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Uncertainty in Climate Change Modeling: Can Global
Sensitivity Analysis Be of Help?

Barry Anderson,1 Emanuele Borgonovo,2,∗ Marzio Galeotti,1,3 and Roberto Roson1,4

Integrated assessment models offer a crucial support to decisionmakers in climate policy
making. For a full understanding and corroboration of model results, analysts ought to iden-
tify the exogenous variables that influence the model results the most (key drivers), appraise
the relevance of interactions, and the direction of change associated with the simultaneous
variation of uncertain variables. We show that such information can be directly extracted
from the data set produced by Monte Carlo simulations. Our discussion is guided by the ap-
plication to the well-known DICE model of William Nordhaus. The proposed methodology
allows analysts to draw robust insights into the dependence of future atmospheric tempera-
ture, global emissions, and carbon costs and taxes on the model’s exogenous variables.

KEY WORDS: Climate change; global sensitivity analysis; integrated assessment modeling; risk
analysis.

1. INTRODUCTION

Climate change is a very complex phenomenon,
which affects our society in multiple ways with con-
sequences that reach far into the future. Uncertainty
permeates the economic evaluation of damages and
of mitigation policies.(1–4) As underlined in the litera-
ture, “increasingly climate scientists are adopting the
tools and techniques of risk analysis in their efforts
to characterize future climate uncertainties.”(5, p. 1387)

Aven(6–8) comprehensively discusses the treatment of
uncertainties in risk analysis. In the editorial of the
recent Risk Analysis special issue on climate change
perception, Pidgeon notes that “the need to develop
robust tools to help decision-makers remain as press-
ing as ever.”(9, p. 951)
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When environmental and climate change is-
sues are considered, integrated assessment models
(IAMs) play a central role in supporting the formu-
lation of mitigating strategies and risk management
plans. This practice is not free from criticism.(10,11)

Yet, scientific models are today’s intermediaries be-
tween science and policy.(12) IAMs, however, are
very complicated machines due to the variety of
features they capture and to the intricacy of the phe-
nomena under investigation. It is then virtually im-
possible to have a direct understanding of the re-
lationship between the endogenous and exogenous
variables. Nonetheless, the literature highlights that
“the standard of quality for models must be high, lest
model use falls into disrepute and stakeholders reject
the use of models altogether.”(13, p. 302)

As underlined in Oppenheimer et al.,(14) the cli-
mate change community is aware of this instance:
“dealing consistently with risk and uncertainty across
the Intergovernmental Panel on Climate Change
(IPCC) reports is a difficult challenge”(15, p. 3) and
that “observed differences in handling uncertainties
by the three IPCC working groups emerge.”(15, p. 1)

How can we overcome these problems?
Webster(16, p. 37) argues that “part of the solution
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is for the community to produce more instances of
rigorous analysis of uncertainty for their respective
models and projections.” The U.S. Environmental
Protection Agency recommends that model devel-
opers and users perform sensitivity and uncertainty
analysis to help determine when a model can be
appropriately used to inform a decision.(17) As an
essential step of its auditing process,(18,19) the Florida
Commission on Hurricane Loss Projection Method-
ology requires “uncertainty and sensitivity analyses
to be performed with the applicant’s proprietary
model.”(18, p. 1277)

Although “the judicious application of sensitiv-
ity analysis techniques appears to be the key in-
gredient needed to draw out the maximum capa-
bilities of mathematical modeling,”(20, p. 221) surveys
show that the application of the most recently de-
veloped methods is quite limited in the field of
climate change economics. Saltelli and Annoni(21)

review several papers published in prominent sci-
entific journals, such as Science and Nature, and
conclude that the most widely utilized methods
are one-factor-at-a-time (OFAT) techniques. OFAT
methods evaluate the impacts of changes in ex-
ogenous variables varied one at a time. Though
widespread, these methods are quite inadequate for
identifying the exogenous variables on which to focus
scientists’ or decisionmakers’ attention in the pres-
ence of uncertainty. Moreover, they do not allow an-
alysts to appreciate the relevance of interactions.

OFAT methods were used in the series of re-
buttals among Dietz et al.,(22,23) Nordhaus,(24,25) Stern
and Taylor,(26) and Tol and Yohe.(27,28) Weitzman(29)

focuses on the sensitivity of endogenous variables
primarily to the choice of the discount rate and to a
few other selected exogenous variables. Saltelli and
d’Hombres(13) offer a detailed analysis of the de-
bate and conclude that, because only OFAT meth-
ods were used, sensitivity analysis (SA) did not help
analysts in supporting their conclusions.

In fact, the task is challenging. On the one hand,
we need methods that minimize the computational
burden. On the other hand, the same methods must
be robust and take all sources of uncertainty into
account.

In this article, we argue that an answer to these
challenges comes from a combined use of global sen-
sitivity methods together with recent advances in
their estimation. We demonstrate that insights con-
cerning direction of change, model structure, and key
uncertainty drivers can be directly extracted from
the sample generated by a traditional Monte Carlo

simulation, avoiding the need of ad hoc numerical
experiments and with a notable reduction in com-
putational burden. Our method builds on the high-
dimensional model representation (HDMR) theory
of Rabitz and Alis.(30) The HDMR theory allows us
to understand whether the endogenous variable re-
sponse to changes in the exogenous variables is equal
to the sum of their individual effects or whether inter-
actions are also relevant. It also allows us to appraise
the direction of change (the fundamental question of
comparative statics) in a global sense, as opposed to
the local information provided by traditional com-
parative statics. The methodology is then comple-
mented by the use of density-based methods for the
identification of key uncertainty drivers in the pres-
ence of both correlated and uncorrelated exogenous
variables.

The methodology is illustrated using one of
the best-known IAMs, Nordhaus’s DICE model.
The findings show that the method provides several
crucial insights to both analysts and policymakers.
Furthermore, we obtain a systematic identification of
the exogenous variables and areas on which to focus
additional information collection and/or modeling
efforts.

The remainder of the article is organized as fol-
lows. Section 2 reviews the existing literature and
provides a brief snapshot of how global sensitivity
analysis methods are, or are not, used. Section 3
presents our proposed methodology, whose estima-
tion and computation aspects are considered in Sec-
tion 4. The global SA methodology is then applied on
the DICE model and the results of this exercise are
presented in Section 5. Concluding remarks close the
article.

2. A CURSORY LITERATURE REVIEW ON
IAMS AND THEIR UNCERTAINTY
ANALYSIS

Most and Keles(31) highlight that policymakers
increasingly benefit from the utilization of decision-
support models. Their observations are in line with
the earlier statements of Jannsen,(32) who underlines
that the IPCC “is placing increasing emphasis on the
use of dynamic or time-dependent simulation models
to assess the effects of global climate change.”(32, p. 22)

The models developed to support decision making
in the climate change arena are numerous. Game-
theoretic models for climate negotiations are dis-
cussed in Forgó et al.(33) An important role is played
by the market allocation (MARKAL) model,(34) a
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linear programming model for energy market plan-
ning. A modified version of MARKAL is used to
find optimal responses in long-term energy planning
in view of alternative climate change patterns for the
Quebec region.(35) A model for the robust determi-
nation of optimal energy technology research and de-
velopment investment programs in consideration of
the effects of climate change is developed in Baker
and Solak.(36)

A prominent class of models is represented by
IAMs. Aside from their traditional use of evaluating
the long-term implications of climate-economy inter-
actions, IAMs are also becoming increasingly used as
a tool to study how uncertainty and ambiguity affect
policymakers’ decisions regarding climate change.
Golub et al.(37) provide a comprehensive overview
of different approaches used to model uncertainty
when applying IAMs. Millner et al.,(38) Lemoine and
Traeger,(39) and Iverson and Perrings(40) are recent
examples of applications using the DICE model to
study these areas of decision science.

The list of studies covered by Tol(41) in his meta-
analysis of alternative estimates of the social cost of
carbon shows that three IAMs emerge as the most
widely applied and commonly cited in the literature:
Richard Tol’s FUND, Chris Hope’s PAGE, and the
DICE model of William Nordhaus.

Many of the cited studies in Tol(41) acknowledge
the existence of uncertainty and attempt to perform
some type of SA. This is usually accomplished by
altering the values of a certain targeted exogenous
variable, often the discount rate and/or climate sensi-
tivity, to test the values of the endogenous variables
under different scenarios. The tendency is, there-
fore, to answer specific sensitivity questions, and not
to let the model undergo a systematic investigation
through global SA.

At the same time, Monte Carlo simulation is
becoming part of best practices in the IAM. It has
been used for an uncertainty analysis of the DICE
model(42,43) and in different vintages of the PAGE
model.(44) It is employed in a recent study by Dietz(45)

in an assessment of catastrophic climate change
based on the PAGE model and by Nordhaus and
Popp(46) using DICE and Popp(47) using ENTICE,
an extension of the DICE model. Monte Carlo sim-
ulation is also used in Dietz and Asheim(48) in their
work on sustainable discounted utilitarianism, where
it accompanies the risk analysis of a modified version
of DICE. Monte Carlo simulation (sometimes called
uncertainty analysis) conveys to decisionmakers the
uncertainty in model predictions, avoiding the risk
of overconfidence in model forecasts. However, for

a full understanding and corroboration of model re-
sults, analysts ought to identify the exogenous vari-
ables that influence the model results the most (key
drivers), the direction of change associated with the
variation of a given exogenous variable, and the over-
all model structure (interaction analysis).

We are aware of only three studies devoted to
the application of methods similar to the ones pro-
posed in this article to investigate the effects of un-
certainty on IAMs. Van Vuuren et al.(49) apply a
probabilistic approach to an energy model, Hof et
al.(50) use the FAIR IAM, and the effects of uncer-
tainty on the social cost of carbon using the FUND
model are explicitly addressed in Anthoff and Tol.(51)

In all cases, Monte Carlo simulations are used to
propagate uncertainty and the results of those sim-
ulations are postprocessed using either raw correla-
tions or standardized regression coefficients to signal
the magnitude of the impact that uncertainty in the
exogenous variables has on the endogenous variables
produced by the model. The SA literature clearly de-
scribes the weaknesses of using correlations or stan-
dardized regression coefficients as a methodology for
postprocessing the Monte Carlo results. These limita-
tions are mainly linked to their poor performance in
the presence of nonlinearities and of interactions,(52)

so that several authors have argued in favor of the
utilization of more robust methods.(30,53,54)

3. GLOBAL SENSITIVITY ANALYSIS:
SETTINGS AND METHODS

Global sensitivity analysis methods give full
credit to our uncertainty about the values of the
exogenous variables. The first step of a global SA
consists of propagating uncertainty throughout the
model (this process is called uncertainty analysis)
by estimating the distribution of endogenous vari-
ables from the distribution of exogenous variables.
An endogenous variable (y) is linked to exogenous
variables by some kind of mathematical relationship.
Formally:

y = g(x) : �X ⊆ R
n → R, (1)

where g(x) is the exogenous-endogenous variable
mapping, �X ⊆ Rn is the set of possible values
that the exogenous variables can assume, and x
is one of the possible values of the uncertain ex-
ogenous variables. In global sensitivity analysis, we
assume to have information about the exogenous
variables’ “probability distribution, either joint or
marginal, with or without correlation, and that this
knowledge comes from measurements, estimates,
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expert opinion, physical bounds, output from simula-
tions, . . . .”(56. p. 704) Let FX(x) denote the joint prob-
ability distribution function of the exogenous vari-
ables. Through Monte Carlo simulation a sample
of size N is produced, so that in each model run
the exogenous variables follow the distribution cor-
responding to FX(x). Various sampling generation
methods are available; see Helton and Davis(55) for
a thorough overview. To obtain the corresponding
distribution of the endogenous variable, the model is
evaluated N times in correspondence of the realized
values of the exogenous variables. Uncertainty analy-
sis allows us to assess the distribution of the endoge-
nous variable. We let FY(y) denote the cumulative
distribution function of the endogenous variable Y
(henceforth, capital letters denote random variables,
lower case letters one of their realizations). Knowl-
edge of FY(y) permits analysts to estimate all rele-
vant moments and percentiles of Y and is also essen-
tial in computing risk measures.

Global SA integrates and complements uncer-
tainty analysis providing analysts with additional
and crucial information. Several methods have been
developed and several are the insights that ana-
lysts can draw from global SA methods. Saltelli and
Tarantola(56) introduce the concept of SA “setting.”
A setting is a way to frame the SA quest so as to
clearly identify its objectives.(54,57) In this article, we
carry out our analysis in accordance with the follow-
ing settings:(58)

(1) Model structure: to determine whether the en-
dogenous variable behavior is the result of
the superimposition (addition) of individual
effects or it is driven by their interactions;

(2) Direction of change: to determine what is the
expected direction of change in the endoge-
nous variable due to individual or simultane-
ous changes in the exogenous variables; and

(3) Exogenous variable prioritization: to deter-
mine the key uncertainty drivers, namely,
the exogenous variables, on which resources
should be focused in data and information
collection to most effectively reduce the vari-
ability in a model’s predictions.

We now discuss each of these settings in turn.

3.1. Model Structure

Understanding the structure of an exogenous–
endogenous variable mapping requires the assess-

ment of interactions. Assume that g(x) is integrable
(thus, in principle, even nonsmooth). Then, g(x) can
be written exactly as:(30,53,59)

y = g(x) = g0 +
n∑

i=1

gi (xi ) +
n∑

i< j

gi, j (xi , xj ) + · · ·

+ g1,2,...,n(x1, x2, . . . , xn), (2)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g0 = EX[g(x)] = ∫ · · · ∫ g(x)
n∏

i=1
dFi

gi (xi )= EX[g(x)|Xi =xi ]−g0 =∫ · · ·∫
g(x)

n∏
s=1,s �=i

dFs gi, j (xi , xj ) = EX[g(x)|Xi = xi ,

Xj = xj ] − gi (xi ) − g j (xj ) − g0

= ∫ · · · ∫ g(x)
n∏

s=1,s �=i, j
dFs · · ·

g1,2,...n (x1, x2, . . . xn)
= EX [g (x) |X1 = x1, . . . Xn = xn]

−
n∑

k=1

∑
i1<i2<···<ik

gk (xi1 , xi2 , . . . , xik) − g0

.(3)

Equation (2) is called the HDMR of g(x).(30)

In Equation (3), g0 is the average value of y over
�Y; gi (xi ) accounts for the individual effect of Xi ;
gi, j (xi,xj ) accounts for the interactions of exogenous
variables Xi , Xj , and so on. Equation (2) states that
g(x) is exactly reconstructed by the sum of the func-
tions on the right-hand side of Equation (3). Equa-
tions (2) and (3) provide the multivariate “integral”
expansion of g(x).

Assume now that g(x) is square integrable. Then,
by the orthogonality of the functions in Equation (3),
subtracting g0 from g(x) and squaring, one obtains
the complete decomposition of the variance of Y:

V[Y] =
n∑

i=1

Vi +
n∑

i< j

Vi j + · · · + V1,2,...,n, (4)

where⎧⎪⎪⎨
⎪⎪⎩

Vi = ∫
g2

i dFi

Vi, j = ∫ ∫
g2

i, j dFi dFj

· · ·
V1,2,...n = ∫ · · · ∫ g2

1,2,...ndF1dF2 · · · dFn

(5)

On the basis of Equations (4) and (5), one in-
troduces the sensitivity measures of order z (z =
1,2, . . . ,n) defined as:(53)

Sz
i, j,...,k ≡ Vz

i, j,...,k

V[Y]
, (6)
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where the set {i, j, . . . , k} is any group of z in-
dices. Sz

i, j,...,k provides the relevance of the interac-
tion among exogenous variables in group i, j, . . . , k.
Special attention is deserved by the first (S1

l ) and the
total order (ST

l ) sensitivity measures of exogenous
variable Xl, defined, respectively, as:(60)

S1
l ≡ Vl

V[Y]
= VXl [EX∼l {Y|Xl}]

V[Y]
(l = 1, . . . , n),

(7)
and

ST
l = EX∼l [VXl {Y|X∼l}]

V[Y]
(l = 1, . . . , n). (8)

In Equation (8), the symbol X-l denotes all ex-
ogenous variables but Xl . Thus, S1

l is the fraction of
V(Y) outstanding after Xl has been fixed, whereas ST

l
is the fraction of V(Y) remaining after all exogenous
variables are fixed but Xl . Disentangling the contri-
bution of single exogenous variables and of interac-
tions to the overall model variability (Setting 1) is
quite naturally addressed by applying the functional
ANOVA decomposition and the associated sensitiv-
ity measures reported in Equations (6)–(8).

The sum of variance-based sensitivity measures
provides indication on the structure of g(x). If

�
n

i = 1
S

1
i

= 1 , the model is additive, that is, its

response is the exact addition of the individual
effects of the exogenous variables. Conversely, if∑ n

i = 1
S

1
i

< 1 , interaction effects are present. The

lower the sum of the first-order indices, the higher
the relevance of interactions.

3.2. Direction of Change

Direction of change in the endogenous variable
following variations in one of the exogenous vari-
ables (Setting 2) can be addressed through the inves-
tigation of functions g0 + gi (xi ). Note that, from the
second equation in (3), we have:

E [g(x)|Xi = xi ] = gi (xi ) + g0. (9)

Hence, the one-dimensional function g0 + gi (xi )
represents the conditional expectation of g(x) as a
function of xi . In particular, if g(x) is additive, then
gi (xi ) + g0 expresses the exact dependence of Y on
Xi. Thus, we are able to understand whether Y is a
monotonic function of Xi with no approximation and
for all values of Xi. If g(x) is not additive, then Equa-
tion (9) allows us to understand the dependence of

Y on Xi as all possible values of the remaining ex-
ogenous variables are averaged. In this simultaneous
variation lies the difference between comparative
statics in the sense of Samuelson(61) and comparative
statics performed using an integral approach. By dif-
ferential comparative statics one obtains a local in-
formation, namely, the variation rate of Y around
a given point in the exogenous variable space for a
small variation inXi . In a global SA, one instead ob-
tains information about what happens to g(x) as Xi

varies over its entire range and while all other exoge-
nous variables change simultaneously.

3.3. Factor Prioritization

The identification of key uncertainty drivers
(Setting 3) may appear to be linked to the discussion
above on variance decomposition, suggesting that a
critical exogenous variable could be the one that has
a significant impact on the endogenous variable(s)
variance. However, it is well known that variance
is not a summary of uncertainty when distributions
are skewed or multimodal. Moreover, when exoge-
nous variables are correlated, which is likely to be
the case in many natural phenomena, variance-based
sensitivity measures lose their link to the functional
ANOVA decomposition. These two cases are fre-
quently encountered in the climate change literature.
Therefore, we adopt, in addition to a variance-based
approach, the δ sensitivity measure(62,63) defined as
follows:

δl = 1
2

El[al(xl)], (10)

where

al(xl) =
∣∣∣ fY(y) − fY|Xl =xl

(y)
∣∣∣ . (11)

ai (xi ) measures the separation (“distance”) between
the unconditional distribution of the endogenous
variable ( fY(y)) and its conditional distribution given
that exogenous variable Xi is fixed at xi ( fY|Xi =xi (y)).
Geometrically, ai (xi ) is the area enclosed between
fY(y) and fY|Xi =xi (y).

δ possesses several convenient properties. The
ones of major interest here are (i) normalization to
unity,(63) that is, 0 ≤ δi ≤ 1, (i = 1, 2, . . . , n), and (ii)
monotonic transformation invariance,(64) that is, if
u(Y) and t(Y) are two monotonic functions of Y,
then δ

u(Y)
i = δ

t(Y)
i = δY

i . The first property states that
each exogenous variable is associated with an “im-
portance index,” which lies between 0 and 1. More-
over, it is proven in Plischke et al.(65) that δi = 0 if and
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only if Y and Xi are independent. Thus, δi is a mea-
sure of statistical dependence, rather than of func-
tional dependence as are variance-based sensitivity
measures. The second property, monotonic transfor-
mation invariance, is desirable for two aspects, nu-
merical and theoretical. In several environmental ap-
plications, the output of a Monte Carlo simulation is
sparse or spans a wide range. This could bring about
inaccurate estimation of sensitivity measures. To im-
prove numerical precision, analysts often resort to a
transformation of the endogenous variable (usually,
a log-transformation). Monotonic transformation
invariance ensures that after any monotonic transfor-
mation, the results of SA remain unaltered. The sec-
ond reason is that in many applications the endoge-
nous variable is a utility function. It is a well-known
principle of economic theory that utility functions
have an ordinal, not cardinal, meaning, so that they
can be modified through monotonic transformations.
Monotonic transformation invariance, then, ensures
that results of the sensitivity analysis remain valid
for any chosen monotonic utility function. For fur-
ther discussion on the decision-making implications
of this result, see Baucells and Borgonovo.(66)

4. ESTIMATION AND COMPUTATIONAL
COST

The estimation of the sensitivity measures pro-
posed above is analytically feasible only in very few
instances and with simple mathematical expressions
that usually do not represent an environmental or
economic problem. For IAMs, which are complex
simulation tools encoded in dedicated software, the
estimation is numerical. The cost of the analysis is
measured in number of model runs. Thus, the cost
of an uncertainty analysis is CMCS = N, where N is
the sample size of a Monte Carlo simulation.

An algorithm that strictly reproduces the defi-
nitions in Equations (7), (8), and (10)—brute force
estimation—is associated with a computational cost
(CGSA) equal to

CGSA = Nn2 (12)

model runs, where n is the number of exogenous vari-
ables. N is chosen by analysts in such a way to ensure
estimation accuracy. The dependence on n2 makes
the computational cost increase rapidly with model
size.

However, a series of contributions(67–69) have led
to a drastic reduction in the estimation of variance-

based indices, lowering CGSA to

CGSA = N(n + 2) (13)

model runs for estimating all first- and total-order
sensitivity measures. The sampling plans in Cas-
taings et al.(70) lower the computational cost of the
δ-importance measure to;

CGSA = r N, (14)

where r is the number of replicates.
Note that an analyst pursuing these estimation

strategies has to run two different sets of numerical
experiments, a first one to estimate S1

l and ST
l and a

second one to estimate δl . However, recent works
have led to additional computational burden reduc-
tions, lowering CGSA to:

CGSA = N = CMCS. (15)

There are two main ways to achieve this result.
The first foresees making use of a meta-model (or
emulator). Kriging,(71) Gaussian emulation,(72) poly-
nomial chaos expansion,(73,74) state-dependent pa-
rameter modeling,(75) and the Cut-HDMR(30,76) are
among the most widely used methods. For instance,
in the Cut-HDMR approach the meta-model allows
the estimation of Sobol’s sensitivity measures of or-
ders 1 and 2 from the component functions gi (xi )
and gi, j (xi , xj ), which are obtained by fitting or-
thonormal bases, through a system of equations of
the type:(76)

gi (xi ) ≈ �h
r=1α

i
rφr (xi )

gi, j (xi , xj ) ≈ �h′
p=1�

h′′
q=1β

i, j
p,qφq(xi )φq(xi ),

(16)

where φr (xi ) is an element of a family of orthonor-
mal polynomials, αi

r and β
i, j
p, q are the corresponding

coefficients, and h, h′, and h′′ determine the order of
the expansion (see Ziehn and Tomlin(76) for further
details).

The second way is to utilize orthogonal pro-
jections and is used in Plischke et al.(65) This
technique allows one to estimate variance-based
sensitivity measures and δl . The method consists of
a reordering of the data set to form a scatterplot
Xi ⊕ y, followed by a partitioning of the data set.
The method works as a postprocessing algorithm and
the estimation is direct, without the need of a meta-
model.

The advantage of combining the proposed ap-
proaches is that analysts can obtain all the discussed
insights from the data set produced by Monte Carlo
simulation, without the need to resort to an ad hoc
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sampling scheme. In summary, the overall procedure
consists of the following steps:

(1) Assign a distribution to the n model exoge-
nous variables;

(2) Generate the corresponding sample of model
exogenous variables Â, Â is a matrix of size n
× N;

(3) Perform uncertainty analysis evaluating the
model N times, obtaining the corresponding
endogenous variable vector Ŷ;

(4) Consider the data set [ÂŶ]; and
(5) Postprocess the data set to obtain insights into

model structure, monotonicity, and key un-
certainty drivers.

In this article, we shall make use of the Cut-
HDMR meta-model(76) and of Plischke et al.’s(65)

method to respond to the three sensitivity settings
spelled out in Section 3: (i) model structure, through
knowledge of the variance-based sensitivity indices,
and of the gi,j(xi,xj) functions; (ii) monotonicity, by
plotting the main effect functions gi (xi ); and (iii) key
uncertainty drivers, by estimating δl .

5. GLOBAL SENSITIVITY ANALYSIS OF THE
DICE MODEL

DICE is one of the most widely acknowl-
edged IAMs due to the expertise of William Nord-
haus, “whose careful pragmatic modeling through-
out his DICE series of IAMs has long set a
standard.”(29, p. 713) Nordhaus(43) characterizes the
DICE model as “a global model that aggregates dif-
ferent countries into a single level of output, capi-
tal stock, technology, and emissions. The estimates
for the global aggregates are built up from data that
include all major countries, and the specification al-
lows for differentiated responses and technological
growth.”(43, p. 33) DICE has been evolving since the
early 1990s with many refinements and adaptations
to answer specific research questions. Jannsen(32)

combines the economic part of DICE with the math-
ematical part of IMAGE—an integrated model to as-
sess greenhouse effect—to obtain the OMEGA code
(optimization model for economic and greenhouse
assessment). Nordhaus and Popp(46) use PRICE, a
probabilistic version of the DICE model. Keller
et al.(77) modify DICE for assessing the impact of
uncertainties and learning about climate thresholds.
A stochastic version of DICE is used by McIn-
erney and Keller(78) to support the assessment of

mitigation strategies. McInerney et al.(79) employ a
modified version of DICE to assess how alterna-
tive decision-making criteria (precisely expected util-
ity maximization, safety first, and limited degree
of confidence) “affect preferred investments into
greenhouse gas mitigation.”(79, p. 1) Most recently,
DICE is used in the comparison of the info-gap
versus robust decision-making approaches for deci-
sion making under uncertainty.(3) As mentioned in
Section 2, DICE has been utilized in the context
of sustainable utilitarianism.(48) Popp(47) develops a
model based on DICE with endogenous technical
change (ENTICE). A multiregion variant of DICE,
called RICE, has been developed by Nordhaus and
Yang.(80) RICE has been used in various amended
forms by, among others, Eyckmans and Tulkens,(81)

Buonanno et al.,(82) Castelnuovo et al.,(83) Bosetti
et al.,(84) de Bruin et al.,(85) and Bosello and Chen.(86)

The 2010 version of RICE is succinctly described in
Nordhaus.(92)

We use Version 2007.delta.8 of DICE (http://
nordhaus.econ.yale.edu/DICE2007˙short.gms). We
do not go into details concerning the equations of
the model. They are comprehensively described in
Nordhaus(43) and one can find synthetic descriptions
in Jannsen,(32) Dietz and Asheim,(48) and Keller at
al.(77) We limit ourselves to note that the exogenous-
endogenous variable mapping is composed of a
series of interconnected equations (or submodels)
that generate multiple outputs. These endogenous
variables depend on 51 exogenous variables, which
are reported in Table I (acronyms are the same as
the original ones; see http://nordhaus.econ.yale.edu/
DICE2007˙short.gms).

Among the many endogenous variables pro-
duced by DICE, we focus on intergenerational util-
ity, the social cost of carbon in 2005, global atmo-
spheric temperature in 2105, the level of global emis-
sions in 2105, and the optimal carbon tax for 2015.
The reason for these choices is twofold: they are rel-
evant for policy purposes and they grant comparison
with previous SA performed using the same model.5

5The social cost of carbon represents the economic cost caused by
an additional ton of carbon emissions. The cost is the monetary
impact on the discounted intergenerational utility of consump-
tion. Mathematically, the social cost of carbon is the shadow
price of carbon emissions along a reference path, typically the
actual path, of output or emissions. As noted by Nordhaus,(92) in
an optimized climate policy, the social cost of carbon will equal
the carbon price or the carbon tax; in an uncontrolled regime,
the social cost of carbon will generally exceed the (zero) carbon
price.
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Table I. DICE 2007 Exogenous Variables

# Acronym Description Name Used in Text

1 A0 Initial level of total factor productivity Initial productivity
2 A1 Damage function linear factor Damage function linear factor
3 A2 Damage function exponential factor Damage function exponential factor
4 A3 Damage function exponent Damage function exponent
5 BACKRAT Ratio initial to final backstop cost
6 B˙ELASMU Elasticity of marginal utility of consumption Elasticity of marginal utility of consumption
7 B˙PRSTP Initial rate of social time preference per year Initial rate of social time preference per year
8 C1 Climate equation coefficient for upper level Climate equation coefficient for upper level
9 C3 Transfer coefficient upper to lower stratum
10 C4 Transfer coefficient for lower level
11 DELA Decline rate of technological change per decade
12 DK Depreciation rate on capital per year
13 DPARTFRACT Decline rate of participation
14 DSIG Decline rate of decarbonization per decade
15 DSIG2 Quadratic term in decarbonization
16 ELAND0 Carbon emissions from land 2005 (GtC per decade)
17 EXPCOST2 Exponent of control cost function Control function exponent
18 FCO22X Estimated forcings of equilibrium CO2 doubling Estimated forcings of equilibrium CO2 doubling
19 FEX0 Estimate of 2000 forcings of non-CO2 GHG
20 FEX1 Estimate of 2100 forcings of non-CO2 GHG
21 FOSSLIM Maximum cumulative extraction of fossil fuels Cumulative fossil fuel extraction
22 GA0 Initial growth rate for technology per decade Growth in total factor productivity
23 GAMA Capital elasticity in production function Elasticity of capital
24 GBACK Initial cost decline backstop pc per decade Initial cost decline backstop pc per decade
25 GPOP0 Growth rate of population per decade
26 GSIGMA Initial growth of sigma per decade Initial sigma growth
27 K0 2005 value capital trillion 2005 US dollars 2005 value capital
28 LIMMIU Upper limit on control rate
29 MAT2000 Concentration in atmosphere 2005 (GtC) Concentration in atmosphere 2005
30 ML2000 Concentration in lower strata 2005 (GtC)
31 MU2000 Concentration in upper strata 2005 (GtC)
32 PARTFRACT1 Fraction of emissions under control regime 2005
33 PARTFRACT2 Fraction of emissions under control regime 2015
34 PARTFRACT21 Fraction of emissions under control regime 2205
35 PBACK Cost of backstop 2005 per tC 2005 Cost of backstop in 2005
36 POP0 2005 world population millions
37 POPASYM Asymptotic population Asymptotic population
38 Q0 2005 world gross output trillion 2005 US dollars
39 SIG0 CO2-equivalent emissions–GNP ratio 2005 Emissions–GNP ratio
40 T2XCO2 Equilibrium temperature impact of CO2 doubling C Climate sensitivity
41 TATM0 2000 atmospheric temperature change (C) from 1900
42 TOCEAN0 2000 lower stratospheric temperature change (C) from 1900
43 b11 Carbon cycle transition matrix b11 in carbon cycle transition matrix
44 b12 Carbon cycle transition matrix b12 in carbon cycle transition matrix
45 b21 Carbon cycle transition matrix b21 in carbon cycle transition matrix
46 b22 Carbon cycle transition matrix b21 in carbon cycle transition matrix
47 b23 Carbon cycle transition matrix b23 in carbon cycle transition matrix
48 b32 Carbon cycle transition matrix b32 in carbon cycle transition matrix
49 b33 Carbon cycle transition matrix b33 in carbon cycle transition matrix
50 scale1 Scaling coefficient in the objective function
51 scale2 Scaling coefficient in the objective function

Note: The acronym of each variable is the same as in the original DICE code (see http://nordhaus.econ.yale.edu/DICE2007˙short.gms).
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Indeed, these are the variables directly looked at by
Nordhaus(43) himself.

The presentation of the results of our global SA
exercise is divided in two parts. The first part de-
scribes the set of results stemming from a comparison
of our methodology with the sensitivity analysis of
the DICE model directly performed by Nordhaus,(43)

where only eight preselected exogenous variables are
subject to the analysis. The second set presents re-
sults for the data set obtained when uncertainties in
all exogenous variables are considered.

5.1. A Comparative Analysis

Our reference point is the sensitivity analysis
of the DICE model performed in Chapter 7 of
Nordhaus.(43) Nordhaus(42) identifies eight exoge-
nous variables as key uncertainty drivers. “On the
basis of earlier studies using the DICE model, as well
as studies by other scholars, we have selected eight
of the major exogenous variables in the DICE model
for further study . . . .”(43, p. 125) For the time being, we
take for granted the outcome of the selection exer-
cise and use the same probability distributions for the
eight exogenous variables as in Nordhaus(43) in order
to provide a comparison with the insights that can be
obtained by applying the methods discussed in this
article.

To determine the importance of the exoge-
nous variables Nordhaus(43) then follows an OFAT
method.6 The exogenous variables are varied one at
a time from one up to six standard deviations from
the assumed mean value. The results are presented in
Tables 7–2 and 7–3 of Nordhaus.(43) We report them
in Table II for clarity and to facilitate comparison.

Table II reads as follows: consider the first col-
umn in the upper portion. When the value of the
growth in total factor productivity (GA0) is altered
by one standard deviation, the value of social cost
of carbon increases to $36.07, a 28% increase from
the mean value. Table II shows that for the social
cost of carbon in 2005, the exogenous variable dam-
age function exponential factor (A2)—which is the
exponential factor of the quadratic term of the dam-
age function (see Table I)—has the largest effect as
k (i.e., the distance from the mean value) varies.7 In-
deed, the damage function exponential factor is al-

6See Nordhaus,(43, p. 129) Section “Importance of Different Un-
certainties” of Chapter 7.

7The damage function is a critical component of all IAMs. The
specification used in DICE expresses the loss of potential GDP

ways the most influential exogenous variable, regard-
less of the distance from its mean value. Conversely,
at one standard deviation (k = 1), climate sensitivity
(T2XCO2) is ranked third behind the growth in total
factor productivity in the magnitude of the change
from the mean value, but the ranking is reversed at
two standard deviations from the mean value (k = 2)
and then again as k gets larger.

This sensitivity exercise does not achieve the
identification of the key uncertainty drivers because
the ranking is not robust with respect to variations
of the exogenous variables throughout their support.
This reveals the mismatch between the analysts’ state
of knowledge (which implies uncertainty in the ex-
ogenous variables) and the sensitivity method used
for the analysis (which is OFAT). However, based
on the distributions assigned to the eight exogenous
variables, Nordhaus(43) performs an uncertainty anal-
ysis using Monte Carlo simulation and obtains the
distributions of the endogenous variables. By post-
processing this data set using the algorithm of Plis-
chke et al.,(65) we can assess the importance of the
exogenous variables using our δ sensitivity indexes
(Section 3.3). The corresponding ranking takes the
assessed distributions completely into account and
does not force us to inspect preselected deviations
from the mean. Figs. 1 and 2 report results for the
social cost of carbon and for global emissions, respec-
tively.

At the top of each bar, the 90% confidence in-
tervals obtained from 500 bootstrap replicates us-
ing the bias-reducing estimator proposed in Plischke
et al.(65) are displayed. The narrow confidence inter-
vals show that the estimation is accurate and results
can be trusted from a numerical viewpoint. For the
social cost of carbon, damage function exponential
factor, climate sensitivity (T2XCO2), and growth in
total factor productivity are the most influential ex-
ogenous variables. The exogenous variables damage
function exponential factor and climate sensitivity
concur in the determination of the magnitude of cli-
mate change impacts. Moreover, as the impacts are
expressed as a fraction of lost gross domestic prod-
uct (GDP), the higher the growth rate of the econ-
omy, which is affected by the growth in total factor
productivity, the larger the increase in the social cost
of carbon. This is because this cost is the annualized
value of all periodic losses, which are larger when
GDP is higher. Examining global emissions, Table II

as the inverse of a quadratic function of the variation in atmo-
spheric temperature.
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Table II. Summary of Nordhaus’s (2008) Sensitivity Analysis Results

Growth in Initial Damage Function Cost of b12 in Carbon Cumulative
Standard Total Factor Sigma Climate Exponential Backstop Transition Fossil Fuel
Deviation Productivity Growth Sensitivity Factor in 2005 POPASYM Matrix Extraction

Social Cost of Carbon 2005
0 28.1 (0) 28.1 (0) 28.1 (0) 28.1 (0) 28.1 (0) 28.1 (0) 28.1 (0) 28.1 (0)
1 36.07 (28) 28.27 (1) 38.07 (35) 40.99 (35) 28.1 (0) 32.14 (14) 29.16 (4) 28.1 (0)
2 48.08 (71) 28.43 (1) 46.44 (65) 53.89 (65) 28.1 (0) 35.91 (28) 30.32 (8) 28.1 (0)
3 51.21 (82) 28.6 (2) 53.49 (90) 66.8 (90) 28.1 (0) 39.44 (40) 31.61 (12) 28.1 (0)
4 54.68 (95) 28.76 (2) 59.47 (112) 79.73 (112) 28.1 (0) 42.75 (52) 33.04 (18) 28.1 (0)
5 58.52 (108) 28.92 (3) 64.59 (130) 92.66 (130) 28.1 (0) 45.84 (63) 34.62 (23) 28.1 (0)
6 62.8 (123) 29.09 (4) 69.03 (146) 105.61 (146) 28.11 (0) 48.75 (73) 36.39 (30) 28.1 (0)

Global Emissions 2015
0 19.08 (0) 19.08 (0) 19.08 (0) 19.08 (0) 19.08 (0) 19.08 (0) 19.08 (0) 19.08 (0)
1 30.99 (62) 21.95 (15) 19.18 (1) 19.18 (1) 19.08 (0) 22.84 (20) 19.08 (0) 19.08 (0)
2 50.19 (163) 25.19 (32) 19.28 (1) 19.28 (1) 19.08 (0) 26.42 (38) 19.09 (0) 19.08 (0)
3 78.2 (310) 28.83 (51) 19.38 (2) 19.38 (2) 19.08 (0) 29.84 (56) 19.1 (0) 19.08 (0)
4 103.92 (445) 32.91 (72) 19.48 (2) 19.48 (2) 19.08 (0) 33.06 (73) 19.1 (0) 19.08 (0)
5 65.19 (242) 37.36 (96) 19.59 (3) 19.59 (3) 19.07 (0) 36.08 (89) 19.1 (0) 19.08 (0)
6 24.61 (29) 42.22 (121) 19.7 (3) 19.7 (3) 19.07 (0) 38.9 (104) 19.11 (0) 19.08 (0)

Notes: Figures for the social cost of carbon are 2005 dollars per ton of carbon; figures for global emissions are billions of tons of carbon per
year. Numbers in parentheses refer to the percentage change relative to the mean value.

Source: Nordhaus (2008) and our own calculations.

suggests that growth in total factor productivity is the
most important exogenous variable, with the other
ones having a lower or negligible influence. This re-
sult is in agreement with intuition. In fact, growth in
total factor productivity is the most important exoge-
nous variable when economic growth is concerned.
Because emissions are linked to the level of eco-
nomic activity, growth in total factor productivity af-
fects emissions as well. Fig. 2 shows that while δl for
this exogenous variable is still the greatest by mag-
nitude, other exogenous variables are not insignif-
icant in influencing the distribution of future emis-
sions. This provides a different message with respect
to the results of Nordhaus(43) reported in Table II.

We can go further. Besides a robust identifica-
tion of the uncertainty drivers, the approach pro-
posed here produces additional insights into model
structure and direction of change.

To appraise interactions we apply the GUI-
HDMR Matlab code of Ziehn and Tomlin.(76) On
the basis of the discussion in Section 3.1, we find
that the sum of the second-order sensitivity in-
dices equals

∑n
i, j=1 Si, j =0.4233 when the endoge-

nous variable is the social cost of carbon in 2005
and

∑n
i, j=1 Si, j =0.6053 when the endogenous vari-

able is global emissions in 2105. These values indicate
that interaction effects are relevant and the model

responds nonadditively to simultaneous variations
in the exogenous variables. Examining these effects
more closely one notes that the interaction between
growth in total factor productivity and the price
of the backstop technology (PBAKC) is the most
influential on the social cost of carbon, while the in-
teraction between the damage function exponential
factor and climate sensitivity have the strongest ef-
fect on the level of global emissions in 2105.8 As an
illustration, Fig. 3 displays the HDMR of the most
influential interactions for global emissions in 2105.

Fig. 3 shows the plot of the bivariate func-
tion gA2,T2XC02(A2, T2XC02) representing the inter-
actions between the damage function exponential
factor and climate sensitivity when the endogenous
variable is global emissions.9 This second-order func-
tion is neither convex nor concave and nonmono-
tone. Also, note that the function is not strictly

8DICE-2007 explicitly includes a backstop technology, which is a
technology that can replace all fossil fuels. It kicks in when the
price of fossil fuels reaches a sufficiently high level. The back-
stop technology could be one that removes carbon from the at-
mosphere or an all-purpose environmentally benign zero-carbon
energy technology.

9The representation in Fig. 3 is for illustrative purposes only. Of
course, similar figures can be produced and analyzed for all com-
binations of the model exogenous variables.
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Fig. 1. δi (i = 1, 2, . . . , 11) sensitivity indices when the endogenous variable is the social cost of carbon in 2005. The boxplots represent the
bootstrap confidence intervals on the estimates, obtained with 500 bootstrap replicates.

positive or negative across the entire uncertainty
ranges for the interacting exogenous variables. When
both exogenous variables are at the lower end of
their uncertainty ranges, the interactive effect is a
negative one, while at the upper end of the ranges the
interactive effect has the opposite sign. For example,
if we set climate sensitivity at a low value and we con-
sider the effect on emissions of progressively higher
values of the damage function exponential factor, the
interaction effect would reduce the direct effect gen-
erated by the damage function exponential factor.
However, if we set climate sensitivity at a high value,
the opposite occurs. As a result, second-order ef-
fects can have either an amplifying or dampening im-
pact on the first-order individual effects. The appli-
cation of these methods thus provides a quantitative
dimension to the statement that “an examination of
all the uncertain exogenous variables taken together
. . . may produce unexpected results because of the
interactions among the exogenous variables and the
non-linearity in the DICE model.”(43, p. 134)

By plotting the first-order terms in the HDMR
decomposition of Equations (2) and (3), one gath-
ers insights into the direction of change and mono-
tonicity when exogenous variables vary individually.

Again for the sake of illustration, Fig. 4 shows the
direction of change in the social cost of carbon due
to an increase in climate sensitivity (T2XCO2) and
in the level of global emissions due to an increase
in the growth of total factor productivity. These are
the two exogenous variables with the most significant
HDMR effects.

The trend lines in Fig. 4 show that there is a
monotonically increasing relationship between the
value of climate sensitivity and the social cost of car-
bon; the same relationship characterizes growth in
total factor productivity and total emissions at the
end of the century. In fact, for both endogenous vari-
ables, the first-order functions gi(xi) are monotonic.
One can, of course, carry out a similar investigation
to examine the behavior of these (and other) en-
dogenous variables with respect to any of the remain-
ing exogenous ones (this information is not reported
here for brevity).

5.2. Results When Uncertainty in All Exogenous
Variables Is Considered

We now focus on a novel methodological aspect
that the approach proposed here allows. Namely,
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Fig. 2. δi (i = 1, 2, . . . , 11) sensitivity indices when the endogenous variable is global emissions in 2105. The boxplots represent the bootstrap
confidence intervals on the estimates, obtained with 500 bootstrap replicates.

we can perform uncertainty and global sensitivity
analysis of the DICE model when all 51 exogenous
variables of DICE 2007 vary simultaneously. The
analysis in Section 5.1 required N model runs after
propagation of uncertainty in eight exogenous vari-
ables. An appealing feature of our procedure is that
the analysis still requires N model runs with 51 vary-
ing exogenous variables. Relaxing the assumption on
the number of uncertain exogenous variables, how-
ever, makes us deviate from the assumptions in Sec-
tion 5.1. Eight of these variables have been studied
and assigned distributions, while the remaining ones
have not been considered for uncertainty propaga-
tion. Thus, to put all variables on the same ground,
we have to take a step back and assume that we have
little or no prior information on all exogenous vari-
ables. Thus, the spirit of the remainder of this sec-
tion is that we are at an initial modeling phase, and
we have not decided on which exogenous variables
to collect further information.

To account for the lack of information one
could use a noninformative Jeffreys’s prior or adopt
Laplace’s(93) principle of insufficient reason (see
Gilboa and Marinacci(94) for a theoretical explana-
tion and Chun(95) for practical implications of the
choice of the prior). Adhering to Laplace’s indiffer-

ence principle, we report the results obtained assign-
ing to all 51 exogenous variables a uniform distri-
bution over a symmetric support around their base
case value. Formally, the support of Xi is assigned
values equal to [x0

i − λx0
i , x0

i + λx0
i ], so that �X =

�X1 × �X2 × · · · × �Xn . Note that the resulting mea-
sure is Lebesgue. This measure is indeed the natu-
ral one in the HDMR expansion of the exogenous-
endogenous variable mapping. In the discussion be-
low, we present findings obtained with λ = 0.1.10 A
Monte Carlo sample of size N = 10,000 simulations
is propagated using quasi-random sampling. By post-
processing the uncertainty analysis data set using the
method of Plischke et al.,(65) we calculate the δ sensi-
tivity measures.

Fig. 4 displays results when the endogenous vari-
ables of interest are the social cost of carbon in 2005
(top graph) and global emissions in 2105 (bottom
graph).

10The choice of interval width is admittedly arbitrary, so that we
repeated the analysis using intervals of 5% and 20%, obtain-
ing results consistent with the 10% case. In addition, following
the suggestion of a referee, we also performed the analysis us-
ing Beta distributions over 5%, 10%, and 20% ranges, obtaining
consistent results.
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Fig. 3. Example of exogenous variable interaction for the case of global emissions in 2105.

The exogenous variable “elasticity of capital in
the Cobb-Douglas production function” (GAMA)
has the strongest influence on the social cost of car-
bon in 2005 (top graph), followed by the damage
function exponent (A3), the exponent in the dam-
age function. Climate sensitivity, the elasticity of
marginal utility of consumption (B˙ELASMU), and
the damage function exponential factor follow with
roughly equal influence. For global emissions in 2105,
the damage function exponent is of primary impor-
tance, followed by the emissions–GNP ratio (SIG0),
the growth rate in total factor productivity, and the
exponent in the cost control function.

Fig. 5 displays the results when the endogenous
variables are atmospheric temperature in 2105 and at
the optimal carbon tax in 2015.

The top graph in the figure shows that the ex-
ogenous variable initial productivity (A0) influences
atmospheric temperature the most, followed closely
by climate sensitivity, emissions–GNP ratio, elasticity
of capital, and the control function exponent (EXP-
COST2). The exponent in the damage function (A3)
is the most influential exogenous variable for the op-
timal carbon tax (bottom graph), followed by elas-
ticity of capital, initial productivity (A0), elasticity
of marginal utility of consumption, and climate sen-

sitivity. Finally, the elasticity of marginal utility of
consumption is the single most influential exogenous
variable for intergenerational utility, as seen in Fig. 6.

On the whole, Figs. 5–7 show that the exogenous
variables elasticity of capital, initial productivity, and
damage function exponent are systematically among
the most influential across the five endogenous vari-
ables. The elasticity of marginal utility of consump-
tion is extremely influential on intergenerational util-
ity, but among the least influential on atmospheric
temperature, in accordance with intuition.

These results allow us to investigate whether,
when all 51 exogenous variables are allowed to vary,
the eight exogenous variables considered in Sec-
tion 5.1 are among the most important ones. Table III
reports their ranking.

Table III shows that three out of eight exoge-
nous variables are among the five most important
ones: climate sensitivity (ranking second, third, and
fifth in three out of four cases), growth in total fac-
tor productivity (ranking third in one case), and the
damage function exponential factor (ranking fifth
in one case). Four of them—initial sigma growth
(GSIGMA), cost of backstop in 2005 (PBACK), b12,
and cumulative fossil fuel extraction (FOSSLIM)—
are never among the eight most influential variables.
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Fig. 4. Expected behavior of the social cost of carbon as a function of climate sensitivity (top) and of global emissions (bottom) as a function
of the growth in total factor productivity.
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Fig. 5. δl sensitivity indices for the 10 most important exogenous variables when the endogenous variables are social cost of carbon in 2005
(top) and global emissions in 2105 (bottom).
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Fig. 6. δl sensitivity indices for the 10 most important exogenous variables when the endogenous variables are atmospheric temperature in
2105 (top) and carbon tax in 2015 (bottom).

Also, none among the eight exogenous variables of
Section 5.1 ranks first with respect to any of the
considered endogenous variables. These results have
two relevant implications. The first concerns un-

certainty management. Restricting attention to the
eight variables of Section 5.1 in a hypothetical subse-
quent data collection would lead to overlooking the
most important variable on each of the endogenous
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Fig. 7. δl for the 10 most important exogenous variables when the endogenous variable is intergenerational utility.

Table III. Nordhaus’s (2008) Exogenous Variables SA Rank

Social Cost Global Atmospheric Carbon
Exogenous of Carbon Emissions Temperature Tax in
Variable in 2005 in 2105 in 2105 2015

Growth in total factor productivity 7 11 11 3
Initial sigma growth 16 36 26 6
Climate sensitivity 2 3 5 7
Damage function exponential factor 22 5 6 10
Cost of backstop in 2005 17 32 29 12
Asymptotic population 10 12 8 8
b12 in carbon cycle transition matrix 12 13 12 21
Cumulative fossil fuel extraction 42 26 30 34

variables of interest. Thus, data or information col-
lection could be suboptimal. The second is method-
ological, namely, these results raise the broad ques-
tion about the method with which a set of exoge-
nous variables can be preselected. This task can be
performed either utilizing the methods proposed in
this article or utilizing any of the available screening
methods (see Campolongo et al.(69) for an overview).
However, in any case, the task needs to be carried out
using a systematic approach in which first all model
exogenous variables are varied and then the most im-

portant ones are selected (this is in agreement with
the observations in Saltelli and d’Hombres).(13)

We now devote attention to a more theoretical
discussion concerning intergenerational utility, which
is indeed the primary DICE endogenous variable.
Fig. 6 showed that the exogenous variable driving
variation in the intergenerational utility is, by far,
the elasticity of the marginal utility of consumption
(B˙ELASMU). It is known that, in an intertemporal
optimization setting like the one in DICE, the elas-
ticity of marginal utility of consumption corresponds
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to the variable α in the Ramsey’s equation:

r = ρ + α. g, (17)

where r is the social discount rate, ρ is the rate of pure
time preference, g is the growth rate of consumption
per capita, and α is the elasticity of marginal utility
of consumption. The Stern Review assumes α = 1,
which, together with ρ = 0.1 and g = 1.4, yields a
discount rate of 1.4% a year. Nordhaus instead as-
sumes ρ = 1.5 and α = 1.5, obtaining a yearly 5%
discount rate. α is also known as the coefficient of
relative risk aversion because the DICE model uses
a constant elasticity of substitution utility function:

U[c(t), L(t)) = L(t)(c(t)1−α/(1 − α), (18)

where L(t) denotes labor force or population. α

in Equation (18) determines the shape of the util-
ity function and the relationship between consump-
tion increases and utility or welfare. Sterner and
Persson(87) succinctly explain the economic logic be-
hind assumptions related to values for α: “the higher
the value of α, the less we care for a dollar more
of consumption as we become richer. Since we ex-
pect that we will be richer in the future, when climate
damages will be felt, a higher α also implies that dam-
ages will be valued lower. Thus, a higher value of
α implies less greenhouse gas abatement today, un-
less for some reason we will be poorer rather than
richer in the future. In this case, a higher α would
give higher damage values, which would justify more
abatement.”(87, p. 66)

The findings displayed in Fig. 6 provide key sup-
port to the argument that numerical decisions affect-
ing the exogenous variables of Ramsey’s equation
and implicitly the discount rate are of primary im-
portance in IAMs. There is a long-standing debate
about the appropriate choice of the discount rate in
long-term policies, like the one associated with cli-
mate change, with notable contributions by Heal,(88)

Weitzman,(89) and Newell and Pizer.(90) The de-
bate was reignited after the publication of the Stern
Review,(91) as many critics argue that most of Stern’s
results depend on the choice of a very low (possibly
implausible) discount rate.(24,25,29,51) Indeed, using al-
ternative combinations of α and ρ, Nordhaus(92) de-
rives alternative real interest rates and values of the
social cost of carbon. In particular, the Stern Review
ρ = 0.1 and Nordhaus’s 5% real interest rate imply
α = 2, so that DICE’s social cost of carbon increases
but to a value that is only about one-tenth of the one
implied by the Stern Review.

Our analysis confirms not only that this exoge-
nous variable is key for results, but it also allows us
to understand how important it is. In this respect, we
also studied how this exogenous variable interacts
with other exogenous variables in the model. The
strongest interaction is with the production function
elasticity of capital, which is one of the most relevant
exogenous variables of the DICE model. The pro-
duction function elasticity of capital directly affects
the marginal productivity of capital: a high value of
it implies that investing today (thereby postponing
consumption) will pay back in the future with high
returns on income. It then comes with little surprise
that interactions between the elasticity of capital and
the elasticity of marginal utility of consumption are
important, as both exogenous variables directly in-
fluence the intertemporal allocation of resources.

Economists and policymakers are not only in-
terested in drivers of intergenerational utility, which
in itself is an abstract concept, but they focus also
on more pragmatic variables that are of relevance—
such as the level of total emissions at the end of the
century—and actionable—such as magnitudes of car-
bon taxes. As a final step, we consider the full rank-
ings induced by δi on all endogenous variables. They
are reported in Table IV.

A qualitative inspection of the ranking in the ta-
ble has been discussed earlier. The inspection can
be made quantitative utilizing the standard approach
based on Spearman rank and Savage score correla-
tion coefficients (see Iman and Conover(96)). We de-
note them by ρR(yi,yj) and ρS(yi,yj), respectively. The
reason for computing both indexes is that a compar-
ison of these values is informative about the agree-
ment at the level of the most important exogenous
variables. In particular, if ρR(yi,yj) < ρS(yi,yj), then
ranking agreement among the top ranked exoge-
nous variables is higher than average, if ρR(yi,yj) >

ρS(yi,yj), the converse is true.
For the rankings in Table IV, the numerical val-

ues of ρR(yi,yj) and ρS(yi,yj) are reported in Table V.
To illustrate, consider as an example the entry

at the intersection of carbon tax (row) and social
cost of carbon (column). The corresponding coef-
ficients are equal to ρR = 0.958 and ρS = 0.951,
respectively. Such values indicate a strong ranking
agreement. Thus, the exogenous variables that are
influential on the social cost of carbon are also in-
fluential for the carbon tax. Consider now the entry
corresponding to global emissions (row) and social
cost of carbon. We have ρR = 0.657 and ρS = 0.599.
These values indicate that the ranking agreement is
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Table IV. δ Ranking

Exogenous Social Cost of Global Emissions Atmospheric Carbon Tax Intergenerational
Variable Carbon in 2005 in 2105 Temperature in 2105 in 2015 Utility

A0 6 5 1 3 4
A1 43 43 43 43 43
A2 5 10 22 6 42
A3 2 1 8 1 10
BACKRAT 20 24 34 27 12
B˙ELASMU 4 11 19 4 1
B˙PRSTP 9 15 29 10 6
C1 8 14 18 9 23
C3 27 19 23 20 27
C4 17 28 30 18 25
DELA 39 31 37 40 22
DK 33 38 24 33 31
DPARTFRACT 43 43 43 43 43
DSIG 37 26 40 31 32
DSIG2 43 43 43 43 43
ELAND0 31 42 39 42 15
EXPCOST2 21 4 5 19 21
FCO22X 7 13 15 7 17
FEX0 38 35 41 35 41
FEX1 30 39 33 41 24
FOSSLIM 26 34 42 30 13
GA0 11 3 7 11 7
GAMA 1 9 4 2 3
GBACK 29 25 38 25 9
GPOP0 25 32 28 24 39
GSIGMA 36 6 16 26 38
K0 10 40 31 16 8
LIMMIU 43 43 43 43 43
MAT2000 19 29 9 15 40
ML2000 35 41 21 39 30
MU2000 28 27 6 23 29
PARTFRACT1 43 43 43 43 43
PARTFRACT2 43 43 43 43 43
PARTFRACT21 43 43 43 43 43
PBACK 32 12 17 29 16
POP0 23 30 20 28 11
POPASYM 12 8 10 8 5
Q0 24 36 38 32 26
SIG0 22 2 3 21 28
T2XCO2 3 7 2 5 14
TATM0 34 33 35 34 36
TOCEAN0 18 37 32 22 37
b11 13 21 12 12 18
b12 13 21 12 12 18
b21 13 21 12 12 18
b22 16 20 11 17 2
b23 40 16 26 36 34
b32 40 16 26 36 34
b33 42 18 25 38 33
scale1 43 43 43 43 43
scale2 43 43 43 43 43
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Table V. Spearman and Savage Score Correlation Coefficients

Social Cost of Global Emissions Atmospheric Carbon Tax Intergenerational
Carbon in 2005 in 2105 Temperature in 2105 in 2015 Utility

Social cost of carbon 1
Global emissions 0.657 | 0.599 1
Atmospheric temperature 0.709 | 0.613 0.816 | 0.718 1
Carbon tax 0.958 | 0.951 0.774 | 0.717 0.789 | 0.669 1
Intergenerational utility 0.731 | 0.645 0.554 | 0.388 0.545 | 0.430 0.669 | 0.622 1

Note: In each entry, the two coefficients ρR(yi,yj) and ρS(yi,yj) are separated by a vertical bar.

not strong. Also, the fact that ρR > ρS in this case in-
dicates that the disagreement is higher (on average)
at the level of key drivers than at the level of the non-
influential factors.

Table V indicates a systematically low value of
ρR and ρS when intergenerational utility is consid-
ered. Conversely, the ranking agreement among the
other exogenous variables is higher. In particular:

� The optimal carbon tax coincides with the social
cost of carbon discounted at 2015: this explains
the very high correlation with the same variable
discounted at 2005;

� The social cost of carbon provides a monetary
measure of the marginal impact of a ton of car-
bon on discounted utility: this explains the high
rank correlation between social cost and utility;
and

� Temperature depends on radiative forcing,
which depends on GHGs concentration, which
depends on emissions: this explains the strong
rank correlation between temperature and
emissions.

In general, exogenous variables could be split
into a group of speculative exogenous variables
whose value is not empirically known and is cal-
culated through projections or specific assumptions,
and a group of exogenous variables that are econo-
metric in nature and depend on statistical analysis. It
is common to take the econometric group of exoge-
nous variables as given and instead focus on the spec-
ulative exogenous variables when performing sen-
sitivity or scenario analysis. Our results show that
uncertainty in both types of exogenous variables is
influential ex ante. Thus, the practical recommenda-
tion that emerges is that global SA should be used
to quantify the relevance of all exogenous variables,
without excluding some from the quantitative anal-
ysis. One is then ensured that further analysis con-
ducted on the resulting key drivers is robust to poten-

tial criticism on the way sensitivity analysis has been
used.

Finally, we also postprocessed the data to obtain
information on the direction of change and interac-
tions when all 51 exogenous variables vary. Results
are similar to those reported in Figs. 2 and 3 where
first-order effects are monotonic and second-order
interaction effects are significant and nonmonotonic.
To conserve on space the results are not reported
here.

6. CONCLUSIONS

This article has demonstrated the usefulness of
global sensitivity analysis methods in the area of inte-
grated assessment modeling for climate change eco-
nomics. It has shown that, at the same computational
cost of a standard uncertainty analysis, we can ob-
tain robust insights into direction of change, model
structure (interactions), and key uncertainty drivers.
These insights provide analysts with a deeper under-
standing of a model behavior and allow them to ro-
bustly identify the exogenous variables on which to
focus additional data and information collection.

A further advantage of the methods proposed
and described in this article is that significant interac-
tions can be identified explicitly, rather than simply
acknowledged or speculated upon, and the direction
of the interaction effect can be observed.

We have discussed both numerical and method-
ological aspects of the approach using DICE, one
of the most popular models for climate change pol-
icy analysis. The results show that the elasticity of
the marginal utility of consumption, which influ-
ences the discount rate applied, is by far the most
influential exogenous variable in affecting the de-
pendent variable in the objective function of the
model, intergenerational utility. The key uncertainty
drivers have been also identified with respect to more
pragmatic policy-relevant endogenous variables, in-
cluding social cost of carbon and carbon tax on one



Uncertainty in Climate Change Modeling 291

hand, and emissions and temperature on the other.
Differences in ranking of the exogenous variables
with respect to the endogenous variables have been
analyzed.

The results of this article highlight the merits of
performing global sensitivity analysis alongside other
types of scenario analysis. The most highly visible re-
cent analysis of IAMs in the climate change litera-
ture revolved around what type of scenario should
be considered as a most reasonable informer for pol-
icy. The authors of the Stern Review claim that a sce-
nario with low discount rates and strong intergener-
ational equity is the correct basis, while others avoid
the “normative” discussions on discount rates, using
instead observable market rates of return and arriv-
ing at much different conclusions and policy recom-
mendations. While this highlights the usefulness of
varied modeling strategies for different policy or sci-
entific questions, our exercise has shown the benefits
of using global sensitivity analysis methods since the
two approaches are not interchangeable and impor-
tant information can be obtained from both. Finally,
global sensitivity analysis along the lines presented
here could be fruitfully conducted on other classes of
models routinely used in climate change policy analy-
sis, from computable general equilibrium models for
impact assessment to energy system technoeconomic
models.
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