
Mathematical Programming
Algorithms for Network
Optimization Problems

Dipartimento di Matematica ”Federico Enriques”

Dottorato in Matematica e Statistica per le Scienze
Computazionali - XXVI Ciclo

PhD Thesis of: Fabio Colombo

Tutor: Prof. Marco Trubian

Co-Tutor: Ing. Roberto Cordone

Coordinator: Prof. Giovanni Naldi

1

Contents

1 Introduction . 7
1.1 Network Optimization Problems . 7
1.2 Original Contributions . 10
1.3 Thesis outline . 12
1.4 References . 13

2 The Column Generation method and its extensions 15
2.1 Exact methods and Heuristics: how to combine them? 15

2.1.1 Exact methods . 15
2.1.2 Heuristics . 16
2.1.3 Hybrid Methods . 17

2.2 Dantzig-Wolfe decomposition and Column Generation method 18
2.2.1 The Dantzig-Wolfe decomposition . 18
2.2.2 Dantzig-Wolfe decomposition and ILP formulation 20
2.2.3 Identical Subsystems and symmetry breaking by

Dantzig-Wolfe decomposition . 23
2.2.4 The Column Generation method . 24

2.3 Column Generation based metaheuristics . 26
2.4 Simultaneous Row and Column Generation . 27
2.5 References . 31

3 Experimental analysis of different ILP approaches for the
Knapsack Prize Collecting Steiner Tree Problem 35
3.1 Motivations . 35
3.2 The Knapsack Prize Collecting Steiner Tree Problem 36
3.3 Survey of the literature . 37
3.4 Compact formulations based on network flows 38

3.4.1 Single-commodity flow formulations . 38
3.4.2 Multi-commodity flow formulation . 40

3.5 Extended formulation based on the connectivity cuts 41
3.5.1 Separation algorithm . 42

3

4 Contents

3.5.2 Cuts pool initialization . 43
3.6 A Relax-and-Cut method for the KPCSTP . 44

3.6.1 The Lagrangian Dual Problem . 45
3.6.2 Solving the Lagrangian Dual Problem 46
3.6.3 A lagrangian heuristic . 46
3.6.4 A Tabu Search initialization heuristic 47
3.6.5 Embedding the Lagrangian Dual Problem in an exact method 47

3.7 Computational Experiments . 49
3.7.1 Benchmark instances . 49
3.7.2 Network flow formulations comparison 50
3.7.3 The best way to initialize the connectivity cuts pool 52
3.7.4 Comparison of the different exact methods 56

3.8 Conclusion . 58
3.9 References . 59

4 Multicast Routing and Wavelength Assignment with Delay
Constraint in WDM networks with heterogeneous capabilities 61
4.1 Introduction . 61
4.2 The MRWADC problem and its compact ILP formulation 64
4.3 An extended formulation . 68
4.4 Column Generation . 70
4.5 Pricing Problem . 71

4.5.1 Multi-commodity flow formulation . 72
4.5.2 Connectivity cuts formulation . 74
4.5.3 Tabu search . 76

4.6 Computational experiments . 78
4.6.1 Algorithms for the subproblem . 78
4.6.2 Column Generation . 79
4.6.3 Parameters and Instances generation . 79
4.6.4 Experimental results . 80

4.7 Conclusion . 84
4.8 References . 85

5 The Homogenous Areas Problem . 87
5.1 Introduction . 87
5.2 Problem definition . 88
5.3 Computational complexity . 89
5.4 Instances . 91

5.4.1 Real world instances . 91
5.4.2 Benchmark A - the realistic instances . 91
5.4.3 Benchmark B - random instances with realistic subset

structure . 92
5.4.4 Benchmark C - random instances with generic subset

structure . 93
5.5 On the relationship with Graph Partitioning Problems 94

Contents 5

5.6 Multi-commodity flow formulations . 99
5.6.1 A commodity for each area . 100
5.6.2 A commodity for each node . 105
5.6.3 Valid inequalities and big-M reductions 108
5.6.4 Computational comparison of the two compact formulations 113
5.6.5 Scalability of compact formulations . 116

5.7 A Column Generation approach . 118
5.7.1 Dantzig-Wolfe decomposition and extended formulation . . . 119
5.7.2 Computing the LP-Relaxation of the extended formulation . 121
5.7.3 A root-independent Pricing Problem formulation 122
5.7.4 Solving the Pricing Problem by iterative fixing the root 123
5.7.5 Valid inequalities and coefficient reductions 124
5.7.6 A Tabu Search heuristic for the Pricing Problem 125
5.7.7 Lower bound comparison . 128

5.8 Local search based heuristics for the HAP . 131
5.8.1 A Tabu Search algorithm . 132
5.8.2 A Very Large Scale Neighborhood algorithm 133
5.8.3 Computational experiments on the local search based

heuristics . 137
5.9 Column Generation based heuristics for the HAP 143

5.9.1 Limited Discrepancy Search . 143
5.9.2 An alternative way to use a tabu memory 145
5.9.3 Large Neighborhood Search . 146
5.9.4 Computational experiments on Column Generation based

heuristics . 150
5.10 Computational experiments on real world instances 157
5.11 Conclusion . 158
5.12 References . 158

6 The Train Design Optimization Problem . 161
6.1 Introduction . 161
6.2 Problem description . 163

6.2.1 Operational and capacity constraints . 164
6.2.2 Objective function . 165

6.3 Competing algorithms . 167
6.4 A Mathematical Programming formulation . 168
6.5 A Simultaneous Column and Row Generation method 170

6.5.1 Initialization: procedure BuildDedicatedTrainsAndPaths . . . 172
6.5.2 Generation of the block-paths: procedure

GenerateBlockPaths . 173
6.5.3 Train generation: procedure GenerateTrains 177

6.6 Computational results and final remarks . 182
6.6.1 Benchmark data sets . 182
6.6.2 Parameter tuning . 183
6.6.3 Computational results . 183

6 Contents

6.7 Conclusions . 188
6.8 References . 189

Chapter 1
Introduction

1.1 Network Optimization Problems

The term network may denote many different concepts, depending on the consid-
ered area of study: for instance, in the telecommunications sector it denotes a set
of interconnected electronic devices that communicate with each other (Bertsekas
and Gallager, 1987), in the railway industry it indicates how railroad yards are con-
nected by rail tracks (Ahuja et al., 2005), and in social sciences it refers to the way
in which different human beings interact (Wellman and Berkowitz, 1988). What all
these definitions have in common is that all of them describe collections of simple
items interconnected to each other to form a complex structure. Throughout the rest
of this thesis, we will adopt the connectivity among simple components generating
a more complex system as the characterizing property of a network.

Networks provide a general framework to describe both natural phenomena and
human technologies. In the real world, there is an incredible large number of com-
plex systems that can be better understood if we are able to identify one or more
networks interconnecting the simple parts of the considered system. Starting by
enumerating the smallest parts of a system and, then, analyzing how these parts are
related to each other, is a powerful method to dominate its complexity.

The practical applications of networks range from physical networks that provide
transportation, water, power and communication, to logical networks that allow us to
simply model many decisions processes like, for example, the way in which a pool
of different tasks requiring the same resources are scheduled on a machine (Her-
roelen et al., 1998), or the way in which the different components of an IT system
interact to satisfy the user requirements (Harrold et al., 1992). Other applications
arise also in biology and natural sciences (see, for example, De Jong 2002; Dunne
et al. 2002; Proulx et al. 2005).

In this thesis we consider combinatorial optimization problems (Lawler, 1976)
defined by means of networks, these problems arise when we need to take effective
decisions to build or manage complex interconnected systems, both satisfying the

7

8 1 Introduction

design constraints and minimizing the costs that we need to pay (or maximizing the
profit that we can obtain).

The main mathematical tools developed in the literature to model networks are
graphs, their variants and their extensions. As a result, the problems that we analyze
in this thesis can be easily and effectively reformulated as combinatorial optimiza-
tion problems that require to identify special structures in one or more given graphs.

Two of these special structures are particularly recurring throughout all the fol-
lowing chapters: trees and paths. This is not at all surprising. A tree is a minimal
set of edges in an undirected graph that guarantees the connectivity of the spanned
nodes and, as a consequence, in applications it represents the cheapest way to join
each item of the considered network to each other. A path, on the other side, is both
a particular type of tree and a basic component of each tree. While a tree allows
us to cheaply satisfy a many-to-many connectivity requirement, a path allows us to
cheaply satisfy a one-to-one connectivity requirement.

In the remaining part of this thesis we focus our attention on the four following
problems:

• The Multicast Routing and Wavelength Assignment with Delay Constraint in
WDM networks with heterogeneous capabilities (MRWADC) problem: this prob-
lem (Chen et al. 2008; Colombo and Trubian 2013) arises in the telecommu-
nications industry and it requires to define an efficient way to make multicast
transmissions on a WDM optical network (Mukherjee, 2006). In more formal
terms, to solve the MRWADC problem we need to identify, in a given directed
graph that models the considered WDM optical network, a set of arborescences
that connect the source of the transmission to all its destinations. These arbores-
cences need to satisfy several quality-of-service constraints, taking into account
the heterogeneity of the electronic devices which constitute the WDM network.

• The Homogeneous Area Problem (HAP): this problem (Colombo et al., 2011,
2012; Ceselli et al., 2013; Colombo et al., 2013) arises from a particular require-
ment of an intermediate level of the Italian government called province. Each
province needs to coordinate the common activities of the towns that belong to
its territory. To practically perform its coordination role, the province of Milan
created a “customer care” layer composed by a certain number of employees
that have the task to support the towns of the province in their administrative
works. For the sake of efficiency, the employees of this “customer care” layer
have been partitioned in small groups and each group is assigned to a particular
subset of towns that have in common a large number of activities. The HAP re-
quires to identify the set of towns assigned to each group in order to minimize
the redundancies generated by the towns that, despite having some activities in
common, have been assigned to different groups. Since, for both historical and
practical reasons, the towns in a particular subset need to be adjacent, the HAP
can be effectively modeled as a particular Graph Partitioning Problem (GPP, see
Fjallström 1998) that requires the connectivity of the obtained subgraphs and the
satisfaction of nonlinear knapsack constraints.

• Knapsack Prize Collecting Steiner Tree Problem (KPCSTP): we starting consid-
ering this problem when we need to develop the two Column Generation methods

1.1 Network Optimization Problems 9

(Lübbecke and Desrosiers, 2005) for the MRWADC problem and for the HAP. In
both cases the Pricing Problem requires to find an arborescence that minimizes
the difference between its cost and the prizes associated with the spanned nodes.
The two problems differ in the side constraints that their feasible solutions need
to satisfy and in the way in which the cost of an arborescence is defined. The ILP
formulations and the resolution methods that we developed to tackle these two
Pricing Problems share many characteristics with the ones used to solve other
similar problems. To exemplify these similarities, we considered KPCSTP as a
prototype for all these problems: it requires to find a tree that minimizes the dif-
ference between the cost of the used arcs and the prize of the spanned nodes.
However, not all trees are feasible: each node is associated with a nonnegative
weight and the sum of the weights of the nodes spanned by a feasible tree can-
not exceed a given threshold. In the thesis we propose several Integer Linear
Programming (ILP) formulations for the KPCSTP and compare the resulting op-
timization methods with an other method proposed in the literature (Cordone and
Trubian, 2008).

• The Train Design Optimization (TDO) problem: this problem was the topic of the
second problem solving competition, sponsored in 2011 by the Railway Applica-
tion Section (RAS) of the Institute for Operations Research and the Management
Sciences (INFORMS)1. The TDO problem arises in the freight railroad indus-
try: a freight railroad company receives requests from customers to transport a
set of railcars from an origin rail yard to a destination rail yard. To satisfy these
requests, the company first aggregates the railcars having the same origin and the
same destination in larger blocks, and then it defines a trip plan to transport the
obtained blocks to their correct destinations. The TDO problem requires to iden-
tify a trip plan that efficiently uses the limited resources of the considered rail
company. More formally, given a railway network, a set of blocks and the seg-
ments of the network in which a crew can legally drive a train, the TDO problem
requires to define a set of trains and the way in which the given blocks can be
transported to their destinations by these trains, both satisfying operational con-
straints and minimizing the transportation costs. We participated to the contest
and we won the second prize. After the competition, we continued to work on
the TDO problem and in this thesis we describe the improved method that we
have finally obtained.

All the combinatorial optimization problems we consider in this thesis arise from
real world applications. As a consequence, they take in account many side con-
straints and practical aspects that contribute to increase their complexity. To deal
with this complexity, we exploited a large part of the tools and techniques developed
in the field of Mathematical Programming and Operations Research, starting from
exact methods (see Section 2.1.1) that, solving the consider problems to optimality,
cannot scale to high dimensions but allow us to deeply investigate the structure of
the problem, passing through heuristic methods (see Section 2.1.2) that are able to

1 For further details, see the official website http://www.informs.org/Community/
RAS/Problem-Solving-Competition/.

10 1 Introduction

find good feasible solutions in a reasonable amount of time, without giving guar-
antees on their quality, arriving to hybrid methods (see Section 2.1.3) that either
exploit the information gained by partially executing exact methods to effectively
drive the heuristics or speed up exact methods by heuristically solving some related
subproblems.

Among these tools and techniques, the Dantzig-Wolfe decomposition principle
(Dantzig and Wolfe, 1960) and the Column Generation method are the ones we em-
ployed in a more extensive way: the Dantzig-Wolfe decomposition allowed us to
apply the divide et impera principle to the resolution process of complex ILP for-
mulations, and applying the Column Generation method we were able to implicitly
solve their Linear Programming (LP) Relaxation. In Chapter 2 we propose a short
introduction to these two techniques and we describe which changes are required in
the Column Generation method in order to simultaneously generate both columns
and rows (we applied this modified method to efficiently solve the TDO problem,
see Chapter 6).

1.2 Original Contributions

Our contributions can be divided in three different parts: modeling of new problems,
methodological advances and practical results.

From the modeling point of view, our first contributions lie in the definition and
analysis of several formulations for two combinatorial optimization problems re-
quiring the identification of a set of constrained arborescences in given directed
graphs. In particular, for the MRWADC problem we propose a new extended for-
mulation obtained applying the Dantzig-Wolfe decomposition to a well-known com-
pact formulation. To model the HAP, we first discuss its distinctive aspects which
make it different from the standard GPP; then we propose two compact formula-
tions and we discuss how to solve some symmetry related issues that afflict both of
them. One way to solve these issues is to define a new extended formulation ob-
tained applying the Dantzig-Wolfe decomposition to one of the previous compact
formulations. To actually solve the extended formulations for the MRWADC prob-
lem and for the HAP, we need to solve also the two corresponding Pricing Problems
which can be modeled as constrained prize collecting arborescence problems. The
final modeling contribution regards the TDO problem which we model using an ex-
tended formulation based on an exponential number of variables and constraints. To
avoid the complete enumeration of all these variables and constraints, we need to
define and solve two different Pricing Problems: one to generate new train routes
and the other to generate the paths followed by the blocks, denoted in the following
by block-paths.

A first methodological contribution lies in the definition of two effective Column
Generation methods, one for the MRWADC problem and one for the HAP. The ex-
tended formulations we propose for these two problems are both associated with a
N P-hard Pricing Problem. Thus, to terminate the Column Generation method in

1.2 Original Contributions 11

a reasonable amount of time, our algorithms generate new columns by combining
exact and heuristic methods. Indeed, we developed two Tabu Search (Glover and
Laguna, 1997) heuristics that take in account the different structures of the two con-
sidered Pricing Problems. We use them until they are able to find negative reduced
cost columns and, when they fail, we fall back to exact methods based on ILP for-
mulations. One of the two ILP formulations that we propose to tackle the Pricing
Problem associated with the MRWADC extended formulation contains two different
exponential families of constraints. The first family is based on the well-known con-
nectivity cuts for the Prize Collecting Steiner Tree Problem (PCSTP, Ljubić et al.
2006) and, to dynamically generate them, we apply the standard separation algo-
rithm based on the minimum cut problem. Instead, to dynamically generate the con-
straints in the second family, we propose and implement a new separation algorithm
based on the minimum cost network flow problem (Ahuja et al., 1993). Moreover,
starting from the ILP formulations developed for the Pricing Problems associated
with the HAP and with the MRWADC problem, we derive similar ILP formulations
to solve also the KPCSTP. Another methodological contribution consists in the def-
inition of different Column Generation based heuristics for the HAP. In particular,
we considered three different strategies to implement them. The first two exploit a
partial exploration of a particular branching tree (Joncour et al., 2010; Cacchiani
et al., 2012) and differ in the way in which they generate and process new branching
nodes. The last method is based on the Large Neighborhood Search (Pisinger and
Røpke, 2010), and its repair phase is based on the Column Generation method.

The last methodological contribution resides in the definition of a Simultaneous
Row and Column Generation based heuristic for the TDO. This type of algorithms
has only recently been considered in the literature (Zak, 2002; Feillet et al., 2010;
Muter et al., 2012), and ours is one of the first Simultaneous Row and Column
Generation based methods that deal with all the complex practical aspects of a com-
binatorial optimization problem arising in an industrial setting. As by product of the
definition of this algorithm, we developed fast heuristics to solve the two Pricing
Problems respectively associated with the generation of new train routes and new
block-paths.

From the practical point of view, this thesis describes several effective methods
to solve complex optimization problems arising both in industrial settings and in the
public sector. In particular, applying the methods that we developed for the HAP,
we were able to obtain the optimal solution for the medium-size instance describing
the Monza province and we found near optimal solutions for the bigger instance
describing the Milan province. Moreover, applying the heuristic method that we
developed for the TDO, we obtained good quality solutions for two real world in-
stances provided by a first class US railroad company.

Overall, the work described in this thesis required the original implementation,
tuning and testing of two Branch & Cut algorithms, two Column Generation meth-
ods, three Column Generation based heuristics, one Simultaneous Row and Column
Generation based heuristic and three Tabu Search heuristics.

12 1 Introduction

1.3 Thesis outline

In Chapter 2, we introduce the well-known Dantzig-Wolfe decomposition princi-
ple and the Column Generation method that are two techniques widely used in the
following chapters. In the end, we describe how to change the Column Generation
method to dynamically generate, not only the columns of an extended formulation,
but also its rows.

In Chapter 3, we study different methods to solve the KPCSTP. We describe how
to adapt the methods already proposed in the literature for the PCSTP to consider
the knapsack constraint and we report the results of the computational experiments
that we performed in order to investigate the impact of the added constraint on the
different proposed methods.

In Chapter 4, we describe the Column Generation method that we developed for
the MRWADC problem. We start by introducing a new compact formulation for the
problem and the extended formulation that we obtained applying to it the Dantzig-
Wolfe decomposition. We describe the Column Generation method that we use to
obtain the LP-Relaxation of the extended formulation and the different algorithms
that we developed to efficiently solve the associated Pricing Problem. The final sec-
tion reports a computational comparison between the solutions obtained by solving
the compact formulation and the ones obtained by adding the integrality constraint
to the last generated Reduced Master Problem.

In Chapter 5, we describe the different methods that we developed to solve the
HAP. The chapter begins with a short survey of the techniques proposed in the lit-
erature to solve similar GPPs and provides different arguments showing that the
HAP cannot be solved by simply modifying them. Then, we introduce and compare
two different compact ILP formulations for the HAP, noting that both of them have
scalability issues. The chapter continues by presenting a new extended formulation
that overcomes these issues and by introducing the Column Generation method that
we used to obtain its LP-Relaxation and the algorithms that we developed to solve
the associated Pricing Problem. The chapter ends with the description and the com-
putational comparison among two local search heuristics and three different hybrid
heuristics that make use of the Column Generation method as a subroutine.

In Chapter 6, we describe the Simultaneous Column and Row Generation based
heuristic that we developed to solve the TDO Problem. Since this problem is quite
complex, the first part of the chapter is devoted to the description of the several op-
erational constraints and different objective function components that contribute to
the definition of the problem. The chapter continues with a short survey of the three
other methods that participated to the final round of the second RAS problem solv-
ing competition. After this survey, we introduce the extended ILP formulation on
which our heuristic is based. This formulation presents both an exponential number
of columns and an exponential number of rows. Then we describe the Simultaneous
Column Row Generation heuristic that we employed to obtain good feasible solu-
tions and the algorithms that we developed to solve the two associated Pricing Prob-
lems. The final section of the chapter provides a computational comparison among

1.4 References 13

our method and the other methods proposed to solve the TDO problem during the
competition.

1.4 References

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: theory, algorithms,
and applications. Prentice-Hall, Inc., 1993.

R. K. Ahuja, C. B. Cunha, and G. Şahin. Network Models in Railroad Planning and
Scheduling. In J. Cole Smith, editor, Tutorials in Operations Research: Emerging
Theory, Methods, and Applications, chapter 3, pages 54–101. INFORMS, 2005.

D. P. Bertsekas and R. Gallager. Data networks. Prentice Hall, 1987.
V. Cacchiani, V. C. Hemmelmayr, and F. Tricoire. A set-covering based heuristic al-

gorithm for the periodic vehicle routing problem. Discrete Applied Mathematics,
2012. doi: 10.1016/j.dam.2012.08.032.

A. Ceselli, F. Colombo, R. Cordone, and M. Trubian. Employee workload balancing
by graph partitioning. Discrete Applied Mathematics, 2013. doi: 10.1016/j.dam.
2013.02.014.

M. T. Chen, B. M. T. Lin, and S. S. Tseng. Multicast routing and wavelength assign-
ment with delay constraints in WDM networks with heterogeneous capabilities.
Journal of Network and Computer Applications, 31(1):47–65, 2008.

F. Colombo and M. Trubian. A column generation approach for multicast routing
and wavelength assignment with delay constraints in heterogeneous wdm net-
works. Annals of Operations Research, 2013. doi: 10.1007/s10479-013-1403-7.

F. Colombo, R. Cordone, and M. Trubian. On the partition of an administrative
region in homogenous districts. In Atti del Convegno AIRO 2011, Brescia, Italy,
2011.

F. Colombo, R. Cordone, and M. Trubian. Upper and lower bounds for the homoge-
nous areas problem. In Proceedings of the 11th Cologne-Twente Workshop on
Graphs and Combinatorial Optimization, München, Germany, 2012.

F. Colombo, R. Cordone, and M. Trubian. Column-generation based bound for the
homogeneous areas problem, 2013. Submitted to European Journal of Opera-
tional Research, under second review round.

R. Cordone and M. Trubian. A Relax-and-Cut Algorithm for the Knapsack Node
Weighted Steiner Tree Problem. Asia-Pacific Journal of Operational Research,
25(3):373–391, 2008.

G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Opera-
tions Research, 8(1):101–111, 1960.

H. De Jong. Modeling and simulation of genetic regulatory systems: a literature
review. Journal of computational biology, 9(1):67–103, 2002.

J. A. Dunne, R. J. Williams, and N. D Martinez. Network structure and biodiversity
loss in food webs: robustness increases with connectance. Ecology Letters, 5(4):
558–567, 2002.

14 1 Introduction

D. Feillet, M. Gendreau, A. L. Medaglia, and J. L. Walteros. A note on branch-and-
cut-and-price. Operations Research Letters, 38(5):346 – 353, 2010.

P. O. Fjallström. Algorithms for graph partitioning: A survey. Linköping Electronic
Articles in Computer and Information Science, 10, 1998.

F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.
M. J. Harrold, J. D. McGregor, and K. J. Fitzpatrick. Incremental testing of object-

oriented class structures. In Proceedings of the 14th international conference on
Software engineering, ICSE ’92, pages 68–80, New York, NY, USA, 1992. ACM.

W. Herroelen, B. De Reyck, and E. Demeulemeester. Resource-constrained project
scheduling: A survey of recent developments. Computers & Operations Re-
search, 25(4):279 – 302, 1998.

C. Joncour, S. Michel, R. Sadykov, D. Sverdlov, and F. Vanderbeck. Column gener-
ation based primal heuristics. Electronic Notes in Discrete Mathematics, 36:695
– 702, 2010.

E. Lawler. Combinatorial Optimizations: Networks and Matroids. Holt, Rinehar
and Winston, 1976.

I. Ljubić, R. Weiskircher, U. Pferschy, G. W. Klau, P. Mutzel, and M. Fischetti. An
Algorithmic Framework for the Exact Solution of the Prize-Collecting Steiner
Tree Problem. Mathematical programming, 105(2-3):427–449, 2006.

M. E. Lübbecke and J. Desrosiers. Selected Topics in Column Generation. Opera-
tions Research, 53(6):1007–1023, 2005.

B. Mukherjee. Optical WDM Networks. Springer, 2006.
İ. Muter, Ş. İ. Birbil, and K. Bülbül. Simultaneous column-and-row generation

for large-scale linear programs with column-dependent-rows. Mathematical Pro-
gramming, 2012. doi: 10.1007/s10107-012-0561-8.

D. Pisinger and S. Røpke. Large neighborhood search. Handbook of metaheuristics,
pages 399–419, 2010.

S. R. Proulx, D. E. L. Promislow, and P. C. Phillips. Network thinking in ecology
and evolution. Trends in Ecology & Evolution, 20(6):345 – 353, 2005.

B. Wellman and S. D. Berkowitz. Social structures: A network approach, volume 2.
Cambridge University Press, 1988.

E. J. Zak. Row and column generation technique for a multistage cutting stock
problem. Computers & Operations Research, 29(9):1143 – 1156, 2002.

Chapter 2
The Column Generation method and its
extensions

2.1 Exact methods and Heuristics: how to combine them?

It is well known that a large amount of the optimization problems arising both in
industry and in academia belongs to the class of the N P-hard problems (Garey
and Johnson, 1979). As a consequence, unless N P = P , we cannot expect to
develop fast polynomial time algorithms to solve them. Nonetheless, the practical
need to efficiently solve these hard problems has given rise to two main lines of
investigation in the Operations Research community: some efforts have been aimed
to develop exact methods that are able to find optimal solutions in a more efficient
way w.r.t. the simple enumerative approaches. On the other side, since exact meth-
ods generally require too much computational resources when the dimension of the
considered instances increases too much, the focus of other investigations has been
the development of fast heuristics that are able to find good solutions in a reason-
able amount of time. An often underestimated result of the investigation on exact
methods is the increased knowledge of the problem structure and of the peculiar
characteristics of its optimal solutions: to systemically improve the heuristic meth-
ods with the information gained through the execution of exact methods, in the last
decades hybrid methods that combine both exact and heuristic methods have been
developed. In the remaining part of this section we propose a short survey of these
three broad classes of optimization methods.

2.1.1 Exact methods

The final aim of each exact method is to identify an optimal solution for the consid-
ered problem. Exact methods are what we need when we are facing strategic prob-
lems whose instances have modest size: the time required to find an optimal solution
is measured in hours or days and we have enough time to wait and enough interest
to know the optimal solution. Though the required time is not a tight constraint in

15

16 2 The Column Generation method and its extensions

a typical use case of exact methods, the fewer computational efforts required by ad
hoc methods when related to naive enumerative algorithms are crucial to increase
the size of instances that can be practically solved. To minimize their computational
resources requirements, good exact methods need to take into account the particular
structure of the considered problem. Nonetheless, during the last decades, in order
to simplify the development of new exact methods some general algorithms design
techniques have been proposed in the literature. When the considered optimization
problem can be easily defined by means of a Mathematical Programming formu-
lation, Branch & Bound (see Lawler and Wood 1966 for a survey) is probably the
most frequently used exact method.

The most important decisions to make, in order to effectively implement a Branch
& Bound algorithm are the following ones:

• Choose the order in which the algorithm visits the nodes of the branching tree.
• Choose the way in which the feasible solutions associated with a given node are

split among its children nodes.
• Choose the procedure to compute the lower bound associated with a given node.

In the previous literature, several papers has been focused on the last point: a good
bounding procedure must be fast and must be able to produce strong lower bounds.
If the obtained lower bounds are near to the cost of the optimal solution, the chances
to prune great portions of the branching tree increase significantly. Often the bound-
ing procedures consist in methods that effectively compute the LP-Relaxation of an
ILP formulation for the considered instance. Generally, tighter lower bounds can
be obtained starting from larger ILP formulations. Some of these formulations have
a number of variables or constraints that is not bound by a polynomial in the di-
mension of the considered problem. Thus, we cannot solve their LP-Relaxations
applying a standard LP method. To obtain the LP-Relaxations of these formulations
without enumerating all their constraints and variables, different methods have been
developed in the literature. If the number of constraints is too high we can use Cut-
ting Planes methods (introduced for the first time in Dantzig et al. 1954) and the
obtained Branch & Bound algorithm belongs to the Branch & Cut family. Other-
wise, if the number of columns is too high we can apply the Column Generation
method (see Section 2.2.4) and the obtained Branch & Bound algorithm belongs
to the Branch & Price family. Combination of both techniques can be used as well
and depending on the type of constraints we want to dynamically add to our LP-
Relaxation formulation, we can apply Branch & Cut & Price methods (Fukasawa
et al., 2006) or Simultaneous Column and Row Generation approaches (see Sec-
tion 2.4).

2.1.2 Heuristics

Heuristics are optimization methods that partially explore the solution space in order
to find good solutions in a reasonable amount of time. In general, the best solution

2.1 Exact methods and Heuristics: how to combine them? 17

found by a heuristic is not the optimal one, and the heuristic itself does not pro-
vide any information about the quality of the found solution. Nonetheless, in the
last decades many efficient heuristic methods have been developed by researchers
both in academia and in industry in order to effectively solve optimization problems.
Computational experiments have shown that well implemented heuristics are able
to find near optimal solutions for several optimization problems without requiring
too much computational resources. The analysis of the heuristics proposed and de-
veloped in the past years has brought to the identification of many recurring patterns
in the structure of similar efficient heuristics.These patterns have been generalized
in order to define frameworks, called metaheuristics, that allow to easily developed
efficient heuristics. Examples of metaheuristics are Tabu Search (Glover, 1986),
Ant Colony Optimization (Colorni et al., 1991), Very Large Scale Neighboorhood
Search (Ahuja et al., 2002) and many others (see Gendreau and Potvin 2010 for a
survey of the most important ones).

2.1.3 Hybrid Methods

In the last years, in the Operations Research community, we observed a growing
interest in the effective methods that can be obtained by hybridizing exact methods
with heuristics (Maniezzo et al., 2010). These hybrid methods can be divided in two
broad classes:

• Exact methods enhanced by heuristics: this class contains exact methods that
exploit heuristics to efficiently solve some of the subproblems arising during
their execution. Examples of these methods are the primal heuristics embedded
in many commercial ILP solvers (see, for example, Danna et al. 2005), the fast
heuristics used to iteratively solve the separation problems arising in the Cutting
Planes methods (see, for example, Lysgaard et al. 2004) or the pricing heuristics
developed to solve the hard Pricing Problems arising in some implementations
of the Branch & Price framework (see, for example, Bettinelli et al. 2011).

• Heuristics enhanced by exact methods: this class contains heuristics that employ
exact methods to efficiently solve subproblems arising in some of their crucial
steps like the exploration of large neighborhood (see Ahuja et al., 2002), the
recombination of different solutions (see Rothberg, 2007), the repair of a partially
destroyed solution (see Parragh and Schmid, 2013).

Recently has been noted (Boschetti and Maniezzo, 2009; Boschetti et al., 2010)
that the large set of decomposition techniques developed in the previous literature to
exactly solve large scale Mathematical Programming formulations can be exploited
in the definition of effective strategies that combine heuristics and exact methods.

The most important representatives of these techniques are Lagrangian Relax-
ation (Geoffrion, 1974), Benders Decomposition (Benders, 1962) and Dantzig-
Wolfe decomposition and their characterizing property is the ability to reduce the
resolution of a large and intractable problem to the iterative resolution of smaller

18 2 The Column Generation method and its extensions

and more tractable problems. In general, the subproblems in which these techniques
decompose the original problems are linked together by hierarchical relations and
the resulting structure can be exploited to design effective hybrid metaheuristics in
which only some of the subproblems are solved exactly, leaving the remaining ones
to ad hoc heuristics. In this thesis, when we need to decompose a large scale prob-
lem, we focus our attention on the Dantzig-Wolfe decomposition technique. As a
consequence, after a general introduction to the Dantzig-Wolfe decomposition in
the following section, in Section 2.3 we survey the methods proposed in the litera-
ture to turn exact methods based on this technique into hybrid heuristics.

2.2 Dantzig-Wolfe decomposition and Column Generation
method

As discussed in Section 2.1.1, a key element of each Branch & Bound method based
on a LP-Relaxation procedure is the identification of a good ILP formulation that
correctly describe the considered problem. The two most important criteria to eval-
uate the quality of an ILP formulation are the tightness of its LP-Relaxation and the
amount of time required to compute it.

In their seminal work (Dantzig and Wolfe, 1960), G. B. Dantzig and P. Wolfe
described a general procedure, now called Dantzig-Wolfe decomposition, that al-
lows us to transform a compact LP formulation in an extended one. The obtained
formulation is not weaker (as a matter of fact, it is often much stronger) than the
original one. However, in general, the number of its variables is exponential in the
dimension of the problem and we cannot easily solve it with a standard LP method.

Two years before the publication of the work of Dantzig and Wolfe, L. Ford
and D. Fulkerson proposed a method to implicitly enumerate the variables of an
extended formulation for a multi-commodity flow problem (Ford and Fulkerson,
1958). In 1961 this method has been generalized and extended to solve the Cut-
ting Stock Problem by P. Gilmore and R. Gomory (Gilmore and Gomory, 1961).
The method described in the latter paper has been developed and refined in the last
decades and it is now well known as the Column Generation method (Lübbecke
and Desrosiers, 2005). In the remaining part of this section, we describe both the
Dantzig-Wolfe decomposition and the Column Generation method in more details.

2.2.1 The Dantzig-Wolfe decomposition

The Dantzig-Wolfe decomposition has been introduced to efficiently solve LP for-
mulations that have the following block diagonal structure:

2.2 Dantzig-Wolfe decomposition and Column Generation method 19

min c>1 x1+c>2 x2+ . . . +c>mxm (2.1a)
A1x1 +A2x1+ . . .+Amxm = b (2.1b)
D1x1 = u1 (2.1c)

D2x2 = u2 (2.1d)

. . . =
... (2.1e)

Dmxm = um (2.1f)

x> = (x>1 ,x
>
2 , . . . ,x

>
m)≥ 0 (2.1g)

The feasible region associated with this formulation can be stated as the intersection
of n polyhedra defined as Pk =

{
xk ∈ RLk

+ : Dkxk = uk

}
for each k = 1, . . . ,m, with

constraints (2.1b). Note that here we use Lk to denote the dimension of vector xk
and L = ∑k Lk to denote the total number of variables (i.e. the dimension of vector
x). Each Pk acts only on a portion (denoted by xk) of the decision variables and,
since constraints (2.1b) are the only ones that link together all the variables, they are
called linking constraints.

Since the Minkowski-Weyl theorem (see, for example, Schrijver, 1998) states
that each point of a polyhedron can be generated by a convex combination of its
extreme points plus a conic combination of its extreme rays, each Pk can be defined
as follows:

Pk =

{
xk =

Nk

∑
i=1

λivk
i +

Mk

∑
i=1

δirk
i | λi,δi ≥ 0,

Nk

∑
i=1

λi = 1

}

Where the sets
{

vk
1, . . . ,v

k
Nk

}
and

{
rk

1, . . . ,r
k
Mk

}
contain respectively all the Pk ex-

treme points and all the Pk extreme rays.
Since in the following we consider only bounded polyhedra (i.e. polytopes), we

assume that the set of extreme rays is empty and that the polytope Pk can be simply
defined as the set of convex combinations of its extreme points:

Pk =

{
xk =

Nk

∑
i=1

λivk
i | λi ≥ 0,

Nk

∑
i=1

λi = 1

}

The key idea behind the Dantzig-Wolfe decomposition is the introduction of the
previous extended definition of Pk into formulation (2.1), in order to implicitly sat-
isfy constraints (2.1c-2.1f) and to make decisions, not directly on xk, but on the
values of the convex combination coefficients:

20 2 The Column Generation method and its extensions

min c>1
N1

∑
i=1

λ
1
i v1

i +c>2
N2

∑
i=1

λ
2
i v2

i + . . . +c>m
Nm

∑
i=1

λ
m
i vm

i (2.2a)

A1

N1

∑
i=1

λ
1
i v1

i +A2

N2

∑
i=1

λ
2
i v2

i + . . .+Am

Nm

∑
i=1

λ
m
i vm

i = b (2.2b)

N1

∑
i=1

λ
1
i = 1 (2.2c)

N2

∑
i=1

λ
2
i = 1 (2.2d)

. . .
... (2.2e)

Nm

∑
i=1

λ
m
i = 1 (2.2f)

λ k
i ≥ 0 for each k = 1, . . . ,m and i = 1, . . . ,Nk (2.2g)

The number of extreme points in each polytope Pk is generally exponential on the
number of constraints and variables of its compact description

{
xk ∈ RLk

+ : Dkxk ≥ 0
}

.
As a consequence, while the number of constraints in the extended formulation (2.2)
is less than the number of constraints in the compact one (2.1), the number of vari-
ables in the extended formulation is huge and it is not possible to solve it by applying
standard LP methods.

2.2.2 Dantzig-Wolfe decomposition and ILP formulation

Despite the Dantzig-Wolfe decomposition has been initially developed to improve
the tractability of large scale LP formulations, in the last two decades it has been
adapted and extensively exploited to obtain tighter LP-Relaxations for several ILP
formulations (Vanderbeck, 1994; Barnhart et al., 1998). To show how the same de-
composition principle can be also applied to ILP formulations, we start by consid-
ering the compact ILP formulation obtained by adding integrality constraint to the
compact LP formulation (2.1):

2.2 Dantzig-Wolfe decomposition and Column Generation method 21

min c>1 x1+c>2 x2+ . . . +c>mxm (2.3a)
A1x1 +A2x1+ . . .+Amxm = b (2.3b)
D1x1 = u1 (2.3c)

D2x2 = u2 (2.3d)

. . . =
... (2.3e)

Dmxm = um (2.3f)

x> = (x>1 ,x
>
2 , . . . ,x

>
m) ∈ NL (2.3g)

The classical approach to solve this formulation requires to remove its integrality
constraint, obtaining a LP formulation that, using the polytopes Pk defined in the
previous section ,can be compactly defined as follows:

min c>1 x1+c>2 x2+ . . . +c>mxm (2.4a)
A1x1 +A2x1+ . . .+Amxm = b (2.4b)

xk ∈ Pk for each k = 1, . . . ,m (2.4c)

Then, this bounding technique can be embedded into a Branch & Bound method
(or in a more sophisticated Branch & Cut method) to force the satisfaction of the
integrality constraint. However, as already said in Section 2.1.1, the success of these
implicit enumeration methods is strictly linked to the strength of the underlying
bounding techniques. A stronger lower bound for formulation (2.3) can be achieved
by separately considering the following integer polytopes, derived introducing the
integrality constraint into Pk, for each k = 1, . . . ,m:

Pk = Pk ∩NLk =
{

Dkxk = uk,xk ∈ NL
k
}

If we replace each polytope Pk with the convex hull of Pk we obtain the following
LP formulation:

min c>1 x1+c>2 x2+ . . . +c>mxm (2.5a)
A1x1 +A2x1+ . . .+Amxm = b (2.5b)

xk ∈ conv(Pk) for each k = 1, . . . ,m (2.5c)

This last LP formulation is not weaker than formulation (2.4) since, by definition,
conv(Pk)⊆ Pk, for each k = 1, . . . ,m. Moreover, if exists k ∈ {1, . . . ,m} such that Pk
does not have the integrality property (i.e. conv(Pk)⊂ Pk), the lower bound obtained
from formulation (2.5) is greater than the lower bound obtained from formulation
(2.4).

To practically solve formulation (2.5) we need to provide an implicit way to
enforce constraints (2.5c) since, in general, there is not a compact description of the
convex hull of a discrete set. To obtain this result, similarly to what we have done in
Section 2.2.1, applying the Minkowsky-Weyl theorem to polyhedron conv(Pk), we

22 2 The Column Generation method and its extensions

can describe it only by means of its extreme points
{

vk
1, . . . ,v

k
Nk

}
as follows:

conv(Pk) =

{
xk =

Nk

∑
i=1

λivk
i | λi ≥ 0,

Nk

∑
i=1

λi = 1

}
(2.6)

Notice that, similarly to what done in the previous application of the Minkowsky-
Weyl theorem, we do not consider the set of extreme rays of conv(Pk) since we
assume that Pk is a polytope.

Now, applying a procedure similar to the one described in Section 2.2.1 that
transforms the convex combination coefficients used in definition (2.6) in decision
variables, we obtain a LP formulation equivalent to formulation (2.5):

min c>1
N1

∑
i=1

λ
1
i v1

i +c>2
N2

∑
i=1

λ
2
i v2

i + . . . +c>m
Nm

∑
i=1

λ
m
i vm

i (2.7a)

A1

N1

∑
i=1

λ
1
i v1

i +A2

N2

∑
i=1

λ
2
i v2

i + . . .+Am

Nm

∑
i=1

λ
m
i vm

i = b (2.7b)

N1

∑
i=1

λ
1
i = 1 (2.7c)

N2

∑
i=1

λ
2
i = 1 (2.7d)

. . .
... (2.7e)

Nm

∑
i=1

λ
m
i = 1 (2.7f)

λ k
i ≥ 0 for each k = 1, . . . ,m and i = 1, . . . ,Nk (2.7g)

This formulation is similar to the one obtained at the end of the previous section.
It has a large amount of variables and a limited number of constraints. As a conse-
quence, we cannot solve it using a standard LP method.

Note that in Section 4.3 we apply this decomposition technique to the compact
ILP formulation for the MRWADC problem described in Section 4.2. By solving
the obtained extended formulation, we are able to effectively tackle bigger instances
w.r.t. the ones that can be solved using the compact formulation (see Section 4.6.4
for the computational results).

2.2 Dantzig-Wolfe decomposition and Column Generation method 23

2.2.3 Identical Subsystems and symmetry breaking by
Dantzig-Wolfe decomposition

A particular case of the Dantzig-Wolfe decomposition arises when we need to apply
it to a problem having a diagonal structure, in which all the subsystems constituting
the blocks of the diagonal are equivalent. If we make the following substitutions
into formulation (2.3) for each k = 1, . . . ,m:

ck = c, Ak = A, Dk = D, Lk = L′, uk = u

We can simply state the resulting formulation as follows:

min c>
m

∑
k=1

xk (2.8a)

m

∑
k=1

Axk = b (2.8b)

Dxk = u k = 1, . . . ,m (2.8c)

x> = (x>1 ,x
>
2 , . . . ,x

>
m) ∈ NL (2.8d)

If we want to directly solve this formulation using a standard Branch & Bound al-
gorithm we need to take into account the large number of symmetries contained in
the set of its feasible solutions: given a feasible solution x̃ = (x̃1, . . . , x̃m) we can pro-
duce an equivalent feasible solution by only permuting the order of its subcompo-
nents {x̃k}k. Exploiting this idea, starting from each feasible solution we can easily
obtain m! equivalent feasible solutions. If we do not take care of these symmetries,
a standard Branch & Bound algorithm may waste a large amount of time to analyze
solutions that are equivalent to other already analyzed and pruned solutions (Margot,
2010).

On the contrary, if we carefully apply the Dantzig-Wolfe decomposition to for-
mulation (2.8) we can get rid of all these symmetry issues. To obtain this result, we
start by considering the convexification of conv(Pk):

conv(Pk) = conv(
{

Dxk = u,xk ∈ NLk
}
) =

{
x =

N

∑
i=1

λ
k
i vk

i |
N

∑
i=1

λ
k
i = 1,λ k

i ∈ N

}

Note that, since Pk is equivalent to P =
{

Dx = u,x ∈ NL′
}

for each k = 1, . . . ,m, the

set of Pk extreme points is the same for each k = 1, . . . ,m. We denote the common
set of extreme points as {v1, . . . ,vN} and we exploit this equivalence by introducing
the following aggregating variables:

ρi =
m

∑
k=1

λ
k
i for each i = 1, . . . ,N

24 2 The Column Generation method and its extensions

Using these new variables we can define the following extended LP formulation
associated with the previous ILP formulation (2.8):

min c>
N

∑
i=1

ρivi (2.9a)

A
N

∑
i=1

ρivi = b (2.9b)

N

∑
i=1

ρi = m (2.9c)

ρi ≥ 0 for each i = 1, . . . ,N (2.9d)

Each equivalent feasible solution that can be obtained by permuting the order of
indexes k = 1, . . . ,m of a particular feasible solution of the LP-Relaxation of for-
mulation (2.8) is associated with the same solution of formulation (2.9), As a con-
sequence, we have solved the symmetry issues existing in the previous formulation
(2.8).

Note that this type of decomposition has been used to derive an extended for-
mulation for the HAP (see Section 5.7). The derived formulation solves several
symmetry issues afflicting both the compact formulations that we initially propose
to solve the HAP (see Section 5.6).

2.2.4 The Column Generation method

In the previous section we have seen that, by applying the Dantzig-Wolfe decom-
position, we can obtain a tighter extended formulation starting from a compact for-
mulation having a particular diagonal structure. However, the number of variables
of these extended formulations is, in general, exponential in the dimension of the
original problem and we cannot solve them with a standard LP method.

To overcome these issues and to solve the LP-Relaxation of these extended for-
mulations, we can employ the Column Generation method to implicitly enumer-
ate all their variables. To simplify the presentation of this algorithm, we start by
considering the last extended formulation (2.9) derived from the compact formula-
tion (2.8) defined by m identical subsystems. In Column Generation terminology,
the extended formulation (2.9) is called Master Problem (MP) and Column Gen-
eration starts by generating an initial Reduced Master Problem (RMP) obtained
from MP considering only a subset of its variables, these variables are indexed by
Ω1 ⊂ Ω = {1,2, . . . ,N}. At each iteration t > 1, we define a new subset Ωt that
extends Ωt−1 with some of the indexes belonging to Ω \Ωt−1, and obtaining, as a
consequence, a new RMP:

2.2 Dantzig-Wolfe decomposition and Column Generation method 25

RMP(Ωt) : min c> ∑
i∈Ωt

ρivi (2.10a)

A ∑
i∈Ωt

ρivi = b (2.10b)

∑
i∈Ωt

ρi = m (2.10c)

ρi ≥ 0 for each i ∈Ωt (2.10d)

There are only two requirements that we need to satisfy during the generation of
subsets Ω1 ⊂Ω2 ⊂ ·· · ⊂Ωt−1 ⊂Ωt ⊂ ·· · ⊂Ω :

• The number of indexes in the initial subset Ω1 and, at each iteration t > 1, the
number of indexes added to Ωt−1 to obtain Ωt must not be too large: we need to
be able to solve each RMP(Ωt) with a standard LP method.

• The initial set Ω1 must contain enough indexes: we need to guarantee the exis-
tence of a feasible solution for each RMP(Ωt).

Note that the first requirement can be easily satisfied by introducing one or more
dummy columns associated with high costs, similarly to what done in the two phase
simplex method (see, for example, Vanderbei 2008). If both these requirements are
satisfied, we can straightforwardly solve RMP(Ωt) using a standard LP method.
When this method terminates, it returns both a primal optimal solution ρ̃(t) and a
dual optimal solution (γ̃(t), η̃(t)), where vector γ̃(t) contains the optimal values of the
dual variables associated with the linking constraints (2.10b) and η̃(t) is the optimal
value of the dual variable associated with the convexity constraint (2.10c).

We can extend ρ̃(t) to derive a primal feasible solution ρ̃ for the full MP by
simply setting ρ̃i = ρ̃

(t)
i if i ∈ Ωt and ρ̃i = 0 if i ∈ Ω \Ωt . To construct a feasible

dual solution for the full MP, let us consider the dual problem associated with it:

DMP : max γ
>b+mη (2.11a)

(Avi)
>

γ +η ≤ c>vi i ∈Ω (2.11b)
γ,η free (2.11c)

We can directly derive a valid solution for DMP by setting (γ̃, η̃) = (γ̃(t), η̃(t)).
This solution satisfies constraints (2.11b) for each i ∈ Ωt and the primal-dual pair
{ρ̃,(γ̃, η̃)} trivially satisfies the complementary slackness condition. As a conse-
quence, {ρ̃,(γ̃, η̃)} is optimal for the full MP if and only if constraints (2.11b) are
satisfied also for each i ∈ Ω \Ωt . To implicitly check this last condition, without
evaluating one by one the satisfaction of all constraints (2.11b), we need to solve
the following optimization problem, also called Pricing Problem (PP) in the Col-
umn Generation terminology:

PP : zPR = min
i∈Ω

c>vi− (Avi)
>

γ̃− η̃

26 2 The Column Generation method and its extensions

If we now exploit the definition of {v1, . . . ,vN} as the set of extreme points of the
integer polyhedron P =

{
Dx = u,x ∈ NL′

}
, we can solve PP using the following

ILP formulation:

PP : zPP = min c>x− (Ax)>γ̃− η̃ (2.12a)
Dx = u (2.12b)

x ∈ NL′ (2.12c)

If the optimal objective function value zPP is nonnegative, then all constraints
(2.11b) are satisfied by (γ̃, η̃). Thus, {ρ̃,(γ̃, η̃)} is optimal also for the full MP
and we can stop the Column Generation method. Otherwise, there exists at least one
index i ∈ Ω \Ωt such that the associated constraint (2.11b) is not satisfied, we can
insert any index associated with these violated constraints into Ωt in order to obtain
Ωt+1 and then solve RMP(Ωt+1), in an iteratively fashion.

Note that, as reported in Chapter 4 for the MRWADC problem and in Chapter 5
for the HAP, when the PP itself is hard, we can avoid to solve it exactly during the
first Column Generation iterations. However, to have a guaranteed lower bound at
the end of the generation phase we need to solve the PP exactly at least once.

2.3 Column Generation based metaheuristics

As already discussed in Section 2.1.3, during the last years, in the Operations Re-
search community there has been a growing interest in hybrid methods that combine
exact and heuristic methods. In this context, some efforts have been made to define
effective hybridization frameworks based on the Dantzig-Wolfe decomposition and
the Column Generation method.

Some investigations in this area have been mainly focused on the development
of efficient primal heuristics that can be embedded in a Branch & Price algorithm.
In (Joncour et al., 2010) the authors start with a short survey on the classical and
straightforward Column Generation based heuristics developed in the previous lit-
erature, like the rounding heuristic and the diving heuristic. In the second part of
the paper, the authors propose the insertion of a diversification strategy based on the
Limited Discrepancy Search (Harvey and Ginsberg, 1995) into the diving heuristic.
Some computational results obtained applying the proposed heuristics to four dif-
ferent optimization problems are reported at the end of the paper. In (Lübbecke and
Puchert, 2011) the authors describe the three different primal heuristics that they
developed for their generic Branch & Price solver GCG (Gamrath and Lübbecke,
2010) based on the SCIP framework (Achterberg, 2009). The first heuristic they
propose is the Extreme Points Crossover heuristic, this heuristic first selects a set
of elements that are in common to a large set of columns that belong to the current
RMP solution, then it solves a subproblem in which all the feasible solutions are
enforced to contain all these elements. The second heuristic they propose is the Re-

2.4 Simultaneous Row and Column Generation 27

stricted Master heuristic in which a subproblem is defined and solved restricting the
set of considered columns to the most promising ones. The last proposed heuristic
is the Column Selection heuristic in which a feasible solution is built by iteratively
fixing the values of some already generated columns, trying to satisfy all the MP
constraints. In (Pesneau et al., 2012), the authors describe how to embed the Fea-
sibility Pump method (Fischetti et al., 2005) in a Branch & Price algorithm. This
is extension is not straightforward: to avoid the introduction of limitations to the
effectiveness of the Pricing Problem solver, it is important to carefully define the
objective function of the subproblem solved in each pumping cycle.

Other works in this area exploit the hierarchical partition of complex problems
in master and slave subproblems, introduced by the Dantzig-Wolfe decomposition,
in order to define effective coordination mechanisms to guide hybrid heuristics. In
(Boschetti et al., 2010) the authors propose different ways to turn classical decom-
position techniques in hybrid heuristics, they consider the Lagrangian Relaxation,
the Benders decomposition and the Dantzig-Wolfe decomposition. To validate the
proposed strategies they apply them to solve the Single Source Capacitated Facility
Location Problem and then report the obtained results. In (Prescott-Gagnon et al.,
2009), the authors exploit the Column Generation method to define an effective
reconstruction step for their Large Neighborhood Search algorithm (Pisinger and
Røpke, 2010) for the Vehicle Routing Problem with Time Windows. In (Cacchiani
et al., 2012) the authors developed a Column Generation based heuristic to solve
the Periodic Vehicle Routing Problem in which the Column Generation method is a
basic step of a local search guided by Tabu Search.

The combination of the Column Generation method with heuristics is a recur-
ring theme throughout the remaining part of the thesis. In both Column Generation
implementations reported in Chapter 4 and in Chapter 5, to solve, respectively, the
MRWADC problem and the HAP, we were able to terminate the Column Generation
method, in a reasonable amount of time, only after the introduction of an effective
Tabu Search heuristic to solve the Pricing Problem: in both cases the Pricing Prob-
lem is N P-hard and we can fast solve them with a commercial ILP solver only if
we consider trivial instances. Moreover, The LP-Relaxation of the extended formu-
lation that we developed for the MRWADC problem is very tight and the heuristic
solution obtained by simply adding the integrality constraint to the final RMP is
often optimal. On the contrary, the LP-Relaxation of the extended formulation that
we developed for the HAP is less tight, thus, to improve the quality of the obtained
feasible solutions, we implemented and tested three more complex Column Gen-
eration based heuristics, respectively, on the methods proposed in (Joncour et al.,
2010), (Cacchiani et al., 2012) and (Prescott-Gagnon et al., 2009).

2.4 Simultaneous Row and Column Generation

Some works in the recent literature (see Zak, 2002; Avella et al., 2006; Feillet et al.,
2010; Muter et al., 2012b,a, 2013) have been mainly focused on large scale ILP

28 2 The Column Generation method and its extensions

formulations that are quite different from the ones which are obtained applying the
Dantzig-Wolfe decomposition to the particular compact formulations described in
the previous section.

These formulations do not only have a huge number of variables, but they have
also a huge number of constraints. Moreover, when we apply problem generation
based methods to solve these formulations, we need to take into account the fact
that the large part of these constraints are redundant unless some of the variables
on which they are defined have been already generated. As a consequence, to solve
these formulations, we need to simultaneously generate both columns and rows in
an efficient way. These formulations are called Column Dependent Row (CDR, see
Muter et al. 2012a) formulations and their general form can be stated as follows:

MP : min ∑
j∈ΩY

c jy j+ ∑
i∈ΩW

diwi (2.13a)

∑
j∈ΩY

ak jy j = âk k ∈Λ
Y (2.13b)

∑
i∈ΩW

bpiwi = b̂p p ∈Λ
W (2.13c)

∑
j∈ΩY

rq jy j+ ∑
i∈ΩW

dqiwi = r̂q q ∈Λ
YW (2.13d)

y j,wi ≥ 0 for each j ∈ΩY , i ∈ΩW (2.13e)

In this formulation we suppose that the number of constraints (2.13b,2.13c) (in-
dexed, respectively, by ΛY and ΛW) is polynomial in the size of the considered
instance. However, the number of constraints (2.13d) (indexed by set ΛYW) and the
number of variables

{
y j,wi : j ∈ΩY , i ∈ΩW

}
may be exponential in the size of the

considered instance.
In the following, we sketch an efficient algorithm to solve CDR formulations

that takes inspiration from the Column Generation method described in the previous
section. We also discuss how a naive adaption of the Column Generation method to
solve CDR formulations may be incorrect and prematurely terminate, returning a
suboptimal solution.

As a first step, we define two subsets, ΩY
1 ⊂ ΩY and ΩW

1 ⊂ ΩW , that define the
initial pool of variables considered in the first Reduced Master Problem. At each it-
eration of the algorithm, we enlarge these subsets generating two subset collections:

Ω
Y
1 ⊂Ω

Y
2 ⊂ ·· · ⊂Ω

Y
t−1 ⊂Ω

Y
t ⊂ ·· · ⊂Ω

Y

Ω
W
1 ⊂Ω

W
2 ⊂ ·· · ⊂Ω

W
t−1 ⊂Ω

W
t ⊂ ·· · ⊂Ω

W

In order to generate subsets
{

ΩY
t+1,Ω

W
t+1

}
from

{
ΩY

t ,Ω
W
t
}

we first need to solve
the following Reduced Master Problem defined on

{
ΩY

t ,Ω
W
t
}

:

2.4 Simultaneous Row and Column Generation 29

RMP(ΩY
t ,Ω

W
t) : min ∑

j∈ΩY
t

c jy j+ ∑
i∈ΩW

t

diwi (2.14a)

∑
j∈ΩY

t

ak jy j ≥ âk k ∈Λ
Y (2.14b)

∑
i∈ΩW

t

bpiwi ≥ b̂p p ∈Λ
W (2.14c)

∑
j∈ΩY

t

rq jy j+ ∑
i∈ΩW

t

dqiwi ≥ r̂q q ∈Λ
YW (ΩY

t ,Ω
W
t) (2.14d)

y j,wi ≥ 0 for each j ∈ΩY
t , i ∈ΩW

t (2.14e)

In the previous formulation we use ΛYW (ΩY
t ,Ω

W
t) to denote constraints (2.13d)

that are defined by some variables indexed by ΩY
t or by ΩW

t Note that each CDR
formulation must also satisfy the two following assumptions on the structure of
RMP(ΩY

t ,Ω
W
t) :

• Variables dependence: if we add to RMP(ΩY
t ,Ω

W
t) a new subset of y variable

indexes denoted by Ω̃Y ⊂ ΩY \ΩY
t , we have to immediately add a new subset

of w variable indexes denoted by S(Ω̃Y) ⊂ ΩW \ΩW
t and a new subset of con-

straint indexes denoted by ∆(Ω̃Y)⊂ΛYW \ΛYW (ΩY
t ,Ω

W
t). A simple example in

which this assumption is satisfied occurs when variables w are used to model the
quadratic costs associated with variables y (see Muter et al., 2013): for each pair
of indexes (j1, j2) ∈ ΩY ×ΩY exists a variable wi such that its index i ∈ ΩW is
uniquely associated with pair (j1, j2), and it must be equal to the product of vari-
ables y j1 and y j2 . In this case, if we add Ω̃Y = { j1, j2} to RMP(ΩY

t ,Ω
W
t) we have

to immediately add to RMP(ΩY
t ,Ω

W
t) also variable wi and all the constraints that

link y j1 and y j2 with it (for example, wi ≥ y j1 + y j2 −1).
• Linking constraints redundancy: all the constraints (2.13d) that have not yet been

generated (i.e. the ones indexed by ΛYW \ΛYW (ΩY
t ,Ω

W
t)) are redundant in for-

mulation (2.13) if we set to zero all the variables that have not yet been generated
(i.e. the variables indexed by ΩY \ΩY

t or by ΩW \ΩW
t).

If we carefully generate both sets ΩY
t and ΩW

t without increasing too much their
sizes and the size of ΛYW (ΩY

t ,Ω
W
t), we can easily solve RMP(ΩY

t ,Ω
W
t) with a

standard LP method and, at the end of its execution, we obtain an optimal primal
solution (ỹ(t), w̃(t)) and an optimal dual solution (γ̃(t), ν̃(t), µ̃(t)) where dual variables
vectors γ ≥ 0, ν ≥ 0 and µ ≥ 0 are respectively associated with primal constraints
(2.13b), (2.13c) and (2.13d).

From the primal optimal solution (ỹ(t), w̃(t)) of RMP(ΩY
t ,Ω

W
t) we can obtain a

primal feasible solution (ỹ, w̃) for the full MP, i.e. for formulation (2.13), by sim-
ply defining ỹ j = ỹ(t)j and w̃i = w̃(t)

i for each j ∈ ΩY
t , i ∈ ΩW

t and ỹ j = w̃i = 0 for
each j ∈ ΩY \ΩY

t , i ∈ ΩW \ΩW
t . Note that (ỹ, w̃) does not violate any constraints

(2.13d) indexed by ΛYW \ΛYW (ΩY
t ,Ω

W
t) since formulation (2.13d) satisfies the

Linking constraints redundancy assumption and it does not violate the already gen-
erated constraints (2.13d) indexed by ΛYW (ΩY

t ,Ω
W
t) since it derives from a feasible

RMP(ΩY
t ,Ω

W
t) solution.

30 2 The Column Generation method and its extensions

To understand if it is possible to generate a dual feasible solution for formulation
(2.13) starting from the dual optimal solution (γ̃(t), ν̃(t), µ̃(t)) of RMP(ΩY

t ,Ω
W
t), let

us consider the dual problem associated with formulation (2.13):

DMP : min ∑
k∈ΛY

âkγk+ ∑
p∈ΛW

b̂pνp+ ∑
q∈ΛWY

r̂qµq (2.15a)

∑
k∈ΛY

ak jγk+ ∑
q∈ΛYW

rq jµq ≤ c j j ∈Ω
Y (2.15b)

∑
p∈ΛW

bpiνp+ ∑
q∈ΛYW

dqiµq ≤ di i ∈Ω
W (2.15c)

γk,νp,µq ≥ 0 for each k ∈ΛY , p ∈ΛW ,q ∈ΛYW (2.15d)

Similarly to what done for the primal solution, we can extend the dual so-
lution (γ̃(t), ν̃(t), µ̃(t)) of RMP(ΩY

t ,Ω
W
t) to obtain a valid DMP solution by set-

ting γk = γ
(t)
k for each k ∈ ΛY , νp = ν

(t)
p for each p ∈ ΛW and µq = µ

(t)
q for

each q ∈ ΛYW (ΩY
t ,Ω

W
t). However, this partial solution cannot be correctly com-

pleted since RMP(ΩY
t ,Ω

W
t) does not contain the constraints (2.13d) indexed by

ΛYW \ΛYW (ΩY
t ,Ω

W
t). Consequently, without these constraints we cannot evaluate

the correct value for each dual variable µq with q ∈ΛYW \ΛYW (ΩY
t ,Ω

W
t).

A simple and fast way to overcome this issue is to heuristically set to zero all the
unknown dual variables: we set µq = 0 for each q ∈ ΛYW \ΛYW (ΩY

t ,Ω
W
t). After

these fixings, we can define and solve the two following Pricing Problems:

PPY : ZY
PP = min

j∈ΩY
c j− ∑

k∈ΛY

ak jγk− ∑
q∈ΛYW (ΩY

t)

rq jµq (2.16)

PPW : ZW
PP = min

i∈ΩW
di− ∑

p∈ΛW

bpiνp− ∑
q∈ΛYW (ΩY

t)

dqiµq (2.17)

Differently from what done in the standard Column Generation method described
in Section 2.2.4, if the optimal objective function values of both problems PPY and
PPW are nonnegative (i.e. ZY

PP ≥ 0 and ZW
PP ≥ 0) we cannot interrupt the generation

process and declare the optimality of the MP solution obtained extending (ỹ(t), w̃(t)):
it is possible that the correct values of the dual variables fixed at zero decrease the
reduced costs of some of the primal variables indexed by ΩY \ΩY

t or ΩW \ΩW
t that

have not been yet generated. On the contrary, if, by solving PPY or PPW , we find a
negative reduced cost variable we can add it to (ΩY

t ,Ω
W
t) to obtain (ΩY

t+1,Ω
W
t+1) and

solve RMP(ΩY
t+1,Ω

W
t+1) in an iterative fashion. This last step works correctly like

in a Column Generation method since, by fixing some nonnegative dual variables to
zero, we are underestimating the correct reduced costs of the primal variables

To overcome the problems introduced by the wrong estimation process of the
values of the dual variables indexed by ΛYW \ΛYW (ΩY

t ,Ω
W
t), the authors of (Muter

et al., 2012a) propose a rather sophisticated algorithm to correctly anticipate these
values. The framework they propose cannot be effectively applied as is to complex

2.5 References 31

and large scale problems, however their deep analysis of CDR problems properties
give us useful insights in the development of the Simultaneous Column and Row
Generation heuristic which we developed to solve the TDO problem and which we
describe in Chapter 6: in this heuristic (see Section 6.5.3), we introduce an effective
strategy to obtain good estimates of the values of the missing dual variables that is
strongly based on some problem specific considerations.

2.5 References

T. Achterberg. Scip: solving constraint integer programs. Mathematical Program-
ming Computation, 1(1):1–41, 2009.

R. K. Ahuja, Ö. Ergun, J. B. Orlin, and A. P. Punnen. A survey of very large-scale
neighborhood search techniques. Discrete Applied Mathematics, 123(1-3):75 –
102, 2002.

P. Avella, B. D’Auria, and S. Salerno. A lp-based heuristic for a time-constrained
routing problem. European Journal of Operational Research, 173(1):120 – 124,
2006.

C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance.
Branch-and-price: Column generation for solving huge integer programs. Oper-
ations research, 46(3):316–329, 1998.

J. F. Benders. Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik, 4(1):238–252, 1962.

A. Bettinelli, A. Ceselli, and G. Righini. A branch-and-cut-and-price algorithm
for the multi-depot heterogeneous vehicle routing problem with time windows.
Transportation Research Part C: Emerging Technologies, 19(5):723 – 740, 2011.

M. Boschetti and V. Maniezzo. Benders decomposition, lagrangean relaxation and
metaheuristic design. Journal of Heuristics, 15(3):283–312, 2009.

M. Boschetti, V. Maniezzo, and M. Roffilli. Decomposition techniques as meta-
heuristic frameworks. In V. Maniezzo, T. Stützle, and S. Voß, editors, Matheuris-
tics, volume 10 of Annals of Information Systems, pages 135–158. Springer, 2010.

V. Cacchiani, V. C. Hemmelmayr, and F. Tricoire. A set-covering based heuristic al-
gorithm for the periodic vehicle routing problem. Discrete Applied Mathematics,
2012. doi: 10.1016/j.dam.2012.08.032.

A. Colorni, M. Dorigo, and V. Maniezzo. Distributed optimization by ant colonies.
In European Conference on Artificial Life, pages 134–142, 1991.

E. Danna, E. Rothberg, and C. L. Pape. Exploring relaxation induced neighborhoods
to improve mip solutions. Mathematical Programming, 102(1):71–90, 2005.

G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Opera-
tions research, 8(1):101–111, 1960.

G. B. Dantzig, R. Fulkerson, and S. Johnson. Solution of a large-scale traveling-
salesman problem. Operations Research, pages 393–410, 1954.

D. Feillet, M. Gendreau, A. L. Medaglia, and J. L. Walteros. A note on branch-and-
cut-and-price. Operations Research Letters, 38(5):346 – 353, 2010.

32 2 The Column Generation method and its extensions

M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Mathematical Program-
ming, 104(1):91–104, 2005.

L. R. Ford and R. Fulkerson. A suggested computation for maximal multi-
commodity network flows. Management Science, 5(1):97–101, 1958.

R. Fukasawa, H. Longo, J. Lysgaard, M. P. Aragão, M. Reis, E. Uchoa, and R. F.
Werneck. Robust branch-and-cut-and-price for the capacitated vehicle routing
problem. Mathematical Programming, 106(3):491–511, 2006.

G. Gamrath and M. E. Lübbecke. Experiments with a generic dantzig-wolfe de-
composition for integer programs. In P. Festa, editor, Experimental Algorithms,
volume 6049 of Lecture Notes in Computer Science, pages 239–252. Springer,
2010.

M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., 1979.

M. Gendreau and J. Potvin, editors. Handbook of Metaheuristics. Springer, 2nd
edition, 2010.

A. M. Geoffrion. Lagrangean relaxation for integer programming. In M. L. Balinski,
editor, Approaches to Integer Programming, volume 2 of Mathematical Program-
ming Studies, pages 82–114. Springer, 1974.

P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting-
stock problem. Operations research, 9(6):849–859, 1961.

F. Glover. Future paths for integer programming and links to artificial intelligence.
Computers and Operations Research, 13:533–549, 1986.

W. D. Harvey and M. L. Ginsberg. Limited discrepancy search. In Proceedings
of the 14th international joint conference on Artificial intelligence - Volume 1,
IJCAI’95, pages 607–613, San Francisco, USA, 1995. Morgan Kaufmann.

C. Joncour, S. Michel, R. Sadykov, D. Sverdlov, and F. Vanderbeck. Primal heuris-
tics for branch-and-price. In European Conference on Operational Research
(EURO’10), volume 1, page 2, 2010.

E. Lawler and D. Wood. Branch-and-bound methods: A survey. Operations re-
search, 14(4):699–719, 1966.

M. E. Lübbecke and J. Desrosiers. Selected Topics in Column Generation. Opera-
tions Research, 53(6):1007–1023, 2005.

M. E. Lübbecke and C. Puchert. Primal heuristics for branch-and-price algorithms.
In Operations Research Proceedings. Citeseer, 2011.

J. Lysgaard, A. N. Letchford, and R. W. Eglese. A new branch-and-cut algorithm
for the capacitated vehicle routing problem. Mathematical Programming, 100(2):
423–445, 2004.

V. Maniezzo, T. Stützle, and S. Voß, editors. Matheuristics - Hybridizing Meta-
heuristics and Mathematical Programming, volume 10 of Annals of Information
Systems. Springer, 2010.

F. Margot. Symmetry in integer linear programming. In M. Jünger, T. M. Liebling,
D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi, and L. A.
Wolsey, editors, 50 Years of Integer Programming 1958-2008, pages 647–686.
Springer, 2010.

2.5 References 33

İ. Muter, Ş. İ. Birbil, and K. Bülbül. Simultaneous column-and-row generation
for large-scale linear programs with column-dependent-rows. Mathematical Pro-
gramming, 2012a. doi: 10.1007/s10107-012-0561-8.

İ. Muter, Ş. İ. Birbil, K. Bülbül, and G. Şahin. A note on “a lp-based heuristic for a
time-constrained routing problem”. European Journal of Operational Research,
221(2):306 – 307, 2012b.

İ. Muter, Ş. İlker Birbil, K. Bülbül, G. Şahin, H. Yenigün, D. Taş, and D. Tüzün.
Solving a robust airline crew pairing problem with column generation. Computers
& Operations Research, 40(3):815 – 830, 2013.

S. N. Parragh and V. Schmid. Hybrid column generation and large neighborhood
search for the dial-a-ride problem. Computers & Operations Research, 40(1):490
– 497, 2013.

P. Pesneau, R. Sadykov, and F. Vanderbeck. Feasibility pump heuristics for column
generation approaches. Experimental Algorithms, pages 332–343, 2012.

D. Pisinger and S. Røpke. Large neighborhood search. Handbook of metaheuristics,
pages 399–419, 2010.

E. Prescott-Gagnon, G. Desaulniers, and L. M. Rousseau. A branch-and-price-based
large neighborhood search algorithm for the vehicle routing problem with time
windows. Networks, 54(4):190–204, 2009.

E. Rothberg. An evolutionary algorithm for polishing mixed integer programming
solutions. INFORMS Journal on Computing, 19(4):534–541, 2007.

A. Schrijver. Theory of linear and integer programming. Wiley, 1998.
F. Vanderbeck. Decomposition and column generation for integer programs. PhD

thesis, Université catholique de Louvain, 1994.
R. J. Vanderbei. Linear programming, volume 114. Springer, 2008.
E. J. Zak. Row and column generation technique for a multistage cutting stock

problem. Computers & Operations Research, 29(9):1143 – 1156, 2002.

Chapter 3
Experimental analysis of different ILP
approaches for the Knapsack Prize Collecting
Steiner Tree Problem

3.1 Motivations

In this chapter we describe and compare different optimization methods for the
Knapsack Prize Collecting Steiner Tree Problem (KPCSTP). We consider a La-
grangian Relaxation method (Cordone and Trubian, 2008) and several ILP formula-
tions derived from the ones already proposed in the literature for similar problems
(Magnanti and Wolsey, 1995; Ljubić et al., 2006).

The role of this survey in the thesis is to introduce the different ways in which
we can tackle combinatorial optimization problems requiring the identification of
a constrained tree (resp. arborescence) in a given undirected (resp. directed) graph
that minimizes the difference between its cost and the prize of the spanned nodes.
Such problems arise in the two following chapters when we need to solve the two
Pricing Problems respectively associated with the MRWADC problem and with the
HAP. The Pricing Problem associated with the MRWADC problem (see Section 4.5)
differs from the KPCSTP for what concerns the definition of feasible solutions: it re-
quires to limit the length of all the paths contained in each feasible arborescence and
to limit the outdegree of the spanned nodes. On the other side, the Pricing Problem
associated with the HAP (see Section 5.7.2) limits the set of feasible arborescences
by introducing a non linear knapsack constraint on the spanned nodes and its cost
function is not simply defined by the cost of the crossed arcs, but it depends on the
cost associated with particular subsets intersected by the considered solution. Given
the peculiarities of these two Pricing Problems, some of the considerations that we
make in the following for the KPCSTP cannot be directly extended to them. More-
over, the methods having the best performance for the KPCSTP may perform badly
on different problems and vice versa. However, as we discuss in the two following
chapters both Pricing Problems can be efficiently solved with some of the methods
described in this chapter.

In Section 3.2 we formally describe the KPCSTP and its applications. In Sec-
tion 3.3 we provide a survey on the optimization methods proposed in the previous
literature to tackle the KPCSTP and similar problems. In Section 3.4 we propose

35

36 3 Experimental analysis of different ILP approaches for the KPCSTP

three different compact ILP formulations based on network flows. In Section 3.5
we discuss how to adapt a well-know extended formulation for the Prize Collect-
ing Steiner Tree Problem (PCSTP) in order to handle the knapsack constraint. In
Section 3.6 we describe a Relax-and-Cut method already proposed in the literature
to solve the KPCSTP. Finally in Section 3.7 we compare the different optimization
methods described in the previous sections.

3.2 The Knapsack Prize Collecting Steiner Tree Problem

The PCSTP is a well known optimization problem defined on an undirected graph
G = (V,E), where each vertex v∈V is associated with a prize pv ∈Q and each edge
e∈ E is associated with a nonnegative cost ce ∈Q+. The PCSTP requires to identify
a connected subgraph T = (VT ,ET), with VT ⊆ V and ET ⊆ E, that minimizes the
difference c(T) between the cost of the crossed edges and the profits of the spanned
vertices:

c(T) = ∑
e∈ET

ce− ∑
v∈VT

pv

Note that, since the optimal solution of the PCSTP is a connected subgraph mini-
mizing the cost of its edges and since each edge is associated with a nonnegative
cost, we can restrict w.l.o.g. the set of the feasible PCSTP solutions to the set of
trees contained in G. For practical reasons, the straightforward extension of the PC-
STP called Rooted Prize Collecting Steiner Tree Problem (RPCSTP) has been often
considered in the literature. This problem is very similar to the PCSTP, however
in the RPCSTP we have a single root vertex r ∈ V that must be contained in each
feasible solution. Note that each PCSTP instance can be easily solved through an
ILP formulation for the RPCSTP by simply introducing a dummy root vertex r that
is connected to each other vertex v ∈V at zero cost (i.e. crv = 0), fixing pr = 0 and
by adding a new constraint that limits to one the number of edges exiting from r.
Similarly, we can solve a RPCSTP instance with an ILP formulation developed for
PCSTP by simply setting pr =+∞.

The interest in the PCSTP is mainly due to the different practical problems that
can be modeled with it. Many of these problems arise from the introduction of dereg-
ulation in public utility sectors, such as electricity, telecommunication and gas. In
this changed legal environment, the companies operating in these sectors need to
focus their efforts on the maximization of the returns of their investments. For in-
stance, when they decide to extend their network to reach new customers, they need
to find the best trade-off between the cost that they need to pay to build the new
infrastructures and the expected new profits that they gain from the newly reached
customers.

The KPCSTP is a straightforward extension of the PCSTP where the set of fea-
sible solutions is shrunk by a knapsack constraint on the set of vertices belonging to
each feasible tree. More formally, with each vertex v∈V we associate a nonnegative
weight wv ∈Q+ and we define the weight of each tree T = (VT ,ET) as follows:

3.3 Survey of the literature 37

w(T) = ∑
v∈VT

wv

A subtree T is feasible for the KPCSTP if and only if w(T) ≤W where W ≥ 0
is a given weight threshold. Also the KPCSTP admits a variant in which we have
a mandatory root vertex r. We denote this variant by RKPCSTP and, similarly to
what noted for the PCSTP, it is straightforward to transform an ILP formulation for
the RKPCSTP to an ILP formulation for the KPCSTP. As a consequence, in the
remaining part of this chapter, we focus our attention only on the rooted variant of
the KPCSTP, since it allows us to simplify several notations.

The application areas of KPCSTP are similar to the ones previously described for
the PCSTP. However, the KPCSTP provides more extended modeling capabilities.
Consider, as examples, the extension of a telecommunication network based on a
central broadcasting station having a limited power, or the extension of a network in
a electricity market where the operators needs to comply with the government laws
aiming to contrast monopolies: in both cases, we can limit the dimension of the final
network and satisfy the practical requirements by introducing a knapsack constraint
in the PCSTP.

3.3 Survey of the literature

The PCSTP has been deeply investigated in the literature. It was first proposed in
(Bienstock et al., 1993).However, yet in (Segev, 1987), the author described a prob-
lem that is very similar to the RPCSTP, and in (Duin and Volgenant, 1987) have
been developed some reduction procedures for the Steiner Tree Problem (STP) that
can be extended and applied also to the PCSTP.

During the last two decades different exact methods have been proposed for the
PCSTP. A Lagrangian Relaxation algorithm has been proposed in (Engevall et al.,
1998), Branch & Cut methods have been developed in (Lucena and Resende, 2004)
and in (Ljubić et al., 2006). The algorithm presented in the latter paper represents
the current state of the art in solving the PCSTP.

At the best of our knowledge the KPCSTP has been studied only in (Cordone
and Trubian, 2008) where the authors proposed an exact method based on the La-
grangian Relaxation method proposed in (Engevall et al., 1998) for the PCSTP. We
describe in details this method in Section 3.6. In Section 3.7 we compare this ap-
proach with other optimization methods.

Finally, in (Haouari et al., 2008) the authors proposed a unifying framework that
can be easily adapted to model both the PCSTP and other well-known tree optimiza-
tion problems. Along with this framework the authors of the previous paper propose
different optimization methods to solve the associated Lagrangian Dual Problem.

38 3 Experimental analysis of different ILP approaches for the KPCSTP

3.4 Compact formulations based on network flows

The first ILP technique we consider to correctly define the feasible region of the
KPCSTP is based on the definition of feasible flows on a network derived from G.
We consider two different ways of defining network flows starting from a KPCSTP
instance: in the first one (see Section 3.4.1) we use a single-commodity flow that is
generated from r and such that each vertex belonging to a feasible solution absorbs
one unit of it; in the second one (see Section 3.4.2) we use a multi-commodity net-
work flow where each vertex of the considered instance has its own commodity. We
generate from r a single unit of flow for each commodity and each vertex belonging
to the considered feasible solution absorbs one unit of the associated flow.

Both these network flow formulations are defined on the directed graph G̃ =
(V,A) obtained from G by duplicating each edge in E into a pair of arcs having
opposite directions, i.e. A = {(i, j),(j, i) : {i, j} ∈ E} and by associating a cost ca to
each arc a ∈ A defined as follows: ci j = c ji = c{i, j} for each {i, j} ∈ E.

Note that, by using G̃ instead of G, in the two following formulations, we take
decisions on G̃ arcs and not on G edges. Consequently, the obtained solutions are ar-
borescences and not trees. However, given an optimal arborescence it is straightfor-
ward to obtain the corresponding optimal tree: if the optimal arborescence contains
arc (i, j), the corresponding optimal tree must contain edge {i, j}.

3.4.1 Single-commodity flow formulations

After introducing the following families of decision variables:

• xa, for each arc a ∈ A, is equal to 1 if arc a belongs to the optimal arborescence,
0 otherwise.

• yv, for each vertex v ∈V , is equal to 1 if vertex v belongs to the optimal arbores-
cence, 0 otherwise.

• fa, for each arc a ∈ A, denotes the units of flow going through arc a.

We can state the single-commodity network flow formulation for the KPCSTP as
follows:

3.4 Compact formulations based on network flows 39

SCF : min ∑
a∈A

caxa−∑
v∈V

pvyv (3.1a)

∑
a∈δ−(v)

xa = yv v ∈V \{r} (3.1b)

yr = 1 (3.1c)

∑
v∈V

wvyv ≤W (3.1d)

fa ≤|V | xa a ∈ A (3.1e)

∑
a∈δ+(r)

fa = ∑
v∈V\{r}

yv (3.1f)

∑
a∈δ−(v)

fa− ∑
a∈δ+(v)

fa = yv v ∈V \{r} (3.1g)

xa,yv ∈ {0,1} a ∈ A,v ∈V (3.1h)
fa ≥ 0 a ∈ A (3.1i)

The objective function (3.1a) minimizes the difference between the cost of the
crossed arcs and the prizes of the spanned vertices. Constraints (3.1b) link the arc
variables {xa : a ∈ A} with the vertex variables {yv : v ∈ V}: if exists an arc a ∈ A
entering in vertex v ∈V , vertex v must be spanned by the considered solution. Con-
straint (3.1c) requires that each feasible solution contains the root. Constraint (3.1d)
guarantees that the solution respects the weight threshold W . Constraints (3.1e) link
together the arc variables {xa : a ∈ A} and the flow variables { fa : a ∈ A}: if a pos-
itive flow goes through an arc we need to take it in the solution. Constraint (3.1f)
imposes the generation of the right amount of flow starting from r (one unit of flow
for each spanned node, with the exception of the root). Constraints (3.1g) preserve
the flow balance: each spanned vertex v ∈ V \ {r} absorbs one unit of flow, prop-
agating the remaining ones. Finally, constraints (3.1h) and (3.1i) define the correct
domain of the decision variables.

Note that the number of vertices | V | plays a big-M role in constraints (3.1e)
and, as a consequence, it weakens the lower bound obtained by solving the LP-
Relaxation of formulation (3.1). We can mitigate its effect by imposing the satisfac-
tion of the knapsack constraint using a different flow definition: each vertex v ∈ V
absorbs wv units of flow, propagating the remaining ones, and, starting from the root,
we generate ∑v∈V\{r}wv units of flow. Following this scheme, we can substitute co-
efficient | V | in constraints (3.1e) with threshold W and we can remove constraint
(3.1d) since now it is implicitly satisfied by each feasible flow. The final obtained
formulation can be stated as follows:

40 3 Experimental analysis of different ILP approaches for the KPCSTP

SCF2 : min ∑
a∈A

caxa−∑
v∈V

pvyv (3.2a)

∑
a∈δ−(v)

xa = yv v ∈V \{r} (3.2b)

yr = 1 (3.2c)

∑
a∈δ+(r)

fa ≤W −wr (3.2d)

fa ≤Wxa a ∈ A (3.2e)

∑
a∈δ+(r)

fa = ∑
v∈V\{r}

wvyv (3.2f)

∑
a∈δ−(v)

fa− ∑
a∈δ+(v)

fa = wvyv v ∈V \{r} (3.2g)

xa,yv ∈ {0,1} a ∈ A,v ∈V (3.2h)
fa ≥ 0 a ∈ A (3.2i)

With respect to the previous formulation (3.1), in this formulation we changed the
flow definition constraints (3.2e - 3.2g), we removed the knapsack constraint (3.1d)
and we introduced the constraint (3.2d) in order to limit the amount of flow exiting
from the root.

3.4.2 Multi-commodity flow formulation

Similarly to what done in the two previous formulations, to define the multi-
commodity network flow formulation, we use variables xa for each a ∈ A and yv
for each v ∈ V to describe which arcs and vertices belong to the optimal solution.
However, differently from what done in the previous formulations, in this new one,
we define a commodity for each vertex v ∈V \{r} and a binary variable f v

a ∈ {0,1}
for each arc a ∈ A that describes the amount of flow associated with commodity v
crossing arc a.

Once defined these new variables, we can state the multi-commodity network
flow formulation for the KPCSTP as follows:

3.5 Extended formulation based on the connectivity cuts 41

MCF : min ∑
a∈A

caxa−∑
v∈V

pvyv (3.3a)

∑
a∈δ−(v)

xa = yv v ∈V \{r} (3.3b)

yr = 1 (3.3c)

∑
v∈V

wvyv ≤W (3.3d)

f v
a ≤ xa a ∈ A,v ∈V (3.3e)

∑
a∈δ+(r)

f v
a = yv v ∈V \{r} (3.3f)

∑
a∈δ−(w)

f v
a − ∑

a∈δ+(w)
f v
a = 0 v,w ∈V \{r},v 6= w (3.3g)

∑
a∈δ−(v)

f v
a − ∑

a∈δ+(v)
f v
a = yv v ∈V \{v} (3.3h)

xa,yv ∈ {0,1} a ∈ A,v ∈V (3.3i)
f v
a ≥ 0 a ∈ A,v ∈V \{r} (3.3j)

The objective function (3.3a) minimizes the difference between the cost of the
crossed arcs and the prize of the spanned vertices. Constraints (3.3b) link the arc
variables {xa : a∈ A}with the vertex variables {yv : v∈V}: if exists an arc a∈ A en-
tering in vertex v ∈V , it must be spanned by the solution. Constraint (3.3c) requires
that each feasible solution contains the root. Constraints (3.3e) link together the arc
variables {xa : a ∈ A} and the flow variables { f v

a : a ∈ A,v ∈V}: if the amount of
the flow associated with any commodity v, crossing arc a ∈ A is positive, we need
to take a in the solution. Constraints (3.3f) impose the generation of one unit of the
flow associated with commodity v ∈ V \ {r} if and only if vertex v belongs to the
solution. Constraints (3.3h) impose that each vertex v ∈V \{r} absorbs one unit of
flow of the corresponding commodity v, if and only if v belongs to the solution. Con-
straints (3.3g) impose that each vertex w \ {v,r} propagates all the flow associated
with commodity v 6= w they received. Finally, constraints (3.3i) and (3.3j) define the
correct domain of the decision variables.

3.5 Extended formulation based on the connectivity cuts

The second ILP technique we consider to correctly define the feasible region of the
KPCSTP are the connectivity cuts. The ILP formulation stated in the following is the
natural extension to the KPCSTP of the ILP formulation for the PCSTP proposed
in (Ljubić et al., 2006). As already remembered in Section 3.3, the optimization
method derived from the latter formulation is the best exact method proposed in the
literature for the PCSTP.

42 3 Experimental analysis of different ILP approaches for the KPCSTP

The extension of that PCSTP formulation to the KPCSTP is straightforward. We
start by defining the following decision variables:

• xa, for each a ∈ A, is equal to 1 if arc a belongs to the optimal solution, 0 other-
wise.

• yv, for each v ∈ V , is equal to 1 if vertex v belongs to the optimal solution, 0
otherwise.

Then we can state the following ILP formulation:

CTF : min ∑
a∈A

caxa−∑
v∈V

pvyv (3.4a)

∑
a∈δ−(v)

xa = yv v ∈V \{r} (3.4b)

yr = 1 (3.4c)

∑
v∈V

wvyv ≤W (3.4d)

∑
a∈δ+(S)

xa ≥ yv v ∈V \{r},S⊆V,r ∈ S,v ∈V \S (3.4e)

xa,yv ∈ {0,1} a ∈ A,v ∈V (3.4f)

The objective function (3.4a) minimizes the difference between the cost of the
crossed arcs and the prizes of the spanned vertices. Constraints (3.4b) link the arc
variables {xa : a ∈ A} with the vertex variables {yv : v ∈ V}: if exists an arc a ∈ A
entering in vertex v ∈ V , the vertex v must be spanned by the solution. Constraint
(3.4c) requires that each feasible solution contains the root. For each vertex v ∈ V
belonging to the considered solution, constraints (3.4e) impose that at least one arc
of each cut separating r from v belongs to the solution.

3.5.1 Separation algorithm

Since the number of constraints (3.4e) is exponential in the number of vertices |V |,
to handle these inequalities we use the Branch & Cut framework. To solve the sepa-
ration problem associated with these constraints, we use the same method proposed
in (Ljubić et al., 2006). This method is based on the computation of at most n dif-
ferent maximum flows in a network derived from the current solution. Let (x′,y′) be
a solution that satisfies constraints (3.4b,3.4d) and the continuous relaxation of con-
straints (3.4f). For each v ∈ V such that y′v > 0, let φ be the value of the maximum
flow from r to v in the network defined by G̃ and in which each arc a has a capacity
equal to x′a. There are only two possible cases:

• If φ < yv then the MAX FLOW - MIN CUT theorem (see, for example, Lawler
1976) ensures the existence of a cut (S,V \S), with r ∈ S and v ∈V \S and with
capacity equal to φ . Therefore, the constraint

3.5 Extended formulation based on the connectivity cuts 43

∑
a∈δ−(S)

xa ≥ yv

is violated and we can add it to the considered formulation, to cut the unfeasible
solution (x′,y′).

• If φ ≥ yv then the same theorem ensures that all the r− v network cuts have a
capacity not less than φ . Therefore, for each S⊂V \{s} with r ∈ S and v /∈ S, the
constraint

∑
a∈δ−(S)

xa ≥ yv

is satisfied by (x′,y′) and we can stop the generation of the connectivity cuts
constraints.

To increase the number of cuts added to the formulation at each iteration of the
cutting plane algorithm we improved the separation algorithm with the two follow-
ing techniques, already proposed in (Ljubić et al., 2006):

• Back cuts: in not trivial cases a feasible network flow is associated with two
different minimum cuts, one near the source and another near the sink. Using an
algorithm belonging to the push-relabel family (Goldberg and Tarjan, 1988), we
can find these two cuts using only one max flow computation.

• Nested cuts: once discovered a violated cut, we set the capacities of the arcs
contained in this cut to one and we repeat the violated cuts searching process
on the modified network. In this manner, we can find more violated cuts in each
separation algorithm execution.

3.5.2 Cuts pool initialization

As already noted in (Ljubić et al., 2006), a crucial aspect that need to be considered
in order to obtain an effective Branch & Cut algorithm based on formulation CTF
(3.4) is the way in which the pool of the connectivity cuts (3.4e) is initialized in
the root vertex of the branching tree. In the computational campaign described in
Section 3.7, we considered two different strategies:

• Empty pool: the initial LP formulation associated with the root vertex of the
branching tree does not contain any constraint of family (3.4e).

• 2-cycle removal: we initialize the pool of the connectivity cuts with all the con-
straints that impose the removal from each feasible solution of all the cycles
having a length equal to two:

x(i, j)+ x(j,i) ≤ 1 {i, j} ∈ E \δ (r) (3.5)

44 3 Experimental analysis of different ILP approaches for the KPCSTP

3.6 A Relax-and-Cut method for the KPCSTP

In (Cordone and Trubian, 2008), the authors describe how to extend the methods
proposed by Beasley (see, Beasley 1989) for the Steiner Tree Problem and by En-
gevall et al. (Engevall et al., 1998) for the PCSTP, in order to handle the knapsack
constraint. Here we present a short survey of this method, and for its full details the
interested reader is referred to the original paper.

The method is defined on an auxiliary undirected graph Ĝ= (V̂ , Ê) that is derived
from G = (V,E) by adding a dummy vertex v0, linked to all the vertices in V (i.e.
V̂ = V ∪{v0} and Ê = E ∪{{v0,v} : v ∈ V}). We associate a nonnegative cost ĉe
with each edge e ∈ Ê as follows:

ĉe =


ce if e ∈ E
0 if e = {v0,r}
pv if e = {v0,v} and v ∈V \{r}

The idea behind this method is to uniquely associate each subtree of G which is a
feasible solution for the KPCSTP to a special spanning tree T = (U,X) defined on
Ĝ: T is feasible if and only if all the subtrees appended to the dummy vertex v0 are
leaves, with the exception of the subtree rooted in r.

Given a spanning tree T = (U,X) defined on Ĝ and satisfying the previous con-
dition, we can consider its subtree rooted in r denoted by T ′ = (U ′,X ′) where
U ′ = U \ {v0} \ {v ∈ V : {v0,v} ∈ X} and X ′ = X \ {{v0,v} : v ∈ V}. If T ′ satis-
fies the knapsack constraint, it is also a feasible solution for the KPCSTP.

The cost ∑e∈X ĉe of each special spanning tree T = (U,X) and the cost of the
corresponding KPCSTP solution T ′ = (U ′,X ′) differ only by the constant term
∑v∈V ′ pv:

∑
e∈X

ĉe = ∑
e∈X ′

ce + ∑
v∈V\U ′

ĉ{v0,v} = ∑
e∈X ′

ce + ∑
v/∈U ′

pv = c(T)+ ∑
v∈V ′

pv

Thus, we can solve the KPCSTP by simply identifying the special spanning tree,
defined on Ĝ, having the minimum cost. To find this special spanning tree we intro-
duce the binary variable xe that is equal to 1 if and only if e ∈ Ê is contained in the
optimal solution and we solve the following ILP formulation:

3.6 A Relax-and-Cut method for the KPCSTP 45

SST : min ∑
e∈Ê

ĉexe (3.6a)

∑
e∈Ê

xe =| V̂ | −1 (3.6b)

∑
e∈Ê(P)

xe ≤| P | −1 /0⊂ P⊂ V̂ (3.6c)

∑
e∈Ê(P)

xe + ∑
v∈P\{u}

xv0v ≤| P | −1 P⊆ V̂ \{r},u ∈ P (3.6d)

∑
v∈V\{r}

wvxv0v ≥ ∑
v∈V

wv−W (3.6e)

xv0r = 1 (3.6f)

xe ∈ {0,1} e ∈ Ê (3.6g)

Constraint (3.6b) imposes the correct number of edges that must belong to a feasible
solution. The subtours elimination constraints (3.6c) impose the removal of all the
cycles in each feasible solution. Constraints (3.6d) are a generalization of the sub-
tours elimination constraints and impose that each subtree, directly connected with
v0 and having a vertex v ∈ V \ {r,v0} as root, is a leaf. Constraint (3.6e) imposes
the satisfaction of the knapsack constraint (note that ∑v∈V wv−∑v∈V\{r}wvxv0v is
equal to the sum of the weights of the vertices belonging to the subtree rooted in r).
Finally, constraint (3.6f) ensures that r is directly connected with v0 and constraints
(3.6g) define the correct domain of the decision variables.

3.6.1 The Lagrangian Dual Problem

The number of constraints (3.6c,3.6d) is exponential in the number of Ĝ nodes.
Thus, we cannot directly solve the LP-Relaxation of formulation (3.6) with a stan-
dard LP method. However, if we relax constraints (3.6d) and the knapsack constraint
(3.6e), the remaining constraints define the polytope of the minimum cost spanning
tree where the edge {v0,r} is imposed in each feasible solution. To exploit this pecu-
liarity, we can associate a lagrangian multiplier λPu with each constraint (3.6d), that
is indexed by the vertices subset P⊆ V̂ \{r} and by the reference vertex u ∈ P, and
we can associate a lagrangian multiplier λW with the knapsack constraint (3.6e).
Then, we can state the Lagrangian Dual Problem as follows:

DL : max
λ≥0

min
x∈{0,1}|E|

∑
e∈Ê

cexe− ∑
u∈V̂

∑
P∈Pu

(| P | −1)λPu +λ
W

(
∑
v∈V

wv−W

)
(3.7a)

{xe} define a spanning tree on G̃ (3.7b)
xv0r = 1 (3.7c)

46 3 Experimental analysis of different ILP approaches for the KPCSTP

Note that in this formulation, for each u ∈ V̂ we use Pu to denote the family of sets
containing the subsets of V̂ that do not contain r and contain u, i.e. all the subsets
of vertices associated with constraints (3.6d). Finally, the modified edge cost ce is
obtained by perturbing the original cost ce with the lagrangian multiplier as follows:

ce =


ĉrv if e = {r,v} and v ∈V
ĉv0v−λW wv +∑P∈Pv ∑u∈P\{v}λPu if e = {v0,v} and v ∈V \{r}
ĉvw +∑P∈Pw ∑u∈P λPu if e = {v,w} and v,w ∈V \{r}

3.6.2 Solving the Lagrangian Dual Problem

The method proposed in (Cordone and Trubian, 2008) to solve the Lagrangian Dual
Problem (3.7) is an implementation of the Relax-and-Cut approach already pro-
posed in (Engevall et al., 1998). They started by noting that most of the relaxed
constraints (3.6d) are inactive for the optimal solution and, as a consequence, the
best value for the corresponding multipliers is zero. Hence, the main idea behind
this approach is to consider only the constraints that are violated by the solutions
of the lagrangian subproblems solved so far. The correct values for this small sub-
set of lagrangian multipliers can be easily estimated using the subgradient ascent
method (Held and Karp, 1970). Here we consider the implementation of the subgra-
dient ascent method proposed in (Cordone and Trubian, 2008) that makes use of the
modified subgradient updating strategy proposed in (Camerini et al., 1975),

3.6.3 A lagrangian heuristic

At each step of the subgradient algorithm we consider the subtree T ′ = (U ′,X ′)
rooted in r and directly connected with v0. If T ′ satisfies the knapsack constraint
and each other subtree connected to v0 is a leaf, T ′ represents a feasible solution of
the KPCSTP. Otherwise, we can apply the following three-steps heuristic to regain
feasibility:

1. If w(T ′) > W , the heuristic regains the knapsack feasibility by removing from
T ′ its leaf v having the largest ratio wv/(pw − cuv) where the vertex u is the
unique other T ′ vertex connected with v. This step is recursively executed until
the weight of the considered tree satisfies the knapsack constraint.

2. If w(T ′)<W the heuristic iteratively adds leaves to T ′ using a greedy procedure:
at each iteration, it finds the edge {u,v}with u∈U ′ and v /∈U ′ having the highest
ratio (pv− cuv)/wv among the edges that can be introduced into T ′ maintaining
its feasibility and without decreasing the corresponding objective function value.

3. Once fixed the set of vertices U ′ contained in the subtree rooted in r, we can
simply find the tree spanning these vertices at the minimum cost by using any

3.6 A Relax-and-Cut method for the KPCSTP 47

fast algorithm for the minimum spanning tree problem (here we use the Kruskal
algorithm, see Kruskal 1956). Hence, during the last step of the heuristic proce-
dure, we can substitute T ′ with the computed minimum spanning tree, possibly
improving the objective function value.

3.6.4 A Tabu Search initialization heuristic

To fairly compare the Lagrangian Relaxation method with the optimization meth-
ods based on the ILP formulations described in the previous sections, we need to
introduce a primal heuristic in the former method since the latter ones benefit of the
advanced primal heuristics nowadays built in the commercial ILP solvers (Danna
et al., 2005; Rothberg, 2007; Achterberg and Berthold, 2007; Lodi, 2013). Hence,
in order to define an algorithm based on the previously introduced Lagrangian Re-
laxation method that is competitive with the methods based on the ILP formula-
tions, described in the previous sections, that can be directly solved by a commer-
cial ILP solver, we initialize the former method with an efficient primal heuristic.
In (Cordone and Trubian, 2008) the authors describe a simple Tabu Search heuris-
tic to determine a good initial feasible solution. The heuristic is initialized with the
minimum spanning tree obtained by setting to zero all the constraint multipliers in
formulation (3.7). The neighborhood explored at each iteration by the heuristic con-
tains all the spanning trees that can be obtained by adding (resp. removing) a vertex
to (resp. from) the current subtree rooted in r. The neighborhood definition deter-
mines which vertices are contained in the subtree rooted in r and we compute the
best way to connect them by computing the tree that spans them all at the minimum
cost. The heuristic avoids cycling behaviors by means of a tabu memory that forbids
the reversal of executed moves for a certain number of iterations. This number is
controlled by a tabu tenure that is dynamically adapted to the state of the search.

3.6.5 Embedding the Lagrangian Dual Problem in an exact
method

It is possible that the spanning tree obtained at the end of the Lagrangian Dual
Problem (3.7) resolution process violates some of the constraints (3.6d). However,
since the minimum spanning tree polytope has the integrality property, the objective
function value associated with this tree is equal to the objective function value of
the optimal solution of the LP-Relaxation of the original formulation (3.6). Thus,
we have an effective lower bounding procedure that can be embedded in a Branch
& Bound algorithm in order to obtain an optimal solution for the KPCSTP.

48 3 Experimental analysis of different ILP approaches for the KPCSTP

Branching strategy

We define a branching strategy based on variable xv0v with v ∈ V \{r}: on the first
branch we impose the presence of edge {v0,v} in each feasible solution (i.e. remov-
ing vertex v in the corresponding KPCSTP feasible solutions), on the other branch
we forbid the inclusion of the same edge in any feasible solution (i.e. including
vertex v in the corresponding KPCSTP feasible solutions). The constraints added
to problem (3.7) in both branches can be easily handled by simply modifying the
Kruskal algorithm. Thus, the lagrangian subproblems obtained after the introduc-
tion of the branching constraints continue to be effectively solvable with the method
described in Section 3.6.2.

Branching variable selection

The choice of the branching variable xv0v is based on the complementary slackness
conditions. First, we denote with λ the best lagrangian multiplier vector found so
far and we denote with s the slack vector of the corresponding lagrangian solution
T 0

λ
. Given these two vectors, among the constraints (3.6d) that are violated by T 0

λ
,

we select the one, indexed by i, for which | λisi | is maximum and we branch on xv0t ,
where t is the root of the subtree associated with the violated constraint.

If all the constraints (3.6d) are satisfied by T 0
λ

, we consider the constraint, indexed
by i, for which | λisi | is maximum: if this constraint is oversatisfied and belongs to
the structural constraints (3.6d), we choose the branching variable xv0u where u is
the reference vertex associated with it; otherwise, the selected constraint i must be
the knapsack constraint (3.6e), and we branch on variable xv0v where v is the vertex
adjacent to v0 in T 0

λ
associated with the minimum lagrangian cost cv0v. Finally, if

no vertex is adjacent to v0 in T 0
λ

, we select the branching variable xv0v where v is
associated with the minimum lagrangian cost cv0v.

Branching tree exploration

For the sake of simplicity, and to easily handle the generated cuts in the different
branching nodes, we decide to adopt a depth-first strategy in which we first visit
the branch associated with constraint xv0v = 1 (i.e. the one imposing the removal of
vertex v from the KPCSTP solution) and then we visit the branch associated with
constraint xv0v = 0 (i.e. the one imposing the presence of vertex v into the KPCSTP
solution).

3.7 Computational Experiments 49

3.7 Computational Experiments

In this section we describe the computational experiments that we executed in or-
der to asses the performances and the properties of the different methods we have
described in the previous sections.

All the methods have been implemented in C++ and built with gcc 4.6, setting the
-O3 optimization flag. To solve the LP/ILP problems, we used ILOG CPLEX 12.5
and the CONCERT libraries. Note that, among all the proposed methods, only the
Relax-and-Cut method described in Section 3.6 does not require a LP/ILP solver.

All the experiments have been executed on a PC equipped with an Intel Xeon
Processor E5-1620 Quad Core 3.60GHz and 16 GB of RAM. Since the Relax-and-
Cut method have a single-threaded implementation, for the sake of fairness, we
limited to one the number of threads that CPLEX could use.

3.7.1 Benchmark instances

In this computational campaign, we consider the same instances considered in (Cor-
done and Trubian, 2008). These instances can be divided in three different bench-
marks:

• Dense instances (D): the instances in this benchmark have been derived from
the instances for the PCSTP proposed in (Engevall et al., 1998), the number of
vertices ranges from 10 to 100 by steps of 10 nodes, the underlying graph is
complete and the edge costs are randomly extracted from a uniform distribution
ranging in [50;150]. The prizes are chosen at random from a uniform distribution,
and the range of this distribution depends on the group to which the instance be-
longs. There are three groups: in the low prize group the prizes range in [40;100],
in medium prize group the prizes range in [40;150], and in large prize group the
prizes range in [40;200]. For each combination of number of vertices and prize
interval there are 5 different instances. Overall this benchmark contains 150 in-
stances.

• Sparse planar instances (P): these instances have been generated extracting a
given number of vertices from a 100× 100 grid. The number of vertices ranges
from 50 to 100 by steps of 10 and from 150 to 300 by steps of 50. The edges
are randomly generated by extracting a couple of vertices and inserting the cor-
responding edge if and only if its length is less than or equal to α = 0.3 of the
length of the grid diagonal, and its insertion preserves the planarity of the graph.
For each number of vertices, 5 different graphs have been generated, and, for
each one of them, random prizes have been generated both in range [−50;100]
and in range [0;100]. Overall, the number of instances in this benchmark is 100.

• Non planar instances (R): the instances in this benchmark have been generated
following a strategy similar to the one used for the generation of the instances
of the previous benchmark. The unique difference between the two benchmarks

50 3 Experimental analysis of different ILP approaches for the KPCSTP

is that the graphs generated for benchmark R are not planar, the edge associated
with a given couple of vertices belongs to the generated graph with probability π

and if and only if its length is less than or equal to α = 0.3 of the length of the
grid diagonal. In order to generate instances with different degrees of sparsity,
different values for π (0.05 and 0.1) have been considered . As before, for each
number of vertices, 5 different graphs have been generated. Overall, the number
of instances in this benchmark is 200.

In all the instances of the three benchmarks, all the vertex weights have been fixed
to one (i.e. wv = 1 for each v ∈V), and we set W = bδ |V |c where δ is an instance
parameter varying in {0.2,0.4,0.6,0.8}. In this way we obtained instances having
different levels of tightness in the knapsack constraint.

3.7.2 Network flow formulations comparison

In the first computational experiment, we compare the three different compact for-
mulations based on network flows. In particular, we compare the single-commodity
formulation SCF (3.1), its variant SCF2 (3.2) that handles the knapsack constraint
in an implicit way and the multi-commodity formulation MCF (3.3). For each in-
stance and for each formulation, we consider a time limit of 600 seconds. In Table
3.1, Table 3.2 and Table 3.3 we respectively report the average computational time
in seconds required by the three network flow formulations to respectively solve
the instances in benchmark D, benchmark P and benchmark R. The average com-
putational time has been computed only on the instances that can be solved within
the time limit. If some of the instances in a given class cannot be solved to opti-
mality within the time limit, we report, within parenthesis, the number of unsolved
instances. Note that, for benchmark R, using formulation MCF, CPLEX is not able
to solve any instance having n = 300 and δ = 0.6, as a consequence, we cannot
compute the average computational time for these instances, and we denote this fact
by a dash “-”. Finally, for each class of instances, we highlight with a bold font the
smallest average computational time.

Analyzing these tables we can observe that, when the number of vertices in-
creases too much, formulation MCF is not competitive with the two single-com-
modity formulations. This behavior can be easily explained considering the differ-
ent formulation sizes: formulation MCF has O(| E ||V |) variables and O(| E ||V |)
constraints, while the two single-commodity formulation (SCF and SCF2) have only
O(| E | + | V |) variables and O(| E | + | V |) constraints. Nonetheless, the num-
ber of branching nodes generated by CPLEX to solve formulation MCF is very
low w.r.t. the number of branching nodes generated to solve formulations SCF and
SCF2. As example, in Table 3.4 we report the average number of branching nodes
generated by CPLEX to solve the three different network flow formulations on the
instances belonging to benchmark P having δ = 0.8 and varying the number of ver-
tices. On these instances, the average number of branching nodes generated to solve
MCF is always less than 1, this implies that most instances can be solved at the

3.7 Computational Experiments 51

δ = 0.2 δ = 0.4 δ = 0.6 δ = 0.8
n MCF SCF SCF2 MCF SCF SCF2 MCF SCF SCF2 MCF SCF SCF2

10 0.01 0.01 0.01 0.07 0.13 0.07 0.01 0.01 0.01 0.07 0.01 0.01
20 0.33 0.20 0.01 0.53 0.27 0.01 0.47 0.07 0.07 0.40 0.13 0.07
30 3.33 0.07 0.20 2.33 0.53 0.47 2.40 0.40 0.40 2.93 0.27 0.27
40 9.80 0.60 0.27 7.93 0.73 1.13 8.00 0.60 0.53 7.20 0.60 0.53
50 29.93 1.33 1.13 19.27 1.67 1.53 21.67 1.20 1.20 22.20 1.20 1.40
60 73.33 2.40 2.07 45.20 3.13 2.67 39.87 2.47 2.20 44.60 2.20 2.20
70 110.93 5.20 3.20 102.40 5.87 5.87 104.40 4.33 3.93 88.80 4.27 4.73
80 196.87 9.07 6.13 164.60 11.93 11.00 185.80 7.80 7.00 177.80 7.40 7.73
90 227.09(4) 14.73 9.93 215.20(5) 15.20 14.07 232.82 11.47 10.33 254.64(1) 10.53 10.80

100 355.73(4) 24.07 20.27 395.54(3) 25.87 21.67 406.58(3) 20.07 17.93 387.60(5) 20.67 19.13

Table 3.1 Average computational time required by the different network flow formulations on
dense instances (benchmark D).

δ = 0.2 δ = 0.4 δ = 0.6 δ = 0.8
n MCF SCF SCF2 MCF SCF SCF2 MCF SCF SCF2 MCF SCF SCF2

50 1.20 0.60 0.10 0.90 0.90 0.60 0.90 0.60 0.30 1.00 0.50 0.10
60 1.90 0.60 0.20 1.20 0.60 0.70 1.00 0.40 0.10 1.40 0.50 0.30
70 2.70 1.90 0.90 2.20 1.30 1.20 1.60 0.50 0.60 1.80 0.50 0.40
80 3.40 1.40 0.70 3.30 1.90 0.90 2.70 1.00 1.00 2.30 0.80 0.90
90 6.20 7.00 2.40 4.70 6.10 3.70 3.90 1.20 0.90 2.80 1.00 1.00

100 7.50 4.50 1.90 6.70 2.00 1.10 4.10 1.40 0.80 4.10 1.30 1.70
150 33.20 10.30 8.10 19.40 10.00 13.40 18.60 7.70 5.60 17.50 5.40 6.00
200 92.40 41.60 27.10 95.10 29.50 19.60 86.60 12.40 13.10 63.30 8.20 8.20
250 261.20 124.11(1) 54.70 145.90 49.20 26.90 174.10 15.60 12.80 116.80 9.50 10.40
300 352.40 112.25(2) 50.20 296.40(2) 96.60(1) 62.60 259.30 21.30 18.30 280.60 16.00 17.30

Table 3.2 Average computational time required by the different network flow formulations on
planar instances (benchmark P).

δ = 0.2 δ = 0.4 δ = 0.6 δ = 0.8
n MCF SCF SCF2 MCF SCF SCF2 MCF SCF SCF2 MCF SCF SCF2

50 0.60 0.35 0.15 0.70 0.30 0.40 0.75 0.25 0.20 0.60 5.15 0.10
60 1.10 0.50 0.15 1.00 0.30 0.45 1.05 0.35 0.15 1.15 6.60 0.35
70 2.10 0.35 0.20 2.05 0.65 0.55 2.15 0.50 0.55 2.00 2.85 0.40
80 4.30 0.75 0.60 3.25 0.70 0.40 2.95 0.50 0.50 3.20 4.45 0.40
90 6.10 0.95 0.95 5.50 0.90 0.60 5.90 0.50 0.55 4.60 2.10 0.45

100 9.40 1.20 1.35 8.10 0.90 0.75 7.70 0.65 0.35 6.65 4.00 0.40
150 94.30 5.55 3.35 80.35 3.65 2.85 56.60 2.20 2.40 84.25 6.95 2.80
200 277.09(9) 15.05 9.90 201.64(6) 11.00 8.50 249.35(3) 6.00 4.55 242.00(5) 4.95 5.15
250 296.00(13) 18.45 19.55 322.78(11) 15.30 15.30 390.00(15) 11.10 10.65 412.00(13) 3.25 10.70
300 472.00(19) 42.05 41.15 575.00(19) 33.05 37.95 600.00(20) 26.40 25.55 600.00(20) 4.60 25.20

Table 3.3 Average computational time required by the different network flow formulations on non
planar instances (benchmark R).

52 3 Experimental analysis of different ILP approaches for the KPCSTP

n MCF SCF SCF2
50 0.3 1.9 2.8
60 0.9 0.00 7.9
70 0.00 1 3.5
80 0.00 119.6 120.8
90 0.00 523.10 193.60

100 0.00 465.30 557.30
150 0.00 899.40 1135.60
200 0.00 826.50 854.00
250 0.00 554.50 626.20
300 0.00 670.50 809.10

Table 3.4 Average number of branching nodes required to solve instances in benchmark P having
δ = 0.8 using the different network flow formulations.

root vertex using that formulation. On the contrary, if we exclude the smallest in-
stances that can be solved generating less than ten branching nodes, using both SCF
and SCF2, CPLEX generates hundreds of branching nodes. This different behaviors
show that, as expected, the LP-Relaxation of formulation MCF is tighter than the
LP-Relaxation of single-commodity formulations. However, the strength of formu-
lation MCF is not sufficient to balance the higher computational resources required
to handle the higher number of variables and constraints w.r.t. the single-commodity
formulations. Note that we do not report the number of branching nodes generated
to solve the other instances only for the sake of brevity, however the same behavior
can be observed solving all the instances.

Regarding the different performance of the two single-commodity formulations,
as expected, the optimization method based on formulation SCF2 outperforms the
optimization method based on formulation SCF. However, the differences between
these two formulations tend to vanish when we increase the δ value and, conse-
quently, when we weaken the knapsack constraint. In figures 3.1-3.4 we plot the
average computational time required by CPLEX to solve both SCF and SCF2 on in-
stances in benchmark D varying δ ∈ {0.2,0.4,0.6,0.8}: when δ = 0.8 the two plot
are almost indistinguishable. This behavior can be easily explained considering the
fact that the advantages of SCF2 w.r.t. SCF are due to the implicit handling of the
knapsack constraint: increasing δ the knapsack constraint becomes weaker and the
differences between the two formulations vanish.

3.7.3 The best way to initialize the connectivity cuts pool

In the second experiment, we compare the two different strategies proposed in Sec-
tion 3.5.2 to initialize the connectivity cuts pool to solve formulation CTF (3.4).
In Table 3.5, Table 3.6 and Table 3.7 we report the average computational time re-
quired to solve formulation CTF (3.4), respectively, for instances in benchmark D,
benchmark R and benchmark P. For each number of vertices and each value of δ ,

3.7 Computational Experiments 53

Fig. 3.1 Comparison of the average computational time required by CPLEX to solve instances in
benchmark D using SCF and SCF2, setting δ = 0.2.

Fig. 3.2 Comparison of the average computational time required by CPLEX to solve instances in
benchmark D using SCF and SCF2, setting δ = 0.4.

54 3 Experimental analysis of different ILP approaches for the KPCSTP

Fig. 3.3 Comparison of the average computational time required by CPLEX to solve instances in
benchmark D using SCF and SCF2, setting δ = 0.6.

Fig. 3.4 Comparison of the average computational time required by CPLEX to solve instances in
benchmark D using SCF and SCF2, setting δ = 0.8.

3.7 Computational Experiments 55

we report the average computational time in seconds obtained both by initializing
the connectivity cuts pool with the 2-Cycle removal constraints (3.5) and by not
initializing it at all. On each instance we impose a time limit of 600 seconds and,
if some of the instances in a given class cannot be solved within the time limit, the
number of unsolved instances is reported within parenthesis.

δ = 0.2 δ = 0.4 δ = 0.6 δ = 0.8

n (3.5)
Empty
Pool (3.5)

Empty
Pool (3.5)

Empty
Pool (3.5)

Empty
Pool

10 0.01 0.01 0.01 0.01 0.01 0.01 0.13 0.01
20 0.01 0.01 0.01 0.07 0.01 0.07 0.07 0.01
30 0.07 0.27 0.07 0.13 0.01 0.13 0.00 0.01
40 0.01 0.27 0.13 0.47 0.07 0.33 0.01 0.33
50 0.20 0.87 0.13 1.27 0.20 1.13 0.07 0.87
60 0.20 2.60 0.40 3.33 0.13 3.07 0.20 2.33
70 0.47 5.60 0.60 7.73 0.53 7.07 0.27 4.47
80 0.67 11.27 0.40 17.07 0.27 14.07 0.80 10.33
90 1.00 23.93 0.93 29.53 0.73 23.40 0.67 15.60

100 1.40 47.33 1.80 48.60 1.40 39.33 1.53 29.47

Table 3.5 Average computational time required to solve formulation CTF (3.4) on dense instances
(benchmark D), initializing the connectivity cuts pool with the 2-Cycle removal constraints (3.5)
or with the empty pool.

δ = 0.2 δ = 0.4 δ = 0.6 δ = 0.8

n (3.5)
Empty
Pool (3.5)

Empty
Pool (3.5)

Empty
Pool (3.5)

Empty
Pool

50 0.40 0.30 0.30 0.40 0.10 0.40 0.10 0.30
60 0.30 0.10 0.20 0.70 0.10 0.40 0.20 0.20
70 0.40 0.80 0.70 0.80 0.20 0.60 0.10 0.70
80 0.40 0.60 0.50 1.50 0.30 1.10 0.20 0.50
90 0.70 2.10 0.90 2.70 0.50 1.60 0.10 0.90

100 0.50 1.80 1.20 2.00 0.70 3.30 0.40 1.20
150 5.60 48.00 5.90 67.90 2.00 11.10 1.20 5.90
200 29.70 180.78(1) 20.30 207.44(1) 6.70 170.90 3.10 20.30
250 75.50 280.33(7) 40.40 321.67(4) 9.60 88.30 7.40 40.40
300 76.40 384.50(8) 150.40 450.00(9) 31.30 176.00(4) 17.60 100.44(1)

Table 3.6 Average computational time required to solve formulation CTF (3.4) on planar instances
(benchmark P), initializing the connectivity cuts pool with the 2-Cycle removal constraints (3.5)
or with the empty pool.

Analyzing these results, we can observe that the initialization strategy based on
the 2-Cycle removal constraints (3.5) outperforms the initialization strategy that
does not use them: using the latter initialization strategy, we cannot solve, within
the time limit, 35 instances in benchmark P and 15 instances in benchmark R. On
all other instances, by initializing the connectivity cuts pool with the 2-Cycle re-

56 3 Experimental analysis of different ILP approaches for the KPCSTP

δ = 0.2 δ = 0.4 δ = 0.6 δ = 0.8

n (3.5)
Empty
Pool (3.5)

Empty
Pool (3.5)

Empty
Pool (3.5)

Empty
Pool

50 0.01 0.05 0.01 0.10 0.01 0.20 0.01 0.00
60 0.10 0.30 0.01 0.15 0.01 0.20 0.01 0.10
70 0.10 0.25 0.05 0.45 0.01 0.20 0.01 0.25
80 0.05 0.35 0.01 0.50 0.01 0.35 0.01 0.30
90 0.20 0.45 0.01 0.80 0.01 0.85 0.10 0.55

100 0.05 1.05 0.10 1.20 0.10 1.05 0.05 0.50
150 0.35 9.05 0.35 9.10 0.50 7.85 0.50 4.05
200 1.70 30.67(2) 1.70 44.70 1.65 32.25 1.85 19.00
250 3.85 86.21(1) 2.75 100.75 5.15 79.85 5.65 51.30
300 5.60 196.00(4) 5.75 244.22(3) 11.75 189.06(3) 22.35 173.50(2)

Table 3.7 Average computational time required to solve formulation CTF (3.4) on non planar in-
stances (benchmark R), initializing the connectivity cuts pool with the 2-Cycle removal constraints
(3.5) or with the empty pool.

moval constraints (3.5) we can significantly reduce the required computational time.
This behavior can be explained by considering the high amount of computational re-
sources saved by adding only once all the 2-Cycle removal constraints (3.5) w.r.t. the
computational burden of the continuous generation of the same cuts in the different
branching nodes.

3.7.4 Comparison of the different exact methods

In the last computational experiment, in order to finally understand which one of
the proposed methods is the most efficient in solving the KPCSTP, we compare the
three following methods:

• SCF2: formulation (3.2) directly solved by CPLEX.
• CTF: formulation (3.4) solved by CPLEX with the dynamic generation of the

connectivity cuts constraints and initializing the connectivity cuts pool with the
2-Cycle removal constraints (3.5).

• SST: formulation (3.6) solved using the Relax-and-Cut method described in Sec-
tion 3.6.

We focus our attention on these three methods since in Section 3.7.2 we have shown
that formulation SCF2 (3.2) outperforms the two others network flow formulations
(i.e. SCF and MCF), and in Section 3.7.3 we have shown that, by initializing the
connectivity cuts pool with the 2-Cycle removal constraints, we significantly de-
crease the required computational time w.r.t. not initializing it at all.

Thus, in Table 3.8, Table 3.9 and Table 3.10 we report the average computa-
tional time in seconds required to solve the KPCSTP using these three optimization
methods, respectively, on benchmark D, benchmark P and benchmark R. Similarly
to what done in the previous experiments, we impose a 600 seconds time limit. If

3.7 Computational Experiments 57

some instances in a given class cannot be solved within the time limit, we report in
parenthesis the number of unsolved instances.

δ = 0.2 δ = 0.4 δ = 0.6 δ = 0.8
n SCF2 SST CTF SCF2 SST CTF SCF2 SST CTF SCF2 SST CTF

10 0.01 0.01 0.01 0.07 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.13
20 0.01 0.01 0.01 0.01 0.01 0.01 0.07 0.01 0.01 0.07 0.01 0.07
30 0.20 0.01 0.07 0.47 0.01 0.07 0.40 0.01 0.01 0.27 0.01 0.01
40 0.27 0.04 0.01 1.13 0.03 0.13 0.53 0.02 0.07 0.53 0.01 0.01
50 1.13 0.01 0.20 1.53 0.01 0.13 1.20 0.01 0.20 1.40 0.01 0.07
60 2.07 0.04 0.20 2.67 0.01 0.40 2.20 0.01 0.13 2.20 0.02 0.20
70 3.20 0.03 0.47 5.87 0.06 0.60 3.93 0.01 0.53 4.73 0.01 0.27
80 6.13 0.02 0.67 11.00 0.03 0.40 7.00 0.03 0.27 7.73 0.02 0.80
90 9.93 0.04 1.00 14.07 0.72 0.93 10.33 0.03 0.73 10.80 0.01 0.67

100 20.27 0.11 1.40 21.67 0.03 1.80 17.93 0.11 1.40 19.13 0.28 1.53

Table 3.8 Average computational time required to solve dense instances (benchmark D) using
formulation SCF2 (3.2), formulation CTF (3.4) and formulation SST (3.6).

δ = 0.2 δ = 0.4 δ = 0.6 δ = 0.8
n SCF2 SST CTF SCF2 SST CTF SCF2 SST CTF SCF2 SST CTF

50 0.10 0.98 0.40 0.60 2.29 0.20 0.30 0.82 0.10 0.10 23.69 0.10
60 0.20 0.14 0.30 0.70 0.06 0.30 0.10 0.04 0.10 0.30 39.74(1) 0.20
70 0.90 1.12 0.40 1.20 0.64 0.50 0.60 0.12 0.20 0.40 21.58 0.10
80 0.70 2.70 0.40 0.90 0.54 0.50 1.00 0.99 0.30 0.90 1.13(1) 0.20
90 2.40 14.29 0.70 3.70 2.44 0.90 0.90 0.69 0.50 1.00 24.57 0.10

100 1.90 23.90 0.50 1.10 0.48 0.40 0.80 0.51 0.70 1.70 0.40 0.40
150 8.10 76.44(3) 5.60 13.40 33.00 2.90 5.60 47.58 2.00 6.00 10.06 1.20
200 27.10 55.91(8) 29.70 19.60 73.18(4) 9.50 13.10 69.14(1) 6.70 8.20 23.50 3.10
250 54.70 525.04(9) 75.50 26.90 7.11(8) 25.80 12.80 48.66(2) 9.60 10.40 49.37 7.40
300 50.20 600.00(10) 76.40 62.60 484.00(9) 58.00 18.30 229.22(5) 31.30 17.30 173.66(3) 17.60

Table 3.9 Average computational time required to solve planar instances (benchmark P) using
formulation SCF2 (3.2), formulation CTF (3.4) and formulation SST (3.6).

Analyzing these results, we can immediately note that the performances of the
different optimization methods change drastically if we consider dense instances
(benchmark D), or sparse instances (benchmark P and benchmark R). In particular,
SST is very effective on dense instances and in many cases it outperforms the other
two competing methods. However, if we consider the sparse instances, SST is not
able to solve many instances within the time limit (for example, it is not able to solve
any instance in benchmark P having n = 300). CTF is a more robust method w.r.t.
SST: on many instance classes in benchmark R and benchmark P it outperforms the
two other methods, while, if we consider benchmark D, it is competitive with SST
and outperforms SCF2 on most instances. Finally, it is interesting to note that, de-

58 3 Experimental analysis of different ILP approaches for the KPCSTP

δ = 0.2 δ = 0.4 δ = 0.6 δ = 0.8
n SCF2 SST CTF SCF2 SST CTF SCF2 SST CTF SCF2 SST CTF

50 0.15 0.02 0.01 0.40 0.02 0.01 0.20 0.01 0.01 0.10 0.01 0.01
60 0.15 0.16 0.10 0.45 0.16 0.01 0.15 0.84 0.01 0.35 0.64 0.01
70 0.20 0.05 0.10 0.55 0.10 0.05 0.55 0.29 0.01 0.40 0.24 0.01
80 0.60 0.04 0.05 0.40 0.04 0.01 0.50 0.04 0.01 0.40 0.02 0.01
90 0.95 0.03 0.20 0.60 0.07 0.01 0.55 0.13 0.01 0.45 0.08 0.10

100 1.35 0.77 0.05 0.75 0.30 0.10 0.35 0.06 0.10 0.40 0.05 0.05
150 3.35 1.75 0.35 2.85 9.24 0.35 2.40 2.50 0.50 2.80 2.16 0.50
200 9.90 23.03(2) 1.70 8.50 16.96 1.70 4.55 1.77 1.65 5.15 1.29 1.85
250 19.55 10.76(3) 3.85 15.30 10.06 2.75 10.65 1.83 5.15 10.70 2.59 5.65
300 41.15 75.50(4) 5.60 37.95 12.98 5.75 25.55 42.90(2) 11.75 25.20 49.59(3) 22.35

Table 3.10 Average computational time required to solve non planar instances (benchmark R)
using formulation SCF2 (3.2), formulation CTF (3.4) and formulation SST (3.6).

spite its simplicity, SCF2 has often performances that are comparable with the other
more complex algorithms and outperforms the SST method on sparse instances.

3.8 Conclusion

In this chapter we investigated the different approaches that can be exploited to solve
the KPCSTP. The computational results reported in Section 3.7 showed that:

• The ILP extended formulation based on the connectivity cuts, on average, out-
performs the other proposed methods.

• The Lagrangian Relaxation method is competitive with the previous one on dense
instances, but on sparse instances it is outperformed also by the methods based
on the single-commodity network flow formulations.

• The the single-commodity network formulation that implicitly handles the knap-
sack constraint using a particular flow definition, despite its simplicity, is com-
petitive with other more complex methods.

• Despite the tightness of its LP-Relaxation, the multi-commodity flow formula-
tion cannot be effectively used to solve the KPCSTP. The time required to process
a single branching node is too high.

These conclusions can be used to develop effective methods for combinatorial
optimization problems that are similar to the KPCSTP. However, in different situa-
tions the investigated methods may show different behaviors. As example, in Chap-
ter 4 we show that the method based on the multi-commodity formulation outper-
forms the method based on the connectivity cuts when solving the Pricing Problem
associated with the extended formulation that we developed to solve the MRWADC
problem. These contradictory results are deeply discussed in Section 4.5.

3.9 References 59

3.9 References

T. Achterberg and T. Berthold. Improving the feasibility pump. Discrete Optimiza-
tion, 4(1):77 – 86, 2007.

J. E. Beasley. An sst-based algorithm for the steiner problem in graphs. Networks,
19(1):1–16, 1989.

D. Bienstock, M. X. Goemans, D. Simchi-Levi, and D. Williamson. A note on the
prize collecting traveling salesman problem. Mathematical programming, 59(3):
413–420, 1993.

P. M. Camerini, L. Fratta, and F. Maffioli. On improving relaxation methods by
modified gradient techniques. In M. L. Balinski and P. Wolfe, editors, Nondiffer-
entiable Optimization, volume 3 of Mathematical Programming Studies, pages
26–34. Springer, 1975.

R. Cordone and M. Trubian. A Relax-and-Cut Algorithm for the Knapsack Node
Weighted Steiner Tree Problem. Asia-Pacific Journal of Operational Research,
25(3):373–391, 2008.

E. Danna, E. Rothberg, and C. L. Pape. Exploring relaxation induced neighborhoods
to improve mip solutions. Mathematical Programming, 102(1):71–90, 2005.

C. W. Duin and A. Volgenant. Some generalizations of the steiner problem in
graphs. Networks, 17(3):353–364, 1987.

S. Engevall, M. Göthe-Lundgren, and P. Värbrand. A strong lower bound for the
node weighted steiner tree problem. Networks, 31(1):11–17, 1998.

A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem.
J. ACM, 35(4):921–940, October 1988.

M. Haouari, S. Layeb, and H. Sherali. The prize collecting steiner tree problem:
models and lagrangian dual optimization approaches. Computational Optimiza-
tion and Applications, 40(1):13–39, 2008.

M. Held and R. M. Karp. The traveling-salesman problem and minimum spanning
trees. Operations Research, 18(6):1138–1162, 1970.

J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical society, 7(1):48–50, 1956.

E. Lawler. Combinatorial Optimizations: Networks and Matroids. Holt, Rinehar
and Winston, 1976.

I. Ljubić, R. Weiskircher, U. Pferschy, G. W. Klau, P. Mutzel, and M. Fischetti. An
Algorithmic Framework for the Exact Solution of the Prize-Collecting Steiner
Tree Problem. Mathematical programming, 105(2-3):427–449, 2006.

A. Lodi. The heuristic (dark) side of mip solvers. In E. Talbi, editor, Hybrid Meta-
heuristics, volume 434 of Studies in Computational Intelligence, pages 273–284.
Springer, 2013.

A. Lucena and M. Resende. Strong lower bounds for the prize collecting steiner
problem in graphs. Discrete Applied Mathematics, 141(1–3):277 – 294, 2004.

T. L. Magnanti and L. A. Wolsey. Optimal trees. In C. L. Monma M. O. Ball, T.
L. Magnanti and G. L. Nemhauser, editors, Network Models, volume 7 of Hand-
books in Operations Research and Management Science, pages 503 – 615. Else-
vier, 1995.

60 3 Experimental analysis of different ILP approaches for the KPCSTP

E. Rothberg. An evolutionary algorithm for polishing mixed integer programming
solutions. INFORMS Journal on Computing, 19(4):534–541, 2007.

A. Segev. The node-weighted steiner tree problem. Networks, 17(1):1–17, 1987.

Chapter 4
Multicast Routing and Wavelength Assignment
with Delay Constraint in WDM networks with
heterogeneous capabilities

4.1 Introduction

A great number of people worldwide use intensively computer networks, and,
in the last few years, new bandwidth-intensive computer networks applications
have been developed: consider, for example, video conferences, video streaming,
VOIP telephony, web applications and cloud computing services (Mukherjee, 2006;
Tzanakaki et al., 2011). Consequently, an acute need for very high-bandwidth net-
work infrastructures emerges. To meet this need, backbone networks based on opti-
cal fibers have been built: a single mode optical fiber has a potential bandwidth of
nearly 50 terabits per second, that is much higher than the bandwidth supported by
electronic equipments (few tens of gigabits per second today). Hence a bandwidth
mismatch arises on networks which have optical technologies on links and elec-
tronic devices on nodes. This bandwidth mismatch can be exploited by Wavelength
Division Multiplexing (WDM) optical networks (see, for example, Mukherjee 2000,
2006 for an introduction on this technology) to enable parallel transmissions. A
WDM optical network consists of a set of optical fibers, the optical links, connected
by switch nodes mainly equipped with electronic devices. Multiple wavelengths are
available in each fiber, which provide a large transmission bandwidth. Each different
wavelength corresponds to a different communication channel.

Consider now a piece of data that needs to go from a source node s to a destina-
tion node t in a WDM network: if the optical signal carrying the data has different
wavelengths (i.e. it uses different communication channels) on different optical net-
work links, in the intermediate switch nodes we need to convert the optical signal
using an electronic device. This conversion process can be very slow w.r.t. the speed
of optical communications and, consequently, routing data in a WDM network using
a standard packet switching strategy brings to a waste of the optical links bandwidth.

Hence, the best way to send data from a source node s to a destination node t
in a WDM network is to use the same wavelength (i.e. the same communication
channel) on all the optical links crossed by the optical signal carrying the data. If
we model the optical network as a directed graph, we need to find a directed path

61

62 4 MRWADC in WDM networks with heterogeneous capabilities

connecting s to t such that we can assign the same wavelength to all the links crossed
by the path.

A single path from s to t corresponds to a unicast or point-to-point transmission.
Multicast transmissions provide a means of point-to-multipoint communication. In
the multicast transmission setting we need to connect a single source node s with a
set of destinations nodes D. This requires the capability of the switch nodes to re-
produce the data received in input on different output links. Multicast transmissions
have several data networks applications including video-conferencing, distributed
computing, Internet TV, stock prices updates, software distribution, and so on. A
single stream is shared by a batch of common recipients/users, which makes this
system more advantageous.

Extending the idea introduced above for the unicast transmission setting, to effi-
ciently use WDM networks in a multicast setting, given the directed graph modeling
the network, we need to find an arborescence (resp. set of arborescences), rooted in s
and covering all the nodes in D, in which, for all the links defining the arborescence
(resp. each arborescence), we can use the same wavelength. The problem of find-
ing a multicast arborescence and assigning a suitable wavelength to it is known as
the Multicast Routing and Wavelength Assignment (MCRWA) problem (Chen and
Wang, 2002). It plays a key role in supporting multicasting over WDM networks.

In this work we address the Multicast Routing Wavelength Assignment with
Delay Constraints (MRWADC) problem on heterogeneous WDM networks (Chen
et al., 2008). With respect to the MCRWA problem three more features arising in
real world applications are considered:

1. Delay bound constraints: the time required to carry a signal from the source to
each destination node along directed paths is limited by a threshold value, say ∆

(useful to guarantee the Quality-of-Service of the transmissions).
2. Heterogeneous multicast capabilities: for budget constraints, in a real WDM net-

work not all the nodes are equipped with the same facilities (i.e. the considered
network is heterogeneous) and, consequently, the capability to reproduce the data
received in input on different output links varies from node to node.

3. Network congestion: certain wavelengths on certain network links are unavail-
able.

In order to choose between feasible arborescence sets, we associate with each op-
tical link a cost that we need to pay each time we use one of its wavelengths. The
objective function of the problem requires to minimize a convex combination of
the sum of these costs (communication cost) and the number of used arborescences
(wavelength consumption).

The MRWADC problem on heterogeneous WDM networks, has been already
studied in Chen et al. (2008). In this paper the authors propose a compact ILP formu-
lation and a constructive heuristic that uses the minimum cost paths in the network.
In Chen and Tseng (2005) the authors propose a genetic algorithm to solve the MR-
WADC problem without considering network congestion. Other related problems
have been studied in literature. In Zhu et al. (1995) the authors describe a local
search heuristic that allows to make efficient multicast transmission in a non-optical

4.1 Introduction 63

network. In Zhang et al. (2000) the authors study how to efficiently manage WDM
networks with sparse splitting capabilities (i.e. only few nodes in the network have
splitting capabilities) in a multicast setting. The authors of Sreenath et al. 2001 in-
vestigate the efficient use of a WDM network containing some special nodes called
virtual sources. In Jia et al. (2001) the authors develop optimization algorithms to
satisfy delay bound constraints in WDM network having unlimited splitting capa-
bilities. Finally, the problem studied in Yan et al. (2001) requires to minimize the
wavelengths used by a WDM network with sparse splitting capabilities in a multi-
cast setting.

In this work, we introduce a new ILP formulation which allows a simple Dantzig-
Wolfe decomposition and leads to an extended formulation amenable to a Column
Generation approach. The related Pricing Problem is very similar to the KPCSTP
introduced in Chapter 3. Thus, here we derives two different exact methods for the
Pricing Problem starting from, respectively, the multi-commodity flow formulation
(see Section 3.3) and the connectivity cuts formulation (see Section 3.5) for the
KPCSTP. In Chen et al. (2008), the only previous approach in literature to solve the
MRWADC problem, the authors say that ”The elapsed execution time is more than
34 h [...] for some request (q = 3) in the network with 60 nodes (n = 60), and the ILP
formulation cannot be used to solve the network with more than 70 nodes or requests
with more than 3 destinations in a reasonable time.”. Using the method described
in this chapter, we obtain optimal solutions for instances having up to one hundred
nodes within two hours of computation time. Moreover, to solve instances within
the same class, our algorithm requires far less computation time w.r.t. the method
proposed in Chen et al. (2008). Notice that the computational experiments reported
in Chen et al. (2008) had been executed using an older version of the commercial
ILP solver and a slower computer w.r.t. those we have used in our tests. Hence, to
fairly compare our approach with that based on solving a compact ILP formulation,
we tested the latter method on our machine and using our version of the ILP solver.
The obtained results (see, Section 4.6.4) confirm that a compact formulation can be
used with success on instances up to 40 nodes, but it fails on an increasing number
of instances as n increases beyond that threshold.

In the next section we formally introduce the MRWADC problem and we present
our new ILP compact formulation. In Section 4.4, by applying the Dantzig-Wolfe
decomposition technique to the compact formulation, we introduce an extended for-
mulation and we describe how to solve its LP-Relaxation using a Column Genera-
tion method. In Section 4.5 we describe the two exact methods and the Tabu Search
heuristic we developed to solve the Pricing Problem. In Section 4.6 we report some
implementation issues and present the experimental results we obtained. The last
section reports our concluding remarks. Finally, note that the whole content of this
chapter derives from our previously published work (Colombo and Trubian, 2013).

64 4 MRWADC in WDM networks with heterogeneous capabilities

4.2 The MRWADC problem and its compact ILP formulation

To formally describe the MRWADC problem we need to introduce some WDM
network terminology.

Definition 1. A WDM network is a tuple N = (G,M,c, t,θ ,w), where:

• G = (V,A) (| V |= n and | A |= m) is a directed graph which defines the under-
lying network structure. The nodes in V are the switch nodes and the arcs in A
are the optical links. There are multiple wavelengths (communication channels)
available in each optical link.

• M (|M |= k) is the discrete set of the wavelengths available in each optical link.
• The function c : A→ R+ (resp. t : A→ R+) determines the cost (resp. time)

associated with each arc.
• The function θ : V → N determines the maximum number of reproductions that

a network node can generate (i.e. it determines the splitting capabilities of the
nodes, as explained below).

• The function w : A×M→ {0,1} models the network congestion and associates
with each communication channel (a ∈ A,λ ∈ M) the value 0 (resp. 1) if the
communication channel is busy (resp. free)

A WDM network needs nodes capable to reproduce the received input on many
output links:

Definition 2. A multicast incapable (MI) node is a node of a WDM network that
is not able to reproduce the data it received in input on more than one output link.
On the contrary, a multicast capable (MC) node is a node of a WDM network that
is able to reproduce the data on more than one output link. The splitting capability
of a node is the maximum number of reproductions of the received data that a node
can generate.

The WDM networks studied in this chapter are heterogeneous since not all the net-
work nodes have the same multicast capabilities: only a subset of the nodes are MC
and, generally, these nodes have different splitting capabilities.
In the previous section we introduced the requirements of an efficient unicast trans-
mission on WDM networks. These requirements have been formalized by the light-
path concept (Chlamtac et al., 1992):

Definition 3. Given a WDM network, a light-path is a path in G which uses the
same wavelength on all the crossed optical links.

In the multicast setting, the light-path concept has been extended to the light-tree
concept (Sahasrabuddhe and Mukherjee, 1999):

Definition 4. Given a WDM network, a light-tree is an arborescence, say T , defined
on G, which uses the same wavelength, say λ , on all the crossed optical links. We
will denote a light-tree with the corresponding couple (T,λ).

4.2 The MRWADC problem and its compact ILP formulation 65

Observation. Note that, since the underlying network structure of the problem
studied in this chapter is a directed graph, we need to find arborescences, not trees.
Despite this, to conform with the previous literature on this problem we continue to
use the somewhat misleading optical network terminology.

Given the delay bound constraints, the heterogeneous multicast capabilities and the
network congestion, a single light-tree could not span all the destinations of a multi-
cast transmission request respecting all the constraints. In these situations, we need
to find different light-trees on different wavelengths, spanning different destination
subsets; we need a light-forest (Zhang et al., 2000):

Definition 5. Given a WDM network, a light-forest is a set of light-trees defined on
G and denoted by {(T1,λ1),(T2,λ2), . . . ,(Tp,λp)} such that each light-tree in this
set uses a different wavelength (i.e. if i 6= j then λi 6= λ j).

The input data of the problem is defined by a WDM network and by a transmission
request:

Definition 6. A transmission request is a 3-tuple R = (s,D,∆), where s ∈V is the
transmission source, D ⊆ V \{s} is the destination set (with | D |= q) and ∆ ∈ R+

is the delay bound threshold.

For convenience we introduce the following standard notations:

Notation. Given a a directed graph T , A(T) is the set of its arcs, V (T) is the set of its
nodes and D(T) =V (T)∩D is the set of the destinations spanned by T (notice that
the definition of D(T) depends on the considered transmission request) . Given a
node subset S⊂V (T) we define δ

−
T (S) = {(i, j) ∈ A(T)|i /∈ S∧ j ∈ S} and similarly

δ
+
T (S) = {(i, j) ∈ A(T)|i ∈ S∧ j /∈ S}. For sake of simplicity, we write δ

−
T (v) and

δ
+
T (v) instead of δ

−
T ({v}) and δ

+
T ({v}). Finally, for each λ ∈ M we define Aλ =

{a ∈ A | w(a,λ) = 1} and Gλ = (V,Aλ).

The feasible solutions of our problem are constrained light-forests:

Definition 7. Given a WDM network N = (G,M,c, t,θ ,w) and a transmission re-
quest R = (s,D,∆), a feasible light-tree is a light-tree (T,λ) such that: λ ∈M, T
is rooted in s and contained in Gλ , the outdegree of each node v ∈ V (T) is at most
equal to θ(v) and if P = (a1, . . . ,al), with ai ∈ Aλ for each i = 1, . . . , l, is the unique
path connecting s with v ∈V (T), then ∑

l
j=1 t(a j)≤ ∆ .

Definition 8. Given a WDM network N = (G,M,c, t,θ ,w) and a transmission re-
quest R = (s,D,∆), a feasible light-forest is a set {(T1,λ1),(T2,λ2), . . . ,(Tp,λp)}
that satisfies the following constraints: for each i = 1,2, . . . , p, (Ti,λi) is a feasible
light-tree, and each destination node in D is spanned at least by one light-tree (i.e.⋃p

i=1 D(Ti) = D).

Our problem can be now stated as follows:

MRWADC problem:

66 4 MRWADC in WDM networks with heterogeneous capabilities

Input: A WDM network N =(G,M,c, t,θ ,w), a transmission request R =(s,D,∆)
and parameter α ∈ [0,1].
Output: A feasible light-forest {(T1,λ1),(T2,λ2), . . . ,(Tp,λp)} that minimizes α ∑

p
i=1 cTi +

(1−α)p, where, for each i= 1, . . . , p, we define the communication cost of the light-
tree (Ti,λi) as cTi = ∑a∈A(Ti) c(a)

As already done in the literature (Chen et al., 2008), we choose to use a convex
combination of the communication cost with the wavelength consumption as objec-
tive function. With this choice we want to give to the decision maker the possibility
to increment/decrement α in order to face different WDM network states. For ex-
ample, if there are few free wavelengths the decision maker can decrement α to
preserve them. On the other side, if the WDM network has many free wavelengths
the decision maker may strictly control the communication cost incrementing α .

Since every instance of the Minimum Steiner Tree Problem can be polynomi-
ally transformed into a MRWADC problem instance (see Chen et al. 2008) and the
Minimum Steiner Tree Problem is N P-hard (see, for example, Garey and Johnson
1979), the studied problem is N P-hard.

Figures 4.1 and 4.2 illustrate, respectively, an example of a MRWADC instance
and one of its optimal solutions. In the optimal solution shown in Figure 4.2, two
wavelengths are required. Indeed, even if the solution which uses the paths (1−2−
7), (1− 2− 4− 6) and (1− 2− 4− 5− 3) respects the splitting capabilities of the
involved nodes, the last path, requiring 0.6 units of time, violates the delay bound
constraint. The same happens to the solution which uses the paths (1− 2− 7− 6)
and (1−2−3). Even in this case the last path, requiring 0.6 units of time, violates
the delay bound constraint. On the other hand, we cannot merge light-trees T1 and
T2 since the source node 1 is a multicast incapable node (i.e. θ(1) = 1).
The ILP formulation, to which we will refer in the following as the compact formu-
lation (CF) makes use of the following variables:

• f λ ,d
a is equal to 1 if a ∈ Aλ is used in Gλ to connect s with d ∈ D, 0 otherwise.

• xλ
a is equal to 1 if a ∈ Aλ is used in Gλ , 0 otherwise; variable zλ is equal to 1 if

at least one of the Gλ arcs is used, 0 otherwise.
• uλ

d is equal to 1 if d ∈ D is spanned by the light-tree defined in Gλ , 0 otherwise.

Once defined these variables, we can define CF formulation as follows:

4.2 The MRWADC problem and its compact ILP formulation 67

1 2

3

4

5

67

0.1

0.2 0.5

0.2

0.1 0.1

0.2

0.30.2

0.1

0.2

0.10.1

c(1,2) = 2 θ(1) = 1
c(1,3) = 4 θ(2) = 2
c(2,3) = 3 θ(3) = 1
c(2,4) = 1 θ(4) = 2
c(2,6) = 2 θ(5) = 1
c(2,7) = 5 θ(6) = 1
c(3,4) = 4 θ(7) = 1
c(4,5) = 3 ∆ = 0.5
c(4,6) = 2 α = 0.9
c(5,3) = 2 s = 1
c(6,4) = 1
c(6,5) = 2
c(7,6) = 3

M = {1,2}
D = {3,6,7}

w((3,4),1) = 0
w((4,5),2) = 0

Fig. 4.1 Example of a MRWADC instance. On the left we report the WDM network structure. The
arc labels define the function t. On the right we report the other parameters describing the WDM
network, the transmission request and the combination coefficient α .

CF : min α ∑
λ∈M

∑
a∈Aλ

c(a)xλ
a +(1−α) ∑

λ∈M
zλ

∑
a∈δ

−
Gλ

(s)

f λ ,d
a − ∑

a∈δ
+

Gλ
(s)

f λ ,d
a =−zλ d ∈ D,λ ∈M (4.1a)

∑
a∈δ

−
Gλ

(d)

f λ ,d
a − ∑

a∈δ
+

Gλ
(d)

f λ ,d
a = uλ

d d ∈ D, λ ∈M (4.1b)

∑
a∈δ

−
Gλ

(v)

f λ ,d
a − ∑

a∈δ
+

Gλ
(v)

f λ ,d
a = 0 d ∈ D,v ∈V \{s,d},λ ∈M

(4.1c)

xλ
a ≥ f λ ,d

a d ∈ D, λ ∈M, a ∈ Aλ (4.1d)

∑
a∈δ

−
Gλ

(v)

xλ
a ≤ 1 v ∈V, λ ∈M (4.1e)

∑
a∈δ

+

Gλ
(v)

xλ
a ≤ θ(v) v ∈V, λ ∈M (4.1f)

∑
a∈Aλ

t(a) f λ ,d
a ≤ ∆ d ∈ D, λ ∈M (4.1g)

∑
λ∈M

uλ
d ≥ 1 d ∈ D (4.1h)

f λ ,d
a , xλ

a , zλ , uλ
d ∈ {0,1} d ∈ D, λ ∈M, a ∈ Aλ

68 4 MRWADC in WDM networks with heterogeneous capabilities

light-tree (T1,1) light-tree (T2,2)

1 2

7

6

1

3

Fig. 4.2 An optimal solution for the instance defined in Figure 4.1. Since cT1 = 2+5+2 = 9 and
cT2 = 4, its cost is equal to 0.9× (9+4)+0.1×2 = 11.9.

Constraints (4.1a,4.1b,4.1c) determine the used wavelengths, the spanned destina-
tions and ensure the light-trees connectivity. Constraints (4.1d) identify the used
links on the different wavelengths. Constraints (4.1e) limit to one the indegree of
each node in each light-tree. Constraints (4.1f) ensure that the nodes splitting ca-
pabilities are respected. Constraints (4.1g) ensure that the delay bound threshold
is respected. Constraints (4.1h) ensure the spanning of all the destinations. This
formulation is quite different from the one proposed in Chen et al. (2008), the pur-
pose of this new formulation is to make explicit the diagonal blocks structure of
the problem. This formulation is compact since its definition requires a number of
variables and constraints that is polynomial in the instance size. In particular, it re-
quires (nq+ 2n+ q)k+ q∑λ∈M | Aλ | +q constraints and (q+ 1)(k+∑λ∈M | Aλ |)
variables.

4.3 An extended formulation

Applying the Dantzig-Wolfe decomposition (see Section 2.2.1) to formulation CF
(4.1), we can obtain a tighter extended formulation for the MRWADC problem.
We start by considering the set T λ that contains all the feasible light-trees defined
on wavelength λ . This set can be defined starting from the polytope defined by
constraints (4.1a-4.1g), i.e. all the constraints of formulation CF with the exception
of the destination covering constraints (4.1g), for a fixed λ ∈M:

4.3 An extended formulation 69

T λ
LP = { (x,u,z) : ∑

a∈δ
−
Gλ

(s)

f d
a − ∑

a∈δ
+

Gλ
(s)

f d
a = z for each d ∈ D;

∑
a∈δ

−
Gλ

(d)

f d
a − ∑

a∈δ
+

Gλ
(d)

f d
a = ud for each d ∈ D;

∑
a∈δ

−
Gλ

(v)

f d
a − ∑

a∈δ
+

Gλ
(v)

f d
a = 0 for each d ∈ D,v ∈V \{s,d};

xa ≥ f d
a for each d ∈ D,a ∈ Aλ ; ∑

a∈δ
+

Gλ
(v)

xa ≤ θ(v) for each v ∈V ;

∑
a∈Aλ

t(a) f d
a ≤ ∆ for each d ∈ D; f d

a ,xa,ud ,z ∈ [0,1] for each d ∈ D,a ∈ Aλ }

Using this polytope we can rewrite the LP-Relaxation of formulation CF as follows:

CFLP : min α ∑
λ∈M

∑
a∈Aλ

c(a)xλ
a +(1−α) ∑

λ∈M
zλ (4.2a)

∑
λ∈M

uλ
d ≥ 1 d ∈ D (4.2b)

(xλ ,uλ ,zλ) ∈T λ
LP λ ∈M (4.2c)

However, since the MRWADC solution must be integral we can obtain a tighter
LP-Relaxation by substituting T λ

LP with the convex hull of its integral points
conv(T λ

0) where the set T λ
0 contains all the elements of T λ plus the empty so-

lution:

ECFLP : min α ∑
λ∈M

∑
a∈Aλ

c(a)xλ
a +(1−α) ∑

λ∈M
zλ (4.3a)

∑
λ∈M

uλ
d ≥ 1 d ∈ D (4.3b)

(xλ ,uλ ,zλ) ∈ conv(T λ
0) λ ∈M (4.3c)

Note that if we set D =V , θ(v) = n for each v∈V and t(a) = ∞ for each a∈ Aλ , the
set T λ contains all the feasible solutions for the PCSTP (see Chapter 3). Thus, since
the PCSTP is N P-hard, T λ

LP does not have the integrality property, unless P =
N P . As a consequence, if we exclude some particular instances of the MRWADC
problem, we have conv(T λ

0) 6= T λ
LP and ECF is, in general, tighter than CF.

The extreme points of conv(T λ
LP) coincide with the feasible light-trees in T λ

thus we can associate a tuple (xλ
T ,u

λ
T ,z

λ
T) to each feasible light-tree T ∈T λ and we

can express conv(T λ
0) as follows:

conv(T λ
0) =

{
(x,u,z) : (x,u,z) = ∑

T∈T λ

γ
λ
T (x

λ
T ,u

λ
T ,z

λ
T), ∑

T∈T λ

γ
λ
T ≤ 1, γ

λ
T ≥ 0

}

70 4 MRWADC in WDM networks with heterogeneous capabilities

Note that when we define the value of the combination coefficients we use the
inequality ∑T∈T λ γλ

T ≤ 1 instead of the standard equality ∑T∈T λ γλ
T = 1, since

T λ
0 contains the empty solution while T λ does not. Introducing this new defi-

nition of conv(T λ) and defining the cost of each feasible light-tree T ∈ T λ as
cT = ∑a∈Aλ c(a)xλ

a, j, we can rewrite formulation (5.22) using the γ coefficients as
variables:

ECFLP : min ∑
λ∈M

∑
T∈T λ

(αcT +(1−α))γλ
T (4.4a)

∑
λ∈M

∑
T∈T λ

uλ
d,T γ

λ
T ≥ 1 d ∈ D (4.4b)

∑
T∈T λ

γ
λ
T ≤ 1 λ ∈M (4.4c)

γ
λ
T ≥ 0 λ ∈M,T ∈T λ (4.4d)

4.4 Column Generation

By adding the integrality constraint to formulation ECFLP, we obtain the following
extended formulation for the MRWADC problem:

EF : min ∑
λ∈M

∑
T∈T λ

(αcT +(1−α))γλ
T

∑
λ∈M

∑
T∈T λ

uλ
d,T γ

λ
T ≥ 1 d ∈ D (4.5a)

∑
T∈T λ

γ
λ
T ≤ 1 λ ∈M (4.5b)

γ
λ
T ∈ {0,1} λ ∈M, T ∈T λ

Remember that coefficient uλ
d,T is equal to 1 if the light-tree T on wavelength λ

spans the destination d (note that this coefficient is linked with the ud variable in-
troduced to solve the Pricing Problem in Section 4.5). Constraints (4.5a) ensure the
spanning of the destinations and constraints (4.5b) limit to one the light-trees de-
fined on each wavelength λ .

The extended formulation, when compared to the compact one, contains less con-
straints (q+ k) but, except special and simple cases, has a huge number of variables
(one for each feasible light-tree in the network). To solve its LP-Relaxation, i.e. for-
mulation ECFLP (4.4), we use the Column Generation method (see Section 2.2). In
this context, formulation ECFLP (4.4) plays the role of the Master Problem (MP).

At each iteration of the Column Generation method we need to solve an instance
of the Reduced Master Problem (RMP) that is derived from MP by considering
only a subset of the feasible light-trees. Given the optimal solution of the RMP,
let πd ≥ 0 and νλ ≤ 0 denote the optimal values of the dual variables respectively

4.5 Pricing Problem 71

associated with the destinations spanning constraints (4.5a) and with the wavelength
consumption constraints (4.5b). Then, we can define the reduced cost associated
with each feasible light-tree T ∈T λ as:

cT = αcT +(1−α)− ∑
d∈D

uλ
T,dπd−νλ

The Pricing Problem (PP) associated with the optimal solution of the current RMP
requires to identify a light-tree having a negative reduced cost, or to prove that such
a light-tree does not exist. Consequently, the Pricing Problem can be stated as:

PP : z = min
T∈
⋃

λ T λ

{cT}

If the optimal objective function value of the Pricing Problem is nonnegative, the
optimal solution of the RMP is optimal also for the MP and we can stop the Column
Generation method; otherwise, we can add any set of feasible light-trees having a
negative reduced cost to the RMP constraint matrix, obtaining a new RMP instance,
and iterate the process.

The Pricing Problem can be further decomposed by wavelengths obtaining k
problems like the following one:

PPλ : zλ = min
T∈T λ

{
αcT − ∑

d∈D
uλ

T,d πd

}
(4.6)

If we solve the problem PPλ for each λ ∈ M, we can solve the Pricing Problem
simply by computing:

z = min
λ∈M
{zλ +(1−α)−νλ}

4.5 Pricing Problem

In this section we describe the methods used to solve the Pricing Problem PPλ in-
troduced in the previous section. Hereafter, we refer to the PPλ problem as the Con-
strained Prize Collecting Steiner Arborescence Problem (CPCSAP) and to simplify
the notations, we refer to the graph Gλ = (V,Aλ) as G = (V,A), while T contains
all the feasible light-trees in Gλ (i.e. T =T λ). Moreover, we introduce the α mul-
tiplicative factor directly into the costs of the arcs.

Since any PCSTP (see Section 3.2) instance can be polynomially transformed in
a CPCSAP instance (by adding a dummy root node and giving directions to arcs),
CPCSAP is a N P-hard problem. To the best of our knowledge CPCSAP has not
yet been studied in the previous literature, however similar extensions of the Prize-
Collecting Steiner Tree problem have been investigated (see Chapter 3 and Costa
et al. 2008).

72 4 MRWADC in WDM networks with heterogeneous capabilities

As discussed in Section 3.1, the CPCSAP is very similar to the Knapsack Prize
Collecting Steiner Tree problem (KPCSTP). CPCSAP extends KPCSTP by intro-
ducing the arc directions, the source node and the splitting capabilities. Moreover,
the delay bound constraint can be seen as a bunch of knapsack constraints (one for
each directed path in the considered solution) that are similar to the one contained
in the KPCSTP definition. As a consequence, to exactly solve the CPCSAP, we de-
veloped two exact methods based on two formulations introduced in Chapter 3 for
the KPCSTP. The first exact method is based on a multi-commodity flow formula-
tion similar to the one described in Section 3.4.2 and the second exact method is
based on the formulation using the connectivity cuts constraints described in Sec-
tion 3.5. In the first formulation the delay bound constraint can be easily introduced
using a family of constraints whose number is polynomial in the size of the in-
stance (see Section 4.5.1). The introduction of the same constraint in the second
formulation is more challenging since, to satisfy it, we need to insert in the for-
mulation a second family of constraints (in addition to the connectivity cuts one)
whose number is exponential in the size of the instance (see Section 4.5.2). To ef-
ficiently identify the violated cuts belonging to this new family of constraints we
developed an ad hoc separation algorithm. Nonetheless, as discussed in the follow-
ing Section 4.6, the computational time required to solve the formulation based on
the connectivity cuts is greater than the time required to solve the one based on the
multi-commodity flow. This result is in contrast with what we obtained for the KPC-
STP in Section 3.7.4, where the optimization method based on the connectivity cuts
formulation outperformed all the competing algorithms. This different results can
be explained considering both the slowdowns introduced by the second separation
algorithm in resolution process for the connectivity cuts based formulation and the
simplifications that can be obtained by introducing, in the multi-commodity flow
formulation for the CPCSAP, only one commodity for each destination and not for
each node.

We complete the analysis of the resolution methods for the CPCSAP by pre-
senting a new Tabu Search heuristic that is used in cooperation with the previously
described exact methods in order to speed the whole Column Generation method.
At each iteration of the generation process, we first execute the Tabu Search heuris-
tic for a limited number of iterations and, when it fails to find a feasible light-tree
having a negative reduced cost, we switch to an exact method.

4.5.1 Multi-commodity flow formulation

In the following we describe a CPCSAP formulation derived from the multi-
commodity flow formulation for the KPCSTP described in Section 3.4.2. We start
by defining the following decision variables:

• f d
a , equal to 1 if a ∈ A is used and it belongs to the path connecting s with d ∈D,

0 otherwise.
• xa, equal to 1 if a ∈ A is used, 0 otherwise.

4.5 Pricing Problem 73

• ud , equal to 1 if d ∈ D is spanned by the light-tree, 0 otherwise.

We introduce the following formulation:

MCF : min ∑
a∈A

c(a)xa− ∑
d∈D

πdud (4.7a)

∑
a∈δ−(s)

f d
a − ∑

a∈δ+(s)
f d
a =−ud d ∈ D (4.7b)

∑
a∈δ−(d)

f d
a − ∑

a∈δ+(d)
f d
a = ud d ∈ D (4.7c)

∑
a∈δ−(v)

f d
a − ∑

a∈δ+(v)
f d
a = 0 d ∈ D, v ∈ D\{s,d} (4.7d)

xa ≥ f d
a d ∈ D, a ∈ A (4.7e)

∑
a∈δ−(v)

xa ≤ 1 v ∈V (4.7f)

∑
a∈δ+(v)

xa ≤ θ(v) v ∈V (4.7g)

∑
a∈A

t(a) f d
a ≤ ∆ d ∈ D (4.7h)

ud ,xa, f d
a ∈ {0,1} a ∈ A,d ∈ D

Constraints (4.7b, 4.7c, 4.7d) ensure that the solution is connected. Constraints
(4.7e) define the used arcs. Constraints (4.7f,4.7g) limit respectively the indegree
and the outdegree of the spanned nodes. Constraints (4.7h) ensure that the solu-
tion respects the delay bound threshold. Note that the objective function (4.7a) is
equivalent to the one used in (4.6) since the α multiplicative coefficient has been
introduced in the costs of the arcs in a preprocessing phase.

We consider the following modifications of MCF in order to strengthen it:

• Delay bound constraints: constraints (4.7h) can be strengthened by adding the ud
variable:

∑
a∈E

t(a) f d
a ≤ ∆ud d ∈ D

• Outdegree constraints: as before, constraints (4.7g) can be strengthened by
adding the ud variable:

∑
a∈δ

+
G (d)

xa ≤ θ(d)ud d ∈ D (4.8)

• Flow balancing in non-destination nodes: as already noticed in Ljubić et al.
(2006), if v ∈ V \D is contained in an optimal solution then its outcut cannot
be empty. Otherwise, the cost required to connect this node to other nodes in the
solution is not balanced by any profit. Consequently, since the indegree of each
spanned node is equal to 1, the following constraints are valid:

74 4 MRWADC in WDM networks with heterogeneous capabilities

∑
a∈δ

−
G (v)

xa ≤ ∑
a∈δ

+
G (v)

xa v ∈V \D (4.9)

4.5.2 Connectivity cuts formulation

In the following we describe the CPCSAP formulation based on the connectivity
cuts constraints derived from the similar formulation for the KPCSTP described in
Section 3.5. We define the following decision variables:

• uv, equal to 1 if v ∈V is used, 0 otherwise.
• xa, equal to 1 if a ∈ A is used, 0 otherwise.

At first we introduce the Connectivity Cuts Formulation (CCF). This formulation is
a relaxation of CPCSAP since it does not consider the delay bound constraints. Later
we show how to strengthen the formulation taking into account also the missing
constraints.

CCF : min ∑
a∈A

c̃(a)xa (4.10a)

∑
a∈δ

−
G (v)

xa = uv v ∈V −{s} (4.10b)

∑
a∈δ

+
G (v)

xa ≤ θ(v) v ∈V (4.10c)

∑
a∈δ

−
G (S)

xa ≥ uv v ∈V −{s},S⊂V,v ∈ S,s /∈ S (4.10d)

xa,uv ∈ {0,1} a ∈ A,v ∈V (4.10e)

Constraints (4.10b) link variables {xa : a ∈ A} with variables {ud : d ∈D} and limit
the indegree of the solution nodes to one. Constraints (4.10c) ensure that the nodes
splitting capabilities are respected. Constraints (4.10d) ensure that the solution is
connected. In the objective function (4.10a), we modify the cost of each arc a=(i, j)
in order to consider also the prize associated with j: c̃(a) is equal to αc(a)− π j
if j ∈ D, otherwise it is simply equal to αc(a). Hence, the objective function is
equivalent to the one used in (4.6).

Since the number of constraints (4.10d) is exponential in the number of WDM
network nodes, to handle these inequalities we use the Branch & Cut framework
(see, for example, Wolsey 1998). To solve the separation problem we use the same
strategy described in Section 3.5. As mentioned above, the CCF formulation pro-
vides a relaxation of the CPCSAP since it does not consider the delay bound
constraints. To satisfy these constraints, we developed an iterative row generation
method based on the solution of minimum cost flow problems. Let (x′,u′) be a solu-
tion of the LP relaxation of the CCF formulation, and let d ∈D be a destination node
such that u′d > 0. We consider the following minimum cost flow problem instance:

4.5 Pricing Problem 75

PMCF(x′,u′,d) : zd = min ∑
a∈A

t(a) fa

∑
a∈δ

−
G (s)

fa− ∑
a∈δ

+
G (s)

fa =−u′d (4.11a)

∑
a∈δ

−
G (v)

fa− ∑
a∈δ

+
G (v)

fa = 0 v ∈V \{s,d} (4.11b)

∑
a∈δ

−
G (d)

fa− ∑
a∈δ

+
G (d)

fa = u′d (4.11c)

0≤ fa ≤ x′a a ∈ A (4.11d)

PMCF(x′,u′,d) requires to find the minimum cost flow that sends u′d units of flow
from the source s to the destination d, in the subgraph of G currently identified by
(x′,u′). The cost of each arc a ∈ A is equal to the time t(a) spent by a signal to
go along the arc a. Hence, if (x′,u′) is a feasible CPCSAP solution, the inequality
zd ≤ ∆ must be satisfied. Otherwise, we need to find a valid inequality that cut the
infeasible solution (x′,u′) and add it to the CCF formulation.

In order to obtain this inequality, let ρv and νa ≥ 0 be the dual variables, asso-
ciated, respectively, with the flow conservation constraints (4.11a,4.11b,4.11c) and
with the capacity constraints (4.11d). We introduce the PMCF(x′,u′,d) dual prob-
lem:

DMCF(x′,u′,d) : zd = max u′dρd−u′dρs−∑
a∈A

νax′a

ρ j−ρi−νi j ≤ ti j (i, j) ∈ A

νa ≥ 0 a ∈ A

Theorem 1. Let (x′,u′) be a solution of the LP relaxation of the CCF formulation
and d a destination such that u′d > 0. Moreover, let (ρ∗,ν∗) and zd be, respectively,
an optimal solution and the optimal objective function value of DMCF(x′,u′,d). If
zd > ∆u′d then (x′,u′) is not a feasible solution for the CPCSAP problem, and the
inequality:

−∑
a∈A

ν
∗
a xa ≤ (∆ +ρ

∗
s −ρ

∗
d)ud (4.12)

is a valid inequality for the CCF formulation which cuts (x′,u′) and does not cut
any feasible solution of CPCSAP.

Proof. First we prove that, if zd > ∆u′d , then (x′,u′) is unfeasible. By contradiction,
suppose (x′,u′) is a feasible CPCSAP solution, since u′d > 0 and since (x′,u′) is
integral, we have u′d = 1 and consequently zd > ∆u′d can be restated as zd > ∆ .
From what we said before for the problem PMCF(x′,u′,d) and using the strong
duality theorem, the delay bound constraint on the destination d is not satisfied
contradicting the hypothesis.

76 4 MRWADC in WDM networks with heterogeneous capabilities

Since zd is the optimal objective function value of the problem DMCF(x′,u′,d)
and (ρ∗,ν∗) is its optimal solution we can restate zd > ∆u′d as:

zd = u′dρ
∗
d −u′dρ

∗
s −∑

a∈A
ν
∗
a x′a > ∆u′d

The previous inequality can be rewritten as follow:

−∑
a∈A

ν
∗
a x′a > (∆ +ρ

∗
s −ρ

∗
d)u
′
d

Consequently (x′,u′) violates cut (4.12).
Now we show that inequality (4.12) does not cut any CPCSAP feasible solu-

tion. To prove this, observe that the feasibility of a DMCF(x′,u′,d) solution does
not depend on (x′,u′) values. Consequently, each feasible DMCF(x′,u′,d) solution
is feasible also for the different problem DMCF(x̃, ũ,d) obtained considering any
CPCSAP feasible solution (x̃, ũ). Since (x̃, ũ) is integral, there are only two possible
cases:

• ũd = 1: let z̃d be the optimal objective function value of the DMCF(x̃, ũ,d) prob-
lem. From what we said before, (ρ∗,ν∗) is a feasible solution of the dual problem
DMCF(x̃, ũ,d) and since (x̃, ũ) respects the delay bound constraints, we know
that z̃d ≤ ∆ ũd . Consequently, by applying the weak duality theorem we obtain:

ũdρ
∗
d − ũdρ

∗
s −∑

a∈A
ν
∗
a x̃a ≤ z̃d ≤ ∆ ũd

The previous inequality can be rewritten as follow:

−∑
a∈A

ν
∗
a x̃a ≤ (∆ +ρ

∗
s −ρ

∗
d)ũd

• ũd = 0: the inequality (4.12) becomes−∑a∈A ν∗a x̃a≤ 0 and, since, for each a∈A,
ν∗a ≥ 0 and xa ∈ {0,1}, the considered inequality is satisfied.

Finally, we observe that even the CCF formulation can be strengthened by intro-
ducing the flow balancing constraints (4.9) and, since there is a uv variable for each
v ∈V , we can add the constraints (4.8) even for the non-destination nodes.

4.5.3 Tabu search

We do not need to solve each Pricing Problem exactly: to improve the RMP defini-
tion, it is sufficient to find a light-tree having a negative reduced cost. We need an
exact pricing solver only to guarantee that light-trees with negative reduced cost do
not exist. Consequently, to speed up the Column Generation method, we developed
a Tabu Search heuristic to which we will refer in the following as PPTS.

4.5 Pricing Problem 77

Tabu search is a well-known local search metaheuristic approach which allows
the visit of non-improving solutions, and is controlled by memory mechanisms to
avoid the insurgence of cyclic behaviors. It was introduced by Glover (Glover, 1986)
and the interested reader can find in Glover and Laguna (1997) a detailed treatment
of its applications and variants. In the following, we mainly focus on the specific
aspects of our implementation.

To simplify the description of PPTS, we introduce the set C = {v ∈V | θ(v)> 1}
containing all the multicast capable nodes in the WDM network. PPTS is initialized
using the light-tree T that contains only the source node s. At each iteration PPTS
executes a move composed by one or both the following steps:

1. Add to the current solution T a path connecting a node in the set SA(T) = {v ∈
V (T) | θ(v) >| δ

+
T (v) |} (i.e. the set that contains every node v for which we

can add arcs to v outcut maintaining the feasibility of T) with a node in the
set RA(T) = {v /∈ V (T) | v ∈ D∪C} (i.e. the set that contains every node v not
spanned by T and such that v is a destination or a MC node).

2. Delete from the current solution T a path connecting a node in the set SD(T) =
{v ∈V (T) | v ∈D∪C}∪{s} (i.e. the set that contains the source and every node
v spanned by T such that v is a destination or a MC node) with a node in the set
RD(T) = {v ∈V (T) | | δ+

T (v) |= 0} (i.e. the set of the T leaves).

Therefore, the PPTS solution space does not contain every feasible light-tree T , but
it contains those trees whose leaves are either destination nodes or MC nodes and
the starting tree containing only the source node.

The number of paths that we can add to the current solution maintaining its fea-
sibility can be huge. In order to speed up the evaluation of the moves, we restrict
the neighborhood definition: we heuristically define, for each n1 ∈

⋃
T∈T SA(T) and

n2 ∈
⋃

T∈T RA(T), a small subset of paths that can be added to a solution to connect
n1 with n2. In the following we denote this subset as P(n1,n2) . When PPTS eval-
uates moves to connect n1 with n2, it can use only the paths contained in P(n1,n2).

The heuristic we develop to define P(n1,n2) uses two different objective func-
tions to evaluate paths: the cheapest objective function, in which the cost of a path
arc a ∈ A is equal to c(a) and the fastest objective function, in which the cost of
a path arc a ∈ A is equal to t(a). The heuristic produces a mixture of the cheapest
and the fastest paths using the following method that is parametrized by lPath and
wIt:

1. Let P = {p1, . . . , . . . , plPath} be the set of the lPath cheapest paths not al-
ready generated. Then set P(n1,n2) = P(n1,n2) ∪ {p ∈ P | t(p) ≤ ∆}. If
|P(n1,n2) |≥ lPath then stop, else go to the next step.

2. Let p be the fastest path not already generated. If t(p)> ∆ , stop. Otherwise, set
P(n1,n2) = P(n1,n2)∪{p}. If |P(n1,n2) |= lPath then stop, else return to
the previous step.

The P(n1,n2) size is dynamically updated: initially it is equal to lPath and after
wIt iterations without any best solution improvement, PPTS adds one new path to
each set P(n1,n2).

78 4 MRWADC in WDM networks with heterogeneous capabilities

The tabu mechanism has the purpose to avoid reversing recently performed
moves. We implemented this mechanism using three different tabu memories:
MFIRST, MLAST and MPAIR. Each tabu memory is implemented as a list of move
attributes and it is updated using a first in first out strategy. In MFIRST the move at-
tribute is defined by the first arc of the path added by the move, in MLAST the move
attribute is defined by the last arc of the path added by the move, and in MPAIR the
move attribute is defined by the pair composed by the first and the last arc of the
path added by the move.

The size of MLAST and MFIRST is equal to half the size of MPAIR. The MPAIR
size changes dynamically in order to increase the algorithm freedom while it is near
to a local minimum.

4.6 Computational experiments

4.6.1 Algorithms for the subproblem

We developed the algorithm based on the multi-commodity flow formulation (de-
noted by MCALG in the following) using the ILOG CONCERT 2.9 and ILOG
CPLEX 12.4. The formulation we give to the solver contains all the strengthen-
ings and the new constraints described in Section 4.5.1. To explore the branching
tree, we used the best bound strategy and the CPLEX default branching rule. The
algorithm based on the connectivity cuts formulation (denoted by CCALG in the
following) has been developed using the same ILOG technologies used by MCALG
and also CCALG uses the best bound exploration strategy and the CPLEX default
branching rule. To increase the number of cuts added during the separation phase of
the connectivity cuts constraints (4.10d), we used both the back cuts and the nested
cuts strategies described in Section 3.4.2 and, to avoid slowing down the algorithm,
we limit the number of added cuts in each separation phase to MNestedCuts. We
inserted in the formulation all the constraints strengthenings introduced in Section
4.5.2.

Finally, in Section 3.7.3 we have seen that directly avoiding cycles of length 2 is
very effective when we need to solve KPCSTP, thus, we applied the same strategy
for the CPCSAP. However, in preliminary tests we have seen that better results can
be achieved if we consider only the 2-cycles that contain the destination nodes.
As a consequence, both in MCALG and in CCALG we introduced the following
constraints.

xi j + x ji ≤ u j j ∈ D,(i, j) ∈ A,(j, i) ∈ A (4.13)

We implemented the maximum flow algorithm following Cherkassky and Gold-
berg (1997). We solve Minimum Cost Flow problems with the A. Löbel’s imple-
mentation of the network simplex algorithm (available at http://www.zib.
de/Optimization/Software/Mcf/) called through the MCFClass frame-

4.6 Computational experiments 79

work (developed by A. Frangioni and C. Gentile, and available at http://www.
di.unipi.it/optimize/Software/MCF.html). Finally, in the PPTS im-
plementation, to generate the fastest and the cheapest paths, we used Yen’s algorithm
to find the k shortest paths (see, for example, Lawler 1976).

4.6.2 Column Generation

To ensure the initial RMP feasibility, we use a dummy column representing a light-
tree that spans all the destination nodes without using any wavelength. We asso-
ciate with this column a very high cost; therefore, if the corresponding variable
has a nonzero optimal value at the end of the Column Generation method, then the
given MRWADC instance is unfeasible. At each iteration of the Column Generation
method, we split the search for a new light-tree in two steps:

• Heuristic search: for each λ ∈ M, we execute PPTS for nTS iterations on the
CPCSAP instance derived from PPλ . If PPTS finds a solution with a reduced
cost less than the negative threshold tsTH, we add the corresponding light-tree
to RMP and we reoptimize it.

• Exact search: if we do not find any new column in the previous step, for each λ ∈
M, we solve the associated CPCSAP instance using either MCALG or CCALG
(in this way we have two different Column Generation algorithms which we need
to compare). If during this process we find a light-tree with a negative reduced
cost, we add it to RMP and we reoptimize it.

The sequence of tested wavelengths during this procedure is based on a dynamically
updated wavelength list. At the end of each Column Generation iteration we append
to this list the wavelength associated with the last light-tree inserted in RMP.

4.6.3 Parameters and Instances generation

After few initial tests we chose the following values for the algorithms parameters.
These values allow us to obtain fast Column Generation convergence and execution:

• CCALG: MNestedCuts= 50.
• PPTS: wIt= 50 and lPath= 5.
• Column Generation: nTS= 200 and tsTH=−0.1.

We generated the tested MRWADC instances using the process described in Chen
et al. (2008). The network structure generation method has been introduced in Wax-
man (1988): n nodes are uniformly distributed on a w × h discrete rectangular grid.
Given two nodes i and j, arc (i, j) belongs to the network with a probability equal

to P(i, j) = µe
p(i, j)

δγ , where p(i, j) is the euclidean distance between i and j, δ is the
maximum distance between two network nodes, µ and γ are two parameters which,

80 4 MRWADC in WDM networks with heterogeneous capabilities

respectively, determine the arcs density and the mean arc length. For each generated
arc a = (i, j) we set c(a) = p(i, j) and we generate t(a) uniformly between 0.1 and
3. We generate the node splitting capabilities (i.e. the function θ) by randomly se-
lecting 15% of the nodes as multicast capable and for these nodes we generate the
maximum number of reproductions uniformly between 2 and the node outdegree.
We generate the source and the destinations of the transmission requests uniformly
among the network nodes; we set the delay bound threshold ∆ to χτ , where τ is
the minimum time required to reach all the destinations from the source and χ is a
parameter that allows us to determine the tightness of the delay bound constraints.
We define the congestion function w : E → {0,1} generating b random paths using
the following method:

1. Choose uniformly the wavelength λ ∈M on which the path is generated and the
starting node v.

2. Choose uniformly the next path arc (v,w) ∈ δ
+
Gλ

(v) that does not create a cy-
cle with the already inserted arcs. If no arc can be added to the path then stop.
Otherwise, go to the next step.

3. Stop with probability 0.7. Otherwise, set v = w and go to the previous step.

If the communication channel ((i, j),λ) belongs to any of the generated paths we
set w((i, j),λ) = 0, otherwise we set w((i, j),λ) = 1. The instances tested for this
chapter are obtained with parameters µ = 0.7, γ = 0.9, w = 100, h = 100 and b =
b n

3c.

4.6.4 Experimental results

To test our methods, we generated random instances having n∈{20,40,60,80,100},
q ∈ {3,4,5}, χ ∈ {1.2,2,3}, (1−α)/α ∈ {0.1,1,10,50} and considering k = 5
wavelengths. For each typology, we generated 5 instances, using the process de-
scribed above. Therefore, the total number of tested instances is 900. We executed
the following tests using a PC equipped with an Intel Core2 Quad-core 2.66Ghz and
4GB of RAM. In each test we imposed a time limit of two hours.

The first computational experiments compare the results obtained by directly
solving with CPLEX the compact formulation CF (see (4.1a)-(4.1h) in section
4.2) with the ones obtained by the Column Generation method to solve the LP-
Relaxation of formulation EF (see section 4.4). Moreover, in these experiments we
also compare the two different algorithms (CCALG and MCALG) we developed
to exactly solve the instances of CPCSAP (see section 4.5) generated during the
Column Generation phase. We test all these three methods on all the instances. Ta-
ble 4.1 contains, for each n,q and χ value, the average computation time required
by the Column Generation algorithm using MCALG (columns TMC) and CCALG
(columns TCT), and the average computation time required by CPLEX to solve CF
(columns TCF).

4.6 Computational experiments 81

If one of the three algorithms fails to solve some instances within the time limit or
consumes all the available memory, we report in parenthesis the number of unsolved
instances. When considering triplets of comparable values we report in bold the best
of the three. Columns TCF show how formulation CF can solve all the 360 instances

χ = 3 χ = 2 χ = 1.2
n q TMC TCT TCF TMC TCT TCF TMC TCT TCF

20 3 0.75 0.60 0.28 0.75 0.65 0.22 0.35 0.25 0.17
20 4 0.95 0.75 0.70 0.85 0.60 0.63 0.50 0.45 0.60
20 5 1.15 0.75 1.99 1.60 1.20 4.18 1.00 1.10 2.91
40 3 1.80 1.25 1.53 3.60 3.35 1.20 2.95 2.90 1.20
40 4 1.35 1.00 0.88 2.45 2.15 2.90 2.25 2.25 1.18
40 5 2.30 1.25 5.72 5.70 4.65 11.77 4.35 9.60 141.81
60 3 9.00 10.85 34.29 20.85 43.15 23.43 13.95 65.65 11.27
60 4 15.85 46.20 107.78 23.40 144.20 380.84(2) 13.55 57.15 54.75(1)
60 5 27.00 100.75 748.55(3) 50.25 199.50 839.74(3) 19.50 379.45(1) 52.88(8)
80 3 15.05 17.80 141.43 32.60 73.20 395.18 24.50 445.30 652.32(1)
80 4 20.80 28.15 248.63 36.05 58.05 241.16 27.90 779.50 148.70(6)
80 5 286.55 334.50(1) 814.36(8) 278.75 544.50(3) 1356.87(7) 63.85 1090.19(5) 1483.62(14)

100 3 18.45 104.95 190.43 22.05 240.80 315.70(2) 8.35 26.90 368.65
100 4 19.15 27.55 324.03 24.00 83.65 697.72 18.35 42.75 136.05
100 5 148.55 283.62(2) 201.07(4) 103.45 1218.25(2) 1067.92(5) 32.75 180.19(4) 336.20(10)

Table 4.1 Mean execution time comparison between MCALG, CCALG and formulation CF.

with up to 40 nodes. However, it cannot be effectively used when solving instances
with n≥ 60 and q≥ 4. Overall, using formulation CF, we cannot solve 74 instances
out of the 540 with n ≥ 60. Moreover, on the solved instances having at least 60
nodes, the time required by CPLEX is considerable larger w.r.t. the time required
by the Column Generation method. Finally, in some preliminary tests, (not reported
here for the sake of brevity), we compared the results obtained using CF with the
ones obtained using the similar ILP compact formulation proposed in Chen et al.
(2008): we did not find any significant differences between the performance of the
two compact formulations.

Comparing columns TMC and TCT , we see that, on average, MCALG is the fastest
algorithm. The performance gap between MCALG and CCALG increases if we in-
crease the size of the instances: if n ≥ 60 the average time required by MCALG
is less then the average time required by CCALG on all instances classes. More-
over, MCALG is the only algorithm that terminates within the time limit on all the
instances.

This behavior is different from the one we observed in Chapter 3 for the KPCSTP
and in our preliminary tests (the results are not reported here for the sake of brevity).
In these tests we compared the different Pricing Problem resolution strategies using
a sample of all the pricing instances generated from the Column Generation pro-
cess. As a result, CCALG generated less branching nodes, better root node bounds
and required less computation time, w.r.t. MCALG. Despite these results, MCALG
remains the best choice when we need an exact solver CPCSAP embedded in a

82 4 MRWADC in WDM networks with heterogeneous capabilities

Column Generation algorithm that uses also a heuristic to solve the Pricing Prob-
lem. We think these somewhat conflicting results can be explained by the fact that
MCALG is more suitable in solving the particular CPCSAP instances generated at
the end of the Column Generation phase that, in our experience, are the hardest
ones among the instances generated during the whole generation phase. The other
CPCSAP instances are easily solved using the PPTS heuristic.

Since in the previous test we observed that MCALG is the best choice to solve the
Pricing Problem, we used it to analyze how the different components of the Column
Generation algorithm contribute to the resolution process and how different (1−
α)/α values determine the difficulty of the instances. In Table 4.2 we report for each
class of instances, now aggregated by (1−α)/α values, the average computation
time required by MCALG (column T) and the average number of light-trees (i.e.
columns) contained in the optimal solutions (column CSOL). For each row we report

(1−α)/α = 50 (1−α)/α = 10 (1−α)/α = 1 (1−α)/α = 0.1
n q T CSOL T CSOL T CSOL T CSOL

20 3 0.47 1.33 0.67 1.60 0.67 1.67 0.67 1.67
20 4 0.93 2.67 0.80 2.93 0.67 3.00 0.67 3.00
20 5 1.33 2.20 1.27 3.00 1.20 3.20 1.20 3.20
40 3 3.60 1.60 2.13 1.73 2.40 1.73 3.00 1.80
40 4 1.67 2.13 1.80 2.33 2.20 2.33 2.40 2.33
40 5 3.20 2.20 4.20 2.33 4.53 2.33 4.53 2.33
60 3 15.20 1.73 13.60 2.07 14.93 2.27 14.67 2.27
60 4 18.60 2.07 16.40 2.40 17.47 2.47 17.93 2.47
60 5 40.07 2.00 31.00 2.53 28.93 2.73 29.00 2.73
80 3 27.13 1.60 23.67 1.93 22.27 1.93 23.13 1.93
80 4 37.20 1.80 26.53 2.33 25.47 2.67 23.80 2.80
80 5 622.67 1.93 83.87 2.33 69.20 2.73 63.13 2.73

100 3 13.33 2.07 16.60 2.13 17.73 2.33 17.47 2.33
100 4 24.07 1.53 21.67 1.80 16.53 1.93 19.73 1.93
100 5 166.47 2.07 82.07 2.53 58.33 2.73 72.80 2.73

Table 4.2 Time required by MCALG and number of light-trees in the optimal solutions varying
(1−α)/α ratio.

in bold the highest average computation time. Considering this table and Table 4.1,
we can observe how the difficulty of the MRWADC problem varies w.r.t. both χ

and (1−α)/α . The instances having χ = 2 require more computation time w.r.t.
instances having χ = 3 or χ = 1.2. This behaviour can be explained by the fact
that by increasing χ we weaken the delay bound and by decreasing χ we reduce
the number of feasible light-trees and, as a result, we simplify the problem. As for
the (1− α)/α value, passing from (1− α)/α = 50 to (1− α)/α = 10 we can
significantly decrease the required computation time but further decreases in (1−
α)/α value do not further simplify the instances. Perhaps, while moving from (1−
α)/α = 50 to (1−α)/α = 10 we pass through a phase transition, but the only thing
that we can say is that if our objective is the one that requires primarily to minimize
the transmission cost we can solve the MRWADC problem more effectively. Since

4.6 Computational experiments 83

by increasing (1−α)/α , we increase the relative cost of using a new light-tree
we expect that increasing (1−α)/α we decrease the number of light trees in the
optimal solutions. The values contained in columns CSOL of Table 4.2 validate this
statement. Moreover, even in this quantity there is probably a phase transition: the
average decrement in CSOL is equal to 17.7% if we move from (1−α)/α = 50 to
(1−α)/α = 10 while it is only 5.97% and 0.59% if we, respectively, move from
(1−α)/α = 10 to (1−α)/α = 1 and from (1−α)/α = 1 to (1−α)/α = 0.1 .

In order to analyze how the different parts of our algorithm interact with each
other and how good the obtained feasible solutions are, in Table 4.3 we report for
each pair (n,q) the following values:

• %TEX is the average percentage of the overall computation time used by the exact
pricing solver (i.e. MCALG).

• %THE is the average percentage of the overall computation time used by the
heuristic for the pricing solver (i.e. PPTS).

• C is the average number of the total generated columns.
• CEX is the average number of the columns generated by the exact pricing solver.
• %∆CG is the average percentage gap between the lower bound obtained by the

Column Generation algorithm and the upper bound obtained solving the final
Reduced Master Problem with the integrality constraint. In parenthesis we report
the number of instances for which this gap is greater than zero. Notice that this
value is equal to the number of instances that we cannot solve to optimality.

• %∆CF is the average percentage gap between the best lower bound and the best
upper bound found by CPLEX when we use it to solve formulation CF. In paren-
thesis we report the number of instances for which this gap is greater than zero.
Notice that this value is equal to the number of the instances that CPLEX cannot
solve within time limit and without consuming all the available memory.

Notice that columns %TEX and %THE do not sum to 100% since the remaining time
is used by CPLEX to solve the generated RMP instances and the final RMP instance
with the integrality constraint. Considering the values reported in Table 4.3, we see
how it is important to have a good exact solver for the Pricing Problem considering
the percentage of time required by the exact solver (%TEX) and the number of overall
columns it generates (CEX). For many instance classes (i.e. the ones for which CEX =
0.0) we need to use the exact solver only to prove the optimality of the final Reduced
Master Problem and, as for the other instances, the exact solver generates very few
columns. Nonetheless the time required by the exact solver is always greater than
22.8% and increases up to 60.49% for instances having n = 80 and q = 5.

Finally, a comparison between columns %∆CG and %∆CF shows how the light-
trees generated by the Column Generation phase are good even if we consider the
integrality constraint: on 886 out of the 900 tested instances our algorithm is able
to find an optimal solution. Moreover it is able to find very good quasi-optimal so-
lutions for the remaining 14 instances. On the other hand, using formulation CF we
cannot solve to optimality 74 instances and the feasible solutions found by CPLEX
in two hours of computation time are worse w.r.t. the ones obtained by the Col-
umn Generation method in less time. Considering both Table 4.1 and Table 4.3 we

84 4 MRWADC in WDM networks with heterogeneous capabilities

n q %TEX %THE C CEX %∆CG %∆CF
20 3 37.18 53.89 6.23 0.00 0.00 0.00
20 4 40.46 48.97 6.02 0.00 0.00 0.00
20 5 42.06 53.43 10.87 0.02 0.03(1) 0.00
40 3 33.92 56.30 6.27 0.02 0.00 0.00
40 4 37.46 56.84 9.18 0.00 0.00 0.00
40 5 36.94 52.25 14.93 0.90 0.06(3) 0.00
60 3 27.93 71.46 7.23 0.15 0.00 0.00
60 4 32.01 67.99 10.52 0.05 0.08(1) 1.31(3)
60 5 48.02 51.67 15.67 0.57 0.12(4) 8.58(14)
80 3 27.43 71.52 5.85 0.05 0.09(1) 0.63(1)
80 4 41.01 58.09 10.23 0.18 0.00 4.55(6)
80 5 60.49 39.19 17.40 0.83 0.13(3) 19.01(29)

100 3 22.80 74.34 5.95 0.00 0.00 0.70(2)
100 4 35.77 60.92 12.72 0.13 0.00 0.00
100 5 50.19 47.01 15.68 1.73 0.03(1) 14.19(19)

Table 4.3 Summary of MCALG performance and average percentage gaps obtained with formu-
lation CF.

can conclude that the standard method based on a compact formulation is competi-
tive with our Column Generation algorithm only when we consider small instances
(n≤ 40), when considering larger instances our algorithm outperforms the standard
one.

In theory, using the Branch and Price framework, we could extend our Column
Generation approach to solve to optimality also the instances for which the opti-
mal solution of the LP-Relaxation of formulation EF are fractional. However, the
intrinsic difficulty of the Pricing Problem makes quite complex the development of
a fast exact method that uses our decomposition strategy. Nonetheless, the quasi-
optimal solutions obtained for the unsolved instances could be improved using a
more sophisticated Column Generation based heuristic (see Section 2.3).

4.7 Conclusion

In this chapter we have developed a Column Generation method that can be used
to efficiently solve the MRWADC problem. The LP relaxation of the new extended
formulation that we proposed is very strong and on most of the tested instances the
solutions obtained by solving this relaxation are integral. On the other instances, by
adding the integrality constraint to the last Reduced Master Problem obtained by the
Column Generation method we can find near optimal solutions. The time required
by the Column Generation method to obtain these results is significantly lower than
the time required to solve a compact ILP formulation for the MRWADC problem.

To solve the N P-hard Pricing Problem that arises from our decomposition ap-
proach we developed two exact methods and a Tabu Search heuristic. Both exact
methods have been developed by adapting an exact method for the KPCSTP pro-
posed in Chapter 4. In particular, the first method derives from the multi-commodity

4.8 References 85

flow formulation described in Section 3.4.2 while the other one derives from the
connectivity cuts formulation described in Section 3.5. Using computational exper-
iments we showed that, differently from what obtained for the KPCSTP (see Sec-
tion 3.7), the multi-commodity flow formulation outperforms the one based on the
connectivity cuts.

For what concerns the cooperation between the exact and the heuristic methods
to solve the Pricing Problem instances, since the total number of generated columns
is very low and since the heuristic generates most of the columns, in many situ-
ations, the exact method needs to solve only the final Pricing Problem instances.
Nonetheless, since a great part of computation time is used to prove the optimal-
ity of the solution of the final Reduced Master Problem, it is important to have a
fast exact method. Finally, the results that can be obtained by adding the integrality
constraint to the last Reduced Master Problem generated by the Column Generation
method are very close to the computed lower bound.

4.8 References

B. Chen and J. Wang. Efficient routing and wavelength assignment for multicast in
wdm networks. Selected Areas in Communications, IEEE Journal on, 20(1):97
–109, 2002.

M. T. Chen and S. S. Tseng. A genetic algorithm for multicast routing under delay
constraint in WDM network with different light splitting. Journal of information
science and engineering, 21:85–108, 2005.

M. T. Chen, B. M. T. Lin, and S. S. Tseng. Multicast routing and wavelength assign-
ment with delay constraints in WDM networks with heterogeneous capabilities.
Journal of Network and Computer Applications, 31(1):47–65, 2008.

B. V. Cherkassky and A. V. Goldberg. On Implementing the Push-Relabel Method
for the Maximum Flow Problem. Algorithmica, 19(4):390–410, 1997.

I. Chlamtac, A. Ganz, and G. Karmi. Lightpath communications: an approach to
high bandwidth optical WAN’s. Communications, IEEE Transactions on, 40(7):
1171–1182, 1992.

F. Colombo and M. Trubian. A column generation approach for multicast routing
and wavelength assignment with delay constraints in heterogeneous wdm net-
works. Annals of Operations Research, 2013. doi: 10.1007/s10479-013-1403-7.

A. M. Costa, J. F. Cordeau, and G. Laporte. Fast heuristics for the steiner tree prob-
lem with revenues, budget and hop constraints. European Journal of Operational
Research, 190(1):68–78, 2008.

M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., 1979.

F. Glover. Future paths for integer programming and links to artificial intelligence.
Computers and Operations Research, 13:533–549, 1986.

F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.

86 4 MRWADC in WDM networks with heterogeneous capabilities

X. Jia, D. Du, and X. Hu. Integrated algorithms for delay bounded multicast routing
and wavelength assignment in all optical networks. Computer Communications,
24(14):1390–1399, 2001.

E. Lawler. Combinatorial Optimizations: Networks and Matroids. Holt, Rinehar
and Winston, 1976.

I. Ljubić, R. Weiskircher, U. Pferschy, G. W. Klau, P. Mutzel, and M. Fischetti. An
Algorithmic Framework for the Exact Solution of the Prize-Collecting Steiner
Tree Problem. Mathematical programming, 105(2-3):427–449, 2006.

B. Mukherjee. WDM Optical Communication Networks: Progress and Challenges.
IEEE Journal on selected areas in communications, 18(10):1810–1824, 2000.

B. Mukherjee. Optical WDM Networks. Springer, 2006.
L. H. Sahasrabuddhe and B. Mukherjee. Light-Trees: Optical Multicasting for Im-

proved Performance in Wavelength-Routed Networks. Communications Maga-
zine, IEEE, 37(2):67–73, 1999.

N. Sreenath, C. Siva Ram Murthy, and G. Mohan. Virtual Source Based Multicast
Routing in WDM Optical Networks. Photonic Network Communications, 3(3):
213–226, 2001.

A. Tzanakaki, K. Katrinis, T. Politi, A. Stavdas, M. Pickavet, P. Van Daele, D. Sime-
onidou, M. O’Mahony, S. Aleksic, L. Wosinska, and P. Monti. Dimensioning the
future pan-european optical network with energy efficiency considerations. Op-
tical Communications and Networking, IEEE/OSA Journal of, 3(4):272 – 280,
april 2011.

B. M. Waxman. Routing of Multipoint Connections. Selected areas in communica-
tions, IEEE journal on, 6(9):1617–1622, 1988.

L. A. Wolsey. Integer Programming. Wiley, 1998.
S. Yan, M. Ali, and J. Deogun. Route Optimization of Multicast Sessions in Sparse

Light-splitting Optical Networks. IEEE GLOBECOM’01, 4:22–29, 2001.
X. Zhang, J. Y. Wei, and C. Qiao. Constrained Multicast Routing in WDM Net-

works with Sparse Light Splitting. Journal of Ligthwave Technology, 18(12):
1917–1927, 2000.

Q. Zhu, M. Parsa, and J. J. Garcia-Luna-Aceves. A source-based algorithm for
delay-constrained minimum-cost multicasting. Annual Joint Conference of the
IEEE Computer and Communications Societies, 1:377–385, 1995.

Chapter 5
The Homogenous Areas Problem

5.1 Introduction

Italy has adopted a federal and decentralized model of state administration. Town
councils, in particular, are in charge of managing a large amount of matters involv-
ing their own territory. Several of these matters, however, involve different towns
at the same time, and therefore can be managed efficiently only with a certain deal
of coordination. The role to coordinate them is played by the province, an inter-
mediate level of government between the towns and the central government. Each
province periodically writes a Land Coordination Plan (Piano Territoriale di Coor-
dinamento), which builds a framework for the overall policy of cooperation among
the towns, and defines the procedures to implement coordinated actions. Then, the
province works in joint with the single town administrations, providing them infor-
mation and supporting their interactions on the matters of common interest.

Some provinces are rather large and involved in hundreds of different activities.
This poses a problem of work organization, namely:

How to achieve an effective interaction between the personnel of the towns and the
experts of specific fields who work at the province.

The solution adopted by the province of Milan, which includes 134 towns, is to
create a “customer care” layer of about 20 employees, with the task to support the
employees of the towns. For the sake of efficiency, a certain degree of specialization
in this layer is desirable, in order to limit the expertise required from each employee.
To this purpose, the province is partitioned into “homogeneous areas”, whose towns
share a large number of common activities, different from the ones of the other ar-
eas. Then, a team of employees is assigned to each area and specifically trained on
the corresponding activities. A by product of this structure is the improved cooper-
ation by means of personal relationships, since each team becomes a friendly and
competent reference for the towns of the associated area. The workload imposed on
the single teams should be similar for the sake of equity and is limited by the number
of working hours available for the coordination activities. In general, this partition
implies some redundancies, because a few activities involve towns from different

87

88 5 The Homogenous Areas Problem

areas, whose teams have to gain the same expertise and to perform the same oper-
ations. Such redundancies should be minimized. This gives rise to a special Graph
Partitioning Problem (GPP) with a nonlinear objective function and additional side
constraints which, to the best of our knowledge, has not yet been taken into account
in the huge literature on GPPs. The solution provides a reference structure for the
actual workflow organization, which of course should also take into account local
agreements, as well as historical, social and political issues.

In the following section we define formally the Homogeneous Areas Problem
(HAP). In Section 5.3 we investigate the computational complexity of the problem.
In Section 5.4 we describe the instances used throughout the chapter to test and com-
pare our algorithms. In Section 5.5 we discuss the relationship between the classical
GPPs and the HAP. In Section 5.6 we introduce and compare two different compact
formulations for the problem and some valid inequalities to tighten them. In Sec-
tion 5.7 we describe a Column Generation method for the HAP and the algorithms
that we developed to efficiently solve the associated Pricing Problem. In Section 5.8
and Section 5.9 we introduce and compare, respectively, two local search based
heuristics and three Column Generation based heuristics. Finally, in Section 5.10
we provide the results that we obtained by executing the proposed methods to solve
two real world HAP instances.

Finally, note that this chapter summarizes and extends our previous works re-
lated to the HAP and described in (Colombo et al., 2011, 2012; Ceselli et al., 2013;
Colombo et al., 2013).

5.2 Problem definition

The HAP can be formulated as follows. Let G = (V,E) be an undirected graph with
V = {1, . . . ,n}, S ⊆ 2V a collection of subsets of vertices, q : S → R+ a cost
function defined on S and Q a cost threshold. Finally, let k be an integer number.
Given any subset of vertices U ⊆ V , define the set of subsets in S intersecting at
least one of these vertices as:

SU = {S ∈S : S∩U 6= /0}

In the following, to simplify the notations when we consider the singleton {v} we
will write Sv instead of S{v} and, for each S ∈ S , we introduce the set of its
vertices, denoted by VS = {v ∈V : S ∈Sv}. Given these definitions and notations,
we define the cost of the subgraph of G induced by vertices in U as follows:

cU = ∑
S∈SU

qS

The HAP requires to partition G into at most k vertex-disjoint connected subgraphs
Gi = (Ui,Ei) such that the cost of Gi does not exceed Q for all i and the total cost

5.3 Computational complexity 89

φ = ∑
i

cUi − ∑
S∈S

qS (5.1)

is minimum. Notice that, by minimizing φ we minimize the cost of the subsets that
are split among different subgraphs and, since ∑S∈S qS is a constant term, we can
remove it from the definition of φ , without modifying the relationship occurring
between any two feasible solutions.

As described in Section 5.1, the HAP arises from a practical requirement of par-
titioning the province of Milan into “homogeneous areas”. In that case, vertices
correspond to towns, edges to pairs of adjacent towns, each subset S ∈S represents
an activity involving a subset of towns and qS represents the amount of hours that a
province officer need to work in order to be trained on activity corresponding to S.

In Figure 5.1 we report a sample instance and some of its solutions. The top-
left subfigure 5.1 (a) provides a graph G with 7 vertices and a subset collection S
containing three subsets: S1 = {1,6,7} with cost qS1 = 11 , S2 = {1,2,3,4} with
cost qS2 = 10 and S3 = {3,4,5} with cost qS3 = 9. In this sample we consider a
cost threshold equal to Q = 25 and a maximum number of subgraphs k = 3. If
the nodes could be partitioned such that each set in S is intersected by only one
subgraph, the overall cost would hit the theoretical lower bound φ = 0. However,
on this particular sample instance, this theoretical lower bound cannot be achieved
since the cost threshold forces us to split at least one subset in S . The top-right
subfigure 5.1(b) depicts an optimal solution, with two subgraphs induced by U1 =
{1,6,7} and U2 = {2,3,4,5}. Its cost is equal to φ = qS1 +2qS2 +qS3−∑S∈S qS =
qS2 = 10, because subset S2 is the only subset intersected by both the subgraphs.
The bottom-left subfigure 5.1(c) depicts a suboptimal solution with three subgraphs
induced by U1 = {1}, U2 = {2,3,4,5} and U3 = {6,7}. Its cost is equal to φ =
qS1 +qS2 = 21 since both S1 and S2 are intersected by two subgraphs. The bottom-
right subfigure 5.1(d) depicts a solution that is unfeasible since the subgraph induced
by U1 = {1,2,3,4,5} is associated with a cost CU1 = qS1 + qS2 + qS3 = 30 greater
than cost threshold Q = 25

5.3 Computational complexity

Theorem 2. It is N P-complete to determine whether a given instance of the HAP
with k = 2 has optimum lower than a given threshold, even if: a) all subsets in S
have cardinality not larger than two b) the connection constraint is relaxed.

Proof. The proof is based on a reduction from the decision version of the equicut
problem, which is defined as follows. Let G′ = (V ′,E ′) be an undirected graph,
c : E ′ → N a cost function defined on the edges, φ ′ a positive integer. The deci-
sion version of the equicut problem amounts to determining whether there exists a
partition of V ′ into two disjoint subgraphs such that the number of vertices in the
two subgraphs differs at most by one, and the sum of the costs for the edges whose
extreme vertices belong to different subgraphs does not exceed φ ′.

90 5 The Homogenous Areas Problem

(a) (b)

(c) (d)

Fig. 5.1 a) sample instance having qS1 = 11,qS2 = 10,qS3 = 9 and Q = 25, b) optimal solution
associated with objective function value φ = 10 c) sub-optimal solution associated with objective
function value φ = 21 d) a solution that is unfeasible since qS1 +qS2 +qS3 = 30 > Q = 25.

We now show that, given any instance of the equicut problem, it is possible to
build an instance of the HAP with no connectivity constraint, such that their optimal
solutions correspond one-to-one. First, the set V coincides with V ′. Then, for each
edge e = {u,v} ∈ E ′ introduce a subset Se ∈S including only vertices u and v, with
a cost qSe equal to cuv. As well, for each vertex v ∈V introduce another subset Sv ∈
S including only v, with a cost qSv = (|E ′|+1)cmax, where cmax = max{u,v}∈E ′ cuv.
Set k = 2 and the cost threshold to Q = {(|E ′|+1)d|V ′|/2e+ |E ′|}cmax.

Now consider the instance of the HAP thus obtained. The cost threshold forces
both subgraphs to include exactly |V ′|/2 vertices if |V ′| is even, d|V ′|/2e and
b|V ′|/2c vertices if odd. Any unbalanced partition, in fact, would have a shore with
at least (d|V ′|/2e+1) vertices, with a cost at least (|E ′|+1)cmax (d|V ′|/2e+1),
which is strictly larger than Q. On the contrary, all balanced partitions are feasible,
since the cost of each shore is (|E ′|+1)cmax|V ′|/2 plus the sum of the costs of the
subsets split in two different subgraphs. This second term is the sum of the edge
costs for all edges whose extreme vertices fall in different subgraphs; such edges

5.4 Instances 91

are at most |E ′| and their cost is at most cmax. Thus, the feasible solutions of both
problems correspond to the partitions of the vertices into two subgraphs of equal, or
nearly equal, cardinality.

The cost of the equicut solution is the sum of the costs for the edges whose
extreme vertices belong to different subgraphs. The cost of the HAP solution with
respect to function φ is the sum of the costs qS for the subsets containing vertices
in different subgraphs. Since the two costs are identical, the optimal solutions of the
two problems correspond one-to-one.

5.4 Instances

In the following we describe the four different benchmarks we will use through
all this chapter to test the algorithms developed to solve the HAP. We choose to
introduce here the benchmarks that we use in the remaining part of the chapter
in order to avoid the introduction of a final section containing a too large and too
complex comparison of many different variants of each algorithm we developed.
We decide to compare variants of a given method immediately after its description.
This strategy allows us to immediately discriminate which variants are effective and
which are not and, as a consequence, the reader can focus his attention on the most
promising variants. These benchmarks are also used in Section 5.5 to investigate the
relationship between the HAP and the standard GPPs.

5.4.1 Real world instances

We consider two different real world instances respectively derived from the province
of Milan and the province of Monza. The instance derived from Milan has 134 ver-
tices and 774 subsets, while the instance derived from Monza is smaller and has 55
vertices and 426 subsets. In both real world instances the adjacency graph G derives
from geographical data. The maximum number k of subgraphs, the subsets S , their
costs {qS : S ∈S } and the cost threshold Q have been provided by the staff of the
corresponding province.

5.4.2 Benchmark A - the realistic instances

The instances e belonging to benchmark A have been generated extracting as fol-
lows a subset of towns from the graph obtained by unifying the two graphs associ-
ated with Milan and Monza that are geographically adjacent. First, we selected, as
seed towns, the five towns involved in the most costly activities, namely the ones
associated with the largest values of ∑S∈Sv qS. Starting from each seed town, we ex-

92 5 The Homogenous Areas Problem

tracted the first n vertices found during a breadth- first visit of the adjacency graph,
setting n = 50, 60, 70, 80 and 90. This method produced 5 different instances with a
shape reasonably similar to a standard province and centered on a reasonable main
town. We include in each instance all the subsets associated with the activities in
which the extracted towns are involved. The cost threshold Q is equal to the one
associated with the whole province and we use the heuristic VLNS-TS, described
in Section 5.8.2, to identify a reasonable value for the maximum number k of sub-
graphs. Overall, this benchmark contains 25 instances.

5.4.3 Benchmark B - random instances with realistic subset
structure

The instances in benchmark B have been generated in order to mirror the real world
ones. To define G we generate a random planar graph using the strategy described in
the following. First, we uniformly generate n points in a euclidean 100×100 grid.
Then we build a triangulation of these points: we consider, in turn, all pairs of points
by non decreasing distances, and we draw the corresponding segment if and only if
it does not cross the previous ones. Each point turns into a node and each segment
turns into an edge of graph G.

The number of subsets in S and their costs have been generated by a quite com-
plex mechanism that tries to mimic the distribution of the subsets in the real world
instances. Since the structure of the real world instances is based on the distribution
of activities among towns (see Section 5.2), to generate the subsets belonging to
S , we first generate the activities and their costs. Given the number of nodes, n,
the number of activities is set to 2n, and the maximum number of subgraphs is set
to k = n/5. The set of activities is randomly generated and the average number of
activities associated with each town is set to 2αn with α ∈ {0.05;0.1}. To fix this
value, we analyzed the real world instances: the average number of activities for
each town is ≈ 0.03 for Milan and ≈ 0.06 for Monza.

The cost of each activity a is defined by two typologies of tasks that an officer
supporting a town involved in a must provide:

• The elementary tasks which are performed just once for each town in the area
associated with the same officer, they require a fixed amount of work wa.

• The elementary tasks that need to be repeated for each town in a given area, they
are associated with a variable amount of work πa that needs to be done for each
town of a given area involved in a.

The structure of the activities and the amount of work they require can be mod-
eled as a HAP instance by correctly defining the structure and the cost of the sub-
sets belonging to S : for each town v (that corresponds to a vertex in the considered
HAP instance) we introduce a singleton subset Sv = {v} ∈S associated with a cost
qSv = ∑a πa where the previous sum is defined on all the activities in which the town

5.4 Instances 93

v is involved and, for each activity a, we introduce a subset Sa ∈S containing all
the towns involved in a and having qSa = wa.

For each activity a, the fixed cost wa has been generated uniformly in [0,100],
while πa have been generated either in [0;10] or in [0;100]. In this way we have ob-
tained two different classes of instances: when πa ∈ [0;10], the cost of each feasible
subgraph depends more strongly on the fixed costs than on the variable costs, when
πa ∈ [0;100] the cost threshold constraint equally depends on fixed and variable
costs.

Starting from the costs of the subsets belonging to S , we defined the cost thresh-
old Q as follows:

Q = β

∑
S∈S

qS min(k, |VS|)

k
which is a rough estimate of the average cost of a feasible subgraph. Note that,
changing coefficient β ∈ {1.00,1.15}, we can produce instances having tight or
loose cost threshold constraint.

Overall, for benchmark B we generated 88 instances having n that ranges from
20 to 70 by steps of 5, two different sizes for each Sv (i.e. α ∈ {0.05,0.1}), two
distributions of variable costs (i.e. πa ∈ [0,10] or πa ∈ [0,100]), and two levels of
cost threshold (i.e. β ∈ {1.00,1.15}).

5.4.4 Benchmark C - random instances with generic subset
structure

We generated the instances in benchmark C following a strategy similar to the one
used for benchmark B. The graph G and the cost threshold Q have been generated
following the procedure described in the previous section. The differences between
benchmarks B and C arise in the definition of the subsets belonging to S and their
costs. In this benchmark, we randomly generate these subsets devoting special care
to guarantee that each node belongs to at least one subset and that no subset is
empty. For instances having n nodes we generated |S |= 2n subsets, each subset, on
average, has a size equal to α|S | with α ∈ {0.05,0.1} and its cost directly depends
on the vertices it contains: for each v ∈ V we define a cost wv that is either fixed to
1 or randomly generated (with a discrete uniform distribution) in {1, . . . ,10} or in
{1, . . . ,100} and we define qS = ∑v∈S wv. Moreover, note that in this benchmark not
all the towns are associated with a singleton subset, this subset is part of S only if
it has been chosen by the random subset generation process.

Overall, for benchmark Cwe generated 60 instances having n that ranges from 30
to 70 by steps of 10, two different sizes for each Sv (i.e. α ∈ {0.05,0.1}), three dif-
ferent distributions of node cost (i.e. πv = 1, πv ∈ {1, . . . ,10} or πv ∈ {1, . . . ,100}),
and two levels of cost threshold (i.e. β ∈ {1.00,1.15}).

94 5 The Homogenous Areas Problem

5.5 On the relationship with Graph Partitioning Problems

In this section we provide some references to the huge literature on GPPs, a small ex-
ample to illustrate the specific features of the HAP and a more detailed explanation
of the differences between our problem and the GPPs. Given an undirected edge-
weighted graph G = (V,E), the most common formulation of GPPs asks for a divi-
sion of V into a given number k of nonempty, pairwise disjoint subsets, such that the
edge-cut, i. e. the total weight of the edges that connect vertices in different subsets,
is minimized. This basic problem admits a number of variation (see e. g. Fjallström,
1998). Several different approaches have been proposed to solve them, such as hier-
archic multi-level heuristics (Sanders and Schulz, 2011), geometry-based and flow-
based methods (Arora et al., 2008), genetic approaches (Kim et al., 2011), spectral
methods (Donath and Hoffman, 1973), mathematical programming approaches (Fan
and Pardalos, 2010), local search metaheuristics and integrated approaches (Osipov
et al., 2012). The HAP differs from these classical GPPs both in the constraints and
in the objective function.

Cardinality constraint

In classical GPPs, the number k of vertex-disjoint subsets is usually given, and
the subsets are required to be nonempty, since their cardinalities, n1, . . . ,nk, with
∑

k
j=1 n j = |V | are explicitly imposed (Guttmann-Beck and Hassin, 2000) or con-

strained to be approximately of the same size, (see e. g. Osipov et al., 2012). In the
HAP, empty subsets of vertices U are allowed and k is just an upper threshold. In
fact, merging two subsets into a single subset is always profitable, if the obtained
subset does not exceed the cost threshold Q.

Cost threshold

In this respect, the HAP is similar to the Node-capacitated Graph Partitioning Prob-
lem (Ferreira et al., 1998) in which the vertices in V are weighted and the sum of the
weights in each subset of the partition is limited by a capacity threshold. However,
the cost threshold is managed differently in the HAP, since the cost of a subset U
does not increase linearly as new vertices are included, but stepwise as new subsets
s ∈S are intersected.

Connectivity constraint

The connectivity constraint is usually not imposed in GPPs, where the edges of the
graph are taken into account only when computing the objective function. Quite
commonly, the edge costs model a proximity measure, and the subsets end up natu-
rally to be connected in the optimal solution. In the HAP, on the contrary, the edges

5.5 On the relationship with Graph Partitioning Problems 95

determine the feasibility of solutions, since each subset must induce a connected
subgraph on G, but they have no relation with the objective function, as shown by
the following example. Let graph G consists of a path of 4 vertices: 1− 2− 3− 4,
and define the following subset collection:

S = {{1},{2},{3},{4},{1,4},{2,3}}

each singleton subset has a cost equal to 3 (i.e. q{1} = q{2} = q{3} = q{4} = 3)
and the remaining sets have unitary costs (i.e. q{1,4} = q{2,3} = 1). If k = 2 and
Q = 8, the connectivity constraint allows a single feasible solution: U1 = {1,2} and
U2 = {3,4}, whose cost is φ = 2, because both {1,4} and {2,3} have been split.
This is also the worst possible situation. If the connectivity constraint is relaxed, all
6 partitions into two subsets of two vertices are feasible solutions. The best one is
U1 = {1,4} and U2 = {2,3}, whose cost is φ = 0. So, the ratio between the optimum
of the original problem and that of the relaxed one can be arbitrarily large.

To understand how the relaxation of connectivity constraint impacts on the
benchmarks described in Section 5.4 we compute the optimal objective function
value with and without the connectivity constraint for some of them (namely, the real
world instance of Monza, the instances in benchmark A up to n = 60, the instances
in benchmark B up to n = 25 and the instances in benchmark C up to n = 30). We
have accurately chosen these instances in order to limit the computational resources
required to solve them. The obtained results are reported in Table 5.1,Table 5.2 and
Table 5.3, respectively for benchmark A, B and C (we report the results obtained
on Monza within benchmark A). Considering these results, we can observe that the
lower bounds obtained relaxing the connectivity constraints is, on average, strictly
lower than the optimum objective value of the HAP. In particular, relaxing the con-
nectivity constraints implies, on average, a decrement in the objective function value
equal to 32.95% on Monza, equal to 6.13% for the tested instances in benchmark
A, equal to 41.11% for the tested instances in benchmark B and equal to 30.82% for
the tested instances in benchmark C. This suggests that neglecting the connectivity
constraint would not provide meaningful information on the original problem and
that classical methods ignoring this constraint would not provide useful solutions.

Objective function

The objective function of the classical GPPs depends linearly on the cost of the
edges whose extreme vertices belong to different subsets. Sometimes, this cost is
tuned by some function of the cardinality of the subsets, (see e. g. Matula and
Shahrokhi, 1990). The objective function of the HAP is completely independent
from the edge set E, because it depends nonlinearly on the intersections between
the subsets in S and the sets of vertices of the subgraphs.

The following example illustrates the computation of this objective function and
discusses the possibility to replace it with an auxiliary one, defined on the edges of
an auxiliary complete graph, in such a way that the optimal edge-cut cost would also

96 5 The Homogenous Areas Problem

Ins. φ ∗ φ ∗relax %∆

50 1 3864.21 3864.21 0.00
50 2 5035.11 5010.99 -0.48
50 3 5847.16 5030.17 -13.97
50 4 5136.93 4955.74 -3.53
50 5 5460.25 5307.18 -2.80
60 1 4438.98 4175.9 -5.93
60 2 6036.54 5371.83 -11.01
60 3 6696.81 5421.31 -19.05
60 4 5703.16 5527.75 -3.08
60 5 6121.01 6033.64 -1.43

Monza 419.21 281.07 - 32.95

Table 5.1 Comparison between the optimal objective function values of the HAP on benchmark
A with (φ ∗) and without (φ ∗relax) the connectivity constraint.

n α πmax β φ ∗ φ ∗relax %∆

20 0.05 10 1.00 0.00 0.00 0.00
20 0.05 10 1.15 0.00 0.00 0.00
20 0.05 100 1.00 45.53 0.00 -100.00
20 0.05 100 1.15 0.00 0.00 0.00
20 0.10 10 1.00 703.45 516.64 -26.56
20 0.10 10 1.15 556.29 399.62 -28.16
20 0.10 100 1.00 1004.64 601.07 -40.17
20 0.10 100 1.15 801.96 518.49 -35.35
25 0.05 10 1.00 170.14 51.47 -69.75
25 0.05 10 1.15 95.58 0.00 -100.00
25 0.05 100 1.00 198.86 0.00 -100.00
25 0.05 100 1.15 122.50 51.47 -57.98
25 0.10 10 1.00 1906.34 1330.24 -30.22
25 0.10 10 1.15 1478.70 1145.45 -22.54
25 0.10 100 1.00 2240.17 1720.41 -23.20
25 0.10 100 1.15 1977.81 1504.67 -23.92

Table 5.2 Comparison between the optimal objective function values of the HAP on benchmark
B with (φ ∗) and without (φ ∗relax) the connectivity constraint.

provide the optimum of the HAP. This would allow to directly apply the methods
proposed in the literature to solve the GPPs, provided that the cardinality, capacity
and connectivity constraints could be somehow managed correctly.

Figure 5.2(a) shows an instance of the HAP defined by a complete graph with
seven vertices V = {1,2, . . . ,7}. For the sake of simplicity and since in a complete
graph the connectivity constraint can be neglected, in the figure we do not report
any original arc. The subsets collection S contains all the singleton subsets and
three non singleton subsets: S1 = {1,3,2}, S2 = {1,3,4,5} S3 = {5,6,7}. The costs
of the subsets are defined as follows: q{1} = q{3} = 44, q{2} = q{4} = 22, q{5} =
52, q{6} = q{7} = 30, qS1 = 9, qS2 = 10 and qS3 = 8. The cost threshold and the
maximum number of subgraphs are respectively equal to Q = 130 and k = 3. Given
this instance, all the feasible solutions have at most three vertices in each subgraph.

5.5 On the relationship with Graph Partitioning Problems 97

n α wmax β φ ∗ φ ∗relax %∆

30 0.05 1 1 39 24 -38.46
30 0.05 1 1.15 36 19 -47.22
30 0.05 10 1 265 159 -40.00
30 0.05 10 1.15 234 114 -51.28
30 0.05 100 1 2487 1483 -40.37
30 0.05 100 1.15 2187 1060 -51.53
30 0.1 1 1 179 146 -18.44
30 0.1 1 1.15 145 126 -13.10
30 0.1 10 1 993 783 -21.15
30 0.1 10 1.15 798 699 -12.41
30 0.1 100 1 9343 7214 -22.79
30 0.1 100 1.15 7368 6404 -13.08

Table 5.3 Comparison between the optimal objective function values of the HAP on benchmark
C with (φ ∗) and without (φ ∗relax) the connectivity constraint.

Thus, the seven vertices are always divided into exactly k = 3 nonempty subgraphs
and subset S2 is always split between two subgraphs.

Figure 5.2(b) depicts the optimal solution U1 = {1,2,3}, U2 = {4,5,6}, U3 =
{7}, with cU1 = q{1}+q{2}+q{3}+qS1 +qS2 = 129, cU2 = q{4}+q{5}+q{6}+qS2 +
qS3 = 122 and cU3 = q{7}+ qS3 = 38. The overall cost of this solution is equal to
the sum of the costs of the two subsets S2 and S3 that are split between two different
subgraphs: φ ∗ = qS2 +qS3 = 18. An equivalent solution can be obtained exchanging
vertices 6 and 7 between subgraphs U2 and U3. Figure 5.2(c) depicts the suboptimal
solution U1 = {1,2,3}, U2 = {4}, U3 = {5,6,7}, with cU1 = q{1}+ q{2}+ q{3}+
qS1 + qS2 = 129, cU2 = q{4}+ qS2 = 32 and cU3 = q{5}+ q{6}+ q{7}+ qS2 + q3 =
130. The overall cost of this solution is twice the cost of subset S2 that is the only
subset split among all the three subgraphs: φ = 2qs2 = 20. Figure 5.2(d) depicts the
suboptimal solution U1 = {2}, U2 = {1,3,4}, U3 = {5,6,7}, with cU1 = q{2}+qS1 =
31, wU3 = q{1}+q{3}+q{4}+qS1 +qS2 = 129 and cU3 = q{5}+q{6}+q{7}+qS2 +
qS3 = 130. The overall cost of this solution is equal to the sum of the costs of the
two subsets S1 and S2 that are split among different subgraphs: φ ∗ = qS1 +qS2 = 19.

We now try to associate to each pair of vertices u and v an auxiliary cost
cuv = ∑S∈Su∩Sv αSqS derived from the cost of the subsets containing both u and
v. Since cost cuv is defined by the sum of the costs of the subsets containing at least
two vertices, in the following we ignore the singleton subsets contained in S . The
aim is to estimate by cuv the cost of assigning the two vertices to different subgraphs.
To understand if we can simply reduce the objective function of the HAP to the ob-
jective function of the classical GPPs, we need to answer to the following question.
Is there an a priori definition (computed without knowing the optimal partitioning)
of the αS coefficients, such that an optimal graph partitioning with respect to the
edge costs would be optimal also with respect to the HAP objective function?

In the following, we consider three different strategies to define the αS coeffi-
cients. The first one directly moves the cost of each subset S ∈ S to the cost of
the pairs of vertices that are contained in S: αS = 1 for all S ∈S . The second and

98 5 The Homogenous Areas Problem

(a) (b)

(c) (d)

Fig. 5.2 A sample instance that shows how the objective function of the HAP cannot be simply
reduced the objective function of a classical GPP.

the third strategies try to reproduce the cost qS as the sum of the costs of the edges
in a cut of VS, without knowing the specific cut occurring in the solution. The idea
is that such a cut always includes a number of edges that is between |VS| − 1 and
b |VS|

2 cd
|VS|

2 e. Correspondingly, αS = 1/(|VS| − 1) or αS = 1/b|VS|/2cd|VS|/2e. No-
tice that if |VS| ≤ 2 all three edge strategies produces costs equivalent to qS, because
the cut includes a single edge of cost qS. If |VS| ≤ 3 the second and the third strate-
gies produce arc costs equivalent to qS, because the cut includes a single edge of cost
qS or two edges of cost qS/2. Applying the three strategies to the sample instance
depicted in Figure 5.2 we obtain the following objective function values:

1. Uniform costs (αS1 = αS2 = αS3 = 1): The edge-cut cost is 4qS2 +2qS3 = 56 for
solution (b), 5qS2 = 50 for solution (c), 3qS2 +2qS1 = 48 for solution (d).

5.6 Multi-commodity flow formulations 99

2. Costs based on the minimum edge cut cardinality (αS = 1/(|VS| − 1)): in the
present case, αS1 = αS3 = 1/2, αS2 = 1/3. The edge-cut cost is 4/3qS2 + qS3 =
64/3 = 21.3̄ for solution (b), 5/3qS2 = 50/3 = 16.6̄ for solution (c), qS2 +qS1 =
19 for solution (d).

3. Costs based on the maximum edge cut cardinality (αS = 1/b|VS|/2cd|VS|/2e): in
the present case, αS1 =αS3 = 1/2, αS2 = 1/4. The edge-cut cost is qS2 +qS3 = 18
for solution (b), 5/4qS2 = 50/4 = 12.5 for solution (c), 3/4qS2 +qS1 = 16.5 for
solution (d).

Solution (b), which is optimal for the HAP, is the worst solution w.r.t. all three edge-
cut cost strategies.

Moreover, the optimality of solution (b) w.r.t. other similar strategies would re-
quire it to be cheaper than solution (c) (4αS2qS2 +2αS3qS3 < 5αS2qS2 and therefore
2αS3qS3 < αS2qS2) and solution (d) (4αS2qS2 +2αS3qS3 < 3αS2qS2 +2αS1qS1 , hence
αS2qS2 +2αS3 qS3 < 2αS1qS1). These conditions imply αS1/αS3 > 2qS3/qS1 , which is
a relation far from obvious and clearly nonlocal, i. e. it does not depend only on the
subsets associated with a given pair of vertices. In fact, S1 and S3 have the same car-
dinality and no common activities; the strong difference between their coefficients
must be determined by only investigating the whole instance.

To investigate whether the counterexample describes a common or a rare situ-
ation, we considered a small subset of instances extracted from benchmark B (we
do not test the other benchmarks because even their smallest instances require too
much computational resources to be solved considering the GPP-like objective func-
tions) and, using an ILP solver, we optimally solved the problem obtained from
HAP replacing its original objective function with the GPP-like objective functions
previously introduced. Since we did not change the constraints of the considered
problem, the optimal solutions obtained in these experiments are feasible HAP so-
lutions. In Table 5.4 we report the obtained results, columns φ ∗1 , φ ∗2 and φ ∗3 contain
the percentage gap between the optimal solution value and the real cost of the solu-
tions obtained using the modified objective functions based, respectively, on coeffi-
cients αS = 1, αS = 1/(| V (S) | −1) and αS = 1/(b|VS|/2cd|VS|/2e). These results
show how the three different objective functions can substitute the original objective
function only on the smallest instances having α = 0.05 and n = 20, on the other
instances, substituting the original objective function with a GPP-like one, we can
easily obtain solutions that are substantially suboptimal.

These remarks on the differences between the constraints and the objective func-
tion of the HAP w.r.t. other GPPs have moved us to develop ad hoc methods instead
of straightforward adaptations of algorithms from the literature.

5.6 Multi-commodity flow formulations

In this section we present two different compact ILP formulations to solve the HAP.
Both formulations make use of multi-commodity flows to guarantee the subgraphs
connectivity. At the end of this section we discuss how the order of the nodes in

100 5 The Homogenous Areas Problem

n α πmax β φ ∗1 (%) φ ∗2 (%) φ ∗3 (%)
20 0.05 10 1.00 0.00 0.00 0.00
20 0.05 10 1.15 0.00 0.00 0.00
20 0.05 100 1.00 0.00 0.00 0.00
20 0.05 100 1.15 0.00 0.00 0.00
20 0.10 10 1.00 10.74 37.56 37.56
20 0.10 10 1.15 19.56 19.56 55.15
20 0.10 100 1.00 7.37 7.37 15.94
20 0.10 100 1.15 34.10 46.02 46.02
25 0.05 10 1.00 0.00 0.00 0.00
25 0.05 10 1.15 28.16 28.16 28.16
25 0.05 100 1.00 1.93 0.00 0.00
25 0.05 100 1.15 0.00 0.00 0.00
25 0.10 10 1.00 17.08 15.09 15.09
25 0.10 10 1.15 10.80 20.71 20.71
25 0.10 100 1.00 7.77 11.74 13.48
25 0.10 100 1.15 11.56 18.65 18.65

Table 5.4 Comparison on benchmark B among the optimal solution of the HAP and the optimal
solutions of the problems obtained replacing the HAP objective function with three alternative
object functions that mimic the standard GPP function.

a instance can significantly change the performance of the two formulations and
how coefficients reduction techniques and valid inequalities can be added to them
to reduce the required computational resources.

5.6.1 A commodity for each area

A quite natural ILP formulation for the HAP (in the following denoted by MCA)
can be obtained by combining the straightforward ILP formulation for the classical
GPPs (see, for example, Ferreira et al. 1996), a multi-commodity flow formulation
to guarantee to connectivity of the feasible solutions (Magnanti and Wolsey, 1995)
and a set of side constraints to guarantee the cost threshold respect.

We first introduce, for each v ∈ V and i = 1, . . . ,k, a binary variable xi
v that is

equal to 1 if node v is contained in the subgraph induced by Ui, or 0 otherwise. To
define the cost of the subgraph induced by Ui, we introduce, for each S ∈ S , the
binary variable zi

S that is equal to 1 if Ui intersect S, or 0 otherwise. Using these
variables, we can simply state the cost associated with Ui as ∑S∈S qSzi

S. Finally, to
guarantee the connectivity of the solutions, we introduce an auxiliary directed graph
G′ = (V ′,A′) derived from G replacing each edge in E with two opposite arcs, i.e.
for each {i, j} ∈ E, A′ contains both (i, j) and (j, i) and adding to V a super root
s ∈ V ′ directly connected with all other nodes of the graph, i.e. for each v ∈ V , the
set A′ contains the arc (s,v). This allows us to enforce the connectivity constraint by
representing each subgraph as a rooted arborescence. Each node v ∈ V can be the
unique root of the arborescence associated with subset Ui and we model this choice

5.6 Multi-commodity flow formulations 101

using the binary variable ri
v that is equal to 1 if and only if v is the root of the i-th

arborescence. Node v can receive the flow labeled with index i directly from super
root s if and only if ri

v = 1, and, using the flow balance constraints, we guarantee
that all the nodes of each arborescence are directly connected with its root. The
quantity of flow associated with the i-th arborescence that passes through arc a ∈ A′

is denoted by the nonnegative variables f i
a.

Thus, using the variables just introduced, the HAP can be formulated as follows:

MCA : minφ =
k

∑
i=1

∑
S∈S

qSzi
S− ∑

S∈S
qS (5.2a)

k

∑
i=1

xi
v = 1 v ∈V (5.2b)

∑
S∈S

qSzi
S ≤ Q i = 1, . . . ,k (5.2c)

xi
v ≤ zi

S i = 1, . . . ,k,v ∈V,S ∈Sv (5.2d)

∑
v∈V

ri
v = 1 i = 1, . . . ,k (5.2e)

ri
v ≤ xi

v i = 1, . . . ,k,v ∈V (5.2f)

∑
(s,v)∈A′

f i
sv = ∑

v∈V
xi

v i = 1, . . . ,k (5.2g)

f i
sv ≤|V | ri

v i = 1, . . . ,k,v ∈V (5.2h)

∑
(u,v)∈A′

f i
uv ≤|V | xi

v i = 1, . . . ,k,v ∈V (5.2i)

∑
(u,v)∈A′

f i
uv− ∑

(v,u)∈A′
f i
vu = xi

v i = 1, . . . ,k,v ∈V (5.2j)

xi
v,r

i
v ∈ {0,1} i = 1, . . . ,k,v ∈V (5.2k)

zi
S ≥ 0 i = 1, . . . ,k,S ∈S (5.2l)

f i
uv ≥ 0 i = 1, . . . ,k,(u,v) ∈ A′ (5.2m)

Constraints (5.2b) impose that each node is contained in one and only one arbores-
cence. Constraints (5.2c) impose the respect of the cost threshold for each arbores-
cence. Constraints (5.2d) define which subsets in S are intersected by which ar-
borescences. Constraints (5.2e) and (5.2f) impose, respectively, the uniqueness of
the root of each arborescence and the presence of a node v in the i-th arborescence
if v is its root. Constraints (5.2g) impose that the flow labeled with i and exiting
from the super root must be equal to the number of vertices in the i-th arborescence.
Constraints (5.2h) impose that the flow indexed by i can enter into v directly from s
only if v is the root of the i-th arborescence. Constraints (5.2i) impose that the flow
associated with the i-th arborescence passes through node v only if it belongs to the
arborescence. Constraints (5.2g) and (5.2j) respectively impose the correct genera-

102 5 The Homogenous Areas Problem

tion of flow associated with each arborescence and preserve the flow balance among
nodes. Finally constraints (5.2k)-(5.2m) define the domain of the variables. Note
that we relax the integrality constraint on variables

{
zi

S : S ∈S , i = 1, . . . ,k
}

since
constraints (5.2d) combined with the objective function coefficients automatically
impose za

S ∈ {0,1} for each S ∈S , i = 1, . . . ,k.

Symmetry breaking constraints

The set of feasible solutions of formulation MCA contains two different types of
symmetry:

1. Given a feasible solution of formulation (5.2), we can obtain an equivalent solu-
tion by permuting the indexes i = 1, . . . ,k of the associated arborescences. There-
fore, for each feasible HAP solution, in formulation (5.2) exist k! equivalent so-
lutions.

2. Given the feasible subgraph induced by set of nodes U , each arborescence span-
ning U is feasible and equivalent w.r.t. formulation (5.2). As a result, given a
feasible arborescence we can change its root and its structure preserving its fea-
sibility and its objective function value.

To avoid the exponential growth of the branching tree caused by these symme-
tries, we developed two families of valid inequalities that make unfeasible most of
the equivalent solutions. To handle the first type of symmetry (the one due to the
permutation of the arborescence indexes), we introduced the column inequalities
developed in Kaibel and Pfetsch (2008) to solve a similar problem arising in the
natural formulation for the classical GPPs. The idea of the authors of that paper is
to define, for each set of equivalent feasible solutions, a representative solution and
to make unfeasible all the equivalent solutions different from the representative one.
In our case, among all the ordering of the arborescences associated with a feasible
solution, we choose the representative one as follows:

• We associate with each set of nodes U the minimum index of its nodes by setting
M (U) = minv∈U {v}. Notice that, in order to associate the empty set with the
highest indexes, we define M (/0) = ∞.

• The representative solution is the one for which (M (U1), . . . ,M (Uk)) defines a
nondecreasing sequence.

To make unfeasible all the equivalent solutions that are not the representative one,
we introduced the following inequalities:

i−1

∑
v=1

xi
v = 0 i = 1, . . . ,k (5.3)

k−1

∑
i′=i

xi′
v ≤

v−1

∑
u=i−1

xi−1
u i = 2, . . . ,k−1 and v = i, . . . ,n (5.4)

5.6 Multi-commodity flow formulations 103

The first family of constraints (5.3) imposes that all the nodes having and index
lower than i cannot be assigned to the i-th arborescence: if we assign node v < i to
the i-th arborescence, we cannot define arborescences associated with indexes that
are lower than i and such that (M (U1), . . . ,M (Uk)) is a nondecreasing sequence .

The second family of constraints (5.4) states that a node v can be contained in
the arborescence associated with an index i′ greater that i only if exists a node u
that can be the root of the (i−1)-th arborescence in a representative solution. Note
that, to satisfy constraints (5.3), we have u ≥ i− 1 and, since we want to define a
representative solution, we have u≤ v−1.

To handle the second type of symmetry (the one due to the permutation of the
roots) we introduce the following inequalities:

xi
v +

n

∑
w=v+1

ri
w ≤ 1 i = 1, . . . ,k v ∈V (5.5)

These inequalities, for each i = 1, . . . ,k, impose that the node belonging to Ui and
associated with the minimum index is the root of its arborescence.

To evaluate the impact of these inequalities on the efficiency of formulation (5.2),
we tested them on a small subset of instances belonging to the three different bench-
marks described in Section 5.4. We solved formulation (5.2) using CPLEX 12.4 on
a PC equipped with an Intel Core2 Quad-core 2.66Ghz and 4GB of RAM, both
considering and not considering column inequalities (5.3,5.4) and roots symmetry
breaking constraints (5.5). The results we obtained for benchmark A, B and C, are
respectively reported in Table 5.5, Table 5.6 and Table 5.7. In these tables, for each
combination of inequalities utilization pattern (i.e. none, only column inequalities,
only roots symmetry breaking constraints and both families of inequalities) and for
each instance, we report the CPU time in seconds required to solve it. For each in-
stance we set an one-hour time limit. If a given instance cannot be solved within
time limit (TL) or if the required memory exceeds the available one (MO) we re-
port the upper bound - lower bound percentage gap obtained by the solver before
we stopped it (note that in Table 5.7, there is an instance for which the solver has
not been able to find a feasible solution in the given amount of time, we use a dash
“-” to denote this situation). Finally, to simplify the comparison among the results
reported in the different columns, for each instance, we highlight, using a bold font,
the content of the column associated with the best performance.

Analyzing these results, it is clear that the tested inequalities are very effective in
improving the formulation strength. In fact, a great part of the instances cannot be
solved without them and even when we cannot solve the instances within time limit
(in particular, if we consider the hard instances in benchmark C), by including these
inequalities, we can significantly tighten the upper bound - lower bound gaps.

104 5 The Homogenous Areas Problem

INS None (5.3,5.4) (5.5) (5.3-5.5)
50 1 1784 1803 17 98
50 2 1305 1880 306 506
50 3 TL(24.96) TL(13.91) 493 887
50 4 2473 1876 202 138
50 5 TL(1.73) 1836 168 444
60 1 TL(18.34) TL(10.94) MO(14.79) 687
60 2 TL(21.19) TL(28.09) 1110 20
60 3 TL(25.80) TL(18.81) 2429 95
60 4 TL(45.50) TL(32.35) 1011 43
60 5 TL(8.50) TL(15.28) 306 366

Table 5.5 Comparison between the time required to optimally solve formulation MCA (5.2) on
instances in benchmark A with and without the symmetry breaking constraints.

n α πmax β None (5.3,5.4) (5.5) (5.3-5.5)
20 0.05 10 1.00 3 0 2 0
20 0.05 10 1.15 1 0 0 0
20 0.05 100 1.00 653 263 15 13
20 0.05 100 1.15 1 0 2 0
20 0.10 10 1.00 608 127 42 17
20 0.10 10 1.15 69 31 7 6
20 0.10 100 1.00 TL(13.00) 1086 498 46
20 0.10 100 1.15 2164 420 127 25
25 0.05 10 1.00 MO(147.99) 3251 496 22
25 0.05 10 1.15 TL(106.30) 556 160 15
25 0.05 100 1.00 TL(62.33) 2287 135 24
25 0.05 100 1.15 TL(11.99) 441 229 14
25 0.10 10 1.00 TL(33.57) TL(16.42) TL(2.42) 137
25 0.10 10 1.15 TL(3.56) 1136 118 25
25 0.10 100 1.00 TL(39.18) TL(27.08) TL(2.11) 383
25 0.10 100 1.15 MO(75.29) TL(20.45) 3200 179

Table 5.6 Comparison between the time required to optimally solve formulation MCA (5.2) on
instances in benchmark B with and without the symmetry breaking constraints.

n α wmax β None (5.3,5.4) (5.5) (5.3-5.5)
30 0.05 1 1.00 TO(-) MO(135.12) TL(95.66) MO(82.37)
30 0.05 1 1.15 MO(211.04) MO(191.68) TL(63.35) MO(54.37)
30 0.05 10 1.00 TL(128.42) TL(151.82) TL(85.86) TL(55.99)
30 0.05 10 1.15 TL(125.59) TL(125.95) TL(93.90) TL(70.56)
30 0.05 100 1.00 TL(110.46) TL(125.15) TL(68.39) TL(67.40)
30 0.05 100 1.15 TL(125.90) TL(103.76) TL(82.07) TL(73.87)
30 0.10 1 1.00 MO(279.27) MO(147.78) MO(135.72) MO(67.98)
30 0.10 1 1.15 MO(111.01) MO(61.27) MO(46.56) 1053
30 0.10 10 1.00 MO(179.88) MO(126.85) MO(141.25) MO(54.66)
30 0.10 10 1.15 MO(151.36) MO(90.65) TL(10.91) 940
30 0.10 100 1.00 MO(293.32) MO(152.17) MO(72.17) MO(32.37)
30 0.10 100 1.15 MO(87.50) MO(71.52) 1602 1062

Table 5.7 Comparison between the time required to optimally solve formulation MCA (5.2) on
instances in benchmark C with and without the symmetry breaking constraints.

5.6 Multi-commodity flow formulations 105

5.6.2 A commodity for each node

A different way to overcome the symmetry problems afflicting the natural formu-
lation MCA (5.2) can be obtained applying the procedure used in (Campêlo et al.,
2008) to solve the graph coloring problem. The main idea behind this new formu-
lation (in the following denoted by MCN) is to associate a single commodity with
each vertex ` ∈ V : by correctly balancing the flow associated with commodity `,
we impose the connectivity of the (eventually empty) arborescence rooted in ` and
spanning only nodes associated with an index u greater than `.

To formally describe this formulation, as before, we start introducing the auxil-
iary directed graph G′ = (V,A) derived from G, replacing each edge in E with two
opposite arcs. However, differently from what described for formulation MCA (5.2),
in this case G′ does not contain a super root node. In order to guarantee that ` is the
vertex having the minimum index in the arborescence rooted in it, we impose that the
arborescence rooted in ` is defined on the reduced subgraph G` =

(
V `,A`

)
, where

V ` = {v ∈V : v≥ `} and A` =
{
(u,v) ∈ A′ : u,v ∈V `

}
. In Figure 5.3 we show some

of the subgraphs G` extracted from the sample instance reported in Figure 5.1. No-
tice that while the number of nodes in V ` decreases linearly when ` increases, the
number of nodes in the connected component containing ` (and, consequently, the
maximum size of an arborescence rooted in `) shows a nonlinear decreasing trend.
In order to define formulation MCN, we introduce variables x`v that is equal to 1 if
the arborescence rooted in ` includes v ∈ V ` (0 otherwise), z`S that is equal to 1 if
the arborescence rooted in ` intersects S ∈S (0 otherwise), and f `uv that denotes the
flow, generated by node ` ∈V , passing through (u,v) ∈ A`.

Given these definitions and variables, we can now state the following formula-
tion:

106 5 The Homogenous Areas Problem

(a) (b)

(c) (d)

Fig. 5.3 Some G` subgraphs extracted from the sample instance in Figure 5.1 a) G1, the connected
component containing the vertex `= 1 has 7 nodes b) G2, the connected component containing the
vertex `= 2 has 6 nodes c) G4, the connected component containing the vertex `= 4 has 2 nodes
d) G6, the connected component containing the vertex `= 6 has 2 nodes.

MCN : minφ = ∑
S∈S

∑
`∈V

qSz`S− ∑
S∈S

qS (5.6a)

∑
`∈V :v∈V `

x`v = 1 v ∈V (5.6b)

∑
`∈V

x`` ≤ k (5.6c)

∑
S∈S

qSz`S ≤ Qx`` ` ∈V (5.6d)

x`v ≤ z`S ` ∈V,v ∈V `,S ∈Sv (5.6e)

x`v ≤ x`` ` ∈V,v ∈V ` (5.6f)

∑
(`,v)∈A`

f ``v = ∑
v∈V `\{`}

x`v ` ∈V (5.6g)

∑
(u,v)∈A`

f `uv ≤
(∣∣∣V `

∣∣∣−1
)

x`v ` ∈V,v ∈V ` \{`} (5.6h)

∑
(u,v)∈A`

f `uv− ∑
(v,w)∈A`

f `vw = x`v ` ∈V,v ∈V ` \{`} (5.6i)

x`v ∈ {0,1} ` ∈V,v ∈V ` (5.6j)

z`S ≥ 0 S ∈S , ` ∈V (5.6k)

f `uv ≥ 0 ` ∈V,(u,v) ∈ A` (5.6l)

5.6 Multi-commodity flow formulations 107

Constraints (5.6b) state that each vertex belongs to exactly one arborescence.
Constraint (5.6c), since x`` = 1 if and only if solution contains an arborescence rooted
in `, imposes the correct number of arborescences. Constraints (5.6d) state that if the
arborescence rooted in ` is not empty, its cost must not exceed Q. Constraints (5.6e)
state that, if a node v is assigned to an arborescence, all subsets S∈S which contain
v contribute to the cost of the arborescence. Constraints (5.6f) state that if a node
belongs to arborescence `, node ` is the root of the arborescence. Constraints (5.6g)
state that, if an arborescence includes other nodes besides the root, then the root must
generate the right amount of flow (one less than the number of nodes contained in
the arborescence). Constraints (5.6h) state that, if a node receives flow `, it must
belong to arborescence `. Coefficient

∣∣V `
∣∣ can be replaced by any upper bound on

the number of the nodes in arborescence `, since each node absorbs exactly one unit
of flow. As discussed in the following, tighter values should be preferred because
they strengthen the LP-Relaxation of the model. Constraints (5.6i) guarantee the
conservation of flow, while the following ones impose integrality or nonnegativity
on the decision variables. Notice that, since variables

{
x`v : ` ∈V,v ∈V `

}
are binary,

constraints (5.6e) and the objective function trivially guarantee that also variables{
z`S : ` ∈V,S ∈S

}
are binary.

Ordering of nodes in the MCN formulation

The order in which the vertices are considered in formulation MCN (5.6) has a great
impact on the time required to solve it. As we discussed in the previous section, each
feasible arborescence rooted in ` ∈V is contained in the strongly connected compo-
nent of G` to which ` belongs. Thus, the number of feasible arborescences rooted in
` depends directly on the size of this component and its size depends on the order
in which the vertices are defined. As example, consider the sample instance in Fig-
ure 5.1 and the G` graphs derived from it and depicted in Figure 5.3: the size of the
strongly connected component containing ` follows the sequence (7,4,3,2,1,2,1)
when ` increases from 1 to 7. Now, what happens if we reorder the vertices in V by
applying to G the graph isomorphism that exchanges the label of vertex v with label
(n− v+1) (i.e. we reverse the order of the vertices)? In Figure 5.4 we report some
of the subgraphs G` obtained from the reordered graph. When we consider it, the
size of the connected component containing ` follows the monotonically decreas-
ing sequence (7,6,5,4,3,2,1): for each ` ∈V the size of the connected component
containing ` hits the upper bound (n− `+1).

Intuitively, if we reorder the vertices in V in such a way that the number of ver-
tices in each strongly connected component is minimized, we decrease the number
of feasible arborescences in each subgraph G` and we both increase the number of
valid variable fixing constraints (5.12) (see the following Section 5.6.3) and improve
the LP-Relaxation of formulation MCN (5.6). To heuristically obtain this result we
reorder the vertices, first by decreasing node degree, then, if the degrees of two or
more vertices are equal, we order them by decreasing total cost, where the total

108 5 The Homogenous Areas Problem

cost of a vertex v is defined as ∑S∈Sv qS. We computationally validate this heuristic
reordering strategy in Section 5.6.5

(a) (b)

(a) (b)

Fig. 5.4 Some G` subgraphs extracted from the instance obtained reversing the order of nodes of
the sample instance depicted in Figure 5.1 a) G1, the connected component containing the vertex
` = 1 has (n− `+ 1) = 7 nodes b) G2, the connected component containing the vertex ` = 2 has
(n−`+1)= 6 nodes c) G4, the connected component containing the vertex `= 4 has (n−`+1)= 4
nodes d) G6, the connected component containing the vertex `= 6 has (n− `+1) = 2 nodes.

5.6.3 Valid inequalities and big-M reductions

Fixing the root of a subgraph, either by using variables
{

ri
v : v ∈V, i = 1, . . . ,k

}
and

the symmetry breaking constraints (5.3-5.5) as in MCA (5.2) or by associating with
each node an arborescence as in MCN (5.6), allows us to improve the proposed
formulations both by introducing new valid inequalities and by tightening the big-
M coefficients contained in the formulations.

5.6 Multi-commodity flow formulations 109

Valid inequalities

The basic idea behind the following valid logic inequalities is to define two disjoint
subsets, denoted by Vin and Vout, and to focus our attention on feasible HAP solu-
tions which contain a connected subgraph including all the vertices in Vin and no
one of the vertices in Vout. Then, we compute a lower bound on the cost of such a
subgraph. If the obtained lower bound exceeds the cost threshold, all the solutions
containing all the vertices in Vin and no one of the vertices in Vout are unfeasible. As
a consequence, a logic inequality can be introduced to forbid them. Since the con-
sidered subgraph must be connected, a lower bound on its cost can be obtained by
computing, on a suitable weighted graph, the minimum-weight path connecting any
pair of vertices in Vin without using vertices in Vout and by selecting the computed
path associated with the maximum weight.

Proposition 1. Let Vin,Vout⊆V such that Vin∩Vout = /0, `in be the vertex of minimum
index in Vin, Ṽ = {v ∈V \Vout : v≥ `in} and G̃ = (Ṽ , Ẽ) be the subgraph induced
by Ṽ on G, i. e. Ẽ = {(u,v) ∈ E : u,v ∈ Ṽ}. Finally, let

k(Vin) = ∑
S∈SVin

qS

and p(Vin,Vout) be an auxiliary weight function defined on Ṽ as

p(Vin,Vout)
t =

 ∑
S∈St\SVin

qS

|VS∩Ṽ |
for t ∈ Ṽ \Vin

0 for t ∈Vin

Given any pair of vertices s, t ∈Vin, if the sum of k(Vin) plus the minimum weight with
respect to p(Vin,Vout) of a path between s and t on graph G̃ exceeds the cost threshold
Q, then:

1. All feasible solutions of formulation MCA satisfy the following inequalities

∑
v∈Vin

xi
v ≤ ∑

v∈Vout

xi
v + |Vin|− ri

` for each i = 1, . . . ,k (5.7)

2. All feasible solutions of formulation MCN satisfy the following inequality:

∑
v∈Vin

x`v ≤ ∑
v∈Vout

x`v + |Vin|−1 (5.8)

Proof. Consider the following auxiliary combinatorial optimization problem on G̃:

min
U⊆Ṽ

wU = ∑
S∈SU

qS (5.9a)

U ⊇Vin (5.9b)

U induces a connected subgraph on G̃ (5.9c)

110 5 The Homogenous Areas Problem

Its feasible solutions are the connected subsets including Vin, with `in as minimum
index vertex and not intersecting Vout. If the optimum of this auxiliary problem
exceeds Q, none of the considered subsets can occur in a feasible solution of the
given HAP instance. First we split the expression of the cost cU in two parts:

cU = ∑
S∈SVin

qS + ∑
S∈SU\SVin

qS

then, using the definition of k(Vin)

cU = k(Vin)+ ∑
S∈SU\SVin

qS

we divide the cost qS of subset S among the vertices of graph G̃ involved in it. Then
we approximate qS from below by considering only vertices in U .

∑
S∈SU\SVin

qS = ∑
S∈SU\SVin

∑
t∈VS∩Ṽ

qS

|VS∩Ṽ |
≥ ∑

S∈SU\SVin

∑
t∈U∩VS∩Ṽ

qS

|VS∩Ṽ |
(5.10)

The aim of this last step is to linearize the cost function, approximating it from
below: when U includes vertices from VS, we gradually sum fractions of qS to the
subgraph cost, instead of summing at once the whole cost qS. In doing that, we only
consider the vertices which can be included in U , i. e. those of Ṽ .

Notice that the double sum in the last term of (5.10) extends over all pairs (S, t)
such that S ∈SU \SVin , t ∈U ∩Ṽ =U and t ∈VS. The last condition is equivalent
to S ∈St . Therefore, the sum can be rewritten exchanging the two indices

∑
S∈SU\SVin

∑
t∈U∩VS∩Ṽ

qS

|VS∩Ṽ |
= ∑

t∈U
∑

S∈St∩(SU\SVin)

qS

|VS∩Ṽ |

since St ∩ (SU \SVin) = (St ∩SU)\SVin = St \SVin

∑
S∈SU\SVin

qS ≥ ∑
t∈U

∑
S∈St\SVin

qS

|VS∩Ṽ |
≥ ∑

t∈U\Vin

∑
S∈St\SVin

qS

|VS∩Ṽ |

Hence

cU ≥ k(Vin)+ ∑
t∈U\Vin

(
∑

S∈St\SVin

qS

|VS∩Ṽ |

)

Using the last inequality and the definition of p(Vin,Vout)
t , we can obtain the following

lower bound on cU :

cU ≥ k(Vin)+ ∑
t∈U\Vin

p(Vin,Vout)
t = k(Vin)+ ∑

t∈U
p(Vin,Vout)

t

5.6 Multi-commodity flow formulations 111

The former term represents the contribution of the vertices in Vin to the cost of
any of the considered subsets. The latter represents an approximation from below of
the contribution of each other town t to that cost. Computing the minimum of this
expression is in general hard. A relaxation, however, can be obtained selecting two
vertices in Vin and connecting them at minimum cost. The optimal solution of this
relaxation is the minimum weight of a path between the two chosen vertices, and it
can be computed by a simple vertex-weighted variation of Dijkstra’s algorithm.

If the result exceeds Q, then any subgraph in G̃ including Vin is unfeasible and
should be forbidden.

A simple way to express this condition in formulation MCA is:

∑
v∈Vin

xi
v + ∑

v∈Vout

(
1− xi

v
)
≤ |Vin|+ |Vout|− ri

`

While in formulation MCN we can express the same condition as:

∑
v∈Vin

x`v + ∑
v∈Vout

(
1− x`v

)
≤ |Vin|+ |Vout|−1

These two constraints are respectively equivalent to (5.7) and (5.8). ut

The previous proposition allows us to generate a potentially exponential family
of logic constraints that depend on a pair of vertex subsets. In practice, we only
consider the following three cases:

1. variable fixings: Vin = {`,u} and Vout = /0. If the computed lower bound exceeds
Q, applying (5.7), for formulation MCA (5.2), the inequality xi

`+ xi
u ≤ 2− ri

` is
valid for each i = 1, . . . ,k, and applying (5.8), for formulation MCN (5.6), the
inequality x``+x`u ≤ 2−1 is valid. Since, in formulation MCA, constraints (5.2f)
impose ri

` ≤ xi
` and, in formulation MCN, constraints (5.6f) impose x`` = 1, if

x`u = 1, we obtain the following valid inequalities, respectively, for MCA and
MCN:

xi
u ≤ (1− ri

`) for each i = 1, . . . ,k (5.11)

x`u = 0 (5.12)

2. binding constraints: Vin = {`,u} and Vout = {v}; if the computed lower bound
exceeds Q, the inequality xi

`+xi
u ≤ xi

v +2− ri
` is valid for formulation MCA, for

each i = 1, . . . ,k, and the inequality x`` + x`u ≤ x`v + 2− 1 is valid for MCN. As
before, since in formulation MCA we have ri

` ≤ xi
` and in formulation MCN con-

straint x`u = 1 imposes x`` = 1, the following inequalities are valid, respectively,
for MCA and MCN:

xi
u ≤ xi

v +(1− ri
`) for each i = 1, . . . ,k (5.13)

x`u ≤ x`v (5.14)

3. incompatibility constraints: Vin = {`,u,v} and Vout = /0; if the lower bound com-
puted exceeds the cost threshold, the inequality xi

`+ xi
u + xi

v ≤ 3− ri
v is valid for

112 5 The Homogenous Areas Problem

each i = 1, . . . ,k in formulation MCA, and the inequality x``+ x`u + x`v ≤ 3−1 is
valid for MCN. As before, using inequalities (5.2f) and (5.6f) we can obtain the
following valid inequalities, respectively, for MCA and MCN:

xi
u + xi

v ≤ 2− ri
` for each i = 1, . . . ,k (5.15)

x`u + x`v ≤ 1 (5.16)

Coefficients reductions

The big-M coefficients in constraints (5.6h) can be reduced from
∣∣V `
∣∣−1 to a tighter,

but still feasible, value M`−1 by computing for each ` ∈V an upper bound on the
number of vertices which can be feasibly assigned to the arborescence rooted in `
and contained in G`.

Proposition 2. The optimum of the following formulation (5.17) provides an upper
bound on the number of vertices which can be feasibly assigned to an arborescence
rooted in ` and contained in G`

maxM` = ∑
v∈V `

xv (5.17a)

∑
S∈S

qSzS ≤ Q (5.17b)

x` = 1 (5.17c)

xv ≤ zS v ∈V `,S ∈Sv (5.17d)

xv ∈ {0,1} v ∈V ` (5.17e)
zS ∈ {0,1} S ∈S (5.17f)

Proof. The problem can be obtained by relaxing all constraints concerning the flow
variables in formulation MCN (5.6), that is by neglecting the connectivity require-
ment, and independently maximizing for each ` ∈ V the number of vertices which
can be assigned to the subgraph rooted in `.

Of course, the bound improves if one includes in formulation (5.17) the fixing,
binding and incompatibility constraints previously described.

A similar formulation can be used to derive a lower bound on the number of
vertices which can be feasibly assigned to each subgraph. This requires a lower
bound on the overall workload in any feasible solution, e.g.

LBQ = ∑
S∈S

qS

. Consequently, the cost of any feasible subgraph has to be at least equal to:

5.6 Multi-commodity flow formulations 113

Qm = LBQ− (k−1)Q

.

Proposition 3. The optimum of the following formulation provides a lower bound
on the number of vertices which can be feasibly assigned to an arborescence rooted
in ` and contained in G`.

minm` = ∑
v∈V `

xv (5.18a)

∑
S∈S

qSzS ≥ Qm (5.18b)

x`l = 1 (5.18c)

xv ≤ zS v ∈V `,S ∈Sv (5.18d)
xv ∈ {0,1} v ∈V (5.18e)
za ∈ {0,1} a ∈ A (5.18f)

We omit the proof since it follows the same arguments used in Proposition 2. If the
obtained values are greater or equal to 0 we can add the following constraints to
formulation (5.6):

∑
v∈V

x`v ≥ m`x`` ` ∈V (5.19)

We have described all the steps required to tighten the big-M coefficients con-
sidering formulation MCN. However, if we include symmetry breaking constraints
(5.3-5.5) in formulation MCA, we can use the coefficients M` to tighten constraints
(5.2h) as follows:

f i
sv ≤Miri

v i = 1, . . . ,k,v ∈V

The same reasonings can be applied to reuse the m` coefficient in MCA. We
can impose a minimum size to the arborescences in formulation MCA, using the
following constraints

∑
v∈V

xi
v ≥ ∑

`∈V
m`ri

` i = 1, . . . ,k (5.20)

5.6.4 Computational comparison of the two compact formulations

To compare how the valid inequalities and the coefficient reductions proposed in
Section 5.6.3 impact on the two compact formulations, we solved them by means of
CPLEX 12.4 on a PC equipped with an Intel Core2 Quad-core 2.66Ghz and 4GB of
RAM, with and without formulations strengthenings.

In Table 5.8, Table 5.9 and Table 5.10, we report the results obtained, respec-
tively, on benchmark A, B and C. In these tables, for each instance, we report the

114 5 The Homogenous Areas Problem

results obtained by the different formulations, using the same style used in the ta-
bles presented at the end of Section 5.6.1. We report the results obtained both in-
cluding the proposed formulation strengthenings (“red.” column) and not including
them (“no red.” column). Moreover, to evaluate the effectiveness of the big-M re-
ductions and of the proposed valid inequalities, for each instance, we provide the
following values: %∆M is the percentage decrement of the M` coefficient (com-
puted as (M`− |V |)/ |V |) averaged on all vertices ` ∈V , columns %Fix., %Bind.
and %Inc., respectively, report the percentage of generated variable fixings, binding
constraints and incompatibility constraints (see Section 5.6.3) w.r.t. the maximum
number of constraints that can be generated (for example, the maximum number of
fixing constraints that can be generated is n(n−1)

2 since we need to choose u and `

such that u > `) . We do not provide the CPU time required to compute the M` co-
efficients and to generate the valid inequalities because it is negligible (few seconds
at most), and we do not report the impact of the m` coefficients since they are, with
very rare exceptions, trivially equal to 0: the introduction of inequalities (5.19) in
MCA formulation and of inequalities (5.19) in MCN is aimless.

Observing these results we can conclude that formulation MCN is the more ro-
bust one. On benchmark C (which is the benchmark containing the most difficult
instances among the tested ones), using MCN we are not able to solve, within the
time limit, only 3 instances, while using MCA we are not able to solve 9 of the
12 tested instances and 3 of these unsolved instances consumed all the available
memory before reaching the time limit. When tested on the two other benchmarks
(A and B), formulation MCN does not clearly dominate formulation MCA: on that
instances the two formulations achieve similar performances.

When comparing the results obtained by the two formulations with and with-
out valid inequalities and coefficient reductions, we come to different conclusions,
depending on the considered formulation. For formulation MCN, the proposed
strengthenings are very effective, on average, they increase the number of solved in-
stances, decrease the required computational time and, for unsolved instances, they
tighten the final upper bound-lower bound gap achieved by CPLEX. However, when
applied to formulation MCA the same strengthenings have a less strong impact: on
many tested instances, MCA obtains the best results without the valid inequalities
and the coefficient reductions proposed in Section 5.6.3.

The average decrement achieved by tightening M` coefficients is always near
80%, in benchmark B we can see a decrement if we move from considering in-
stances having n = 20 (on average, %∆M is equal to −77.41%) to considering
instances having n = 25 (on average, %∆M is equal to −80.88%), the same pat-
tern can be noticed in benchmark A if we move from n = 50 (on average, %∆M is
equal to−82.91%) to n = 60 (on average, %∆M is equal to−85.57%). The number
of generated valid inequalities strongly depends on the instance parameter α that
describes the number of subsets in S associated with each vertex v ∈ V in both
benchmark B and benchmark C: in benchmark B we generated on average 484.17
inequalities for instances having α = 0.1 (i.e. a higher average Sv cardinality) and
810.50 inequalities for instances having α = 0.05 (i.e. a lower average Sv cardi-
nality), in benchmark C we generated on average 323.23 inequalities for instances

5.6 Multi-commodity flow formulations 115

having α = 0.1 and 495.88 inequalities for instances having α = 0.05. The proce-
dures that generate valid inequalities is very effective for what concerns variable
fixings, for each instance we generate at least 20% of the fixings that theoretically
can be generated, for some instances (especially in benchmark A) this percentage
is greater than 50%. For the other two kinds of valid inequalities we do not obtain
these percentages but, in this case, the number of inequalities that theoretically can
be generated is higher w.r.t. the variable fixings and, as a consequence, to lower per-
centages reported in the tables, correspond higher absolute numbers of generated
inequalities.

MCA MCN
INS %∆M %Fix. %Bind. %Inc. (no red.) (red.) (no red.) (red.)
50 1 -83.24 46.69 2.85 10.02 20 33 82 134
50 2 -81.40 35.84 4.43 6.52 95 73 75 97
50 3 -82.40 41.31 4.08 12.18 444 1196 387 480
50 4 -82.76 51.35 1.92 12.66 98 59 80 117
50 5 -84.76 58.86 1.26 17.43 43 51 85 81
60 1 -85.31 54.63 1.62 11.18 366 1159 3236 1595
60 2 -84.36 45.93 2.71 10.23 687 336 413 332
60 3 -85.31 50.17 2.20 13.90 887 2624 1990 1543
60 4 -86.42 59.89 1.34 17.40 138 958 407 282
60 5 -86.47 52.26 4.03 8.95 506 1997 459 517

Table 5.8 Comparison between the results obtained using formulation MCA (5.2) and the ones
obtained using formulation MCN (5.6) on benchmark A.

MCA MCN
n α πmax β %∆M %Fix. %Bind. %Inc. (no red.) (red.) (no red.) (red.)

20 0.05 10 1.00 -78.00 38.42 3.77 10.88 0 41 1 0
20 0.05 10 1.15 -76.00 33.68 4.56 8.51 0 36 1 0
20 0.05 100 1.00 -78.75 37.89 3.86 11.27 13 8 3 1
20 0.05 100 1.15 -77.00 33.68 4.21 7.81 0 7 0 0
20 0.10 10 1.00 -76.75 25.26 6.32 2.50 17 1 16 11
20 0.10 10 1.15 -74.00 24.74 6.84 1.62 6 184 8 5
20 0.10 100 1.00 -80.50 28.95 5.44 7.32 46 15 43 24
20 0.10 100 1.15 -78.25 26.84 5.70 3.42 25 6 29 14
25 0.05 10 1.00 -82.08 41.33 4.35 9.41 22 25 10 2
25 0.05 10 1.15 -80.32 37.33 5.52 6.91 15 1 3 1
25 0.05 100 1.00 -83.20 43.00 4.30 11.72 24 47 9 1
25 0.05 100 1.15 -81.60 38.00 5.22 9.02 14 0 6 1
25 0.10 10 1.00 -79.20 29.33 5.74 2.87 137 21 114 67
25 0.10 10 1.15 -76.96 27.67 7.35 1.74 25 205 30 26
25 0.10 100 1.00 -83.04 33.00 6.09 9.30 383 7 143 33
25 0.10 100 1.15 -80.64 30.33 6.48 3.87 179 109 148 60

Table 5.9 Comparison between the results obtained using formulation MCA (5.2) and the ones
obtained using formulation MCN (5.6) on benchmark B.

116 5 The Homogenous Areas Problem

MCA MCN
n α wmax β %∆M %Fix. %Bind. %Inc. (no red.) (red.) (no red.) (red.)

30 0.05 1 1.00 -75.33 24.83 2.17 2.00 MO(82.37) TL(72.22) TL(5.35) 571
30 0.05 1 1.15 -78.89 21.84 5.74 5.58 MO(54.37) MO(95.66) TL(18.04) 2208
30 0.05 10 1.00 -75.00 23.45 2.71 1.75 TL(55.99) TL(66.73) 3025 868
30 0.05 10 1.15 -82.00 25.75 5.94 8.92 TL(70.56) TL(64.04) TL(24.47) 1525
30 0.05 100 1.00 -78.78 24.83 2.17 2.00 TL(67.40) TL(58.19) TL(15.73) 747
30 0.05 100 1.15 -81.67 25.75 6.26 9.54 TL(73.87) TL(83.02) TL(3.45) 1808
30 0.10 1 1.00 -80.22 23.68 5.37 4.72 MO(67.98) TL(27.71) TL(21.20) TL(4.22)
30 0.10 1 1.15 -78.78 24.83 2.17 1.92 1053 1307 2314 1117
30 0.10 10 1.00 -78.89 23.45 2.71 1.75 MO(54.66) MO(30.00) TL(34.20) TL(25.18)
30 0.10 10 1.15 -81.78 25.52 6.43 9.70 940 3011 1374 1246
30 0.10 100 1.00 -78.89 22.07 5.64 5.57 MO(32.37) MO(57.01) TL(11.39) TL(32.00)
30 0.10 100 1.15 -75.44 24.83 2.17 1.92 1062 1616 2902 1466

Table 5.10 Comparison between the results obtained using formulation MCA (5.2) and the ones
obtained using formulation MCN (5.6) on benchmark C.

In the final experiment described in this section, we want to investigate the impact
of the different ordering of the vertices in determining the performance obtained
by formulation MCN. All the results reported so far have been obtained testing
instances in which the vertices have been ordered adopting the strategy proposed
in Section 5.6.2. To evaluate the impact of this strategy, we generate a different
order of vertices by uniformly extracting a random permutation of the vertices and
using it to generate new instances. In Table 5.11 we report, for each tested instance,
the time required by CPLEX to solve formulation MCN both with a random order
of the vertices (column “Rand.”) and with the order of the vertices described in
Section 5.6.2 (column “Ord.”). Analyzing these results, it is immediately clear the
importance of a correct order of the vertices, if we use a random order we cannot
solve 9 instances, while using the order of vertices previously proposed we cannot
solve only 3 instances. Moreover, only for one of the instances in benchmark B and
one of the instances in benchmark C the time required to solve the ordered instance
is greater than the time required to solve the corresponding randomized instance, for
the other instances the time required to solve the ordered instances is significantly
less than the time required to solve the corresponding randomized instance.

5.6.5 Scalability of compact formulations

In the previous section we show that formulation MCN (5.6) is more robust and
efficient than formulation MCA (5.2). To complete our analysis of compact for-
mulations for the HAP, we tested, on the same PC used in the previous sections,
formulation MCN on bigger instances using the valid inequalities and the coeffi-
cient reductions proposed in Section 5.6.3. We impose the same one-hour time limit
imposed in the previous experiments, and we tested MCN on all the three bench-
marks, gradually incrementing the number n of vertices of the considered instances.

5.6 Multi-commodity flow formulations 117

Benchmark A Benchmark B Benchmark C

INS Rand. Ord.
50 1 185 134
50 2 498 97
50 3 2408 480
50 4 932 117
50 5 3237 81
60 1 TL(45.92) 1595
60 2 TL(20.68) 332
60 3 2377 1543
60 4 TL(49.62) 282
60 5 TL(-) 517

n α πmax β Rand. Ord.
20 0.05 10 1 1 0
20 0.05 10 1.15 0 0
20 0.05 100 1 4 1
20 0.05 100 1.15 0 0
20 0.1 10 1 13 11
20 0.1 10 1.15 2 5
20 0.1 100 1 43 24
20 0.1 100 1.15 22 14
25 0.05 10 1 37 2
25 0.05 10 1.15 5 1
25 0.05 100 1 33 1
25 0.05 100 1.15 20 1
25 0.1 10 1 269 67
25 0.1 10 1.15 102 26
25 0.1 100 1 523 33
25 0.1 100 1.15 457 60

n α wmax β Rand. Ord.
30 0.05 1 1 TL(23.85) 571
30 0.05 1 1.15 TL(27.65) 2208
30 0.05 10 1 TL(7.16) 868
30 0.05 10 1.15 3208 1525
30 0.05 100 1 2041 747
30 0.05 100 1.15 3287 1808
30 0.1 1 1 TL(21.11) TL(4.22)
30 0.1 1 1.15 1554 1117
30 0.1 10 1 TL(10.56) TL(25.18)
30 0.1 10 1.15 1371 1246
30 0.1 100 1 TL(15.80) TL(32.00)
30 0.1 100 1.15 1373 1466

Table 5.11 Comparison between the results obtained with formulation MCN (5.6) on the three
benchmarks using the instances with ordered vertices (Ord.) and the instances where the order of
vertices has been randomized (Rand.).

As soon as we are not able to solve any instance for a given benchmark and for a
given number of vertices, we start testing the next benchmark. The results we ob-
tained during this experiment are synthetically reported in Table 5.12. The instances
in benchmark C, as previously observed, seem to be the hardest ones: in one hour of
CPU time, we are able to solve only some instances having at most n = 30 nodes.
It is interesting that in both benchmarks B and C, the sparsest instances (i.e. the
ones generated setting α = 0.05) require less computing resources w.r.t. the dens-
est instances (i.e. the ones generated setting α = 0.10). The correlation between
the density of an instance and its difficulty is confirmed by the results obtained on
benchmark A that is characterized by a low density degree: in this case we can easily
solve all the instances up to n = 60 and some instances having n = 70 and n = 80.
The gap increases steeply when passing from 30 to 35−40 vertices for benchmarks
B and C and from 70 to 80 vertices for benchmark A. In these cases, the branching
tree exploration requires to analyze hundreds of thousands of branching nodes, with
a non negligible memory consumption.

Since the previous results showed how limited is the size of the HAP instances
that we can solve using the proposed compact formulations, in the following section,
we describe a different approach based on a new extended ILP formulation for the
HAP that can be effectively solved using the Column Generation method.

118 5 The Homogenous Areas Problem

Benchmark A Benchmark B Benchmark C

INS T
50 1 134
50 2 97
50 3 480
50 4 117
50 5 81
60 1 1595
60 2 332
60 3 1543
60 4 282
60 5 517
70 1 TL(18.05)
70 2 411
70 3 3315
70 4 TL(6.3)
70 5 TL(-)
80 1 TL(21.46)
80 2 1228
80 3 TL(29.72)
80 4 TL(10.46)
80 5 TL(-)

n α π β T
20 0.05 10 1.00 0
20 0.05 10 1.15 0
20 0.05 100 1.00 1
20 0.05 100 1.15 0
20 0.10 10 1.00 11
20 0.10 10 1.15 5
20 0.10 100 1.00 24
20 0.10 100 1.15 14
25 0.05 10 1.00 2
25 0.05 10 1.15 1
25 0.05 100 1.00 1
25 0.05 100 1.15 1
25 0.10 10 1.00 67
25 0.10 10 1.15 26
25 0.10 100 1.00 33
25 0.10 100 1.15 60
30 0.05 10 1.00 181
30 0.05 10 1.15 312
30 0.05 100 1.00 328
30 0.05 100 1.15 186
30 0.10 10 1.00 3139
30 0.10 10 1.15 TL(13.2)
30 0.10 100 1.00 TL(13.0
30 0.10 100 1.15 TL(14.0)
35 0.05 10 1.00 TL(9.7)
35 0.05 10 1.15 TL(26.9)
35 0.05 100 1.00 2621
35 0.05 100 1.15 TL(18.7)
35 0.10 10 1.00 TL(64.6)
35 0.10 10 1.15 TL(63.3)
35 0.10 100 1.00 TL(32.7)
35 0.10 100 1.15 TL(56.0)

n α π β T
30 0.05 1 1.00 571
30 0.05 1 1.15 2208
30 0.05 10 1.00 868
30 0.05 10 1.15 1525
30 0.05 100 1.00 747
30 0.05 100 1.15 1808
30 0.10 1 1.00 TL(4.22)
30 0.10 1 1.15 1117
30 0.10 10 1.00 TL(25.18)
30 0.10 10 1.15 1246
30 0.10 100 1.00 TL(32.00)
30 0.10 100 1.15 1466

Table 5.12 Scalability analysis of formulation MCN on all the three considered benchmarks.

5.7 A Column Generation approach

In this section, applying the Dantizg-Wolfe decomposition (see Chapter 2) to the
compact ILP formulation MCA (5.2), we derive a new extended formulation. Using
the Column Generation method we can obtain its LP-Relaxation without enumer-
ating all its variables. As discussed in Section 3.1, the associated Pricing Problem
is similar to the KPCSTP. In both problems we want to identify a connected sub-
graph that minimizes the difference between its cost and the prize associated with
the spanned nodes. However, while in the KPCSTP the cost of a subgraph is simply
defined as the cost of the used arcs, in the Pricing Problem the cost of a subgraph is
defined by the cost of the subsets in S intersected by it. The latter cost is used also
in the definition of the cost threshold constraint that can be seen as a non linear knap-

5.7 A Column Generation approach 119

sack constraint since the weight of a subgraph does not depend directly on the set of
the spanned nodes. Nonetheless, the two exact methods proposed in the following to
solve the Pricing Problem have similarities with the ones proposed for the KPCSTP
in Chapter 3. In particular, both the methods derive from the single-commodity flow
formulation described in Section 3.4.1.

Similarly to what done for the MRWADC problem (see Section 4.5.3), in order to
speed up the Column Generation method, we developed a Tabu Search heuristic for
the PP and we describe it in Section 5.7.6. The way in which the exact and heuristic
methods cooperate in order to found the optimal solution of formulation MCELP
(5.24) is deeply described in Section 5.7.7.

5.7.1 Dantzig-Wolfe decomposition and extended formulation

Consider the following polytope Ω that describes the LP-Relaxation of the set con-
taining all the feasible arborescences defined on G. This set is obtained by consid-
ering constraints (5.2c - 5.2m), i.e. all the constraints of formulation MCA (5.2)
with the exception of the partitioning constraints (5.2b), and by arbitrary fixing the
subgraph index i ∈ {1, . . . ,k}:

Ω = { (z,x) : ∑
S∈S

qSzS ≤ Q; xv ≤ zS for each v ∈V,s ∈Sv; ∑
v∈V

rv = 1;

rv ≤ xv for each v ∈V ; ∑
(s,v)∈A′

fsv = ∑
v∈V

xv; fsv ≤|V | rv for each v ∈V ;

∑
(u,v)∈A′

fuv ≤|V | xv for each v ∈V ;

∑
(u,v)∈A′

fuv− ∑
(v,u)∈A′

fvu = xv for each v ∈V

0≤ xv ≤ 1; 0≤ rv ≤ 1; 0≤ zS ≤ 1; fuv ≥ 0}

Now the LP-Relaxation of formulation MCA (5.2) can be compactly rewritten as
follows:

MCALP : minφ =
k

∑
i=1

∑
S∈S

qSzi
S− ∑

S∈S
qS (5.21a)

k

∑
i=1

xi
v = 1 v ∈V (5.21b)

(xi,zi) ∈Ω i = 1, . . . ,k (5.21c)

Since, for each i = 1, . . . ,k, the HAP requires the integrality of variables xi and
zi, to improve the lower bound obtained by solving MCALP we can substitute,
in constraints (5.21c), the polytope Ω with the convex hull of its integral points,

120 5 The Homogenous Areas Problem

conv(ΩIP), obtaining the following extended formulation:

MCELP : minφ =
k

∑
i=1

∑
S∈S

qSzi
S− ∑

S∈S
qS (5.22a)

k

∑
i=1

xi
v = 1 v ∈V (5.22b)

(xi,zi) ∈ conv(ΩIP) i = 1, . . . ,k (5.22c)

If we properly choose graph G (i.e. if we consider a complete graph) and subsets S
(i.e. if we introduce a singleton subset for each vertex), we can reduce polytope Ω to
the polytope describing the LP-Relaxation of a binary knapsack problem. Since it is
wide known (see, for example, Martello and Toth 1990) that this polytope does not
have the integrality property, also polytope Ω does not have this property. Hence,
the extreme points of Ω can be fractional. When at least one of the extreme points
of Ω is fractional, Ω is a proper subset of conv(ΩIP) and the lower bound obtained
solving MCELP (5.22) is stronger than the one obtained solving MCALP (5.21).

Since conv(ΩIP) is a polytope, it does not contain any extreme ray. Thus, if we
denote its extreme points as follows:

V =
{
(x(1),z(1)),(x(2),z(2)), . . . ,(x(j),z(j)), . . . ,(x(L),z(L))

}
We can express, in a compact form, all the points contained in conv(ΩIP):

conv(ΩIP) =

{
(x,z) : (x,z) =

L

∑
j=1

λ j(x(j),z(j)),
L

∑
j=1

λ j = 1, λ j ≥ 0

}

Introducing this new definition of conv(ΩIP) we can rewrite formulation (5.22) us-
ing coefficients λ as variables, obtaining:

MCELP : minφ =
k

∑
i=1

L

∑
j=1

(
∑

S∈S
qSz(j)

S

)
λ

i
j− ∑

S∈S
qS (5.23a)

k

∑
i=1

L

∑
j=1

λ
i
jx
(j)
v = 1 v ∈V (5.23b)

L

∑
j=1

λ
i
j = 1 i = 1, . . . ,k (5.23c)

λ
i
j ≥ 0 i = 1, . . . ,k, j = 1, . . . ,L (5.23d)

If we denote the cost of the subgraph associated with point (x(j),z(j)) ∈ΩIP as φ j =

∑S∈S qSz(j)
S and if we define the aggregate variable λ j = ∑

K
i=1 λ i

j, we can simplify,
without loss of generality (see Chapter 2), the previous formulation and obtaining
the final form of the the extended formulation MCELP:

5.7 A Column Generation approach 121

MCELP : minφ =
L

∑
j=1

φ jλ j− ∑
S∈S

qS (5.24a)

L

∑
j=1

λ jx
(j)
v = 1 v ∈V (ηv free) (5.24b)

L

∑
j=1

λ j ≤ k (µ ≥ 0) (5.24c)

λ j ≥ 0 j = 1, . . . ,L (5.24d)

Within parenthesis we report the dual variables associated respectively with the
partitioning constraints (5.24b) and with the cardinality constraints (5.24c). Notice
that MCELP does not suffer from the symmetry drawbacks previously described for
MCA (see Section 5.6.1).

5.7.2 Computing the LP-Relaxation of the extended formulation

Formulation MCELP (5.24) has an exponential number of variables, it contains a
variable for each extreme point of conv(ΩIP). Therefore, to avoid the complete enu-
meration of these variables, we applied a Column Generation method to solve it.
In particular, formulation MCELP (5.24) plays the role of the Master Problem (MP)
and we obtain the Reduced Master Problem (RMP) by initially considering only a
small subset of the extreme points in V . Then we solve the RMP and we use the op-
timal values of its dual variables either to generate non basic variables with negative
reduced costs or to prove that the current basic solution is optimal also for the MP.
This last step requires the resolution of the following Pricing Problem:

PP : zPP = min
(x,z)∈V

∑
S∈S

qSzS−∑
v∈V

ηv−µ

If we consider how the set V is defined, we can see that PP requires to identify
a connected subgraph of G that respects the cost threshold Q and minimizes the
reduced cost ∑S∈S qSzS−∑v∈V ηv−µ . As shown by the following proposition, this
problem is N P-hard.

Proposition 4. The PP problem is N P-hard, even if ηv ≥ 0 for each v ∈ V and
Q =+∞.

Proof. The proof is based on a reduction from the Maximum Weight Connected
Subgraph (MWCS) problem, which is N P-hard (Ideker et al., 2002) and is defined
as follows. Given a graph G̃ = (Ṽ , Ẽ), and a weight function defined on the vertices,
w : Ṽ → R, the problem requires to find a connected subgraph G̃′ = (Ṽ ′, Ẽ ′) of G̃
associated with the maximum total weight wG̃′ = ∑v∈Ṽ ′ wv.

We now show that starting from any given instance of the MWCS problem, it is
possible to derive an instance of the PP, such that their optimal solutions correspond

122 5 The Homogenous Areas Problem

one-to-one. Graph G = (V,E) coincides with G̃. We set Q = +∞ and µ = 0. For
each vertex v ∈ Ṽ such that wv < 0, we define a singleton subset S = {v} ∈S with
cost qS = −wv and we set ηv = 0. For each vertex v ∈ Ṽ such that wv ≥ 0, we set
ηv = wv.

Each PP feasible solution G′ = (V ′,E ′) is a connected subgraph, and therefore
is also feasible for the MWCS problem. Its cost is equal to ∑v∈V ′:wv<0(−wv)−
∑v∈V ′:wv≥0 wv = −∑v∈V ′ wv, which is the opposite of the objective function of the
MWCS problem. Thus, minimizing the objective of the PP corresponds to maximiz-
ing the objective of the MWCS problem.

5.7.3 A root-independent Pricing Problem formulation

A natural ILP formulation for the PP can be easily obtained adding to polytope
Ω (see Section 5.7.1) the integrality constraint on the xv, rv and zS variables and
introducing an objective function that minimizes the reduced cost of the selected
subgraph. The obtained formulation can be stated as follows:

PPI : minzPPI = ∑
S∈S

qSzS−∑
v∈V

ηvxv−µ (5.25a)

∑
S∈S

qSzS ≤ Q (5.25b)

xv ≤ zS v ∈V,S ∈Sv (5.25c)

∑
v∈V

rv = 1 (5.25d)

rv ≤ xv v ∈V (5.25e)

∑
(s,v)∈A′

fsv = ∑
v∈V

xv (5.25f)

fsv ≤ |V |rv v ∈V (5.25g)

∑
(u,v)∈A′

fuv ≤ |V |xv v ∈V (5.25h)

∑
(u,v)∈A′

fuv− ∑
(v,u)∈A′

fvw = xv v ∈V (5.25i)

xv,rv ∈ {0,1} v ∈V (5.25j)
zS ≥ 0 S ∈S (5.25k)
fuv ≥ 0 (u,v) ∈ A′ (5.25l)

The objective function is given by equation (5.25a) and it corresponds to the
reduced cost of variable λ j in formulation MCELP (5.24) that is associated with the
subgraph defined by variables (x,z) and with the dual variables values (η ,µ).

5.7 A Column Generation approach 123

Constraint (5.25b) limits the cost of the arborescence. Constraints (5.25c) state
that, if a node v is assigned to the arborescence, all the subsets in S which contain v
contribute to its cost. Constraint (5.25d) guarantees that the associated arborescence
has exactly one root. Constraints (5.25e) guarantee that the root node belongs to
the arborescence. Constraints (5.25f - 5.25i) impose the connectivity of the arbores-
cence. Notice that, similarly to what we have done for formulations MCA (5.2) and
MCN (5.6), by introducing the objective function (5.25a) that minimizes the value
of zS, we can relax the integrality constraint on z variables

This formulation suffers from the same symmetry drawbacks on the root selec-
tion suffered by MCA: given a feasible subgraph induced by the set of nodes U , we
can choose any nodes v ∈U to be the root of the arborescence without modifying
neither feasibility nor optimality. To avoid this drawback we can use the following
constraints that are similar to the ones (5.5) proposed for formulation MCA (5.2)
and impose to select as root of the arborescence the node with the minimum index
among the ones associated with xv = 1:

xv +
n

∑
w=v+1

rw ≤ 1 v ∈V (5.26)

5.7.4 Solving the Pricing Problem by iterative fixing the root

A different approach to solve the PP is based on the resolution, for each ` ∈ V ,
of the subproblem, denoted by PP`, that requires to find, among all the feasible
arborescences rooted in ` that only contain nodes having index v≥ `, the one having
the minimum reduced cost. If we denote by zPP` the optimal objective function value
of PP` we can obtain the optimal objective function of the PP by simply setting zPP =
min`∈V zPP` . Moreover, each arborescence that is optimal for a subproblem PP` such
that zPP = zPP` , is also optimal for the PP. Notice that using this decomposition
approach we avoid the symmetry problems associated with the root selection in the
PP formulation described in the previous section.

The Pricing Problem PP` is defined on subgraph G` = (V `,A`) introduced in
Section 5.6.2 for formulation MCN (5.6.2) and it can be formulated using a set of
decision variables similar to the ones used for formulation PPI (5.25). The only two
differences are that in formulation PP` we do not have variables {rv : v ∈V} and
variables

{
fuv : (u,v) ∈ A`

}
and

{
xv : v ∈V `

}
are now defined on G` and not on G.

124 5 The Homogenous Areas Problem

PP` : minzPP` = ∑
S∈S

qSzS− ∑
v∈V `

ηvxv−µ (5.27a)

∑
S∈S

qSzS ≤ Q (5.27b)

xv ≤ zS v ∈V `,S ∈Sv (5.27c)
x` = 1 (5.27d)

∑
(`,v)∈A`

f`v = ∑
v∈V `\{`}

xv (5.27e)

∑
(u,v)∈A`

fuv ≤
(
|V `|−1

)
xv v ∈V ` \{`} (5.27f)

∑
(u,v)∈A`

fuv− ∑
(v,u)∈A`

fvu = xv v ∈V ` \{`} (5.27g)

xv ∈ {0,1} v ∈V ` (5.27h)
zS ≥ 0 S ∈S (5.27i)

fuv ≥ 0 (u,v) ∈ E` (5.27j)

The objective function is given by equation (5.27a) and it corresponds to the re-
duced cost of the variable λ j in formulation MCELP (5.24) associated with the ar-
borescence rooted in ` defined by variables (x,z) and with the dual variables values
(η ,µ). Constraint (5.27b) limits the cost of the arborescence. Constraints (5.27c)
state that, if a node v is assigned to the arborescence, all subsets S ∈S which con-
tain v contribute to its cost. Constraint (5.27d) guarantees that the root node belongs
to the arborescence. Constraint (5.27e) sets the amount of flow generated by the
root of the arborescence to be equal to the number of the other nodes belonging to
it. Constraints (5.27f) state that, if a node receives one unit of flow, it must belong to
the arborescence. Constraints (5.27g) guarantee the conservation of flow, while the
following ones impose integrality or nonnegativity on the decision variables.

5.7.5 Valid inequalities and coefficient reductions

Both formulation PPI (5.25) and formulation PP` (5.27) can be strengthened by
adapting the valid inequalities and the coefficient reductions procedures introduced
in Section 5.6.3 for the compact formulations MCA (5.2) and MCN (5.6).

The valid inequalities (5.11-5.16) can be adapted to the two PP formulations as
follows:

• variable fixings: given two sets Vin = {`,u} and Vout = /0, for which the lower
bound on cost computed as described in Section 5.6.3 exceeds Q, the following
inequalities are respectively valid for PPI and PP`:

xu ≤ (1− r`) (5.28)

5.7 A Column Generation approach 125

xu = 0 (5.29)

• binding constraints: given two sets Vin = {`,u} and Vout = {v}, for which the
lower bound on cost computed as described in Section 5.6.3 exceeds Q, the fol-
lowing inequalities are respectively valid for PPI and PP`:

xu ≤ xv +(1− r`) (5.30)

xu ≤ xv (5.31)

• incompatibility constraints: given two sets Vin = {`,u,v} and Vout = /0, for which
the lower bound on cost computed as described in Section 5.6.3 exceeds Q, the
following inequalities are respectively valid for PPI and PP`:

xu + xv ≤ 2− r` (5.32)

xu + xv ≤ 1 (5.33)

In a similar way, we can reuse the coefficient M` and m` defined in Section 5.6.3
to tighten both PP formulations:

• In formulation PPI we can tighten constraints (5.25g) as follows:

fsv ≤Mvrv v ∈V (5.34)

• In formulation PP` we can tighten constraints (5.27f) as follows:

∑
(u,v)∈A`

f ``v ≤ (M`−1)xv (5.35)

5.7.6 A Tabu Search heuristic for the Pricing Problem

Since the Pricing Problem is N P-hard and since, as we discuss in Section 5.7.7,
the systematic application of a commercial ILP solver proved rather inefficient to
solve it, we developed a Tabu Search heuristic, PPTS, to quickly identify negative
reduced cost columns. Hence, we can limit the use of the exact solver to the cases
in which PPTS fails to provide any column with a negative reduced cost.

Tabu Search is a well-known local search metaheuristic approach which allows
the visit of nonimproving solutions. It is controlled by memory mechanisms to avoid
the insurgence of cyclic behaviors. It was introduced by Glover (1986) and the in-
terested reader can find in Glover and Laguna (1997) a detailed treatment of its
applications and variants. In the following, we mainly focus our attention on the
specific aspects of our implementation.

126 5 The Homogenous Areas Problem

First of all, PPTS does not impose a fixed root node, it implicitly solves the over-
all Pricing Problem PP instead of the single subproblems PP` in which a root ` ∈V
is fixed. PPTS starts from a given feasible solution G′ = (U,E ′), which corresponds
to a subgraph of G, possibly empty. We defined two simple moves: the addition (re-
moval) of a node to (from) the current set of nodes U . At each iteration, the heuristic
evaluates all nodes v ∈ V , one at a time: if v ∈U , it computes the value of the re-
duced cost of the subgraph induced by U \ {v}; if v ∈ V \U , it computes the value
of the reduced cost of the subgraph induced by U ∪{v}. In both cases, the move is
forbidden if the resulting subset of nodes does not induce a connected subgraph or
if its cost exceeds the threshold Q. Therefore, the neighborhood of each solution,
therefore, is the set of all the solutions which can be obtained by applying one of
the two kinds of move, and it contains at most n members.

A nonstandard tabu mechanism

As for any Tabu Search method, PPTS classifies the solutions in the current neigh-
borhood either as tabu or non tabu. The presence of a tabu mechanism has the pur-
pose to avoid the visit of previously obtained solutions by forbidding the reversal
too recently performed moves. The common way to implement this mechanism is
to maintain, explicitly or implicitly, a list of attributes of performed moves and to
forbid the execution of moves whose attributes are in the list. The list has a limited
length, say tt, usually called tabu tenure, and it is managed as a FIFO list. This im-
plies that, after lasting tt iterations in the list, an attribute is removed from it and all
the moves which have that attribute can now be performed.

In our algorithm, for each node v ∈ V , we save in Iv the last iteration in which
v changed its status, either entering or leaving the solution. In technical terms, the
attribute of a move is the index v of the node which is removed or added. As a
consequence, the solution obtained adding (removing) a node v to (from) the current
set of nodes U is tabu if the value of the current iteration counter is smaller than
Iv + tt, meaning that v was moved for the last time less than tt iterations ago.

In the Tabu Search literature there are two mainstreams, respectively adopting
a fixed and a variable tabu tenure. In the latter case, the tenure is usually updated
depending either on the quality of the last performed move or on the cardinality of
the neighborhood. More specifically, it is common to decrease the value of the tenure
when the last performed move is improving and to increase it in the opposite case;
as well, it is common to decrease the value of the tenure when the neighborhood
becomes smaller and to increase it when it becomes larger (Glover and Laguna,
1997). The purpose of these adaptive mechanisms is to favor the exploration of
more promising regions of the solution space and to drive the search away from less
promising ones.

Since we visit only feasible solutions, which correspond to connected subgraphs
of G, and since in general graph G is not complete, the size of the neighborhood de-
fined above can vary significantly from iteration to iteration. For this reason, using
a fixed tabu tenure proved very ineffective, and even the standard adaptive mecha-

5.7 A Column Generation approach 127

nisms, based on the quality of the last move or on the current size of the neighbor-
hood, failed. In fact, we frequently observed that the value of the tabu tenure could
not keep pace with the current state of the search. For example, the moves whose
attributes were saved in the tabu list were quite often nearly all unfeasible, and
therefore unnecessarily tabu. On the other hand, the insurgence of a cyclic behavior
triggered the anti-cycling mechanism (described in the following) that increase the
tabu tenure, until nearly all feasible moves became tabu. This worsened the qual-
ity of the available solutions. The result was that the search moved alternatively
between cycles and bad solutions.

In order to solve this problem, we decided to get rid of the tabu tenure, while
preserving the basic idea of Tabu Search. At each iteration, we compute the number
k of feasible moves and we consider tabu the bεkc moves with the most recent
attribute Iv. Parameter ε ∈ (0;1) is defined by the user. Please notice that, due to the
above rounding and since ε < 1, at least one move is always non tabu.

In general, the move selected at each step is the non tabu one which produces the
solution with the minimum reduced cost in the neighborhood, but we also apply the
standard aspiration criterion: if a tabu move brings us to a solution whose reduce
cost is the smallest one found so far, we override its tabu status.

We also apply the following anti-cycling mechanism: if for a given number of
consecutive iterations Kacm the same sequence of moves generates the same se-
quence of objective function values, we assume this as a hint that a cyclic behavior
is occurring, and consequently increase ε to ε ′ ∈ (ε;1) for the following Kacm itera-
tions, in an attempt to break the cycle.

Finally, we adopt a frequency-based diversification strategy. We save the num-
ber nv of visited solutions which contain node v ∈ V and the number nS of visited
solutions which contain subset S ∈ S . If the objective function does not improve
for Kni consecutive iterations, we start a diversification phase, which lasts for Kdiv
consecutive iterations. During this phase, we replace the objective function with the
following one:

φ̃ = ∑
S∈S

nS

max
S∈S

nS
qSzS−∑

v∈V

(
1− nv

max
v∈V

nv

)
πvxv

The aim of this change is to decrease the cost of the subsets and to increase the prize
of the nodes which have occurred less frequently in the visited solutions.

Initialization

Heuristic PPTS requires a starting solution. We could start PPTS from an empty so-
lution, however to deeply exploit the information obtained by the RMP instances we
already solved, we adopt a warm start strategy: we restart PPTS from the subgraphs
associated with all the k′ basic variables λ j which have a strictly positive value in
the current optimal RMP solution. These solutions are promising starting points be-
cause, by definition, they have a zero reduced cost. Our preliminary experiments

128 5 The Homogenous Areas Problem

show that, using this warm start strategy, the overall Column Generation method
requires less computing time w.r.t. the strategy that initializes PPTS with an empty
solution.

Solution pool

To improve the Column Generation convergence rate, instead of the best solution,
we save all the negative reduced cost columns found by PPTS. When the heuristic
terminates, we add all the saved columns to the RMP.

Stopping criteria

PPTS has three stopping criteria. First of all, it stops as soon as it has found Cmax
columns. In fact, adding several columns in each iteration decreases the number of
iterations required to obtain the optimal solution, but also increases the time required
to solve the RMP. So, we need to find a trade-off between these two effects. Second,
for each one of the k′ starting solutions, PPTS performs at least Imin/k′ iterations. If
during this search it finds at least one negative reduced cost column, it moves to the
next starting solution. Otherwise, it proceeds until either it finds a negative reduced
cost column or it performs Imax/k′ iterations, and moves to the next starting solution.

5.7.7 Lower bound comparison

Anti-cycling Diversification Stopping criteria
Kacm ε ε ′ Kni Kdiv Cmax Imin Imax

3 0.7 0.9 25 30 1000 2000 20000

Table 5.13 Values of the parameters for PPTS.

This section compares the lower bound obtained by solving with CPLEX 12.4,
on a PC equipped with and Intel Core2 Quad-core 2.66Ghz and 4GB of RAM,
the compact formulation (5.6) with the lower bound achieved by solving the ex-
tended formulation MCELP (5.24) with our Column Generation method. formula-
tion MCN (5.6) has been strengthened using the valid inequalities and the coefficient
reductions described in Section 5.6.3. In the Column Generation method, to exactly
solve the Pricing Problem we adopt the decomposition approach described in Sec-
tion 5.7.4 that in our preliminary tests (not reported here for the sake of brevity)
outperforms the one-step approach based on formulation PP (5.25).

5.7 A Column Generation approach 129

We adopt the following strategy to speed up the Column Generation process. At
first, we apply PPTS with the parameter setting reported in Table 5.13. As long as
PPTS finds negative reduced cost columns, we add them to the RMP, and reoptimize
it. After that, for each ` ∈ V in turn, we invoke CPLEX to solve problem PP`. As
soon as CPLEX finds a negative reduced cost column (no matter if it is an optimal
solution or not), we add it to the RMP and reoptimize. When CPLEX proves that PP`

admits no such column, we select the next root ` and proceed with the associated
Pricing Problem. When CPLEX fails to identify a negative reduced cost column for
all ` ∈ V , the optimal solution of the RMP is optimal also for the MP and provides
a lower bound for the extended formulation. The whole process benefits by consid-
ering the roots ` in an increasing order, because in this way we solve first the larger
subproblems PP`, which are more likely to provide negative reduced cost columns.
Notice that in our first experiments we directly applied CPLEX to solve the Pricing
Problems, because we had not yet implemented the PPTS heuristic. With that con-
figuration, we could not compute the LP-Relaxation of the extended formulation in
a reasonable amount of time even for small instances. Only after developing PPTS,
it became possible to solve the MP. Moreover, our analysis of the computational
experiments shows that the time required to solve the smallest Pricing Problems
is negligible w.r.t. the time required to solve the biggest ones. As a consequence,
we did not enumerate the smallest solutions, and we did not develop any ad hoc
exhaustive search procedure, but we decided to simply apply the commercial ILP
solver.

Tables 5.14, 5.15 and 5.16 report the results obtained, respectively, on bench-
marks A, B and C. The first columns of the three tables identify each tested in-
stance. For both lower bounding methods, the one based on the compact formula-
tion under label CF (5.6), and the one based on the extended formulation under label
MCE (5.24), column %∆ reports the percentage gap between the best known value
and the corresponding lower bound (computed as (BK−LB)/LB), and column CPU
reports the required time in seconds. A time limit of one hour has been imposed on
the computation: if an instance could be solved to optimality by CPLEX, the col-
umn %∆ reports a “-” label and CPU column reports a value lower than 3600; if it
could not be solved within the time limit, CPU column reports the label “TL” and
the column %∆ reports the residual gap.

Notice that in these tables we report only the results obtained on the smallest
instances in the considered benchmarks. The larger instances, in fact, could not be
solved using formulation MCN (5.6) and the best lower bounds found by CPLEX
on these instances at the end of its execution exhibited very large gaps w.r.t. the best
known upper bounds.

The results for formulation MCN (5.6) confirm its scalability issues already noted
in Section 5.6.5: for the two random benchmarks B and C, considered in tables 5.15
and 5.16, some instances with 30 vertices and a single instance with 35 vertices can
be solved to optimality within the time limit. If we consider benchmark A CPLEX
is able to solve, in one hour of computation time, all the instances up to n = 60
and some instances with 70 and 80 nodes. The final gaps for the unsolved instances
steeply increase when we pass from instances having 30 vertices to instances having

130 5 The Homogenous Areas Problem

CF (5.6) MCE (5.24)
Instance %∆ CPU %∆ CPU

50-1 - 134 14.73 76
50-2 - 97 0.35 73
50-3 - 480 3.73 53
50-4 - 117 14.37 122
50-5 - 81 4.70 68
60-1 - 1595 9.76 71
60-2 - 332 9.73 515
60-3 - 1543 10.54 95
60-4 - 282 - 395
60-5 - 517 4.68 220
70-1 2.55 TL 2.94 66
70-2 - 411 4.50 445
70-3 - 3315 9.06 368
70-4 3.80 TL 12.95 284
70-5 7.54 TL 6.43 352
80-1 20.30 TL 16.62 114
80-2 - 1228 3.67 524
80-3 15.90 TL 8.25 334
80-4 10.46 TL 4.92 141
80-5 16.39 TL 8.97 255

Table 5.14 Comparison between the lower bound achieved by compact formulation MCN (5.6)
and by the Column Generation method applied to formulation MCELP (5.24) on benchmark A.

MCN (5.6) MCE (5.24)
n α qmax β %∆ CPU %∆ CPU

30 0.05 10 1.00 - 181 3.02 3
30 0.05 10 1.15 - 312 3.64 3
30 0.05 100 1.00 - 328 3.01 4
30 0.05 100 1.15 - 186 2.78 2
30 0.10 10 1.00 - 3139 2.02 7
30 0.10 10 1.15 13.24 TL 14.85 7
30 0.10 100 1.00 13.05 TL 1.91 5
30 0.10 100 1.15 13.96 TL 4.50 7
35 0.05 10 1.00 9.72 TL 5.66 4
35 0.05 10 1.15 26.89 TL 4.92 8
35 0.05 100 1.00 - 2621 3.59 4
35 0.05 100 1.15 18.72 TL 5.97 4
35 0.10 10 1.00 64.58 TL 6.79 13
35 0.10 10 1.15 63.25 TL 10.54 16
35 0.10 100 1.00 32.73 TL 3.18 10
35 0.10 100 1.15 56.02 TL 5.77 14

Table 5.15 Comparison between the lower bound achieved by compact formulation MCN (5.6)
and the Column Generation method applied to formulation MCELP (5.24) on benchmark B.

5.8 Local search based heuristics for the HAP 131

MCN (5.6) MCE (5.24)
n α wmax β %∆ CPU %∆ CPU

30 0.05 1 1.00 - 571 6.68 3
30 0.05 1 1.15 - 2208 12.79 10
30 0.05 10 1.00 - 868 10.78 5
30 0.05 10 1.15 - 1525 17.28 6
30 0.05 100 1.00 - 747 11.13 3
30 0.05 100 1.15 - 1808 17.08 6
30 0.10 1 1.00 10.05 TL 8.01 12
30 0.10 1 1.15 - 1117 21.44 15
30 0.10 10 1.00 22.36 TL 10.23 10
30 0.10 10 1.15 - 1246 24.42 24
30 0.10 100 1.00 23.21 TL 12.36 12
30 0.10 100 1.15 - 1466 22.22 13

Table 5.16 Comparison between the lower bound achieved by compact formulation MCN (5.6)
and the Column Generation method applied to formulation MCELP (5.24) on benchmark C.

35− 40 vertices in benchmarks B and C and when we pass from instances having
60 vertices to instances having 70−80 vertices in benchmark A.

The computation of the lower bounds obtained by CPLEX using formulation
MCN for the unsolved instances requires to analyze thousands of branching nodes,
with a non negligible memory. On the contrary, The Column Generation method
does not require any branching operation and its results are obtained in a matter
of few seconds (few minutes for the instances of benchmark A). The gap is quite
stable with respect to the size of the considered instance and it mainly depends on
the value of other instance parameters: the hardest instances for benchmark B are
those having α = 0.10, qmax = 10 and β = 1.15; the hardest ones for benchmark C
have α = 0.10 and β = 1.15.

5.8 Local search based heuristics for the HAP

This section presents two local search based heuristics to determine feasible solu-
tions of good quality for the HAP. The former is a Tabu Search algorithm based on
the exchange of single vertices between adjacent subgraphs. Since the connectiv-
ity constraint is enforced, this neighborhood typically includes a very small num-
ber of solutions. To cope with this limitation, the algorithm relaxes cost threshold
constraint, with an adaptive mechanism to penalize its violations. The latter algo-
rithm strictly respects both the connectivity and the cost threshold constraint, but
enlarges the search space through a Very Large Scale Neighborhood approach: in-
stead of moving a single vertex from subgraph to subgraph, it allows whole chains
of transfers, determining their cost through a shortest path computation on a suitable
auxiliary graph.

132 5 The Homogenous Areas Problem

Notice that both algorithms are based on the same elementary mechanisms, i. e.
the addition or removal of a single vertex with respect to a subgraph, followed by the
evaluation of the resulting cost and connectivity. Moreover, the same mechanisms
can be used to build a starting feasible solution from scratch, through a sequence of
incomplete solutions in which the subset of unassigned vertices is progressively re-
duced. The only difference between improving a complete solution and augmenting
an incomplete one is that in the latter case the vertex added to a subgraph comes from
the subset of unassigned vertices, instead of another subgraph. For this reason, both
algorithms can be straightforwardly extended to deal with incomplete solutions, by
simply representing the subset of unassigned towns as a fictitious subgraph.

In the description of both algorithms, we assign to each subgraph an integer in-
dex l ∈ N0

k = {0, . . . ,k}, where 0 denotes the fictitious subgraph, i. e. the subset of
unassigned vertices, while Nk = {1, . . . ,k} denotes the real subgraphs. This coin-
cides with the indexing strategy used in formulation (5.2) and is in contrast with
formulation (5.6), where each subgraph is denoted by the index of its first vertex
` ∈V .

5.8.1 A Tabu Search algorithm

For a general introduction to the Tabu Search see the introductory paragraph in
Section 5.7.6, in the following, we mainly focus our attention on the specific aspects
of our implementation for the HAP.

The algorithm starts by assigning all vertices to the fictitious subgraph l = 0. At
each iteration, the procedure takes into account all vertices v ∈V and tries to move
them from the current subgraph l ∈N0

k to another subgraph l′ ∈Nk \{l}. Notice that
no move assigns a vertex to the fictitious subgraph 0, since it is the main objective
of the algorithm to empty this subgraph.

In order to always keep connected subgraphs, moving v from l to l′ is evaluated
only if both the following conditions hold:

1. Either l = 0 or subgraph l ∈ Nk is not disconnected by the move.
2. Either v is adjacent to subgraph l′ or subgraph l′ is empty.

The tabu mechanism has the purpose to avoid reversing recently performed
moves. If vertex v moves from subgraph l to subgraph l′, it is forbidden to move
it back to the original subgraph for a suitable number of iterations. This is obtained
by saving in Il

v the last iteration in which vertex v resided in subgraph l and declar-
ing tabu any move which puts vertex v into subgraph l before iteration Il

v +L+1. In
other words, the attribute of the move of v from l to l′ is the pair (v, l). The number
of forbidden iterations L is known as tabu tenure.

The cost threshold constraint can be freely violated by the moves, but these vi-
olations are suitably penalized in the objective function. This is done to guarantee
a certain degree of flexibility to the approach, which might be otherwise too tightly

5.8 Local search based heuristics for the HAP 133

limited by the small number of feasible neighbor solutions. For each move, the al-
gorithm evaluates the following three objective function components:

• The new cost of subgraph 0.
• The resulting value of the objective function φ (5.1).
• The resulting total violation of the cost threshold constraint, which is defined as

ξ =
k

∑
l=1

max
(
cUl −Q,0

)
Then, the algorithm determines the moves which produce the minimum cost for

subgraph 0. If different moves produce the same cost, the algorithm computes for
these moves a linear combination of the variations of φ and ξ with respect to the
current solution:

(φnew−φcurr)+ψ (ξnew−ξcurr)

where ψ > 0 is a suitable coefficient. The best non tabu move with respect to this
combination identifies the incumbent solution, which will replace the current one.
There is, however, also an aspiration criterion which states that the best tabu move
is preferred if it yields a solution which is both better and not more unfeasible than
the best known one.

The penalization factor ψ is adaptively tuned with a strategy inspired by the so
called strategic oscillation, which is a general technique suggesting to visit alterna-
tively feasible and unfeasible solutions, when looking for optimal solutions to prob-
lems with tight or complex constraints Glover and Hao (2011). Specifically, given
a coefficient ρ > 1, the value of ψ increases at each iteration in which the current
solution is unfeasible (ψ←ψ ·ρ), whereas it decreases when the current solution is
feasible (ψ←ψ/ρ). This guarantees that the search will abandon sooner or later the
unfeasible region; on the other side, if the search dwells for long in the feasible re-
gion, the penalization decreases making it easier to evaluate unfeasible solutions, if
profitable. Coefficient ρ determines how fast this process should be and how ample
the resulting oscillations are.

The tabu tenure L also varies adaptively according to the recent results of the
search. Specifically, L increases after a worsening move, respecting a maximum
predefined value, L←min(L+1,Lmax), and it decreases after an improving move,
respecting a minimum predefined value, L←max(L−1,Lmin).

5.8.2 A Very Large Scale Neighborhood algorithm

The Very Large Scale Neighborhood algorithm, denoted in the following as VLSN,
is a classical local search algorithm, in which the current solution is iteratively re-
placed by the best one drawn from a suitable neighborhood, as long as this replace-
ment improves the objective function. The neighborhood adopted has a cardinality
that is exponential in the size of the considered HAP instance, but the selection

134 5 The Homogenous Areas Problem

of its best element is performed without explicitly evaluating them one by one,
thanks to a customized optimization technique (Ahuja et al., 2002). Our application
of this general framework to the HAP is inspired by the cyclic exchanges proposed
in (Thompson and Psaraftis, 1993) for the Vehicle Routing Problem and the ejection
chains proposed in (Glover, 1996). The idea is to generate compound sequences of
elementary moves, which move towns from their current subgraph to another one,
producing the “ejection” of other towns.

Definition of the neighborhood

We define the neighborhood of a given solution as the set of all ordered sequences
(v1, . . . ,vr,Ul), where r is a positive integer, vi is a vertex for i= 1, . . . ,r and Ul is one
of the subgraph in the current solution. Notice that, as in the Tabu Search algorithm
(see Section 5.8.1) and contrary to formulation (5.6), the subgraph is identified by an
integer number l ∈Nk. Each sequence (v1, . . . ,vr,Ul) identifies a neighbor solution,
which is obtained from the current one by moving vertex vi to the subgraph of
vertex vi+1 for i = 1, . . . ,r−1 and by moving vertex vr to subgraph Ul . For example,
the left side of Figure 5.5 represents an instance of the HAP with eleven vertices
and a solution with the following four subgraphs: U1 = {1,4,6}, U2 = {2,3,5},
U3 = {7,9,11}, U4 = {8,10}. The sequence (4,3,11,U4) described by the arrows
corresponds to moving vertex v1 = 4 from the first subgraph to replace vertex v2 = 3
in the second subgraph; this replaces vertex v3 = 11 in the third, and finally vertex
v3 = 11 moves into subgraph l = 4. The right side of Figure 5.5 represents the
resulting solution, in which U1 = {1,6}, U2 = {2,4,5}, U3 = {7,9,3} and U4 =
{8,10,11}. In general, the subgraph of the starting vertex in the sequence loses one
vertex, the final subgraph gains one vertex, while the subgraphs of the intermediate
towns lose and gain exactly one vertex.

Auxiliary graph representation

The cardinality of this neighborhood is exponential in the size of the considered
HAP instance, and it is impractical to evaluate each neighbor solution explicitly.
However, a move can be represented by a path on a suitable auxiliary graph, GVLSN,
and applying some further limitations it is possible to compute the best move with
a shortest path computation. Figure 5.6 provides the auxiliary graph for the HAP
instance of Figure 5.5. The node set of graph GVLSN includes a source node s, a
sink node t, a subset NV containing a vertex node nv for each vertex v ∈ V , and
a subset NL containing a subgraph node n′l for each subgraph l ∈ Nk. The arc set
consists of four subsets: the arcs in AsV = {s}×NV connect the source node s to all
the nodes associated with vertices in V , the arcs in AVV = NV ×NV connect all pairs
of nodes associated with vertices in V , the arcs in AV L = NV ×NL connect nodes
associated with vertices in V to subgraph nodes, the arcs in ALt = NL×{t} connect
all subgraph nodes to the sink t. An element of the neighborhood corresponds to

5.8 Local search based heuristics for the HAP 135

Fig. 5.5 An instance of the HAP with a starting solution (on the left), a VLSN move (4,3,11,U4)
represented by arrows and the resulting solution (on the right): vertex 4 moves to replace vertex 3,
which replaces vertex 11, which in the end moves to subgraph U4; all the vertices involved belong
to subgraphs different from each other and from the final one.

an ordered sequence (v1, . . . ,vr,Ul), i. e. to a path from s to t on graph GVLSN.
Figure 5.6 shows the path corresponding to the move which turns the solution on
the left side of Figure 5.5 into the solution on the right side.

Each arc of this path represents an elementary component of the overall move:
each arc (s,nu) ∈ AsV models the removal of vertex u from the subgraph it currently
belongs to (in our example, arc (s,n4)); each arc (nu,nv) ∈ AVV models the removal
of subgraph v from its current subgraph and the insertion of vertex u in that subgraph
(i. e. arcs (n4,n3) and (n3,n11)); each arc (nv,n′l) ∈ AV L models the insertion of
subgraph v into subgraph Ul (i. e. arc (n11,n′4)). Finally, the arcs in ALt have the
purpose to impose a common destination to all relevant paths.

We assign to each arc a∈ AsV ∪AVV ∪AV L∪ALta cost ca, equal to the variation of
objective function φ produced by the elementary removal, replacement or insertion
modeled by the arc; the arcs in ALt have zero cost, because they do not represent any
modification. Provided that each vertex vi belongs to a different subgraph and that
none of them belongs to subgraph l, the overall variation of the objective produced
by the move (v1, . . . ,vr,Ul) is equal to the cost of the corresponding s− t path in
GVLSN, i.e. to the sum of the costs of the path arcs. The additional restriction of
visiting at most one (vertex or subgraph) node for each subgraph is necessary; oth-
erwise, the costs should take into account the interactions of multiple modifications
on the same subgraph. The additional constraint also allows to neglect negative cost
cycles, since a node cannot be visited twice. On the other side, the resulting con-
strained shortest path problem is N P-hard, and it is solved as described in the
following.

Moreover, not all moves produce feasible solutions: some yield disconnected
subgraphs or cost exceeding the threshold. In order to guarantee feasibility, the cost
of an arc a is set to ca = +∞ when: (a) the elementary removal, replacement or
insertion associated to the arc produces a disconnected subgraph, (b) the elementary

136 5 The Homogenous Areas Problem

Fig. 5.6 The auxiliary graph GVLSN for the HAP instance of Figure 5.5; the path (s,n4,n3,n11,n′4)
corresponds to the VLSN move (4,3,11,U4), which turns the solution on the left side of Figure 5.5
into the solution on the right side: in detail, vertex 4 moves from the first subgraph to the second
one, from which vertex 3 moves to replace in the third subgraph vertex 11, which in the end enters
subgraph U4.

modification produces a subgraphs whose cost is greater than Q. By +∞ we denote
a value sufficiently large to forbid the use of the arc in any optimal solution.

Extension to incomplete solutions

The definition of neighborhood can be easily extended to incomplete solutions, in
which some vertices have not yet been assigned to any subgraph. In order to do
that, it suffices to augment Nk to N0

k = {0, . . . ,k}, introducing a fictitious subgraph
l = 0, which includes all unassigned vertices. In order to favor the generation of
feasible solutions by transferring vertices from subgraph 0 to the other ones, we
multiply the nonpositive costs of the arcs (s,nu) ∈ AsV for all unassigned vertices
u by a positive constant factor C, large enough to make them more profitable than
any path avoiding those arcs. In order to forbid all transfers of vertices from actual
subgraphs to the fictitious one, the cost of the arcs (nu,nv) ∈ AVV is set to +∞ when
v belongs to the fictitious subgraph 0 and subset NL includes no node for subgraph
0. This extension allows to apply Algorithm VLSN both as a constructive and as an
improvement procedure, given that the algorithmic steps required are the same in
the two cases.

Efficient identification of the optimal move

A pseudocode of Algorithm VLSN is provided in Figure 5.7. First of all, procedure
BuildGraph constructs the topological structure of the auxiliary graph GVLSN. This
is fixed once for all, whereas the arc costs change from iteration to iteration, depend-
ing on the current solution. Then, the algorithm assigns all vertices to the fictitious
subgraph l = 0.

5.8 Local search based heuristics for the HAP 137

At each local search iteration, procedure ComputeArcCost computes the arc costs
referring to the current solution and procedure ComputeConstrainedShortestPath
solves the constrained shortest path problem mentioned above, in order to find the
path sp which represents the optimal move, whose cost is denoted as c(sp). If the
move is improving (c(sp) < 0), procedure ApplyMove performs it and another lo-
cal search iteration starts; otherwise, the algorithm terminates. Notice that, since no
move introduces vertices into the fictitious subgraph, once the algorithm obtains a
complete solution, it only visits other complete solutions, as a standard local search
algorithm. Moreover, due to the definition of the cost function, all moves which in-
crease the number of assigned vertices dominate the other ones. Therefore, the algo-
rithm typically starts with a constructive phase (of at most n iterations), followed by
an improvement phase. However, the two phases can overlap, when a vertex, which
first fails to find a feasible subgraph, finds it after some local search iterations.

For the sake of simplicity and computational efficiency, the auxiliary constrained
shortest path problem is solved heuristically with a vertex-weighted version of Di-
jkstra’s algorithm. With respect to the standard implementation, this algorithm re-
moves from the graph all the nodes belonging to the same subgraph of the last node
marked permanently at each step. The path thus obtained necessarily satisfies the
requirement to visit at most one node for each subgraph, though it might not be
the optimal path. The choice of a heuristic procedure in this situation is common in
cyclic exchange or ejection chain heuristics (Thompson and Psaraftis, 1993; Glover,
1996), and its aim is to limit the computational time of the single iteration, in order
to perform a larger number of iterations in the available time.

Algorithm VLSN(G,S ,q,Q,k);
GVLSN := BuildGraph(G, k);
U0 :=V ; foreach l = 1, . . . ,k do Ul := /0;
repeat

foreach (i, j) ∈ A do ci j := ComputeArcCost(G, U0,U1, . . . ,Uk, S ,q,Q);
sp := ComputeConstrainedShortestPath(GVLSN,U0,U1, . . . ,Uk,c);
if c(sp)< 0 then ApplyMove(sp,U0,U1, . . . ,Uk);

until c(sp)≥ 0;
return (U0,U1, . . . ,Uk);

Fig. 5.7 Pseudocode of the VLSN algorithm.

5.8.3 Computational experiments on the local search based
heuristics

In this section we report the results we obtained when we compared the two different
local search based heuristics described in the two previous sections.

138 5 The Homogenous Areas Problem

Tuning of the Tabu Search parameters

A first phase of experiments was dedicated to tuning the parameters of the Tabu
Search algorithm for the HAP. In the following, we denote this algorithm by
HAP-TS. The behavior of HAP-TS is controlled by three parameters, namely the
range of the tabu tenure [Lmin;Lmax] and the coefficient ρ used to adapt the penal-
ization factor ψ associated with the cost threshold violation. To achieve results that
do not depend too much on the first initial solution visited by HAP-TS, we devel-
oped a multi start version of HAP-TS, denoted in the following by MS-TS. A single
execution of MS-TS consists of R executions of HAP-TS, where each one of these
executions is initialized by selecting with a random uniform distribution a single
vertex to be inserted in each real subgraph, and the not selected vertices define the
fictitious subgraph l = 0. In these first experiments, we set R = 10 and we limit the
total number of iterations in each restart to T = 10000 in order to achieve suffi-
ciently stable results while keeping limited the amount of computational resources
required by it. Some previous computational experiments, described in details in
(Ceselli et al., 2013), indicate that a variability in the range of tabu tenure equal to
(Lmax−Lmin) = 5 is sufficient to effectively adapt the behavior of MS-TS according
to the quality of the visited solutions. Thus, we concentrate our attention on five
different ranges of tabu tenure:

[Lmin;Lmax] ∈ {[10;15] , [15;20] , [20;25] , [25;30]}

Similarly, we focus our attention on the following values of parameter ρ that, in
preliminary tests, seemed to be the most promising ones:

ρ ∈ {1.1,1.15,1.2,1.25,1.3,1.35,1.4}

In Figure 5.8 we report four different plots, one for each considered tabu tenure
range, that compare the average performances of MS-TS varying the value of pa-
rameter ρ . On the y-axis, we report the average value of the percentage gaps be-
tween the results obtained with each parameter setting and the overall best known
results. On the x-axis, we report the seven ρ values considered during this campaign.
Analyzing these results we can easily conclude that the two most robust ranges for
the tabu tenure are [15;20] and [20;25]. The minimum average gap (equal to 0.17%)
is obtained using either range [15;20] and ρ = 1.35 or range [20;25] and ρ = 1.3.
The performance of MS-TS rapidly deteriorates if we either increase or decrease
the considered tabu tenure values. For the two best tabu tenure ranges choosing ρ

in the interval [1.25,1.35] produces always good results. If we consider the range
[15;20], we can obtain good results also by setting ρ = 1.15. Moreover, using range
[15;20] combined with 4 of the 7 tested values of parameter ρ we achieve the best
average results for the fixed ρ value. Thus, in the following experiments we set
[Lmin,Lmax] = [15;20] and ρ = 1.35.

5.8 Local search based heuristics for the HAP 139

Fig. 5.8 Comparison of the results obtained by the MS-TS varying the tabu tenure range and the ρ

value.

Very Large Neighborhood Search

We then consider the results that can be obtained using the Very Large Neighbor-
hood Search heuristic described in Section 5.8.2. Since a single run of this algo-
rithm takes a very short computational time, but yields solutions of very hetero-
geneous quality, we have implemented a multi-start version of it, denoted as MS-
VLNS, which generates the starting solution assigning a random town to each one
of the actual areas, as in MS-TS. We compared MS-VLNS with MS-TS with the
best parameter setting among the ones tested in the previous section: ρ = 1.35,
[Lmin,Lmax] = [15,20] and T = 10000. For the sake of fairness, we did not limit the
number of MS-VLNS restarts but, for each tested instance, we executed MS-VLNS
with a time limit equal to the time required by MS-TS to terminate its execution.
The PC used to execute both heuristics is equipped with an Intel Xeon Processor
E5-1620 Quad Core 3.60GHz and 16 GB of RAM. In Table 5.17 we report, for each
benchmark, the average gaps between the solutions obtained both by MS-TS and by
MS-VLNS and the best solutions found during the entire computational campaign.
Analyzing these results we can observe that, on all the three considered benchmarks,
MS-TS outperforms MS-VLNS.

140 5 The Homogenous Areas Problem

MS-VLNS% MS-TS%
A 1.86 0.49
B 1.11 0.11
C 2.54 0.12

Table 5.17 Average percentage gaps between the best known solutions of the instances in the three
different benchmarks and the solutions found by VLNS and MS-TS.

Combining Tabu Search and Very Large Scale Neighborhood
Search

In order to improve the diversification phase of MS-TS, we consider a modified
version of algorithm MS-VLNS, in which the solution computed at each restart is
improved by Tabu Search. This modified version can be seen equivalently as a mod-
ified version of MS-TS which improves the starting random solution with VLNS
before applying Tabu Search. We call this hybrid version VLNS-TS.

We compare the two restart strategies for the HAP-TS by using the best pa-
rameters among the one tested in Section 5.8.3, i.e. ρ = 1.35 and [Lmin,Lmax] =
[15,20]. However, here we set the maximum number T of HAP-TS iterations for
each restart in a different way. Namely, we consider four different cases, T ∈
{2500,5000,10000,25000}. We execute all the tests using the same time limit strat-
egy and the same machine used in the previous section.

In figures 5.9,5.10 and 5.11 we report the average gaps between the results ob-
tained by VLNS-TS and MS-TS and the best solution found during the whole com-
putational campaign, varying T , respectively for benchmark A,B and C. In Figure
5.12 we report the same results but there the average gaps are computed on all the
three considered benchmarks.

Analyzing these results, we can immediately note that the relative performance of
VLNS-TS and MS-TS strongly depends on the considered benchmark: on benchmark
A and benchmark B, we obtain the best results with VLNS-TS and on benchmark C
we obtain the best results with MS-TS. We can note a similar dependence on the
tested benchmark, if we consider the performance of the two heuristics varying the
number of iterations T for each restart: VLNS-TS obtains the best results on bench-
marks A and C when T = 5000, but on benchmark B the best results are obtained by
setting T = 25000. This ranking changes if we restrict our attention on the results
obtained by MS-TS: using this algorithm, the best results are obtained by setting
T = 2500, T = 25000 and T = 5000, respectively for benchmark A, benchmark B
and benchmark C. The results averaged on all the three benchmarks clearly show
that VLNS-TS has a better restart strategy w.r.t. MS-TS since it outperforms its com-
petitor when we set T ∈ {5000,10000,25000}. However, if we consider T = 2500
MS-TS obtains slightly better results w.r.t. VLNS-TS (0.044% versus 0.062%).

5.8 Local search based heuristics for the HAP 141

Fig. 5.9 Comparison between the average gaps between the solutions obtained by VLNS-TS and
MS-TS and the best solutions found during the entire computational campaign on instances in
benchmark A.

Fig. 5.10 Comparison between the average gaps between the solutions obtained by VLNS-TS and
MS-TS and the best solutions found during the entire computational campaign on instances in
benchmark B.

142 5 The Homogenous Areas Problem

Fig. 5.11 Comparison between the average gaps between the solutions obtained by VLNS-TS and
MS-TS and the best solutions found during the entire computational campaign on instances in
benchmark C.

Fig. 5.12 Comparison between the average gaps between the solutions obtained by VLNS-TS and
MS-TS and the best solutions found during the entire computational campaign, computed on all the
instances belonging to the three considered benchmarks.

5.9 Column Generation based heuristics for the HAP 143

5.9 Column Generation based heuristics for the HAP

Besides a tight lower bound, during its execution, the Column Generation method
provides also valuable information that we can exploit to construct near optimal so-
lutions. In this section we investigate three different strategies to embed the Column
Generation method described in full details in Section 5.7 in a hybrid heuristic in
order to efficiently solve the HAP.

The first one of these strategies (described in detail in Section 5.9.1) has been first
proposed in Joncour et al. (2010), the idea behind this strategy is to heuristically ex-
plore a branching tree based on formulation MCELP (5.24). At each branching node,
the branching variable is chosen according to the information extracted from the
optimal solution of the last solved RMP. To balance intensification and diversifica-
tion, this strategy executes repeated diving phases guided by a simple backtracking
mechanism.

The second strategy that we consider (described in detail in Section 5.9.2) is
based on a fast exploration of a branching tree similar to the one explored by the
previous strategy. However, differently from what done by the first strategy, in this
case the order in which the branching nodes are processed is dynamically defined
by a simple Tabu Search mechanism proposed in Cacchiani et al. (2012).

Finally, the last strategy we considered (described in detail in Section 5.9.3), is a
Large Neighborhood Search (LNS) algorithm where we use the Column Generation
method to define an effective repair operator. The hybridization between Column
Generation and LNS has been first proposed in Prescott-Gagnon et al. (2009) to
solve the Vehicle Routing Problem with Time Windows.

5.9.1 Limited Discrepancy Search

In the following, we describe the CG-LDS heuristic for the HAP. This algorithm
heuristically explores a branching tree based on formulation MCELP (5.24). At each
branching node, using the Column Generation method, it solves a LP formula-
tion obtained by adding some branching constraints to MCELP. Differently from
what generally done in a standard Branch & price algorithm (Vanderbeck, 2000), it
branches directly on MCELP variables.

Since PP is N P-hard (see Section 5.7.2), at each branching node, we truncate
the Column Generation method as soon PPTS fails to find variables with negative
reduced costs and we do not execute any exact solver for the PP. Hence, the final
value of the last solved RMP is not guaranteed to be a lower bound of the origi-
nal problem. However, despite its suboptimality, the heuristic solution of MCELP
obtained in this way might provide useful information to identify good feasible in-
teger solutions. The number of iterations of PPTS executed at each node can be
controlled by the user by setting the PPTS parameters Imax and Imin as described in
Section 5.7.6.

144 5 The Homogenous Areas Problem

CG-LDS maintains a list L of tabu variables, which is initially empty. At each
branching node, CG-LDS selects the variable that does not belong to L, associated
with the largest value in the solution of the current RMP. Then, it fixes to 1 the
selected variable, and updates the RMP accordingly: the right-hand side of con-
straints (5.24b) turns from 1 to 0 for the nodes belonging to the subgraphs associ-
ated with the fixed variable and the right-hand side of constraint (5.24c) decreases
by one. After this fixing, CG-LDS iteratively reoptimizes the RMP with the Col-
umn Generation method, always applying only the heuristic pricing procedure. In
practice, it is very easy to take into account the fixed variables when we heuristi-
cally solve the Pricing Problem: we just need to remove from graph G all the nodes
associated with the fixed variables, and solve the pricing subproblem only on the
remaining subgraph. The process of fixing variables and reoptimizing the RMP is
called diving. It terminates when the solution of the current RMP is either integer or
unfeasible.

At the end of each diving phase, CG-LDS starts a backtracking phase. This phase
is controlled by two parameters: the maximum backtracking depth Dmax and the
maximum length Lmax of the tabu list. In detail, the backtracking stops when the
current depth becomes < Dmax or when the length of the current tabu list becomes
< Lmax. When it is no longer possible to backtrack, CG-LDS terminates. Otherwise,
it creates a new child node, whose tabu list includes all the variables which were
tabu in the parent node plus those that have been fixed in the previously generated
sibling nodes.

An example of the branching nodes explored by CG-LDS is illustrated in Fig-
ure 5.13, for Dmax = 2, Lmax = 2. The labels of the branching nodes indicate the
order in which they are visited. The label of each arc reports in parenthesis the tabu
list L which constrains the choice of the next fixed variable and the variable which
has been fixed into the previous branching node. Let the candidate branching vari-
ables at the root node be ya, yb and yc, in nonincreasing order of value. After fixing
variable ya and reoptimizing the obtained RMP, let the candidate branching vari-
ables at node 1 be yd , ye and y f . Since list L is empty, algorithm CG-LDS chooses
yd and reoptimizes the RMP. Then, it dives, i. e. it keeps fixing other variables until
the current RMP has an integer solution or becomes unfeasible. It backtracks up to
the first level whose depth is < Dmax = 2, i. e. up to node 1, inserts variable yd into
list L and creates a new child node 3, fixing variable ye. From there, the algorithm
dives again, and backtracks once more up to 1. Now, it inserts variable ye into list L
and creates a new child node 4, fixing variable y f . From node 4, CG-LDS first dives
and then backtracks up to node 0; node 1, in fact, cannot generate other children,
because the length of list L has grown to Lmax = 2. Back at the root node, the algo-
rithm puts variable ya into L and fixes variable yb. Then, it proceeds as reported in
Figure 5.13. In particular, notice how parameter Lmax limits the number of children
at node 5 and directly imposes to dive at node 8.

The best feasible integer solution found during the different diving phases is
saved. Since the HAP is a partitioning problem and imposes an upper limit k on the
number of subgraphs, the algorithm does not guarantee to always obtain a feasible
solution. At the end of the branching process, however, the columns generated in all

5.9 Column Generation based heuristics for the HAP 145

Fig. 5.13 An example of branching tree for heuristic CG-LDS.

the processed branching nodes form an ILP problem, which is a reduced instance
of formulation (5.24). We solve it by means of a general-purpose solver, possibly
obtaining a feasible solution, which cannot be worse than the best one found (if any)
during the diving phases.

5.9.2 An alternative way to use a tabu memory

The authors of Cacchiani et al. (2012) proposed a different way to use a tabu mem-
ory to diversify the set of solutions visited by a Column Generation based heuristic.
We followed their idea and we developed the CG-TS heuristic described in the fol-
lowing.

CG-TS partially explores the same branching tree explored by CG-LDS and de-
scribed in the previous section. Each branching node is processed using a Column
Generation method truncated as soon as PPTS is not able to find any negative re-
duced cost arborescence in the given number of iterations. Then, CG-TS introduces
the integrality constraint in the last generated RMP and solve the obtained problem
with an ILP solver. If the feasible solution found during this last step is better than
the incumbent solution, we substitute the latter solution with the former. Note that,
in order to limit the computational resources required by this last step, we set a 100
seconds timeout in the ILP solver.

Differently from CG-LDS, CG-TS does not visit branching nodes following a
parent-child relationship. When CG-TS finishes to process the current node it gen-
erates the next node to be visited by applying one of the two following procedures
to the just processed node :

146 5 The Homogenous Areas Problem

• Variable fixing: a new branching node is generated by fixing to one a variable
among the ones belonging to the optimal solution of the last solved RMP.

• Variable releasing: a new branching node is generated by releasing a fixed vari-
able.

By fixing variables, CG-TS can quickly find integer solutions, however, since these
fixings rapidly shrink the feasible region, the obtained solutions may be of poor
quality and, in the worst cases, the shrunk region can become empty. Thus, the
releasing phase is crucial for a successful exploration of the solution space. We
release the fixed variable that has been fixed for the longest time. This choice allows
CG-TS to diversify the search. A different strategy based on the release of a recently
fixed variable could intensify the search around the last feasible solution found.
However, as deeply discussed in Cacchiani et al. (2012), the interleaving between
the generation of new columns and the fixing of new variables may already intensify
the search around the fixed variables.

The information gained through the truncated execution of the Column Gener-
ation method on the current branching node is exploited by two different parts of
CG-TS:

1. The optimal objective function value of the last solved RMP, denoted by φ(X̃LB),
is used to choose which node to visit next: if we denote the incumbent solution
by X∗, CG-TS fixes a new variable if φ(X̃LB)< φ(X∗), otherwise it releases one
of the fixed variables.

2. To choose the variable to fix in each fixing step, CG-TS considers the values of
the variables defining X̃LB and it fixes the variable associated with the highest
value.

To avoid cycles consisting of fixing and releasing of the same set of variables,
CG-TS drives the search with a tabu list having a fixed length T T . While a variable
belongs to this list, it cannot be fixed and, after the fixing of a non-tabu variable we
insert it in the tabu list. After a preliminary tuning phase, we set T T = 25.

In Figure 5.14 we provide a pseudocode for CG-TS. At the beginning, it gener-
ates the feasible solution X̃ and its continuous relaxation X̃LB by using the Column
Generation method and by solving the final RMP with integrality constraint (both
steps are summarized by the CGProcess function). At each iteration, it first updates
the set of fixed variables and the tabu list, then it applies CGProcess on the modified
FIXED set, generating a new pair of solutions (X̃LB, X̃).

5.9.3 Large Neighborhood Search

The last Column Generation based heuristic that we propose for the HAP, denoted
in the following by CG-LNS, is based on the Large Neighborhood Search (LNS, first
introduced in Shaw 1998, see Pisinger and Røpke 2010 for a complete survey). LNS
denotes a particular set of algorithms belonging to the Very Large Scale Neighbor-
hood Search (VLSN, see Section 5.8.2) class. Differently from the most local search

5.9 Column Generation based heuristics for the HAP 147

Algorithm CG-TS(G,S ,q,Q,k);
L := /0
FIXED := /0
(X̃LB, X̃) :=CGProcess(G,S ,q,Q,k,FIXED);
X∗ = X̃
repeat

if φ(X̃LB)< φ(X∗) then
T := arborescence with the highest value in X̃LB;
FIXED := FIXED∪{T};
if | L |= T T then remove the oldest entry in L;
L := L∪{T}

else
remove the oldest entry in FIXED;

if φ(X̃)< φ(X∗) then X∗ := X̃
(X̃LB, X̃) :=CGProcess(G,S ,q,Q,k,FIXED);

until termination criterion is met
return X∗;

Fig. 5.14 Pseudocode of the CG-TS algorithm.

based heuristics, LNS does not define the solution neighborhood in an explicit way.
In a LNS heuristic the neighborhood is implicitly defined by a destroy and a repair
procedure. The former procedure partially destroys the current solution, the latter
procedure repairs the partial solution generated by the destroy procedure. Thus, the
neighborhood explored at each LNS iteration contains all the solutions that can be
obtained by consequently applying these two procedures to the incumbent solution.
The size of this neighborhood mainly depends on the size of the part of solution that
is destroyed in each LNS iteration. A LNS extension called Adaptive Large Neigh-
borhood Search (ALNS) has been proposed in Røpke and Pisinger (2006) in order
to diversify the search by introducing several destroy and repair procedures and
by choosing which methods to execute at each iteration using an adaptive random
mechanism.

In our implementation of the ALNS metaheuristic for the HAP we consider a
single repair procedure that is based on the Column Generation method. This proce-
dure is similar to the one proposed in Prescott-Gagnon et al. (2009), it takes in input
a partial HAP solution denoted by A = {A1, . . . ,Ak}. Each Ai = {v1, . . . ,vNi} ∈A is
a vertex subset that induces a subgraph in G that must satisfy the cost threshold con-
straint but may be not connected and the set of vertices belonging to the subsets in
A does not contain all the G vertices (i.e.

⋃k
i=1 Ai ⊂V). At each iteration of the Col-

umn Generation method we use a modified version of PPTS that takes into account
the A structure: it can add (resp. drop) a single vertex to (resp. from) the current
solution only if it belongs to V \

⋃k
i=1 Ai and all the vertices contained in a subset

Ai ∈ A can be added or dropped only at once. As soon as the modified version of
PPTS is not able to find a negative reduced cost arborescence, we stop the Column
Generation method and we add the integrality constraint to the last generated RMP.
We solve the obtained ILP problem using an ILP solver in order to complete the

148 5 The Homogenous Areas Problem

repair procedure. In order to limit the computational resources required by this last
step we impose a timeout of 100 seconds to its execution. If the solution obtained
by the repair procedure is better than the incumbent solution we substitute the latter
solution with the former one.

To diversify the solutions generated at each CG-LNS iteration we define three dif-
ferent destroy procedures that are described in the following. All these procedures
try to remove Kmax vertices from the incumbent solution and the value Kmax is auto-
matically tuned to intensify or diversify the search around the incumbent solution:

• High cost subsets intersection destroy procedure: this procedure begins by ex-
tracting a seed vertex v ∈ V at random, using a uniform distribution. The ex-
tracted vertex is added to the set of the removed vertices R that initially is empty.
After this first step, always using a random uniform distribution, the procedure
extracts a vertex i ∈ R and computes, for each vertex j ∈ V \R, the proximity
measure ρ(i, j). This value is computed by summing up all the costs associated
with subsets contained in Si∩S j. After this computation, the procedure selects
the next vertex v to be removed in V \R, adopting a randomized greedy strategy
(Feo and Resende, 1995): it selects v among the dδ |V \R |e vertices associated
with the highest ρ(i, j) values, using a uniform random distribution. By gradually
changing δ ∈ (0,1), we can modify the selection criterion, starting from a greedy
criterion and arriving to a complete random one. After some preliminary tests,
we concluded that δ = 0.1 provides a right trade-off between greediness and di-
versification. All the previous steps, with the exception of the first initialization
step, are repeated until | R |< Kmax.

• Connectivity destroy procedure: while the previous destroy procedure tries to
remove from the incumbent solution a set of vertices having in common high
cost subsets, the aim of this second procedure is to remove a set of vertices that
are connected. The procedure begins by extracting a seed vertex v ∈ V , using
a random uniform distribution, and inserting it in the set of removed vertices
R. Then the procedure executes a breadth-first visit of G starting from v and
inserts all the visited vertices in R. The breadth-first visit is interrupted as soon
as | R |= Kmax.

• Subgraph portions destroy procedure: differently from the two previous destroy
procedures, this one takes more deeply into account the structure of the incum-
bent solution. Initially the pool of removed vertices R is empty and the procedure
initializes the set of removable vertices by setting Ṽ = V . The procedure itera-
tively chooses a vertex v∈ Ṽ using a uniform random distribution and it identifies
the subgraph Gv in the incumbent solution that contains v. Then, it inserts in R
all the vertices that can be reached from v in d̃ hops using only edges that belong
to Gv and it removes from Ṽ all the vertices belonging to Gv. In this way, at each
iteration, the procedure considers a different subgraph of the incumbent solution.
The procedure stops its execution when either | R |= Kmax or Ṽ = /0. The distance
d̃ is dynamically updated in order to remove the correct number Kmax of vertices
at each execution of the procedure. Initially, we set d̃ = 1 and, at the end of each
execution of the procedure, we update d̃ by multiplying it with Kmax

|R| . Thus, if us-

5.9 Column Generation based heuristics for the HAP 149

ing the current value of d̃ the procedure is not able to remove Kmax vertices, we
increase the value of d̃ that will be used in the next execution of the procedure.

To choose which destroy procedure to apply in each CG-LNS iteration, we use
a Roulette-Wheel Procedure. We denote the set of destroy procedures by Ω and we
associate with each procedure i ∈ Ω a dynamically tuned coefficient πi. Initially,
we set πi = 1 for each i ∈ Ω and, at the end of each CG-LNS iteration in which
procedure t ∈Ω is used, we increment πt by one only if the incumbent solution has
been updated. At each CG-LNS iteration, we execute the destroy procedure t ∈ Ω

with a probability equal to πt
∑i∈Ω πi

.
The value of Kmax that defines the number of vertices to be removed in each CG-

LNS iteration, is dynamically updated using a self-adapting mechanism that resem-
bles the strategy adopted in the Variable Search Neighborhood algorithms (Mlade-
nović and Hansen, 1997). We initially set Kmax = 5 and, at the end of each CG-LNS
iteration, if the incumbent solution has been improved we increment Kmax by one,
otherwise we reset Kmax to its initial value. We reset Kmax = 5 also when it reaches
its limit value |V |.

In Figure 5.15 we provide a pseudocode for the CG-LNS heuristic. It takes in
input a HAP instance. It initializes the values of {πi}i∈Ω

and Kmax. The first incum-
bent solution is generated by executing the Column Generation method until PPTS
fails and by solving the final generated RMP with the integrality constraint (both
steps are summarized by the InitializeCG function). Then, iteratively, it executes
the randomly chosen destroy procedure t and the repair procedure. After these two
procedures it, eventually, updates the incumbent solution and the values {πi}i∈Ω

and Kmax.

Algorithm CG-LNS(G,S ,q,Q,k);
for each i ∈Ω do πi := 1;
X∗ := InitializeCG(G,S ,q,Q,k)
Kmax := 5;
repeat

Choose destroy operator t with probability πt
∑i∈Ω πi

;
A := Destroy (G,S ,q,Q,k, t,Kmax,X∗);
X̃ := Repair (G,S ,q,Q,k,A);
if φ(X̃)< φ(X∗) then

X∗ := X̃ ;
Kmax := 5;
πk := πk +1;

else
Kmax := Kmax +1;
if Kmax >|V | then Kmax := 5;

until termination criterion is met
return X∗;

Fig. 5.15 Pseudocode of the CG-LNS algorithm.

150 5 The Homogenous Areas Problem

5.9.4 Computational experiments on Column Generation based
heuristics

In order to compare the three different methods proposed in the previous sections
to turn our Column Generation method in an effective heuristic, a first aspect to
consider is the different termination criteria adopted by them. On the one hand,
CG-LDS terminates as soon as it completes the partial exploration of the branching
tree, whose structure and size is induced by its parameters Lmax and Dmax, and it
computes the optimal solution of the final ILP problem. On the other hand, both
CG-TS and CG-LNS are iterative algorithms thus we can limit their execution by
imposing a time limit or a maximum number of iterations. Thus, for the sake of
fairness, we first executed CG-LDS with two different set of parameters, Lmax =
3, Dmax = 2 and Lmax = 4, Dmax = 2 which, in our preliminary tests, allow us to
reach a good trade-off between the quality of the obtained solutions and the required
computational resources. Then, we executed both CG-TS and CG-LNS setting a time
limit according to the time required by CG-LDS to solve the considered instance. All
the considered experiments have been executed using CPLEX 12.5 to solve the ILP
subproblems on a PC equipped with an Intel Xeon Processor E5-1620 Quad Core
3.60GHz and 16 GB of RAM. The Pricing Problem heuristic PPTS embedded in all
the three proposed hybrid heuristics has been configured to use the same parameters
reported in Table 5.13 except for the stopping criteria, which have been modified
setting Imin = Imax = 10000. In this case, in fact, we are mainly interested in finding
a large number of columns to increase the chance that the intermediate and final ILP
problems contain good feasible solutions.

In Table 5.18 we report, for the three different tested benchmarks, the average
CPU time in seconds required by CG-LDS, varying the size of the considered in-
stances and the discrepancy level Lmax ∈ {3,4}. Analyzing these results, we can
see, that, as expected, the average CPU time increases when we consider both big-
ger instances and higher discrepancy levels. However, this trend is not monotonic
for all the considered cases: for example, if we consider instances having n = 40
and Lmax = 4 the average CPU time is equal to 954.33 seconds while if we increase
the instances size to n = 50 the average CPU time decreases to 314.17 seconds. This
somewhat contradictory behavior can be explained by considering that the complex-
ity of the final ILP problem may depend not only on the considered instances size
but also on the structure of the ILP problems generated at the end of the CG-LDS
exploration phase.

A first experiment on Column Generation based heuristics regards the improve-
ments that CG-LDS obtains by optimizing the final ILP problem w.r.t. to the best
solutions found during the exploration phase. In Table 5.19 we report, for each
tested benchmark and for each n, the average percentage improvement associated
with the considered instances class. If we denote with x∗EXP the objective function
value of the best solution found at the end of the exploration phase and with x∗FIN
the objective function value of the best solutions found during the complete CG-LDS
execution, the reported value has been computed averaging 100(x∗EXP− x∗FIN)/x∗FIN

5.9 Column Generation based heuristics for the HAP 151

Benchmark A Benchmark B Benchmark C

n Lmax = 3 Lmax = 4
50 103.40 138.80
60 267.40 458.20
70 871.20 526.80
80 929.40 1738.20
90 1689.60 2668.60

n Lmax = 3 Lmax = 4
20 4.50 6.13
25 6.25 8.75
30 11.38 16.38
35 23.13 29.63
40 34.00 49.00
45 39.00 51.00
50 56.50 78.38
55 82.00 116.75
60 159.00 153.00
65 115.00 334.13
70 124.88 178.38

n Lmax = 3 Lmax = 4
30 13.17 15.58
40 74.83 954.33
50 187.67 314.17
60 977.67 1016.33
70 1015.67 1166.75

Table 5.18 Average CPU time in seconds required by CG-LDS to solve the instances of a given
size in benchmarks A,B and C, using two different values for the discrepancy level Lmax and setting
Dmax = 2.

on all the considered instances. Note that for some instances CG-LDS is not able to
identify a feasible solution during the exploration phase. Thus, the average percent-
age improvement is computed only on the instances for which CG-LDS can find a
feasible solution during the exploration phase.The number of instances for which a
feasible solution cannot be identified during the exploration phase is reported within
parenthesis near the corresponding instance class.

Benchmark A Benchmark B Benchmark C

n Lmax = 3 Lmax = 4
50 0.02 0.01
60 1.70 1.70
70 10.25(3) 4.93(1)
80 1.34(1) 1.50(1)
90 6.41(1) 3.47

n Lmax = 3 Lmax = 4
20 5.50 5.50
25 1.03 0.91
30 1.42 1.64
35 5.21 2.44
40 2.04 1.70
45 1.58 0.75
50 0.86(1) 0.62(1)
55 1.12 1.04
60 1.25 1.25
65 1.76(1) 1.38(1)
70 1.24 1.09

n Lmax = 3 Lmax = 4
30 1.53 0.67
40 3.52 2.47
50 3.94(1) 2.29(1)
60 1.91 1.65
70 1.27 1.25

Table 5.19 Average percentage improvement obtained by CG-LDS between the solutions found
by solving the final ILP problem w.r.t. the solutions obtained at the end of the exploration phase.

Analyzing these results, we can see that the contribution of the final ILP opti-
mization is not negligible, the average percentage increment reach a maximum of
10.25% on benchmark A when Lmax = 3 and n = 50. Moreover, on 8 instances when
Lmax = 3 and on 5 instances when Lmax = 4, CG-LDS is not able to identify a feasible
solution during the exploration phase. Finally, passing from Lmax = 3 to Lmax = 4

152 5 The Homogenous Areas Problem

the number of unsolved instances during the exploration phase decreases as well
and the average percentage improvements obtained by the last ILP optimization, in
general, decrease. This behavior can be explained considering that, by increasing
the discrepancy level, the number of processed nodes increases and the probability
to find an integer solutions during the exploration phase grows accordingly.

To study the efficiency of the diversification strategies adopted by CG-TS and
LNS-TS, we report in Table 5.20 (CG-TS) and in Table 5.21 (LNS-TS), for each
tested benchmark and for each instances class, the total number of iterations that
can be executed in the given amount of time and the number of the iteration in
which the considered algorithm found the best solution.

Benchmark A Benchmark B Benchmark C

Lmax = 3 Lmax = 4
n IT BIT IT BIT

50 15.80 4.00 21.00 8.00
60 24.00 14.00 37.00 14.00
70 36.20 6.80 27.20 6.80
80 53.80 20.60 127.60 20.60
90 98.20 47.80 104.60 47.40

Lmax = 3 Lmax = 4
n IT BIT IT BIT

20 12.50 2.13 16.13 2.13
25 13.00 1.44 17.33 1.44
30 17.89 7.11 24.33 7.67
35 27.22 7.89 32.67 7.89
40 33.11 8.00 44.33 8.00
45 38.00 3.00 48.44 6.11
50 39.56 7.89 51.56 12.89
55 51.78 15.78 69.89 24.89
60 78.22 27.78 82.56 32.56
65 59.33 21.00 139.00 32.00
70 60.00 20.11 83.78 28.00

Lmax = 3 Lmax = 4
n IT BIT IT BIT

30 14.25 3.42 17.92 3.42
40 39.83 15.25 835.17 19.00
50 79.67 29.25 129.75 41.75
60 242.67 123.00 266.08 123.00
70 228.08 129.50 305.83 170.17

Table 5.20 Average total number of iterations (Column IT) and average number of the iteration
in which CG-TS found the best solution (Column BIT), for each considered benchmark and each
tested discrepancy level.

The first observation that we can make considering these results is that on both
benchmarks B and C, to execute a single iteration, on average, CG-TS requires less
time w.r.t. CG-LNS. On the contrary, if we consider benchmark A, CG-LNS is faster
than CG-TS. These differences can be explained considering the different structures
of the tested benchmarks (A contains realistic instances while B and C contain ran-
dom instances) and the different ways in which the two considered algorithms insert
constraints in the original MCELP (5.24) formulation.

For what concerns the ratio between the number of the iteration in which the two
heuristics found the best solution and the total number of executed iterations, the two
considered heuristics obtain similar results: the efficiency of the two diversification
mechanisms is similar.

In the final experiment, in addition to the three Column Generation based heuris-
tics, we consider also the local search heuristic VLNS-TS described in Section 5.8,
setting to T = 5000 the number of iterations for each restart. Similarly to what done
in the previous experiments, CG-TS, CG-LNS and VLNS-TS have been executed

5.9 Column Generation based heuristics for the HAP 153

Benchmark A Benchmark B Benchmark C

Lmax = 3 Lmax = 4
n IT BIT IT BIT

50 28.00 7.60 32.80 7.60
60 40.60 23.20 53.80 23.20
70 96.00 34.40 76.00 34.40
80 87.00 43.60 144.00 43.60
90 146.20 116.00 226.00 171.60

Lmax = 3 Lmax = 4
n IT BIT IT BIT

20 5.50 0.25 8.75 2.00
25 6.50 0.00 10.25 1.13
30 9.75 1.88 15.63 3.75
35 17.00 4.50 22.63 5.75
40 19.38 0.88 31.13 8.25
45 20.75 1.38 29.13 4.38
50 24.13 1.38 34.00 4.75
55 30.13 11.25 46.50 15.00
60 41.63 17.88 49.88 21.25
65 36.75 13.88 95.75 18.38
70 37.25 19.75 58.38 32.75

Lmax = 3 Lmax = 4
n IT BIT IT BIT

30 16.08 3.67 16.08 3.67
40 46.17 11.83 46.17 11.83
50 68.83 8.17 68.83 8.17
60 128.00 64.42 128.00 64.42
70 132.83 63.00 132.83 63.00

Table 5.21 Average total number of iterations (Column IT) and average number of the iteration
in which LNS-TS found the best solution (Column BIT), for each considered benchmark and each
tested discrepancy level.

setting a time limit equal to the time required by CG-LDS on the corresponding
instance.

Figure 5.16, Figure 5.17 and Figure 5.18, for both the considered parameter set-
tings of CG-LDS (i.e. Lmax = 3 and Lmax = 4), contain plots comparing the average
gap between the best known solutions and the best solutions found by the four dif-
ferent tested heuristics, varying the size of the considered instances.

Analyzing these results, it is evident that the heuristics that achieve the best re-
sults are CG-LDS and VLNS-TS. In particular the former has some difficulties to
identify good solutions for small instances, while if we increase the instance size
CG-LDS is able to find solutions of better quality w.r.t. the ones found by VLNS-
TS. This behavior is particularly noticeable if we consider benchmark B (see Figure
5.17) that contains instances with size starting from n = 20.

The two other heuristics that we considered (i.e. CG-TS and CG-LNS) are of-
ten outperformed by VLNS-TS and CG-LDS. However, CG-LNS seems to be the
heuristic that employs better the larger time associated with CG-LDS parameters
Lmax = 4, Dmax = 2 w.r.t. the time associated with CG-LDS parameters Lmax = 3,
Dmax = 2: on average, when we increase the time limit, the average gaps obtained
by CG-LNS decrease by 20.00% on benchmark A, 25.90% on benchmark B and
17.48% on benchmark C, while the average gaps obtained by CG-TS decrease only
by 13.62% on benchmark A, 10.51% on benchmark B and 7.69% on benchmark C.
The increment of CG-LNS performance obtained increasing the time limit, allows
to CG-LNS, on some instances, to be competitive with CG-LDS and VLNS-TS: for
example, on benchmark A, CG-LNS obtains the lowest percentage gap on average
for instances having n≥ 80.

154 5 The Homogenous Areas Problem

Lmax = 3, Dmax = 2

Lmax = 4, Dmax = 2

Fig. 5.16 Average percentage gap between the best known solutions and the solutions obtained by
the four different considered heuristics on benchmark A in a time equal to the one used by CG-LDS,
with parameters, respectively, equal to Lmax = 3, Dmax = 2 and Lmax = 4, Dmax = 2.

5.9 Column Generation based heuristics for the HAP 155

Lmax = 3, Dmax = 2

Lmax = 4, Dmax = 2

Fig. 5.17 Average percentage gap between the best known solutions and the solutions obtained by
the four different considered heuristics on benchmark B in a time equal to the one used by CG-LDS,
with parameters, respectively, equal to Lmax = 3, Dmax = 2 and Lmax = 4, Dmax = 2.

156 5 The Homogenous Areas Problem

Lmax = 3, Dmax = 2

Lmax = 4, Dmax = 2

Fig. 5.18 Average percentage gap between the best known solutions and the solutions obtained by
the four different considered heuristics on benchmark C in a time equal to the one used by CG-LDS,
with parameters, respectively, equal to Lmax = 3, Dmax = 2 and Lmax = 4, Dmax = 2.

5.10 Computational experiments on real world instances 157

5.10 Computational experiments on real world instances

We start to investigate on the HAP because we were required to effectively partition
two real provinces: the province of Monza and Brianza having 55 towns and 426 ac-
tivities (thus the corresponding HAP instance is such that |V |= 55 and |S |= 481)
and the bigger instance of Milan having 134 towns and 774 activities (thus the cor-
responding HAP instance is such that |V |= 134 and |S |= 908). In this section we
provide a description of what can be obtained executing the methods proposed in the
previous part of this chapter on these two real world instances. All the experiments
reported in this section have been executed on a PC equipped with an Intel Xeon
Processor E5-1620 Quad Core 3.60GHz and 16 GB of RAM and using CPLEX
12.5 as ILP solver . Thanks to its small size, the Monza instance can be exactly
partitioned by both the exact methods proposed in Section 5.6: using CPLEX with
formulation MCA (5.2) and all the valid inequalities described in Section 5.6.1 we
can solve the Monza instance in 3 seconds and 83 branching nodes; similarly, using
formulation MCN (5.6) with all the valid inequalities described in Section 5.6.3 we
can solve the problem in 3 seconds and 63 branching nodes. If we execute the Col-
umn Generation method described in Section 5.7.1, we can solve the LP-Relaxation
of the extended formulation MCELP (5.22) in 81 seconds obtaining a lower bound
equal to 382.148 and, by solving the final Reduced Master Problem with integrality
constraint, we can obtain the optimal solution equal to 419.21 in 5 seconds. Note that
the performance of CPLEX using the compact ILP formulations cannot be directly
compared with the performance of our Column Generation method since the PPTS
heuristic (that consumes a large amount of the computational resources required by
the Column Generation method) is not multi-threaded, while CPLEX can efficiently
use all the 4 cores available on our PC. Nonetheless, the obtained results show that,
for small real instances like the Monza one, the compact ILP formulations are the
right tool to achieve the optimal solution in a small computation time.

The bigger instance of Milan cannot be solved exactly in a reasonable amount
of time: in one hour of computation time, using formulation MCA (5.2) CPLEX
is able to process only 79 branching nodes without finding any feasible solution
and obtaining a best lower bound equal to 3943.79. As already discussed in Sec-
tion 5.6.4, formulation MCN (5.6) is tighter than formulation MCA (5.2). Thus, is
not surprising that, within one hour, using it, CPLEX is able to process 2245 branch-
ing nodes, obtaining a best lower bound equal to 8048.32. However, also using this
tighter formulation, CPLEX is not able to find a feasible integer solution.

With such a big instance, we can obtain a better result using the Column Gen-
eration method: it provides a lower bound equal to 9668.84 in 2229 seconds, and,
to solve the final RMP with integrality constraint, CPLEX required 17 seconds of
CPU time, providing a feasible solution having the objective function value equal to
10019.9.

To test the heuristics described in Section 5.8 and in Section 5.9 on Milan in-
stance, we started by executing CG-LDS obtaining a best solution with an objective
function value equal to 9785.58 considering both discrepancy levels Lmax = 3 and
Lmax = 4. However, if we set Lmax = 3, CG-LDS requires 719 seconds to com-

158 5 The Homogenous Areas Problem

plete, while, if we set Lmax = 4, the required time is equal to 1098 seconds. Then,
using these two different time limits, we tested the other three heuristics we devel-
oped. All the tested heuristics are not able to exploit the larger time limit associated
with Lmax = 4 and the best solution they found does not improve if consider a time
limit equal to 1098 seconds instead of 719 seconds. The best solution found by
CG-TS, CG-LNS and VLNS-TS have an objective function value, respectively, equal
to 9787.28, 9968.19 and 9860.83. Thus, while the experiments reported in Sec-
tion 5.9.4 show that VLNS-TS is competitive with CG-LDS, on the Milan instance,
the latter algorithm outperforms the former one.

5.11 Conclusion

In this chapter we considered a Graph Partitioning Problem which models the par-
tition of an organization into administrative areas, named the HAP. We started our
investigation considering two compact formulations for the HAP that can be directly
solved using a commercial ILP solver. The first compact formulation derived from
a natural formulation of the classical Graph Partitioning Problem but it presents
several symmetry-related issues. To overcame these issues we developed valid in-
equalities for the considered formulation but we also proposed a different compact
formulation that, with a slight increment in the number of variables and constraints,
solve some of these issues.

Nonetheless, both the compact formulations cannot scale to realistic size in-
stances, thus we developed a new extended formulation and we propose a Column
Generation method that allows us to obtain tight lower bounds also for realistic in-
stances (from 70 to 90 vertices). To achieve these results we needed to combine
exact and heuristic methods to solve the N P-hard Pricing Problem associated
with the extended formulation. Since the Pricing Problem is similar to the KPC-
STP investigated in Chapter 3 the two exact methods we introduce to solve it have
been directly derived from the single-commodity flow formulation described in Sec-
tion 3.4.1.

Finally, following what we described in Section 2.3, we propose three different
ways to embed our Column Generation method in an effective heuristic. We com-
pared the obtain heuristics with a finely tuned local search based heuristic and we
found that the best one among the hybrid heuristics is competitive with the local
search one, especially when the number of vertices in the considered instance in-
creases.

5.12 References

R. K. Ahuja, Ö. Ergun, J. B. Orlin, and A. P. Punnen. A survey of very large-scale
neighborhood search techniques. Discrete Applied Mathematics, 123(1-3):75 –

5.12 References 159

102, 2002.
S. Arora, S. Rao, and U. Vazirani. Geometry, flows, and graph-partitioning algo-

rithms. Commun. ACM, 51(10):96–105, 2008.
V. Cacchiani, V. C. Hemmelmayr, and F. Tricoire. A set-covering based heuristic al-

gorithm for the periodic vehicle routing problem. Discrete Applied Mathematics,
2012. doi: 10.1016/j.dam.2012.08.032.

M. Campêlo, V. A. Campos, and R. C. Corrêa. On the asymmetric representatives
formulation for the vertex coloring problem. Discrete Applied Mathematics, 156
(7):1097 – 1111, 2008.

A. Ceselli, F. Colombo, R. Cordone, and M. Trubian. Employee workload balancing
by graph partitioning. Discrete Applied Mathematics, 2013. doi: 10.1016/j.dam.
2013.02.014.

F. Colombo, R. Cordone, and M. Trubian. On the partition of an administrative
region in homogenous districts. In Atti del Convegno AIRO 2011, Brescia, Italy,
2011.

F. Colombo, R. Cordone, and M. Trubian. Upper and lower bounds for the homoge-
nous areas problem. In Proceedings of the 11th Cologne-Twente Workshop on
Graphs and Combinatorial Optimization, München, Germany, 2012.

F. Colombo, R. Cordone, and M. Trubian. Column-generation based bound for the
homogeneous areas problem, 2013. Submitted to European Journal of Opera-
tional Research, under second review round.

W. E. Donath and A. J. Hoffman. Lower bounds for the partitioning of graphs. IBM
Journal of Research and Development, 17(5):420–425, 1973.

N. Fan and P. Pardalos. Linear and quadratic programming approaches for the gen-
eral graph partitioning problem. Journal of Global Optimization, 48:57–71, 2010.

T. Feo and M. Resende. Greedy randomized adaptive search procedures. Journal of
global optimization, 6(2):109–133, 1995.

C. E. Ferreira, A. Martin, C. C. de Souza, R. Weismantel, and L. A. Wolsey. Formu-
lations and valid inequalities for the node capacitated graph partitioning problem.
Mathematical Programming, 74(3):247–266, 1996.

C. E. Ferreira, A. Martin, C. C. de Souza, R. Weismantel, and L. A. Wolsey. The
node capacitated graph partitioning problem: A computational study. Mathemat-
ical Programming, 81:229–256, 1998.

P. O. Fjallström. Algorithms for graph partitioning: A survey. Linköping Electronic
Articles in Computer and Information Science, 10, 1998.

F. Glover. Future paths for integer programming and links to artificial intelligence.
Computers and Operations Research, 13:533–549, 1986.

F. Glover. Ejection chains, reference structures and alternating path methods for
traveling salesman problems. Discrete Applied Mathematics, 65(1–3):223–253,
1996.

F. Glover and J. K. Hao. The case for strategic oscillation. Annals of Operations
Research, 183:163–173, 2011.

F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.
N. Guttmann-Beck and R. Hassin. Approximation algorithms for minimum k-cut.

Algorithmica, 27(2):198–207, 2000.

160 5 The Homogenous Areas Problem

T. Ideker, O. Ozier, B. Schwikowski, and A. F. Siegel. Discovering regulatory and
signalling circuits in molecular interaction networks. Bioinformatics, 18(suppl
1):S233–S240, 2002.

C. Joncour, S. Michel, R. Sadykov, D. Sverdlov, and F. Vanderbeck. Primal heuris-
tics for branch-and-price. In European Conference on Operational Research
(EURO’10), volume 1, page 2, 2010.

V. Kaibel and M. Pfetsch. Packing and partitioning orbitopes. Mathematical Pro-
gramming, 114(1):1–36, 2008.

J. Kim, I. Hwang, Y. H. Kim, and B-R. Moon. Genetic approaches for graph parti-
tioning: a survey. In Proceedings of the 13th annual conference on Genetic and
evolutionary computation, GECCO ’11, pages 473–480. ACM, 2011.

T. L. Magnanti and L. A. Wolsey. Optimal trees. In C. L. Monma M. O. Ball, T.
L. Magnanti and G. L. Nemhauser, editors, Network Models, volume 7 of Hand-
books in Operations Research and Management Science, pages 503 – 615. Else-
vier, 1995.

S. Martello and P. Toth. Knapsack problems: algorithms and computer implementa-
tions. Wiley-Interscience series in discrete mathematics and optimization. Wiley,
1990.

D. W. Matula and F. Shahrokhi. Sparsest cuts and bottlenecks in graphs. Discrete
Applied Mathematics, 27(1-2):113 – 123, 1990.

N. Mladenović and P. Hansen. Variable neighborhood search. Computers & Oper-
ations Research, 24(11):1097–1100, 1997.

V. Osipov, P. Sanders, and C. Schulz. Engineering graph partitioning algorithms. In
Ralf Klasing, editor, Experimental Algorithms, volume 7276 of Lecture Notes in
Computer Science, pages 18–26. Springer, 2012.

D. Pisinger and S. Røpke. Large neighborhood search. Handbook of metaheuristics,
pages 399–419, 2010.

E. Prescott-Gagnon, G. Desaulniers, and L. M. Rousseau. A branch-and-price-based
large neighborhood search algorithm for the vehicle routing problem with time
windows. Networks, 54(4):190–204, 2009.

S. Røpke and D. Pisinger. An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transportation Science, 40(4):
455–472, 2006.

P. Sanders and C. Schulz. Engineering multilevel graph partitioning algorithms. In
C. Demetrescu and M. Halldórsson, editors, Algorithms - ESA 2011, volume 6942
of Lecture Notes in Computer Science, pages 469–480. Springer, 2011.

P. Shaw. Using constraint programming and local search methods to solve vehi-
cle routing problems. In Principles and Practice of Constraint Programming
— CP98, volume 1520 of Lecture Notes in Computer Science, pages 417–431.
Springer, 1998.

P. M. Thompson and H. N. Psaraftis. Cyclic transfer algorithms for multivehicle
routing and scheduling problems. Operations Research, 41(5):935–946, 1993.

F. Vanderbeck. On dantzig-wolfe decomposition in integer programming and ways
to perform branching in a branch-and-price algorithm. Operations Research, 48
(1):111–128, 2000.

Chapter 6
The Train Design Optimization Problem

6.1 Introduction

Freight rail companies operate on rail networks consisting of rail yards connected
by rail tracks. They receive requests from customers to transport railcars and they
generate the so called trip plan which details the movement of each railcar on the
network from its origin location to its final destination. The generation of trip plans
is one of the most fundamental and difficult problems encountered in the rail indus-
try. In the USA rail companies can daily operate up to 200 merchandise trains, which
involve approximately from 400 to 500 crews and transport about 1,000 blocks of
railcars, loading and unloading them at 180 to 200 locations.

This very complex decision process implies several steps, that have been consid-
ered in the literature either separately or in various combinations. The Block Design
(BD) problem, see Ahuja et al. (2007), requires to group the railcars into blocks,
which will then be treated as unsplittable units for the sake of efficiency. The Block-
to-Train Assignment (BTA) problem, see Jha et al. (2008), given a set of blocks and
trains, requires to decide which blocks will be transported by which train. Notice
that in general a block uses more than one train to reach its destination, because it is
common to unload entire blocks of railcars from a train stopping at a rail yard and
load them on another train, thus performing a so called block swap. The Train Rout-
ing (TR) problem, see Goossens et al. (2004), requires to decide the route followed
by each train (origin, destination and stops), consistently with the rail network and
with the blocks to be transported. Sometimes, the TR problem is also concerned
with the frequency with which a train is operated during the time horizon. Other
relevant decisions concern the empty car distribution and the variability of demand
over time (Haghani, 1989), the loading pattern of containers on railcars (Corry and
Kozan, 2008) and the definition of the crews operating the trains (Albers, 2009).
At a later stage, an additional scheduling problem, to define the timetable of each
train, and a dispatching problem, to define meets and overtakes between different
trains, must also be solved. These problems possibly interact with the planning of
passenger trains which share the same network (Cordeau et al., 1998).

161

162 6 The Train Design Optimization Problem

As properly highlighted by all surveys, from the early ones (Assad, 1980;
Haghani, 1987) to the more recent one (Ahuja et al., 2005), these aspects of rail
transportation have strong mutual interactions. However, models that take them into
account quickly get extremely complex, if not simply intractable. The traditional ap-
proach has thus been to isolate and solve independently the single stages of the over-
all planning problem, which are often themselves hard and interesting, and require
sophisticated algorithmic approaches. This leads naturally to decomposition meth-
ods, in which the solution of each stage provides the data for the following ones. The
obvious drawback of such methods is that they necessarily lead to suboptimal deci-
sions, though usually much better than hand-made decisions. For example, Crainic
and Rousseau (1986) implement a decomposition method to generate optimal oper-
ating plans through a Column Generation method, while Jha et al. (2008) focus on
the BTA problem, presenting another method based on Column Generation. Sev-
eral methods aim to a partial integration of different stages. Keaton (1989) applies
the Lagrangian Relaxation to solve a combination of the BD and BTA problems for
a given set of potential trains, whose service frequency must also be determined.
This solution technique is later improved in Keaton (1992). Haghani (1989) solves
a train routing and makeup problem with a nonlinear objective function and linear
constraints, using a heuristic decomposition technique based on a Mixed Integer
Programming (MIP) model. Ahuja et al. (2005) solve a train scheduling problem,
which combines the BTA and the TR problems with the determination of the weekly
and daily schedule of the trains. However, in spite of this and several other nice con-
tributions, the field of railway optimization is far from being exhausted. A recent
survey, in fact, still regrets that “none of these attempts has produced a solution pro-
cedure that rails can use, because they are not scalable for realistically large train
scheduling problems, or they ignore the practical realities necessary to generate im-
plementable solutions” (Ahuja et al., 2005).

Starting from 2010, the Railway Application Section of INFORMS sponsored
each year a problem solving competition aiming to introduce participants to the
many challenging Operations Research problems arising within railroad compa-
nies1. In 2011, the subject of the competition has been the the Train Design Opti-
mization (TDO) problem. This problem has been chosen and formally described by
a group of Operations Research professionals working in the major railroad com-
panies of the USA. Among the companies which sponsored the competition ap-
pear Norfolk Southern Corporation, BNSF Railway Corporation, CSX Corporation,
Union Pacific Corporation (i.e. 4 of the 8 first class railroad companies operating in
the United States) and Gurobi Optimization Inc. The competition started in May and
all the teams needed to submit their final report within the beginning of September.
Overall, 35 teams started the competition, but only 12 teams submitted their final
reports within the deadline. The participants came from many different countries:
United States, China, Taiwan, Singapore, Switzerland, Italy, Colombia and Mexico.
After the deadline, the competition organizing committee selected three finalists that
presented their works at the 2011 Informs Annual Meeting in Charlotte, NC.

1 For further details, see the official website http://www.informs.org/Community/
RAS/Problem-Solving-Competition/.

6.2 Problem description 163

The TDO problem combines the BTA and the TR problems with the definition of
feasible and efficient train routes with respect to the available crew segments. These
are fixed pairs of locations between which crews are available to operate trains2.
In more detail, the composition and the attributes of each block of railcars, such as
origin, destination, number of cars, length and tonnage, are assumed to be known in
advance. On the contrary, the assignment of blocks to trains, their swaps, the routes
and stops of the trains, and the crews operating each train along each part of its route
must be determined. In fact, a single train is usually operated by several crews, who
take over from each other, so that its route is always a sequence of crew segments,
even if this implies moving part of the way without carrying any block. As far as we
know, this specific combination of block assignment and train routing is new for the
literature.

In this work, we describe our Simultaneous Column and Row Generation heuris-
tic (see Section 2.4), which won the second prize at the RAS-2011 competition. In
the Master Problem the main columns represent either trains or paths followed by a
block: a train is represented as a sequence of crew segments, while a block-path is
a sequence of arcs in an auxiliary graph. We generate the train columns with a two
level Tabu Search heuristic (Glover and Laguna, 1997) and the block-path columns
by solving a net-flow model on another auxiliary graph. At the end of the Column
Generation method, we impose integrality to the variables of the Master Problem
and solve the resulting MIP model. The algorithm here discussed has been strongly
enhanced after the competition deadline, reducing the computational time by one
order of magnitude while improving significantly the quality of the results.

The next section formally introduces the TDO problem. Section 6.3 describes
the three methods which respectively won the first prize (Lozano et al., 2011), the
second prize (Wang et al., 2011) and the honorable mention (Jin and Zhao, 2011; Jin
et al., 2013) at the RAS-2011 competition. Section 6.4 presents the MIP formulation
of the problem we used in our approach. Section 6.5 presents our Simultaneous Col-
umn and Row Generation approach, and the last section discusses the computational
results on the benchmark data sets used for the competition.

6.2 Problem description

A rail network consists of rail yards connected by rail tracks. It can be modeled as
an undirected graph where the nodes represent rail yards and the edges rail tracks.
However, since the orientation of train routes and block-paths is relevant for the
TDO problem, we adopt a directed graph G = (V,A) where the node set V is the set
of rail yards and the arc set A is derived from the set of the rail tracks associating
a couple of arcs with opposite directions to each rail track. Without ambiguity, we
can still call rail track an arc. Each rail track a ∈ A has a length la. Let S be the set of
available crew segments: each crew segment s ∈ S is associated with an unordered

2 This is a simplified model, called single-ended territories, of the wide and complex variety of
union agreements holding in the rail industry.

164 6 The Train Design Optimization Problem

pair of rail yards, v1(s),v2(s) ∈ V , called terminal nodes. Given graph G and the
lengths of its arcs, we associate to each crew segment s the set of directed shortest
paths from v1(s) to v2(s) and the set of directed shortest paths from v2(s) to v1(s) (in
general, there could be multiple shortest paths connecting the same pair of vertices).
Let B be the set of blocks to be transported: each block b ∈ B contains Nb railcars,
with a total length Lb and a total weight Wb; its origin and destination rail yards are
denoted, respectively, as ob and db.

The route of a train is a path on G, obtained concatenating directed shortest paths
associated with crew segments. In the following, if there is no ambiguity, we can
also denote a train with the corresponding sequence of crew segments (s1,s2, . . . ,sk).
Note that the train route can contain cycles, and even several repetitions of the same
shortest path are admitted.

The definition of a train route also includes a sequence of work events. These
correspond to the stops in which the train loads or unloads blocks of railcars, with
the exception of the origin and the destination of the route. In other words, every
time a train makes an intermediate stop, all pickups and deliveries performed during
that stop are considered as a single work event, while the departure of a train from
the origin and its arrival to the destination are not considered as work events, even
if they involve loading or unloading blocks.

Finally, each served block b is carried, by one or more trains, along a path from
ob to db on graph G which we call block-path. If more trains are used, the operation
of unloading b from a train and loading it on another one is called block swap.

6.2.1 Operational and capacity constraints

The following operational and capacity constraints must be respected:

• Maximum number of blocks: a train carrying too many blocks along its trip
can produce excessive slowdowns and can increase too much the length of crew
shifts. As a consequence, the overall number of different blocks that a train can
carry is limited to MB.

• Maximum number of work events: an excessive number of train stops is dis-
couraged for operational efficiency. Thus the maximum number of work events
for each train is set to ME.

• Maximum number of block swaps: each block admits at most MS block swaps
along its block-path: block swaps increase flexibility in train routing, but require
additional time and resources.

• Rail tracks structural limits: each arc a ∈ A admits a maximum train length
MLa and a maximum train weight MWa, depending on geographical and track
attributes.

• Rail tracks congestion avoidance: each arc a ∈ A admits a maximum number
of trains, MNa, passing through it, in order to avoid congestion.

6.2 Problem description 165

Time is not a concern in this model: when a block is unloaded at an intermediate
yard of its path, there is an implicit assumption that the train in charge of carrying
it further will load it in a future time period, if it does not in the current one. Note
that the congestion level of the rail network is globally handled by correctly setting
the maximum number of trains MNa that can cross each arc a ∈ A during the whole
time period scheduled by the current trip plan.

6.2.2 Objective function

The objective of the TDO problem is to minimize the sum of several cost compo-
nents. To describe them, hereafter we denote with p a generic feasible block-path,
with bp the corresponding block and with t a generic feasible train. We also denote
by P(·) a generic sequence of properly oriented (and possibly repeated) arcs from
A. The arc sequence followed by train t is P(t), that of block-path p is P(p). Any
shortest path associated to crew segment s is denoted as P(s), specifying when nec-
essary its starting and ending nodes. Lastly, LP(·) is the total length of the arcs in
P(·). The objective function has the following components:

• train activation cost: it is the product of the fixed train start cost CL times the
total number of used trains.

• train travel cost: it is the product of the train cost per unit of distance CT times
the total travel distance of a train t, i. e. CT ·LP(t).

• work event cost: we denote with WE(t) the set of work events associated with
train t. The work event cost for t is the product of the number of work events times
a fixed cost term CW , i. e. |WE(t)|CW . Term CW models the cost of loading and
unloading blocks, but also of delaying the train (railcars, locomotives, and crews)
and the potential consumption of network capacity while the train is stopped.

• block travel cost: given a block-path p, it is the product of the railcar cost per
unit of distance CR, times the number Nbp of railcars grouped in block bp, times
the total railcar travel distance, i. e. CR ·NbLP(p).

• block swap cost: we denote with BS(p) the set of rail yards along block-path p
in which a block swap occurs. The block swap cost for p is the sum of the swap
costs, CSv, for all these yards, i. e. ∑v∈BS(p)CSv.

• crew imbalance cost: we denote with ∆s(t) the difference between the number of
times in which train t goes through a shortest path associated with crew segment
s from v1(s) to v2(s) and the number of times in which the same train t goes
through a shortest path associated with the same crew segment s, but now going
in the opposite direction, from v2(s) to v1(s). If we sum ∆s(t) over all the trains
and take the absolute value of the result, we obtain the crew imbalance ∆s of
crew segment s, which is the absolute difference between the number of times
crew segment s is used from v1(s) to v2(s) and the number of times it is used in
the opposite way. The crew imbalance penalty IS is the average cost per unit of
this imbalance, corresponding to the additional expense for repositioning a crew
with an over-the-road taxi service. The crew imbalance cost is the sum over all

166 6 The Train Design Optimization Problem

crew segments s of the crew imbalance penalty times the crew imbalance, i. e.
∑s∈S IS∆s.

• train imbalance cost: let ∆v(t) be equal to 1 if train t starts its route in yard
v and equal to −1 if train t ends its route in v. If we sum ∆v(t) over all the
trains and take the absolute value of the result, we obtain the train imbalance
∆v at rail yard v, which is the absolute difference between the number of trains
originating and terminating at the yard (the intermediate stops of the trains do not
contribute to this value). The train imbalance cost is the sum over all rail yards v
of the train imbalance penalty IT times the train imbalance, i. e. ∑v∈V IT ·∆v.This
component of the objective function takes into account the cost that a railroad
company needs to pay to reposition its locomotives in order to have the same
number of locomotives in the same rail yards w.r.t. the initial situation, when the
trip plan started;

• missed railcars cost: it is the product of the cost per missed railcar MR times
the number of missed railcars, which is the sum of Nb over all missed blocks (a
block is missed if it is not transported from its origin to its destination).

Example

Figure 6.1 provides an example to clarify some of the concepts introduced above.
It reports in (a) the graph G modeling a rail network, where the terminal nodes of
the available crew segments are filled in black, and in (b) the set S of the available
crew segments, described by the bold black edges. In (c), the shortest paths on G
associated to each crew segment in S are represented as sequences of thinner arrows.
Full and dashed lines are used to distinguish paths oriented in opposite directions.
Notice that one of the crew segments admits four equivalent shortest paths, two in
each direction. In (d), we show two trains. The former, in continuous bold lines,
starts from node A, moves to B, comes back to A and ends in C, using twice crew
segment (A,B). The latter, in dashed bold lines, starts from B, moves to D and ends
back in B, using twice crew segment (B,D). In (e) a block is carried from its origin
(marked in gray) to its destination (marked in black). The block-path is represented
with a sequence of smaller arrows and uses both the trains introduced above, with
a block swap in node B. This implies a work event for the second train, because
the block is unloaded and then loaded in B, which is neither the destination nor the
origin of the second train. No work event occurs for the first train, because B is both
the origin and the destination of that train. Notice that the first train is unloaded
during the initial part of its route, the second train is unloaded during the final part.
The imbalance of crew segments (B,D) and (A,B) is zero, whereas the imbalance
of (A,C) is one. The train imbalance at rail yard B is zero, since one train originates
and one terminates in B (the same train). The train imbalance at rail yards A and C
is one, since one train originates in A and one terminates in C.

6.3 Competing algorithms 167

Fig. 6.1 The auxiliary graphs for a simple TDO instance. In (a) the vertices correspond to rail yards
and the arcs correspond to rail tracks, black vertices denote the terminal nodes of the available crew
segments. In (b) the nodes correspond to the terminal nodes of the available crew segments and the
edges defines how these terminal nodes are connected. In (c) with thin and dashed arcs we denote
the shortest paths associated with the available crew segments. In (d) using dashed bold lines and
continuous bold lines we denote two different train routes. In (e) we show how a block originating
in the gray vertex can be transported to its destination in the black vertex using two different trains.

6.3 Competing algorithms

Here we briefly summarize the three methods which won the first prize, the third
prize and the honorable mention at the RAS-2011 competition, as they are presented
in Lozano et al. (2011), Wang et al. (2011) and Jin et al. (2013).

Lozano et al. (2011) propose a noniterative heuristic method working in four
steps. The first three steps identify a set of train routes, the last step solves the BTA
problem restricted to those routes. The first step (Crew Demand Estimation) focuses
on selecting a set of routes that provide shortest paths for the most valuable blocks:
after assigning a unique path to each crew, they propose a MIP model to compute the
number of crews for each segment ideally required to route all (transportable) blocks
through their shortest paths. The second step (Train Route Generation) creates a
large pool of random train routes using the crews computed in the first step. The
third step (Train Route Selection) selects from the pool, by solving an auxiliary set
covering problem, a subset of train routes that minimizes the block-independent
cost components (i. e., train start, crew imbalance, train imbalance, and train travel
cost), subject to the crew demand satisfaction. The fourth and final step allocates

168 6 The Train Design Optimization Problem

the blocks to the selected train routes, tackling the BTA problem with a specialized
multi-commodity flow model. This model provides the final solution.

Wang et al. (2011) generate sets of block-paths and associated train routes by
applying k-shortest path algorithms on suitable graphs. Then, they calculate the best
block swapping plan by solving a MIP model. They propose a specialized minimum
cost integer multi-commodity flow model, in which each block is viewed as a com-
modity with a given origin and destination. The model involves two subproblems:
(1) a vehicle routing problem that allows blocks to be swapped during the transporta-
tion, and (2) a fleet assignment and routing problem that defines the size and route
of trains. If one could provide all the feasible block-paths and train routes, then the
resulting model would provide optimal TDO solutions. In practice, the model can-
not be solved due to its huge size, so that the authors first generate good block-paths,
then use heuristics to generate good train routes and finally solve the corresponding
reduced model. They repeat these steps by iteratively feeding new block-paths and
train routes to the model, solving the reduced problem exactly or approximately,
until the solution converges to a certain satisfactory level. New block-paths and new
train routes correspond to new sets of variables and constraints. This approach is
much similar to ours, with its iterative generation of blocks-paths and train routes.
The main difference is that it does not use dual information, and therefore cannot be
classified as a Simultaneous Column and Row Generation method.

Finally, Jin et al. (2013) use a hierarchical approach which consists of two stages.
In the first one, they use a Column Generation method to find a small set of good
train routes and, simultaneously, a feasible assignment of the crews to the trains. In
the second one, they solve the remaining BTA problem using an ad hoc MIP model.
The model used in the first stage requires to minimize all the cost components ex-
cluding those related to block swaps and work events, while servicing all blocks
with the current generated trains. The Pricing Problem of this model is solved using
a MIP formulation. This approach is similar to the approach that won the first prize.
The two methods differ mainly in the train generation phase; probably, the multi-
step procedure used by the winners is able to generate a better pool of trains, so
that the final BTA problem contains better solutions. In our comparison we use the
solution values as reported in Jin et al. (2013), the published version of their report,
since in that work they improved their method.

6.4 A Mathematical Programming formulation

Let T denote the set of all feasible trains: each train t ∈T is a sequence of crew seg-
ments, with a corresponding path P(t) in G, and a sequence of work events WE(t)
associated to rail yards along the path. Function cT : T → R+ defines the cost of
the train, which consists of the fixed train start cost, plus the train travel cost, plus
the cost of the scheduled work events (see Section 6.2.2):

cT (t) =CL+CT ·LP(t)+CW · |WE(t)| (6.1)

6.4 A Mathematical Programming formulation 169

Ta ⊆T is the subset of trains which pass through arc a∈A and Ka
t is the number

of times train t passes through arc a. Starting from set T and graph G, one can
obtain a multigraph MG = (V,A), where A is obtained by replacing each arc a∈ A
with ∑t∈Ta Ka

t copies of it. If a train passes several times through arc a, each passage
induces a different copy. The set of all the arcs induced on MG by train t is a path,
denoted as At . Note that A = ∪t∈T At .

Let Pb be the set of all feasible block-paths associated with block b on multi-
graph MG, Pt

b ⊆Pb the subset of paths in Pb that use train t, i. e. intersect At ,
and P = ∪b∈BPb the whole set of block-paths. Note that set Pb represents all the
ways in which block b can be feasibly routed in the rail network, starting from ob,
performing at most MS block swaps, and ending in db.

Function cP : P → R+ defines the cost of a block-path, consisting of the block
travel cost plus the block swap cost (see Section 6.2.2):

cP(p) =CR ·NbpLP(p)+ ∑
v∈BS(p)

CSv (6.2)

Finally, Pa is the set of block-paths which use arc a of MG, and, hence, the cor-
responding train. Tables 6.10 and 6.11, in the Appendix, summarize the notation
introduced so far.

In the following, we provide a MIP formulation for the TDO problem. Binary
variables λt and xp state whether train t ∈ T and block-path p ∈P are used or
not in the solution. Variable ∆s is the crew imbalance of each crew segment s ∈ S,
variable ∆v is the train imbalance of each rail yard v ∈V .

minφ = ∑
t∈T

cT (t)λt + ∑
p∈P

cP (p)xp +∑
s∈S

IS ·∆s + ∑
v∈V

IT ·∆v (6.3a)

∑
p∈Pb

xp ≥ 1 b ∈ B (yb ≥ 0) (6.3b)

∑
p∈Pt

b

xp ≤ λt t ∈T ,b ∈ B (γtb ≥ 0) (6.3c)

∑
b∈B

∑
p∈Pt

b

xp ≤MB t ∈T (ηt ≥ 0) (6.3d)

∑
p∈Pa

Lbp xp ≤MLa t ∈T ,a ∈ At (hat ≥ 0) (6.3e)

∑
p∈Pa

Wbp xp ≤MWa t ∈T ,a ∈ At (rat ≥ 0) (6.3f)

∑
t∈Ta

Ka
t λt ≤MNa a ∈ A (ka ≥ 0) (6.3g)

∑
t∈T

∆s(t)λt ≤ ∆s s ∈ S (δ+
s ≥ 0) (6.3h)

∑
t∈T
−∆s(t)λt ≤ ∆s s ∈ S (δ−s ≥ 0) (6.3i)

∑
t∈T

∆v(t)λt ≤ ∆v v ∈V (δ+
v ≥ 0) (6.3j)

∑
t∈T
−∆v(t)λt ≤ ∆v v ∈V (δ−v ≥ 0) (6.3k)

xp,λt ∈ {0,1} t ∈T , p ∈P (6.3l)

170 6 The Train Design Optimization Problem

Objective function (6.3a) sums up the cost of the selected trains, the cost of the se-
lected block-paths and the crew and train imbalance costs. Constraint family (6.3b)
imposes the existence of a block-path for each block: to allow the case in which
block b is not served in the solution, Pb includes a dummy block-path of one arc
with cost MR ·Nb from ob to db. Constraint family (6.3c) imposes to select train t if
any of the selected block-paths uses it. Constraint family (6.3d) imposes the maxi-
mum number of blocks that a train can transport. Constraint families (6.3e,6.3f,6.3g)
impose for each arc a the maximum length and weight of a train passing through
a and the maximum number of trains that can pass through a. Constraint fami-
lies (6.3h,6.3i) define the crew imbalance for each crew segment s, while constraint
families (6.3j, ,6.3k) define the train imbalance for each yard v.

Formulation (6.3) can be rewritten setting all constraints in the ≥ form. Its LP-
Relaxation, obtained replacing Constraints (6.3l) with nonnegativity constraints, ad-
mits the following dual formulation, whose variables are also reported in formula-
tion (6.3) in round parenthesis.

max ∑
b∈B

yb− ∑
t∈T

[
MBηt + ∑

a∈At

(MLahat +MWarat)

]
−∑

a∈A
MNaka (6.4a)

yb− ∑
t∈Tp

γtb +ηt + ∑
a∈Ap

t

(Lbhat +Wbrat)

≤ cP (p) b ∈ B, p ∈Pb (6.4b)

∑
b∈B

γtb− ∑
a∈At

Ka
t ka + ∑

v∈V
∆v(t)(δ−v −δ

+
v)+∑

s∈S
∆s(t)(δ−s −δ

+
s)≤ cT (t) t ∈T (6.4c)

δ
+
v +δ

−
v ≤ IT v ∈V (6.4d)

δ
+
s +δ

−
s ≤ IS s ∈ S (6.4e)

yb ≥ 0 b ∈ B (6.4f)

ηt ≥ 0 t ∈T (6.4g)

γtb ≥ 0 b ∈ B, t ∈T (6.4h)

rat ,hat ≥ 0 t ∈T a ∈ A (6.4i)

ka ≥ 0 a ∈ A (6.4j)

δ
+
s ,δ−s ≥ 0 s ∈ S (6.4k)

δ
+
v ,δ−v ≥ 0 v ∈V (6.4l)

6.5 A Simultaneous Column and Row Generation method

This section provides an overall description of our Simultaneous Column and Row
Generation heuristic CRG-TDO. The high level pseudocode is given in Figure 6.2,
while the single steps of the algorithm are described in more detail in the following
subsections. For the sake of briefness, the pseudocode denotes the given instance of
the problem as T DO.

To solve the MIP model (6.3), we ideally relax the integrality conditions on the
binary variables, generating the associated Master Problem (MP). Since the MP has
an exponential number of variables and constraints, we apply a Simultaneous Col-

6.5 A Simultaneous Column and Row Generation method 171

Algorithm CRG-TDO(T DO)(
T ,P

)
:= BuildDedicatedTrainsAndPaths(T DO);

RMP := BuildReducedMasterProblem
(
T ,P

)
;

Repeat { Pricing loop: upper level }

(y,η ,γ,r,h,k,δ) := SolveLP(RMP);
Repeat { Pricing loop: lower level }

P ′ := GenerateBlockPaths
(
y,η ,γ,r,h,T

)
;

P := P ∪P ′;
If P ′ 6= /0 then

RMP := BuildReducedMasterProblem
(
T ,P

)
;

(y,η ,γ,r,h,k,δ) := SolveLP(RMP);
EndIf

until P ′ = /0;
(T ′,P ′) := GenerateTrains

(
γ,k,δ ,T

)
;

T := T ∪T ′; P := P ∪P ′;
if T ′ 6= /0 then RMP := BuildReducedMasterProblem

(
T ,P

)
;

until T ′ = /0;
(x,λ) := SolveMIP(RMP);
Return (x,λ);

Fig. 6.2 Pseudocode of the Simultaneous Column and Row Generation heuristic CRG-TDO.

umn and Row Generation approach (see Section 2.4), which starts by considering
a limited subset of variables and constraints, and iteratively adds new variables and
constraints. In particular, procedure BuildDedicatedTrainsAndPaths generates for
each block an ad hoc train, thus implicitly defining also the corresponding block-
path. The route of the train is computed solving a minimum cost path problem on a
suitable auxiliary graph. In this way, we obtain a small subset T of feasible trains
and a small subset P of feasible block-paths. Procedure BuildReducedMasterProb-
lem includes in the initial Reduced Master Problem (RMP) the train variables in
T , the block-path variables in P and all the imbalance variables ∆s and ∆v. Then
we solve the RMP and use the optimal dual values to generate nonbasic variables
with negative reduced costs. To generate new variables, we solve two Pricing Prob-
lems: the Block-path Pricing Problem (BPP) generates block-path variables, while
the Train Pricing Problem (TPP) generates both train variables and block-path vari-
ables. We start by solving the BPP on the initial set of trains, and switch to the TPP
when no new block-path variable with negative reduced cost can be identified. Since
the two Pricing Problems are intertwined, the overall pricing phase has two nested
feedback loops which we describe in the next sections. Notice that the introduction
of a new train variable λt in our formulation implies the introduction of new con-
straints (6.3c)-(6.3f) and of the corresponding dual variables γtb,ηt ,hat and rat . At
the end, when no more variables can be generated, we reintroduce the integrality
constraints on the final RMP and solve it with procedure SolveMIP. The resulting
solution is the output of the overall process. Note that, since the initialization proce-
dure (see Section 6.5.1) generates a dedicated train and a corresponding block path
for each block b ∈B, it is not possible that, at the end of the generation phase, the

172 6 The Train Design Optimization Problem

final RMP does not contain a feasible integral solution: the trains and the block-
paths generated in the initialization phase constitute a (very poor) feasible integral
solution.

6.5.1 Initialization: procedure BuildDedicatedTrainsAndPaths

We start by generating for each block b a train which carries b from its origin to its
destination at minimum cost. To solve this problem we build for each block b an
auxiliary node weighted graph G′b =

(
V ′b,A

′
b

)
. The node set V ′b contains a node for

each crew segment s, plus a dummy origin node o and a dummy destination node d.
If a crew segment admits more than one shortest path in each direction, we associate
a different node in V ′b to each undirected shortest path. The arc set A′b contains an
arc from the origin o to each crew segment node s whose corresponding shortest
path on G contains the origin of the block ob, an arc from each crew segment node s
whose shortest path P(s) contains the destination of the block db to the destination
d, and an arc between any two crew segment nodes s1 and s2 which have a common
terminal node.

Each node is associated to a cost. Specifically a crew segment node s, whose
corresponding shortest path (here, for simplicity, we consider a crew segment as-
sociated with a unique shortest path) P(s) on graph G does not contain ob or db, is
associated to cs =CR ·NbLP(s), which is proportional to its total length. If ob belongs
to P(s), we denote by P(s)(ob,v2(s)) the subpath of P(s) between ob and v2(s), and
we set cs = CR ·NbLP(s)(ob,v2(s)), plus an additional cost CW for a work event if
ob 6= v1(s). As well, if db belongs to P(s), we set cs =CR ·NbLP(s)(v1(s),db), plus an
additional cost CW for a work event if db 6= v2(s). This is because the operations
which occur at the origin or the destination rail yard of a train are not considered as
work events. The dummy origin and destination nodes have zero cost. The minimum
cost node-weighted path from o to d on G′b simultaneously identifies a block-path
for block b and the route of a dedicated train. Correspondingly, it provides an xp
variable and a λt variable.

Example

Figure 6.3 reports graph G′b and a minimum cost path (in bold dashed lines) corre-
sponding to the block-path (in thin dotted lines) reported in Figure 6.1(e) to carry
block b from its origin ob (marked in gray) to its destination db (marked in black).
Notice that, since one of the crew segments in Figure 6.1(c) admits two alternative
shortest paths in each direction, V ′b contains two nodes for that segment. Only one of
them, however, is connected to the dummy node o, because only one of the shortest
paths contains the origin yard ob.

6.5 A Simultaneous Column and Row Generation method 173

Fig. 6.3 Generation of auxiliary graph G′b derived from rail network G to initialize the block-
paths set P . We start from the rail network G depicted in Figure 6.1(e) and we generate G′b by
associating a vertex of G′b to each shortest path associated with a crew segment, and an arc G′b to
each pair of consecutive shortest paths. The origin and destination vertices are directly connected
with the vertices associated with the shortest paths that pass through them.

6.5.2 Generation of the block-paths: procedure
GenerateBlockPaths

Given a pool of trains T ⊆ T and the optimal dual solution of the current RMP,
we search for a negative reduced cost block-path p that uses only trains in T . The
problem can be stated as that of finding on a suitable graph a minimum cost con-
strained path p with respect to a nonlinear objective function. It can be formulated
as a MIP model as described in the following section. To solve it efficiently, we also
consider a heuristic approach, described in Section 6.5.2.2.

6.5.2.1 A MIP formulation for the generation of block-paths

Given a block b∈ B, the reduced cost cb (p) of a generic block-path p∈Pb, derives
from constraint (6.4b) of the dual of the RMP:

cb (p) = cP(p)+ ∑
t∈Tp

∑
a∈Ap

t

(Lbhat +Wbrat)+ ∑
t∈Tp

(ηt + γtb)− yb (6.5)

If we find a block-path p such that cb (p) < 0, then the corresponding constraint is
violated by the solution of the dual of the current RMP. Consequently, we can add

174 6 The Train Design Optimization Problem

variable xp to the RMP. Hence, we look for a block-path of minimum reduced cost
for each block b.

We start deriving from the multigraph MG associated with the current set of
trains T an auxiliary directed graph Ĝ = (V̂ , Â). Each node v of MG is replaced in
V̂ by two node subsets U−v and U+

v : U+
v contains a departure node v+t for each train

t ∈ T that exits from v, i. e. for each arc in MG going out of v; U−v contains an
arrival node v−t for each train t ∈T that enters v, i. e. for each arc in MG going into
v. Finally, V̂ includes a source node ns and a sink node nd . The arc set Â includes an
arc a = (v−t ,v

+
t) for each train t going both in and out of v. These arcs represent the

permanence of a block on the train and have zero cost. Â includes an arc a=(v−t1 ,v
+
t2)

for each pair of trains t1 and t2 such that t1 goes into v, t2 goes out of v and both trains
can load/unload blocks in v (i. e. v is their origin or destination yard, or they both
have a work event in v). These arcs represent block swaps. Since each arc (v,w)
in MG is associated to a train t, Â contains an arc a = (v+t ,w

−
t), which represents

the movement of train t from yard v to yard w. The source node ns is linked to all
departure nodes v+t and all arrival nodes v−t are linked to the sink node nd .

Example

Figure 6.4 reports an example of graph Ĝ. For the sake of clarity, we report only the
arcs (ns,v) and (v,nd) associated to a given block b. The source node ns is marked
in gray, the sink node nd in black. The bigger circles enclose the bipartite graphs
(U−v ,U+

v , Âv) associated to each node v of the starting multigraph MG (not shown).
The gray dashed arcs represent block swap arcs. The four available trains form set
T = {t1, t2, t3, t4}, and the arcs associated to each train are represented by different
line patterns. A path p from ns to nd is marked in fine dotted lines: it uses trains t1,
t2, t4 and finally again t1. The three block swap arcs are depicted in bold.

The block-path p we are looking for corresponds to a path P(p) from ns to nd
in Ĝ. The corresponding reduced cost cb is the sum of four terms, as in (6.5): the
cost cP(p) as defined in (6.2), the term involving the dual variables hat and rat ,
the term involving the dual variables ηt and γtbp for suitable indices a and t, and
the constant term yb. Given a block b ∈ B, the first two terms can be modeled by
defining a suitable cost function ĉb on Ĝ arcs: the arcs a = (v−t1 ,v

+
t2) representing

block swaps have a fixed cost ĉb
a = CSv, the arcs a = (v+t ,w

−
t) representing train

movements have cost ĉb
a =CR ·Nbla +Lbhat +Wbrat . The arcs (ns,v) with v /∈U+

o(b)

and the arcs (v,nd) with v /∈U−d(b) are forbidden by setting their cost to a value large

enough to prevent their use in any optimal solution. All other arcs in Â have zero
cost. The cost ∑a∈P(p) ĉb

a of path P(p) from ns to nd in Ĝ is then equal to

cP(p)+ ∑
t∈Tp

∑
a∈Ap

t

(Lbhat +Wbrat)

The third term, ∑t∈Tp(ηt + γtb), requires to pay a cost ηt + γtb for each train t
used by block b along path p. This cost should be paid exactly once, independently

6.5 A Simultaneous Column and Row Generation method 175

Fig. 6.4 An example of how a block-path can be represented in the auxiliary graph Ĝ. The path
followed by the considered block is drawn in fine dotted lines: it starts from the source node ns,
enters its origin rail yard, then takes trains t1,t2,t3 and again t1 to reach its destination rail yard, and
finally enters the sink node nd .

from the subset of arcs associated to train t and used by the path. To model this
requirement, we introduce variables associated to the use of arcs and to the use of
trains: xa = 1 if the path uses arc a ∈ Â, xa = 0 otherwise; zt = 1 if the path uses
train t ∈ T , zt = 0 otherwise. The path with minimum reduced cost for block b is
then the optimal solution of the following network flow formulation:

min cb = ∑
a∈Ab

ĉb
axa + ∑

t∈T
(γtb +ηt)zt − yb (6.6a)

∑
a∈δ+(i)

xa− ∑
a∈δ−(i)

xa = 0 i ∈ V̂ \{ns,nd} (6.6b)

∑
a∈δ+(ns)

xa− ∑
a∈δ−(ns)

xa = 1 (6.6c)

∑
a∈δ+(nd)

xa− ∑
a∈δ−(nd)

xa =−1 (6.6d)

xa ≤ zt t ∈T a ∈ Ât (6.6e)

∑
a∈ÂBS

xa ≤MS (6.6f)

xa ∈ {0,1} a ∈ Â (6.6g)

zt ∈ {0,1} t ∈T (6.6h)

176 6 The Train Design Optimization Problem

where Ât ⊆ Â contains all the arcs associated with train t, and ÂBS contains all the
block swap arcs, i. e. those such that a = (v−t1 ,v

+
t2) where t1, t2 ∈T and t1 6= t2. Con-

straints (6.6b - 6.6d) require to send one unit of flow from ns to nd . Constraints (6.6e)
activate a train if the path uses an arc associated with it and Constraint (6.6f) ensures
that the block swap limit is satisfied.

The problem requires to find a minimum cost path P(p) from ns to nd in Gb,
including at most MS block swap arcs a ∈ ÂBS. The cost function is nonlinear, as it
includes a fixed cost term γtb +ηt , which must be paid if P(p) contains arcs in At ,
no matter how many of them.

Example continued

In Figure 6.4 block-path p is feasible only if MS≥ 3. Its fixed cost is ∑i∈{1,2,4}(γtib+
ηti), even if train t1 is used twice.

6.5.2.2 Solution approach

Even if solving the MIP formulation is not a hard task for a commercial MIP solver,
our computational experiments show that a relevant speed up can be obtained by
solving the block-path generation problem with a heuristic approach. To take into
account approximately the cost of the trains used, we modify the cost of some arcs
in Ĝ as follows. The arcs (ns,v+t) with v+t ∈U+

o(b) have cost ĉb
a = ηt + γtb, instead

of zero, to include the cost of the first train used. The arcs a = (v−t1 ,v
+
t2) represent-

ing block swaps have cost ĉb
a = cv +ηt2 + γt2b to include the cost of train t2, which

receives block b. Given the shortest path P(p) in Gb from ns to nd with respect to
the modified cost function, if p respects the maximum number of block swap arcs,
we analyze its cost. If the block has been loaded on each train t exactly once along
the whole path, the cost of P(p) minus yb is equal to cb(p), and it is optimal for
the Pricing Problem. If, on the contrary, b has been loaded on the same train more
than once, the train has been paid more than once and the cost of p minus yb over-
estimates cb(p). By subtracting the extra cost paid, we obtain a feasible heuristic
solution of the Pricing Problem, though not necessarily optimal. In both cases, if
cb(p)< 0 the constraint of family (6.4b) corresponding to p is violated by the solu-
tion of the dual of the current RMP and we can add variable xp to the RMP. If P(p)
is not feasible, or it is a heuristic solution with positive reduced cost, we move to
the following block. If no other block is available, we move to the next step of the
algorithm.

6.5 A Simultaneous Column and Row Generation method 177

Implementation details

We solve the BPPs in order of increasing indices, adding to the RMP the block-paths
generated when the reduced cost cb is negative. The RMP is reoptimized only after
considering all blocks.

For the sake of computational efficiency, when dealing with block b, we heuris-
tically restrict graph Ĝ to a subset of arcs which are associated to promising trains,
namely those already involved in carrying b in the current solution and the NT trains
whose route is closest to ob and db.

6.5.3 Train generation: procedure GenerateTrains

Given a train t̃ ∈T \T and a set of block-paths {p̃1, . . . , p̃k} (at most one for each
block) that use t̃ and possibly some other trains in T , to decide whether we need to
insert the new train and the new block-paths in the RMP, we have to verify whether
some of the associated dual constraints (6.4b, 6.4c) are violated. We mainly focus
our attention on constraints (6.4c), i.e. we look for a new train t̃ such that these
constraints are violated, while the possible violation of related constraints (6.4b) is
considered a side effect. However, since train t̃ is not currently contained in the RMP
(i. e. we are generating not only variable λt̃ , but also the associated constraints), we
do not know the values of the dual variables γt̃b, for all b∈ B. These are the variables
associated to constraints (6.4c). To face this problem, when building a new train
t̃ ∈T \T we impose a limiting condition.

Replacing condition. A newly generated train t̃ which replaces train t in the service of
block b along part of its block-path, must replace it in all parts previously served by t.

By enforcing this condition we restrict the search of trains violating constraints
(6.4c) only among those having routes composed by a concatenation of some parts
of the routes of the already generated trains. In this way, we can estimate the un-
known value of each variable γt̃b using the current value of variable γtb where t is
the train that the new train t̃ replaces in the service of block b. Intuitively, we can
interpret the value of γtb as the prize that train t gains by carrying block b. Since
train t̃ replaces train t in serving block b, the correct value of γt̃b will not be very dif-
ferent from γtb. If t̃ replaces several trains, we estimate γt̃b as the sum of γtb for each
replaced train t ∈ T . Of course, the replacing condition restricts the set of possible
trains and block-paths which can be generated.

The TPP consists in finding a new train t̃ and the corresponding new block-paths
{p̃1, . . . , p̃k} such that the new train constraint (6.4c) and possibly some of the new
path constraints (6.4b) are violated. If we generate a new train t̃ and the correspond-
ing new block-paths {p̃1, . . . , p̃k} by respecting the replacing condition and the pre-
vious estimation of γt̃b, then the paths on G of all the blocks served by t̃ do not
change and the new dual paths constraints (6.4b) are usually satisfied. There is an
exception, when two or more consecutive subpaths previously assigned to two or

178 6 The Train Design Optimization Problem

more different trains are assigned to t̃. In this case, the cost cP(p̃) is actually lower
than our estimate, because the new solution saves the cost of one or more block
swaps.

If we succeed in identifying a new train t̃ whose corresponding constraint (6.4c)
is violated, we can insert variable λt̃ and the corresponding new block-path vari-
ables into the RMP and reoptimize it. We solve the TPP using a Tabu Search heuris-
tic (Glover and Laguna, 1997), limiting the search space to the trains and block-
paths which satisfy the replacing condition, in order to use the above described
estimation of γt̃b.

A two-level Tabu Search for the generation of trains

From Constraint (6.4c) of the dual of the RMP model, we derive the reduced cost ct̃
of variable λt̃ for all t̃ ∈T \T :

ct̃ = ct̃ −∑
b∈B

γt̃b + ∑
a∈At̃

Ka
t̃ ka−∑

v∈V
∆v(t̃)(δ−v −δ

+
v)−∑

s∈S
∆s(t̃)(δ−s −δ

+
s) (6.7)

If we find a train t̃ with reduced cost ct̃ < 0, then the corresponding constraint is vi-
olated by the solution of the dual of the current RMP and variable λt̃ can be added to
the RMP. Hence, we look for a train of minimum reduced cost. To this purpose, we
use a two-level Tabu Search heuristic. The first level represents trains as sequences
of crew segments, and modifies the current train by adding or removing crew seg-
ments. For each train considered by the first level of the algorithm, the second level
computes its optimal cost by heuristically identifying the best blocks to serve and
the yards where to load and unload them.

Preprocessing

We first consider all the block-paths p such that xp > 0 in the current solution of
the RMP. For each block-path p, we identify the trains used, and for each used train
t ∈T the (multi)set of subpaths ρt p which describes the portion of path P(p) along
which block bp is served by train t. In the simplest case, ρt p is a simple path between
two yards. However, more complex situations derive from the fact that the trains
can follow multiple loops and that a block can be loaded and unloaded several times
from the same train. For example, if the train makes a double loop along the same
yards, ρt p contains two occurrences of the same subpath, corresponding to different
passages of train t through the same arcs and distinguished with a numerical index.
As well, when a train t loads and unloads the block bp more than once, ρt p is a set
of disjoint paths, which are portions of P(p). The preprocessing phase generates all
such objects ρt p.

6.5 A Simultaneous Column and Row Generation method 179

First level Tabu Search

The first level Tabu Search designs the route of a train adding or removing crew
segments at both ends of the current route. In the following, we denote by start(t)
and end(t) the origin and the destination yard of train t.

The starting solution is given by one of the shortest paths associated to crew
segment sin = 1 (chosen at random if they are more than one).

The neighborhood is defined by add moves, which add to t a crew segment s such
that one of its terminal nodes coincides with start(t) or end(t), and drop moves,
which remove from t either the first or the last crew segment. The drop moves are
not available if t contains a single crew segment. The cost of each solution is heuris-
tically evaluated by running the second level Tabu Search, described in the following
section.

The choice of the next solution in the neighborhood is controlled by a tabu mech-
anism, which has the purpose to avoid visiting previously obtained solutions by
forbidding the use of the reversal of recently performed moves. Since the possible
drop moves are at most two, they are always allowed, to avoid limiting excessively
the search. As for the add moves, we apply a tabu mechanism to discourage the
reintroduction of crews recently removed from the solution. The standard mecha-
nism forbids the reintroduction of a crew until a certain number of iterations named
tenure have elapsed after its removal. In the literature, the tenure is often updated
over time, based on the quality of the last move performed or on the cardinality
of the neighborhood. The aim of these mechanisms is to favor the exploration of
more promising regions of the solution space and to drive the search away from less
promising ones.

In the present case, the search is strongly limited by the fact that the solution is
a path on a rather sparse graph. Since we visit only feasible solutions, which corre-
spond to sequences of crew segments, and since in general rail networks are sparse,
but with a strongly variable density over space, the size of the neighborhood defined
above varies significantly from iteration to iteration, though it is always limited. A
fixed tabu tenure is therefore unacceptable, but even applying a variable one we ob-
served frequent cycling behaviors, due to the fact that the value of the tenure could
not keep pace with the current situation. In some cases, all possible moves were tabu.
In other cases, all tabu moves were unfeasible, and therefore unnecessarily tabu. The
overall result was that the search moved alternatively between cycles and bad solu-
tions. This suggested the introduction of a nonstandard scheme similar to the one
used in Section 5.7.6 by the pricing heuristic for the HAP. For each crew segment
s ∈ S, we save the last iteration is in which it was removed from the solution. At
each iteration, we compute the number k of feasible add moves, and consider tabu
the bαkc newer ones, i. e. those having the largest is values. Parameter α ∈ (0;1) is
defined by the user, but rounding downwards guarantees that at least one add move
is always nontabu. The algorithm selects the best nontabu move with respect to the
objective function value, but it selects the best one, even if tabu, when it improves
the best solution found so far.

180 6 The Train Design Optimization Problem

When we need to diversify the explored space, i. e. when the best objective func-
tion value does not improve for DIT iterations, we restart the search by replacing the
current initial crew segment sin with the following one and building a new solution
from it.

The algorithm terminates when a fixed number of iterations MIT have been ex-
ecuted. All the trains with a negative reduced cost are added to the RMP together
with the corresponding block-paths generated in the second level Tabu Search to
estimate their cost. We reoptimize the RMP only when the current generation phase
stops.

Second level Tabu Search

This procedure receives from the first level Tabu Search (see the previous section)
a feasible train, represented as a sequence of crew segments t̃ = (s1, . . . ,sk), and
tries to maximize the collected prizes γtb gained by replacing an old train t ∈ T in
serving block b. To achieve this result satisfying the replacing condition, we select,
among the sets ρt p with p ∈P, t ∈ T , generated during the preprocessing phase,
the ones which are fully covered by P(t̃). Each selected set defines a portion of a
block-path p ∈ P on which an already generated train t ∈ T can be replaced by t̃
satisfying the replacing condition. We call the selected sets feasible and we denote
the set containing them as ρ(t̃).

Then, we initialize the solution by selecting a feasible set ρt p with the minimum
difference between the possible work event cost and the value of γtbp , i. e. the min-
imum contribution to the objective function value. The neighborhood is defined by
add moves, which add a feasible subpath set ρt p to the ones currently replaced by t̃,
and drop moves, which remove a subpath set ρt p from the ones currently replaced
by t̃. In order to avoid visiting previously obtained solutions, we introduce a simple
tabu mechanism with a tabu list of fixed length TT= dψ|ρ(t̃)|e. Parameter ψ ∈ (0,1)
is defined by the user. The attribute which characterizes a move is the name of the
involved feasible set ρt p ∈ ρ(t̃), and a move is tabu if its attribute is contained in the
corresponding list. In other words, an add move is tabu if the added feasible set has
been removed during the last TT moves, a drop move is tabu if the removed feasible
set has been added during the last TT moves. At each iteration, the algorithm selects
the best nontabu move with respect to the objective function value. The algorithm
terminates when a threshold number of iterations has been reached: this threshold is
set equal to 3 times the size of |ρ(t̃)|.

Example

Figure 6.5 reports an example on multigraph MG (for the sake of simplicity, we
avoid representing in detail the interior of the rail yards). A candidate new train
t̃ ∈ T \T is depicted in dashed thin lines, as a sequence of three crew segments,
{(B,D),(D,F),(F,G)}. Five other trains, t1, t2, . . . , t5 ∈ T , are currently used to

6.5 A Simultaneous Column and Row Generation method 181

Fig. 6.5 Example of multigraph MG. A new train t̃ is depicted in dashed thin line. The current
solution contains other five trains t1, t2, t3, t4 and t5, which define four different paths p1, p2, p3 and
p4.

move four blocks along paths p1, p2, p3 and p4. The second level of the Tabu Search
procedure starts identifying the following sets: ρt1 p1 = {(A,B)}, ρt2 p1 = {(B,D,E)},
ρt3 p2 = {(C,D)}, ρt4 p2 = {(D,F)}, ρt5 p2 = {(F,H)}, ρt1 p3 = {(A,B)}, ρt2 p3 =
{(B,D)}, ρt4 p3 = {(D,F)}, ρt4 p4 = {(F,B)}, ρt2 p4 = {(B,D)} and ρt3 p4 = {(D,C)}.
Then, it selects the feasible sets ρt4 p2 , ρt2 p3 , ρt4 p3 and ρt2 p4 , on which the search
will take place. In particular, the replacing condition forbids to assign block bp1 to
train t̃ on subpath (B,D), because train t2 serves bp1 also along crew segment (D,E),
which is not covered by the route of t̃.

Neighborhood exploration speed up

Since the first level Tabu Search adopts a global-best strategy in the neighborhood
exploration and the evaluation of each single move is based on a nested second level
Tabu Search, on the first level we need to avoid the expensive evaluation of moves
that cannot increase the prize collected by the current train. To obtain this speed up,
we compute a simple lower bound on the minimum reduced cost that the given train
can assume. This is obtained subtracting from the reduced cost of the empty train
t the maximum collectible prize, i. e. the sum over all blocks b of the largest prize
of a feasible subpath associated with b. If this lower bound is not smaller than the
minimum reduced cost found so far, the considered train cannot improve the best
known result, and therefore can be discarded.

182 6 The Train Design Optimization Problem

6.6 Computational results and final remarks

We developed all the procedures previously described using the C++ programming
language and built with gcc 4.6 setting the optimization flag -O3. We used ILOG
CPLEX 12.5 with the ILOG CONCERT libraries to solve the generated LP/ILP
problems. We performed the computational experiments on a computer equipped
with an Intel Xeon Processor E5-1620 Quad Core 3.60GHz and 16 GB of RAM.

6.6.1 Benchmark data sets

CRG-TDO has been tested on the two data sets provided by the organizers of the
2011 INFORMS RAS Problem Solving Competition3, who built them on purpose to
represent problems of a realistic size and structure. Table 6.1 summarizes the main
features of these data sets.

Data set Yards Blocks Tracks Segments
1 94 239 134 154
2 221 369 294 154

Table 6.1 Summary of the benchmark data sets characteristics.

Table 6.2 summarizes the operational costs and constraints which characterize
both data sets.

Parameter Value Description
MB 8 Maximum blocks per train
MS 3 Maximum block swaps per block
ME 4 Maximum work events per train
CL 400 Train start cost
CT 10 Train travel cost per unit of distance
CW 350 Cost per work event
CR 0.75 Car travel cost per unit of distances
CSv [30,100] Cost per block swap (range)
IS 600 Crew imbalance penalty
IT 1000 Train imbalance penalty
MR 5000 Cost per missed railcar

Table 6.2 Summary of the operational costs and constraints of the tested data sets.

3 See http://www.informs.org/Community/RAS/Problem-Solving-Competition/
2011-RAS-Problem-Solving-Competition

6.6 Computational results and final remarks 183

6.6.2 Parameter tuning

Our algorithm is divided in two main phases: the iterative Simultaneous Column
and Row Generation phase and the resolution of the final MIP problem, obtained
reintroducing the integrality constraint on the last RMP generated. Table 6.3 reports
the parameter values used for the first phase, while Table 6.4 reports those used
for the second one. The latter are CPLEX parameters (see IBM User’s Manual for
CPLEX 12.5), modified with respect to their default values, in order to increase the
time spent looking for better feasible solutions and decrease the time spent proving
the optimality of the solutions. This is because the method is overall heuristic, and
there is no strong advantage in solving its second phase exactly.

Parameter Value Description
NT 50 Number of trains considered during the block-path generation
MIT 1500 Number of iterations of the first level Tabu Search
DIT 30 Number of nonimproving iterations before restart in the first level Tabu

Search
α 0.4 Ratio of tabu moves to feasible moves in the first level Tabu Search
ψ 1/3 Multiplicative factor defining the tabu tenure in the second level Tabu Search

Table 6.3 Parameter setting for the Simultaneous Column and Row Generation phase.

Parameter Value Description
CPX PARAM POLISHAFTER 800 Time before solution polishing
CPX PARAM HEURFREQ 5 Frequency of the standard heuristic
CPX PARAM MIPEMPHASIS 4 Emphasize finding hidden feasible solutions
CPX PARAM RINSHEUR 10 Frequency of the RINS heuristic

Table 6.4 Parameter setting for the final MIP solution phase.

6.6.3 Computational results

When applied to real world data sets, such as the ones provided for the competition,
both phases take a significant computational time. The effective balance between
the time spent in each of them is crucial to determine the effectiveness of the overall
algorithm. In fact, if the first phase generates in early iterations trains and block-
paths forming a satisfactory solution, the best strategy is to immediately apply the
second phase, so that the MIP solver can quickly extract such a solution. Performing
several iterations not only takes a longer time, but also produces a larger final MIP
problem, which is in itself slower to solve. On the other hand, performing several
iterations also generates many more trains and block-paths, which could combine
into solutions of better quality. Thus, the number of train generation iterations, T GL,

184 6 The Train Design Optimization Problem

is an influential parameter. To investigate the compromise between a larger pool
of columns and a more easily manageable one, we launched different runs of the
algorithm, progressively increasing T GL from 1 to 7. In all runs, we limited to 1200
seconds the CPU time for the MIP model.

T GL φRMP TRMP φ ∗MIP LBMIP ∆MIP
1 2 221 916.4 1 2 165 522.6 2 165 523.7 0.00%
2 2 011 146.5 38 2 069 066.3 2 062 163.3 0.33%
3 1 971 325.5 180 2 049 600.4 2 033 074.2 0.81%
4 1 960 760 3 328 2 043 786.4 2 023 245.7 1.02%
5 1 952 871.8 531 2 034 870.0 2 012 509.6 1.11%
6 1 946 872.7 846 2 032 725.6 2 008 770.9 1.19%
7 1 946 302.1 1001 2 032 515.6 2 007 961.5 1.22%

Table 6.5 Results found at different iterations on data set 1.

T GL φRMP TRMP φ ∗MIP LBMIP ∆MIP
1 3 353 281.9 6 3 326 932.4 3 326 933.4 0.00%
2 3 152 746.5 142 3 217 136.6 3 207 162.1 0.31%
3 3 102 344.4 541 3 205 195.9 3 181 282.6 0.75%
4 3 081 430.7 867 3 188 500.1 3 160 019.9 0.89%
5 3 073 959 1 1609 3 191 017.4 3 152 668.7 1.22%
6 3 070 872.2 1924 3 200 528.1 3 151 721.1 1.55%
7 3 070 859.3 1997 3 199 701.3 3 150 620.6 1.56%

Table 6.6 Results found at different iterations on data set 2.

Tables 6.5 and 6.6 report the following information on the results obtained during
this experiment, respectively on the first and the second data set:

• T GL: number of train generation iterations performed.
• φRMP: optimal value of the RMP at the end of the Simultaneous Column and Row

Generation phase.
• TRMP: total computational time in seconds required by the Simultaneous Column

and Row Generation phase.
• φ ∗MIP: best solution found solving the final MIP problem.
• LBMIP: best lower bound found solving the final MIP problem.
• ∆MIP: percentage gap between the best solution and the lower bound.

Our best result for data set 1, φ ∗MIP = 2032515.6, is obtained at iteration T GL =
7, after 2201 seconds, i. e. 1001 seconds spent generating columns and rows and
1200 seconds spent solving the final MIP problem. Our best result for data set 2,
φ ∗MIP = 3188500.1, is obtained at iteration T GL = 4, after 2067 seconds, i. e. 867
seconds spent generating columns and rows and 1200 seconds spent solving the fi-
nal MIP problem. Incidentally, it is worth mentioning that these results strongly im-
prove upon those awarded by the RAS-2011 competition (see Colombo et al. 2011):

6.6 Computational results and final remarks 185

the cost, in fact, is 8.12% lower for data set 1 and 9.90% lower for data set 2, while
the computational time reduced from 10 hours for data set 1 and 4 hours for data set
2 to 30−40 minutes in both cases.

The values reported in subsequent rows of column φ ∗MIP describe the progres-
sive improvement of the solutions found as more train generation iterations are per-
formed. On the second data set, these values stop improving after the fourth itera-
tion. This is due to the increasing size of the MIP model, which restrains CPLEX
from finding better solutions in the allotted time, even if at least the same solution
is still available. Indeed, only at the first iteration the MIP model can be solved
exactly (see the gaps reported in the last column). The increasing size of the final
MIP problem is reflected by the increasing residual gap left, as well as by the larger
gap of the second data set with respect to the first one. An ad hoc algorithm to
solve the final MIP problem could perhaps improve this gap and reduce this com-
ponent of the overall computational time. Notice that neither φRMP nor LBMIP are
guaranteed lower bounds on the optimum of the whole problem, because the train
generation phase is heuristic, and it is terminated when negative cost columns can
still be found. However, they are lower bounds on the best value which can be found
at each iteration.

Tables 6.7 and 6.8 compare the four prize-winning methods of the RAS-2011
competition, referring to each of the two benchmark data sets. Columns M1, M2,
M3 and M4 report, respectively, the best solutions obtained by the methods winning
the first, second, third prize and the honorable mention. Method M1 is described
in Lozano et al. (2011), method M2 is our algorithm in the enhanced version here
presented, methods M3 and M4 are described in Wang et al. (2011) and Jin et al.
(2013). The rows of these tables provide the different cost components for the solu-
tions achieved, the total cost and the total execution time in seconds.

Cost M1 M2 M3 M4

Train start

417 031.000

35 600.000
344 381.000

29 200.000

Train travel 331 910.000 322 821.000

Train imbalance 14 000.000 30 078.000 34 000.000

Crew imbalance 21 000.000 20 186.000 34 200.000

Work event 55 650.000 40 950.000 53 898.000 53 200.000

Car travel 1 565 730.000 1 587 878.625 156 7680.755 1 590 491.100

Block swap 5 060.000 3 100.000 2 422.000 5 840.000

Missed cars 0.000 0.000 0.000 0.000

Total 2 043 471.000 2 032 725.625 2 018 643.755 2 069 752.100

CPU Time 45 2 201 80 000-90 000 342

Table 6.7 Comparison of the four prize-winning algorithms in the RAS-2011 competition on data
set 1.

Methods M1 and M3 appear to be nondominated in both data sets. In particular,
the method that won the contest (M1) finds good solutions in a matter of minutes,

186 6 The Train Design Optimization Problem

Cost M1 M2 M3 M4

Train start

485 277.000

52 400.000
440 652.200

39 600.000

Train travel 417 926.000 446 203.000

Train imbalance 10 000.000 15 760.090 26 000.000

Crew imbalance 9 600.000 13 553.680 25 200.000

Work event 82 950.000 63 000.000 78 170.060 90 300.000

Car travel 2 191 692.000 2 211 394.125 2 180 566.000 2 186 604.450

Block swap 8 080.000 4 180.000 3 467.220 6 270.000

Missed cars 420 000.000 420 000.000 420 000.000 420 000.000

Total 3 187 999.000 3 188 500.125 3 152 019.000 3 240 177.000

CPU Time 225 2 067 75 000-80 000 2700

Table 6.8 Comparison of the four prize-winning algorithms in the RAS-2011 competition on data
set 2.

whereas M3 finds the best known solutions in about one day of computation. When
focusing on data set 1, also the method here proposed (M2) is nondominated, with an
intermediate performance with respect to M1 and M3 and a computational of about
30− 40 minutes. Method M4 is dominated by M1, but also our method can find
a better solution in the same time (φ ∗MIP = 2052957.225, with T GL = 2 and 300
seconds of MIP computation). As for data set 2, method M1 dominates our method
and both dominate M4.

A detailed comparison, however, is complex since all the computational times
reported refer to different machines, though not dramatically different. Therefore,
only very large differences can be considered significant. Moreover, Wang et al.
(2011) do not explicitly report the CPU time required by M3 to find the best solution;
we had to extrapolate an approximate range from the plots provided in their report.
Since the values in that range are anyway fairly large, the relative error introduced
is probably limited, but the result is not precise.

Disaggregate analysis of the cost components

Tables 6.7 and 6.8 provide row by row the values of the cost components for meth-
ods M2 and M4; for the other two methods, not all components are available: some
components are aggregated with different levels of detail. An interesting remark is
that on both data sets our method found solutions with a smaller work event cost and
a larger car travel cost. These two aspects are related: reducing the number of work
events implies that blocks are loaded and unloaded less frequently, and therefore
travel along longer paths. It should be observed that in the given benchmarks the car
travel cost is the dominating cost component. Therefore, it is likely that the introduc-
tion of additional work events in the train generation phase could allow to improve
the solution in these specific data sets. Since we prefer to preserve the generality of
our method, we decided not to introduce modifications dictated by remarks on the

6.6 Computational results and final remarks 187

specific structure of the given data sets. In our opinion, a rail company manager who
would like to focus on specific cost components could easily do that by manipulat-
ing the cost coefficients in the input data. This would be more complex when using
methods intrinsically biased towards the minimization of some components.

A lower bound on the optimum

All methods proposed for the TDO problem are heuristic in principle. None of them,
therefore, can provide the optimal solution. It is however, possible to introduce a
simple lower bounding procedure, which provides an estimate from below of the
value of the optimum, so as to evaluate the quality of the available heuristic solu-
tions.

The idea is to consider separately the components of the cost function listed in
Section 6.2.2, to compute a lower bound for each of them, and to sum the bounds.
Table 6.9 provides the components of this bound, and its overall value, for the two
data sets considered. First of all, the missed railcars cost can be underestimated
determining whether there are blocks whose origin or destination does not belong
to any of the shortest paths of the available crew segments. If this occurs, those
blocks cannot be serviced in any way, their rail cars will be certainly missed, and
their cost will be included in the overall objective function. This is unlikely to occur
in practice, but it is the case of 5 blocks in data set 2. Otherwise, the lower bound is
set to zero, as in data set 1. Then, we consider the shortest path from the origin to the
destination of each block, except for those which are necessarily missed. Assuming
that they could be serviced by dedicated trains, we obtain a lower bound on the total
length of the corresponding block-path, and consequently on the block travel cost.
Then, we take into account that each train can carry at most MB blocks along its
route. The total number of nonmissed blocks divided by MB implies a lower bound
on the number of trains required to carry all the nonmissed blocks, and consequently
on the total train start cost. We could actually increase the number of missed blocks,
thus decreasing this bound, but that would correspondingly increase the bound on
the cost of missed cars by a larger amount. As well, the total travel distance for
the nonmissed blocks divided by MB provides a lower bound on the total travel
distance for the trains, which implies a bound on the train travel cost. We set to zero
the bounds for work events, block swaps, train imbalance and crew imbalance.

Based on these lower bounds, we can make a rough estimate of the quality of the
solutions obtained. In particular, on data set 1 our solution is 35.44% worse than
the lower bound, and the best known solution is 34.50% worse. On data set 2, our
solution is 28.10% worse and the best known one is 26.63% worse. These gaps
show that the heuristics succeed in providing at least reasonable solutions to a very
complex problem. The largest fraction of these gaps is probably due to the simple
nature of the lower bound. However, given the large money investments required
by the dispatch of freight trains, even a small reduction of the gap between the best
known solution and the optimal one could correspond to a significant saving.

188 6 The Train Design Optimization Problem

Cost component Data set 1 Data set 2
Missed cars 0 420 000
Block travel 1 399 840 1 919 660
Train start 12 000 32 000
Train travel 89 014 117 443
Work events 0 0
Block swaps 0 0
Train imbalance 0 0
Crew imbalance 0 0
Total 1 500 853 2 489 103

Table 6.9 Lower bounds on the optimal value of the single cost components and of the overall
cost on the two data sets of RAS-2011 competition.

6.7 Conclusions

In this chapter we described a Simultaneous Column and Row Generation (see Sec-
tion 2.4) heuristic to solve a Train Design Optimization problem. This problem
arises in the freight rail industry and it was the subject of the 2011 INFORMS RAS
Problem Solving Competition. The method described in this chapter is an improved
version of the one we developed to win the second prize in this competition. This
method consists of two sequential phases:

1. In the first phase, a Simultaneous Column and Row Generation approach identi-
fies good routes for trains and for blocks.

2. In the second phase, we solve using a standard MIP solver the final restricted
Master Problem enforcing the integrality constraint on all variables.

The first phase is based on the resolution of two different Pricing Problems, one
to generate routes for the blocks and one to generate routes for the trains. We tackled
the first problem by modeling it as a constrained shortest path and by solving it with
an ad-hoc heuristic. For what concerns the second Pricing Problem, we developed
a two-level Tabu Search heuristic where in the first level we determine the structure
of the new train route and in the second level we load it with blocks.

We compare the solutions obtained by our method to those obtained by the three
methods developed by finalist participants. The comparison is based on the two data
sets provided by the competition organizers and the costs of the solutions found by
the competing methods were provided by the other participants.

From this comparison, our method proves able to obtain very good solution in a
reasonable time (less than one hour). On data set 1, only one of the tested methods
is able to find a better solution, but requires a huge amount of CPU time. On data
set 2, a slightly better solution can be quickly found by one of the competing meth-
ods, and a better one in a very long time by another method. We think that further
improvements of our heuristic can be obtained by developing a superior method to
filter the generated routes before the second phase (for example, defining effective
nontrivial dominance criteria) or by introducing an ad hoc algorithm to solve the
final MIP model.

6.8 References 189

6.8 References

R. K. Ahuja, C. B. Cunha, and G. Şahin. Network Models in Railroad Planning and
Scheduling. In J. Cole Smith, editor, Tutorials in Operations Research: Emerging
Theory, Methods, and Applications, chapter 3, pages 54–101. INFORMS, 2005.

R. K. Ahuja, K. C. Jha, and J. Liu. Solving real-life railroad blocking problems.
Interfaces, 37:404–419, 2007.

M. Albers. Freight Railway Crew Scheduling: Models, Methods, and Applications.
Logos Verlag, Berlin, 2009.

A. A. Assad. Models for rail transportation. Transportation Research Part A, 14(3):
205–220, 1980.

F. Colombo, R. Cordone, and M. Trubian. A network-oriented formulation and
decomposition approach to solve the 2011 RAS problem.
http://www.informs.org/Community/
RAS/Problem-Solving-Competition/
2011-RAS-Problem-Solving-Competition, 2011.

J. F. Cordeau, P. Toth, and D. Vigo. A survey of optimization models for train routing
and scheduling. Transportation Science, 32(4):380–404, November 1998.

P. Corry and E. Kozan. Optimised loading patterns for intermodal trains. OR Spec-
trum, 30(4):721–750, 2008.

T. G. Crainic and J. M. Rousseau. Multicommodity, multimode freight transporta-
tion: A general modeling and algorithmic framework for the service network de-
sign problem. Transportation Research Part B, 20(3):225–242, 1986.

F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.
J. W. Goossens, S. van Hoesel, and L. Kroon. A branch-and-cut approach for solving

railway line-planning problems. Transportation Science, 38(3):373–393, 2004.
A. E. Haghani. Rail freight transportation: a review of recent optimization models

for train routing and empty car distribution. Journal of Advanced Transportation,
21:147–172, 1987.

A. E. Haghani. Formulation and solution of a combined train routing and makeup,
and empty car distribution model. Transportation Research Part B, 23(6):433–
452, 1989.

IBM User’s Manual for CPLEX 12.5. International Business Machines Corporation.
K. C. Jha, R. K. Ahuja, and G. Sahin. New Approaches for Solving the Block-to-

Train Assignment Problem. Networks, 51:48–62, 2008.
J. G. Jin and J. Zhao. Train design optimization.
http://www.informs.org/Community/
RAS/Problem-Solving-Competition/
2011-RAS-Problem-Solving-Competition, 2011.

Jian Gang Jin, Jun Zhao, and Der-Horng Lee. A column generation based approach
for the train network design optimization problem. Transportation Research Part
E: Logistics and Transportation Review, 50(0):1 – 17, 2013.

M. H. Keaton. Designing optimal railroad operating plans: Lagrangian relaxation
and heuristic approaches. Transportation Research Part B, 23(6):415–431, 1989.

190 6 The Train Design Optimization Problem

M. H. Keaton. Designing optimal railroad operating plans: A dual adjustment
method for implementing Lagrangian relaxation. Transportation Science, 26:
262–279, 1992.

L. Lozano, J. E. Gonzalez, and A. L. Medaglia. A column-row generation heuristic
for the train design optimization problem.
http://www.informs.org/Community/
RAS/Problem-Solving-Competition/
2011-RAS-Problem-Solving-Competition, 2011.

I. L. Wang, H. Y. Lee, and Y. T. Liang. Train design optimization.
http://www.informs.org/Community/
RAS/Problem-Solving-Competition/
2011-RAS-Problem-Solving-Competition, 2011.

Appendix

Tables 6.10 and 6.11 summarize the notation adopted in the chapter to describe,
respectively, the data and the solutions of the problem.

Name Description
V set of the rail yards
A set of the rail tracks
la length of rail track a
S set of the crew segments

v1(s) initial rail yard of crew segment s
v2(s) final rail yard of crew segment s

B set of the blocks
ob origin rail yard of block b
db destination rail yard of block b
Nb number of railcars in block b
Lb length of block b
Wb weight of block b
MB maximum number of blocks in a train
MS maximum number of block swap on a block-path
ME maximum number of work event on a train route
MLa maximum length of a train on rail track a
MWa maximum weight of a train on rail track a
MNa maximum number of trains admitted on rail track a
CL train start cost
CT train cost per unit of distance
CR railcar cost per unit of distance
CW cost per work event
CSv cost per block swap in rail yard v
IS crew imbalance penalty
IT train imbalance penalty
MR cost per missed railcar

Table 6.10 List of the notations used throughout the chapter to describe the data.

6.8 References 191

Name Description
T set of the feasible trains
Ta set of trains passing through rail track a
P set of the feasible block-paths
Pb set of the feasible block-paths associated with block b
Pt

b set of paths in Pb that use train t
Pa set of the block-paths that use rail track a
P(·) sequence of rail tracks defining its argument
P(t) sequence of rail tracks crossed by train t
P(p) sequence of rail tracks crossed by block path p
P(s) sequence of rail tracks crossed by the shortest path

associated with crew segment s
LP(·) total length of rail tracks associated with P(·)
Ka

t number of times train t passes through rail track a
WE(t) set of work events associated with train t
∆v(t) equal to 1 if the route of train t starts in v, −1 if it ends in v
∆s(t) difference between the number of times in which train t

uses crew segment s from v1(s) to v2(s) and from v2(s) to v1(s)
BS(p) set of nodes in which block-path p performs a block swap

bp block associated with block-path p
cT (t) cost of train t: cT (t) =CL+CT ·LP(t)+CW |WE(t)|
cP (p) cost of block-path p: cP (p) = NbpCR ·LP(p)+∑v∈BS(p) cv

Table 6.11 List of the notations used throughout the chapter to describe the solutions.

