient way to insulate and par-
tition server’s resources so that only a portion of them can be utilized by an application.
It also provides a greater flexibility and control over resource management, allowing for
dynamic adjustment of CPU and memory usage, and live migration of virtual machines
among physical servers (e.g., [54]). Most Cloud computing solutions create virtualized
environments for application execution on distributed data centers.

Deploying virtualized services in Cloud computing create new resource management
problems, such as optimal placement of virtual machines. Existing solutions focus mainly
on placing and adaptive managing virtual machines in order to i) reduce energy consump-
tion costs and maximize profits for the data center owner, and ii) improve the performance
and QoS of applications. Only a few approaches are available in the literature to improve
dependability of applications. In this section, we investigate resource management schemes
that improve dependability and performance of applications in Cloud data centers.

Resource management for Cloud computing is often modeled as a placement problem
in which virtual machines are allocated on the data center’s hosts [54], having been the
applications mapped on the appropriate virtual machine templates available in the data
center environment. Existing solutions, particularly for services that provision on-demand
resources to users, primarily focus on making virtual machine placement decisions at two
distinct levels: i) initial virtual machine allocation and ii) runtime adaption of current
virtual machine allocation [88]. Based on user’s requirements and failure characteristics
of the envisioned data center, a set of dependability and performance constraints are
specified (e.g., constraint specifying that replicas of the user’s application be allocated
on two different physical hosts to avoid single points of failure). The initial resource

20 2. Related Work

allocation process identifies the physical hosts on which the requested virtual machines
can be allocated such that all the placement constraints are satisfied. Once the required
virtual machines are created and delivered to the user, the runtime adaption process
monitors the system and resizes virtual machines or migrates them to other physical
hosts in order to meet the predefined goals (e.g., energy conservation), while satisfying
the placement constraints. While the objective of most resource management algorithms
in this context has been to maximize the service provider’s goals (e.g., through resource
consolidation, load balancing, satisfaction of SLAs), we will provide a broader perspective
which encompasses both the provider’s and the users’ views, balancing all needs in a
comprehensive way.

In this section, first, we will study resource management schemes for placing applica-
tions in the Cloud computing environment at the initial deployment (see Section 2.3.1).
Then, we will discuss dynamic adaptation of the applications placement to deal with
changing working status of the architecture components, balancing dependability and
performance of users’ applications (see Section 2.3.2).

2.3.1 Initial Allocation of Virtual Machines

Given the NP-Hardness of the allocation problem, existing solutions either use Constraints
Programming (CP) solvers (e.g., [22]) or design heuristics (e.g., [114]) to obtain the place-
ment solutions. In general, while the goal is to maximize the goals of the data center
owner, each solution takes a different approach in modeling the context of the system
and, consequently, defines different objective functions and placement constraints. In the
following, we discuss four representative solutions to understand different dimensions in
which the overall problem has been studied.

Bin et al. [22] combine the Hardware Predicted Failure Analysis alerts (HwPFA) and
live migration techniques to provide a high availability solution. On predicting hardware
failure alerts, a trigger to the cluster management system is provided so as to move the
virtual machines from the failing host to other working hosts. Depending on the allowed
response time, either a complete live relocation of the virtual machine is performed so
that continuous operation of the applications is ensured, or a cold relocation is performed
by starting a new virtual machine on a working host with a small interruption. The
goal of their solution is to provide k-resiliency to users’ applications while reducing the
resource consumption costs. We note that k-resiliency allows a given application or virtual
machine to tolerate up to k host failures. In general, to ensure k-resiliency, a feasible
solution should dedicate at least k hosts for the given virtual machine (in addition to the
virtual machine itself). The proposed approach introduces the notion of shadow virtual
machines that denotes the location or host where a virtual machine can be evacuated (i.e.,
a shadow serves as a placeholder) and aim to construct shadow placement constraints
so to reduce the overall resource requirements to a value less than (k + 1). To achieve
this, they transform the placement problem with k-resiliency constraints into a constraint

2.3. Dependability-Oriented Resource Management Schemes 21

satisfaction problem including the notion of shadow virtual machines, and solve it using
a constraint programming engine. All the shadows of a given virtual machine and the
virtual machine itself are anti-colocated. In addition, they employ a scheme of numbering
shadows and failures in a way that identifies the possible overlaps of actual virtual machine
evacuations. In particular, each failing host is assigned a unique index (1 through k) and
each shadow of a virtual machine is assigned a unique index. Upon failure of a host
indexed i, the virtual machines on that host are evacuated to the location of their i-th
shadow. The placement constraints are defined to specifically numbered shadows and
virtual machines that may overlap following host failures, thus reducing the number of
backup hosts required. For example, virtual machines that are placed on different hosts
cannot be evacuated together to shadows with the same index (as each host would be
assigned a different failure index); therefore, their shadows with same index can overlap.

Machida et al. [83] consider consolidated server systems and present a method to
redundant configuration of virtual machines, in anticipation of host server failures for
online applications. They estimate the requisite minimum number of virtual machines
according to the performance requirements of the given application, and compute the
virtual machine placement solution so that the configuration can survive k host server
failures. The overall problem is defined as a combinatorial optimization problem and
a greedy algorithm for determining the placement solution is provided with the aim of
minimizing the number of required hosting servers. Their method performs better than
the conventional N+M redundant configuration in terms of the number of hosting servers
required.

Shi et al. [114] formulate the problem of virtual machine placement as an Integer Lin-
ear Programming (ILP) problem and provide a twofold solution. First, they use solvers
to obtain optimal results. Second, since the scalability of this approach is limited, they
also provide a modified version of the first fit decreasing heuristic to generate sub-optimal
results. In particular, they classify the requests for virtual machine placements into differ-
ent categories and satisfy the following constraints using the first fit decreasing heuristic,
in the form of a multidimensional vector packing problem: i) the full deployment con-
straint that ensures either all the virtual machines requested by the user are allocated
or none; ii) the anti-colocation constraint requiring all the virtual machines to be placed
on different physical hosts; and iii) the security constraint requiring a physical host only
be assigned virtual machines from the same user request and not be assigned any virtual
machines from other requests.

The three aforementioned resource allocation techniques consider only fault tolerance
and security constraints. The solution by Jayasinghe et al. [60] that also take into account
various performance attributes while performing initial allocation of virtual machines. In
particular, they propose a structural constraints-aware virtual machine placement ap-
proach to improve the performance and availability of applications deployed in the data
centers. They integrate the structural information of users’ applications within the algo-
rithm for initial placement of virtual machines by means of three constraints: i) demand

22 2. Related Work

constraint, that defines the lower bound of resource allocations that each virtual machine
requires from the service to meet its SLA; ii) availability constraint, that improves the
overall availability of given applications using a combination of anti-collocation/collocation
constraints; and iii) communication constraint, that represents the communication re-
quirement between two virtual machines. The objective of the proposed algorithm is to
minimize the communication cost while satisfying both the demand and availability con-
straints. Their solution uses the divide-and-conquer technique which involves the following
steps: i) the group of virtual machines requested by the user is divided into a set of smaller
virtual machine groups and the upper bound of the virtual machine group size is deter-
mined by the average capacity of a server rack; ii) a suitable server rack is identified for
each virtual machine group such that the mapping minimizes the total communication cost
and guarantees the satisfaction of availability constraints; iii) a physical host satisfying
the demand constraint is identified for each virtual machine.

2.3.2 Runtime Adaption of Virtual Machine Allocation

Cloud computing is highly dynamic in terms of task activation, bandwidth availability,
component failures and recovery. This implies that static deployment strategies for virtual
machines that perform only initial allocation may not provide satisfactory results at run-
time and application’s dependability and performance requirements may not be satisfied
all along their lives. A naive approach is to re-compute the allocation from scratch each
time system changes affect an application. However, since this method may not scale
well during runtime, a number of solutions have been proposed in the literature to adapt
the current allocation of applications using fewer actions. In the following, we present
state-of-art adaptive resource management schemes.

The placement of application replicas to achieve dependability becomes especially chal-
lenging when they consist of communicating components (e.g., multi-tier web applica-
tions). Recent works on performance optimization of such applications (e.g., [30], [70])
address the performance impact of resource allocation, but does not combine performance
modeling with availability requirements and dynamic regeneration of failed components.

The trade-off between availability and performance is considered in the literature on
dependability since increasing availability (by using more redundancy) typically increases
response time. In fact, the well-known Brewer’s theorem states that consistency, avail-
ability, and partition tolerance are the three commonly desired properties by a distributed
system, but it is impossible to achieve all three [50]. Examples of work that explicitly
address this issue include [115, 74, 65, 70]. Among these solutions, [115] considers the
problem of when to invoke a (human) repair process to optimize various metrics of cost
and availability defined on the system. The optimal policies that specify when the repair
should be invoked (as a function of system state) are computed off-line via Markov deci-
sion process models of the system. Similarly, Jung et. al [70] study how virtualization can
be used to provide enhanced solutions to the classic problem of ensuring high availabil-

2.3. Dependability-Oriented Resource Management Schemes 23

ity while maintaining performance of multi-tier web services. Software components are
restored whenever failures occur and component placement is managed using information
about application control flow and performance predictions.

Addis et al. [1] devise a resource allocation policy for virtualized Cloud computing
environments aiming at identifying performance and energy trade-off, with a priori avail-
ability guarantees for the users. They model the problem as a mixed integer non-linear
programming problem and propose a heuristic solution based on non-linear programming
and local-search techniques. In particular, the availability requirements are introduced as
constraints, and the objective is to determine a resource allocation that allows improving
the total profit (the difference between the revenues from SLA contracts and the total
costs). Their solution defines the following four actions to take into account availability
constraints: i) increase/decrease the working frequency for each server according to the
application loads (a frequency change compatible with the new application loads does not
affect availability); ii) switch a server to low power sleep state and allocate all applications
of that server on the other available servers (some applications from the overloaded servers
can be duplicated and allocated on another active server to satisfy availability constraints);
iii) reallocation of class-tier applications on a server with sufficient availability assurance
to satisfy the performance constraints; iv) servers exchange is used to move all applications
from a server which should be switched to low the power sleep state to a different active
server if the availability of the new server guarantees the availability requests of all the
moved applications.

Zheng et al. [143] consider the lack of maintenance to be the root cause for downtime
events in a Cloud computing data center. To address this issue, they first present a
heuristics for resource provisioning under a given maintenance schedule and, then, build on
the heuristics to solve the joint resource provisioning and maintenance scheduling problem.
Yang et al. [139] propose an algorithm that uses Markov chain models to schedule tasks
so that they get the best value of utility. A job being executed on the Cloud possesses the
following factors: deadline, data, and reward factor for completing it on time. The reward
is assigned to each task depending on the time it takes to complete the job with respect
to its deadline. The earlier it completes, the higher is the reward. If a task fails during
execution, then the time required for the task to recover is also added to the total time it
takes to complete. The proposed algorithm includes reliability while calculating the value
of the reward for each task. The impact of the amount of time which is spent in recovery
from a failure and the useless waiting time in the task queue are added in this model. The
proposed rules are: execute a job as soon as possible when the resources are available,
and pausing a job in the queue till a resource is available or assigning a new task to free
resources. This approach has been tested against well-known task scheduling algorithms:
if there are not system failures results have quality similar to other conventional scheduling
techniques, while in the case of system failures the proposed algorithm produces better
efficiency and stability.

24 2. Related Work

2.4 Web Services Dependability Evaluation

Our certification solution has multi-disciplinary roots involving areas of SOA, system mod-
eling, testing, and certification. In this section, we discuss some related work corresponding
to these areas.

An important line of research concerns definition of modeling approaches for automatic
generation of test cases and, validation of functional and QoS parameters for services and
service compositions. Salva and Rabhi [108] propose an approach to test the robustness
of a service by automatically generating test cases from its WSDL interface. Frantzen
et al. [48] define an approach to model service coordination using an STS and automat-
ically generate run-time test cases. Salva et al. [107] propose a testing method based on
STSs and security rules for stateful web services. They first define security rules using
the Nomad language, then translate rules into an STS, and finally generate test cases
from STS to check whether security rules are satisfied. Ding et al. [42] model failure be-
havior using non-homogeneous Poisson process and compute the overall system reliability
through the reliability of partner link, port type, and operation. Riccobene et al. [105]
use architecture- and path-based reliability models to predict the reliability of an SCA-
ASM component model, and of the SCA assembly modeling a service orchestration, by
considering failures specific to the nature of ASMs. Bentakouk et al. [21] propose a testing
solution that uses an SMT solver to check the conformance of a composite service against
its specifications. In contrast to the above works, we use formal modeling to validate and
certify dependability properties of services. Mateescu and Rampacek [85] define an ap-
proach for modeling business processes and web services described in BPEL using process
algebraic rules. Betakauk et al. [20] propose a framework for testing service orchestra-
tions. The orchestration specification is translated into an STS, and then, a Symbolic
Execution Tree (SET) is computed. SET supports retrieval of STS execution semantics
and, for a given coverage criterion, generation of a set of execution paths which are run
by a test oracle against the orchestration implementation. Pathak et al. [100] define a
framework that models service compositions as STSs starting from UML state machines.
Similarly to the above approaches, we model services as state automata (using STSs) and
apply a derivative approach to generate the models for service compositions. However,
our solution generates dependability certificates for service compositions using certificates
of individual services.

Definition of service certification schemes is the most relevant aspect to our work.
Kourtesis et al. [79] present a solution using Stream X-machines to improve the reliability
of SOA environments; they evaluate if the service is functionally equivalent to its specifica-
tions, and award a certificate to it. Anisetti et al. [10, 8] proposes a model-driven test-based
security certification scheme for (composite) services. This solution allows clients to select
services on the basis of their security preferences [9]. The work in [23] presents a test-
based reliability certification scheme for services that provides an a priori validation of
services based on reliability patterns, and a posteriori testing using a set of metrics. Our

2.5. Chapter Summary 25

work, instead, quantitatively evaluates dependability properties of (composite) services
and supports run-time validation of certificates.

The approach of probabilistically estimating the reliability of a software using Markov
chains has been studied in the past. Mustafiz et al. [91] propose an approach to identify
reliable ways of designing the interactions in a system and assigning probability values to
each interaction measuring its success. Cheung [27] claims that reliability of a software
depends on the reliability of its components and the probabilistic distribution of their uti-
lization. A Markov model is then used to measure the reliability and effects of failures on
the system with respect to a user environment. Other Markovian model-based approaches
to evaluate system reliability have been proposed (e.g., [57, 90]). In contrast to Markov
models, Petri nets are often employed to verify the feasibility and correctness of business
process configurations (e.g., [129]). Although these models are effective in establishing
functional requirements of service compositions, they seemingly overkill our goals of vali-
dating and monitoring dependability properties of individual services and add complexity
in determining assurance level values.

2.5 Chapter Summary

In this chapter, we focused on solutions known in the literature for solving problems re-
lated to dependability in Cloud computing. We discussed the architecture and important
features of widely used Cloud computing managers and investigated failure characteris-
tics of various system components. Based on this analysis, we surveyed dependability
approaches that leverage the virtualization technology and resource management schemes
that perform initial allocation and runtime adaption of users’ applications. Finally, we
provided related work in the area of dependability certification of services.

In the following of this thesis, we will analyze more in depth the aspect of dependability
in SOA and Cloud computing, proposing a new approach to dependability certification of
services, and fault tolerance and security management in Cloud infrastructures.

26 2. Related Work

3
Dependability Certification of

Services

Trustworthiness of services become a critical factor for the users when applications are
implemented by composing a set of Cloud computing services. In this context, there is a
need for awareness tools that report the Quality of Service (QoS) offered by a given service,
and assurance techniques that increase users’ confidence that a given service complies with
their dependability requirements.

This chapter defines a certification scheme that allows users to verify the dependability
properties of services and business processes. The certification scheme relies on discrete-
time Markov chains and awards machine-readable dependability certificates to services,
whose validity is then continuously verified using runtime monitoring. This solution also
extends the traditional discovery and selection process with dependability requirements
and certificates in order to support a dependability-aware application composition. In
other words, our certification scheme provides the basic support necessary for the users in
building dependable applications by selecting and integrating only those external services
that satisfy their dependability requirements. We note that the certification scheme is a
passive method that is applied on a given Cloud computing service in its present form,
and denotes the first level of dependability support offered in this thesis.

3.1 Introduction

The availability of a range of services published by different providers, coupled with stan-
dard XML-based protocols, allows for the design and dynamic composition of applications
and business processes across organization boundaries [99]. Traditionally, web services
provided only high-level software functionality such as travel reservation, and shipment
and accounts management. With the advent of Cloud computing, services are now being
offered by following the SaaS and IaaS models, that provide both high-level and low-level
functionalities to the users, thus increasing the opportunities to build the overall system
in a service-oriented manner.

28 3. Dependability Certification of Services

In general, service providers and users negotiate a set of guarantees on the performance
and availability of the service, in the form of SLAs. However, the violation of SLAs has
become a norm rather than an exception and, as a result, users are increasingly concerned
about service failures that may affect the functional and non-functional properties of
their applications. In this context, trustworthiness of services is a critical factor for the
users, and raises the need for the definition of an assurance technique that increases users’
confidence that a given service complies with their dependability requirements.

A suitable technique to address the above concerns is based on certification [31]. The
certification schemes originally targeted static and monolithic software, and produced
human-readable certificates to be used at deployment and installation time [128, 55]. How-
ever, Cloud computing and SOA paradigms require the definition of certification schemes
that can address the issues introduced by a service-based ecosystem and its dynamics. In
particular, there is a need for the definition of approaches that support machine-readable
certificates that can be integrated within the service discovery and selection process. The
fundamental requirement for such certification scheme is the ability to verify dependability
properties of services and their compositions with a given level of assurance, and prove
service robustness against a set of failures to the users.

This chapter defines a certification scheme that, starting from a model of the service
as a Symbolic Transition System (STS), generates a certification model in the form of a
discrete-time Markov chain. The certification model is used to validate whether the ser-
vice supports a given dependability property with a given level of assurance. The result
of property validation and certification is a machine-readable certificate that represents
the reasons why the service supports a dependability property and serves as a proof to
the users that appropriate dependability mechanisms have been used while building it. To
complement the dynamic nature of service-based infrastructures, the certificate validity is
continuously verified using runtime monitoring, making the certificate usable both at dis-
covery and run time. The certification scheme discussed here allows users to select services
with a set of certified dependability properties, and supports dependability certification
of composite services.

Given the goal of this thesis is to improve the dependability of Cloud computing,
particularly by reducing the risks of using IaaS and SaaS services, our dependability
certification scheme provides the first level of the overall solution where an assertion of
dependability and QoS is performed. It allows users to implement dependable applications
and allows providers to ensure negotiated dependability properties of their services at
runtime, thus building trustworthy relationship between users and service providers.

3.1.1 Chapter Outline

This chapter is organized as follows. Section 3.2 describes a reference scenario and some
basic concepts on dependability certification. Section 3.3 illustrates an approach to STS-
based service modeling. Section 3.4 presents the certification model based on discrete-

3.2. Reference Scenario and Basic Concepts 29

time Markov chains and defines the concept of assurance level. Section 3.5 describes
the two-phase dependability certification process for single services. Section 3.6 discusses
how to integrate the proposed certification process within service-based infrastructures to
effectively match service certificates with user’s requirements. Section 3.7 presents how
the certification process can be extended to certify composite services. Finally, Section 3.8
provides concluding remarks.

3.2 Reference Scenario and Basic Concepts

This section describes a reference scenario and some basic concepts on dependability cer-
tification.

3.2.1 Reference Scenario

Consider a highly dynamic and distributed service-based infrastructure that involves the
following main parties: i) a trusted certification authority that certifies the dependability
properties of services; ii) a service provider that implements a service and engages with the
certification authority to obtain a certificate for the service; iii) a client (business owner)
that establishes a business relationship with one or more service providers and uses a set of
certified services to implement its business process; iv) a service discovery that enhances a
registry of published services to support the certification process and metadata. We note
that the client can also be a service consumer searching for and selecting a single certified
service. The term client refers to both the users as well as servers.

As an example, consider an online shopping service (eShop) that allows its customers
to browse and compare available items, purchase goods, and make shipping orders over
the Internet. The eShop business owner is the client of the certification framework, who
implements eShop as a business process using i) three vendor services that offer a range of
goods for trade to eShop, ii) two shipment services that deliver items to a customer address,
and iii) an external storage service to store, retrieve, and update shopping information.
The vendor and shipping services belong to SaaS layer and the external storage is an IaaS
service. Table 3.1 summarizes the details about the operations of partner services.

When a query to browse available items is provided to eShop, a call to operation
browseItems of all three vendor services is made. The result from each vendor is re-
ported to the customer, say in a tabular form, to enable comparison. The customer can
then choose to purchase an item from a specific vendor. In this case, first a call to op-
eration buyGoods of that vendor service is made, and then operation shipItems of the
shipment service with minimum freight cost is invoked. For each transaction, eShop stores
the customer, vendor, and shipping specific data using operation write of the storage
service. Shopping information is then accessed using operation read whenever necessary.
Operations write and read are invoked after a successful login.

30 3. Dependability Certification of Services

Table 3.1: Summary of operations realized by eShop partner services
Service Operation Description

Vendor browseItems(query) Allows customers to browse available items
buyGoods(itemID,data) Allows customers to buy an item

Shipping shipItems(itemID,addr) Allows customers to ship an item to an address
Storage login(usr,pwd) Provides password-based authentication and

returns an authentication token
write(data,token) Stores data in the remote server
read(query,token) Provides access to data stored in the server
logout(token) Allows customers to log out

Intuitively, failures in the partner services may have an impact on eShop and, there-
fore, in addition to the functional properties, dependability properties of partner services
become of paramount importance to eShop. For example, a failure in one of the vendor
services may result in quality degradation of eShop, while a failure in the storage service
may affect its overall reliability and availability. Hence, eShop must integrate only those
external services that satisfy its dependability requirements. In this context, a dependabil-
ity certificate can serve as an effective means of assurance to the eShop business owner, by
providing a proof that its partner services support a given set of dependability properties.
A service discovery that provides a selection approach based on dependability certificates
can further serve as a means to search and integrate appropriate partner services. For sim-
plicity, whenever not strictly required, we will use a simplified version of the motivating
scenario and discuss the concepts in this chapter using the storage service.

3.2.2 Basic Concepts

A service provider implements its service using a set of dependability mechanisms, and
engages with the certification authority in a process that certifies the dependability prop-
erties of the service. To realize this process, the certification authority must define: i) a
hierarchy of dependability properties to be certified; ii) a model of the service to drive the
certification process; and iii) a policy to assess and prove that a given property holds for
the service.

Hierarchy of dependability properties

According to [17, 126], dependability concept usually consists of three parts: the threats
affecting dependability, the attributes of dependability, and the means by which depend-
ability is achieved. The threats identify the errors, faults, and failures that may affect a
system. The attributes integrate different aspects of dependability and include the basic
concepts of availability, reliability, safety, confidentiality, integrity, and maintainability.
This chapter considers a subset of dependability attributes, that is, availability, reliabil-

3.2. Reference Scenario and Basic Concepts 31

*

Safety

p8=(Safety,
{mechanism=
disaster recovery
fault type=
catastrophic events})

Reliability

p1=(Reliability,
{mechanism=redundancy
no of server instances=2
fault type=server crashes})

p2=(Reliability,
{mechanism=redundancy
no of server instances=3
fault type=server crashes
recovery time≤15ms})

p3=(Reliability,
{mechanism=redundancy
no of server instances=3
fault type=pgming errors})

Availability

p6=(Availability,
{mechanism=checkpointing
type=cold standby
frequency=1min})

p7=(Availability,
{mechanism=checkpointing
type=hot standby
frequency=50ms})

p4=(Availability,
{mechanism=redundancy
no of server instances=3
recovery time≤30ms})

p5=(Availability,
{mechanism=redundancy
no of server instances=3
recovery time≤10ms})

Figure 3.1: An example of a hierarchy of dependability properties

ity, and safety, which measure the ability of the service to be up and running, and to
be resistant to failures. Finally, the means define the categories of mechanisms, such as
fault prevention, fault tolerance, and fault removal, that can be used to achieve system
dependability.

Starting from the above definition of dependability, the definition of a hierarchy of
dependability properties that are the target of the certification scheme is provided. First,
the dependability attributes (abstract properties below) are considered to represent the
general purpose dependability characteristics of the service under certification. Then, a
concrete property p=(p̂, A) enriches the abstract property p.p̂ with a set p.A of attributes
that refer to the threats the service proves to handle, the mechanisms used to realize the
service, or to a specific configuration of the mechanisms that characterizes the service
to be certified. We note that the mechanisms represent specific implementations of de-
pendability means. For each attribute attr∈A, according to its type, a partial or total
order relationship �attr can be defined on its domain Ωattr, and v(attr) represents the
value of attr. If an attribute does not contribute to a property configuration, its value is
not specified. In general, attributes represent a service provider’s claims on the depend-
ability of its service. For instance, when attr is fault type, v(attr) can be crash failure,
programming error, or byzantine failure.

The hierarchical ordering of dependability properties can be defined by a pair (P,�P),
where P is the set of all concrete properties, and �P is a partial order relationship over
P. We note that an abstract property corresponds to a concrete property with no at-
tributes specified. Given two properties pi,pj∈P, pi�P pj if i) pi.p̂=pj .p̂ and ii) ∀attr∈A
either vi(attr) is not specified for pi or vi(attr)�attrvj(attr). The relation pi�P pj means
that pi is weaker than pj and a service certified for pj also holds pi. Figure 3.1 shows an
example of a hierarchy of dependability properties. Each node represents a concrete prop-
erty p=(p̂,A). Each child node of a given node represents a stronger property and takes
precedence in the hierarchy. For instance, p1�P p2, p4�P p5, and p6�P p7. p1�P p2 since p2

specifies additional guarantees on the recovery time). We note that some properties are

32 3. Dependability Certification of Services

incomparable despite the same abstract property (e.g., p4 and p6).

Symbolic Transition System (STS)

The service model must succinctly represent the functional and dependability proper-
ties of the service. To this aim, it must represent the different states of the service, the
dependability mechanisms, and their specific configurations. Following the approaches
in [48, 73, 124], services, interactions within a service, and communications between dif-
ferent services are modeled using STSs. An STS extends a finite state automaton with
variables, actions, and guards to capture the complex interactions in a system. It can be
defined as follows.

Definition 3.2.1 (Symbolic Transition System). A symbolic transition system is a 6-tuple

〈S, s1,V, I,A, a,g,u→ 〉, where S is the set of states in the service, s1∈S is the initial state,
V is the set of (location) internal variables specifying data dependent flow, I is the set of
interaction variables representing operation inputs and outputs, A is the set of actions,
and

a,g,u→ is the transition relation. Each transition (si, sj)∈a,g,u→ between two states si, sj∈S
is associated with an action a∈A that encapsulates a guard g, defining the conditions on
transition, and an update mapping u, providing new assignments to the variables in V.

In the following, when possible, the transition relation is simply referred with →.
Differently from [48, 73, 124], the modeling approach discussed here can also be used when
the real implementation of the service (and its dependability mechanisms) is available.
This approach permits to generate fine-grained test cases that can be used to generate the
certification model of the certification solution, and validate the dependability properties
against various threats (see Sections 3.4, 3.5, and 3.7).

Policy

A certification scheme must verify and prove that a dependability property p is supported
by the service. Proving p is equivalent to validating the implementation of dependabil-
ity mechanisms used by the service to counteract a given (set of) threat. Based on this
observation, a policy Pol(p)→{c1, . . . , cm} contains all conditions c1, . . . , cm on depend-
ability mechanisms necessary to prove that p holds for the service. We note that while
the threats specified in the property drive the certification and testing processes (e.g., by
defining a given fault injection model), they are not considered in policy specification.
This is due to the fact that policies only include conditions that can be quantitatively
measured to validate a given mechanism. Hence, a policy can be defined corresponding to
each property configuration, where each ci∈Pol(p) defines a relationship derived by the
attributes in p.A and mechanisms used to implement the service. For instance, for prop-
erty p2 in Figure 3.1, a policy can be defined with conditions: c1:no of server instances≥3
and c2:recovery time≤15ms. In this context, a dependability certificate is granted to the

3.3. Service Modeling 33

service when it satisfies the policy proving that it holds a property p with a given level of
assurance against a given set of threats (see Section 3.5).

3.3 Service Modeling

The complete modeling of the service under certification represents a fundamental step to
realize dependability certification, and serves as the basis for the certification authority
to carry out its validation process. This section presents a modeling approach that allows
the certification authority to generate an STS-based model of a service, based on i) the
dependability property to be certified and ii) the information released by the service
provider in the Web Service Description Language (WSDL) interface and/or the Web
Service Conversation Language (WSCL) document.

3.3.1 WSDL-based Model

The WSDL interface is the least set of information that a service provider has to release to
publish its service, and specifies the set of service operations and the methods of accessing
them. In the certification scheme here, the WSDL interface is used to define the WSDL-
based model of the service, as follows.

Definition 3.3.1 (WSDL-based model). Let M be the set of STS-based service models,
a WSDL-based model Mwsdl∈M of a service ws is an STS that consists of a set {mwsdl}
of connected components, each one modeling a single service operation. Each mwsdl is in
turn modeled as an STS 〈S, s1,V, I,A,→〉 (see Definition 3.2.1), where the number of
actions modeling operation input and output is equal to two (|A|=2) and the number of
states is at least equal to three (|S|≥3).

Intuitively, each mwsdl∈Mwsdl always includes three states modeling the operation
interface as follows: i) s1∈S is the initial state when no input has been received by the
service operation, ii) s2∈S is the intermediate state when the input is received while the
output is not yet generated (i.e., when the operation is being performed), and iii) s3∈S is
the final state when the output has been generated and correctly returned to the client.
The set S of states in mwsdl can be extended to represent the stateful implementation
of the service operation when its source code is available. In this case, the intermediate
state s2 consists of a number of sub-states as described in Example 3.3.1 at the end of this
section. Guards g at state transitions model the functional correctness of the service and
the specific configuration of dependability mechanisms.

3.3.2 WSCL-based Model

The WSCL document defines the service conversation as the communication protocol be-
tween the clients and the service, and the interactions/ordering between various operations

34 3. Dependability Certification of Services

within the service. Given a service conversation, the aim is to define the WSCL-based
model of the service in the form of an STS. Hence, the certification authority considers
the connected components mwsdl∈Mwsdl as building blocks, and defines a set of modeling
operators op:M×M→M that take as input two service models and return as output their
combination. According to the operators typically defining the WSCL conversation, first
the set O={�,⊗} of modeling operators op is defined, where � is the sequence operator
and ⊗ is the alternative operator. Then, the modeling operators are recursively applied
on the WSCL-based model, using the connected components mwsdl as basic elements, to
derive Mwscl as follows (see Example 3.3.1).

Mwscl = mwsdl | Mwscl �Mwscl | Mwscl ⊗Mwscl

The WSCL-based model can be defined as follows.

Definition 3.3.2 (WSCL-based model). Let M be the set of service models, a WSCL-
based model Mwscl∈M of a service ws is an STS 〈S, s1,V, I,A,→〉 (see Definition 3.2.1),
where S is the union of all the states of component WSDL-based models integrated using
the operators in O={�,⊗}, and A represents the set of service operations involved in the
conversation.

Given two WSCL-based models M1 and M2 combined using ⊗, the initial states of
the two models can be unified and represented using a single state (e.g., State s4 in Fig-
ure 3.2(b) is the common state between operations read and write combined by operator
alternative). Similarly, when the two WSCL-based models are combined using �, the final
state of the first model M1 and the initial state of the second model M2 can be repre-
sented using a single common state (e.g., State s4 in Figure 3.2(b) is the combination of
the final state of operation login and the initial state of the choice between the operations
read and write). We note that the WSCL-based model resulting from the application of
these modeling operators can be further refined to derive a more clear while equivalent
representation. For example, the final state of operation login in Figure 3.2(b) can be
represented with two branches, where state s3 is reached as a result of an internal trigger
on login failure, and state s4 represents the final correct state of operation login. Simi-
larly to the WSDL-based model, the set S of states in Mwscl can be extended when the
source code of the service operations is available. The implementation states of Mwsdl are
included in Mwscl when corresponding interface states are involved in the conversation.

Example 3.3.1. Figure 3.2 shows an example of an STS-based model of the storage ser-
vice. The input actions are denoted as ?operation<parameters>, while the corresponding
output actions are denoted as !operation<results>. The interface states are represented
as circles and stateful implementation states as rectangles.

Figure 3.2(a) shows two connected components of the WSDL-based model of the storage
service modeling operation read with no implementation states (i.e., |S|=3) and opera-
tion write with implementation states (i.e., |S|>3). We note that, while not shown in

3.3. Service Modeling 35

s1

s2

s3

[query6=null, token=t]
?read<query, token>

!read<result>

s1

s2 s2a

s2b

s3d

s3c s2e

s3

[data6=null, token=t]
?write<data, token>

[result=success]
!write<result>

s1

s2

s3 s4

⊗
s5

s6

[(usr, pswd)6=null]
?login<usr, pswd>

[result=success], t:=token
!login<result, token>

[result=failure]
!login<result>

[query6=null, token=t]
?read<query, token>

!read<result>

s7 s7a

s7b

s7d

s7c s7e

s8

[data6=null, token=t]
?write<data, token>

[result=success]
!write<result>

s9

?logout<token>?logout<token>

s10

!logout<result>

(a) WSDL-based model (b) WSCL-based model

Figure 3.2: An example showing the STS-based service models of the storage service

Figure 3.2(a), the model also includes connected components corresponding to operations
login and logout. Let us now consider property p2 in Figure 3.1 as the property to be
certified for operation write. Operation write starts at state s1 waiting for an input.
When the input is received and verified to be valid using the guard data 6=null and token=t,
a transition to state s2 happens (functional correctness is verified). State s2 contains
five sub-states representing stateful implementation of the dependability mechanism, where
data, metadata, and index are stored across three redundant storage servers. In particular,
state s2a denotes the state when input is provided to servers, states s2b, s2c and s2d repre-
sent the state in which data are stored in three different servers, and state s2e performs the
output check. A transition from s2a to si∈{s2b, s2c, s2d} is observed when the i-th server
is up and running (i.e., guard [status(serveri)=ok] is verified), and a transition from si to
s2e when the i-th server returns success (i.e., guard [result(serveri)=success] is verified).
For the sake of clarity, guards validating dependability mechanisms in transitions between
states s2a and s2e are not shown in Figure 3.2. Transition from state s2 to the final state
s3 happens when success is returned by all storage servers.

Figure 3.2(b) illustrates the WSCL-based model of the conversation that allows the

36 3. Dependability Certification of Services

client to access service operation read or write, after it has been authenticated using op-
eration login, and then disconnect using operation logout. Mwscl is generated by applying
modeling operators in O={�,⊗} on the connected components in Mwsdl. The components
representing operations read and write (see Figure 3.2(a)) are combined using ⊗, and
then connected to operation login using �. Finally, operation logout is appended to
operations read and write. The service starts in state s1 where it receives the login cre-
dentials; if the authentication is successful, it transits to state s4 and the update mapping
assigns the login token to the internal variable t∈V. In state s4, the client can call either
operation read or write with relevant parameters, and perform its task. The client can
request to logout from the service in state s6 or s8 to reach the final state s10. Set I={usr,
pswd, result, token, query, data} comprises the state interaction variables.

A service model represents the functional and dependability properties of a service in
the form of an STS, and serves as a building block to dependability certification for two
reasons. First, it is at the basis of the certification model used to validate a dependability
property with a given assurance level. Second, it is used, together with the threats specified
in property p to be certified, to generate a set of test cases [130] (service requests) that are
used to evaluate dependability behavior of the service and to award a certificate. We note
that the more detailed the service model, the more complete and effective the generated
test cases, and in turn the higher the certification quality.

3.4 Certification Model

The certification model is a Markov model representation of the service, that enables the
certification authority to quantitatively measure the compliance of the service to a property
p, and accordingly award a dependability certificate to the service. Section 3.4.1 presents
the process that receives as input a service model and produces as output a certification
model. Section 3.4.2 defines the concept of assurance level and an approach to calculate
it.

3.4.1 Markov-based Representation of the Service

The Markov model representation of the service is generated by performing three activ-
ities: i) prune, ii) join states, map policy, and integrate absorbing states, and iii) add
probabilities.

Prune. The prune activity applies a projection π on the service model, over dependabil-
ity property p, to generate a projected model Mπ that i) contains all Most Important
Operations (MIOs) with respect to p, that is, operations that are needed to certify p, and
ii) ensures that the projection is consistent with the specifications in the WSDL interface
and WSCL document. To obtain the projected model, a labeling function λ:SI→{0, 1}
is introduced, where SI⊆S is the set of states in the interface part of the service model,

3.4. Certification Model 37

1

01

=⇒
1

1

0

01

=⇒
0

1

0 =⇒ 0

Figure 3.3: Pruning rules for interface and implementation states of Mλ

that marks each state s∈SI with a binary value {0, 1}. The application of such labeling
function results in a labeled service model Mλ, which extends the service model M by
annotating each state s∈SI corresponding to a MIO with 1 and all other states with 0.
A state s shared by two or more operations (e.g., State s4 in Figure 3.4) is labeled 1 if at
least one of these operations is a MIO.

Using labeled service model Mλ, a set of pruning rules that are used to generate
projected model Mπ are defined as follows (see Figure 3.3; each three-state component of
the service model is denoted with a circle, and implementation states with a rectangle).

• Pruning rule for interface states: It operates recursively on the leaf states in the
interface part of the labeled service model and removes those states for which λ(s)=0.
To maintain consistency, if a state si has a descendant state sj for which λ(sj)=1,
state si is not removed even if λ(si)=0.

• Pruning rule for implementation states: It removes all implementation states asso-
ciated with an interface state s for which λ(s)=0.

We note that, when a WSDL-based model is considered, the pruning rules are applied
on each connected component mwsdl∈Mwsdl independently, and the component is either
removed or taken as it is. The pruning activity can then be viewed as a function π that
takes a labeled service model Mλ as input, applies the pruning rules, and generates the pro-
jected model Mπ∈M of the service as output. We note that Mπ=〈Sπ, sπ1 ,Vπ, Iπ,Aπ,→π〉
is a sub-model of M=〈S, s1,V, I,A,→〉, such that S⊆Sπ, V⊆Vπ, I⊆Iπ, A⊆Aπ, →⊆→π.

Example 3.4.1. Let p=(reliability, {mechanism=redundancy,
no of server instances=3,fault type=server crashes,recovery time≤15ms}) be the property
to be certified for the storage service and M in Figure 3.2(b) the WSCL-based model of the
service. First the labeling function λ is applied on M to obtain the labeled service model Mλ

illustrated in Figure 3.4(a). We note that the states corresponding to operations login and
logout are marked 0, since they are not MIOs for the certification of p. Then, following
the pruning rules, the projected service model Mπ in Figure 3.4(b) is obtained. Here,
operation logout has been removed, while a part of operation login has been maintained
since it has at least a descendant state s such that λ(s)=1.

Join states, map policy, and integrate absorbing states. This activity applies a
transformation on on the projected service model Mπ, over dependability property p, to

38 3. Dependability Certification of Services

s1

s2

s3 s4

⊗
s5

s6

[(usr, pswd)6=null]
?login<usr, pswd>

[result=success], t:=token
!login<result, token>

[result=failure]
!login<result>

[query6=null, token=t]
?read<query, token>

!read<result>

s7 s7a

s7b

s7d

s7c s7e

s8

[data6=null, token=t]
?write<data, token>

[result=success]
!write<result>

s9

?logout<token>?logout<token>

s10

!logout<result>

0

0

0

1

1

1

1

1

0

0

s1

s2

s4

⊗
s5

s6

[(usr, pswd)6=null]
?login<usr, pswd>

[result=success], t:=token
!login<result, token>

[query6=null, token=t]
?read<query, token>

!read<result>

s7 s7a

s7b

s7d

s7c s7e

s8

[data6=null, token=t]
?write<data, token>

[result=success]
!write<result>

(a) Labeled service model Mλ (b) Projected model Mπ

Figure 3.4: An example of pruning activity applied on the model in Figure 3.2(b)

generate a new model Mon. It is composed of two steps, i) join states and map policy, and
ii) integrate absorbing states, as follows.

The join states and map policy step is a manual process that depends on property
p, policy Pol(p), service model M , and implemented dependability mechanisms. It first
joins the implementation states representing the dependability mechanisms of each service
operation in Mπ, to model the successful execution flow of service operations. It then
uses guards and update mapping on transitions in Mπ involving the joined states and,
according to policy Pol(p), produces the conditions that regulate transitions in Mon. It
finally modifies the interface part of Mπ by specifying, for each state transition, a set of

conditions derived from g and u. In the following, state transitions are denoted as
cij→,

where cij are the conditions on transitions.

The integrate absorbing states step inserts two absorbing states C and F , representing
the state of correct output and failure, respectively, and connects them to each leaf in the
interface part of the model. From the certification point of view, state C is reached when
the service satisfies the policy conditions in Pol(p), while state F is reached in case of a
policy violation.

The two steps of this activity can be viewed as a function on that i) takes the projected
service model Mπ as input, ii) applies join states and map policy, and integrate absorbing

states steps, and iii) generates a new model of the service Mon=〈Son, son1 , C, F,
cij→

on
〉.

3.4. Certification Model 39

s1

s2

s4

⊗
s5

s6

s7 s7A

s7B

s7C

s7D

s8

[c1]

[c6]

write

[c2] [c4]

[c3] [c5]

read

login

C F

[c1]: data6=null ∧ token=t

[c2]: status(server1)=ok ∧ status(server2)=ok ∧
∧ status(server3)=ok

[c3]: !c2

[c4]: result(server1)=success ∧ result(server2)=success ∧
∧ result(server3)=success

[c5]: recovery time≤15ms ∧ c4

Figure 3.5: An example of model Mon of the storage service, obtained after applying join
states, map policy, and integrate absorbing states to operation write of model Mπ in
Figure 3.4(b)

Example 3.4.2. Let Mπ in Figure 3.4(b) be the projected model and p=(reliability,
{mechanism=redundancy,no of server instances=3,fault type=server crashes,
recovery time≤15ms}) the dependability property. For simplicity, in this example, con-
sider the operation write (states s4, s7, s8) only. The portion of model Mon in Figure 3.5
referring to operation write (black lines) is generated as follows. The join states and
map policy step is applied on Mπ over p, to embed Pol(p) within the model. To this aim,
first Mπ is modified using the implementation states of the dependability mechanism i.e.,
redundancy with three server instances (states s7a − s7e) and the states of the new model
are generated as follows: i) state s7a of Mπ corresponds to state s7A in Mon, ii) states
s7b,s7c,s7d are represented with states s7B and s7C , and iii) state s7e is mapped to state
s7D. Then, the policy conditions in Pol(p) are integrated with guards and update mappings
in Mπ to produce conditions [c2]–[c6]. Here, when the service reaches state s7, first an
implicit transition to the sub-state s7A happens, where it sends the request to three repli-
cated storage servers. The service then moves to state s7B when all servers are fail-free
(following condition [c2]); otherwise, when one or more server crashes are detected, it
transits to state s7C ([c3]). In s7C , the service starts the recovery process and moves to
state s7D if recovery is performed in less than 15ms and all servers return success ([c5]).
A transition from s7B to s7D is observed if success is returned by all the storage servers
([c4]). The service moves to the output state s8 following condition [c6] in Mon, which is
an aggregate of conditions applied at each sub-state of state s7 ([c2] to [c5]). Finally, the
absorbing states C and F are integrated and connected to the final states in the interface
part of the model. We note that there is an implicit transition between each state si and
F (denoted as (si, F)) if some unexpected errors or policy violation happen. We also note

40 3. Dependability Certification of Services

that if C is reached, a fail-free operation/conversation have been executed.

Add probabilities. The last activity extends Mon=〈Son, son1 , C, F,
cij→

on
〉 with probability

values to generate the Markov chain used in this chapter as the certification model Mcert.
Mcert specifies probabilities Prij to satisfy the conditions corresponding to each state

transition
cij→, and probability Ri to remain fail-free corresponding to each state si. In this

context, similar to [27], RiPrij represents the probability that execution of a service in
state si will produce the correct results, and transfer the control to state sj . The transition
from the final state sk to the correct state C, having probability Rk, is observed if the
service satisfies relevant conditions in Pol(p) (with no failures). We note that there is an

implicit transition of probability 1−
k∑
j=1

RiPrij from each state si 6=sk to F representing

a failure or violation of the condition in that state. The transition from sk to F has
probability 1−Rk. We also note that there can be multiple final states sk in a WSCL
conversation (e.g., s6 and s8 in Figure 3.5). In this case, the Markov model converges
all final states to a single node that is then connected to C and F . The transition from
one state to another is assumed to follow the Markov property, regardless of the point at
which the transition occurs. The certification model Mcert then consists of a state-based,
discrete-time Markov chain that combines the failure behavior and system architecture of
the service to validate and certify a given set of dependability properties. Mcert can be
defined as follows.

Definition 3.4.1 (Certification model). The certification model Mcert of a service is a

6-tuple 〈S, s1, C, F,
cij→, RiPrij〉, where: S=Son is the set of all states in the model, s1=son1 is

the initial state; C is the final correct state; F is the final failure state;
cij→=

cij→
on

represents
a transition relation between pairs of states (si, sj) labeled with a condition cij derived
from Pol(p), g, and u; and RiPrij is the probability that the service execution provides
the correct results, satisfies the conditions in state si, and moves to state sj.

In case a WSDL-based model is used, Mcert is produced for each MIO in the service,
while a single Mcert is generated for a WSCL-based model.

3.4.2 Assurance Level

This section presents an interpretation of the Markov model of the service as the assurance
level used to quantitatively validate a dependability property p. The certification model

3.4. Certification Model 41

can be represented by a transition matrix Q′ as follows.

Q′ =



C F s1 s2 . . . sk

C 1 0 0 0 . . . 0
F 0 1 0 0 . . . 0

s1 0 1−
k∑
j=1

R1Pr1j R1Pr11 R1Pr12 . . . R1Pr1k

s2 0 1−
k∑
j=1

R2Pr2j R2Pr21 R2Pr22 . . . R2Pr2k

...
...

...
...

...
...

...
sk Rk 1−Rk 0 0 . . . 0


We note that, for the sake of clarity, conditions on transitions are not reported in Q′. The
certification authority can use the matrix Q′ to estimate the extent to which the service
satisfies dependability property p by following the approach presented in [27]. Let Q be a
matrix obtained from Q′ by deleting rows and columns corresponding to C and F ; µ is a
matrix such that

µ = I +Q+Q2 +Q3 · · · =
∞∑
x=0

Qx = (I −Q)−1

where I is the identity matrix with same dimension as Q. Here, the assurance level of the
service is defined as follows.

Definition 3.4.2 (Assurance level). Assurance level L of a service deployed in a specific
environment is the probability that it satisfies a policy Pol(p) and holds a dependability
property p∈P for a given rate of service executions.

We note that the assurance level characterizes the extent to which a service commu-
nication that starts from the initial state s1 will reach the final execution state sk, and
transit from sk to the final correct state C. Assurance level L of a service can be estimated
using L=µ1,k∗Rk, where µ1,k represents the probability value at 1st row and kth column
of the matrix µ, and Rk is the probability of the final execution state to be fail-free. µ1,k

can also be computed using

µ1,k = (−1)k+1 |Q|
|I −Q|

where |Q| and |I −Q| represent the determinant of Q and I −Q, respectively.
When the certification model is generated using the WSDL-based model, assurance

level L is calculated for each operation individually. Instead, when the certification model
is generated using the WSCL-based model, assurance level of the overall conversation is
calculated as a single value.

Example 3.4.3. Figure 3.6 illustrates the certification model corresponding to opera-
tion write of the storage service in Figure 3.2(a). This model is obtained after applying

42 3. Dependability Certification of Services

s4

s7 s7A

s7B

s7C

s7D

s8

FC

[c1]

[c6]

[c2] [c4]

[c3] [c5]

Figure 3.6: An example of a certification model for operation write in Figure 3.2(a)

prune, join states, map policy, integrate absorbing states and add probabilities to the ser-
vice model. We note that conditions [c1]−[c6] are the ones discussed in Example 3.4.2.
Let the fail-free probabilities of states s4, s7, s8 computed by the certification authority be
R4=0.99, R7=0.94, and R8=0.97, and transition probabilities between nodes be Pr47=0.93
and Pr78=0.95. An approach to derive the probability values is discussed in Section 3.5.
For simplicity, in this example, the probabilities of internal states s7A−s7D are not speci-
fied, while they are used to deduce probability R7Pr78. The corresponding transition matrix
Q′ and matrix µ=(I −Q)−1 are:

Q′=



C F s4 s7 s8

C 1 0 0 0 0
F 0 1 0 0 0
s4 0 0.0793 0 0.9207 0
s7 0 0.1070 0 0 0.893
s8 0.9700 0.0300 0 0 0

 µ=


s4 s7 s8

s4 1 0.9207 0.8222
s7 0 1 0.8930
s8 0 0 1


Here, µ4,8=0.8222. The probability that operation write of the storage service satisfies a
property p is L=0.8222∗0.97=0.7975.

3.5 Dependability Certification Process

The certification scheme is designed as a two-phase process due to the highly dynamic
nature of the Cloud computing and SOA environment. The first phase validates the
dependability properties of the service before it is actually deployed in a system, and
issues a certificate to the service provider based on the initial validation results (offline
phase in Section 3.5.1). The second phase monitors the certified properties of the service
at run-time, and updates the certificate based on real validation results (online phase in
Section 3.5.2). This certification process results in a dependability certificate life-cycle,
which represents the possible states of certificates (Section 3.5.3). For simplicity, in the

3.5. Dependability Certification Process 43

following, consider the certification process that proves and awards certificates with a
single dependability property.

3.5.1 Offline Phase

The offline phase starts when a service provider requests the certification authority to
issue a certificate to its service for dependability property p. The certification authority
first generates the service model based on p and the specifications released by the service
provider. After verifying that the service model conforms to the real service implemen-
tation, the certification authority derives the certification model Mcert as discussed in
Section 3.4. In this solution, the service model is used to generate service executions (test
cases) that are used with Mcert to perform property validation. A validation function f is
defined to verify that the service satisfies policy Pol(p) using Mcert, assuming that each
condition ci in Mcert is specified as a boolean valued predicate. The service proves to
hold p when the conditions in Pol(p) are satisfied with a given level of assurance. The
validation function is defined as follows.

Definition 3.5.1 (Validation function). The validation function
f :(ws, p,Mcert, k)→{true, false} takes service ws under evaluation, dependability property
p to be validated, certification model Mcert integrating Pol(p), and an index k referring
to the service execution that triggers policy verification as input, and returns true when
relevant conditions in Pol(p) are satisfied with respect to Mcert, false otherwise, as output.

In other words, the validation function verifies if a given service execution reaches state
C (success) or state F (failure) of the certification model in Definition 3.4.1. We note that
the certification model of the service and the dependability property remain constant,
while the index k may change over time. We also note that the service is static, while its
context changes. In particular, k is an index referring to the service executions (i.e., the
validation tests) used by the certification authority to verify the dependability property
of the service under different contexts (e.g., using fault injection).

Example 3.5.1. Consider the certification model for operation write in Figure 3.6.
The certification authority validates property p=(reliability, {mechanism=red-undancy,
no of server instances=3, fault type=server crashes,
recovery time≤15ms}) by performing a sequence of tests driven by the service model of op-
eration write in Figure 3.2(a). For each test iteration, the validation function f returns
true if all conditions in the execution path are satisfied and the service reaches state C; it
returns false and moves to state F from any of its states, otherwise.

The results of the validation function are used by the certification authority to estimate
the values of RiPrij in Definition 3.4.1, and L in Definition 3.4.2. To this aim, a frequency
log that maintains f ’s results is introduced. A frequency log is a list of triplets (k, {vk}, si),
where: k is the index of the test request in Definition 3.5.1; {vk} represents the attribute

44 3. Dependability Certification of Services

value(s) causing a transition to F ; and si is the state of the certification model in which
a transition to F is observed. We note that {vk} and si are empty if f returns true. We
also note that state si is identified by observing the fault returned by the service under
certification and by accessing the state of the service model in which the execution is
currently blocked, since a guard that is linked to one or more policy conditions in the
certification model is violated. Each probability RiPrij can then be calculated, using
the frequency log, as the number of successful transitions (si,sj) over the total number
of test requests reaching si. The total number of requests is such that each path in
the model is tested for a given number of times. As an example, let us consider the
certification model in Figure 3.6 and property p in Example 3.5.1, and suppose that
the service fails to recover from a server crash in state s7C ; the frequency log registers
(k,{no of server instances=2,recovery time>15ms},s7C). On the basis of the values of
RiPrij estimated using the validation function, assurance level L in Definition 3.4.2 is
quantified by performing the matrix operations described in Section 3.4, and used to
characterize the dependability property of a service.

When Mwsdl is used, each most important operation (MIO) is validated individually,
and assurance level is calculated for each MIO independently. Let oi be a MIO and Loi
be its assurance level. A dependability certificate is issued to the service if the assurance
level of each operation Loi is greater than or equal to a predefined threshold T ∈[0, 1].
When Mwscl is used, the overall conversation is validated, and a certificate is issued to
the service if assurance level L of the conversation is greater than or equal to T . The
dependability certificate is then of the form C(p,M, {(oi, Loi)}), where: i) p represents
the dependability property supported by the service; ii) M∈{Mwsdl,Mwscl} is the service
model; iii) {(oi, Loi)} includes assurance level Loi with which each oi supports p when a
WSDL-based model is used; it contains a single pair (–,L) when a WSCL-based model is
used. We note that a service certified using Mwscl is first certified using Mwsdl.

3.5.2 Online Phase

The online phase starts immediately after the service provider deploys its certified service.
In this phase, the certification authority continuously verifies the validity of the certificate
issued to the service, since, in complex digital ecosystems, dependability properties may
change over time, resulting in outdated certificates. For example, certified reliability and
availability properties of the service may change if a replica failure or network congestion
happens. To this aim, Evaluation Body is introduced as a component that is owned by the
certification authority and placed in the system where the certified service is deployed, to
monitor its dependability property. In particular, when the WSCL-based model is avail-
able, overall conversation is monitored using Mwscl; otherwise, each MIO is monitored
individually using connected components mwsdl∈Mwsdl. The results obtained by monitor-
ing are then reflected on the corresponding certification model(s) Mcert to verify Pol(p),
and to update the assurance level(s) in the certificate at run-time.

3.5. Dependability Certification Process 45

Since the certification model generates all possible states of the service, the number of
states can be extremely large. However, to monitor and verify dependability properties
of a service, we do not need the complete Markov model. Therefore a lightweight Markov
model is derived by reducing the original one while maintaining its accuracy. We note
that this reduction is applied on the certification model to improve the performance of
the monitoring process, and reduce requirements on the platform deploying the service.
A reduced certification model M̃cert is formally defined as follows.

Definition 3.5.2 (Reduced certification model). Let Mcert be a certification model, a

reduced certification model M̃cert is of the form M̃cert=〈S, s1, C, F,
cij→, RiPrij〉, such that,

|M̃cert(S)|<|Mcert(S)|. For all validation tests, i) f(ws, p, M̃cert, k)=f(ws, p,Mcert, k) and
ii) the frequency logs for M̃cert and Mcert are consistent.

The frequency logs are consistent if, for each entry (k, {vk}, si) generated using Mcert,
there exists (k̃, {ṽk}, s̃i) generated using M̃cert, such that k=k̃, {vk}={ṽk}, and si=s̃i or
s̃i is a combination of states including si. For example, states s7B and s7C of Mcert in
Figure 3.6 can be combined to a single state s̃7BC to obtain a reduced Markov model
M̃cert. In M̃cert, service moves from s7A to s̃7BC following a combination of [c2] and [c3],
and from s̃7BC to s7D following a combination of [c4] and [c5]. Transition (s̃7BC , F) is a
combination of transitions (s7B, F) and (s7C , F) in Mcert. The results of f using M̃cert

are then the same as the ones obtained using Mcert.
At run-time, the evaluation body monitors service executions by obtaining real-

attribute values using the service model, and maps them to M̃cert. A dependability
certificate issued to a service remains valid if its real-attribute values satisfy the con-
ditions in the policy with a given level of assurance. For each service execution verified
using f(ws, p, M̃cert, k), the probability values in the original model Mcert (and matrix Q′)
must be updated using the results of f , and the assurance level of the service must be
recomputed in order to verify if Loi≥T for each service operation oi in case of WSDL-
based model and L≥T in case of WSCL-based model. To this aim, as in the offline phase,
a frequency log that stores f ’s results is used within the evaluation body. We note that
the source of failure or policy violation in Mcert can be precisely located using the service
model, the frequency log, and M̃cert. We also note that the update of matrix Q′ is done
periodically to preserve system performance.

The notion of assurance level is extended to support the validation process of the cer-
tification authority, and a random variable Lt is defined to characterize the dependability
property of a service at run-time. For simplicity, in the remaining of this section, Lt is
used to refer to the assurance level at time t for certification processes that rely on both
WSDL-based and WSCL-based models. Given the time instant t at which the evaluation
body starts the matrix update, Lt represents the assurance level of the service quantified
by matrix Q′, updated using the reduced Markov model M̃cert and the frequency log.
Assurance level Lt observed by the evaluation body leads to the following conditions: i)
Lt≥L0, where L0 is the assurance level when the certificate was issued to the service in

46 3. Dependability Certification of Services

the offline phase. This implies that Lt≥T , that is, the assurance value of the service at
run-time is still greater than the predefined threshold value T , and the dependability cer-
tificate of the service remains valid; ii) Lt<L0, in this case, the evaluation body first checks
whether Lt≥T . If true, the certificate remains valid; otherwise, the certification authority
either updates the dependability certificate or revokes it. The definition of dependabil-
ity certificate as C(p,M, {(oi, Ltoi)}) is extended to comply with the dynamic changes in
service dependability.

3.5.3 Dependability Certificate Life-cycle

The certificate life-cycle starts in the offline phase when the certification authority issues
a certificate C to a service and marks it as valid. C is associated with a validity period te,
where e is the expiration date of the certificate. During the online phase, the evaluation
body monitors the service executions, checks the certificate validity, and updates the
assurance level in the certificate using real-attribute values. As long as Lt≥T and t<te,
for property p and model M , certificate C remains valid. The following situations can
occur when Lt<T and t<te.

• The certification authority builds a new certification model for a new property pi�P p,
by relaxing some policy conditions. For example, if the original policy condition is
no of server instances≥3, the new certification model may relax the condition as
no of server instances≥2, and consider a new property with two replicas. Based
on the new certification model, validation tests are performed on the service by
monitoring real service executions; if Lt≥T , a downgraded certificate with property
pi is issued to the service.

• When a downgraded certificate cannot be generated, C is revoked.

At a given point in time, if the service with a downgraded certificate resumes (part of)
correct functionality and satisfies dependability property p with Lt≥T , using the original
certification model (e.g., the model integrating policy condition no of server instances≥3),
an upgraded certificate is issued to the service. We note that, while the assurance level in
the upgraded certificate can be higher than the one in the original certificate, the property
can be at most the one in the original certificate. Finally, based on the validity time te,
certificate C can be renewed as follows. The certification authority starts a renewal process
at time ti<te, where the exact time ti depends on the considered scenario, to re-validate
dependability property p, and in turn the certificate, for the service. If Lti≥T holds, a
renewed valid certificate is offered to the service, with a new initial assurance level L0

and a new validity time te. Otherwise, if Lti<T or te expires, the certificate becomes
invalid. We note that, at any point in time, a certificate can be either valid, invalid,
upgraded, downgraded, or revoked. In the following, when clear from the context, the
valid, downgraded, and upgraded certificates are referred as simply valid certificates.

3.6. Dependability Certificate-Based Service Selection 47

3.6 Dependability Certificate-Based Service Selection

The aim of the dependability certification scheme is to provide a solution where services
can be searched and selected at run-time based on their dependability certificate and
client’s dependability requirements. To this aim, the service discovery component extends
standard service registries i) to incorporate the dependability metadata in the form of
certificates and ii) to support the matching and comparison processes described in the
following of this section.

Let us consider a service registry that contains a set of services wsj , each one hav-
ing a dependability certificate Cj(p,M, {(oi, Ltoi)}). A client can define its dependabil-
ity requirements Req(p,M, {(oi, Loi)}) in terms of preferences on i) dependability prop-
erty Req.p, ii) granularity of the service model used to validate and certify the service
Req.M∈{Mwsdl,Mwscl}, and iii) assurance level Req.{(oi, Loi)} for Mwsdl or Req.(−, L)
for Mwscl.

The matching process performs an automatic matching of client’s requirements Req
against valid dependability certificates Cj of services in the registry, and returns the set of
services satisfying the specified requirements. The matching process implements a three-
step process as follows [9].

• Property match: it selects services such that Req.p�PCj .p, using the hierarchy of
dependability properties defined in Section 3.2.

• Model match: it selects services such that Req.M�MCj .M , that is, either
Req.M=Cj .M , or Req.M=Mwsdl and Cj .M=Mwscl. The latter condition holds since
a service certified for Mwscl is first certified for Mwsdl.

• Assurance level match: it selects services on the basis of the assurance level in the
certificate. In case of WSDL-based model, a service is selected iff Req.Loi≤Cj .Ltoi
for each operation oi. In case of WSCL-based model, a service is selected iff
Req.L≤Cj .Lt.

The matching process returns a set WS of services compatible with client’s preferences,
according to property, model, and assurance level matches. The comparison process takes
WS as input and transparently generates an ordering of services. The goal of this phase
is to rank the shortlisted set of services in WS based on their certificates so as to facilitate
the client in selecting the most appropriate service among the compatible ones. Given
two services wsj ,wsk∈WS with certificates Cj and Ck, respectively, the ordering of ser-
vices is performed based on the hierarchical relationship among dependability properties,
the model granularities, and the assurance level values. We note that, in some cases,
there can be inconsistencies in the comparison (e.g., Cj .p�PCk.p and Cj .M�MCk.M , but
Cj .Lt 6≤Ck.Lt). In this context, a default precedence rule in which the property is more
important than the model, and the model is more important than the assurance level

48 3. Dependability Certification of Services

Table 3.2: An example of dependability certificates and client’s requirements
Dependability certificates

p̂ A M Lt

Cst1 Reliability mechanism=redundancy Mwscl Lt=0.98
no of server instances=3
fault type=server crashes

Cst2 Reliability mechanism=redundancy Mwsdl Lt
read =0.96

no of server instances=4 Lt
write=0.95

fault type=server crashes
recovery time≤15ms

Cst3 Reliability mechanism=redundancy Mwscl Lt=0.90
no of server instances=4
fault type=server crashes
recovery time≤15ms

Cst4 Availability mechanism=redundancy Mwscl Lt=0.92
recovery time≤15ms

Client’s requirements
p̂ A M L

Req Reliability mechanism=redundancy Mwscl L≥0.85
no of server instances≥3
fault type=server crashes

is assumed. We note that different precedence rules can also be used based on client’s
preferences [9]. A (partially) ordered set WS of services in WS is returned to the client as
the output of the comparison phase.

Example 3.6.1. Let us consider a client searching for a storage service at time t, and
a service discovery with four storage services st1, st2, st3, st4, each one having a valid
dependability certificate Cst1, Cst2, Cst3, Cst4. Table 3.2 presents the client’s requirements
Req and the four dependability certificates.

Upon receiving request Req from the client, the service discovery starts the three-step
matching process. First, it matches the client’s requirement on dependability property
Req.p against the dependability property in the certificates. Here, service st4 is filtered
out because Req.p6�PC4.p. The service discovery then performs a match on the model
used to certify services. In this step, st2 is not selected since Req.M 6�MC2.M . Fi-
nally, the matching process considers the assurance level and returns WS={st1, st3}, since
Req.L≤C1.L

t and Req.L≤C3.L
t. The result of the matching process is the set of compati-

ble services WS that is given as input to the comparison process. The comparison process
then compares certificates Cst1 and Cst3, and produces an ordered list WS={st3, st1} since
Cst1 .p�PCst3 .p. Service st3 is finally returned to the client as the most appropriate service
that satisfies its preferences.

3.7. Certifying Business Processes 49

The matching and comparison processes are extended to complement the certification
scheme and, to provide a two-phase service selection solution. In the first phase, a static
service selection is performed when the client sends a request to the service discovery.
The second phase starts when the client selects a service wsj∈WS. In this phase, service
discovery performs constant monitoring of the certificate status for wsj . If a certificate is
downgraded, revoked, or moves to invalid state, the service discovery triggers the matching
and comparison processes and replaces the originally selected service with a new, com-
patible, service wsk∈WS. The second phase is transparent to the client and allows the
certification solution to ensure clients requirements also during run-time.

3.7 Certifying Business Processes

A service provider can implement its business process as a composition of different ser-
vices, provided by different suppliers. To this aim, it defines a template specifying the
order in which service operations must be called, the data to be exchanged in each phase
of the composite service workflow, and the conditions under which a given service instance
must be integrated within the business process. This chapter considers Business Process
Execution Language (BPEL), a de-facto standard for web service composition [6]. BPEL
templates define executable processes using XML and mainly consider functionality re-
quirements in the selection of component services to be integrated in a business process.
The goal is then to extend the modeling approach and the certification scheme discussed
in this chapter to give a solution to the run-time certification of dependability properties
for composite services.

3.7.1 Modeling a Service Composition

Given the BPEL template and the WSDL-based model of partner services, the BPEL-
based model Mbpel of the composition is defined, which is then used to certify the depend-
ability property of the business process. To this aim, the set O of operators in Section 3.3.2
is extended with the parallel operator ⊕, that is, O={�,⊗,⊕}. The parallel operator is
used to model processes involving the simultaneous invocation of different operations; for
instance, in eShop, operation browseItems of three vendor services are invoked in paral-
lel. Operators in O are recursively applied on the connected components mwsdl of partner
services to incrementally derive Mbpel as follows.

Mbpel = mwsdl | Mbpel �Mbpel | Mbpel ⊗Mbpel | Mbpel ⊕Mbpel

The BPEL-based model can be formally defined as follows.

Definition 3.7.1 (BPEL-based model). Let M be the set of service models, BPEL-based
model Mbpel∈M of a service is an STS 〈S, s1,V, I,A,→〉 (see Definition 3.2.1), where S
is the union of all the states of the WSDL-based models of partner services integrated using

50 3. Dependability Certification of Services

the operators in O={�,⊗,⊕}, and A represents the set of service operations selected and
integrated in the business process.

We note that given two BPEL-based models M1 and M2 composed using the parallel
operator ⊕, the initial states of the two models are represented as a single state where
the input is distributed to the two parallel flows; similarly, the final states of the two
models are represented as a single state where the results of the two parallel executions
are combined. For sequence � and alternative ⊗ operators, the STS-based model is built
as discussed in Section 3.3.2 for Mwscl. The conceptual difference between the WSCL-
based and BPEL-based models is that the former considers operations of a single service,
while the latter of different services. As for the WSCL-based model, the set S of states in
Mbpel can also be extended when the source code of the service operations is available, and
there is an implicit transformation from Mwsdl to Mbpel on the basis of the WSDL-based
model of partner services and O.

3.7.2 Certification Scheme for Business Processes

The dimension of failures in business processes is significantly different from monolithic
services, since business process dependability is affected by the composition protocol and
partner services. This implies that business process owner (the client in the certification
framework) must utilize those partner services that not only satisfy its functional require-
ments, but also its requirements on dependability properties. The certification scheme
therefore requires the client to: i) define the business process in the form of a BPEL
template, ii) select dependability property p to be certified for its business process, iii)
extend the BPEL template with a set of requirements Reqj on the dependability of each
partner service wsj to be integrated. In the following, for the sake of clarity, assume Reqj
includes only requirements on property Reqj .p.

When requirements Reqj .p are defined in the BPEL template, the client can use the
certificate-based matching and comparison processes in Section 3.6 to select appropriate
partner services. The chosen services can then be integrated and orchestrated to realize
the business process (which is called BPEL instance here). We note that the BPEL
instance produced in this manner will hold property p, or a stronger property, since the
matching and comparison processes select services wsj considering Reqj .p as the lower
bound. To this aim, assume a common ontology specifying rules for property composition.
This ontology can drive the client in the specification of BPEL templates annotated with
suitable requirements for the certification of specific properties of composite services.

The certification process starts when a client releases its BPEL instance, and requests
the certification authority to certify property p for the business process. Differently from
the certification of single services, the certification authority cannot determine assurance
level and certify a composite service a priori during the offline phase, because the inte-
gration of component services is performed at run-time. However, to avoid downtimes in

3.7. Certifying Business Processes 51

service certification, first the assurance level Lbpel of a composition can be estimated at
run-time, according to the following rules.

• When two operations oi and oj are composed in a sequence, the assurance level of
the sequence is Lij=L

t
oi∗Ltoj , and oi and oj are considered as a single operation oij .

This rule is based on the assumption that partner services perform their operations
independently of each other. For example, suppose operation shipItems of shipping
service sh and operation write of storage service st are invoked in a sequence, the
assurance level of their composition is Ltsh∗Ltst.

• When two operations oi and oj are composed in a parallel or alternative, the assur-
ance level is Lij=min(Ltoi , L

t
oj), and oi and oj are considered as a single operation

oij . For example, when eShop invokes operation browseItems from three indepen-
dent vendors v1, v2 and v3 in parallel, it can perform its correct functionality (e.g.,
it generates a table of items returned from all three vendors) only if all three ven-
dors behave correctly. If either vendors fail, the dependability of eShop is affected.
Therefore, the assurance level of the composition is min(Ltv1 , L

t
v2 , L

t
v3).

The above rules are recursively applied by the certification authority to a BPEL in-
stance as follows: i) all pairs in a sequence are considered; ii) when no sequences are
left, an alternative or parallel is considered; iii) points i) and ii) are repeated until a
single operation o is left. The certification authority then estimates assurance level Lbpel
of the composition and awards a temporary dependability certificate C(p,Mbpel, Lbpel), if
Lbpel≥T . We note that, since dependability requirements Reqj .p given as input to the
matching and comparison processes represent lower bounds for service selection, the certi-
fication authority could include a stronger property pj (i.e., Reqj .p�P pj) in the certificate.
As an example, consider a client specifying its requirements for two partner services in a
sequence as Reqj .p=(reliability, {mechanism=redundancy,
no of server instances=2, fault type=server crashes}); then, suppose that the matching
and comparison processes return two services with property
pj=(reliability,{mechanism=redundancy, no of server instances=4,
fault type=server crashes}), with Reqj .p�P pj . Clearly, if Lbpel≥T , the composition is
certified for property pj .

After releasing the temporary certificate, the certification authority first produces the
Markov-based certification model as discussed in Section 3.4.1. It then monitors the
business process by observing executions of the BPEL instance, maintains the results in
the frequency log, and updates the Q′ matrix as discussed in Section 3.5.2. When a given
(set of) quality metric has been satisfied by service executions (e.g., all the execution
paths in the BPEL instance have been invoked a sufficient number of times or a given
coverage of the service model has been achieved), the certification authority calculates the
new assurance level Ltbpel at time t using the approach in Section 3.5.2. If Ltbpel≥T , the

temporary certificate becomes a valid certificate with assurance level Ltbpel, otherwise it

52 3. Dependability Certification of Services

invoke
=⇒

v1Vendor.browseItems, ⊕ parallel v2 v3

Integrate Vendor.browseItems results

v1Vendor.buyGoods, ⊗ alternative v2 v3

Vendor.buyGoods results

sh1Shipping.shipItems, ⊗ alternative sh2

Shipping.shipItems results

Storage.write st return
=⇒

Figure 3.7: An example of a composition in the eShop business process

is revoked. It is important to note that in case a service wsj in a composition becomes
unavailable or its certificate violates Reqj .p, the selection process in Section 3.6 is executed
to substitute wsj with another candidate wsk on the basis of the dependability requirement
Reqj .p in the BPEL template. As soon as wsk has been selected and integrated, the process
restarts with the generation of a temporary certificate.

Example 3.7.1. Let us consider the reference scenario in which eShop composes three
vendor services (v1, v2, v3), two shipment services (sh1, sh2), and a single storage
service (st). eShop defines a BPEL template and requires property Req.p=(reliability,
{mechanism=redundancy, no of server instances≥3,
fault type=server crashes}) for all services to be composed. It then uses the matching and
comparison processes in Section 3.6 to select them. Figure 3.7 illustrates the BPEL in-
stance addressing the above requirements. Here, for simplicity, assume that each selected
service (v1, v2, v3, sh1, sh2, st) has been certified for Req.p, with Mwsdl, and with the
same assurance level Lt for all its operations. The following values for Lt are considered:
Ltv1=0.95, Ltv2=0.98, Ltv3=0.92, Ltsh1=1, Ltsh2=0.95, and Ltst=0.96.

The certification of the BPEL instance starts with the generation of a tempo-
rary certificate. Since there are no sequences, the certification authority first con-
siders operation browseItems from vendor services that are executed in parallel, and
estimates the assurance level as Lv123=min(0.95, 0.98, 0.92)=0.92. The same process
applies to operation buyGoods of vendor services composed in an alternative, where
Lv′123=min(0.95, 0.98, 0.92)=0.92. The operations browseItems and buyGoods are further

3.8. Chapter Summary 53

composed in a sequence, and the overall assurance level is Lv123,v′123=0.92∗0.92=0.8464.
The shipment services are then invoked in an alternative, and the assurance level es-
timated as Lsh12=min(1, 0.95)=0.95. Finally, eShop composes the vendor, shipment,
and storage services in a sequence. The assurance level of eShop is estimated as
Lbpel=(Lv123,v′123∗Lsh12)∗Lst=(0.8464∗0.95)∗0.96=0.772, where the assurance level of the
sequence between vendor and shipment services is first estimated, and the overall assur-
ance level calculated as the sequence between the sequence of vendor and shipment services
and the storage service. The certification authority generates a temporary certificate and
issues it to eShop, if Lbpel≥T .

After the release of a temporary certificate, eShop is continuously monitored by the
certification authority and a valid certificate C(p,Mbpel, L

t
bpel) at time t is awarded to it,

if it satisfies property p with assurance level Ltbpel≥T . When one or more among v1, v2,
v3, sh1, sh2, st become unavailable or their certificates violate client’s requirements, the
certificate for the composition is revoked and the validation process resumes.

3.8 Chapter Summary

This chapter presented a dependability certification scheme in which a machine-readable
certificate is issued to the service after validating its dependability properties using Markov
chains. The service is continuously monitored at runtime and the validity of the issued
certificate is verified. We showed how the certification scheme can be integrated within
existing service-based infrastructures, allowing users to select services with a given set of
dependability properties and ensuring that users’ requirements are addressed at runtime.
Finally, building on the certificate-driven selection solution for monolithic services, a mod-
eling and certification solution for business processes (service compositions) is presented.

Our certification scheme serves as i) an awareness tool that reports the QoS of a given
service, and ii) an assurance tool that allows users to verify the compliance of a given
service against a set of dependability properties. Given a service implemented using a
set of dependability mechanisms (e.g., Cloud storage service) by the service provider, our
certification scheme provides the basic support essential to assess the dependability that
can be obtained by its use.

Service providers typically implement a standard set of dependability mechanisms that
satisfy the basic needs of most users, whereas, each application has unique dependability
requirements. This implies that certification techniques alone may not be sufficient and
a more pro-active approach to satisfy specific dependability goals of individual applica-
tions is necessary. In the next chapter, we investigate an innovative approach of offering
dependability as a service to users’ applications. In particular, we consider the scenario
where service providers can develop their services only by implementing the functional
aspects, and obtain required dependability properties from a third-party as an additional
service.

54 3. Dependability Certification of Services

4
System-level Dependability

Management

Our certification scheme presented in Chapter 3 validates dependability properties of ser-
vices and awards machine-readable certificates. It is applied after a service provider imple-
ments her service with a set of dependability mechanisms (a posteriori) and allows service
consumers to select and integrate services satisfying their dependability requirements. In
other words, it serves as an awareness tool that offers the basic support necessary to build
dependable applications. In contrast to the certification scheme, in this chapter, we aim
to relieve users from implementing low-level mechanisms, and at the same time, obtain
desired dependability properties for their services from a third party. This a priori ap-
proach significantly improves dependability when compared to the certification scheme
and denotes the second level of dependability support offered in this thesis.

This chapter introduces an innovative, system-level, modular perspective on creat-
ing and managing dependability in Clouds. The proposed system allows users to build
applications only considering its functional properties and obtain dependability support
transparently from a third party. In particular, our system inserts a dedicated service
layer that allows users to specify and apply desired level of dependability without needing
any knowledge about the low level techniques that are available in the envisioned Cloud
and their implementations. In this manner, our solution overcomes users’ dependability
issues with respect to the design of reliable and high available applications.

This chapter discusses a two-stage delivery scheme that offers dependability support to
users’ applications and a conceptual framework comprising all the components necessary
to realize the notion of offering dependability as a service.

4.1 Introduction

The availability of an extensible pool of resources in Cloud computing provide an effective
alternative for the users to deploy their applications with high scalability requirements.
In general, the IaaS service provider builds its infrastructure by connecting large-scale

56 4. System-level Dependability Management

data centers, and delivers required amounts of computing resources to the users as an on-
demand service over the Internet, using virtual machines (e.g., [44, 45]). This computing
paradigm has changed the dimension of risks on user’s applications, specifically because
the failures (e.g., server overload, network congestion, hardware faults) in the data centers
are outside the control scope of the user’s organization [132, 56]. Nevertheless, these
failures affect the applications deployed in the virtual machines and, as a result, there is
an increasing need to address user’s reliability and availability concerns.

The most typical way of achieving reliable and highly available software is to make use
of dependability methods at procurement and development time. This implies that users
must understand dependability techniques and tailor their applications by considering
environment-specific parameters during the design phase. However, for the applications
to be deployed using IaaS, it is difficult to design a holistic dependability solution that
efficiently combines the failure behavior and system architecture of the application. This
difficulty is due to i) high system complexity, and ii) abstraction layers of Cloud computing
that release limited information about the underlying infrastructure to its users.

In contrast to the typical approach, the new dimension in which users’ applications
can obtain required dependability properties from a third-party might be beneficial. This
approach of offering dependability as a service consists in realizing general dependability
mechanisms as independent modules such that each module can transparently function
on the user’s application. Each module must be enriched with a set of metadata that
characterizes its dependability properties, and the metadata be used to select mecha-
nisms that satisfy users’ requirements. This chapter presents a scheme that i) delivers a
comprehensive dependability solution to user’s application by combining selected depend-
ability mechanisms and ii) ascertains the properties of a dependability solution by means
of runtime monitoring. Based on this approach, the design of a framework that easily
integrates with the existing Cloud infrastructure and facilitates a third-party in offering
dependability as a service is also discussed.

4.1.1 Chapter Outline

The remainder of this chapter is organized as follows. Section 4.2 describes a motivating
scenario and some basic concepts. Section 4.3 presents overview of an approach to resource
management. Section 4.4 outlines a two-stage service delivery scheme that transparently
offers dependability support to user’s applications. Section 4.5 presents architectural de-
tails of the framework and Section 4.6 presents a chapter summary.

4.2 Motivating Scenario and Basic Concepts

This section describes a motivating scenario for the new dimension and presents some
basic concepts on dependability.

4.2. Motivating Scenario and Basic Concepts 57

4.2.1 Motivating Scenario

Consider a highly complex, service-oriented, and distributed infrastructure involving the
following main stakeholders.

• IaaS service provider: builds a Cloud computing infrastructure, and realizes a
service-oriented computing resources delivery scheme.

• User: deploys her applications using IaaS service provider’s service. A user satisfies
her reliability and availability requirements by leveraging the service offered by the
dependability service provider.

• Dependability service provider: offers dependability support to users’ applications
based on a given set of requirements. We assume that the dependability service
provider is trusted by both the IaaS service provider and the user.

For simplicity, when clear from the context, we refer the IaaS service provider as the
infrastructure provider, and the dependability service provider as the service provider.

As an example, consider a user offering a web-based banking service which allows her
customers to perform fund transfers and manage their accounts over the Internet. The
user implements the banking service as a multi-tier application where: i) the data-tier
uses the storage service offered by the infrastructure provider to store and retrieve her
customer data, and ii) the application-tier uses the infrastructure provider’s compute
service to process operations and respond to customer queries. This system architecture
allows the banking service to meet its varying business demands with respect to scalability
and elasticity of computing resources. However, a failure in the infrastructure provider’s
system can have high implications on the reliability and availability of the banking service.
Furthermore, a failure in the storage server may have a significantly higher impact than a
failure in one amongst several compute nodes. This implies that each tier of the banking
application requires different dependability properties, and the requirements may change
over time based on the business demands. However, using existing methods, dependability
properties of the banking service remains constant throughout its life-cycle. Therefore, in
the user’s perspective, it is easier to engage with the dependability service provider, specify
her reliability and availability requirements based on the business needs, and transparently
obtain desired dependability properties for her applications.

4.2.2 Basic Concepts

A user engages with the service provider to obtain dependability support for her applica-
tions. The goal of the service provider is to create a dependability solution based on the
user’s requirements such that a fine balance between the following factors is achieved.

58 4. System-level Dependability Management

• Fault model: It measures the granularity at which the dependability solution must
handle errors and failures in the system. This factor is characterized by the mech-
anisms applied to achieve dependability, robustness of failure detection protocols,
and strength of fail-over granularity.

• Resource consumption: It measures the amount and cost of resources that are re-
quired to realize a fault model. This factor is normally inherent with the granularity
of the failure detection and recovery mechanisms in terms of CPU, memory, band-
width, I/O, and so on.

• Performance: This factor deals with the impact of the dependability procedure on
the end-to-end quality of service (QoS) both during failure and failure-free periods.
This impact is often characterized using fault detection latency, replica launch la-
tency and failure recovery latency, and other application-dependent metrics such as
bandwidth, latency, and loss rate.

The most widely adopted strategy to tolerate failures in a system is based on the notion
of redundancy. In redundancy based schemes, critical system components are duplicated
using additional hardware, software, and network resources such that a copy of critical
components is available after a failure happens. For example, the data-tier of the banking
service can be replicated on several storage servers such that at least one copy of the data
is always available to process customer queries. In general, a dependability algorithm
that handles failures at a finer granularity, and offers high performance guarantees, con-
sumes higher amount of resources. For instance, active replication methods in which all
redundant components are simultaneously invoked, consume more resources than passive
replication methods in which only one processing node handles the requests while other
replicas are simple backups. However, passive replication techniques can only handle crash
faults while active replication techniques using 3f+1 replicas can be used to tolerate up
to f arbitrary faults (e.g., [142, 26]). A detailed analysis of this behavior is provided in
Section 5.2.4

It is clear that the dependability service provider must satisfy the following require-
ments to effectively realize its functionality and meet its business goals.

• The service provider must maintain a consistent view of the resources in the Cloud
to efficiently deliver the dependability support to its users. To this aim, we must in-
troduce a resource manager that is maintained by the dependability service provider
in collaboration with the IaaS service provider (see Section 4.3).

• The service provider must develop: i) an approach to realize standard dependability
algorithms that can extrinsically function on the users’ applications, ii) a method
to evaluate the dependability properties offered by a given mechanism and match it
with users’ requirements, and iii) a delivery scheme that can transparently enforce
the desired dependability properties on users’ applications (see Section 4.4).

4.3. Resource Manager 59

Figure 4.1: Graph generated by the Resource Manager

• The service provider must design a framework that can easily integrate with the
existing Cloud infrastructure and meet service provider’s goals (see Section 4.5).

4.3 Resource Manager

The dependability service provider must maintain a consistent view of all computing re-
sources in the Cloud in order to efficiently allocate resources during each user request and
avoid over provisioning during failures. In this context, a resource manager that continu-
ously monitors the working state of physical and virtual resources, maintains a database of
inventory and log information, and a graph representing the topology and working state of
resources must be introduced by the dependability service provider in the IaaS provider’s
system.

The database of the resource manager must maintain the inventory information of
each machine such as its unique serial number, composition of the machine (e.g., pro-
cessor speed, number of hard disks and memory modules), date when the machine was
commissioned (or decommissioned), location of the machine in the cluster, and so on. The
runtime state of machines like memory used/free, disk capacity used/free and processor
cores utilization must also be logged. On the other hand, a resource graph must represent
the topology of resources in a system. Figure 4.1 represents the resource graph G(H, E)
of a Cloud infrastructure where two clusters of three processing nodes each are connected
by network switches. Here, the resource graph maintains details about the physical hosts,
VM instances, and network links in the Cloud. W, P and F respectively represent the

60 4. System-level Dependability Management

working, partially faulty and completely faulty state of a resource. In the resource graph,
each vertex represents a processing host h∈H, and a network link between two hosts is
represented as an edge e∈E . A vertex also maintains information about the set of virtual
machine (VM) instances hosted on that physical machine. In the service provider’s point
of view, a resource graph can represent the state of hosts and network links at different
granularities. In a simple case, each host and link can be categorized in one of the three
categories: working (W), partially faulty (P) and completely faulty (F). The resource
manager marks the hosts (and links) with W when they exhibit a ‘normal’ condition i.e.,
operational with its full potential. A host (or link) is marked F if it has crashed or has
incurred a major failure and cannot be recovered back to W. Partially faulty nodes, rep-
resented as P in the resource graph, are the ones where only a component of the host is
not in use or is exhibiting a degraded performance (e.g., only the disk storage of the host
is nonfunctional). Similarly, the working state of network links and VM instances must be
maintained by the resource manager. We note that the database and the resource graph
are essential for the service provider to ensure the correct behavior of dependability mech-
anisms. For example, a replication mechanism may have constraints on relative placement
of individual replicas and requirements on resource characteristics of each replica which
can be satisfied using the resource manager. We further note that the resource man-
ager significantly contributes towards balancing the resource costs, performance, and fault
model factors for the service provider. The above two aspects are discussed in detail in
Sections 5.3.2, 5.4.2 and 5.4.3.

4.4 Dependability Delivery Scheme

The task of offering dependability as a service requires the service provider to implement
general purpose dependability mechanisms in a way that the user’s applications deployed
in virtual machine instances can transparently obtain dependability properties. Let us de-
fine dep unit as the fundamental module that applies a coherent dependability mechanism
to a recurrent system failure at the granularity of a VM instance. The notion of dep unit is
based on the observation that the impact of hardware failures on user’s applications can be
handled by applying dependability mechanisms directly at the virtualization layer than the
application itself (e.g., [29, 119]). For instance, dependability of the banking service can
be increased by replicating the entire VM instance in which its application-tier is deployed
on multiple physical nodes, and server crashes can be detected using well-known failure
detection algorithms such as the heartbeat protocol. An example of a heartbeat protocol
is depicted in Figure 4.2 where the primary and the backup components are run in VM in-
stances independent to the banking service’s application-tier. In this example, the primary
component periodically sends a liveness request to all backup components and maintains a
timer for each request. When a backup receives a liveness request, it immediately responds
to the primary. If the backup fails (due to a server crash) to respond to the primary for

4.4. Dependability Delivery Scheme 61

Figure 4.2: Dep unit realizing the heartbeat based failure detection mechanism

N consecutive requests, each within a predefined timeout threshold, it is suspected to
failure. In this context, we note that replication of the user’s application (dep unit1), and
detection of node failures (dep unit2) are performed without requiring any changes to the
application’s source code. This chapter assumes that the service provider implements a
range of dependability mechanisms as dep units, and based on this assumption, presents a
two stage delivery scheme: design stage, and runtime stage, to transparently deliver high
levels of dependability to user’s applications using dep units. This dependability delivery
scheme is consistent with the dependability certification scheme discussed in Section 3.5.

4.4.1 Design Stage

The design stage starts when a user requests the service provider to offer dependability
support to her application. In this stage, the service provider must first analyze the user’s
requirements, match them with available dep units, and form a complete dependability
solution using appropriate dep units. We note that each dep unit offers a unique set of
dependability properties that can be characterized using its functional, operational, and
structural attributes. Similarly to the dependability properties in the certification scheme
(see Section 3.2), dependability property p of a dep unit can be specified as p=(u, p̂, A)
where u represents the dep unit, p̂ denotes the abstract property, and A denotes a set
of attributes that refers to the granularity at which u can handle failures, the benefits
and limitations of using u, inherent resource consumption costs, and quality of service
(QoS) parameters. For each attribute attr∈A, a partial (or total) order relationship can
be defined on its domain Dattr, and v(attr) represents the value of attr. For instance,
dependability property of a dep unit u1 can be denoted as p=(u1, availability= 98.5%,
{mechanism=active replication, no of replicas=4, fault model=node crashes}). There-
fore, by binding the abstract property p̂ and the attributes set A to the dep unit as its
metadata, the service provider is facilitated in estimating the dependability properties

62 4. System-level Dependability Management

that can be obtained with its use. If the user’s requirements are specified in terms of ex-
pected dependability properties pc, the set of dep units that matches pc can be generated
by including all dep units for which pi.p̂=pc.p̂ and vi(attr)≥vc(attr) for each attribute
attri∈A specified in pi of ui, that is, all dep units that holds the properties desired by the
user. We note that there is also an implicit hierarchy of dependability properties where
pi�P pj implies that pj satisfies pi. After shortlisting the dep units that satisfy user’s
requirements, the task of the service provider is to compare each dep unit within the
shortlisted set and choose the one that best balances the fault model, resource costs, and
performance with respect to pc. As an example, let us consider that the service provider
realizes three dep units with properties: p1=(u1, {mechanism=heartbeat test, time-
out period=50ms, N=5, fault model=node crashes, max no replicas=3}), p2=(u2,
{mechanism=majority voting, fault model=programming errors}), and p3=(u3,
{mechanism=heartbeat test, timeout period=25ms, N=3, fault model=node crashes,
max no replicas=5}) respectively. If the user requests a dependability support for her
banking service with a more robust crash failure detection mechanism, the service provider
first shortlists S′=(u1, u3), then compares S′ and finally makes use of u3 dep unit since
u3 is more robust than u1. For simplicity, abstract properties are not specified in this
example.

Although a dep unit can serve as the fundamental dependability module for the service
provider, a comprehensive dependability solution dep sol that must be delivered to a user’s
application may be formed only by combining a set of dep units in a specific execution logic.
For example, a heartbeat test (dep unit1) can be applied only after the user’s application
is replicated on multiple nodes (dep unit2), and a recovery mechanism (dep unit3) can be
applied only after a failure is detected, that is, a comprehensive dependability solution
that is finally delivered to the user is as follows:

dep sol[
invoke:dep unit(VM-instances replication)
invoke:dep unit(failure detection)
do{
execute(failure detection dep unit)
}while(no failures)
if(failure detected)
invoke:dep unit(recovery mechanism)
]

By using dependability modules (dep unit) to form a comprehensive solution, the dimen-
sion and intensity of the dependability support can be dynamically changed. In other
words, the dependability properties applied on user’s application can be adapted based
on business needs to overcome the inflexibility of traditional dependability methods. For
instance, a robust failure detection mechanism (such as u3 in above example) can be re-
placed with a less robust one (u1) in dep sol. Furthermore, dep units can flexibly and

4.4. Dependability Delivery Scheme 63

extensively be reused for each user request saving significant amount of resources for the
service provider, and by realizing dep units to be configurable at runtime, resource con-
sumption costs for users can be largely controlled. For example, by providing the param-
eters such as the number of replicas (no of replicas) for a dep unit at runtime, the value
v(no of replicas)=4 can be modified to v(no of replicas)<4 or v(no of replicas)>4
based on business demands. However, we note that a wide range of dep units must be
realized by the service provider to offer a higher quality of dependability support that
precisely meets user’s requirements.

4.4.2 Runtime Stage

The runtime stage starts immediately after the service provider forms a dep sol and
delivers it on the user’s application. This stage is critical for efficient service deliv-
ery since the context and attribute values of a dependability solution may change at
runtime due to the dynamic nature of the Cloud computing environment. In other
words, the mutable behavior of dependability attributes requires the service provider
to ascertain that the user’s requirements are satisfied even during runtime. To achieve
this, the service provider must first define a set R of rules over attributes attr∈A and
their values v(attr) such that the validity of every rule r∈R establishes that prop-
erty p is supported by the dependability solution and violation of a rule ri∈R implies
that p is invalid. For instance, for a comprehensive dependability solution s1 that
holds the property p1=(s1, availability=98%, {mechanism=active replication, level=3,
failure detection=heartbeat test, max recovery time=25ms}), a set of rules R that can
sufficiently test the validity of p1 must be defined, such as, r1:no of server instances≥3,
r2:heartbeat test frequency=5ms, r3:recovery time≤25ms. In this context, the task of the
service provider is to continuously monitor the attribute values of each dependability so-
lution delivered to the user’s application at runtime, and verify the corresponding set of
rules R to ensure that user’s requirements are satisfied. We note that the service provider
can obtain attribute values by periodically querying each dep sol s delivered to a user’s
application. Here, a dependability property can be represented as pt=(s, p̂, At) where t
denotes the point of time at which the attribute value is queried, vt(attr) is the value of
attribute at t, and s is the comprehensive dependability solution. The service provider can
define a validation function f(s,R) that takes s and the correspondingR as input and out-
puts true if vt(attr)≥vi(attr) for each attribute attr∈A, that is, f(s,R) verifies whether
the dependability solution remains valid and satisfies the user’s requirements at runtime.
In case, f(s,R) returns false, the service provider must either trigger the matching and
comparison process of the design phase to select a new set of dep units and form a new
dep sol that best matches user’s requirements. Therefore, by constantly monitoring each
dep sol and by updating the attribute values, the service provider can deliver a depend-
ability support that is valid throughout the life-cycle of the user’s application (initially
during request time and at runtime). Furthermore, a change in the user’s requirements at

64 4. System-level Dependability Management

n1

n2

n5

n3n4

Figure 4.3: An example of resource graph generated by the Resource Manager

any stage also triggers the design phase to form a new dependability solution.

4.5 Dependability Manager: Architecture Framework

This section presents a conceptual framework, the Dependability Manager (DM), that
provides the basis for the service provider to realize the delivery scheme presented in the
previous section and hence to offer dependability as a service. This framework should
be inserted as a dedicated service layer between the user’s applications and the hard-
ware, so that, it works directly on top of the virtual machine manager at the level of
VM instances. The dependability manager must address the issue of heterogeneity in
computing resources, fulfill the target of transparently providing dependability support to
user’s applications against node failures, and satisfy scalability and interoperability goals.
To overcome these challenges, the dependability manager is built using the principles of
service-oriented architectures, where each dep unit is realized as an individual web service,
and a dep sol is formed using the business process execution language (BPEL) constructs
[6]. A resource manager that coordinates with the cloud manager to produce the resource
graph and the database discussed in Section 4.3 is included within the DM. The resource
manager is realized in the form of a web service that provides a status operation which
takes a resource (e.g., processing node, storage, memory) as input and outputs the state
of that resource. Note that status operation can be run independently on each node and,
using the update operation, state of the resource can be updated in the database and
resource graph. As an example, let us consider that at the start of the service invocation,
the service provider generates a profile of computing resources in the cloud infrastructure
by identifying five processing nodes {h1, . . . , h5}∈H whose resource graph is presented in
Figure 4.3. A description of all the components in the framework is provided further in
this section.

4.5. Dependability Manager: Architecture Framework 65

4.5.1 Client Interface

The service invocation process begins when a user requests the service provider to offer
dependability support to its application with a desired set of properties. In this context,
it is essential to include a client interface component within DM that provides a speci-
fication language which allows users to specify and define their requirements (e.g., [84],
[76]). However, since the present day cloud computing systems require its users to manage
their VMs while dealing with sophisticated system-level concerns, an automated config-
uration tool that requires users to simply select the application for which they wish to
obtain dependability support, and correspondingly provide values of desired availability,
reliability, response time, criticality of the application and cost can be beneficial. We note
that an automated configuration tool can limit human error and save time by lessening
the need for manual tedious configuration. Moreover, if the input can be provided in a
high level format (like percentages, range and numbers), even users with a non-technical
background can configure the desired properties with ease. The aspect of transforming
high level metric values into dependability properties and standard dependability mech-
anisms, and an algorithm matching high level user requirements to available dep sols in
the system is discussed in Section 5.2.

4.5.2 DMKernel

The central computing component of the dependability manager is the DMKernel which
is responsible for composing a dependability solution based on user’s requirements using
the web service modules (dep units) implemented by the service provider, delivering the
composed service on user’s applications, and monitoring each service instance to ensure its
QoS. DMKernel is composed of a service directory, a composition engine, and an evaluation
unit.

• Service Directory: It is a registry of all dep units realized by the service provider
in the form of web services. A dep unit applies a dependability mechanism as a
self-contained, loosely coupled module, with a well-defined language-agnostic inter-
face that i) describes its operations and input/output data structures (e.g., WSDL
and WSCL), and ii) allows other dep units to coordinate and assemble with it. In
addition to the dep units, this component also registers the metadata that repre-
sents the dependability property p=(u, p̂, A) of each dep unit. When DM receives
input from the client interface, this component first performs a matching between
the user’s preferences pc, and properties pi of each dep unit in the service directory,
to generate the set of dep units that satisfy pc. The set of services is then ordered
based on user’s preferences and provided to the composition engine. The service di-
rectory triggers the matching and comparison processes at runtime if the evaluation
unit updates the metadata of a dep unit. However, we note that the service provider

66 4. System-level Dependability Management

must perform an a priori validation of all its dep units and estimate their properties
p in the infrastructure provider’s system as a prerequisite.

• Composition Engine: It receives an ordered set of dep units from the service directory
as input, and generates a comprehensive dependability solution dep sol using the
web services (dep units) that best match user’s preferences as output. In terms
of service oriented architectures, the composition engine can be viewed as a web
service orchestration engine that exploits BPEL constructs to build a composed
dependability solution that is delivered to user’s application using robust message
exchanges protocols (e.g., [138]) as presented in Section 4.4.

• Evaluation Unit: It continuously monitors all composed dependability solutions at
runtime using the validation function f(s,R) and the set of rules R defined corre-
sponding to each dep sol. We note that the interface exposed by web services (e.g.,
WSDL and WSCL) allows the evaluation unit to validate all the rules r∈R during
runtime monitoring. If f(s,R) returns false, the evaluation unit updates the present
attribute values in the metadata, otherwise, the service continues uninterrupted.

DMKernel can measure the overall reliability of the service provided to the user’s
application by comparing a set of metrics (such as, mean time between failure MTBF)
between the real time operational data obtained from the resource database, and expected
values of the metrics obtained from the input using client interface. For example, a user’s
request for 99% availability of its application implies that DM must ensure that the MTBF
of the node where the application is deployed is at least availexp = 0.99 ∗ t for a given
time period t. Since each node failure is logged in the database, the operational availreal
value can be calculated, and the strength of the service provided by DM by measuring
availexp−availreal.

In addition to the resource manager, client interface, and DMKernel, we note that the
DM must include a set of components that provide a complementary support to depend-
ability mechanisms. These components significantly affect the quality of service offered by
the service provider, and are essential to satisfy user’s requirements and constraints. In
particular, one must include the following components in DM. Figure 4.4 illustrates the
overall architecture of the dependability manager.

• Replication Manager: It provides support to dep units that realize replication mech-
anisms by managing the details regarding individual replicas of a user’s application,
their location, and synchronization process between them (see Section 4.5.3).

• Fault Detection/Prediction Manager: It provides support to techniques that either
detect or predict failures among the nodes (see Section 4.5.4).

• Fault Masking Manager: It comprise modules which support techniques that are
used to mask the presence of faults in the system. (see Section 4.5.5).

4.5. Dependability Manager: Architecture Framework 67

Figure 4.4: Architectural overview of the Dependability Manager

• Recovery Manager: It includes services that support dep units that recovers a faulty
node back to operational (see Section 4.5.6).

• Messaging Monitor: It provides the infrastructure necessary for communication
among all the components of DM (see Section 4.5.7).

A detailed description of these components is provided in the following sections.

4.5.3 Replication Manager

This component supports the replication mechanisms by invoking replicas and managing
their execution based on the user’s requirements. Let us denote the set of VM instances
that are controlled by a single implementation of a replication mechanism (dep unit) as a
replica group. Each replica within a group can be uniquely identified, and a set of rules R
that must be satisfied by a replica group are specified. The task of the replication manager
is to make the user perceive a replica group as a single service, and to ensure that the
fault free replicas exhibit correct behavior during execution time.

Figure 4.5 provides an overview of various components within the replication manager
and their interactions with each other. To support a replication mechanism, the replica in-
voker first contemplates the desired replication parameters such as the style of replication
(active, passive, cold passive, hot passive), number of replicas, and constraints on relative
placement of individual replicas, and forms the replica group. In other words, the replica
invoker takes the reference of a user’s application as input from DMKernel, analyzes the
expected dependability properties, and interacts with the resource manager to obtain the
location of each replica. The replica group manager then creates the replica group by

68 4. System-level Dependability Management

Figure 4.5: Architectural overview of the Replication Manager

The figure shows various components of the replication manager, and their interaction with other compo-
nents of the framework. The straight lines with numbers describe the replication process; the operations
at each step is correspondingly explained in Section 4.5.3. The dotted lines represent the interaction with
the VM instances that are external to the framework.

invoking VM instances at those locations and managing their execution. The sequencer
provides the input to application executing in the replica group by means of consensus
protocol (e.g., [26, 93]) in order to ensure determinism among replicas. The output
analyzer carries out majority voting on the responses obtained, and returns the chosen
result to the user. The synchronizer includes techniques to update the state of backup
replicas with that of the primary in a replica group. It also supports membership change
and primary election algorithms when the primary node undergoes failure. We note that
robustness of these procedures largely contribute to the consistency and reliability of the
service.

Example 4.5.1. Let us consider that DMKernel chooses a passive replication mecha-
nism corresponding to the banking service’s request where the following constraints must
be satisfied: i) the replica group must contain one primary and two backup nodes at all
times, ii) the node on which the primary executes must not be shared with any other VM
instances, and iii) all the replicas must be located on different nodes. For the Cloud in-
frastructure depicted in Figure 4.3, the replication manager forms a replica group of the
banking service’s application by choosing the host h1 for the primary, and hosts h3 and h4

respectively for backup replicas. We note that hosts h3 and h4 can deploy VM instances
of other replica groups while only one VM instance can run on host h1. The synchronizer
of replication manager frequently checkpoints the primary and updates the state of backup
replicas.

4.5. Dependability Manager: Architecture Framework 69

4.5.4 Fault Detection/Prediction Manager

This component enriches the DM by providing failure detection support at two different
levels. The first level is infrastructure-centric, and provides failure detection globally across
all the nodes in the Cloud, whereas, the second level is application-centric, and provides
support only to detect failures among individual replicas within a replica group. To realize
failure detection at either levels, we note that this component must support several well
known failure detection algorithms (e.g., the gossip based protocol, and heartbeat protocol)
that are configured at runtime based on replication mechanism and user’s requirements.

When the replication manager successfully creates a replica group, the composition
engine invokes dep units to detect/predict failures within the replica group. An example
of a failure detection dep unit (heartbeat protocol) is presented in Section 4.4. The main
goal of the failure detection/prediction manager is to support DM in detecting faults
immediately after their occurrence, and sending a notification about the faulty replica to
the fault masking manager and the recovery manager. For infrastructure-centric failure
detection, failure notifications are sent to the resource manager to update the resource
state of the cloud that is utilized to predict failures in a proactive dependability approach.
We note that most failure detection protocols that are exploited in a passively replicated
system perform well in detecting major failures. However, to detect errors at smaller
granularity resulting from a partially faulty node, active replication methods need to
be deployed. For example, programming errors in user’s application can be detected by
applying a majority voting using the output analyzer of the replication manager on the
output generated by each active replica.

Example 4.5.2. For the replica group of the banking service’s application described in
Example 4.5.1, suppose that the service directory selects a dep unit that realizes a proactive
dependability mechanism. This implies that the failure detection/prediction manager must
continuously gather the state information of hosts h1, h3, and h4, and verify if all system
parameter values are over a certain threshold (e.g., physical memory usage of a node
allocated to a VM instance must be less than 70% of its total capacity).

4.5.5 Fault Masking Manager

The goal of this component is to support dep units that realize fault masking mechanisms
so that occurrence of faults in the system can be hidden from users. When a failure
is detected in the system, this component immediately applies masking procedures to
prevent faults from resulting into errors. We note that the functionality of this component
is critical to meet user’s high availability requirements.

Example 4.5.3. From Example 4.5.2, let us consider that the failure detection/prediction
manager predicts a failure in host h3 and immediately invokes the fault masking dep unit.

70 4. System-level Dependability Management

Client ReplicationManager FaultDetection MessagingMonitor FaultMasking RecoveryManager

FTMKernel

User Requirement

Create Replica Group

Create Messaging Facility

Set FaultDetection Protocol

Loop

Liveness Request

Liveness Response
[Failure Detected] Mask Failure

Recovery Mechanism

Recover failed component

Figure 4.6: An example of a workflow, represented as a sequence diagram illustrating the
interaction among all the components of the DM for a single user request

Here, the dep unit performs a live migration of the VM instance (e.g., [29, 119]) such
that the entire OS at host h3 is moved to another location (host h5) while maintaining
the established session so that the customers of the banking service do not experience any
impact of the failure at host h3. Therefore, user’s high availability requirements can be
fulfilled using the fault masking mechanisms.

4.5.6 Recovery Manager

The goal of this component is to achieve system-level resilience by minimizing the down-
time of the system during failures. To this aim, this component supports dep units that
realize recovery mechanisms so that an error-prone node can be resumed back to a
normal operational mode. In other words, this component provides support that is
complementary to that of the failure detection/prediction manager and fault masking
manager, especially in the condition when an error is detected in the system. We note
that DM maximizes the lifetime of the Cloud infrastructure by continuously checking for
occurrence of faults using the failure detection/prediction manager and, when exceptions
happen, by recovering from failures using the recovery manager.

Example 4.5.4. As described in the Example 4.5.3, using fault masking manager the high
availability goals of the user can be met even when a failure happens at host h3. However,
the service offered by the infrastructure provider may be affected since the system consists
of only four working nodes. In this context, it is critical for the infrastructure provider to
apply robust recovery mechanisms in order to increase its system’s lifetime. The support
offered by the recovery manager resumes host h3 (that is marked with F or P in the
resource graph) to working state (W in resource graph).

4.6. Chapter Summary 71

4.5.7 Messaging Monitor

Messaging monitor extends through all the components of our framework (as shown
in Figure 4.4) and offers the communication infrastructure in two different forms:
message exchange within a replica group, and inter-component communication within
the framework. Since dep units, and other components in DM are realized as web
services, the communication between any two components (and the replicas) must be
reliable even in the presence of component, system or network failure. To this aim,
messaging monitor integrates WS-RM standard [138, 12] with other application protocols
and establishes an appropriate messaging infrastructure that supports the composition
engine in designing a robust dep sol. We note that this component is critical in providing
maximum interoperability, and serves as a key QoS factor.

Example 4.5.5. Based on Examples 4.5.1 to 4.5.4, here, a summary of the implicit work-
flow that happens across all the components of DM as a response to a single user request is
presented. As shown in Figure 4.6, the service invocation process starts when DMKernel
gathers the user’s requirements from the client interface using the <receive> BPEL activ-
ity. Based on user’s requirements, DMKernel first selects appropriate web service modules
(dep units) from the service directory, and the composition engine defines (dep sol) an ex-
ecution logic among selected web service modules. DMKernel delivers the dep sol by first
triggering the replication manager to create a replica group for the user’s application. In
terms of BPEL language constructs, activity <invoke> is specified. Once the replica group
is created, DMKernel triggers the messaging monitor and the failure detection/prediction
manager to create a messaging infrastructure and to invoke fault prediction protocol re-
spectively, using the <flow> activity, so that both dep units run continuously in parallel.
The dep unit associated with the fault masking manager is triggered immediately (<if>
activity) after a failure is predicted, and finally the recovery manager is invoked (using
<invoke> activity) to recover the failed node. We note that throughout the workflow,
the evaluation unit monitors the service instance to ascertain that DM satisfies the user’s
requirements and maintains the QoS.

4.6 Chapter Summary

In this chapter, we presented a comprehensive view to transparently deliver dependability
to applications deployed in virtual machine instances. In particular, we presented an inno-
vative approach for realizing generic dependability mechanisms as independent modules,
validating dependability properties of each mechanism, and matching user’s requirements
with available dependability modules to obtain a comprehensive solution with desired prop-
erties. The proposed approach when combined with our delivery scheme enables a service
provider to offer long-standing dependability support to users’ applications. Furthermore,

72 4. System-level Dependability Management

we discussed the design of a framework that allows the service provider to integrate its
system with the existing Cloud infrastructure and provides the basis to generically realize
our approach in delivering dependability as a service. We note that the components of the
proposed framework can be extended in a straight-forward manner to improve the overall
resilience of the Cloud infrastructure.

The approach discussed in this chapter relieves users (e.g., SaaS providers) from imple-
menting low-level dependability mechanisms, and improves the reliability and availability
of their applications (e.g., eCommerce service) when deployed using IaaS services. This
approach satisfies specific dependability requirements of individual applications and offers
significantly higher level of dependability when compared to simple certification schemes
(second level of dependability offered in this thesis).

In the next chapter, we discuss a set of techniques that allow the dependability service
provider to realize components of the Dependability Manager and deliver its service.

5
Supporting the notion of

Dependability as a Service

In this chapter, we present a set of techniques that together realize the notion of offering
dependability as a service to users’ applications. We divide the overall problem into four
sub-problems and present an approach to solve each sub-problem. First, we present an
approach to analyze the failure behavior of the envisioned Cloud and dependability prop-
erties that can be obtained using a given dependability mechanism, and use this analysis
to translate high level users’ requirements to low level mechanisms. Second, we present an
approach to translate specific configuration requirements of low level dependability mech-
anisms to resource level constraints. Third, we present an approach to allocate virtual
machine instances while satisfying dependability constraints, to finally deliver the chosen
service. Finally, we present a resource management scheme that balances users’ perfor-
mance and dependability requirements by adapting the current resource allocation of her
applications whenever her requirements not satisfied due to various system changes.

Given the goal of this thesis is to improve the dependability of Cloud computing,
particularly by reducing the risks of using IaaS and SaaS services, the solutions for the
aforementioned sub-problems improve the reliability and availability of users’ applications
deployed using IaaS services, and consequently, provide higher level of dependability when
compared to certification scheme (second level of dependability offered in this thesis).

5.1 Introduction

In Chapter 4, we advocated the approach of offering dependability as a service wherein
users can acquire desired dependability properties for their applications from a third party.
This approach allows users to implement highly available and reliable applications without
having to implement low level dependability mechanisms. The design of the conceptual
framework consisting of all the components necessary to realize the new approach is dis-
cussed in the previous chapter as the Dependability Manager (DM). This chapter divides
the overall problem of offering dependability as a service into the following four sub-

74 5. Supporting the notion of Dependability as a Service

problems, and presents an approach to solve each sub-problem. These four activities,
when integrated together, realize the functionality of the DM and its components.

1. Mapping high-level user requirements to low-level dependability mech-
anisms and their specific configuration. The DM implements a range of de-
pendability mechanisms as independent modules dep units, and based on user’s re-
quirements, selects appropriate modules to compose a dependability solution dep sol.
This requires the service provider to measure the effectiveness of each dependability
mechanism, in different configurations, considering the failure characteristics of the
Cloud infrastructure. One approach to measure the effective of a given mechanism
is to estimate the level of reliability and availability that can be obtained with its
use. This approach must take into account the failure behavior of the infrastructure
components, the correlation between individual failures, and the impact of each fail-
ure on the user’s applications. Finally, using this analysis, the service provider can
define a search algorithm to identify the mechanisms that satisfy user’s requirements.

2. Specifying the configuration of dependability mechanisms in terms of
resource-level constraints. The service provider must enforce the deployment
conditions inherent to the configuration of the selected dependability solution dep sol
in order to correctly deliver the service. For example, if the selected dep sol improves
availability by replicating application tasks, then, the service provide must ensure
that each replica is allocated on a different physical host in the infrastructure so
as to avoid a single point of failure. This requires the service provider to specify
and integrate the restrictions imposed by a given dep sol within the resource allo-
cation algorithm of the IaaS service provider. These restrictions may concern the
dependability and performance of users’ applications, and are critical to the overall
service.

3. Satisfying resource-level constraints while allocating VM instances. Typ-
ically, the IaaS service provider uses a heuristics-based algorithm to allocate the
virtual machine instances requested by the user. The objective of such heuristics
is to maintain high QoS while increasing the monetary profits of the service. For
example, allocation algorithms are often designed to reduce the energy consumption
costs of the infrastructure, thus improving economic returns.

The dependability service provider is the intermediary between the users and the
Cloud service provider and, as a consequence, it must implement several system-level
algorithms that allows it to i) offer its service while providing sufficient abstraction
from low-level details to the users, and ii) support the Cloud service provider in
achieving its business goals. This is in contrast to the dependability certification
scheme of Chapter 3, where the certification authority is required to validate the
effectiveness of the mechanisms implemented by the user (considering the client’s
service as an encapsulated package).

5.2. Mapping Users’ Requirements to Dependability Mechanisms 75

Hence, the service provider requires an algorithm that allocates virtual machine
instances on the Cloud infrastructure while satisfying all the restrictions inherent to
the selected dependability solution dep sol (activity 2) and supporting IaaS service
provider’s objectives. The result of successfully executing this algorithm is that the
dep sol can actually deliver its functionality to the user’s application (completing
the design stage of the DM).

4. Adaptive resource management to ensure users’ requirements at runtime.
Cloud computing environment is highly dynamic and requires runtime monitoring of
the delivered service. When system changes affect the desired dependability output
(e.g., reduction in the availability of user’s application due to a server crash), the
affect of such changes needs to masked, requiring the service provider to implement
an algorithm that adapts the current allocation of the application. This algorithm
ensures that the service provider delivers solution satisfying user’s requirements also
during runtime.

5.1.1 Chapter Outline

The remainder of this chapter is organized as follows. Section 5.2 presents an approach
to quantify the effectiveness of dependability mechanisms using fault trees and Markov
models. It also presents a search algorithm that selects dependability mechanisms that
most appropriately match user’s requirements. Section 5.3 investigates and formulates
different constraints that both dependability service provider and IaaS service provider
may wish to specify. These constraints impose restrictions on the allocations to be made
to the hosts and express conditions on the placement, and relative placement, of virtual
machines. Section 5.4 presents a virtual machine provisioning algorithm that satisfies all
allocation constraints, allowing the service provider to effectively deliver its service to the
users. It also describes an adaptive resource management algorithm that ensures user’s
dependability and performance requirements during runtime. Section 5.5 provides some
simulation results. Section 5.6 provides chapter summary and some concluding remarks.

5.2 Mapping Users’ Requirements to Dependability Mech-
anisms

The first step to realize the notion of dependability as a service is to design a mechanism
that allows users to specify their requirements with ease, and a scheme that matches
user’s high-level requirements with low-level dependability techniques. In other words, as
the first step, there is a need to build the functionality of the Client Interface, Service
Directory, and Composition Engine components of the DM (see Section 4.5). To achieve
this, the service provider requires the ability to i) identify the failure characteristics of
the Cloud infrastructure, ii) quantify the reliability and availability obtained by each

76 5. Supporting the notion of Dependability as a Service

implemented mechanism (dep units and dep sols), and iii) evaluate different configurations
of various dependability mechanisms in order to suitably deliver its service to the user. The
remainder of this section first discusses an approach that realizes the three aforementioned
abilities, and then defines a dependability policy selection scheme.

5.2.1 Analysis of Failure Characteristics of System Components

A Cloud computing user must engage with the service provider to obtain dependability
support for her applications. The goal of the service provider is to create a dependability
solution based on user’s requirements and deliver the solution by taking into account the
failure characteristics of the Cloud infrastructure. This section provides an overview of a
typical Cloud infrastructure and derives an approach to characterize failures in the system.

Overview of the Cloud infrastructure

Cloud computing infrastructure can be viewed as a large pool of interconnected physical
hosts H that is partitioned into a set C of clusters. A cluster C ∈ C can be formed by
grouping together all the hosts that have identical resource characteristics or administra-
tive parameters (e.g., hosts that belong to the same network latency class or geographical
location). Each host or server contains multiple processors, storage disks, memory modules
and network interfaces. Hence, the resource characteristics of each physical host h∈H can

be represented using a d dimensional vector
−→
h=(h[1], h[2], . . . , h[d]), where each dimension

represents the amount of host’s residual capacity (i.e., resources not yet allocated) corre-
sponding to a distinct resource type (e.g., CPU, memory, storage, network bandwidth).
For simplicity, the resource capacity of hosts can be denoted using normalized values, say,

between 0 and 1. For example, the host h characterized as
−→
h=(CPU, Mem)=(0.6, 0.5)

implies that 60% of CPU, 50% of memory on h is available for use.

A hypervisor is deployed on each host to virtualize its resources, and required amounts
of computing resources are delivered to the user in the form of virtual machine instances.
All the hosts are connected using several network switches and routers. In particular, as
described in [51], we consider that hosts are first connected via a 1Gbps link to a Top of
Rack switch (ToR), which is in turn connected to two (primary and backup) aggregation
switches (AggS). The subsystem formed by the group of servers under an aggregate switch
can be viewed as a cluster. An AggS connects tens of switches (ToR) to redundant access
routers (AccR). This implies that each AccR handles traffic from thousands of servers and
route it to core routers that connect different data centers to the Internet. The left portion
of Figure 5.1 illustrates an example of a Cloud infrastructure consisting of N clusters of
interconnected hosts, and each cluster is connected through a network that is private to
the service provider. The right portion of the figure illustrates a part of the data center
network architecture.

5.2. Mapping Users’ Requirements to Dependability Mechanisms 77

User

Internet

VM Provisioning

Private Network

Cloud Infrastructure

Cluster 1

h1

h2 h3 h4 h5

h6
Intranet

Cluster N

hnhn−1hn−2hn−3

Intranet

Internet

AccR AccR AccR AccR

AggS AggS AggS AggS

Data center level

Cluster level

Host/Rack level

Racks Racks

(a) Example Cloud infrastructure (b) Network architecture

Figure 5.1: Cloud infrastructure showing different deployment levels

Failure behavior of system components

Failure behavior of the system must be modeled in the service provider’s perspective, that
is, the infrastructure component failures which result in a user application failure must be
implicitly represented. The failure behavior is modeled here using the notion of fault trees
[131, 39] since the dependence between individual failures in the Cloud infrastructure and
the boundaries on the impact of each failure can be taken into account. The failures on
three main types of resources (network, server and power) are discussed in the following.

• Network: Figure 5.2(a) represents the fault tree for an application considering the
network failures in the infrastructure, based on the network architecture described
in Section 5.2.1. The system fails when the top-event value in the fault tree is true.
In this context, a failure implies that the application is not connected to the rest
of the network or gives errors during data transmission. We note that the fault
tree clearly defines the boundaries on the impact of network failures (using server,
cluster and data center level blocks), and allows the service provider to increase
the dependability of user’s applications (e.g., by placing individual replicas of an
application in different failure zones). The concept of failure zones is described in
detail in Section 5.2.3 in terms of deployment levels. A network failure happens if
there is an error in all redundant switches ToR, AggS, AccR or core routers, or the
network links connecting the physical host and other network components.

• Server: An application deployed in a virtual machine instance that is hosted on a
server may fail if there is a failure in the physical host or the management software. In
other words, a failure/error either in the i) processor, memory modules, storage disks,
power supply or network interfaces, or ii) the virtual machine manager (VMM), or
iii) the virtual machine (VM) instance itself, may lead the application to a failure.

78 5. Supporting the notion of Dependability as a Service

S1 S2

A
N
D

AggS1 AggS2

A
N
D

AccR1 AccR2

A
N
D

O
R

Core

Failure

Server Cluster
Data center

CPU Memory Storage Power Network

O
R VMM

O
R VM

O
R

Failure

Power1 Power2

A
N
D

DU1 DU2

A
N
D

O
R

Power Supply

Failure

Server Cluster

Data center

(a) Network failure (b) Server failure (c) Power failure

Figure 5.2: Fault tree models for server, network and power failures

Figure 5.2(b) illustrates this behavior as a fault tree where the top-event represents
the failure in user’s application (i.e., when the top-event’s value is true). Service
provider can determine the reliability and availability of a server and its components
using Markov models (see Section 5.2.2).

• Power: We assume that a data center receives the power via an uninterrupted power
network, and a redundant distribution unit (DU) is deployed for each cluster within
the data center. A DU provides power to all the servers within a cluster. A failure
in the DU is independent of other DUs and the central power supply. Figure 5.2(c)
depicts the fault tree of power failures in a Cloud infrastructure.

This method can be extended to incorporate other failures (e.g., cloud manager errors)
in a straightforward manner, and are not discussed here. Failure characteristics and fault
trees are used in Section 5.2.3 to select appropriate deployment configuration for the
dependability mechanism applied on a given users’ application.

5.2.2 Analysis of Dependability Metrics

This section discusses representative dependability mechanisms that can transparently
handle component failures in a Cloud infrastructure.

Dependability Mechanisms

The task of offering dependability as a service requires the service provider to realize de-
pendability mechanisms that can transparently function on user’s applications. In this
context, a dep unit defines an independent module that applies a coherent dependability
mechanism to a recurrent set of system failures at the granularity of a VM instance (see
Section 4.4). The notion of dep unit is based on the observation that the impact of hard-
ware failures on user’s applications can be handled by applying dependability mechanisms

5.2. Mapping Users’ Requirements to Dependability Mechanisms 79

1,1 1,0 0,0

2λ

kµ

λ

kµ

(1− k)µ (1− k)µ

Figure 5.3: An example of a Markov model for semi-active replication

directly at the virtualization layer than the application itself. A brief discussion on three
main configurations of dep sols that use dep units realizing replication schemes is provided
below. These dep sols represent the majority of dependability implementations that are
currently being used.

Semi-active replication. The input is either provided to all the replicas or state
information of the primary replica is frequently transmitted to the backup replicas. The
primary as well as the backup replicas executes all the instructions, but only the output
generated by the primary replica is made available to the user. The output messages of
backup replicas are logged by the hypervisor. In case the primary replica fails, one of the
backup replicas can readily resume the service execution. For each replica failure, the DM
must create an equivalent replica (VM instance) on another host and update its state.
We note that in a cloud computing environment, resources are often over-provisioned,
and hence it is possible to create backup resources with a very high probability. An
example of a technique that falls in this category is the VMware’s dependability [134] that
is designed for mission-critical workloads. We note that the availability obtained by using
this technique is very high, but it comes at high resource consumption costs.

As discussed in the previous section, Markov models can be used to determine the
reliability and availability of the application that uses this replication scheme because
failure behavior of physical hosts (servers) can be taken into account. Figure 5.3 depicts
the Markov model of a representative dep sol that is based on semi-active replication
scheme with two replicas (λ is the failure rate and µ is the recovery rate). Each state
is represented as (x, y) where x=1 implies that the primary replica is working and x=0
implies that it failed. Similarly, y represents the state of the backup replica. The system
starts and remains in state (1,1) during normal execution, i.e., when both replicas are
available. When a VM instance (either primary or backup replica) fails, the system moves
to state (0,1) or (1,0) where other replica takes over the execution process. We note that
a single state is sufficient to represent this condition in the Markov model since, in the
service provider’s perspective, both the replicas are equivalent. In state (0,1) or (1,0), DM
initiates the recovery mechanism defined in the dep sol, and the system moves to state

80 5. Supporting the notion of Dependability as a Service

1,1

1,0

0,1

0,0

λ

λ

kµ

c
λ

kµ

(1− k)µ

(1− k)µ

Figure 5.4: An example of a Markov model for semi-passive replication

(1,1) if the recovery is successful; if the server experiences a failure, the system transits to
state (0,0) where the user’s application becomes unavailable.

Semi-passive replication. The state information is obtained by frequently check-
pointing the primary replica and buffering the input parameters between each checkpoint,
and replication is performed by transferring the state information to the backup replicas.
The backup replicas do not execute the instructions but saves the latest state obtained
from the primary replica. In case the primary replica fails, a backup replica is initiated and
updated to the current state with some loss in the present execution cycle and reasonable
downtime. Remus [29] is a typical example of a system that is used by the Xen hypervi-
sor and realizes a configuration of semi-passive replication. We note that the availability
obtained from this technique is less than that by semi-active replication, but the resource
consumption costs are reduced since the backup replicas do not execute instructions.

Figure 5.4 represents the Markov model of an application for which the semi-passive
replication mechanism with two replicas is applied by the service provider. In this model,
when a failure in the primary replica happens, the system moves from state (1,1) to state
(0,1) and begins the update process. The backup replica assumes the execution process
(becomes the new primary replica) and the system implicitly moves to state (1,0). In
this state, DM invokes a new replica and provides it with the latest checkpoint. If the
new backup replica is successfully commissioned, the system again moves to state (1,1),
otherwise it remains in state (1,0). A failure in the primary replica in state (1,0) results in
a complete system failure (i.e., both replicas become unavailable), and the system transits
to state (0,0).

Passive replication. The state information of a VM instance is regularly stored
on a backup. In case of a failure, DM recommissions another VM instance and restores
the last saved state. We note that a backup can be configured to share the state of
several VM instances or it can be dedicated to a particular application, and the VM

5.2. Mapping Users’ Requirements to Dependability Mechanisms 81

1 0

λ

kµ

(1− k)µ

Figure 5.5: An example of a Markov model for passive replication

recommissioning process can be performed based on a priority value assigned to each
VM instance. VMware’s High Availability solution [133] is a typical example of this
replication technique. This approach consumes least amount of resources but provides
reduced availability than the former methods. Figure 5.5 illustrates the Markov model of
an application for which a dedicated (passive) backup is applied.

A dep sol can perform replication of a user’s application, detection of failures, and
recovery from a failed state without requiring any changes to the application’s source
code. This implies that it is feasible for the service provider to transparently enforce
dependability on specified applications. For the sake of simplicity, only the availability
property of the system is discussed in the above examples, but similar Markov models can
be used to study the reliability property as well.

We note that, based on the system design, dependability of a given application also
depends on the number of replicas of each application task as well as the location of each
replica in the infrastructure. Furthermore, availability and performance may often be
competing attributes for the application. For example, availability improves by increasing
the number of replicas but that may diminish the performance due to additional process-
ing and communication required in maintaining consistency. In fact, Brewer’s theorem
states that consistency, availability, and partition tolerance are the three commonly de-
sired properties by a distributed system, but it is impossible to achieve all three [50]. This
implies that, in addition to the replication strategy, the service provider must identify a
suitable deployment level and estimate the number of application replicas by taking into
account both the dependability and performance parameters.

5.2.3 Deployment Levels in Cloud Infrastructures

Dependability, resource costs, and performance of an application may vary based on the
location of its replicas. This section discusses three different deployment scenarios and
identify how fault tree of the service instance can be integrated based on the chosen
scenario. A deployment scenario corresponds to the location (or configuration) of the
physical host on which individual replicas (VM instances) of an application under a

82 5. Supporting the notion of Dependability as a Service

single implementation of a dependability mechanism are created. We assume failures in
individual resource type to be independent of each other.

Multiple machines within a cluster. Two replicas of an application can be placed
on hosts that are connected by a ToR switch i.e., in a LAN. This deployment provides
benefits in terms of low latency and high bandwidth but offers least failure independence.
Replicas cannot communicate and execute the dependability protocol upon a single
switch failure, or a failure in the power distribution unit results in an outage of the entire
application. In fact, if both replicas are placed on the same host, a single component
failure will affect both replicas. In this deployment scenario, the cluster level fault tree
blocks for each type of resource failure (see Figure 5.2) must be connected with a logical
AND operator (e.g., DU1, DU2 of the cluster ∧ S connecting the hosts ∧ individual
host components). We note that the overall availability and reliability obtained from
each dependability mechanism with respect to host failures must be determined using a
Markov model.

Multiple clusters within a data center. Two replicas of an application can be placed
on hosts that belong to different clusters in the same data center i.e., connected via a ToR
switch and AggS. This deployment still provides moderate benefits in terms of latency
and bandwidth, and offers higher failure independence. The replicas are not bound to
an outage with a single power distribution or switch failure. Therefore, to represent the
overall availability of an application, in this scenario, the cluster level blocks from the
fault trees may be connected with a logical OR operator in conjunction with power and
network with an AND operator.

Multiple data centers. Two replicas of an application can be placed on hosts that
belong to different data centers i.e., connected via a ToR switch, AggS and AccR. This
deployment has a drawback with respect to high latency and low bandwidth, but offers
a very high level of failure independence. A single power failure has least effect on the
availability of the application. In this scenario, the data center level blocks from the fault
trees may be connected with a logical OR operator in conjunction with the network in the
AND logic.

In general, the subsystem chosen within the infrastructure to deploy users’ applications
can be denoted as the deployment level DL. A partial ordered hierarchy (DL,�DL) can
be defined, where DL denotes the deployment level and �DL defines the relationship
between different deployment levels. For example, C1 �DL DC1 indicates that data
center DC1 is a larger subsystem or deployment level when compared to cluster C1. A
transitive closure �∗DL that indicates the “contains-in” relationship also exists on �DL.
For example, h1 �∗DL C1 �∗DL DC1 indicates that host h1 is part of cluster C1 that in turn
exists in data center DC1. Intuitively, availability increases with increasing deployment
level; that is, availability of an individual host is smaller than the availability of a cluster,

5.2. Mapping Users’ Requirements to Dependability Mechanisms 83

Table 5.1: Availability of users’ applications using dep sols with different replication
schemes and deployment scenarios

Same Cluster Same Data center, Diff. Data centers
diff. clusters

Semi-Active 0.9871 0.9913 0.9985
Semi-Passive 0.9826 0.9840 0.9912

Passive 0.9542 0.9723 0.9766

which is still smaller than the availability of a data center. On the other hand, network
latency increases with increasing deployment level; that is, hosts in the same rack have a
lower network latency than hosts across different clusters. Hence, if L(DL) denotes the
maximum latency between two hosts in the deployment level DL, then DM can decide
suitable DL based on users’ desired performance in terms of expected response time.

5.2.4 Analysis of dep sol Behavior under Different Configurations

Since input parameters and availability values of hardware and system software are nor-
mally vendor-confidential, this data is derived from the tables published in [118, 39, 127]
for the purpose of this study. Based on this data and using the evaluation scheme discussed
in this section, as an example, analysis of dependability and performance parameters is
provided in the following. A detailed description of the simulation environment setup and
the evaluation methodology is presented in Section 5.5.

Analysis of Applications’ Availability

Replication scheme vs. deployment level. The first simulation studies the overall
availability of each representative replication scheme of dep sols with respect to different
deployment levels. Table 5.1 illustrates the availability results. We can see that availabil-
ity of the application is highest when replicas are placed in two different data centers.
The value is slightly lower for the deployment level 2 (replicas in two different clusters)
and still lower for scenario where replicas are placed inside the same LAN. Similarly, the
overall availability obtained by semi-active replication is slightly higher than semi-passive
replication, and lowest for simple passive replication scheme. The values in this table
can be used by the service provider to select appropriate dep sols and its deployment level.

Number of replicas vs. deployment level. Consider that DLmax is the highest
deployment level within which DM executes a given application; that is, all the applications
tasks are deployed and run on the hosts within the deployment level DLmax. Then DM
can use the following study to assign appropriate DLmax value for each users’ application.

Let us first extend the approach described in the previous sections to characterize

84 5. Supporting the notion of Dependability as a Service

ClusterLevel DatacenterLevel
0.8

0.85

0.9

0.95

1

A
va
il
a
b
il
it
y

2 replicas 3 replicas 4 replicas

Figure 5.6: Availability at different deployment levels with varying number of replicas

the failure behavior of deployment levels (in contrast to individual hosts). As typically
considered in the literature [70], we can model the failures at deployment levels using a
Poisson process with rate λDL=1/MTBFDL, where MTBFDL is the mean time between
failures for deployment level DL. Since users’ applications are executed on the Cloud
infrastructure, their failure arrival process must also modeled as a Poisson process with
rate

∑
DL λDL. This implies that a failure event affects the deployment level DL with

probability
λDL∑
DL λDL

and causes the application to fail if DLmax lower than DL. Hence, the MTBF for a given
application M in a given configuration is

MTBFM = (
∑

∀DL, ∃Ti∈M, DLmax(R(Ti))�∗DLDL

MTBF−1
DL)

−1

Based on the above modeling, an estimation of the availability of an application having
2, 3 and 4 replicas, deployed in different clusters within a data center and different data
centers in the Cloud is performed. The scenario where task replicas are deployed within
a cluster since their behavior only depends on the availability and performance attributes
of the physical hosts, and therefore, are not discussed here. Figure 5.6 illustrates how
availability of the application changes for different configurations. We observe that the
availability increases as the number of replicas of the application increase, and availability
when the replicas are placed in different data centers is greater than the availability when
replicas are placed in different clusters in the same data center.

Analysis of Applications Response Time

Number of replicas vs. deployment level. Three parameters that influence the
performance of an application are considered: i) number of replicas for each application

5.2. Mapping Users’ Requirements to Dependability Mechanisms 85

ClusterLevel DatacenterLevel
0.8

0.85

0.9

0.95

1

P
er
fo
rm

a
n
ce

2 replicas 3 replicas 4 replicas

Figure 5.7: Performance at different deployment levels with varying number of replicas

task, ii) amount of resources allocated to each task, and iii) network latency between
replicas. To quantify the performance of a given configuration, similarly to [70], [104], the
layered queuing network formalism [47] is used as the application model. This queuing
network model allows DM to predict the response time and resource requirements of the
application for a chosen configuration and workload. In this study, application tasks are
represented using first-come first-served (FCFS) queues and resource requirements (size
of the VM instance) using the processor sharing queues. In this context, DM can measure
the parameters of the model such as the response time, whenever a request arrives, by
calculating the delay between the incoming request and the outgoing response.

Figure 5.7 illustrates how the response time of an application changes for different
configurations. The performance values reported here largely depends on the network
latency in the infrastructure since it is assumed that sufficient CPU capacity is allocated
to each application task. For clarity, the results are presented using normalized values
between 0 and 1. We can observe that the performance decreases as the number of replicas
of the application increase, and performance of an application when its replicas are placed
in different clusters within a data center is better than the performance when its replicas
are placed in different data centers.

Therefore, in practice, we can see that there is a strict dependency between the avail-
ability and response time for an application, and the configuration choice for the applica-
tion must take into account both performance and availability metrics. Finally, we note
that this approach of quantifying different aspects of dependability solutions allow the
DM to select dep sols satisfying users’ requirements.

5.2.5 Dependability Policy Selection Scheme

The design stage of the DM starts when a user requests the service provider to offer
dependability support to her application (see Section 4.4). In this stage, the service

86 5. Supporting the notion of Dependability as a Service

provider must analyze the user’s requirements, match them with available dep units, and
form a complete dependability solution using appropriate dep units. We assume that
the service provider realizes a range of dependability mechanisms as dep units, combines
them to obtain different dep sols, and determines the reliability and availability values
that can be obtained using each dep sol for different configurations (e.g., no. of replicas)
and deployment levels (e.g., Table 5.1). This data is then bound to each dep sol as its
metadata and stored in the Service Directory. In this section, we introduce a method to
select appropriate dependability mechanisms (dep sols) and deployment levels based on
user’s requirements.

We briefly discuss the notion of dependability properties for the sake of completeness.
The dependability property p of a dep sol is denoted using a triple p=(s, p̂, A) where s is
the dep sol, p̂ represents the high level abstract properties such as reliability and avail-
ability, and A denotes the set of structural, functional and operational attributes that
refers to the granularity at which s can handle failures, benefits and limitations of using s,
inherent resource consumption costs and quality of service metrics. Each attribute attr∈A
can take a value v(attr) from a domain Dattr and a partial ordered relationship �attr ex-
ists on the domain. For instance, dependability property of a dep sol s1 can be denoted
as p=(s1, {availability=99.995%, reliability=98%}, {mechanism=semi-passive-replication,
fault model=server crashes, network faults, power failures, fault detection time=5ms, re-
covery time=8ms, n.replica=3}). A hierarchy of dependability properties �p can also
be defined; if P is the set of all properties, and given two properties pi,pj∈P , pi�ppj if
pi·p̂=pj ·p̂ and ∀attr∈A, vi(attr)�vj(attr). The attribute values depend on the configu-
ration of the dependability mechanism and values for abstract properties are determined
using Markov models and fault trees. According to our discussion in Section 4.4, a user
can specify her requirements in terms of desired abstract properties p̂c and constraints on
attribute values Ac.

Let S be the set of dep sols available in the Service Discovery. For a given user request,
first shortlist the dep sols that satisfy user’s abstract property requirements. Let S′⊆S be
the shortlisted set of dep sols for which p̂c�pp̂i, ∀i∈S. Any s∈S′ can be used to deliver
the service if the user does not provide constraints in terms of total resource usage costs
or performance of the dependability protocol since high level reliability and availability
requirements can be satisfied by any s∈S′. However, since a user’s input may contain
specific attribute values, for each dep sol in S′, compare attribute values for each attr∈A
to obtain a set S′′ of candidate dep sols. In particular, compare the values of each attribute
vi(attr) with the value specified by the user vc(attr), and include those dep sols in S′′ for
which vc(attr)�avi(attr). For example, fault detection time or recovery time must be less
than or equal to the specified value, whereas number of replicas must be greater than or
equal to the specified value. By performing this step, the DM selects only those dep sols
that satisfy both user’s high level requirements and additional conditions on the attributes.
We note that there may be some inconsistencies in the matching and comparison processes
that can be handled based on the priorities specified by the user. Finally, compare each

5.2. Mapping Users’ Requirements to Dependability Mechanisms 87

Table 5.2: An example of dependability properties of dep sols and user’s requirements
Property of available dep sols

dep sol p p̂ A

s1 p1 Availability=99.9% mechanism=semi-active-replication
Reliability=99% n.replicas=3

fault detection time=2ms
recovery time=2ms
deployment level=2

s2 p2 Availability=95 % mechanism=passive-replication
recovery time=30sec
dimension=shared

s3 p3 Availability=99% mechanism=semi-active-replication
Reliability=98% n.replicas=2

fault detection time=4ms
recovery time=8ms
deployment level=1

User’s requirements

p p̂ A

sc pc Availability≥99% n.replicas<3
Reliability≥98% fault detection time≤5ms

recovery time≤10ms

dep sol within S′′ and order them with respect to user’s requirements. The first dep sol in
the ordered set S′′ can be finally used to provide dependability service to user’s application
since it most appropriately satisfies user’s requirements.

Example 5.2.1. Assume that the service provider realizes three dep sols with properties
described in Table 5.2. The Service Discovery engine of the DMKernel first generates the
set S′=(s1, s3) since

sc(reliability)≤s1(reliability) ∧ sc(availability)≤s1(availability),

sc(reliability)≤s3(reliability) ∧ sc(availability)≤s3(availability)

It then compares the elements in S′ to generate an ordering among the shortlisted solutions.
In this case, it discards s1 from S′ since s1(n.replicas)6<3; hence, S′′={s3}. Finally, since
|S′′|=1, the dep sol s3 is used by the service provider to deliver the dependability service
to the user. That is, two replicas of the users’ application are created and placed within
the same cluster; the semi-active replication scheme is used to maintain the state of each
replica.

88 5. Supporting the notion of Dependability as a Service

Typically, to ensure high levels of dependability for the users’ applications, the service
provider must realize the delivery scheme consisting of both the design and runtime stage.

• In the design stage, once an appropriate dep sol is selected according to the user’s
request, the service provide must enhance the resource allocation algorithm of the
IaaS service provider to actually deliver the service. In particular, the allocation
algorithm must be modified to integrate specific requirements (e.g., deployment level
of each replica) of chosen dependability mechanisms and their configuration. The
resulting resource management algorithm should satisfy allocation requirements of
the application that are defined by the DM, as well as, meet IaaS service provider’s
business goals. We discuss such resource allocation algorithm in Section 5.4.2

• Since the context of a dependability solution may change at runtime due to the
dynamic nature of the Cloud computing environment, the attribute values of each
dependability solution offered to the user must be continuously monitored in the
runtime stage. For example, the real-time attributes of the host on which a replica
is located must be monitored in the runtime stage to ensure that user’s dependability
requirements are satisfied throughout the application life-cycle. The current alloca-
tion of the application must be changed whenever the availability or performance of
the application is affected due to system changes. We discuss such adaptive resource
management algorithm in Section 5.4.3.

We note that the above two aspects realize the Resource Manager, Replication Manager,
Fault Detection/Prediction Manager, and Fault Masking Manger of the DM.

5.3 Integrating Dependability Policy Conditions within the
IaaS Paradigm

In general, when a user requests the IaaS service provider to allocate her a set of computing
resources, the VM provisioning algorithm follows a heuristics-based approach to allocate
VM instances on physical hosts and provides them to the user. Most implementations
presently build their provisioning algorithms either by focusing on realizing the service with
agility (hence not scaling well to the granularity of individual resource types on physical
hosts) or to meet the IaaS service provider’s business objectives (e.g., utilize fewer number
of physical hosts to save energy consumption costs). However, the IaaS service provider
may need to impose a set of additional conditions on the allocation algorithms to maintain
the security and performance of its system, and the dependability service provider (DM)
may need to impose conditions to improve the dependability of users’ applications. To
this aim, in this section, we first categorize and formalize the requirements that the IaaS
service provider and the dependability service provider may want to specify with respect
to the security, reliability, availability and performance of the system. We then address

5.3. Integrating Dependability Policy Conditions within the IaaS Paradigm 89

the satisfaction of such requirements in the overall problem of resource allocation in IaaS
Clouds.

Let us start by modeling users’ applications. In order to keep the system independent
of specific formalisms for representing users’ applications, we can assume an application
M to be as a set of interacting tasks M = {τ1, . . . , τm}. The DM may replicate critical
tasks of the application to improve its dependability, and obtain a set of task replicas

Rk = {τ1
1 , . . . , τ

|rk|
m }. This implies that the set of tasks to be deployed in the Cloud is

T = {ti} =
⋃
τk∈M Rk. Similarly to hosts, a task t ∈ T can be characterized by a vector

−→
t = (t[1], . . . , t[d]), where each dimension represents the task’s requirements for specific

computing resources (e.g., CPU, Mem), corresponding to the dimensions of physical hosts.
We can assume that tasks are to be executed in a virtual environment and, for each task,
a virtual machine that is capable of executing that task can be instantiated. In other
words, we can assume existence of a virtual machine image I that can be characterized by−→
t . This assumption reduces our problem to a VM provisioning problem, where each VM

instance v∈V, represented by −→v =(v[1], v[2], . . . , v[d]), needs to be mapped on a physical
host h∈H. Similarly to hosts, resource requirements of VM instances can also be normal-
ized to values between 0 and 1. For example, a “small” instance in Amazon EC2 service
may be translated to −→v =(CPU, Mem)=(0.4, 0.25) [44].

5.3.1 Resource Allocation Objective

In the perspective of the DM, the task of resource provisioning involves allocation of VM
instances of specified dimensions on physical hosts, and their delivery to the user. VM
provisioning can be characterized by a mapping function p:V→H that takes the set V of
VM instances as input and maps each v∈V on the physical hosts h∈H as output. The
notation p(v)=h represents that the VM instance v is provisioned on the physical host
h. Figure 5.8 illustrates an example of mapping generated by p:{v1, . . . , v6}→{h1, h2, h3}
where p(v1)=p(v4)=p(v6)=h1, p(v5)=h2 and p(v2)=p(v3)=h3. In the figure, a one-to-
one correspondence is assumed between the VM images and application tasks, and VM
instances are allocated on the Cloud infrastructure. The VMs and hosts are represented
using rectangles to denote two resource dimensions (CPU and Memory) by its sides. A
physical host can accommodate more than one VM instance, but an individual VM can
be allocated only on a single host. DM must guide the mapping function to meet one (or
both) of the following IaaS service provider’s objectives:

• To reduce the energy consumption and operational costs, VM instances are consoli-
dated on physical hosts to maximize the number of free hosts. For example, the map-
ping function p:{v1, . . . , v6}→{h1, h2, h3} is guided to achieve p(v1)=p(v4)=p(v6)=h1

and p(v2)=p(v3)=p(v5)=h3 so that the host h2 remains unused. This allows the IaaS
service provider to conserve the energy of running host h2, and increase its service-
response capability.

90 5. Supporting the notion of Dependability as a Service

CPU

M
em

h1

h2

h3

v1

v2

v3

v4

v5

v6

t1

t2

t3

t4

t5

t6

M V Hp : V → H

Figure 5.8: An example of mapping generated by p:V→H function

• To reduce the load variance of physical hosts across all the clusters in the
Cloud in order to improve the performance and resilience of the system. For
example, if we assume that h1∈C1, h2∈C2 and h3∈C3, the mapping func-
tion p:{v1, . . . , v6}→{h1, h2, h3} must to be guided to achieve p(v1)=p(v4)=h1,
p(v5)=p(v6)=h2 and p(v2)=p(v3)=h3 so that the VM instances (resource usage) are
uniformly distributed across the clusters.

Section 5.4.2 defines a mapping function that considers the two objectives during VM
provisioning and integrates it as part of the DM so that it can satisfy and deliver the
dependability policy requirements chosen for the users’ application.

5.3.2 Resource Allocation Constraints

The IaaS service provider’s and DM’s requirements are modeled as placement constraints
and the mapping function is guided to satisfy all the constraints. We distinguish three
kinds of placement constraints:

• Global constraint that applies to all the hosts and VM instances in the system at
any given instant of time;

• Infrastructure-oriented constraints that are specified by the IaaS service provider to
maintain the security and quality of its service;

• Application-oriented constraints that are specified by DM, based on the chosen de-
pendability mechanism, to increase the availability and reliability of users’ applica-
tions.

For simplicity we consider constraints specified with respect to specific VM or host identi-
fier, but they can also be specified with reference to their properties (e.g., all the hosts that
belong to a cluster or deployment level). Table 5.3 provides a summary of the constraints
in all three perspectives.

5.3. Integrating Dependability Policy Conditions within the IaaS Paradigm 91

Global Constraint

The classical resource capacity constraint states that the amount of resources consumed
by all the VM instances that are mapped on a single host cannot exceed the total capacity
of the host in any dimension. Formally, for all the VM instances v∈V and hosts h∈H in
the system, the mapping function p:V→H must satisfy

∀h ∈ H, d ∈ D,
∑

v∈V|p(v)=h

v[d] ≤ h[d] (5.1)

This placement requirement is typically supported by all the solutions existing in the
literature. However, several solutions do not consider that the amount of resources con-
sumed by a VM when placed in isolation on a host and with other co-hosted VMs may
not be the same. When multiple VMs are placed on a host, the hypervisor or host op-
erating system may consume additional resources (e.g., CPU cycles or I/O bandwidth
during resource scheduling), and VM instances may interfere with each other and con-
sume higher amounts of shared resources (e.g., the L2 cache during context switching).
Formally, if vj , vk∈V|p(vj)=p(vk)=h, and utilize vj [d] and vk[d] amount of resources in
the dth-dimension when allocated individually, then vj [d] and vk[d] together may utilize
a bit more than (vj [d]+vk[d]) resources from the host h (unless vj and vk uses the same
VM image). To avoid performance degradation and inconsistent system state due to the
above factors, we allow the IaaS service provider to define an upper bound on the resource
capacity of each host that can be used for VM provisioning. The remaining capacity is
then used by the service provider for VM management. The resource capacity constraint
demands that VM instances not be allocated on a host if its capacity in any dimension
reaches the upper bound or threshold value specified by the service provider, that is,

∀h ∈ H, d ∈ D,
∑

v∈V|p(v)=h

v[d] ≤ (h[d] ∗ threshold[d]) (5.2)

We note that the threshold[d] value can be specified in terms of percentage or normalized
value between (0, 1).

Example 5.3.1. Suppose that the IaaS service provider specifies the upper bound on CPU
and Memory usage of host h1 as 80% and 70% respectively for VM provisioning. Assuming
that the resource capacity of host h1 in each dimension is normalized to 1, the resource
capacity constraint specifies that the mapping function must satisfy:

v1[cpu]+v4[cpu]+v6[cpu]≤0.8 and

v1[mem]+v4[mem]+v6[mem]≤0.7

92 5. Supporting the notion of Dependability as a Service

Table 5.3: An example of constraints on the mapping function

Perspective Applied by Constraints Description

Global IaaS Service resource capacity Resources consumed by VM instances must be less
Provider than the upper bound (threshold) of host’s capacity

Infrastructure oriented IaaS Service forbid Forbid a set of VM instances from being allocated on
Provider a specified host

count The number of VM instances deployed on a host must
be less than a given value

Application oriented DM restrict Map a VM instance only on a specified set of physical
(User) hosts

distribute Allocate a specified pair of VM instances on different
hosts

latency The network latency between the specified pair of VM
instances must be less than a given value

Infrastructure-oriented Constraints

The IaaS service provider may need to impose restrictions on the mapping function,
involving a set of physical hosts in its infrastructure, to improve the security, operational
performance and reliability of its service. As typical needs, we include two representative
infrastructure-oriented constraints in our framework that can be adapted to satisfy such
requirements: forbid and count.

Forbid. To improve security, a IaaS service provider may need to specify that a set of
hosts in its infrastructure must execute only system-level services (e.g., the access control
engine or reference monitor) and the mapping function must not allow DM to allocate
VM instances running users’ applications on those hosts. To satisfy such requirements,
the forbid constraint prevents a VM instance v from being allocated on a physical host h.
Formally, when the IaaS service provider defines a set Forbid={(vi, hj)|vi∈V and hj∈H}
specifying the VM instances vi∈V that must be forbidden from being allocated on hosts
hj∈H, the VM provisioning algorithm guides the mapping function p:V→H to satisfy the
following condition:

∀v ∈ V, h ∈ H, (v, h) ∈ Forbid =⇒ p(v) 6= h (5.3)

Count. As the number of co-hosted VM instances on a physical host increases, its perfor-
mance degrades. For example, the performance of a storage disk decreases if the number
of I/O intensive applications in the VM instances increases; similarly, the network traffic
from a host, VM management costs, and cpu utilization costs gradually increases. To
avoid such conditions, the count constraint allows a IaaS service provider to limit the
number of VM instances that can be allocated on a given host. Formally, when the IaaS

5.3. Integrating Dependability Policy Conditions within the IaaS Paradigm 93

h1

h5h2

h4h3

4

4 3

3

3

3
4

4

h10

h7

h6

h9h8

4

4

3

4
4

3
4

3

8

8

C1 C2

Figure 5.9: An example of a Cloud infrastructure with network latency values for each
network connection and service provider’s constraints (the shaded nodes forbid allocation
of user’s VM instances)

service provider defines counth, the maximum number of VM instances allowed on host h,
the mapping function p:V→H ensures that the following condition is satisfied:

∀v ∈ V, h ∈ H, |{v ∈ V|p(v) = h}| ≤ counth (5.4)

Example 5.3.2. Figure 5.9 illustrates an example of a Cloud infrastructure that consists
of two clusters C={C1,C2} and each cluster contains five physical hosts C1={h1,. . . ,h5}
and C2={h6,. . . ,h10}. Assume that the IaaS service provider i) runs security services on
hosts {h3,h10}, ii) has taken host h8 under maintenance due to a failure, iii) requires all
the hosts in cluster C1 to allocate not more than 3 VM instances each and utilize up to 80%
of their aggregate CPU and 90% of Memory capacity, and iv) requires hosts in cluster C2

to accommodate a maximum of 2 VM instances each. If we assume that the IaaS service
provider forbids all the VM instances from being allocated on physical hosts that are either
used to run security services or that have undergone failures, the IaaS service provider can
specify its requirements using the following constraints:

• counth1 ,. . . ,counth5≤ 3

• counth6 ,. . . ,counth10≤ 2

• thresholdh1 [CPU]=. . .=thresholdh5 [CPU]=0.8

• thresholdh1 [Mem]=. . .=thresholdh5 [Mem]=0.9

• ∀v ∈ V: Forbid={(v, h8), (v, h3), (v, h10)}

94 5. Supporting the notion of Dependability as a Service

Application-oriented Constraints

The DM may need to impose a set of restrictions on the placement of users’ application’s
VM instances based on the chosen dependability policy. For example, consider that a
generic dependability mechanism such as a replication technique is chosen by DM to
increase the reliability and availability of users’ application. The DM may then need
to impose a set of additional conditions on the system parameters and the relative
placement of VM instances to successfully implement the dependability mechanism
while satisfying the performance goals. As typical needs, we include three representative
application-oriented constraints in our framework that can be used to realize such
conditions: restrict, distribute and latency.

Restrict. Based on the system’s failure behavior, users’ requirements and chosen de-
pendability policy, DM may want to allocate each application task replica in specific a
deployment level. To satisfy such requirements, the restrict constraint limits a VM in-
stance v∈V on being allocated only on a specified group of physical hosts H⊂H. When
DM defines a set Restr={(vi, Hj)|vi∈V and Hj⊂H}, the mapping function p:V→H ensures
the following condition:

∀vi ∈ V, Hj ∈ 2Hj , (vi, Hj) ∈ Restr =⇒ p(vi) ∈ Hj (5.5)

We note that the set Hj defined above can refer to a deployment level DL, maximum
deployment level DLmax or a cluster C, and ensure satisfaction of dependability require-
ments. The restrict constraint is also applicable in other scenarios such as i) based on the
security and privacy policies [13], and mandatory government enforced obligations (e.g.,
EU Data Protection 95/46/EC Directive), a user may require that her VM instances
be always located within a given community area (e.g., within EU countries), and
ii) to improve the application’s performance, a user may require the mapping function
to place her VM instances on hosts whose geographical location is closest to her customers.

Distribute. Any replication-based dependability mechanism inherently requires that each
replica be placed on different physical hosts to avoid single points of failure. For instance,
if the DM replicates an application on two VM instances, and if both the virtual machines
are allocated on the same host, then a failure in the host results in a complete outage
of the user’s application. To avoid reaching such a state, the distribute constraint that
allows a user to specify that two VM instances vi and vj be never located on the same
host at the same time. When the DM defines the set Distr={(vi, vj)|vi, vj ∈ V} of pairs
of VM instances that cannot be deployed on the same host, the mapping function p:V→H
satisfies the following condition during VM provisioning:

∀vi, vj ∈ V, h ∈ H, (vi, vj) ∈ Distr =⇒ p(vi) 6= p(vj) (5.6)

5.3. Integrating Dependability Policy Conditions within the IaaS Paradigm 95

(0.4, 0.4)
vp

(0.3, 0.6)

vb2

(0.6, 0.5)

vb1

5 4

Figure 5.10: An example of users’ resource requirements and network latency constraints

Latency. The DM may want to specify allowed latency between task replicas so that
the response time of the users’ application is within the desired value. The latency con-
straint enforces the mapping function to allocate two VM instances vi,vj∈V such that the
network latency between them is less than a specified value Tmax. When DM defines a
set MaxLatency={(vi, vj , Tmax| vi,vj∈V)} that specifies the acceptable network latency
Tmax between two VM instances vi and vj , the mapping function p:V → H ensures the
following condition:

∀vi, vj ∈ V : (vi, vj , Tmax) ∈MaxLatency

=⇒ latency(p(vi), p(vj)) ≤ Tmax
(5.7)

assuming that the network latency between two virtual machines is equal to the net-
work latency between the physical hosts on which they are deployed. For instance, in
a checkpoint-based reliability mechanism, the state of the backup VM instance must be
frequently updated with that of the primary instance to maintain the system in a consis-
tent state. This task involves high amounts of message exchanges, and hence an upper
bound in the network delay is essential; otherwise, the wait-time of the primary instance
during which the state transfer to the backup takes place may increase significantly and
the overall availability of the application may be reduced.

Example 5.3.3. In Example 5.2.1, the service provider uses the matching and compar-
ison processes and selects the dep sol with property p3=(s3, {availability=99%, reliabil-
ity=98%}, {mechanism=semi-active-replication, n.replicas=2, fault detection time=4ms,
recovery time=8ms, deployment level=1}). According to the chosen property, consider that
DM replicates the primary VM instance vp of the user’s application on two backup hosts
vb1, vb2 (in p3, n.replicas=2), and applies the semi-active replication scheme. To specify
the allocation requirements inherent to the property p3, the DM may wish to impose a re-
striction on allocating vp, vb1 and vb2 in the same cluster C1 (in p3, deployment level=1),
particularly with vp begin allocated on one of the hosts h2. . . h5 (based on the infrastructure
defined in Example 5.3.2). Furthermore, to avoid a single point of failure, it may wish to
ensure that vp, vb1 and vb2 be deployed on different physical hosts. Finally, to balance the
application’s performance and availability, the DM may require that the network latency

96 5. Supporting the notion of Dependability as a Service

limit Tmax between vp and vb1 is at most 5ms and between vp and vb2 is at most 4ms. Fig-
ure 5.10 illustrates an example of a DM’s requirements for VM instances and associated
allocation constraints. These requirements can be specified as follows:

• Restr={(vp, {h2, . . . , h5}), (vb1, {h1, . . . , h5}), (vb2, {h1, . . . , h5})}

• MaxLatency={(vp, vb1, 5), (vp, vb2, 4)}

• Distr={(vp, vb1), (vp, vb2), (vb1, vb2)}

5.4 Delivering Dependability Support

We describe an approach to VM provisioning in which each mapping of the function
p:V→H is regulated to satisfy the allocation constraints specified by both the DM and
the IaaS service provider. The objective of the mapping function is to reduce the load
variance and energy consumption costs of the Cloud infrastructure. We note that the
objective of this algorithm focuses on the business goals of the IaaS service provider, thus
providing benefits to users (dependability support) as well as the Cloud service providers.
An approach to resource allocation with a user-centric objective is discussed in Chapter 6.

Given the NP-hardness of the VM provisioning problem, a greedy, heuristics-based
approximation algorithm is used to solve it. At a high-level, each time the DM is required
to deploy a users’ application, the provisioning algorithm analyzes the Cloud infrastructure
to identify the clusters and physical hosts that can be used for resource allocation, and for
each shortlisted physical host, it identifies the set of VM instances that can be allocated
on that host.

The provisioning algorithm reduces the load variance between different clusters by
allocating VM instances in the cluster that has highest amount of available resources.
This heuristic is based on the observation that the load variance between clusters can
be implicitly reduced by selecting the less-used cluster and utilizing its resources (by
allocating new VM instances on its hosts). When selecting a cluster, resource availability
of a cluster corresponding to a specific resource type may be greater than other clusters but
smaller for other resource types (e.g., CPU and Mem availability of clusters C1, C2 may
be (0.6, 0.7) and (0.4, 0.8) respectively). In such cases of inconsistency, the provisioning
algorithm determines the total amount of resources required by the users’ application
in each dimension, and selects the cluster whose availability is largest for the dimension
that is most required by the application. To reduce the energy consumption costs, VM
provisioning is performed in a host-centric manner; that is, once a cluster with maximum
resource availability is selected, each host within the cluster is analyzed (e.g., by following
identifier’s order) to allocate as many VM instances on that host as possible. This heuristic
improves the resource capacity usage of individual hosts and map all the VM instances on
fewer number of physical hosts. The task of allocating multiple VM instances on a given
physical host is generally referred as VM consolidation, and is discussed below.

5.4. Delivering Dependability Support 97

Figure 5.11: VM allocation on a host using the vector dot-product method

5.4.1 Virtual Machine Consolidation

The task of allocating virtual machines on physical hosts is implemented as a variant of the
well known bin-packing problem. In this context, the bins correspond to the physical hosts
and the items correspond to the VM instances. The VM provisioning algorithm of the
DM performs consolidation (packing) using the vector dot-product method, similarly to
[106, 117]. VM instances and physical hosts are represented as vectors (see Section 5.2.1),
and therefore, the vector dot-product value measures how a VM instance imposes itself on
a given host based on the angle between optimum allocation (i.e., reaching point (1, 1)),
vector magnitude, and present state of the host. In particular, given a host hj , the vector
dot-product method performs the following operations.

1. A weight w[d]=(
∑

v∈V|p(v)=hj
v[d])/hj [d] is associated with each resource dimension

of the host; w[d] is the ratio between the total resource consumption and capacity
of the host. Semantically, the weight assigned to the host reflects the scarcity of
resources on that host as a scalar quantity.

2. The free capacity of the host h′j [d] is then calculated as the difference between the
host’s capacity and total resource consumption; h′j [d] reflects the ability of the host
to accommodate further resources.

3. For each VM instance vi∈V , the vector dot-product value is calculated as
hv=

∑
dw[d]h′[d]v[d]. Semantically, the VM instance with highest hv value is most

suitable to be allocated on host hj .

Example 5.4.1. Figure 5.11 illustrates an example of the vector dot-product method for
host hj and VM instances v1 and v2. The host and VM instances are shown using rect-
angles to represent each side with a specific resource type (CPU and memory). The VM
instance v0, represented with slanted pattern, is already allocated on host hj, and allocation
of VM instances v1 and v2 on current status of hj is represented using horizontal and ver-
tical patterns respectively. Resource requirements of VM instances are −→v1=(0.5, 0.3) and
−→v2=(0.2, 0.4), and their dot-product values are 0.166 and 0.129 respectively. By extracting

98 5. Supporting the notion of Dependability as a Service

the VM with larger dot-product value (v1, which is CPU-intensive) the resource utilization
of the host complements the already containing VMs (v0, which is Memory-intensive).

5.4.2 Virtual Machine Provisioning

Figure 5.12 illustrates the algorithm that is executed each time the DM must allocate a
set of VM instances V={v1, . . . , vn}. The resource requirements for each vi∈V are spec-
ified in d dimensions and the application’s dependability and performance requirements
are specified in the form of constraints. The algorithm takes the set V , set of all hosts
h∈H, parameters that group physical hosts into clusters C and snapshot of VM instances
V already allocated in the Cloud as input. It also takes the sets that specify the depend-
ability, security, and performance requirements of users’ applications and IaaS service
providers (Restr, Forbid, MaxLatency, Distr, Count) for all VM instances and hosts,
and provisions the requested resources while satisfying all the constraints, as output.

To select the least-used cluster for allocating vi∈V , the priority queue CL is built based
on the resource availability in each cluster (line 5), and then, the cluster C with maxi-
mum resource availability is extracted from CL (line 8). Similarly, the vector dot-product
value of each vi∈V is calculated and stored in the VMreq priority queue (line 22). Entries
from VMreq are extracted in the decreasing order of the dot-product values (line 25) and
analyzed for performing the final allocation. We note that in the absence of additional
constraints, the above two mechanisms of: i) selecting the least-used cluster and ii) allo-
cating VM instances on its hosts using the dot-product method are sufficient to perform
VM provisioning and meeting service provider’s business goals. In our context, the provi-
sioning algorithm introduces the following controls to ensure that the specified allocation
constraints are satisfied.

Based on the observation that forbid and restrict constraints define conditions on the
association between VMs and physical hosts, this algorithm applies controls corresponding
to these constraints mainly while building the VMreq priority queue (i.e., when analyzing
the suitability of allocating vi∈V on host h). Note that only the VM instances that are
extracted from VMreq are considered for allocation on any given host. Hence, it creates a
temporary set V ′ that contains all the VMs that must be allocated, discard all the VMs
v from set V ′ (line 18):

• If an entry (v, h)∈Forbid exists (line 15), that is, discard all v∈V ′ that are specified
by the IaaS service provider in the Forbid set for host h.

• If a set of hosts H is specified in the Restr set for a VM v∈V but the present host
h does not belong to the set H (line 16), that is, discard v if ∃(v,H)∈Restr ∧ h 6∈H.

and provide the set V ′ as input to build the priority queue VMreq. This control allows the
provisioning algorithm to enforce the forbid and restrict constraints by ensuring that none
of the VM instances that are in conflict with these constraints are allocated on host h.

5.4. Delivering Dependability Support 99

1:INPUT H, C, V, V , Restr, Forbid, Count, Distr, MaxLatency

2:OUTPUT p:V→H
3:MAIN
4:/*Initialize the priority queue CL based on resource availability in each cluster*/
5:CL:=Build Priority Queue(C) /*Analyze the clusters*/
6:WHILE V 6=φ do /*There are still VMs to be allocated*/
7: /*Select the cluster C that has maximum resource availability*/
8: C:= Extract Max(CL)
9: /*Consider each host in cluster C that does not violate the count constraint*/
10: for each h∈C ∧ h′[d+1]<counth do /*h′[d+1] is the usage counter*/
11: V ′:=V /*Initialize the set V ′ of VMs which can be allocated on host h*/
12: /*Remove each VM that violates forbid/restrict constraints wrt host h*/
13: for each v∈V do
14: if
15: (v, h)∈Forbid ∨ /*If VM v is forbidden from host h or*/
16: {(v,H)∈Restr∧h6∈H} /*If h is not in the restricted set of hosts*/
17: then
18: V ′:=V ′\{v}
19: end for
20: /*Initialize the set VMreq of VMs v∈V ′ with their respective*/
21: /*dot-product values computed wrt host h*/
22: VMreq:=Build Priority Queue(h,V ′)
23: while VMreq 6=φ do /*There are still VMs in VMreq*/
24: /*Select the VM with largest resource needs*/
25: v:=Extract Max(VMreq)
26: /*If the capacity and count constraints are satisfied, and*/
27: /*If not in conflict with distribute constraint*/
28: if

29:
−→v ≤
−→
h′ ∧ /*If VM v can be allocated in residual capacity of h and*/

30: @(v, vj)∈Distr|p(vj)=h /*If distribute constraint is satisfied*/
31: then
32: /*If v is not related to vj∈V by latency constraints*/
33: if @(v, vj , Tmax)∈MaxLatency then
34: /*Allocate v on h and update residual resource capacity value*/
35: p(v):=h

36:
−→
h′:=

−→
h′−−→v

37: V :=V \{v}
38: else
39: /*Initialize the set of VMs that must be allocated in the same all-*/
40: /*ocation cycle since they are linked by latency constraints to v*/
41: Reserve list:={(v, h)}
42: /*Find an allocation for ∀vj related to v by latency constraints*/
43: if Forward Allocate(v, h) then
44: /*There is an allocation ∀vj related to v by latency constraints*/
45: WHILE Reserve list 6=φ do
46: /*Allocate vj on host hj*/
47: p(vj):=hj

48:
−→
h′j :=

−→
h′j−
−→vj

49: Reserve list:=Reserve list\{(vj , hj)}
50: V :=V \{vj}
51: end while
52: end while
53: end for
54:end while

Figure 5.12: VM provisioning with Capacity, Forbid, Restrict, Count, Distribute and
Latency constraints

100 5. Supporting the notion of Dependability as a Service

1:FORWARD ALLOCATE(v, h)
2:/*Identify all vj directly/indirectly related to v by latency constraints*/
3:Vl:=Build Priority Queue(vj |(v, vj)∈MaxLatency∧vj 6∈Reserve list)
4:WHILE Vl 6=φ do /*There are VMs to be allocated*/
5: /*Select the VM with the most stringent latency constraint*/
6: vl:= Extract Min(Vl)
7: /*Create the set K of hosts that qualify for vl wrt the latency value */
8: /*forbid and restrict constraints*/
9: K:=Build Priority Queue(
10: hi|latency(h, hi)≤Tmax(v, vl) ∧ /*Hosts that satisfy latency constraint*/
11: (v, hi) 6∈Forbid ∧ /*Hosts that do not violate forbid constraint*/
12: hi∈H|(v,H)∈Restr) /*Hosts that satisfy the restrict constraint*/
13: WHILE K6=φ do /*There are hosts to be considered*/
14: /*Select a host k*/
15: k:= Extract(K)
16: /*Verify the capacity, count and distribute constraints*/
17: if

18:
−→v ≤
−→
k′ ∧ /*If the capacity and count constraints are satisfied and*/

19: @(v, vj)∈Distr|p(vj)=k /*If not in conflict with distribute constraint*/
20: then
21: /*Add (vl, k) to the set of VMs related by the latency constraint*/
22: /*to v which can be allocated*/
23: Reserve list:=Reserve list ∪{(vl, k)}
24: /*Look for an allocation for VMs related by latency constraint to vl*/
25: if Forward Allocate(vl, k) then
26: K:=φ /*Allocation found - no other hosts need to be considered*/
27: else
28: /*Allocation not found - discard the tentative allocation for vl*/
29: Reserve list:=Reserve list\{(vl, k)}
30: /*Else the host k does not satisfy the capacity, count and distribute*/
31: /*constraints and thus, another host in K should be considered for vl*/
32: /*Verify if an allocation has been found for vl*/
33: if @(vl, k)∈Reserve list then
34: /*No allocation found ∀vl directly/indirectly related to v by*/
35: /*latency constraints*/
36: return 0
37: end while
38:end while
39:/*All vi directly/indirectly related to v with latency constraints can be*/
40:/*allocated satisfying all constraints*/
41:return 1

Figure 5.13: The Forward Allocate function of the VM provisioning algorithm

5.4. Delivering Dependability Support 101

The capacity and count constraints are confined to the resource usage of individual
physical hosts. To ensure these constraints, the d dimensional vector representation of
hosts and VM instances is extended. In particular, as a control to the count constraint,
a new add dimension d+1 on each physical host is added and initialized its value to the
number of VM instances that can be allocated on that host based on the value specified
by the IaaS service provider i.e., h[d + 1]:=counth. Similarly, the [d+ 1]th dimension of
each VM is initialized to 1, and before allocating VM v∈V on host h, the count control
is enforced along with the capacity constraint (line 29, 36, 48). To enforce the capacity

constraint, the residual resource capacity of each physical host
−→
h′ that is initialized using

the threshold values specified by the service provider is maintained. Before allocating a
VM instance v∈V on host h, the algorithm verifies if the resource requirements of the VM

instance −→v is less than the residual capacity of that host
−→
h′ , that is, if −→v ≤−→h′ (covering

all d+1 dimensions). If VM v is allocated on host h, the residual capacity of the host is

updated as
−→
h′ :=
−→
h′−−→v′ (line 36, 48).

To enforce the distribute constraint, the provisioning algorithm introduces a simple
control that verifies if host h already contains a VM instance vj for which the user has
specified a condition (v, vj)∈Distr before allocating a VM v on that host (line 30). If
p(vj)=h is found true, the algorithm skips that VM to the next host, hence satisfying the
distribute constraint.

Lastly, to enforce the latency constraints, we introduce the notion of forward allocate
and reserve list. When a VM v that satisfies all other constraints with respect to a host
h is found, and if the VM v is related to other VMs vj by the latency constraints, then v
cannot be allocated until an allocation for all vj is found. To this aim, the provisioning
algorithm tentatively allocates the VM by saving the pair (v, h) in the Reserve list (line
41) and calls the function Forward Allocate to find an allocation for other VMs (line 43).
The Forward Allocate function first determines the set of all VMs that are related to v by
the latency constraints and saves them in the priority queue Vl (line 3 in Forward Allocate
function). Each VM vl∈Vl is then extracted in the increasing order of Tmax (line 6), and
the set of hosts K that can be reached from h within the specified network threshold
time, not conflicting the restrict and forbid constraints, is selected (lines 9-12). Each host
k∈K is considered and verified for capacity, count and distribute constraints (using similar
controls as described above). When a host k is found for vl that satisfies all the constraints
and is not in turn associated with other VMs by latency constraints, the pair (vl, k) is
saved in the Reserve list (line 23). The Forward Allocate function is recursively called
until an allocation for all VMs is determined (line 25). If an allocation is not obtained,
the entires from the Reserve list are removed (line 29), and the function resumes from
another host. The Forward Allocate function returns 1 when an allocation for all VMs is
found (line 41), otherwise it returns 0 (line 33-36) to the main function.

Example 5.4.2. Consider the Cloud infrastructure and IaaS service provider’s constraints
described in Example 5.3.2, and DM’s request for VM instances with constraints described

102 5. Supporting the notion of Dependability as a Service

Figure 5.14: An example illustrating allocation of VMs on hosts using DM’s provisioning
algorithm

in Example 5.3.3. As an example, assume that some VM instances are already allocated
on the hosts in cluster C1 and occupy resources as represented in Figure 5.14.

Table 5.4 illustrates the working of the VM provisioning algorithm. On being invoked
by the DM, a priority queue CL is first created by analyzing the resource availability in each
cluster based on the assumed state of the infrastructure (see Figure 5.14), cluster C:=C1

is extracted, and host h1 is selected. The residual resource capacity in terms of CPU,

memory and counth1 for host h1 is
−→
h′1=(0.3, 0.4, 2). The algorithm removes VM instances

that are in conflict with h1 based on restrict and forbid constraints, and therefore, VM
vp is not included in the VMreq priority queue. VMs vb1, vb2 are considered one after
another but since they do not satisfy the capacity constraint, the algorithm moves to the
next host h2. Residual resource capacity of host h2 is determined and each VM v∈V is
analyzed based on the restrict and forbid constraints. Since none of the VM instances
are in conflict with either constraints, they are included in the priority queue VMreq and
vector dot-product values are calculated. VM vb1 is selected to be allocated on host h2 and
the capacity and distribute constraints are verified. Both the constraints are satisfied, but
since vb1 is related to vp by latency constraint, the pair (vb1, h2) is added to the Reserve list
and Forward Allocate function is called. The Forward Allocate function recognizes vp to
be the VM instance for which an allocation must be found, and generates the set of hosts
K=(h2, h3, h4) that can be reached from h2 in less than 5 latency units. Note that h1 is
not included due to the restrict constraint. Each host in K is analyzed to allocate vp – host
h2 is in conflict with the distribute constraint since (vb1, h2) exists in the Reserve list (i.e.,
tentatively allocated), and host h3 forbids all the VMs to be allocated on it. Host h5 satisfies

5.4. Delivering Dependability Support 103

Table 5.4: An example of the working of the VM provisioning algorithm
h

−→
h′ Restrict Forbid Algorithm execution Reserve list Allocation

1 (0.3, 0.4, 2) vp – VMreq=(vb1, 0.22)(vb2, 0.18)
vb1: no capacity (line 29)
vb2: no capacity (line 29)

2 (0.6, 0.6, 2) – – VMreq=(vp, 0.13)(vb1, 0.18)(vb2, 0.16)
vb1: capacity ok (line 29)

distribute ok (line 30)
(vp, vb1, 5)∈MaxLatency found (line 33) (vb1, h2)
Forward Allocate(vb1, h2)
vl=vp
K=h2, h3, h5

h2: distribute constraint in conflict (line 19)
h3: forbid constraint in conflict (line 11)
h5: capacity ok (line 18)

distribute ok (line 19)
(vp, vb2, 4)∈MaxLatency (line 25, 3) (vb1, h2), (vp, h5)
Forward Allocate(vp, h5)
vl=vb2
K=h1, h2, h4

h1: no capacity (line 18)
h2: no capacity (line 18)

distribute constraint in conflict (line 19)
h4: capacity ok (line 18)

distribute ok (line 19)
latency ok (line 25) (vb1, h2), (vp, h5), (vb2, h4) p(vb1):=h2

p(vp):=h5

p(vb2):=h4

the capacity and distribute constraints but VM vp is related to latency constraint with vb2
(vb1 is not considered since it already exists in the Reserve list). Similarly, (vp, h5) is added
to the Reserve list and Forward Allocate identifies (vb2, h4) to be suitable for allocation.
Since all the VMs are now tentatively allocated, satisfying all the constraints (including
latency), VM instances are finally allocated (VM instance vp is allocated on host h5, vb1
on host h2 and vb2 on host h4).

The VM provisioning algorithm allows the DM to realize the chosen dependability
policy (e.g., dep sol s3 with property p3 in our examples) and deliver its service to the
users’ application. We note that the provisioning algorithm actually deploys users’ VM
instances in the Cloud while satisfying all the constraints specified by the DM. Therefore,
successful execution of this algorithm ends the design phase of the two-stage approach
adopted by the service provider. At this point, the runtime phase begins and monitoring of
relevant attribute values is performed. For example, a set of rules such as r1:n.replicas≥2,
r2:recovery time≤8ms can be defined and corresponding attribute values be verified. The
current allocation of the users’ application (e.g., p(vb1):=h2, p(vp):=h5, p(vb2):=h4) must
be adapted whenever the policy rules are violated due to infrastructure changes, affecting
the availability or performance of the application. The adaptive resource management
algorithm is discussed in the next section.

104 5. Supporting the notion of Dependability as a Service

5.4.3 Adaptive Resource Management

Cloud environment is highly dynamic in terms of task activation, bandwidth availability,
component failures and recovery. As a consequence, static deployment strategies that
perform only initial allocation (such as the p:V→H function) may not provide satisfactory
results at runtime, and an adaptive approach to resource management is necessary.

One method to respond to system changes is to recompute the allocation from scratch
using the p:V→H function. However, this method is rather naive and may not scale well
during runtime. To this aim, we describe a heuristics-based approach that minimizes
the performance and availability degradation of users’ applications due to various system
changes. This heuristic is realized as the online controller and introduced in the envisioned
Cloud environment. The online controller uses the system’s monitoring information (e.g.,
application workload, server’s failure behavior, processor and bandwidth usage), and re-
deploys the applications as a response to the events that may violate the application’s
availability or performance goals (i.e., whenever f(s,R)→false). In particular, it gener-
ates a new allocation for the users’ applications by deploying new application task replicas
in case of host failures and by migrating individual tasks on (other working hosts) orthog-
onally across different deployment levels in the system. If the output generated by the
online controller is unfeasible for the user’s application, the DM must restart the service
delivery process by executing the matching and comparison processes, specifying allocation
constraints, and running the VM provisioning algorithm.

The online controller provides dependability support during runtime, and corresponds
to the Fault Masking Manager of the DM. The activities required to change the current
allocation status and re-deploy users’ applications are realized using the virtualization
technology constructs. By treating the task replicas as individual tasks, the online con-
troller generates the new configuration in terms of the following actions:

• Launch(v, h): Due to system failures, the controller may identify that new replicas
of a given task must be created. To realize this function, it instantiates a VM v,
hosting the task replica t∈T , on the physical host h∈H using the Launch(t, h) action.

• Migrate(v, hi, hj): As a response to performance or availability degradation, the
online controller may have to change the current location of a subset of task replicas.
For example, to respond to network congestion in cluster C1, the online controller
may want to move task t1 (initially hosted in C1) to another cluster C2. This function
can be realized using the Migrate(t, hi, hj) action by specifying that VM instance
deployed on host hi∈H, containing a task replica t∈T , must be moved to host hj∈H.

• Delete(v, h): Due to performance overhead, the online controller may need to reduce
the replication level of a task. This action can be specified using the Delete(t, h)
construct that removes the VM instance, hosting task replica t∈T , from host h∈H.

5.4. Delivering Dependability Support 105

1:RECONFIGURE
2:INPUT p:V→H, Ti∈M , H, Restr, Forbid, Count, Distr, MaxLatency

3:OUTPUT Set containing actions Action

4:Action:=∅
5:/* If real availability is lower than the desired availability*/
6:if Availr< Availd then
7: /*Identify the application tasks with replica failures*/
8: for each Ti ∈ a with nR(Ti) < |Ti| do
9: /*Create task replicas in the original deployment level DL*/
10: /*without violating the performance goals*/
11: while (Availe≥ Availd ∨ nR(Ti) ≥ |Ti|) ∧ (Perfe≥ Perfd) do
12: /*Include the launch action in Action*/
13: ∀ti,j∈Ti, map(ti,j)∈DL,
14: Action := Action∪{Launch(ti,j ,map(ti,j))}
15: end while /*Expected availability or replication level is met*/
16: end for
17: /*If expected availability is still lower than the desired one*/
18: while Availe< Availd do
19: /*Move task replicas to the higher deployment levels DL*/
20: if ∀Ti∈a, ti,j∈Ti, DL, map(ti,j)∈DL s.t. Perfe≥ Perfd then
21: /*Change in configuration by migrating task is possible*/
22: Action = Action ∪{Migrate(ti,j , p(vi,j),map(ti,j))}
23: else if
24: /*Increase number of replicas to improve availability*/
25: /*Traverse from highest deployment level to lowest*/
26: ∀Ti ∈ a,DL, Perfe≥ Perfd,
27: Action = Action ∪ {Launch(ti,j , map(ti,j))}
28: end while
29:/* If real performance is lower than the desired performance*/
30:if Perfr< Perfd then
31: /*Identify the application tasks with affected response time*/
32: for each Ti ∈ a with L(Ti) > Lmax do
33: /*Delete task replicas in the original deployment level DL*/
34: /*without violating availability goals*/
35: while (Perfe≥ Perfd ∨ L(Ti) ≤ Lmax) ∧ (Availe≥ Availd) do
36: /*Include the delete action in Action*/
37: ∀ti,j∈Ti, map(ti,j)∈DL,
38: Action := Action ∪ {Delete(ti,j , map(ti,j))}
39: end while /*Expected performance or latency obtained*/
40: end for
41: /*If expected performance is still lower than the desired one*/
42: while Perfe< Perfd do
43: /*Move task replicas to the lower deployment level DL*/
44: if ∀Ti∈a, ti,j∈Ti, DL, map(ti,j) ∈ DL s.t. Availe≥ Availd then
45: /*Change in configuration by migrating task is possible*/
46: Action = Action ∪{Migrate(ti,j , p(vi,j),map(ti,j))}
47: else
48: /*Decrease the number of replicas to improve performance*/
49: /*Traverse from lowest deployment level to highest*/
50: ∀Ti ∈ a,DL, Availe≥ Availd,
51: Action = Action ∪ {Delete(ti,j , map(ti,j))}
52: end while
53:return Action /*and call p to schedule the actions*/

Figure 5.15: Pseudo-code algorithm for generating a new configuration plan

106 5. Supporting the notion of Dependability as a Service

The online controller uses a mapping function map:V→H that behaves similarly to p
but performs only a tentative search. That is, the mappings generated by map do not
reflect on the infrastructure and must be explicitly committed using p:V→H. For the sake
of clarity, we now introduce the following notations: nR(ti) denotes the number of replicas
of application task ti; Availr, Availd and Availe denote the real, desired and expected
availability of the user’s application. Availr is computed using the real attribute value
attr∈A at runtime, Availd is the availability value specified by the user in pc, and Availe

is the value that DM estimates for a given configuration using Markov models and fault
trees. Similarly, Perfr, Perfd and Perfe denote the application’s performance metrics.

Figure 5.15 depicts the pseudo-code of the algorithm that computes the set of actions
that, when committed, generates a new allocation for a given users’ application. It takes
the current allocation, system status, application tasks and the sets specifying allocation
constraints as input, and generates the sequence of actions that brings the system to a
new allocation state. This algorithm is invoked when a failure or performance degradation
event happens. The algorithm consists of two main conditions, one concerning availability
(dependability) violation due to system failures (lines 5–28) and other concerning perfor-
mance degradation (lines 29–52). If the real availability of an application is less than the
desired one, the online controller first identifies the task replica failures and tentatively
launches new replicas at the same deployment level using the map function. We note
that the launch action is performed only until the current replication level is same as
the original level and performance goals are not violated (lines 8–16). When addition of
replicas does not satisfy the requirements, the algorithm tries to move task replicas to a
higher deployment level using the Migrate action (note that the availability increases with
increasing deployment levels). This action allows the online controller to generate the new
allocation solution without increasing the resource consumption costs. If the performance
condition conflicts by moving tasks to higher deployment levels, additional replicas must
be created to improve the availability. To create new replicas, the online controller starts
from higher deployment levels and moves gradually to lower levels, creating the replicas at
the level where availability and performance goals are fulfilled. These actions are realized
using the migrate and launch actions (lines 18–28). When users’ availability requirements
are satisfied, the algorithm realizes the actions in Action using the p:V→H function. In
contrast, when real performance is less than desired performance, instead of launching
new replicas, VM instances are deleted, and instead of moving higher in the hierarchy,
migration takes place to lower deployment levels. These actions are based on the ob-
servation that decrease in the deployment or replication level, improves the application
performance. We note that the online controller is invoked only when an application expe-
riences failures or performance degradation, and therefore, it is suitable for long-running
tasks; short-running tasks are practically managed by the DM during initial deployment.

5.5. Simulation Results 107

5.5 Simulation Results

This section reports the simulation results of the experiments conducted to evaluate the
VM consolidation, VM provisioning, and adaptive resource management schemes.

5.5.1 Virtual Machine Consolidation

This section evaluates the vector dot-product approach used by the DM to perform VM
consolidation (see Section 5.4.1). First, the background related to consolidation schemes
is described, and then the results of our approach are compared to the state-of-art schemes.

Background. First Fit Decreasing (FFD) is one of the most widely used heuristic to
solve the one dimensional bin packing problem. In FFD, items are sorted by size in
decreasing order and then placed sequentially in the first bin that has sufficient capacity.
The algorithm in Figure 5.12 also uses a variant of the first first decreasing algorithm to
perform VM provisioning. In general, there is no standard way of generalizing FFD for the
multi-dimensional case. As a consequence, several VM consolidation heuristics that are
currently being used in research prototypes and real VM management tools adopt different
approaches. For example, Sandpiper [136], a research system that enables live migration
of VMs around overloaded hosts, uses a heuristic that takes the product of CPU, memory,
and network loads. We denote this approach as FFDProd and compute the heuristic value
as follows.

hv = Πx≤d,v∈V|p(v)=hv[x]h[x] (5.8)

Another approach is to define a vector such as:

w[d] =
∑

x≤d,v∈V|p(v)=h

a[x]v[x] (5.9)

where the vector a(1, . . . , d) is a scaling vector designed to i) normalize demands across
each dimension, and ii) weight the demands according to their importance or likelihood
of being a bottleneck for consolidation. This approach is denoted as FFDSum in the
experiments below.

An application placement controller by IBM performs application consolidation
handling resource demands for CPU and memory [120]. This work combines the
two dimensions into a scalar by taking the ratio of the CPU demand to the memory
demand. Although this heuristic does not exactly suit the following FFDAvgSum
heuristic, it shares the characteristic of ignoring complementary distributions of re-
source demands in various dimensions. The FFDAvgSum heuristic assigns the average
demand avgdem = 1/d

∑
∀x≤d v[x] across all the dimensions for a given VM instance.

Similarly, in FFDExpSum, the weights are considered exponential in avgdem, where
avgdem = exp(k.avgdem) for a suitable constant k (k=0.01 in the experiments below).

108 5. Supporting the notion of Dependability as a Service

C
la
ss
1

C
la
ss
2

C
la
ss
3

C
la
ss
4

C
la
ss
5

0

5

10

H
os
ts

u
se
d

FFDProd FFDSum FFDExp Dot product

Figure 5.16: Number of hosts used by each consolidation algorithm, for each input class,
with 100 VM instances of 2 dimensions

The DM uses the vector dot-product heuristic to perform VM consolidation, similarly to
[106, 117]; but differs in the way the scarcity (weight) of the host is taken into account.

Input parameters. Since realistic workloads vary widely across organizations in terms
of heterogeneity and resource requirements, this experiment is run on synthetic instances
generated randomly from different distributions. The goal of the experiment is to compare
the quality of solution from various approaches. The input data is generated in the
manner that allows testing across different correlations and dimensions. In particular,
five classes of VM sizes are defined, and drawn randomly and independently for each
dimension. The range of each class is set to [0.1, 0.4], [0.1, 1], [0.2, 0.8], [0.05, 0.2],
[0.25, 0.1], allowing different context for VM requests. Each algorithm is coded in C++
and executed on a machine having Intel i7-2860QM 2.50GHz processor, with 16GB of
memory, running Windows 7 operating system.

Results. Figure 5.16 shows the number of bins used by each algorithm, for each class of
input. This experiment considers the request for 100 virtual machines for each input class.
We can see that FFDSum and FFDExp provide similar results, while FFDProd provides
least performance guarantees, for all input classes. This underlines that the weighting
parameter (absent in FFDProd) is a significant factor for consolidation. In contrast to the
algorithms, the vector dot-product method best utilizes the resources in the infrastructure.
The performance is particularly high for input classes 1, 4 and 5.

Figure 5.17 compares the performance of FFDProd, FFDExp and Dot product methods
for 2, 3 and 10 dimensions respectively. This experiment considers allocation of 2500 VM
instances given input class 5. FFDSum is not considered since its performance is similar to

5.5. Simulation Results 109

2 4 6 8 10

140

150

160

Dimensions

H
o
st
s
u
se
d

FFDProd FFDExp Dot product

Figure 5.17: Number of hosts used by FFDProd, FFDExp and Dot product algorithms,
with varying number of dimensions

FFDExp. We can see that the number of hosts utilized by the dot product scheme is less
that the other two algorithms for all dimensions. The performance results are particularly
improve significantly as the number of dimensions increase.

5.5.2 Virtual Machine Provisioning

This section reports the results of the experiments performed to evaluate the scalability
of the virtual machine provisioning algorithm illustrated in Figure 5.12. An infrastructure
consisting of 200 hosts is considered and each host initialized with a random resource
availability value. The infrastructure is divided into 4 clusters, each having 50 hosts; the
division is performed in the order of the host’s identifier (e.g., C1={h1, . . . , h50}). During
each experiment, 15 hosts are randomly selected and included in the set Forbid. Similarly,
if network latency between the hosts within a cluster is x, then latency between various
clusters in varied from values between 1.1x to 1.5x.

Figure 5.18 illustrates the amount of time required by the algorithm to provision
resources in three configurations i) no constraints specified (A), ii) all other constraints
but the latency constraint specified (B), and iii) all constraints specified (C). The user’s
request for 5, 10, 15 and 20 virtual machine instances is provided as input to the algorithm.
For each request, the algorithm is run 10 times and the results reported here are the average
of 10 executions. Given a user request, pairs of tasks are randomly included in the Distr,
MaxLatency sets, and two clusters are randomly included in the Restr set corresponding
to each virtual machine. We can see that the execution time of the algorithm increases as
the size of the users’ application increases. Algorithms A and B have similar distributions,
and the overhead in execution time due to additional constraints (except latency) is about
4.5%. On the other hand, when the latency constraints is introduced, the algorithm (C)

110 5. Supporting the notion of Dependability as a Service

4 6 8 10 12 14 16 18 20
1

2

3

4

Number of virtual machine instances

T
im

e
(s
)

A B C algorithms

Figure 5.18: Time to compute allocation for different sizes of users’ applications

takes about 14% additional time to allocate 20 virtual machines (wrt algorithm A). The
distribution of algorithm C is different, from that of algorithms A and B, due to repetitive
execution of the Forward Allocate function.

5.5.3 Adaptive Resource Management

This section reports the simulation results of the experiments conducted to evaluate
the online controller. In particular, the validity of the controller in terms of i) the
time required to compute a new configuration using the algorithm in Figure 5.15,
ii) increase in overall availability of an application, and iii) improvement with respect to
the performance in varying system contexts.

Setup. The hardware failure rates are provided by many companies in the form of ta-
bles [121]. However, the task of attributing the cause of failures and estimating the mean
time to failure for software components (e.g., hypervisor) is difficult. To this aim, the in-
put parameter values are derived here from [74] (e.g., 2.654e+003 and 3.508e-001 as mean
time to failure and recovery respectively for virtualized hosts) and the ORMM Markov
analysis tool [61] is used to obtain the output measures. To make the results applicable for
systems with different MTBF and MTTR values, normalization of all times to MTBF is
performed, and the MTTR is varied over a range from 0.01 to 2.0. This indicates variation
in repair times from 10% to 200% of actual MTBF, hence providing different availability
values. Similarly, the parameters for performance are obtained using the layered queueing
network solver [47]. We note that Markov analysis tool and queueing network solver are
used offline, and output parameter values are used to configure the online controller sim-
ulator written in C++. The simulation is executed on a machine having Intel i7-2860QM
2.50GHz processor, with 16GB of memory, running Windows 7 operating system.

5.5. Simulation Results 111

40 60 80 100 120 140 160 180 200

0

1

2

Number of hosts

T
im

e
(s
)

5 10 20 tasks

Figure 5.19: Time to compute the new configuration, varying number of hosts and tasks

The Cloud infrastructure is configured by randomly initializing the hosts with different
amounts of residual resources. This forms the basis for the online controller to manage
VM instances of a given application on the current resource status of the Cloud. The
utilization of hosts are updated after launch, migrate and delete actions, providing
results on incremental resource management. Varying network latency values between
deployment levels, the MTBF and relative MTTR rates are also initialized similarly.
For example, network latency between VM instances vary depending on the deployment
configuration (if replicas share a host, rack, cluster, or a data center). The network
latency within a host is considered 0; if latency between two hosts in a rack is x, latency
is set to 1x, 1.5x and 2.5x for different racks, clusters, and data centers respectively. The
applications with different number of tasks (see below) are selected and replicated task
sets randomly chosen. The simulation results presented here are the mean values of ten
executions of each configuration.

Processing time evaluation. This experiment studies the amount of time it takes for
the online controller to compute the new configuration for applications with 5, 10 and
20 tasks, on an infrastructure containing 50 to 200 hosts. Figure 5.19 illustrates how the
processing time varies for different contexts. For smaller size instances of applications
and infrastructure, the solution can be computed in the order of a few milli-seconds.
When the application contains 20 tasks, and infrastructure has 200 hosts, the processing
time is about 2 seconds. In particular, we observe higher processing time when cluster
level failures affect multiple task replicas. Although computing new configuration has
acceptable scalability, note that the amount of time to actually reconfigure the system
may be larger due to several system parameters (e.g., the time to migrate a VM may be
in the order of minutes, particularly when the VM size is large, and the target host is
connected via Internet).

112 5. Supporting the notion of Dependability as a Service

ho
st

m
ul
ho
st
s

cl
us
te
r

m
ul
cl
us
te
rs

0

50

100
%

in
cr
ea
se

in
av
a
il
a
b
il
it
y

Online Controller Static

Figure 5.20: Percentage increase in availability due to reconfiguration

Availability and performance evaluation. For simplicity, the virtual machines are
allocated as per the p function, using the first-fit bin-packing strategy. This allocation
is considered static, and simulations are then compared against the static scheme. To
evaluate the increase in availability, failures following the MTBF values are introduced
at different deployment levels (hosts and clusters) in the infrastructure. Similarly, to
evaluate the performance, a deployment level (hosts and clusters) is randomly selected
and an increase in the network latency connecting those resources is assumed. For each
failure and change in network latency, the online controller is invoked to compute the new
configuration.

The percentage increase in the availability of an application with 10 tasks, comparing
static approach and the online controller approach, for different failure levels, is calculated.
A cluster failure implies assuming all the hosts in that cluster have failed. Figure 5.20
shows the difference between the availability levels. In case of single host failures (that
have least MTBF values), the online controller is estimated to improve an application’s
availability by 120 percent (when compared to static allocation). The increase in availabil-
ity is about 95 percent in case of multiple hosts and single cluster failures, whereas, in case
of multiple cluster failures (with higher MTBFs), application’s availability is estimated to
improve by 70 percent when compared to static deployment methods.

Similarly, the change in the response time of an application is calculated by increasing
the network latency at different levels in the infrastructure. Figure 5.21 illustrates that
online controller approach can significantly reduce the performance degradation among
applications when changes in the network latency affects multiple clusters within a data
center. On the contrary, the percentage improvement in performance due to disruptions

5.6. Chapter Summary 113

ra
ck

cl
us
te
r

m
ul
cl
us
te
r

da
ta
ce
nt
er
s

0

20

40

60

80

%
d
ec
re
a
se

in
p
er
fo
rm

a
n
ce

Online Controller Static

Figure 5.21: Percentage change in term of response time/performance degradation due to
reconfiguration

at data center level is marginal. Since, the online controller regenerates or migrates the
task replicas in the event of failures or performance degradation as opposed to the static
scheme, the results cannot be consistently compared. Nevertheless, the simulation results
clearly show that the adaptive resource management algorithm of the online controller can
provide high levels of graceful service degradation to the users.

5.6 Chapter Summary

In this chapter, we presented a set of techniques that allow the service provider to realize
DM, and consequently, offer dependability as a service to users’ applications. First, we
discussed an approach for selecting low level dependability mechanisms based on high
level users’ requirements, and then presented a set of constraints that allow specification
of dependability and performance conditions inherent to the specific configuration of the
chosen mechanism. The proposed solution can be extended to include other constraints
(e.g., related to vulnerability of hosts and applications, as shown in Chapter 6) in a
straight-forward manner. We presented a virtual machine provisioning scheme whose
objective is to improve the profits for the IaaS service provider while satisfying various
dependability constraints. Furthermore, we presented an approach to adapt the current
allocation of a given application to balance its dependability and performance requirements
at runtime. Finally, we provided some simulation results that indicate the scalability and
performance of our algorithms, highlighting the practical applicability of the proposed
approach.

114 5. Supporting the notion of Dependability as a Service

Using the techniques proposed in this chapter, dependability of users’ applications
deployed using IaaS services is improved manifold, particularly when compared to the
certification scheme presented in Chapter 3. Users are not only relieved from implementing
low level dependability mechanisms but also are capable of obtaining and changing specific
dependability properties of their applications based on business needs. This solution
denotes the second of the three levels of dependability offered in this thesis.

In the next chapter, we consider complex applications, and present a set of algorithms
that further improves dependability and robustness of users’ applications.

6
Secure Application Deployment and

Execution

In the previous chapter, we discussed techniques to realize the notion of dependability
as a service. The resource management algorithms improved dependability by means of
placement constraints and supported infrastructure providers in achieving their business
goals. In contrast, in this chapter, we consider complex applications, and present advanced
resource management schemes that deploys applications with improved optimality when
compared to algorithms in Chapter 5. Our algorithms improve dependability of a given
application by minimizing its exposure to existing vulnerabilities, while being subject
to same dependability policies and resource allocation constraints as in Chapter 5. In
particular, the following aspects are considered:

• An approach to model the application deployment problem as a task allocation prob-
lem with a security-oriented objective, subject to various dependability constraints,
and a solution based on the A∗ algorithm for searching the solution space.

• The design of an interruptible, elastic, task allocation algorithm whose optimality
improves as the execution time provided to it increases. This algorithm is beneficial
in the context of mission-critical applications where the processing time available for
resource management is often limited and varying.

• A cost-effective approach to harden the set of computational resources that have
been selected for executing a given application in order to provide applications with
further protection, availability and fault tolerance.

For a given user request, if we replace the algorithms in Chapter 5 with secure application
deployment algorithms of this chapter, the dependability, robustness, and security of the
algorithm improves, thus denoting the third level of dependability solution offered in this
thesis.

116 6. Secure Application Deployment and Execution

6.1 Introduction

Cloud infrastructures are typically prone to a number of failures and vulnerable to a
wide range of cyber-attacks. Such failures and vulnerabilities evidently have an impact
on the users’ applications ranging from simple response time degradation to complete
unavailability and loss of critical data. Consequently, a number of solutions have been
proposed in the literature to address users’ security concerns. Such solutions improve
security either by designing the system with network hardening tools such as intrusion
detection systems and firewalls, or by developing applications using security measures such
as data obfuscation and memory management. However, they fail to take into account
the complex interdependencies between the network infrastructure, application tasks, and
residual vulnerabilities in the system. This implies that, using existing solutions, it is not
possible to remediate all existing vulnerabilities and applications have to be executed on
the infrastructure containing multiple and interdependent vulnerabilities.

The approach presented in this chapter addresses users’ security concerns by identifying
an execution plan that minimizes the risk that residual vulnerabilities may impact their
applications. In particular, it discusses an application-centric framework that combines
resource management and network hardening techniques. First, the current vulnerability
distribution of the Cloud is considered and users’ applications are deployed in the manner
that minimizes application’s exposure to the residual vulnerabilities in the infrastructure.
Then, network hardening techniques are applied to protect the deployed applications from
possible cyber-attacks. We note that, for this approach to be effective, existing techniques
for identifying network vulnerabilities, generating attack models, and assessing the risk
that residual vulnerabilities may pose to each element of the computing infrastructure
must be integrated within the overall framework.

To deploy users’ applications in most secure manner possible, the task allocation prob-
lem is formulated with a security-oriented objective, and an algorithm based on A∗ search
scheme is provided to solve it. In addition, elastic resource management algorithms that
combine the A∗ search scheme with the Anytime processing approach are provided [53, 81].
These algorithms are elastic in the sense that they i) provide an initial sub-optimal result
rather quickly and continue the execution process to generate solutions with improved
optimality; that is, optimality of the algorithm improves as the processing time increases,
ii) converge to an optimal solution eventually, and iii) can be interruptible i.e., the best
solution computed so far is returned whenever the algorithm is interrupted. The users’
applications are deployed according to the solution returned by the allocation algorithm,
relevant resources are further hardened using the notion of attack graphs, and monitor-
ing of resources begin. When the monitoring system detects an anomaly, redeployment
algorithm that adapts the application’s current allocation is invoked so as to minimize
the impact of system changes. The redeployment algorithm also dynamically adjusts the
optimality level of the allocation solution based on the magnitude of system changes.

6.2. System Model 117

6.1.1 Chapter Outline

The remainder of this chapter is organized as follows. Section 6.2 describes the system
model, and formulates the secure application deployment problem as a task allocation
problem. Section 6.3 discusses an approach to solve the task allocation problem using the
A∗ algorithm. Section 6.4 presents a scheme that transforms A∗ to an elastic task allocation
algorithm and discusses the design of elastic redeployment algorithm. Section 6.5 presents
a network hardening scheme that further protects the resources used the application.
Section 6.6 outlines some concluding remarks.

6.2 System Model

Consider the scenario in which a user wishes to execute her mission-critical applications
(missions) using the Cloud-based IaaS model. To compute the secure mission execution
plan, she interacts with the resource manager that analyzes the vulnerability distribution
of the infrastructure and deploys her missions such that their exposure to vulnerabilities
is minimum. This section presents the infrastructure and mission model (slightly modified
with respect to Chapter 5), and formalizes the secure-mission deployment problem.

Cloud infrastructure. Despite careful security engineering, a number of vulnerabilities
remain in the Cloud infrastructure, and allow malicious adversaries to launch different
types of cyber-attacks. For example, an attacker may exploit vulnerabilities in services
such as ftp, rsh, and sshd to gain desired access privileges on a given host. Such exploits
can in turn be used to compromise users’ missions deployed in the system. Vulnerabilities
and attack paths in the network can be analyzed using vulnerability scanners, and
approaches based on attack graphs, dependency graphs, and attack surfaces. Analysis
tools can also be extended with probabilistic schemes and ranking methods to quantify
the vulnerability level of individual hosts. For simplicity, in this chapter, assume that
a vulnerability value Vulh is pre-computed for each host h∈H in the infrastructure by
adopting one of the existing techniques. A physical host h∈H can then be characterized

by a vector
−→
h=(h[1], . . . , h[d + 1]), where the first d dimensions represent the residual

capacity of each resource on the host, and the last dimension denotes its vulnerability

score Vulh. Similarly to the system model in Chapter 5, elements of
−→
h are normalized to

values between 0 and 1. For example,
−→
h=(CPU, Mem, Vulh)=(1, 1, 1) implies that CPU

and memory are fully available and the host is extremely vulnerable.

Missions. The user’s mission-critical application or mission M can be seen as a
composition of a set tasks M = {τ1, . . . , τm}. This model-independent definition allows
representation of different software architectures for the missions (e.g., web services,
business processes, scientific applications) as well as different formalisms (e.g., Petri

118 6. Secure Application Deployment and Execution

Nets, work flows). For example, a mission can be a three-tier web application realizing
an e-Commerce service or a scientific tool with tasks performing graph theoretical
calculations on geographical maps. Intuitively, a mission is successful if i) all the tasks
start from a correct initial state, perform their operations, and generate the correct output
in a specified amount of time, and ii) the protocol that composes the information from
individual tasks can justifiably be trusted. Each task in the mission can be associated
with a tolerance value tol when it is implemented using some security mechanisms (e.g.,
memory management guards to protect from buffer overflow attacks). Intuitively, the
tol value provides an estimate of the maximum level of vulnerability that the task can
be exposed to without compromising its successful completion. The user (or FTM) may
replicate critical tasks of the mission to improve its fault tolerance and resilience, and

obtain a set of task replicas Rk={τ1
1 , . . . , τ

|rk|
m } for each task, and the overall mission

becomes a composition of a set of replicated task sets T = {ti} =
⋃
τk∈M Rk. Each

task replica can be treated as independent task for the purpose of mission deployment.
Similarly to hosts, a task t∈T can be characterized by a vector

−→
t =(t[1], . . . , t[d + 1]),

where the first d dimensions represent the task’s requirements for specific computing
resources and the d+ 1th dimension is the task’s risk tolerance value tol(t). The elements
of
−→
t are also normalized to values between 0 and 1.

Problem formulation. The first step to securely execute a given mission is to deploy
the mission tasks in the Cloud such that their exposure to vulnerabilities is minimized.
Since requests for mission deployment may arrive at any time, the deployment strategy
must consider the current resource allocation and vulnerability status of the Cloud, and
the allocation for the new mission must be computed based on the availability of currently
unused resources. After each mission deployment, the resource allocation and vulnerability
status of the system must be updated accordingly.

Mission deployment can be modeled as a task allocation problem that is defined by
the function p:V→H which maps each task t∈T to a physical host h∈H, assuming one-to-
one correspondence between tasks and virtual machine images satisfying

−→
t . The binary

variable pij denotes the truth value of p(vi) = hj ; that is,

(∀ti ∈ T, vi ∈ V, hj ∈ H) pij =

{
1 if p(vi) = hj
0 otherwise

The objective is to minimize mission’s exposure to system’s vulnerabilities. We note that
each time a task deployed in virtual machine vi is allocated on a host hj , new vulnerabilities
are potentially introduced on the host. As a consequence, the vulnerability score of hj may
increase by an amount ∆Vulvihj . Furthermore, though multiple hosts may have similar
configurations and, consequently, similar vulnerability scores, their vulnerability scores
may vary significantly at runtime, as tasks are dynamically allocated and deallocated. Let
Vul∗hj denote the vulnerability score of host hj after mission deployment. The objective is

6.3. Mission Deployment using A∗ 119

to find, among all possible allocations p ∈ P, the allocation that minimizes the largest hj
amongst all the hosts involved in the mission, that is

min
p∈P

max
hj∈H|∃ti∈T,vi∈V,p(vi)=hj

Vul∗hj (6.1)

Each allocation must satisfy the following constraints to ensure the dependability of the
mission (performance attributes are omitted here for simplicity):

• Consistent allocation: The following properties must hold.

(∀ti ∈ T, vi ∈ V)
∑
hj∈H

pij = 1 (6.2)

(∀hj ∈ H, 1 ≤ x ≤ d)
∑
vi∈V

pij · v[x] ≤ h[x] (6.3)

Equation 6.2 implies that each task must be allocated on a single physical host
(each host can accommodate multiple tasks). Equation 6.3 implies that the amount
of resources consumed on a single host cannot exceed its capacity in any dimension.

• Distribution: All replicas of a task must be allocated on different hosts to avoid
single points of failure.

(∀τk ∈M)(∀τ ′k, τ ′′k ∈ Rk) p(τ ′k) 6= p(τ ′′k) (6.4)

• Vulnerability tolerance: A task t can be mapped only to hosts h whose vulnerability
score Vulh=hj [d+1] is less than the vulnerability tolerance tol(t)=ti[d+1] of that
task.

(∀hj ∈ H, ti ∈ T, vi ∈ V) ti[d+ 1] ≥ pij · hj [d+ 1] (6.5)

In general, the task allocation problem can be solved using any search algorithm. However,
in the context of missions (mission-critical applications), optimality and scalability of the
search algorithm becomes of critical importance. An approach to design such algorithm
is discussed in the following sections.

6.3 Mission Deployment using A∗

A∗ is a widely used best-fit search approach that provides optimal results in acceptable
execution time. This section presents an approach to solve the mission deployment problem
using A∗. In particular, Section 6.3.1 briefly describes how to construct the data structure
and cost function. Section 6.3.2 presents the A∗ search scheme to solve the secure task
allocation problem, and Section 6.3.3 provides some simulation results.

120 6. Secure Application Deployment and Execution

Root

(t1, h1) (t1, h4)

(t2, h1) (t2, h2) (t2, h3) (t2, h4) (t2, h4)(t2, h3)(t2, h2)(t2, h1)

h1 h2 h3 h4 h1 h2 h3 h4 h1 h2 h3 h4 h1 h2 h3 h4 h4h3h2h1h4h3h2h1h4h3h2h1h4h3h2h1

Root

Task t1

Task t2

Task t3

Figure 6.1: State-space tree for a network with four hosts and mission with three tasks

6.3.1 Data Structure and Cost Function

To enable A∗ exploration, the overall state-space is represented as a tree, where each
state s(vi, hj)∈V×H represents a possible choice of allocating task ti, deployed in virtual
machine vi, on host hj . Figure 6.3 illustrates the complete state-space tree for allocating
a mission with three tasks on to an infrastructure consisting of four hosts. The root state
is the initial state where no tasks have been allocated yet and the goal state is the leaf
state in which all the tasks have been allocated. Given a state s, an operation of the
A∗ algorithm generates the set of feasible child states for s. This is done by choosing the
next task to be allocated and identifying all compatible hosts, as described in the next
section. A solution path is the path from the root state to the goal state. The objective
is to find the solution path that minimizes the vulnerability score of the mission.

States generation. The set T of tasks to be allocated is initially sorted in increasing
order of the risk tolerance value tol. The ith task in the sorted list corresponds to the ith

level of the state-space tree. The number of levels in the tree is equal to the number of
tasks to be allocated plus the root state (level 0).

Each state is generated dynamically when A∗ explores the overall state-space to find the
solution path. The getSuccessors function takes the current state s(v, h) and generates
the child states of state s. First, the task t∗ following t in the sorted list is selected, and
the set of hosts satisfying the dependability constraints w.r.t. t∗ are shortlisted (in case of
root state, the first task in the sorted list is considered). A virtual machine v∗ is chosen
for the selected task t∗ and, a state s(v∗, hj) corresponding to each shortlisted host hj is
generated and included as the child state (successor) of s.

The dependability constraints are ensured as follows. First, the vulnerability tolerance
constraint is enforced by selecting hosts hj ∈ H that satisfy t∗[d + 1] ≥ hj [d + 1]. Next,
the capacity constraint enforced by select the hosts that satisfy resource requirements

6.3. Mission Deployment using A∗ 121

for task v∗; that is, the hosts hj for which v∗[x] ≤ hj [x] for all x ∈ [1, d]. Finally, the
distribute constraint is enforced w.r.t. all the hosts by verifying that there does not exist
a state s(v′, hj) in the current solution path such that v∗ and v′ (corresponding to t∗ and
t′) belong to the same replicated task set Rk.

Cost function. The order in which the states must be expanded is determined using the
following cost function:

fvul(s) = gvul(s) + hvul(s) (6.6)

gvul(s) denotes the aggregate vulnerability score associated with the allocation path from
the root state to state s. It is assumed to be ∞ if state s is not expanded yet. hvul(s) is
a heuristic estimate of the minimum additional vulnerability associated with completing
the allocation of the mission’s tasks. Therefore, fvul(s) is the vulnerability score estimate
of the complete allocation from root state to the goal state through s.

The gvul(s) can be computed as follows.

gvul(s) = gvul(parent(s)) + Vulhj + ∆Vulvi,hj (6.7)

where gvul(parent(s)) denotes the aggregate vulnerability score associated with the allo-
cation path leading to the parent state of s and Vulhj+∆Vulvi,hj denotes the updated
vulnerability score of host hj after the allocation of task ti. If s is the root state, then
gvul(s) is initialized to 0.

In the simplest case, a uniform cost search can be assumed and the lower bound
estimate can be defined as hvul(s)=0. In this case, the algorithm may expand and visit a
higher number states before reaching an optimal goal state. On the other hand, a heuristic
that estimates hvul(s

∗) can be adopted to improve the performance of the search process.
One approach of estimating hvul(s

∗) when the traversal algorithm is at state s∗ of the
state-space tree is as follows.

1. In the current state s∗, use an operation of the A∗ algorithm to obtain the set S of
feasible child states.

2. Since the cost function is the aggregate vulnerability score associated with complete
task allocation, compute Vulhj+∆Vulvi,hj for each state in S (lines 6–9).

3. To ensure that hvul(s) is a lower bound, select the state with the smallest value of
Vulhj+∆Vulvi,hj and temporarily mark it as the current state (lines 10–13).

4. Repeat steps 1, 2 and 3 until a goal state is reached, and return hvul as the aggregate
vulnerability score along the path leading to this goal state (line 15).

Note that hvul, computed using an admissible heuristic, improves the performance of the
state-space search without influencing the final results of the search. We demonstrate
the effectiveness of the above heuristic through Example 6.3.1 as well as through the
experimental evaluation in Section 6.3.3.

122 6. Secure Application Deployment and Execution

1:A∗ STATE SPACE EXPLORATION SCHEME(v, h)
2:gvul(root)← 0
3:OPEN ← OPEN ∪ {(root, fvul(root))}
4:while OPEN 6= ∅
5: s← arg minx∈OPEN fvul(x)
6: OPEN ← OPEN \ {s}
7: if s = goal state then
8: CLOSE ← CLOSE ∪ {(s, fvul(s))}
9: constructSolution(s)
10: else
11: S ← getSuccessors(s)
12: for all s∗ ∈ S
13: new gvul ← gvul(s) + (Vulhj

+ ∆Vulvi,hj
)

14: if (s∗ ∈ OPEN ∪ CLOSE) then
15: if gvul(s

∗) ≤ new gvul then
16: continue
17: end if
18: end if
19: gvul(s

∗)← new gvul
20: fvul(s

∗)← gvul(s
∗) + hvul(s

∗)
21: OPEN ← OPEN ∪ {(s∗, fvul(s∗))}
22: end for
23: CLOSE ← CLOSE ∪ {(s, fvul(s))}
24: end if
25: end while

Figure 6.2: A∗ state space exploration algorithm

6.3.2 State-space Exploration Scheme

A∗ uses the OPEN and CLOSE lists to manage the state-space exploration process. In
particular, it uses OPEN to store the set of states that it has visited but not yet expanded
(i.e., the states it plans to expand) and CLOSE to store the set of states that are already
expanded. Each entry in OPEN and CLOSE consists of a state s and its fvul(s) value. OPEN is
initialized with (root, fvul(root)) and CLOSE is made empty. The algorithm proceeds by
expanding the state with minimum fvul(s) value from OPEN so as to focus the search
towards the optimal solution path. When a state s is expanded, it is removed from OPEN,
and the successors of state s are generated using the getSuccessors function. The fvul(s

∗)
value of each successor s∗ is computed and state (s∗, fvul(s

∗)) is added to OPEN; at this
point, state s is considered “expanded” and added to CLOSE. The algorithm continues to
expand states iteratively in this manner until the goal state is reached or OPEN is empty.
When the goal state is reached, the constructSolution(s) function is used to extract the
solution path by tracing the states in the reverse order from the goal to the root state.
We note that the state-space tree is dynamically generated based on the states that are
visited and expanded. The A∗ scheme is outlined in Algorithm 6.2 for easy comparison
with our elastic search scheme (Algorithm 6.8).

Example 6.3.1. Consider an infrastructure with four hosts H={h1, . . . , h4} and a mission

6.3. Mission Deployment using A∗ 123

Table 6.1: Example scenario for mission deployment
Infrastructure Mission

Host
Residual CPU capacity,

Task
CPU Requirement,

Vulnerability level Vulnerability tolerance

hj∈H
−→
h (CPU, Vul) ti∈T −→

t (CPU, tol)

h1 0.5, 0.2 t1 0.4, 0.2
h2 0.3, 0.2 t2 0.4, 0.2
h3 0.7, 0.1 t3 0.3, 0.4
h4 0.5, 0.3

Table 6.2: Vulnerability differential values
∆Vulti,hj h1 h2 h3 h4

t1 0.2 0.1 0.1 0.3
t2 0 0.1 0.2 0.1
t3 0.1 0.1 0.2 0

root

(t1, h3), 0.7

(t2, h1), 0.7

(t3, h2), 0.7 (t3, h3), 0.7 (t3, h4), 0.7

(t1, h1), 1

root

(t1, h3), 0.7

(t2, h1), 0.7

(t3, h2), 0.7 (t3, h3), 0.7 (t3, h4), 0.7

(t1, h1), 0.4

(t2, h3), 0.7

(t3, h4), 1.0 (t3, h2), 1.0

(a) using estimation heuristic (b) assuming hvul(s)=0

Figure 6.3: State-space tree expanded using A∗ traversal algorithm

with two tasks M={τ1, τ2}, where R1={τ1
1 , τ

2
1 } and R2={τ1

2 }. The tasks to be allocated
T={t1, t2, t3} are mapped to virtual machines v1, v2 and v3. Mission deployment is driven
by p:{v1, v2, v3}→{h1, h2, h3, h4}, and distribute constraint holds for virtual machines v1

and v2. For simplicity, consider only a single resource dimension for hosts and tasks (say
CPU). Table 6.1 outlines available CPU capacity and vulnerability level of each host, and
CPU requirements and vulnerability tolerance threshold of each task. Table 6.2 provides
details on the increase in vulnerability values for each allocation.

Figure 6.3(a) illustrates the state-space tree generated during mission deployment by
the algorithm discussed in the previous section. The algorithm starts from the root state by
generating the states for the first level in the tree. The operation considers task t1, discards
the hosts h2 and h4 since they violate the capacity and vulnerability threshold constraints
respectively, and generates states s(v1, h3) and s(v1, h1). The fvul(s) values for the two
states are calculated as 0.7 and 1.0 respectively and pushed in OPEN.

Since state s(v1, h3) has minimum fvul(s) value, it is extracted from OPEN and marked
as the current state. Its successors are then generated and fvul(s) values calculated; in this
case only state s(v2, h1) with fvul(s) = 0.7 is returned and pushed in OPEN. In particular,

124 6. Secure Application Deployment and Execution

50 100 150 200

0

100

200

Number of hosts

S
ea
rc
h
st
ep

s

5 10 tasks (with heuristic) 5 10 tasks (uniform cost)

Figure 6.4: Number of search steps with varying number of hosts

after calculating gvul(s) = 0.4, the procedure described in Section 6.3.1 is used to estimate
the vulnerability value hvul(s) along this path. In this case, feasible states corresponding
to virtual machine v3 (task t3) are considered, and the state with minimum gvul(s) value
(0.3) is returned since states corresponding to task t3 are leaf nodes.

At this point, state s(v2, h1) is the entry with the lowest fvul(s) value in OPEN. This
state is marked as the current state and its successors s(v3, h4), s(v3, h3) and s(v3, h2)
are generated. The fvul(s) value of all these states are calculated and pushed in OPEN.
The state s(v2, h1) is now pushed in CLOSE. The states corresponding to the task t3 are
similarly expanded and visited. The state-space search has now reached the goal state and
found the complete task allocation. The algorithm pushes s(v3, h4) in CLOSE, and returns
p(v1)=h3, p(v2)=h1 and p(v3)=h4 as the complete allocation solution.

In case the heuristic to estimate the vulnerability values at each state is not considered
i.e., assuming uniform cost hvul(s)=0, 9 states are expanded to perform task allocation as
shown in Figure 6.3(b), while the algorithm with the heuristic expands only 6 states.

6.3.3 Experimental Evaluation

This section reports the experiments conducted to validate the A∗ state-space search
algorithm. Here, the objective is to evaluate the performance of in terms of processing
time, number of steps required to identify a complete solution, and approximation ratio
for different network configurations and mission scenarios. In order to consider different
network configurations, the vulnerability score and the available capacity of each host
hj ∈ H is randomly initialized. The vulnerability tolerance and the resource requirements
have been similarly initialized for each virtual machine vi ∈ V . All the results reported
here are averaged over multiple executions.

First, as expected, the number of search steps required for complete task allocation
using the heuristic discussed in the previous section is smaller than in the case of uniform
cost search, particularly for larger missions. Figure 6.4 shows how search complexity

6.3. Mission Deployment using A∗ 125

20 40 60 80 100

0

5

10

15

Number of hosts

T
im

e
(s
)

5 10 15 20 25 tasks

10 20 30 40 50

0

10

20

Number of tasks

T
im

e
(s
)

10 20 30 40 50 hosts

Figure 6.5: Processing time to compute allocation: (left) with varying number of hosts
for different sizes of missions and (right) with varying number of tasks for different sizes
of the infrastructure

101.4 101.5 101.6 101.7 101.8 101.9 102

100

101

Number of hosts

T
im

e
(s
)

5 10 15 20 25 tasks

100.6 100.8 101 101.2 101.4 101.6

100

101

Number of tasks

T
im

e
(s
)

10 20 30 40 50 tasks

Figure 6.6: Processing time in logarithmic scale: (left) with varying number of hosts for
different sizes of missions and (right) with varying number of tasks for different sizes of
the infrastructure

increases when the number of hosts increases, for |T | = 5 and |T | = 10. Note that the
number of search steps for uniform cost search is comparable to the heuristics-driven search
when the number of tasks is 5. However, search complexity increases exponentially as the
size of the mission increases.

The scalability of the algorithm is studied, in terms of processing time, for different
network and mission sizes. Figure 6.5 (left) shows how the processing time increases as
the number of hosts increases. It is clear that processing time remains in the order of a
few milliseconds for small missions (|T | = 5 or |T | = 10), irrespective of the number of
hosts. However, as the size of the mission increases, processing time increases steeply (up
to 15 seconds for mission with 25 tasks on a network with 100 hosts). Figure 6.5 (right)
shows how processing time increases as the number of tasks increases. Processing times
for missions with 10–30 tasks are roughly similar independently of the size of the network,

126 6. Secure Application Deployment and Execution

20 40 60 80 100

1

1.05

1.1

Number of hosts

A
p
p
ro
x
im

a
ti
o
n
ra
ti
o

5 10 15 tasks

20 40 60 80 100

1.2

1.4

1.6

Number of hosts

A
p
p
ro
x
im

a
ti
o
n
ra
ti
o

5 10 15 tasks

(a) Mission’s vulnerability exposure (b) Global optimal in the network

Figure 6.7: Optimality of allocation, i.e., the approximation ratio with varying number of
hosts for different sizes of missions

and increases for missions with 40–50 tasks (particularly, on networks with over 30 hosts).
Figure 6.6 shows the relationship between processing time, mission size and network size
on a logarithmic scale. These charts show that the processing time of the A∗ algorithm
with a heuristic increases linearly with the size of both missions and networks. Relatively
small missions can be allocated on large-scale networks within a few seconds.

Finally, the optimality of the solution is evaluated in two perspectives: i) the mission’s
exposure to network vulnerabilities and ii) the quality of deployment in the whole network.
Figure 6.7(a) shows how the approximation ratio (i.e., the ratio between the aggregated
vulnerability score of the mission deployed using the A∗ algorithm and that computed
using an exhaustive search) changes for different configurations of the network and different
mission sizes. It is clear that the approach discussed in this section deploys missions with
acceptable security, in a time efficient manner. The approximation ratio remains well
within 1.2 in all instances. Similarly, Figure 6.7(b) shows how the approximation ratio
varies with respect to security across the whole network. In this respect, the variance is
low for the missions of all sizes when the network consists of less than 50 hosts.

6.4 Mission Deployment using an Elastic Algorithm

Resource management algorithms in Cloud computing are studied in the literature for a
wide range of objectives. However, existing solutions are based on heuristics that provide
“all-or-nothing” results; that is, the algorithm must run for at least a given period of
time to provide a feasible solution. Unless intelligently designed, such algorithms may
take very long period of time to generate highly sub-optimal results. It is often observed
in many real-world scenarios, particularly involving mission-critical applications, that the
processing time available for resource management algorithms is very limited and often
varying, raising the need to build algorithms that take a different approach.

6.4. Mission Deployment using an Elastic Algorithm 127

This section presents a scheme that transforms A∗ algorithm to an elastic algorithm.
The transformation scheme is based on the notion of weighted heuristics and built on
the principles of Anytime algorithms [53]. This scheme can generally transform any best-
fit search algorithm to an elastic algorithm; however, here it is designed specifically for
secure mission deployment using A∗. Section 6.4.1 outlines the behavior of weighted
heuristics. Section 6.4.2 presents the transformation scheme, and Section 6.4.3 provides
some simulation results.

6.4.1 A∗ with Weighted Heuristics

The behavior of A∗ largely depends on the heuristic hvul(s). The first goal state expanded
during state-space exploration is guaranteed to be optimal if the heuristic hvul(s) is ad-
missible [96, 113]. That is, hvul(s) is always the lower bound of the true vulnerability
score of reaching the goal state from s. On the other hand, a heuristic is consistent if
hvul(s) < cvul(s, s

∗) + hvul(s
∗) for any successor s∗ of s if s6=goal state and hvul(s)=0

if s=goal state. Here, cvul(s, s
∗)=Vulhj+∆Vulvi,hj is the vulnerability score due to al-

location of task in virtual machine vi on host hj in state s∗ (i.e., the cost of edge from
s to s∗). We note that consistency implies admissibility, and non-admissibility implies
inconsistency. We also note that a consistent hvul(s) guarantees that gvul(s) for a state s
is optimal when chosen for expansion and a state s is never expanded more than once.

Starting from [102], many researchers have explored the effect of weighting g(s) and
h(s) in the A∗ state-space exploration process to find a bounded optimal solution with less
computational effort. In this approach, the cost function is defined as f ′(s) = g(s)+ε×h(s),
where ε is a user-defined parameter, and state-space exploration is performed using f ′(s).
We use the notation f ′(s) to distinguish between the weighted cost function from the
conventional one f(s).

The elastic algorithm in Section 6.4.2 assumes existence of an admissible heuristic
hvul(s), and uses it to create a weighted heuristic h′vul(s) = ε × hvul(s), where ε ≥ 1
is initialized by the user and dynamically changed by the algorithm at runtime. The
weighted heuristic accelerates the search process by making the states closer to the goal
more attractive, providing a depth-first search aspect, and implicitly adjusts the trade-off
between search effort and solution quality. On one hand, setting ε = 1 results in standard
A∗ and the solution is guaranteed to be optimal. On the other hand, inflating the heuristic
may violate the admissibility property and, as a consequence, it is possible for a state to
have a higher-than-optimal gvul(s) value when expanded (i.e., the gvul(s) value for some
states may decrease during the A∗ search).

A state is considered to be inconsistent if its gvul(s) value decreases during the iterative
search. An inconsistent state is moved from CLOSE to OPEN, and eventually re-expanded, so
that the correct (reduced) gvul(s) value is again associated with it. Inconsistency in a state
also introduces inconsistency among its successors. For example, if the vulnerability score
of the allocation performed at level 2 of the tree decreases (gvul(s2)), overall vulnerability

128 6. Secure Application Deployment and Execution

score at level 3 also decreases (since gvul(s3) = gvul(s2) + c(s2, s3)). Hence, the improved
gvul(s) value of a state must be propagated to its successors by re-expanding the state.
This series of state re-expansions must be carried out either until the successors no longer
depend on state s or the inconsistency is corrected for all the successors. This iterative
process results in the same state being expanded multiple times (as opposed to conventional
A∗ where a state is never expanded more than once). Finally, we note that the OPEN list
consists of all the inconsistent states, representing the states with which state expansion
must proceed in order to correct the propagation of inconsistency.

6.4.2 Elastic Task Allocation Algorithm

This section presents the scheme that transforms the weighted A∗ into an elastic algorithm.
The elastic mission deployment algorithm should possess the following desired properties.

• The optimality of the solution generated by the algorithm must improve as the
execution time made available to it increases.

• The algorithm must return a solution whenever it is interrupted, and optimality
bound of the returned solution must be measurable.

• Performance w.r.t. A∗ must improve so that convergence to the optimal solution
can be achieved quickly.

Figure 6.8 illustrates the elastic algorithm that satisfies the three aforementioned desired
properties. The existence of an admissible heuristic hvul(s) is assumed and the following
definition of the weighted cost function is provided:

f ′vul(s) = gvul(s) + ε× hvul(s) (6.8)

The algorithm repeatedly executes A∗, starting from (a large) ε = ε0 value greater than 1,
decreasing ε by a small fixed amount for each iteration, until ε = 1 (see main function).
In the first iteration, when ε = ε0 is set to a value greater than 1, the ImproveAllocation
function computes a solution path by expanding only a few states when compared to the
conventional A∗. This is possible since the first goal state can be reached by expanding
only the states whose vulnerability cost is ε0 times the optimal solution (discussed below).
This implies that the first solution, though sub-optimal, can be computed within a time
fractional to running A∗. The algorithm continues to the subsequent execution of A∗ by
decreasing the ε value by a small quantity in order to build a new solution with improved
optimality. In this case, the ImproveAllocation function reuses the previous search results
(expanded states and heuristic values) and expands some additional states to compute the
new solution path whose optimality is within the factor of new ε. In general, as the
value of ε decreases, additional states are expanded, and the optimality of the solutions
improve according to ε. This process continues either until the algorithm is interrupted

6.4. Mission Deployment using an Elastic Algorithm 129

1:ELASTIC TASK ALLOCATION(v, h)
2:ImproveAllocation()
3:while OPEN 6= ∅ and not interrupted do
4: s← arg minx∈OPEN f ′vul(x)
5: OPEN ← OPEN \ {s}
6: if incumbent=nil or f ′vul(s)<f

′
vul(incumbent)

7: CLOSE ← CLOSE ∪ {s}
8: S ← getSuccessors(s)
9: for all s∗∈S such that gvul(s) + cvul(s, s

∗) + hvul(s
∗) < f ′vul(incumbent)

10: if s∗ = goal state then
11: incumbent← s∗

12: gvul(s
∗)← gvul(s) + c(s, s∗)

13: f ′vul(incumbent)← gvul(s
∗)

14: return constructSolution(incumbent)
15: else
16: if s∗ ∈ OPEN ∪ CLOSE and gvul(s

∗) > gvul(s) + c(s, s∗) then
17: gvul(s

∗)← gvul(s) + c(s, s∗)
18: f ′vul(s

∗)← gvul(s
∗) + ε× hvul(s∗)

19: if s∗ 6∈ CLOSE then
20: OPEN← OPEN ∪ {s∗} with new f ′vul(s

∗)
21: else
22: INCONS←INCONS∪{s∗} with new f ′vul(s

∗)
23: CLOSE ← CLOSE \ {s∗}
24: end if
25: else
26: gvul(s

∗)← gvul(s) + c(s, s∗)
27: f ′vul(s

∗)← gvul(s
∗) + ε× hvul(s∗)

28: OPEN← OPEN ∪ {s∗}
29: end if
30: end if
31: end for
32: else
33: INCONS← INCONS ∪ {s}
34: end if
35: end while
36:

37: main()
38: gvul(root)← 0, ε← ε0
39: OPEN ← OPEN ∪ {(root, fvul(root))}
40: CLOSE← INCONS← ∅
41: ImproveAllocation() /*publish the current solution*/
42: while ε > 1 do
43: Decrease ε
44: Move states from INCONS to OPEN

45: Update fvul(s) values for all s ∈ OPEN

46: CLOSE← ∅
47: ImproveAllocation() /*publish the current solution*/
48: end while

Figure 6.8: Elastic task allocation algorithm

130 6. Secure Application Deployment and Execution

or it converges to an optimal solution. We note that the algorithm is guaranteed to
return an optimal solution when ε = 1 since it becomes consistent. We also note that the
ImproveAllocation function primarily behaves as an incremental A∗ and uses OPEN and
CLOSE lists to store the visited and expanded states respectively.

The sub-optimality bound of the solution computed during each iteration must be
measurable. This feature is critical for mission deployment since it allows the user to
assess the vulnerability risk of the mission for a given deployment and accordingly decide
the amount of time for which the algorithm must be executed. We remind that, if hvul(s)
is consistent, the optimality of the solution is within the factor ε of the optimal. That is,
the overall vulnerability score of the mission is no larger than ε times the vulnerability
score of the optimal solution. As discussed in Section 6.4.1, when ε > 1, some states
may become inconsistent and may be expanded multiple times in a given iteration. In
this context, it possible to bound the sub-optimality of a solution by the factor of ε by
restricting each state to re-expand no more than once in an iteration [81]. The elastic
algorithm achieves this by modifying A∗, and storing all the inconsistent states that have
been previously expanded (s ∈ CLOSE) into the INCONS list (lines 20-22). By doing so, the
algorithm avoids visiting previously expanded inconsistent states (since space exploration
is performed based on the states in OPEN) and the union of OPEN and INCONS lists now
gives the set of all inconsistent states. Before each iteration, all the states from INCONS are
again moved to OPEN, ensuring convergence to the optimal (line 43).

The above technique of blocking state-space expansion from any state stored in the
INCONS list also allows to expand more distinct states during each iteration. This step
significantly improves the overall performance of the elastic algorithm as the number of
close-to-optimal solutions for the mission deployment problem is typically very large. In
addition to limiting state re-expansions, the elastic algorithm also uses bounds to prune the
search space and improve the performance. This step is based on the following observation.
Using conventional A∗, the cost function fvul(s) with an admissible heuristic gives a lower
bound on the vulnerability score of an allocation solution. If x denote the goal state
corresponding to the best allocation found so far, fvul(x) represents an upper bound on
the vulnerability score of an optimal solution. Hence, any state with fvul(s) value (lower
bound) greater than or equal to the current fvul(x) (upper bound) need not be expanded
since it cannot lead to an improved solution [53]. To implement this step, the algorithm
do not insert the newly generated state whose fvul(s) value is greater than or equal to the
current upper bound in the OPEN list, and block its expansion, by adding it to INCONS (lines
8 and 32). Even after pruning, the best solution available is optimal when there are no
unexpanded states in OPEN (i.e., it is empty) with fvul(s) value less than fvul(x).

6.4.3 Experimental Evaluation

The simulation results of the experiments conducted to evaluate the elastic algorithm are
reported in this section. In particular, the analysis of the algorithm in terms of i) the

6.4. Mission Deployment using an Elastic Algorithm 131

11.522.53

0

20

40

60

ε value

N
u
m
b
er

o
f
st
a
te
s
ex
p
a
n
d
ed

Elastic mission deployment algorithm

Figure 6.9: Number of states expanded during each iteration

number of search steps required to find an allocation solution, and ii) the cost of using an
elastic algorithm in terms of execution time is provided.

Setup. The Cloud infrastructure is configured by randomly initializing hosts with
different amounts of residual resources and vulnerability scores. Similarly, missions
with different number of tasks are defined, replicated task sets randomly chosen, and
resource requirement and vulnerability tolerance values are initialized. The ε value is
initialized to ε0 = 3, and decreased in the steps of 0.05 until ε = 1.0. The heuristic value
hvul(s) is calculated using exhaustive search to ensure admissibility and consistency.
The simulation results presented here are the mean values of 10 executions of each
configuration. The program realizing the elastic algorithm shown in Figure 6.8 is written
in C++ and executed on a machine having Intel i7-2860QM 2.50GHz processor, with
16GB of memory, running Windows 7 operating system.

Number of search steps. Figure 6.9 shows the number states that the elastic algorithm
expands during each iteration to return an allocation solution. The algorithm computes the
first solution by expanding only 55 states (when ε = 3). In the next iteration, it expands
inconsistent states and iteratively builds the state space tree, to return a solution whose
optimality is at most 2.95 times the optimal solution, by expanding 29 states altogether.
This process continues until ε = 1, where the algorithm returns the optimal solution. The
total number of state expansions is 277.

The weighted A∗ is executed iteratively in order to compare the difference in the
number of state expansions. When ε = 3, A∗ returns a solution by expanding 103 states.
As we can see, the number of search steps increase as the ε value decreases (note that
A∗ is run from scratch during each iteration) and returns an optimal solution (ε = 1) by
expanding 248 states. This implies that the expense of transforming A∗ to our elastic

132 6. Secure Application Deployment and Execution

11.522.53

5

10

15

20

ε value

T
im

e
(s
ec
)

A∗ Elastic Allocation

Figure 6.10: Total execution time varying ε value

algorithm is 277/248 ≡ 1.11 (12% overhead).

Processing time evaluation. Figure 6.10 compares the total execution time between
iterative A∗ and the elastic algorithm. These results do not include the time for calcu-
lating the heuristic hvul(s) since it is determined using an exhaustive search. The elastic
algorithm computes the first solution (4.1 sec) much quicker than A∗ weighted with ε = 3
(7.45 sec). The total amount of time taken by the elastic algorithm to return the optimal
solution is nearly 20 seconds while A∗ (with ε = 1) takes about 17 seconds to return an
optimal solution running from scratch.

6.4.4 Adaptive Mission Deployment using an Elastic Algorithm

Cloud environment is highly dynamic with respect to host configuration, vulnerability
distribution, and resource availability. For example, the vulnerability score of a host may
improve at runtime if the user includes new firewall rules to prevent suspicious network
connections. Similarly, a host failure may diminish dependability, and discovery of new
attacks may increase the vulnerability score of network elements. This implies that the
vulnerability score c(s, s∗) of one or more mission tasks may change at runtime and al-
location performed using the algorithm illustrated in Figure 6.8 (or Figure 6.2) may not
remain ε sub-optimal. Consequently, an approach that adapts the current allocation based
on the new vulnerability scores (system configuration) is necessary to ensure the secure
execution plan for a mission.

This section first describes how to modify A∗ to adaptively compute a solution path,
and then discusses how to introduce anytime behavior on it.

Assume that the cost changes are identified by the monitoring system, and an algorithm
that computes a new solution path whenever the changes affect the security of the mission

6.4. Mission Deployment using an Elastic Algorithm 133

is needed. Similarly to [75, 80], the algorithm must be adaptive in the way that it provides
new allocation only for a subset of tasks (immediately affected by system changes) that,
when realized, ensures ε sub-optimality of the mission deployment. An approach to build
such algorithm is to recalculate those gvul(s) values that have changed (or not calculated
before), and similarly to algorithms in Figures 6.2 and 6.8, use the heuristic hvul(s) to
focus the search by expanding only those states that provide an optimal solution path. In
addition to gvul(s) and hvul(s), the algorithm should store a look ahead hvul(s) value that
estimates the vulnerability score one-step ahead. This implies that look ahead hvul(s) is
better informed than traditional heuristic. look ahead hvul(s) = 0 if s is the goal state,
otherwise, it is mins∗∈Succ(s)(cvul(s, s

∗) + hvul(s
∗)). A state s is consistent if hvul(s) =

look ahead hvul(s); otherwise, it is either over-consistent hvul(s) > look ahead hvul(s) or
under-consistent hvul(s) < look ahead hvul(s).

The cost function (originally fvul(s)) of each state is represented using the vector
kvul(s) = [k1

vul(s), k
2
vul(s)], where

k1
vul(s) = min(hvul(s), look ahead hvul(s)) + gvul(root, s)

k2
vul(s) = min(hvul(s), look ahead hvul(s))

and a ranking among the states is defined based on kvul(s) values. In particular, given two
states s, s′ with cost functions kvul(s) and kvul(s

′), kvul(s) � kvul(s′) if k1
vul(s) < k1

vul(s
′) or

{when k1
vul(s) = k1

vul(s
′), k2

vul(s) < k2
vul(s

′)}. The extended cost function is equivalent to
kvul(s) = [fvul(s), hvul(s)] in terms of conventional A∗. Intuitively, the component k1

vul(s)
ensures that only new over-consistent states that can potentially decrease the cost of the
goal state are expanded, and only new under-consistent states that can invalidate the cost
of current solution path are processed. The component k2

vul(s) restricts the search towards
the states that are potentially relevant in adapting the current solution path. We note that
the notion of under-consistent states was not considered by the algorithm in Figure 6.8.
In such cases, states must be inserted into OPEN with the minimum of the old and updated
cost, computed without weighted heuristic (ε = 1), to ensure the increase in vulnerability
score is correctly propagated to successors.

Similarly to the algorithm in Figure 6.8, the adaptive elastic algorithm performs a
series of searches with decreasing ε, and computes an ε sub-optimal solution during a
given iteration. When vulnerability score of an allocation changes, the algorithm updates
the cost function values gvul(s), hvul(s), look ahead hvul(s) and inserts relevant states in
OPEN. Inconsistent states that are already expanded are stored in INCONS, and at the start
of each iteration, states are moved from INCONS to OPEN, and CLOSE is made empty. The
state-space exploration is then performed in the reverse-order (starting from goal state
and moves towards the root) based on increasing state ranking, until no state in OPEN has
vulnerability cost less than that of the current goal state. A large number of states need to
be expanded to compute ε sub-optimal solution when the system changes are significant.
In such cases, the algorithm increases the ε value and computes a less optimal solution

134 6. Secure Application Deployment and Execution

Figure 6.11: Example of an attack graph including possible hardening actions, initial
conditions, intermediate conditions, and exploits

quickly by expanding fewer number of states. The VMs in which affected mission tasks
are deployed are migrated on to new physical hosts according to the new solution. This
ensures new deployment configuration of the mission.

6.5 Mission Protection

The first step to securely execute a given mission is to deploy it in the infrastructure by
minimizing its exposure to vulnerabilities. This can be achieved using the algorithms
discussed in Sections 6.3 and 6.4. The second step is to harden the hosts and network
links used by the mission in order to further improve the mission’s resilience against
possible cyber-attacks. This section formulates the hardening problem and the cost
model, and discusses an approach to solve the problem using attack graphs. The solution
discussed here is presented in [2].

Problem formulation. A network hardening strategy is a set of atomic actions that
can be taken to guard various resources in the network. For instance, an action may
consist in stopping the ftp service on a given host. Let us start by introducing the notion

6.5. Mission Protection 135

of attack graphs that represent prior knowledge about vulnerabilities, their dependencies,
and network connectivity. Given a set E of exploits, a set of security conditions C (e.g.,
existence of a vulnerability on a host or connectivity between two hosts), a require relation
Rr ⊆ C × E, and an imply relation Rr ⊆ E × C, an attack graph is a directed graph
G = (E ∪ C,Rr ∪ Ri), where E ∪ C is the vertex set and Rr ∪ Ri is the edge set [2].
The term initial conditions refers to the subset of conditions Ci = {c ∈ C|@e ∈ E s.t.
(e, c) ∈ Ri}, whereas other conditions, which are usually consequences of exploits, are
referred to as intermediate conditions.

Example 6.5.1. In Example 6.3.1, mission tasks are allocated on hosts h3, h1 and h4.
Assume that our objective is to prevent the attacker from gaining root privileges on host
h4 i.e., we want to avoid reaching condition root(h4) so as to protect task t3.

Figure 6.11 illustrates an example attack graph in which exploits are represented using
rectangles and conditions using ovals. The dashed ovals are the initial conditions and
other ovals represent intermediate conditions. The attack graph is simplified in several
ways. For example, a single condition ftp(hs, hd) is used to denote transport-layer ftp
connectivity between two hosts hs and hd, physical-layer connectivity, and existence of the
ftp daemon on host hd. The attack graph depicts a simple scenario, with hosts h3, h1

and h4, and four types of vulnerabilities: ftp rhosts, rsh, sshd bof , and local bof . An
example of an attack path is: the attacker can establish a trust relationship with host h4

(using condition trust(h4, h3)) from its host h3 via exploit ftp rhosts(h3, h4) on host h4.
It can then gain user privileges on host h4 (using condition user(h4)) with an rsh login,
and achieve the goal condition root(h4) using a local buffer overflow attack.

An allowable hardening action is any subset of initial conditions such that all the
conditions can be jointly disabled in a single step, and no other initial conditions needs to
be disabled. The rounded rectangles in the attack graph in Figure 6.11 are examples of
allowable hardening actions:

• stop ftp(h4) = {ftp(h3, h4)}
• block host(h3) = {ftp(h3, h1), sshd(h3, h1), ftp(h3, h4)}
• stop sshd(h1) = {sshd(h3, h1)}

Given an attack graph, a set A of allowable actions and a set of target conditions Ct =
{c1, . . . , cn}, a hardening strategy S is a set of hardening actions such that conditions in
Ct cannot be reached after all the actions are applied.

We note that removing specific initial conditions may require to take actions that
disable additional conditions (e.g., conditions that are not part of any attack path). Hence,
a hardening strategy must be obtained in terms of allowable actions, and a cost model that
takes into account the impact of hardening actions. A hardening cost function is any
function cost : S → R+ that satisfies the following conditions:

cost(∅) = 0 (6.9)

136 6. Secure Application Deployment and Execution

(∀S1, S2 ∈ S)(C(S1) ⊆ C(S2) =⇒ cost(S1) ≤ cost(S2)) (6.10)

(∀S1, S2 ∈ S)(cost(S1 ∪ S2) ≤ cost(S1) + cost(S2)) (6.11)

where S denotes the set of all possible strategies and C(S) denotes the set of all
conditions disabled under strategy S. We note that many different cost functions can
be defined. For example, a simple cost function can be a count on the number of initial
conditions that are removed under a hardening strategy. If we assume that the cost of
cost({stop ftp(h4)}) = 20, cost({block host(h3)}) = 10 and cost({stop sshd(h1)}) = 15,
then the optimal strategy with respect to root(h4) is block host(h3).

Mission protection solution. Most hardening techniques starts from the target condi-
tions and move backwards in the attack graph to make logical inferences. Such backward
search schemes typically face combinatorial explosion issues. Therefore, the definition of
a scalable scheme to build hardening strategies is necessary.

Starting from initial conditions, the hardening scheme in [2] traverses the attack graph
forward. A key advantage of traversing the attack graph forward is that in a single pass,
the algorithm can compute hardening strategies with respect to any condition. Given a
set Ct of target conditions, add a dummy exploit ei for each condition ci ∈ Ct. The exploit
ei then has ci as its only precondition. Then, add a dummy target condition ct, such that
all the dummy exploits ei having ct are their only postcondition. Since ct is reachable
from any dummy exploit ei, we need to prevent all such exploits. This can be achieved by
disabling the corresponding preconditions; that is, harden the infrastructure with respect
to all target conditions in Ct. We note that, given a target condition ct, the attack graph
is a tree rooted at ct, having initial conditions as its leaf nodes.

The hardening algorithm first performs a topological sort of the nodes in the attack
graph, and pushes them into a queue, with initial conditions at the front of the queue.
An element q is popped from the queue until the queue is empty. This gives rise to three
conditions on q:

• If q is an initial condition, it is associated with a set of strategies σ(q) such that each
strategy contains one of the allowable actions that disables q.

• If q is an exploit, it is associated with a set of strategies σ(q) that is the union of the
sets of strategies for each condition c required by q. In this context, an exploit can
be prevented by disabling any of the required conditions.

• If q is an intermediate condition, it is associated with a set of strategies σ(q) such
that each strategy is the union of a strategy for each of the exploits that imply q.

In order to disable an intermediate condition, all the exploits that imply it must be pre-
vented. This scheme, under reasonable assumptions, have the approximation ratio that is

6.6. Chapter Summary 137

bounded nd/2, where n is the maximum in-degree of nodes in the graph and d is the depth
of the graph.

Example 6.5.2. Consider again the attack graph of Figure 6.11, and assume that the cost
of actions stop ftp(h4), block host(h3), and stop sshd(h1) is 20, 10, and 15 respectively.
After executing the topological sort and examining initial conditions, using k=1, we obtain
the following intermediate results:

• σ(ftp(h1, h4)) = {{stop ftp(h4)}}

• σ(ftp(h3, h1)) = {{block host(h3)}}

• σ(sshd(h3, h1)) = {{block host(h3)}}

• σ(ftp(h3, h4)) = {{block host(h3)}}

When the algorithm examines the exploit rsh(h1, h4), we obtain σ(rsh(h1, h4))
= {{stop ftp(h4)}, {block host(h3)}} before pruning. After pruning, we obtain
σ(rsh(h1, h4)) = {{block host(h3)}} since it has lower cost. The algorithm finally re-
turns σ(rsh(h1, h4)) = {{block host(h3)}} as the hardening strategy, which is the optimal
solution, as discussed above.

6.6 Chapter Summary

We presented a simple yet powerful technique to deploy and execute users’ applications
in the Cloud infrastructure with high levels of dependability. In particular, we formulated
the secure mission deployment problem as a task allocation problem whose objective is to
minimize the application’s exposure to residual vulnerabilities, and presented an A∗ based
algorithm to solve it. We showed experimentally that our algorithm scales linearly with
the size of both missions and infrastructures, and provides solutions with with good ap-
proximation guarantees. We then presented a scheme that transforms A∗ to an elastic task
allocation algorithm based on the Anytime processing approach. We showed experimen-
tally that the benefit of having an elastic algorithm introduces low overhead with respect
to traditional A∗. Finally, we discussed our elastic redeployment algorithm that adapts
the current allocation of the mission in order to minimize the affect of system changes at
runtime.

For a given request, after translating high level user requirements to low level mech-
anisms, and specifying dependability constraints (Chapter 5), the resource management
algorithms of this chapter can be applied to deliver high levels of reliability, availability,
and security to users’ applications. In addition, elastic algorithms and resource protec-
tion solutions make our solution suitable for mission-critical applications. This solution
clearly denotes the third, and the highest, level of dependability offered in this thesis. We
note that the approach of formulating secure application deployment as a task allocation

138 6. Secure Application Deployment and Execution

problem and elastic nature of resource management algorithms has not been well studied
in the literature.

7
Conclusions

In this thesis, we addressed the problem of dependability in Cloud computing, in order
to reduce the risks of using SaaS, PaaS and IaaS services for building, deploying, and
executing applications. After a brief introduction and a discussion of related work, we
focused on three specific modules: i) dependability certification of services, ii) the notion of
providing dependability as a service, and iii) secure application deployment and execution.
Each module makes different assumptions on the system context, users’ requirements and
desired dependability features, and together improve dependability progressively at three
different levels. A given module can be applied individually or be complemented with
one another based on users’ specific dependability goals. For example, a user can simply
implement the functional aspects of her application and engage with the dependability
service provider to increase its reliability, security, and availability. She can then obtain a
dependability certificate for her application to build a trustworthy relationship with her
customers. In this chapter, we shortly summarize the original contributions of this thesis
and we outline some future work.

7.1 Summary of the Contributions

The contributions of this thesis is threefold.

Dependability assurance of services. We present a dependability certification
scheme that, starting from the STS-based model of the service, generates a certification
model in the form of a discrete-time Markov chain. The certification model is used to
validate whether the service supports a given dependability property with a given level
of assurance. The result of property validation and certification is a machine-readable
certificate that represents the reasons why the service supports a dependability property
and serves as a proof to the users that appropriate dependability mechanisms have
been used while building it. To complement the dynamic nature of service-based
infrastructures, the certificate validity is continuously verified using runtime monitoring,
making the certificate usable both at discovery and run time. Our certification scheme

140 7. Conclusions

allows users to select services with a set of certified dependability properties, and supports
dependability certification of composite services.

Dependability management. We advocate the new dimension wherein users’ appli-
cations can transparently obtain required dependability properties, from a third party,
as an additional service. Our main contributions in this aspect consists in designing
a framework that i) encapsulates all the components necessary to offer dependability
as a service to the users and ii) integrates easily within existing Cloud infrastructures.
We provide an approach to measure the effectiveness of each dependability module
in different configurations, and its use to define a search algorithm that identifies low
level mechanisms based on users’ high level requirements. Furthermore, we categorize
and formalize several constraints that allow enforcement of deployment conditions
inherent to the low level mechanisms selected according to the users’ requirements.
Such constraints are then used to solve the overall problem of resource allocation in the
Clouds. Finally, since Cloud computing environment is highly dynamic, we present an
approach to adapt the current allocation of the application when system changes affect its
desired fault tolerance and performance. This allows our solution to mask system changes,
thus ensuring delivery of a solution that maintains users’ requirements also during runtime.

Secure application execution. We present a solution wherein, first, the current vulner-
ability distribution of the Cloud is considered and users’ applications are deployed in the
most secure manner possible. Then, network hardening techniques are applied to protect
the deployed applications from possible cyber-attacks. Our main contribution in this re-
spect consists in modeling the secure application deployment problem as a task allocation
problem with an application-centric, security-oriented objective, subject to dependability
constraints, and solving it using A∗ based search algorithm. Furthermore, in contrast to
existing resource management algorithms, we present an approach to build interruptible,
elastic algorithms whose optimality improves as the processing time increases, converging
to an optimal solution is eventually. In particular, we present two elastic algorithms: first,
for a given user request, our algorithm computes an execution plan for the user’s applica-
tion so as to minimize the application’s exposure to existing vulnerabilities; second, our
elastic redeployment algorithm adapts the application’s current allocation to minimize the
impact of system changes.

7.2 Future Work

The research described in this thesis can be extended along several directions.

7.2. Future Work 141

7.2.1 Dependability Certification of Services

Error tolerant modeling. The monitoring data may be error-prone due to the dynamic
nature of the Cloud computing environment. In this context, the online validation of an
issued certificate may provide incorrect results. Therefore, as part of our future work, we
will consider the formulation of an approach allowing to manage errors in the monitoring
data and accordingly adapt our service and certification models. For example, we will
extend our STS based models with additional Bayesian networks. Furthermore, starting
from the STS based model of the service, we will develop techniques to automate the
process of obtaining the certification model so as to avoid any human errors.

Certification of Cloud computing services. At present, most service providers are
reluctant to take full responsibility of the dependability of their services once the services
are uploaded and offered through a cloud. Also, Cloud computing providers refrain from
accepting the liability for dependability flaws. This reluctance is due to the fact that the
provision and dependability of a Cloud service is sensitive to changes in the environment,
as well as to potential interference between the features and behavior of all the inter-
dependent services in all layers of the Cloud stack. Our future work will focus on developing
models that can integrate the failure behavior of services deployed in a Cloud environment.

7.2.2 Dependability Management

Composition of dependability solutions. Our adaptive resource management
algorithm changes the number of replicas and their allocation to mask the affects of
system failures; the simulation results show significant improvement over static solutions.
Similarly, our future work will focus on designing an automated, modular approach
to compose dependability solutions. We will implement dependability mechanisms as
independent modules (dep units) and, according to the user’s requirements, compose a
set of modules to form a complete solution. This will allow users to dynamically change
the dimension and intensity of the dependability support based on their business goals.
The approach of generating dynamic dependability support has not been studied in the
literature.

Dependability Manager deployment. Our simulation results so far considered eval-
uation of individual techniques such as virtual machine consolidation and provisioning.
As part of the future work, we must implement each component of the framework as in-
dividual web services and evaluate the effectiveness of the overall approach. This would
also require development of additional techniques to address fault detection/prediction
and system recovery. Another interesting work is to study the cost benefits of adopting
our approach both for the service provider and the users.

142 7. Conclusions

7.2.3 Secure Application Execution

Virtual machine images selection. During secure application deployment, we must
first map each task to an available VM image and then to a physical host. Existing Cloud
computing services usually require users to manually select VM images from a repository.
Typically, users can also upload and share their VM images with other customers. This
feature exacerbates the security problems in public Cloud services, and such problems
cannot be identified by the users in a straightforward manner during image selection. For
example, Balduzzi et al. [18] studied the vulnerability issues in Amazon EC2 service by
analyzing over 5,000 public images; using the Nessus vulnerability scanner, they identified
that 98% of Windows AMIs (Amazon Machine Images) and 58% of Linux AMIs had
software with critical vulnerabilities. This implies that an automated security-driven
search scheme is required to deploy applications’ tasks to appropriate VM images.

Dynamic application deployment. Instead of allocating resources to tasks for the
entire duration of application execution, we must consider the execution time of each task
and perform allocation only for necessary periods of time while minimizing its exposure
to the vulnerabilities. The application model must be extended to include the start
time and a deadline for each task so that the target execution timeline can be included,
targeting real-time applications.

Incremental vulnerability analysis. Each allocation introduces a set of new services
on a host and increases its vulnerability level. We need an approach to estimate the
increase in the vulnerability level so as to facilitate the “what-if” analysis. One possible
approach to vulnerability assessment is by means of attack graphs, and a naive method is
to discard the original attack graph and perform re-computation from scratch using the
new data. However, such re-computation is wasteful since typically the changes are small,
resulting in information that is not very different from the original one. Therefore, we
need to take an incremental approach that i) identifies the portions of the attack graph
that have changed due to an event, i) re-computes the vulnerability information only in
the changed portion, and i) combines the new and original information to provide updated
results.

Bibliography

[1] B. Addis, D. Ardagna, B. Panicucci, and L. Zhang, “Autonomic management of
cloud service centers with availability guarantees,” in Proc. of 3rd International
Conference on Cloud Computing, Miami, FL, USA, Jul 2010, pp. 220–227.

[2] M. Albanese, S. Jajodia, and S. Noel, “Time-efficient and cost-effective network
hardening using attack graphs,” in 42nd Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks, Boston, MA, USA, Jun 2012, pp. 1–12.

[3] M. Albanese, S. Jajodia, A. Pugliese, and V. Subrahmanian, “Scalable analysis of
attack scenarios,” in Proc. of 16th European Symposium on Research in Computer
Security, Leuven, Belgium.

[4] M. Albanese, S. Jajodia, R. Jhawar, and V. Piuri, “Reliable Mission Deployment
in Vulnerable Distributed Systems,” in Proc. of the 43rd Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks Workshop, Budapest,
Hungary, Jun 2013, pp. 1–8.

[5] M. Albanese, S. Jajodia, R. Jhawar, and V. Piuri, “Securing Mission-Centric Oper-
ations in the Cloud,” in Secure Cloud Computing, S. Jajodia, K. Kant, P. Samarati,
A. Singhal, V. Swarup, and C. Wang, Eds. Springer, 2014, pp. 239–259.

[6] A. Alves and et al., Web Services Business Process Execution Language Ver-
sion 2.0, OASIS, April 2007, http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.
0-OS.html.

[7] M. Anisetti, C. Ardagna, and E. Damiani, “Fine-grained modeling of web services
for test-based security certification,” in Proc. of 8th International Conference on
Services Computing, Washington, DC, USA, Jul 2011, pp. 456–463.

[8] M. Anisetti, C. Ardagna, and E. Damiani, “Security certification of composite ser-
vices: A test-based approach,” in Proc. of 20th IEEE International Conference on
Web Services, Santa Clara, CA, USA, Jun–Jul 2013, pp. 475–482.

[9] M. Anisetti, C. Ardagna, E. Damiani, and J. Maggesi, “Security certification-aware
service discovery and selection,” in Proc. of 5th International Conference on Service-
Oriented Computing and Applications, Taipei, Taiwan, Dec 2012, pp. 1–8.

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

144 7. Bibliography

[10] M. Anisetti, C. Ardagna, E. Damiani, and F. Saonara, “A test-based security certi-
fication scheme for web services,” ACM Transactions on the Web, vol. 7, no. 2, p. 5,
2013.

[11] Apache Sandesha2. http://axis.apache.org/axis2/java/sandesha/.

[12] Apache axis2/java. http://axis.apache.org/axis2/java/core/.

[13] C. Ardagna, M. Cremonini, E. Damiani, S. De Capitani di Vimercati, and P. Sama-
rati, “Supporting location-based conditions in access control policies,” in Proc. of the
ACM Symposium on Information, Computer and Communications Security, Taipei,
Taiwan, Mar 2006, pp. 212–222.

[14] C. A. Ardagna, R. Jhawar, and V. Piuri, “Dependability Certification of Services:
A Model-Based Approach,” Computing, pp. 1–28, Oct 2013.

[15] C. Ardagna, E. Damiani, R. Jhawar, and V. Piuri, “A Model-Based Approach to Re-
liability Certification of Services,” in Proc. of the 6th IEEE International Conference
on Digital Ecosystem Technologies - Complex Environment Engineering, Campione
d’Italia, Italy, Jun 2012, pp. 1–6.

[16] V. Atluri and H. Shin, “Efficient enforcement of security policies based on tracking
of mobile users,” in Proc. of the 20th Annual IFIP WG 11.3 Working Conference
on Data and Applications Security, Sophia Antipolis, France, Jul-Aug 2006, pp.
237–251.

[17] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and taxon-
omy of dependable and secure computing,” IEEE Transactions on Dependable and
Secure Computing, vol. 1, no. 1, pp. 11–33, 2004.

[18] M. Balduzzi, J. Zaddach, D. Balzarotti, E. Kirda, and S. Loureiro, “A security
analysis of amazon’s elastic compute cloud service,” in Proc. of the 27th Annual
ACM Symposium on Applied Computing, Trento, Italy, 2012, pp. 1427–1434.

[19] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource allocation heuris-
tics for efficient management of data centers for cloud computing,” Future Genera-
tion Computer Systems, vol. 28, no. 5, pp. 755–768, May 2012.

[20] L. Bentakouk, P. Poizat, and F. Zäıdi, “A formal framework for service orchestra-
tion testing based on symbolic transition systems,” in Proc. of the 21st IFIP WG
6.1 International Conference on Testing of Software and Communication Systems,
Eindhoven, The Netherlands, Nov 2009, pp. 16–32.

[21] L. Bentakouk, P. Poizat, and F. Zäıdi, “Checking the behavioral conformance of web
services with symbolic testing and an SMT solver,” in Proc. of 5th International
Conference on Tests and Proofs, Zurich, Switzerland, Jun 2011, pp. 33–50.

http://axis.apache.org/axis2/java/sandesha/
http://axis.apache.org/axis2/java/core/

7.2. Bibliography 145

[22] E. Bin, O. Biran, O. Boni, E. Hadad, E. Kolodner, Y. Moatti, and D. Lorenz,
“Guaranteeing high availability goals for virtual machine placement,” in Proc. of
31st International Conference on Distributed Computing Systems, Minneapolis, MN,
USA, Jun 2011, pp. 700–709.

[23] I. Buckley and et al., “Towards pattern-based reliability certification of services,”
in Proc. of 1st International Symposium on Secure Virtual Infrastructures, Crete,
Greece, Oct 2011, pp. 560–576.

[24] R. Buyya, S. K. Garg, and R. N. Calheiros, “Sla-oriented resource provisioning for
cloud computing: Challenges, architecture, and solutions,” in Proc. of the Interna-
tional Conference on Cloud and Service Computing, Hong Kong, China, Dec 2011,
pp. 1–10.

[25] C. Clark et al., “Live migration of virtual machines,” in Proc. of the 2nd Symposium
on Networked Systems Design and Implementation - Volume 2, Boston, MA, USA,
May 2005, pp. 273–286.

[26] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in Proc. of the 3rd
symposium on Operating Systems Design and Implementation, New Orleans, LA,
USA, Feb 1999, pp. 173–186.

[27] R. C. Cheung, “A user-oriented software reliability model,” IEEE Transactions on
Software Engineering, vol. 6, pp. 118–125, Mar 1980.

[28] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, and P. Samarati, Security in
Decentralized Data Management. K-Anonymity. Springer, 2007.

[29] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and A. Warfield, “Re-
mus: high availability via asynchronous virtual machine replication,” in Proc. of the
5th USENIX Symposium on Networked Systems Design and Implementation, San
Francisco, USA, Apr 2008, pp. 161–174.

[30] I. Cunha, J. Almeida, V. Almeida, and M. Santos, “Self-adaptive capacity manage-
ment for multi-tier virtualized environments,” in Proc. of 10th IFIP/IEEE Inter-
national Symposium on Integrated Network Management, Munich, Germany, May
2007, pp. 129–138.

[31] E. Damiani, C. Ardagna, and N. El Ioini, Eds., Open source systems security certi-
fication. New York, NY, USA: Springer, 2009.

[32] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati, “A fine-
grained access control system for XML documents,” ACM Transactions on Infor-
mation and System Security, vol. 5, no. 2, pp. 169–202, May 2002.

146 7. Bibliography

[33] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati, “Securing
SOAP e-services,” International Journal of Information Security, vol. 1, no. 2, pp.
100–115, Feb 2002.

[34] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and G. Livraga, “Enforcing
subscription-based authorization policies in cloud scenarios,” in Proc. of the 26th
Annual IFIP WG 11.3 Working Conference on Data and Applications Security and
Privacy, Paris, France, July 2012, pp. 314–329.

[35] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, G. Livraga, S. Paraboschi, and
P. Samarati, “Enforcing dynamic write privileges in data outsourcing,” Computers
& Security, vol. 39, no. A, pp. 47–63, 2013.

[36] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, G. Pelosi, and
P. Samarati, “Encryption-based policy enforcement for cloud storage,” in Proc. of
the 1st ICDCS Workshop on Security and Privacy in Cloud Computing, Genova,
Italy, Jun 2010, pp. 42–51.

[37] S. De Capitani di Vimercati, S. Foresti, G. Livraga, and P. Samarati, “Protect-
ing privacy in data release,” in Foundations of Security Analysis and Design VI,
A. Aldini and R. Gorrieri, Eds. Springer, 2011.

[38] S. De Capitani di Vimercati, S. Foresti, G. Livraga, and P. Samarati, “Data privacy:
Definitions and techniques,” International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, vol. 20, no. 6, pp. 793–817, Dec 2012.

[39] S. De Capitani di Vimercati, S. Foresti, and P. Samarati, “Managing and accessing
data in the cloud: Privacy risks and approaches,” in Proc. of the 7th International
Conference on Risks and Security of Internet and Systems, Cork, Ireland, Oct 2012,
pp. 1–9.

[40] S. De Capitani di Vimercati, P. Samarati, and S. Jajodia, “Policies, models, and
languages for access control,” in Proc. of the Workshop on Databases in Networked
Information Systems, Aizu-Wakamatsu, Japan, Mar 2005.

[41] J. Deng, S.-H. Huang, Y. Han, and J. Deng, “Fault-tolerant and reliable compu-
tation in cloud computing,” in Proc. of IEEE Global Communications Conference
Workshops, Miami, FL, USA, Dec 2010, pp. 1601–1605.

[42] Z. Ding, M. Jiang, and A. Kandel, “Port-based reliability computing for service
composition,” IEEE Transactions on Services Computing, vol. 5, no. 3, pp. 422–
436, 2012.

7.2. Bibliography 147

[43] F. Distante and V. Piuri, “Hill-climbing Heuristics for Optimal Hardware Dimension-
ing and Software Allocation in Fault-tolerant Distributed Systems,” IEEE Transac-
tions on Reliability, vol. 38, no. 1, pp. 28–39, Apr 1989.

[44] Amazon elastic compute cloud. http://aws.amazon.com/ec2/.

[45] Eucalyptus systems. http://www.eucalyptus.com/.

[46] E. Farr, R. Harper, L. Spainhower, and J. Xenidis, “A case for high availability in
a virtualized environment,” Proc. of 7th International Conference on Availability,
Reliability and Security, pp. 675–682, Mar 2008.

[47] G. Franks, T. Al-Omari, M. Woodside, O. Das, and S. Derisavi, “Enhanced mod-
eling and solution of layered queueing networks,” IEEE Transactions on Software
Engineering, vol. 35, no. 2, pp. 148–161, Mar 2009.

[48] L. Frantzen, J. Tretmans, and R. de Vries, “Towards model-based testing of web
services,” in Proc. of the International Workshop on Web Services - Modeling and
Testing, Palermo, Italy, Jun 2006, pp. 67–82.

[49] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,” ACM SIGOPS
Operating Systems Review, vol. 37, no. 5, pp. 29–43, Oct 2003.

[50] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of Consistent,
Available, Partition-tolerant web services,” SIGACT News, vol. 33, no. 2, pp. 51–
59, Jun 2002.

[51] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures in data centers:
measurement, analysis, and implications,” ACM Computer Communication Review,
vol. 41, no. 4, pp. 350–361, 2011.

[52] R. Guerraoui and M. Yabandeh, “Independent faults in the cloud,” in Proc. of 4th
International Workshop on Large Scale Distributed Systems and Middleware, Zurich,
Switzerland, Jul 2010, pp. 12–17.

[53] E. Hansen and R. Zhou, “Anytime heuristic search,” Journal of Artificial Intelligence
Research, vol. 28, no. 1, pp. 267–297, Mar 2007.

[54] F. Hermenier, J. Lawall, J. Menaud, and G. Muller, “Dynamic Consolidation of
Highly Available Web Applications,” INRIA, Tech. Rep. RR-7545, Feb 2011.

[55] D. Herrmann, Using the common criteria for IT security evaluation. Auerbach
Publications, 2002.

http://aws.amazon.com/ec2/
http://www.eucalyptus.com/

148 7. Bibliography

[56] U. Hoelzle and L. A. Barroso, The Datacenter as a Computer: An Introduction to
the Design of Warehouse-Scale Machines, 1st ed. Morgan and Claypool Publishers,
2009.

[57] S. Iyer, M. Nakayama, and A. Gerbessiotis, “A markovian dependability model with
cascading failures,” IEEE Transactions on Computers, vol. 58, pp. 1238–1249, Sep
2009.

[58] S. Jajodia, S. Noel, P. Kalapa, M. Albanese, and J. Williams, “Cauldron mission-
centric cyber situational awareness with defense in depth,” in Proc. of Military
Communications Conference, Baltimore, MD, USA, Nov 2011, pp. 1339–1344.

[59] G. Jakobson, “Mission cyber security situation assessment using impact dependency
graphs,” in Proc. of 14th International Conference on Information Fusion, Chicago,
IL, USA, Jul 2011, pp. 1–8.

[60] D. Jayasinghe, C. Pu, T. Eilam, M. Steinder, I. Whally, and E. Snible, “Improv-
ing performance and availability of services hosted on iaas clouds with structural
constraint-aware virtual machine placement,” in Proc. of IEEE International Con-
ference on Services Computing, Washington, DC, USA, Jul 2011, pp. 72–79.

[61] P. A. Jensen. (2011) Operations Research Models and Methods – Markov Analysis
Tools. Available at www.me.utexas.edu/jensen/ormm/excel/markov.html.

[62] R. Jhawar, P. Inglesant, N. Courtois, and M. Sasse, “Make mine a quadruple:
Strengthening the security of graphical one-time PIN authentication,” in Proc. of
5th International Conference on Network and System Security, Milan, Italy, Sep
2011, pp. 81–88.

[63] R. Jhawar and V. Piuri, “Fault Tolerance Management in IaaS Clouds,” in Proc. of
the 1st IEEE-AESS Conference in Europe about Space and Satellite Telecommuni-
cations, Rome, Italy, Oct 2012, pp. 1–6.

[64] R. Jhawar, V. Piuri, and M. Santambrogio, “A Comprehensive Conceptual System-
Level Approach to Fault Tolerance in Cloud Computing,” in Proc. of IEEE Inter-
national Systems Conference, Vancouver, BC, Canada, Mar 2012, pp. 1–5.

[65] R. Jhawar and V. Piuri, “Adaptive Resource Management for Balancing Availability
and Performance in Cloud Computing,” in Proc. of the 10th International Confer-
ence on Security and Cryptography, Reykjavik, Iceland, Jul 2013, pp. 254–264.

[66] R. Jhawar and V. Piuri, “Fault Tolerance and Resilience in Cloud Computing Envi-
ronments,” in Computer and Information Security Handbook, 2nd Edition. Morgan
Kaufmann, 2013, pp. 125–141.

7.2. Bibliography 149

[67] R. Jhawar and V. Piuri, “Dependability-oriented resource management schemes for
cloud computing data centers,” in Handbook on Data Centers, S. U. Khan and A. Y.
Zomaya, Eds. Springer, 2014, (to appear).

[68] R. Jhawar, V. Piuri, and P. Samarati, “Supporting Security Requirements for Re-
source Management in Cloud Computing,” in Proc. of the 15th IEEE International
Conference on Computational Science and Engineering, Paphos, Cyprus, Dec 2012,
pp. 170–177.

[69] R. Jhawar, V. Piuri, and M. Santambrogio, “Fault Tolerance Management in Cloud
Computing: A System-Level Perspective,” IEEE Systems Journal, vol. 7, no. 2, pp.
288–297, June 2013.

[70] G. Jung, K. Joshi, M. Hiltunen, R. Schlichting, and C. Pu, “Performance and
availability aware regeneration for cloud based multitier applications,” in Proc. of
2010 IEEE/IFIP International Conference on Dependable Systems and Networks,
Chicago, IL, USA, July 2010, pp. 497–506.

[71] M. Kafil and I. Ahmad, “Optimal Task Assignment in Heterogeneous Distributed
Computing Systems,” IEEE Concurrency, vol. 6, no. 3, pp. 42–51, Jul 1998.

[72] S. Katsikas, J. Lopez, and G. Pernul, “Security, trust and privacy in digital busi-
ness,” International Journal of Computer Systems, Science & Engineering, CRL
Publishing, Nov 2005.

[73] C. Keum, S. Kang, I.-Y. Ko, J. Baik, and Y.-I. Choi, “Generating test cases for web
services using extended finite state machine,” in Proc. of 18th IFIP International
Conference on Testing Communicating Systems, New York, NY, USA, May 2006,
pp. 103–117.

[74] S. Kim, F. Machida, and K. Trivedi, “Availability modeling and analysis of vir-
tualized system,” in Proc. of 15th IEEE Pacific Rim International Symposium on
Dependable Computing, Shanghai, China, Nov 2009, pp. 365–371.

[75] S. Koenig and M. Likhachev, “Improved fast replanning for robot navigation in
unknown terrain,” in Proc. of the International Conference on Robotics and Au-
tomation, Washington, DC, USA, May 2002, pp. 968–975.

[76] G. Koslovski, W.-L. Yeow, C. Westphal, T. T. Huu, J. Montagnat, and P. Vicat-
Blanc, “Reliability support in virtual infrastructures,” in Proc. of the 2nd IEEE
International Conference on Cloud Computing Technology and Science, Indianapolis,
USA, Nov 2010, pp. 49–58.

150 7. Bibliography

[77] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva: speculative
byzantine fault tolerance,” ACM SIGOPS Operating Systems Review, vol. 41, no. 6,
pp. 45–58, Oct 2007.

[78] K. Kourai and S. Chiba, “A fast rejuvenation technique for server consolidation
with virtual machines,” in 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, Edinburgh, UK, Jun 2007, pp. 245–255.

[79] D. Kourtesis, E. Ramollari, D. Dranidis, and I. Paraskakis, “Increased reliability
in SOA environments through registry-based conformance testing of web services,”
Production Planning & Control, vol. 21, no. 2, pp. 130–144, 2010.

[80] M. Likhachev, D. I. Ferguson, G. J. Gordon, A. Stentz, and S. Thrun, “Anytime
Dynamic A*: An Anytime, Replanning Algorithm,” in Proc. of International Con-
ference on Automated Planning and Scheduling/Artificial Intelligence Planning Sys-
tems, Monterey, USA, Jun 2005, pp. 262–271.

[81] M. Likhachev, G. Gordon, and S. Thrun, “ARA*: Anytime A* with Provable
Bounds on Sub-Optimality,” in Proc. of Conference on Neural Information Pro-
cessing Systems, Vancouver, Canada, Dec 2003.

[82] M. Armbrust et al., “Above the clouds: A berkeley view of cloud computing,” EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2009-28, Feb
2009.

[83] F. Machida, M. Kawato, and Y. Maeno, “Redundant virtual machine placement for
fault-tolerant consolidated server clusters,” in Proc. of 2010 IEEE Network Opera-
tions and Management Symposium, Osaka, Japan, Apr 2010, pp. 32–39.

[84] Y. Mao, C. Liu, J. E. van der Merwe, and M. Fernandez, “Cloud resource orches-
tration: A data-centric approach,” in Proc. of the 5th Biennial Conference on Inno-
vative Data Systems Research, Asilomar, CA, USA, Jan 2011, pp. 241–248.

[85] R. Mateescu and S. Rampacek, “Formal modeling and discrete-time analysis of
BPEL web services,” in Advances in Enterprise Engineering I, ser. Lecture Notes in
Business Information Processing. Springer, 2008, vol. 10, pp. 179–193.

[86] V. Mehta, C. Bartzis, H. Zhu, E. Clarke, and J. Wing, “Ranking attack graphs,” in
Proc. of the 9th international conference on Recent Advances in Intrusion Detection,
Hamburg, Germany, Sep 2006, pp. 127–144.

[87] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data center net-
works with traffic-aware virtual machine placement,” in Proc. of 29th IEEE Con-
ference on Computer Communications, San Diego, California, USA, Mar 2010, pp.
1–9.

7.2. Bibliography 151

[88] K. Mills, J. Filliben, and C. Dabrowski, “Comparing VM-Placement Algorithms for
On-Demand Clouds,” in Proc. of the 2011 IEEE 3rd International Conference on
Cloud Computing Technology and Science, Washington, DC, USA, Jul 2011, pp.
91–98.

[89] K. Mishra and K. Trivedi, “Model based approach for autonomic availability man-
agement,” in Service Availability, D. Penkler, M. Reitenspiess, and F. Tam, Eds.
Springer, 2006, vol. 4328, pp. 1–16.

[90] J. Muppala, M. Malhotra, and K. Trivedi, “Markov dependability models of complex
systems: Analysis techniques,” Reliability and Maintenance of Complex Systems,
NATO ASI Series F: Computer and Systems Sciences, vol. 154, pp. 442–486, 1996.

[91] S. Mustafiz, X. Sun, J. Kienzle, and H. Vangheluwe, “Model-driven assessment of
system dependability,” Software and System Modeling, vol. 7, no. 4, pp. 487–502,
2008.

[92] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott, “Proactive fault tol-
erance for hpc with xen virtualization,” in Proc. of the 21st annual international
conference on Supercomputing, Seattle, Washington, May–Jun 2007, pp. 23–32.

[93] P. Narasimhan, K. Kihlstrom, L. Moser, and P. Melliar-Smith, “Providing support
for survivable corba applications with the immune system,” in Proc. of the 19th IEEE
International Conference on Distributed Computing Systems, Austin, TX, USA, May
1999, pp. 507–516.

[94] Open nebula project. http://opennebula.org/.

[95] J. Ni, N. Li, and W. H. Winsborough, “Automated trust negotiation using crypto-
graphic credentials,” in Proc. of the 12th ACM Conference on Computer and Com-
munications Security, Alexandria, VA, USA, Nov 2005, pp. 46–57.

[96] N. J. Nilsson, Problem-Solving Methods in Artificial Intelligence. McGraw-Hill Pub.
Co., 1971.

[97] Nimbus project. http://www.nimbusproject.org/.

[98] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and
D. Zagorodnov, “The Eucalyptus Open-Source Cloud-Computing System,” in 9th
IEEE/ACM International Symposium on Cluster Computing and the Grid, Shang-
hai, China, May 2009, pp. 124–131.

[99] M. Papazoglou, “Web services and business transactions,” World Wide Web, vol. 6,
pp. 49–91, Mar 2003.

http://opennebula.org/
http://www.nimbusproject.org/

152 7. Bibliography

[100] J. Pathak, S. Basu, and V. Honavar, “Modeling web service composition using sym-
bolic transition systems,” in Proc. of AAAI Workshop on AI-Driven Technologies
for Service-Oriented Computing, Boston, MA, USA, Jul 2006, pp. 44–51.

[101] V. Piuri, “Design of fault-tolerant distributed control systems,” IEEE Transactions
on Instrumentation and Measurement, vol. 43, no. 2, pp. 257–264, Apr 1994.

[102] I. Pohl, “First results on the effect of error in heuristic search,” Machine Intelligence,
vol. 5, pp. 219–236, 1970.

[103] C. Pu, J. Noe, and A. Proudfoot, “Regeneration of replicated objects: a technique
and its eden implementation,” IEEE Transactions on Software Engineering, vol. 14,
no. 7, pp. 936–945, 1988.

[104] H. Qian, D. Medhi, and T. Trivedi, “A hierarchical model to evaluate quality of
experience of online services hosted by cloud computing,” in Proc. of IFIP/IEEE
International Symposium on Integrated Network Management, Dublin, Ireland, May
2011, pp. 105–112.

[105] E. Riccobene, P. Potena, and P. Scandurra, “Reliability prediction for service com-
ponent architectures with the SCA-ASM component model,” in Proc. of 38th EU-
ROMICRO Conference on Software Engineering and Advanced Applications, Cesme,
Izmir, Turkey, Sep 2012, pp. 125–132.

[106] L. U. Rina Panigrahy, Kunal Talwar and U. Wieder, “Heuristics for vector bin
packing,” 2011, Microsoft Research, (unpublished).

[107] S. Salva, P. Laurencot, and I. Rabhi, “An approach dedicated for web service security
testing,” in Proc. of 5th International Conference on Software Engineering Advances,
Nice, France, Aug 2010, pp. 494–500.

[108] S. Salva and I. Rabhi, “Automatic web service robustness testing from WSDL
descriptions,” in Proc. of 12th European Workshop on Dependable Computing,
Toulouse, France, May 2009, pp. 1–8.

[109] P. Samarati, “Protecting respondents’ identities in microdata release,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 13, no. 6, pp. 1010–1027, Nov
2001.

[110] P. Samarati and S. De Capitani di Vimercati, “Access control: Policies, models,
and mechanisms,” in Foundations of Security Analysis and Design, ser. LNCS 2171,
R. Focardi and R. Gorrieri, Eds. Springer-Verlag, 2001.

[111] P. Samarati and S. De Capitani di Vimercati, “Data Protection in Outsourcing Sce-
narios: Issues and Directions,” in Proc. of the 5th ACM Symposium on Information,
Computer and Communications Security, Beijing, China, Apr 2010, pp. 1–14.

7.2. Bibliography 153

[112] G. T. Santos, L. C. Lung, and C. Montez, “FTWeb: A Fault Tolerant Infrastruc-
ture for Web Services,” in Proc. of the 9th IEEE International EDOC Enterprise
Computing Conference, Enschede, The Netherlands, Sep 2005, pp. 95–105.

[113] C.-C. Shen and W.-H. Tsai, “A Graph Matching Approach to Optimal Task As-
signment in Distributed Computing Systems Using a Minimax Criterion,” IEEE
Transactions on Computers, vol. C-34, no. 3, pp. 197–203.

[114] L. Shi, B. Butler, D. Botvich, and B. Jennings, “Provisioning of requests for virtual
machine sets with placement constraints in iaas clouds,” in Proc. of IFIP/IEEE
International Symposium on Integrated Network Management, Ghent, Belgium, May
2013, pp. 499–505.

[115] K. Shin, C. M. Krishna, and Y. hang Lee, “Optimal dynamic control of resources in
a distributed system,” IEEE Transactions on Software Engineering, vol. 15, no. 10,
pp. 1188–1198, Oct 1989.

[116] L. M. Silva, J. Alonso, and J. Torres, “Using virtualization to improve software
rejuvenation,” IEEE Transactions on Computers, vol. 58, no. 11, pp. 1525–1538,
Nov 2009.

[117] A. Singh, M. Korupolu, and D. Mohapatra, “Server-storage virtualization: Integra-
tion and load balancing in data centers,” in Proc. of International Conference for
High Performance Computing, Networking, Storage and Analysis, Austin, TX, USA,
Nov 2008, pp. 1–12.

[118] W. E. Smith, K. S. Trivedi, L. A. Tomek, and J. Ackaret, “Availability analysis of
blade server systems,” IBM Systems Journal, vol. 47, no. 4, pp. 621–640, 2008.

[119] Y. Tamura, K. Sato, S. Kihara, and S. Moriai, “Kemari: Virtual Machine Synchro-
nization for Fault Tolerance,” in Proc. of USENIX Annual Technical Conference,
Boston, MA, USA, 2008.

[120] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici, “A scalable application place-
ment controller for enterprise data centers,” in Proc. of the 16th international con-
ference on World Wide Web, Banff, Alberta, Canada, May 2007, pp. 331–340.

[121] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici, “A scalable application place-
ment controller for enterprise data centers,” in Proc. of 16th International conference
on World Wide Web, Alberta, Canada, May 2007, pp. 331–340.

[122] T. Thein and J. S. Park, “Availability analysis of application servers using soft-
ware rejuvenation and virtualization,” Journal of Computer Science and Technology,
vol. 24, no. 2, pp. 339–346, Mar 2009.

154 7. Bibliography

[123] T. Thein, S. D. Chi, and J. S. Park, “Availability modeling and analysis on vir-
tualized clustering with rejuvenation,” Journal of Computer Science and Network
Security, vol. 8, no. 9, pp. 72–80, Mar 2008.

[124] J. Tretmans, “Model-based testing and some steps towards test-based modelling,”
in Proc. of 11th International School on Formal Methods for Eternal Networked
Software Systems, Bertinoro, Italy, Jun 2011, pp. 297–326.

[125] K. S. Trivedi, K. Vaidyanathan, and K. Goseva-Popstojanova, “Modeling and anal-
ysis of software aging and rejuvenation,” in Proc. of the 33rd Annual Simulation
Symposium, Washington, DC, USA, Apr 2000, pp. 270–279.

[126] K. Trivedi, D. S. Kim, A. Roy, and D. Medhi, “Dependability and security mod-
els,” in Proc. of 7th International Workshop on Design of Reliable Communication
Networks, Washington, DC, USA, Oct 2009, pp. 11–20.

[127] A. Undheim, A. Chilwan, and P. Heegaard, “Differentiated availability in cloud
computing slas,” in Proc. of 12th IEEE/ACM International Conference on Grid
Computing, Lyon, France, Sep 2011, pp. 129–136.

[128] Department Of Defense Trusted Computer System Evaluation Criteria, USA De-
partment of Defence, Dec 1985, http://csrc.nist.gov/publications/secpubs/rainbow/
std001.txt.

[129] W. van der Aalst, N. Lohmann, and M. La Rosa, “Ensuring correctness during
process configuration via partner synthesis,” Journal of Information Systems, vol. 37,
no. 6, pp. 574–592, Sep 2012.

[130] E. van Veenendaal, Standard glossary of terms used in Software Testing Version 2.2,
International Software Testing Qualifications Board, Oct 2012, http://www.astqb.
org/documents/ISTQB glossary of testing terms 2.2.pdf, Accessed in August 2013.

[131] W. E. Vesely and N. H. Roberts, Fault Tree Handbook. Government Printing Office:
U.S. Nuclear Regulatory Commission, 1987.

[132] K. V. Vishwanath and N. Nagappan, “Characterizing cloud computing hardware
reliability,” in Proc. of the 1st ACM symposium on Cloud computing, Indianapolis,
IN, USA, Jun 2010, pp. 193–204.

[133] VMware, “White paper: Vmware high availability concepts, implementation and
best practices,” 2007.

[134] VMware, “White paper: Protecting mission-critical workloads with vmware fault
tolerance,” 2009.

http://csrc.nist.gov/publications/secpubs/rainbow/std001.txt
http://csrc.nist.gov/publications/secpubs/rainbow/std001.txt
http://www.astqb.org/documents/ISTQB_glossary_of_testing_terms_2.2.pdf
http://www.astqb.org/documents/ISTQB_glossary_of_testing_terms_2.2.pdf

7.2. Bibliography 155

[135] L. Wang, M. Kunze, J. Tao, and G. von Laszewski, “Towards building a cloud for
scientific applications,” Advances in Engineering Software, vol. 42, no. 9, pp. 714–
722, Sep 2011.

[136] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Sandpiper: Black-box and
gray-box resource management for virtual machines,” Computer Networks, vol. 53,
no. 17, Dec 2009.

[137] T. Wood, R. Singh, A. Venkataramani, P. Shenoy, and E. Cecchet, “ZZ and the
art of practical BFT execution,” in Proc. of 6th Conference on Computer Systems,
Salzburg, Austria, Apr 2011, pp. 123–138.

[138] OASIS Web Services Reliable Messaging (WSRM). https://www.oasis-open.org/
committees/tc home.php?wg abbrev=wsrm.

[139] B. Yang, X. Xu, F. Tan, and D.-H. Park, “An utility-based job scheduling algo-
rithm for cloud computing considering reliability factor,” in Proc. of International
Conference on Cloud and Service Computing, Hong Kong, China, Dec 2011, pp.
95–102.

[140] Y. Zhang, Z. Zheng, and M. Lyu, “Bftcloud: A byzantine fault tolerance framework
for voluntary-resource cloud computing,” in Proc. of IEEE International Conference
on Cloud Computing, Washington, DC, USA, July 2011, pp. 444–451.

[141] W. Zhao, “BFT-WS: A Byzantine Fault Tolerance Framework for Web Services,” in
Proc. of the 11th International Enterprise Distributed Object Computing Conference
Workshop, Annapolis, MD, USA, Oct 2007, pp. 89–96.

[142] W. Zhao, P. M. Melliar-Smith, and L. E. Moser, “Fault Tolerance Middleware for
Cloud Computing,” in Proc. of the 3rd International Conference on Cloud Comput-
ing, Miami, FL, USA, Jul 2010, pp. 67–74.

[143] Z. Zheng, M. Li, X. Xiao, and J. Wang, “Coordinated resource provisioning and
maintenance scheduling in cloud data centers,” in Proc. of IEEE International Con-
ference on Computer Communications, Turin, Italy, April 2013, pp. 345–349.

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrm
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrm

156 7. Bibliography

A
Publications

Refereed Papers in International Journals

(1) Dependability Certification of Services: A Model-Based Approach.

(co-authors: C. A. Ardagna, V. Piuri)

in Springer Computing Journal, 2013

Abstract. The advances and success of the Service-Oriented Architecture (SOA)
paradigm have produced a revolution in ICT, particularly, in the way in which
software applications are implemented and distributed. Today, applications are in-
creasingly provisioned and consumed as web services over the Internet, and business
processes are implemented by dynamically composing loosely-coupled applications
provided by different suppliers. In this highly dynamic context, clients (e.g., business
owners or users selecting a service) are concerned about the dependability of their
services and business processes.

In this paper, we define a certification scheme that allows to verify the dependabil-
ity properties of services and business processes. Our certification scheme relies on
discrete-time Markov chains and awards machine-readable dependability certificates
to services, whose validity is continuously verified using run-time monitoring. Our
solution can be integrated within existing SOAs, to extend the discovery and se-
lection process with dependability requirements and certificates, and to support a
dependability-aware service composition.

(2) Fault Tolerance Management in Cloud Computing: A System-Level Per-
spective.

(co-authors: V. Piuri, M. Santambrogio)

in IEEE Systems Journal, 2013

Abstract. The increasing popularity of Cloud computing as an attractive alterna-
tive to classic information processing systems has increased the importance of its

158 A. Publications

correct and continuous operation even in the presence of faulty components. In this
paper, we introduce an innovative, system-level, modular perspective on creating
and managing fault tolerance in Clouds. We propose a comprehensive high-level
approach to shading the implementation details of the fault tolerance techniques to
application developers and users by means of a dedicated service layer. In particu-
lar, the service layer allows the user to specify and apply the desired level of fault
tolerance, and does not require knowledge about the fault tolerance techniques that
are available in the envisioned Cloud and their implementations.

Refereed Papers in International Conferences and Workshops

(3) Adaptive Resource Management for Balancing Availability and Perfor-
mance in Cloud Computing.

(co-authors: V. Piuri)

in Proc. of the 10th International Conference on Security and Cryptography (SE-
CRYPT 2013)

Abstract. Security, availability and performance are critical to meet service level
agreements in most Cloud computing services. In this paper, we build on the virtual
machine technology that allows software components to be cheaply moved, repli-
cated, and allocated on the hardware infrastructure to devise a solution that ensures
users availability and performance requirements in Cloud environments. To deal with
failures and vulnerabilities also due to cyber-attacks, we formulate the availability
and performance attributes in the users perspective and show that the two attributes
may often be competing for a given application. We then present a heuristics-based
approach that restores application’s requirements in the failure and recovery events.
Our algorithm uses Markov chains and queuing networks to estimate the availability
and performance of different deployment contexts, and generates a set of actions
to re-deploy a given application. By simulation, we show that our proposed ap-
proach improves the availability and lowers the degradation of system’s response
time compared to traditional static schemes.

(4) Reliable Mission Deployment in Vulnerable Distributed Systems.

(co-authors: M. Albanese, S. Jajodia, V. Piuri)

in Proc. of the 43rd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops (DSN-RSDA 2013)

Abstract. Recent years have seen a growing interest in mission-centric operation of
large-scale distributed systems. However, due to their complexity, these systems are
prone to failures and vulnerable to a wide range of cyber-attacks. Current solutions

159

focus either on the infrastructure itself or on mission analysis, but fail to consider
information about the complex interdependencies existing between system compo-
nents and mission tasks. In this paper, we take a different approach, and present
a solution for deploying mission tasks in a distributed computing environment in a
way that minimizes a mission’s exposure to vulnerabilities by taking into account
available information about vulnerabilities and dependencies. We model the mission
deployment problem as a task allocation problem, subject to various dependability
constraints. The proposed solution is based on the A∗ algorithm for searching the
solution space, but we also introduce a heuristic to significantly improve the search
performance. We validate our approach, and show that our algorithm scales linearly
with the size of both missions and networks.

(5) Supporting Security Requirements for Resource Management in Cloud
Computing.

(co-authors: V. Piuri, P. Samarati)

in Proc. of the 15th IEEE International Conference on Computational Science and
Engineering (CSE 2012)

Abstract. We address the problem of guaranteeing security, with additional con-
sideration on reliability and availability issues, in the management of resources in
Cloud environments. We investigate and formulate different requirements that users
or service providers may wish to specify. Our framework allows providers to im-
pose restrictions on the allocations to be made to their hosts and users to express
constraints on the placement of their virtual machines (VMs). User’s placement
constraints may impose restrictions in performing allocation to specific locations,
within certain boundaries, or depending on some conditions (e.g., requiring a VM
to be allocated to a different host wrt other VMs). Our approach for VM alloca-
tion goes beyond the classical (performance/cost-oriented) resource consumption to
incorporate the security requirements specified by users and providers.

(6) Fault Tolerance Management in IaaS Clouds.

(co-authors: V. Piuri)

in Proc. of the 1st IEEE-AESS Conference in Europe about Space and Satellite
Telecommunications (ESTEL 2012)

Abstract. Fault tolerance, reliability and availability in Cloud computing are criti-
cal to ensure correct and continuous system operation also in the presence of failures.
In this paper, we present an approach to evaluate fault tolerance mechanisms that
use the virtualization technology to transparently increase the reliability and avail-
ability of applications deployed in the virtual machines in a Cloud. In contrast to
several existing solutions that assume independent failures, we take into account the

160 A. Publications

failure behavior of various server components, network and power distribution in a
typical Cloud computing infrastructure, the correlation between individual failures,
and the impact of each failure on user’s applications. We use this evaluation to study
fault tolerance mechanisms under different deployment contexts, and use it as the
basis to develop a methodology for identifying and selecting mechanisms that match
user’s fault tolerance requirements.

(7) A Model-Based Approach to Reliability Certification of Services.

(co-authors: C.A. Ardagna, E. Damiani, V. Piuri)

in Proc. of the 6th IEEE International Conference on Digital Ecosystem Technolo-
gies - Complex Environment Engineering (DEST-CEE 2012)

Abstract. We present a reliability certification scheme in which services are mod-
eled as discrete-time Markov chains. A machine-readable certificate is issued to the
service after validating its reliability properties, and validity of the certificate is ver-
ified using constant run-time monitoring. In addition, we present a solution that
allows users to search and select services with a given set of reliability properties.
Our solution is integrated within existing Service-Oriented Architectures (SOAs),
and allows validation of users’ preferences both at discovery-time and at run-time.

(8) A Comprehensive Conceptual System-Level Approach to Fault Tolerance
in Cloud Computing.

(co-authors: V. Piuri, M. Santambrogio)

in Proc. of the IEEE International Systems Conference (SysCon 2012)

Abstract. Fault tolerance, reliability and resilience in Cloud Computing are of
paramount importance to ensure continuous operation and correct results, even in
the presence of a given maximum amount of faulty components. Most existing
research and implementations focus on architecture-specific solutions to introduce
fault tolerance. This implies that users must tailor their applications by taking
into account environment-specific fault tolerant features. Such a need results in
non transparent and inflexible Cloud environments, requiring too much effort to
developers and users. This paper introduces an innovative perspective on creating
and managing fault tolerance that shades the implementation details of the reliability
techniques from the users by means of a dedicated service layer. This allows users to
specify and apply the desired level of fault tolerance without requiring any knowledge
about its implementation.

(9) Make Mine a Quadruple: Strengthening the Security of Graphical One-
Time PIN authentication.

(co-authors: P. Inglesant, N. Courtois, A. Sasse)

161

in Proc. of the 5th International Conference on Network and System Security (NSS
2011)

Abstract. Secure and reliable authentication is an essential prerequisite for many
online systems, yet achieving this in a way which is acceptable to customers remains
a challenge. GrIDsure, a one-time PIN scheme using random grids and personal
patterns, has been proposed as a way to overcome some of these challenges. We
present an analytical study which demonstrates that GrIDsure in its current form
is vulnerable to interception. To strengthen the scheme, we propose a way to for-
tify GrIDsure against Man-in-the-Middle attacks through i) an additional secret
transmitted out-of-band and ii) multiple patterns. Since the need to recall multiple
patterns increases user workload, we evaluated user performance with multiple cap-
tures with 26 participants making 15 authentication attempts each over a 3-week
period. In contrast with other research into the use of multiple graphical passwords,
we find no significant difference in the usability of GrIDsure with single and with
multiple patterns.

Chapters in Books

(10) Securing Mission-Centric Operations in the Cloud.

(co-authors: M. Albanese, S. Jajodia, V. Piuri)

in Secure Cloud Computing, (S. Jajodia, K. Kant, P. Samarati, V. Swarup, C. Wang
eds.), Springer, 2013

Abstract. Recent years have seen a growing interest in the use of Cloud Comput-
ing facilities to execute critical missions. However, due to their inherent complexity,
most Cloud Computing services are vulnerable to multiple types of cyber-attacks
and prone to a number of failures. Current solutions focus either on the infrastruc-
ture itself or on mission analysis, but fail to consider the complex interdependencies
between system components, vulnerabilities, failures, and mission tasks. In this
chapter, we propose a different approach, and present a solution for deploying mis-
sions in the cloud in a way that minimizes a mission’s exposure to vulnerabilities
by taking into account available information about vulnerabilities and dependencies.
We model the mission deployment problem as a task allocation problem, subject to
various dependability constraints, and propose a solution based on the A∗ algorithm
for searching the solution space. Additionally, in order to provide missions with fur-
ther availability and fault tolerance guarantees, we propose a cost-effective approach
to harden the set of computational resources that have been selected for executing
a given mission. Finally, we consider offering fault tolerance as a service to users in
need of deploying missions in the Cloud. This approach allows missions to obtain
required fault tolerance guarantees from a third party in a transparent manner.

162 A. Publications

(11) Fault Tolerance and Resilience in Cloud Computing Environments.

(co-authors: V. Piuri)

in Computer and Information Security Handbook, 2nd Edition, (J. Vacca ed.), Mor-
gan Kaufmann, 2013

Abstract. The increasing demand for flexibility and scalability in dynamically ob-
taining and releasing computing resources in a cost-effective and device-independent
manner, and easiness in hosting applications without the burden of installation and
maintenance has resulted in a wide adoption of the Cloud computing paradigm.
While the benefits are immense, this computing paradigm is still vulnerable to a
large number of system failures and, as a consequence, there is an increasing concern
among users regarding the reliability and availability of Cloud computing services.
Fault tolerance and resilience serve as an effective means to address user’s reliability
and availability concerns. In this chapter, we focus on characterizing the recurrent
failures in a typical Cloud computing environment, analyzing the effects of failures
on user’s applications, and surveying fault tolerance solutions corresponding to each
class of failures. We also discuss the perspective of offering fault tolerance as a ser-
vice to user’s applications as one of the effective means to address user’s reliability
and availability concerns.

(12) Dependability-Oriented Resource Management Schemes for Cloud Com-
puting Data Centers.

(co-authors: V. Piuri)

in Handbook on Data Centers (S. U. Khan, A. Y. Zomaya eds.), Springer, 2014

Abstract. Recent years have seen a growing interest among users to migrate their
applications and services to large-scale data center environments. Due to their high
complexity, these data centers can experience a large number of failures and secu-
rity breaches, and consequently, impose numerous challenges in dependable service
provisioning to the users. A number of autonomic computing solutions have been
developed to provision resources among running applications based on short-term
demand estimates. However, existing solutions have largely considered only perfor-
mance and energy trade-off with a lower emphasis on data center’s dependability
features. In this chapter, we investigate two aspects of resource management: i) de-
pendable application deployment in data centers, and ii) adaptive resource man-
agement to ensure high availability and performance at runtime. In particular, we
discuss dependability-aware, application-centric, resource management policies in
Cloud computing data centers.

163

Papers in preparation for International Journals

(13) Security-Oriented Elastic Resource Management in Cloud Computing.

(co-authors: M. Albanese, S. Jajodia, V. Piuri)

Abstract. Cloud computing services are vulnerable to multiple types of cyber-
attacks and prone to a number of failures. As a consequence, there is a growing
interest among users to deploy their applications in the Cloud, in the manner that
minimizes their application’s exposure to the vulnerabilities in the system. Existing
task allocation techniques are deterministic in the way that they provide a feasi-
ble solution only when the algorithm has been completely executed. However, in
the Cloud environment, the processing time available to the resource management
algorithms may be very limited and often varying. In this paper, we present an
interruptible, elastic, task allocation algorithm whose optimality improves as the ex-
ecution time provided to it increases. Our design of such algorithm is based on the
principles of Anytime processing, built using the A∗ search scheme. We validate our
approach, and show that elasticity and interruptibility can be obtained with a very
low overhead. We also discuss an approach to build an elastic resource management
algorithm that dynamically adapts the current allocation of a given application as a
response to the changes in the system.

	Introduction
	Motivation
	Contributions of the Thesis
	Dependability Certification of Services
	System-Level Dependability Management
	Secure Application Execution in IaaS Clouds

	Organization of the Thesis

	Related Work
	Open Source Cloud Computing Solutions
	Dependability Approaches in Cloud Computing
	Failure Characteristics of Cloud Environment
	Dependability Techniques in Cloud Computing

	Dependability-Oriented Resource Management Schemes
	Initial Allocation of Virtual Machines
	Runtime Adaption of Virtual Machine Allocation

	Web Services Dependability Evaluation
	Chapter Summary

	Dependability Certification of Services
	Introduction
	Chapter Outline

	Reference Scenario and Basic Concepts
	Reference Scenario
	Basic Concepts

	Service Modeling
	WSDL-based Model
	WSCL-based Model

	Certification Model
	Markov-based Representation of the Service
	Assurance Level

	Dependability Certification Process
	Offline Phase
	Online Phase
	Dependability Certificate Life-cycle

	Dependability Certificate-Based Service Selection
	Certifying Business Processes
	Modeling a Service Composition
	Certification Scheme for Business Processes

	Chapter Summary

	System-level Dependability Management
	Introduction
	Chapter Outline

	Motivating Scenario and Basic Concepts
	Motivating Scenario
	Basic Concepts

	Resource Manager
	Dependability Delivery Scheme
	Design Stage
	Runtime Stage

	Dependability Manager: Architecture Framework
	Client Interface
	DMKernel
	Replication Manager
	Fault Detection/Prediction Manager
	Fault Masking Manager
	Recovery Manager
	Messaging Monitor

	Chapter Summary

	Supporting the notion of Dependability as a Service
	Introduction
	Chapter Outline

	Mapping Users' Requirements to Dependability Mechanisms
	Analysis of Failure Characteristics of System Components
	Analysis of Dependability Metrics
	Deployment Levels in Cloud Infrastructures
	Analysis of dep_sol Behavior under Different Configurations
	Dependability Policy Selection Scheme

	Integrating Dependability Policy Conditions within the IaaS Paradigm
	Resource Allocation Objective
	Resource Allocation Constraints

	Delivering Dependability Support
	Virtual Machine Consolidation
	Virtual Machine Provisioning
	Adaptive Resource Management

	Simulation Results
	Virtual Machine Consolidation
	Virtual Machine Provisioning
	Adaptive Resource Management

	Chapter Summary

	Secure Application Deployment and Execution
	Introduction
	Chapter Outline

	System Model
	Mission Deployment using A*
	Data Structure and Cost Function
	State-space Exploration Scheme
	Experimental Evaluation

	Mission Deployment using an Elastic Algorithm
	A* with Weighted Heuristics
	Elastic Task Allocation Algorithm
	Experimental Evaluation
	Adaptive Mission Deployment using an Elastic Algorithm

	Mission Protection
	Chapter Summary

	Conclusions
	Summary of the Contributions
	Future Work
	Dependability Certification of Services
	Dependability Management
	Secure Application Execution

	Bibliography
	Publications

