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Fondazione IRCCS Ca’ Granda Ospedale Policlinico, 20122 Milano, Italy

2 Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS),
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Nonalcoholic fatty liver disease (NAFLD), defined by excessive lipid accumulation in the liver, is the hepaticmanifestation of insulin
resistance and the metabolic syndrome. Due to the epidemics of obesity, NAFLD is rapidly becoming the leading cause of altered
liver enzymes in Western countries. NAFLD encompasses a wide spectrum of liver disease ranging from simple uncomplicated
steatosis, to steatohepatitis, cirrhosis, and hepatocellular carcinoma.Dietmay affect the development ofNAFLDeither by increasing
risk or by providing protective factors. Therefore, it is important to investigate the role of foods and/or food bioactives on the
metabolic processes involved in steatohepatitis for preventive strategies. It has been reported that anthocyanins (ACNs) decrease
hepatic lipid accumulation andmay counteract oxidative stress and hepatic inflammation, but their impact onNAFLD has yet to be
fully determined. ACNs are water-soluble bioactive compounds of the polyphenol class present in many vegetable products. Here,
we summarize the evidence evaluating the mechanisms of action of ACNs on hepatic lipid metabolism in different experimental
setting: in vitro, in vivo, and in human trials. Finally, a working model depicting the possible mechanisms underpinning the
beneficial effects of ACNs in NAFLD is proposed, based on the available literature.

1. Introduction

In the last decades, the pandemic of overweight and obesity
related to sedentary lifestyle and excess intake of refined foods
has led to a dramatic rise in the prevalence of the metabolic
syndrome and associated conditions, such as type 2 diabetes
and dyslipidemia, leading to accelerated atherosclerosis [1],
but also to nonalcoholic fatty liver disease (NAFLD) [2, 3].

Lifestyle and dietary habits represent both major risk
and protective factors in the development and progression of
degenerative diseases [4].

Diets rich in fruits and vegetables are among the recom-
mended lifestyle modifications to decrease the risk of degen-
erative diseases, such as cardiovascular disease but also to
reduce the complications associated withmetabolic disorders

and advanced atherosclerosis. Diet is in fact affordable and
available and usually does not include the side effects and the
metabolic and physiologic burden that medications impose
on body systems [5].

In this regard, many different dietary components are
under study for their possible pharmacologic activity in
several pathophysiological conditions at different levels (e.g.,
vascular, immune, hepatic, etc.).

Most bioactive compounds have been documented in
fruits and vegetables [6] and their mechanisms of action
investigated both in in vitro and in in vivomodels. In partic-
ular, great interest has been devoted to several classes of
polyphenols and especially to a specific subset of molecules
called anthocyanins (ACNs).
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Table 1: Anthocyanin concentrations in selected food sources.

Food description Cyanidin
mg/100 g

Delphinidin
mg/100 g

Malvidin
mg/100 g

Pelargonidin
mg/100 g

Peonidin
mg/100 g

Petunidin
mg/100 g

Berries
Arctic bramble berries (Rubus arcticus) 88.3 0.7
Bilberry (Vaccinium myrtillus) 85.3 97.6 39.2 20.4 42.7
Blackberries (Rubus spp.) 99.9 0 0 0.4 0.2 0
Blueberries (Vaccinium spp.)

Cultivated 8.5 35.4 67.6 0 20.3 31.5
Wild 19.4 37.6 57.2 2.6 10 23.5

Chokeberry 344.1 0.6 1.2 1 0.1 2.8
Cranberries (Vaccinium macrocarpon) 46.4 7.7 0.4 0 49.2 0

Currants
Black (Ribes nigrum) 61.3 87.9 1.2 0.6 3.9
Red 65.5 9.3 0.2
Golden (Ribes aureum) 108.8 0.7 0.1

Elderberries (Sambucus spp.) 485.3 0 0 0
Raspberries

Black 669 16.7 1.1
Raspberries (Rubus spp.) 45.8 1.3 0.1 1 0.1 0.3

Saskatoon berries (Amelanchier canadensis) 110.6 50.4 10.6 0 3 6.3
Strawberries (Fragaria X ananassa) 1.7 0.3 0 24.8 0 0.1
Other fruits
Cherries, sweet 30.2 0 0 1.4 1.5 0
Grape

Red 1.2 2.3 39 0 3.6 2
Concord (Vitis vinifera) 23.8 70.6 6 4.8 14.9

Pistachio nuts, raw (Pistacia vera) 7.3 0 0 0 0 0
Plums

Black diamond (with peel) 56 0 0 0 0 0
Purple 17.9 5.2
Plums (Prunus spp.) 5.63 0 0 0 0.3 0

Vegetables
Black beans (P. vulgaris) 18.5 10.6 15.4
Cabbage red picked 11.8
Eggplant raw (Solanum melongena) 85.7
Onions red 3.2 4.3 0 2.1
Radicchio (Cichorium intybus) 127 7.7
Radishes (Raphanus sativus) 0 0 0 63.1 0 0
Sweet potato purple (cooked) 10.6 0.9 0

2. Anthocyanins

ACNs are water-soluble bioactive compounds, which belong
to the widespread group named flavonoids within the
polyphenol class. Chemically, ACNs consist of two aromatic
rings linked by three carbons in an oxygenated heterocycle.
The chromophore of ACNs is the 7-hydroxyflavylium ion.
In particular, ACNs consist of an aglycon base or flavylium
ring (anthocyanidins), sugars, and possibly acylating groups
(Figure 1) [7]. ACNs are responsible for the red, purple and

blue colors ofmany flowers, cereal grains, fruit, and vegetable.
They are generally found in the skins, and their content is
usually proportional to color intensity. ACN content varies
greatly depending on the different food sources considered
(Table 1) [8]. More than 600 different ACNs have been
identified in vegetables, derived from twenty-three different
aglycones (anthocyanidins) classified according to the num-
ber and position of hydroxyl and methoxyl groups on the
flavan nucleus. The six anthocyanidins commonly found in
fruit and vegetables are pelargonidin, cyanidin, delphinidin,
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Figure 1: General chemical structures of anthocyanins in the diet. R
3
= sugar (i.e., glucose, arabinose, galactose, as monomers, or dimers).

Sugars can be present also on ring A; moreover acylation of sugars with aliphatic and/or aromatic acids can be found.

peonidin, petunidin, and malvidin which are combined with
sugars (mostly glucose, galactose, and arabinose) (Figure 1)
[8].

ACN intake has been estimated to range between
180mg/day and 215mg/day, but these values can be 10 times
lower in industrialized countries [9–11]. ACN bioavailability
is reported to be lower than that of other polyphenols,
and less than 1% of consumed ACNs is generally absorbed,
reaching plasma concentrations in the nanomolar order [12].
In addition, ACNs are rapidlymetabolized and their presence
in the circulation is limited to a few hours. Despite their
low absorption and rapid metabolism, the regular intake
of ACNs may result in beneficial effects on human health
by reducing the risks of cardiovascular disease and cancer
[13–15]. Indeed, they possess high antioxidant capacity and
can play a key role in the prevention of oxidative stress by
scavenging reactive oxygen species and free radicals and by
modulating endogenous defense system, as demonstrated in
several in vitro and in vivo studies [16–18]. ACNs have also
been documented to ameliorate hyperglycemia, to modulate
endothelial function, and to decrease inflammation [19–24].
Moreover recently ACNs have been studied for their role in
the modulation of lipid metabolism and fat deposition [25–
27] in different tissues, including the liver.

3. Nonalcoholic Fatty Liver Disease

NAFLD is characterized by liver fat deposition, that is,
steatosis, related to systemic insulin resistance (IR) [28].
In susceptible individuals, steatosis may be associated with
oxidative hepatocellular damage, inflammation, and activa-
tion of fibrogenesis, defining nonalcoholic steatohepatitis
(NASH) [29, 30]. NASH, but not simple steatosis, is a
potentially progressive liver disease leading to cirrhosis and
hepatocellular carcinoma [31]. Following the epidemics of
obesity and the metabolic syndrome, NAFLD is rapidly
becoming the leading cause of altered liver enzymes in
Western countries [2, 32, 33], and NASH will become the
major cause of end-stage liver disease and hepatocellular
carcinoma within the next 10–20 years.

Fatty liver, that is, hepatic fat accumulation exceeding
5% of total liver mass, results from an unbalance between
triglyceride deposition and synthesis on one hand and

oxidation and secretion by lipoproteins on the other hand
[34] and initially represents a protective mechanism against
the toxicity resulting from an increased flux of free fatty
acids (FFAs) to the liver [35]. Most of excess hepatic lipid
content derives from increased peripheral lipolysis [36],
which is caused by adipose tissue insulin resistance [37],
and is a typical feature of obesity. Other contributing factors
are increased lipogenesis induced by hyperinsulinemia or
directly by diet. Indeed, the major risk factor for NAFLD
is systemic IR due to central obesity and the metabolic
syndrome [28, 38]. Impaired ability to secrete lipoproteins
[39] and changes in fattyacid oxidation also contribute to
hepatic fat accumulation [40].

Development of NASH has classically been explained by
the occurrence of a so-called second-hit, leading to the acti-
vation of inflammation, in the context of hepatic steatosis (the
“first hit”) [41]. This second insult likely represents a com-
bination of insults related to (a) direct hepatic lipotoxicity,
(b) hepatocellular oxidative stress secondary to free radicals
produced during 𝛽- and 𝜔-oxidation of FFAs, (c) inflam-
mation triggered by endotoxins engaging Toll-like receptor-
4 (TLR-4) in Kupffer cells (the hepatic macrophages) and
hepatocytes due to increased intestinal permeability, bacterial
overgrowth, and altered intestinal flora [42–44], (d) cytokine
release, and (e) endoplasmic reticulum stress.These combine
to produce inflammation, cellular damage, and activation of
fibrogenesis. Genetic factors, and in particular the I148M
variant of Patatin-like phospholipase domain containing-
3 (PNPLA3), play a major role in determining individual
susceptibility to develop steatosis or NASH and progressive
liver disease, interacting with dietary factors [45, 46].

4. Anthocyanins in NAFLD

Recent studies documented that ACNs can reduce hepatic
lipid accumulation, but their impact on NAFLD has yet to
be determined.

We have classified the available evidence according to the
experimental setting: in vitro, in vivo, and in human trials.
For the revision of the literature, the PubMed database was
searched up to June 2013 (keywords: steatosis or nonalcoholic
fatty liver disease or steatohepatitis plus anthocyanins or
single anthocyanin names). No publication data restrictions
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Table 2: Studies evaluating the effect of anthocyanins on hepatic lipid metabolism and hepatocellular lipotoxicity in vitro.

Paper Anthocyanin Food Model Effects Mechanism

46 ACN-rich extract Bilberry Primary rat
hepatocytes

⇓ tBH induced damage
⇓MTT, LDH, TBARS Antioxidant

47 ACN-rich fraction Blueberry HepG2 cells ⇓ OA induced TG accumulation
at high doses ?

48 Anthocyanin factor Sweet potato HepG2 cells ⇑ pAMPK
⇓ Srepb1c, FAS ⇑ pAMPK

49 Cyanidin-3-O-𝛽-glucoside — HepG2 cells ⇓ lipogenesis

⇑ pPKC 𝜁
⇓MtGPAT1

translocation to
OMM

50 Cyanidin chloride Blackberry HepG2 cells ⇑ antioxidants
(SOD, catalase)

⇑ pMAPK,
⇑ Nrf2 and PPAR𝛼

51 Cyanidin-3-O-𝛽-glucoside — HepG2 cells ⇓ ROS induced by glucose
⇑ antioxidants (GSH) ⇑ PKA and CREB

52 Cyanidin-3-O-𝛽-glucoside — HepG2 cells ⇑ pAMPK and pACC,
⇑ CPT1 and FFAs oxidation

AMPK activation
mediated by

calmodulin kinase
kinase

53 ACN-rich extract Mulberry HepG2 cells

⇑ pAMPK and pACC,
⇑ PPAR𝛼, CPT1 and FFAs

oxidation
⇓ Srebp1c and lipogenesis

AMPK activation

54 Cyanidin — HepG2 cells ⇓ lipogenesis
⇑ lipolysis PPAR𝛼𝛽/𝛿 agonist

AMPK: adenosine monophosphate protein kinase; Srebp1c: sterol regulated element binding protein 1c; ACC: acetyl-coenzyme A carboxylase; p: phospho;
glycerol 3 phophate acyl transferase; PKC: protein kinase C; OMM: outer mitochondrial membrane; SOD: superoxide dismutase; MAPK: mitogen associated
protein kinase; Nrf2: nuclear factor erythroid 2-related factor 2; PPAR𝛼: 𝛽/𝛿 peroxisomes proliferator activated receptor 𝛼; ROS: reactive oxygen species; GSH:
reduced glutathione; PKA: protein kinase A; CREB: cAMP-response element binding protein; CPT-1: carnitine-palmytoil-transferase-1; ACN: anthocyanins;
OA: oleic acid; tBH: tert-butyl hydroperoxide;MTT: 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazoliumbromide; LDH: lactate dehydrogenase; TBARS:
thiobarbituric acid reacting substances.

were applied. Papers were selected for inclusion in this review
on the basis of their relevance, and additional papers were
obtained from their reference lists.

4.1. In Vitro. Studies evaluating the effect of ACNs in vitro
on lipid metabolism and oxidative stress in hepatocytes,
typical of NAFLD and NASH, are presented in Table 2. Most
studies were conducted in human hepatoma HepG2 cells
[47–55], an established model of hepatic lipid metabolism.
Both ACN-rich extracts of foods (berries and potatoes) and
synthetic ACNs (cyanidin hydrochloride and cyanidin-3-O-
𝛽-glucoside) were employed. Unfortunately, interpretation of
the overall evidence is hindered by differences in cellular
models, experimental protocols, and the molecular pathways
evaluated. However, most studies are concordant on the fact
that ACNs reduce hepatocellular lipid accumulation [48–
50, 53–55] by inhibiting lipogenesis [49] and possibly by
promoting lipolysis [53–55], although the different aspects
of lipid metabolism were not evaluated in all studies. Fur-
thermore, ACNs also reduce cellular oxidative stress by
promoting the antioxidant response [47, 51, 52]. Interestingly,
three independent studies reported that activation of the
adenosine monophosphate protein kinase (AMPK) pathway
was implicated in mediating the effect of ACNs on hepatic

lipid metabolism and antioxidant response [49, 51, 53, 54].
However, another study suggested that ACNs may act as
direct agonist of PPAR receptors in hepatocytes [55].

4.2. In Vivo. Studies evaluating the effect of ACNs in vivo
on hepatic lipid metabolism, steatosis, oxidative stress, and
steatohepatitis are presented in Table 3. Also in this case, the
interpretation of the overall evidence is difficult, due to the
very different experimental models of NAFLD andmetabolic
syndrome employed and to the different outcomes for the
evaluation of lipid metabolism, oxidative stress, and liver
damage. In addition, in some studies, animals were exposed
to synthetic ACNs (i.e., cyanidin-3-O-𝛽-glucoside) [50, 52,
56, 57], whereas in others they were exposed to extracts of
ACN-rich foods (e.g., sweet potato, berries, and oranges) [27,
49, 58–62]. Mirroring the results obtained in vitro, there is
ample convergence supporting an effect of ACNs in reducing
hepatic lipid accumulation, that is, steatosis [49, 50, 52, 56–
58, 60–63]. In addition, the majority of studies also reported
an improvement in hepatic and systemic IR and serum
lipids, often related to reduced weight gain [57, 58, 60–62].
Again, increased activation of PPAR𝛼 inducing lipolysis and
reduced lipogenesis were postulated to be responsible for
decreased hepatic fat content [27, 59–61]. Increased activity of
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Table 3: Studies evaluating the effect of anthocyanins on hepatic steatosis and steatohepatitis in vivo.

Paper Anthocyanin Food Model Metabolic effects Molecular effects

48 Anthocyanin factor Sweet potato Mice fed HFD ⇓ weight gain
⇓ steatosis

⇑ pAMPK and pACC
⇓ Srepb1c, FAS, ACC

49 Cyaniding-3-O-𝛽-glucoside — KKAy mice ⇓ steatosis ⇓ GPAT1 translocation
to OMM

51 Cyanidin-3-O-𝛽-glucoside — db/db mice
⇑ antioxidants (GSH)
⇓ steatosis, ROS, and

inflammation
⇑ PKA and CREB

55 Cyanidin-3-O-𝛽-glucoside Blackcurrant Rats
⇓ steatosis

⇓ hepatic saturated FAs
⇑ antioxidants

?

56 Cyanidin-3-O-𝛽-glucoside — C57Bl/6 on HFD
and db/db

⇓ glucose and IR
⇓ cytokines and adipose tissue

inflammation
⇓ steatosis

⇓ hepatic JNK
⇓ hepatic FOXO1

activity and
gluconeogenesis

57 Several Tart cherry Dahl Salt-Sensitive
rat

⇓ fasting glucose
⇓ hyperlipidemia
⇓ hyperinsulinemia
⇓ steatosis

⇑ PPAR𝛼
⇑ acyl-coenzyme A

oxidase

58 —
Vitis coignetiae
Pulliat leaves
(yama-budo)

Rats on HFD
choline deficient

diet

⇓ liver enzymes and liver fibrosis
⇓ CYP2E1
⇑ antioxidants

?

59 Several Moro orange juice C57Bl/6 mice on
HFD

⇓ weight gain
⇓ IR, ⇓ TGs,
⇓ steatosis

⇓ LXR, FAS
⇑ PPAR𝛼, Srebp1c

27 Several
Wild blueberry
(Vaccinium

angustifolium)
Zucker rats ⇓ hyperlipidemia ⇑ PPAR𝛼

⇓ Srebp1c

60 — Blueberry Zucker rats on
HFD

⇓ IR and lipids
⇓ adiposity
⇓ steatosis

⇑ PPAR𝛼

61 — Mulberry Hamsters on HFD
⇓ weight gain and visceral fat,
⇓ TGs, chol, FFAs
⇓ steatosis

⇓HMG-CoA, FAS
⇑ PPAR𝛼, CPT-1

62 Several Elderberry Hamsters fed high
fat fish oil

⇓ serum lipids
⇓ steatosis

⇓ lipoperoxidation
?

63 — Mulberry Rats on HFD
⇓ serum lipids
⇓ hepatic and serum
lipoperoxidation

⇑ antioxidants

HFD: high fat diet; IR: insulin resistance; TGs: triglycerides; LXR: liver X receptor; FAS: fatty acid synthase; GAPT1: glycerol 3 phosphate acyl transferase;
PPAR𝛼: peroxisomes proliferator activated receptor 𝛼; chol: cholesterol; FFAs: free fatty acids; CPT-1: carnitine-palmitoyl-transferase-1; HMG-CoA red: 3-
hydroxymethyl-3-glutaryl-coenzyme A reductase; p: phospho; AMPK: adenosine monophoshopate protein kinase; Srebp1c: sterol regulated element binding
protein 1c; ACC: acetyl-coenzyme A carboxylase; ROS: reactive oxygen species; JNK: c-Jun N-terminal kinase; FOXO1: forkhead box O1.

the AMPK pathway was confirmed in vivo in one study [49],
and increased hepatic antioxidant activity after exposure to
ACN was also widely confirmed in experimental models of
NAFLD [52, 56, 59, 63, 64]. However, whether improved
redox status was secondary to or independent of reduced
hepatic lipids and improved metabolic status was not tested.
In some studies, these effects of ACN exposure translated in
an improvement in inflammation, that is, in reduced severity
of steatohepatitis [53, 58, 60]. The involvement of AMPK
activation inmediating the beneficial effect ofACNon insulin
sensitivity is also supported by evidence that bilberry extract
ameliorates insulin resistance and hepatic lipid metabolism
via this pathway [65].

4.3. Clinical Studies. There is only one study evaluating the
effect of ACN on NAFLD patients, which is summarized in
Table 4 [66]. Suda and coworkers recruited 48 adult men
with increased liver enzymes negative for viral hepatitis,
thereby likely affected by NAFLD. During a eight-week
intervention, about 200mg of acylated ACNs or placebo
was administered twice daily. Acylated ACN intake was
associated with reduced levels of liver enzymes, in par-
ticular gamma-glutamyltransferases. However, liver damage
was not directly assessed, fatty liver was not confirmed
by direct imaging, and the effect of acylated ACNs was
not compared to that of a control food or to the lack of
intervention.
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Table 4: Studies evaluating the effect of anthocyanins on hepatic steatosis and steatohepatitis in patients.

Paper Anthocyanin Food Subjects Metabolic effects Mechanism

64 Acylated
anthocyanins

Purple sweet potato
beverage 8wks

Healthy humans with
borderline hepatitis

⇓ GGT (AST, ALT)
⇓ oxidative stress ⇓ oxidative stress

GGT: g-glutamyl transferase; ALT: alanine aminotransferase; AST: aspartate aminotransferase.

AMPK activity

Srebp1c

Oxidative stress

Antioxidant enzymes

Lipolysis

Liver damage

Lipogenesis

Anthocyanins

PPAR 𝛼

Figure 2: Possible mechanisms underpinning the beneficial effects
of anthocyanins in NAFLD and NASH: a Srebp1c working model
based on available studies. Anthocyanins may prevent the pro-
gression of liver damage related to NAFLD by three independent
mechanisms: inhibition of lipogenesis by reducing Srebp1c, promo-
tion of lipolysis by induction of PPAR𝛼 activity, and reduction of
oxidative stress by induction of anti-oxidant enzymes. The effects
of anthocyanins on lipid metabolism seem to be dependent on the
activation of the AMPK pathway in hepatocytes.

5. Conclusions

It is widely accepted that exploring the role of foods and
more specifically the effect of bioactive compounds such as
ACNs on the metabolic processes involved in chronic diseases
is critical for preventive strategies. For instance, similar
therapeutic activities have been shown for docosahexaenoic
acid on steatosis severity in children with NAFLD [67]. The
availability of data demonstrating cause-effect relationships
and the specific mode of action of such compounds are
of paramount importance in order to support any dietary
recommendation or supplementation.

A working model depicting the possible mechanisms
underpinning the effects of ACN in NAFLD, based on the
available findings in the literature, is presented in Figure 2.
ACNs may prevent the progression of liver damage related
to NAFLD by three independent mechanisms: inhibition
of lipogenesis by reducing Srebp1c, promotion of lipolysis
by induction of PPAR𝛼 activity, and reduction of oxidative
stress.

On the basis of these data, it seems that ACN-rich
foods can be promising for the prevention of NAFLD and
its complications. Additional studies are required to clarify
the molecular mechanisms and to test the specific effect of
single compounds and food extracts in vitro and in vivo.
Randomized controlled studies are warranted to test foods

on histological damage or noninvasive biomarkers of liver
damage progression in patients with NASH.
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