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ABSTRACT 

 

 

In order to protect the body from a wide range of harmful environmental agents, the 

intestine has developed a number of barrier mechanisms to limit the entry of potential 

hazards. These include the physical barrier formed by the epithelial layer and the 

intestinal immune system that is important to induce either tolerance against food antigens 

and intestinal flora or inflammatory responses against dangerous microorganisms.  

It has been demonstrated that tolerance against commensal bacteria is strictly 

compartmentalized, in the sense that the systemic immune system is completely 

unprimed by these bacteria. It was demonstrated that the mLNs function as a “firewall” 

confining induction of tolerance to the mucosa while the systemic immune system remains 

ignorant to these bacteria.  

However, in these studies how the bacterial flora is excluded from the entrance in the 

bloodstream via the intestinal blood vessels has not been analyzed.  

Here, we describe a new barrier that we called the GVB (gut vascular barrier) that plays a 

fundamental role in controlling the spreading of molecules and bacteria to systemic sites. 

We found that intestinal endothelial cells (ECs) express the main components of TJs 

(occludin, JAM-A, Cldn-12, ZO-1 and cingulin) and AJs (VE-cadherin and junctional β-

catenin), indicating the presence of a barrier that excludes bacteria from passing through 

the paracellular route. In addition, we observed the existence of a “gut vascular unit” 

(GVU) whereby ECs were associated with enteric glial cells and pericytes, whose role in 

the establishment of the endothelial barrier phenotype remains to be analyzed. 

Moreover, we show that GVB integrity could be modified by Salmonella typhimurium 

infection. Indeed, upon infection ECs up-regulated the expression of Plvap, that has been 

previously used as a marker of immature/damaged vascular barrier in the brain, and up-

regulated caveolin-1, the major component of caveolae. These changes correlated with a 

higher permeability of the endothelium to small molecules and to bacteria.  
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One way by which S. typhimurium could modify the barrier properties of the intestinal 

blood vessels could be through the negative regulation of the Wnt/β-catenin signaling 

pathway. Indeed, we found that the activation of β-catenin was reduced upon Salmonella 

infection in vitro. Consistently, we found that Salmonella was incapable to modify ECs 

permeability and to spread systemically in mice where β-catenin was constitutively 

activated by genetic means only in vascular ECs. Furthermore, it appeared that the TTSS 

encoded by Salmonella pathogenicity island-2 was involved in the regulation of Wnt/β-

catenin signaling pathway in ECs. 

Finally, preliminary results show that the microbiota could induce GVB maturation and 

maintenance. However, the mechanisms involved in these processes as well as the 

bacterial species responsible for this process have not been investigated yet. 
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INTRODUCTION 

 

 

 

In order to protect itself from a wide range of harmful environmental agents, the body has 

developed a number of barrier mechanisms to limit the entry of potential hazards. 

The organ mostly challenged by foreign material is the intestine. It has to constantly deal 

with innocuous food antigens and with an enormous number of commensal microbes that 

reaches 1014 bacteria in the human intestine, with close to 1000 distinct species, without 

considering archea, fungi, and viruses (Eberl, 2010). In the lower intestine, these 

organisms have evolved together with the host establishing a mutualistic relationship. 

Indeed, the microbes benefit from a constant nutrient supply while the host benefits from 

microbial degradation of plant polysaccharides and other dietary substances, of 

xenobiotics and they provide a barrier against potential pathogens (Hooper et al., 2012). 

Therefore, the union between the host and his microflora can be seen as a new functional 

entity termed a “superorganism” (Eberl, 2010). Despite the symbiotic relationship, the 

presence of the microbiota poses immense health challenges. For this reason, the 

intestine has adapted different strategies to limit opportunistic invasions by the resident 

microbiota and to maintain symbiotic host-microorganism relationship avoiding 

pathologies such as bacteremia and chronic inflammation (Hooper and Macpherson, 

2010). Two main methods are used for these purposes: the structural 

compartmentalization that minimizes bacterial–epithelial cell contact and the presence of 

specialized immune cells responsible in handling intestinal bacteria and food antigens in a 

tolerant way (Fig. 1.1). 
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1.1 Physical Barrier 

	
  

1.1.1 The epithelial barrier 

 

The intestinal epithelium is a permeable barrier essential in preventing the uncontrolled 

passage into the host connective tissue of food or bacteria, and is involved in regulating 

the fluid absorption and secretion. Intercellular tight junctions (TJ) and adherens junctions 

(AJ), located near the apical surface of the intestinal epithelial cells, prevent paracellular 

traffic, whereas the brush border on the apical side avoids microbial attachment and 

invasion (Brown et al., 2013). Apart from the columnar absorptive epithelium, several 

specialized cells are involved in the creation and maintenance of the intestinal 

homeostasis. One of them is the M cell, located in the epithelium lining the secondary 

lymphoid organs such as Peyer’s patches (PP), colonic patches and isolated lymphoid 

follicles. These cells are characterized by irregular microvilli on the apical membrane, 

consistent with their function to transport antigens, and a by pocket-like microfold structure 

on the basal side that contains T and B lymphocytes, macrophages and dendritic cells 

(DC) (Goto and Kiyono, 2012). Additional support for the maintenance of the barrier 

function is given by other specialized epithelial cells such as goblet cells, important for the 

formation of the mucus layer, and Paneth cells, that secrete antimicrobial peptides (Fig. 

1.1), both of which will be described in detail in the next sections. 

In the last decade, it has become evident that the epithelial layer is not merely a physical 

barrier but it takes part in immunological processes discriminating between harmless and 

potentially harmful stimuli. Indeed, epithelial cells express a wide range of pattern 

recognition receptors (PRR), including Toll-like receptors (TLR) as well as nucleotide-

binding oligomerization domain (NOD)-like receptors (NLRs) that recognize bacterial 

microbe-associated molecular patterns (MAMP) shared by pathogens and the gut 

microbiota. The key mechanism to discriminate invasive pathogens, which can cross the 

epithelial monolayer, from the commensal microbiota, and to prevent responses to the 
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abundant bacterial components in the gut lumen preserving the ability to mount responses 

against pathogens is the compartmentalization of PRRs to the basolateral membrane or 

into the cytosol (Artis, 2008; Iliev et al., 2007; Rakoff-Nahoum et al., 2004). For example, 

TLR5, which recognizes bacterial flagellin, is expressed exclusively on the basolateral 

membrane allowing intestinal epithelial cells to induce an inflammatory response only 

against invading bacteria (Gewirtz et al., 2001).  

Additionally, commensal bacteria can actively modulate inflammatory responses 

modulating NF-κB signaling pathway in the epithelial cells. Indeed, it has been shown that 

apical TLR9 stimulation by commensal bacteria induces the ubiquitination of IκB that 

accumulates in the cytoplasm preventing NF-κB activation, whereas basolateral TLR9 

signals results in the activation of NF-κB transcriptional activity (Lee et al., 2006). Non-

pathogenic bacteria can reduce NF-κB activation also by inducing the expression of 

peroxisome proliferator-activated receptor gamma (PPAR-γ), which favors the export of 

RelA NF-κB subunit out of the nucleus reducing its transcriptional activity (Kelly et al., 

2004). 

Intestinal epithelial cells contribute to maintenance of the intestinal hypo-responsiveness 

to harmless stimuli also interacting with the underlying antigen presenting cells and 

conditioning them through the secretion of cytokines (Iliev et al., 2007). Such conditioning 

renders DCs “tolerogenic”, i.e. unable to induce inflammatory responses and capable to 

induce tolerogenic T cell responses (Iliev et al., 2009a; Iliev et al., 2009b) (Rimoldi et al., 

2005). In contrast, in presence of inflammatory signals, the intestinal epithelium releases 

inflammatory cytokines and chemokines that recruit non-educated DCs, competent in 

inducing inflammatory responses (Iliev et al., 2007).  

Numbers of factors, known to be produced by epithelial cells, are involved in the DC 

conditioning. Among those, transforming growth factor-β (TGF-β), retinoic acid (RA), 

prostaglandin (PG) E2 and thymic stromal lympopoietin (TSLP) have been shown to play 

a major role in the induction of tolerance (Iliev et al., 2007). 
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Figure 1.1: Physical and immunologic barriers for intestinal microbiota containment (Hooper, 2009). 

Goblet cells secrete mucins that assemble into a mucus layer. Bacteria are abundant in the outer mucus layer, 

whereas the inner layer remains sterile. Together with the mucus layer, antimicrobial proteins further help to 

avoid direct contact between bacteria and epithelial cells. LP-DCs can actively sample bacteria from the lumen 

extending their dendrites between the epithelial cells. Migrating into the Peyer's patches and mesenteric lymph 

nodes, DCs loaded with bacteria induce B cells to differentiate into IgA+ plasma cells. Recirculating plasma 

cells produce IgA that are then transcytosed across the epithelium where they limit  bacterial penetration into 

the host tissues. 

 

 

1.1.2 Mucus Layer 

 

The first layer of defense between the gut and the external environment is the mucus 

layer. Specialized epithelial cells, namely goblet cells, secrete mucin glycoproteins that 

form a thick gel-like mucus layer that in the colon has been estimated to be around 50 μm 

in mice and 100μm in rat  (Johansson et al., 2011). It is composed of two different layers: 
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the outer lose and easily removable mucus and the inner epithelium-adherent layer. 

Staining the intestine with 16S ribosomal RNA probes has revealed that unlike the inner 

mucus layer that is completely sterile, commensals colonize the outer layer (Johansson et 

al., 2008) that avoids their wash out and allows their growth providing glycans as nutrient 

source. Studies on mucus composition have established that it contains carbohydrates, 

immunoglobulins, cellular proteins, as well as lipids and electrolytes but the major 

component of both layers is mucin (Muc)2. Muc2 is a large glycoprotein characterized by 

a protein core heavily O-glycosylated with numerous carbohydrate chains that are 

important for Muc2 function (Johansson et al., 2008). Different studies in Muc2 deficient 

mice that lack mucus layer have demonstrated that Muc2 mucin plays an important role in 

the maintenance of intestinal physiology. Indeed, it has been shown that Muc2−/− mice 

develop spontaneous colitis by 7 weeks of age (Van der Sluis et al., 2006) as well as 

colon cancer after 6–12 months (Velcich et al., 2002). Furthermore Muc2−/− mice are 

more susceptible to infection by enteric pathogens such as Salmonella typhimurium 

(Zarepour et al., 2013) or Citrobacter rodentium (Bergstrom et al., 2010). This is due to 

the fact that the lack of Muc2 and therefore deficiency of both mucus layers facilitates 

direct contact between pathogens and epithelium as well as the contact with commensal 

microbes, that in this way are able to translocate across the epithelium and into the lamina 

propria (Bergstrom et al., 2010). 

Recently, Shan et al. have demonstrated that the mucus acts not only as a physical 

barrier between gut tissue and intestinal bacteria but it also influences the function of 

antigen presenting cells, in particular DCs, and epithelial cells contributing in establishing 

tolerance toward food and microbiota-derived antigens. Indeed, on one side, DCs 

conditioned with glycosylated Muc2 show reduced expression of pro-inflammatory 

cytokines such as interleukin (IL)-12 counteracted by an increased production of anti-

inflammatory cytokines (IL-10) when stimulated with lipopolysaccharide (LPS). This 

results in the generation of regulatory T (Treg) cells. On the other side, upon Muc2 
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stimulation intestinal epithelial cells produce molecules that support DC regulatory 

function, such as TGF-β, TSLP and IL10 (Shan et al., 2013). 

 

1.1.3 Antimicrobial peptides 

 

The second way by which the bacteria-epithelial cell contact is limited is the secretion of 

antimicrobial peptides that are particularly important in the small intestine since it lacks a 

continuous mucus layer (Brown et al., 2013). Several antimicrobial peptides have been 

identified such as defensins and C-type lectins that are able to kill bacteria via enzymatic 

digestion of bacterial cell wall or inner membrane, and lipocalins that are able to inhibit 

bacterial growth by interfering with the acquisition of essential metals like iron (Brown et 

al., 2013). The expression of these proteins is regulated by different mechanisms. Indeed 

some defensins, for example some α-defensins that are produced by neutrophils and 

Paneth cells located at the base of the small intestinal crypts, are expressed constitutively 

without any bacterial stimulation (Putsep et al., 2000). However, other antimicrobial 

peptides are produced upon the ligation of PRRs, such as TLRs or NOD receptors. For 

example, it has been shown that some C-type lectins, such as regenerating islet-derived 

protein (REG)-3β and REG-3γ are expressed in the small intestine upon TLR engagement 

and myeloid differentiation primary response 88 (MyD88) signaling pathway activation 

(Vaishnava et al., 2008) similarly to some α-defensins that are expressed upon NOD2 

recognition of bacterial muramyl dipeptide (Kobayashi et al., 2005).  

The functional importance of antimicrobial proteins was demonstrated using gain-of-

function and loss-of-function animal models. Indeed, it has been demonstrated that mice 

lacking Paneth cells have an increased penetration of commensal bacteria and pathogens 

such as Salmonella. Indeed without antimicrobial peptides, S. typhimurium is able to 

overcome the epithelial barrier and spread systemically (Vaishnava et al., 2008). The 

resistance to this pathogen could be restored in transgenic mouse models by inducing the 

production of the human defensin-5 in the mouse gut (Salzman et al., 2003). 
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The importance of antimicrobial peptides for the maintenance of the intestinal 

homeostasis has been supported also by studies on human pathologies. Indeed, reduced 

levels of α-defensins were detected in samples from Crohn’s disease patients (Wehkamp 

et al., 2005) suggesting a role for enteric α-defensins in the pathogenesis of inflammatory 

bowel diseases.  

 

 

1.2 Immune Barrier 

	
  

1.2.1 IgA 

 

A further line of defense to uncontrolled bacterial translocation through the host epithelial 

cell layer involves the secretion of immunoglobulin (Ig)A.  

IgAs specific for the intestinal microflora are produced upon stimulation of B cells by DCs 

that have sampled luminal bacteria in the PPs (Macpherson and Uhr, 2004) or directly 

from the gut lumen (Rescigno et al., 2001). Together with DCs, also epithelial cells can 

directly induce class switch recombination from IgM to IgA by producing B cell activating 

factor belonging to the TNF family (BAFF) and the proliferation-inducing ligand (APRIL) 

upon TLR stimulation. BAFF and APRIL recognized by their receptor on B cells induces 

the activation of NFκB pathway that up-regulates the expression of the activation-induced 

cytidine deaminase (AID), the enzyme required for the class switch recombination 

(Macpherson et al., 2012). 

Induced IgAs in the intestinal lymphoid follicles undergo recirculation from the mucosa 

through the lymph into the thoracic duct to home back via the blood stream in the intestine 

as IgA-producing plasma cells. The homing back to the site of induction is possible 

because retinoic acid (RA) produced by intestinal DCs up-regulates the α4β7 integrin and 

the CCR9 and CCR10 chemokine receptors on B cells that bind respectively to the 

chemokines CCL25 and CCL28 expressed in the intestinal mucosa (Mora et al., 2006). 
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Once in the intestine the IgA dimers are transported through the epithelium in the 

intestinal lumen via the polymeric Ig receptor present at the basolateral membrane of the 

epithelial cells. The “secretory” IgAs are then released in the lumen by the proteolysis of 

the extracellular domain of the polymeric Ig receptor (Macpherson et al., 2012). 

The induction of secretory IgA in the gut is specifically induced by the microflora since 

germ-free mice have reduced numbers of mucosal IgA-producing cells (Slack et al., 2012) 

but it is independent on the presence of germinal centers and T cells. Indeed, Tumor 

necrosis factor (TNF) receptor–I deficient mice that have rudimentary PPs and no B cell 

follicles and T cells deficient mice (T cell receptor (TCR) β-/- δ-/-) show similar levels of 

IgA-producing plasma cells specific for the microbiota compared to normal C57Bl/6 mice 

(Macpherson et al., 2000). This indicates that a large portion of mucosal IgAs are 

produced in a “primitive” fashion, independently from T-cell-mediated immunity. However 

some reports have demonstrated also a T-cell dependent component of IgA induction in 

which Foxp3+ regulatory T cells are involved (Cong et al., 2009). 

Different mechanisms of action of IgA have been suggested. Peterson et al. have found 

that germ-free immunodeficient Rag1-/- mice administered with Bacteroides 

thetaiotaomicron show a more robust innate immune response compared to wild-type 

(WT) mice and to Rag1−/− mice implanted with B. thetaiotaomicron specific IgA-producing 

hybridoma cells (Peterson et al., 2007). This finding indicates that IgA can act reducing 

intestinal pro-inflammatory signaling. Moreover, IgA may also have a role in controlling the 

composition of the microbiota. Indeed, mice lacking AID enzyme show an overgrowth of 

predominantly of the segmented filamentous bacteria (SFB) (Suzuki et al., 2004), which 

have been associated to an increase of Th17 inflammatory responses (Ivanov et al., 

2009) (Gaboriau-Routhiau et al., 2009). Beyond “buffering” the mucosal responses, IgAs 

could act directly on commensal colonization of the intestine by influencing bacterial 

growth rate or survival (Slack et al., 2012). 
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1.2.2 Mucosal Dendritic cells 

 

The intestinal immune system, generally referred to as GALT (gut-associated lymphoid 

tissue) is usually divided into effector sites, which consist of lymphocytes scattered 

throughout the intestinal epithelium and lamina propria (LP), and organized tissues, like 

PPs, mesenteric lymph nodes (mLNs) and the smaller isolated lymphoid follicles (ILFs), 

responsible for the induction of immune responses (Fig. 1.2). PPs and ILFs are located in 

the small intestine, whereas isolated clusters of lymphoid cells similar to ILFs are found in 

the colon (Mowat, 2003). 

 

 

 

Figure 1.2: Schematic representation of GALT. Organized lymphoid structures - Peyer's patches and 

isolated lymphoid follicles - and effector sites - epithelium and lamina propria are depicted (Fagarasan and 

Honjo, 2003). 

 

 

Different cell types compose the intestinal immune barrier in the intestine, but between 

them an essential role in maintaining the immune homeostasis is played by DCs.  
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In the PPs different populations of DCs were identified. On the basis of their cell-surface 

receptor expression they were classified into CD11chiCD11b+CD8α- (myeloid) DCs 

localized in the sub-epithelial dome, CD11chiCD11b-CD8α+ (lymphoid) DCs present in the 

interfollicular regions and CD11chiCD11b-CD8α- DCs located at both sites (Iwasaki and 

Kelsall, 2001). Important functional distinctions also exist between these subpopulations. 

Indeed the CD11b+ subset is endowed with the ability to induce IL-10-producing T cells 

and prime Th2 cells. On the other hand, CD8α+ and CD11b− CD8α− PP DCs drive the 

differentiation of Th1 cells (Iwasaki and Kelsall, 2001). DCs from PPs can also be 

described in terms of their expression of the chemokine receptors CX3CR1 and CCR6. 

CX3CR1+ DCs are associated with the follicle-associated epithelium (FAE) during the 

steady state, whereas CCR6+ DCs are recruited from the dome region to the FAE during 

infection (Salazar-Gonzalez et al., 2006). 

A large number of mononuclear cells, including macrophages and DCs, reside also in the 

intestinal LP. In the last decade, there was a growing interest on the different 

subpopulations of these mononuclear phagocytes and on their role in regulating mucosal 

innate and adaptive immune responses in both the steady-state and inflammatory 

settings. 

Within the small intestine lamina propria, two developmentally and functionally non-

overlapping populations of mononuclear phagocytes have been classified depending on 

the expression of CX3CR1 (the fractalkine receptor) and CD103 (αE integrin) (Fig. 

1.3)(Schulz et al., 2009; Varol et al., 2009). 
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Figure 1.3: Mononuclear phagocytes in the small intestinal lamina propria (Varol et al., 2010). Classical 

DC precursors give rise to CD103+ lamina propria DCs that can be subdivided into a CD11b− and a CD11b+ 

population. Upon antigen stimulation, CD11b+CD103+ DCs migrate in a CCR7-dependent manner to the mLN. 

Ly6C+ monocytes differentiate locally into CX3CR1+ mononuclear phagocytes endowed with the capacity to 

penetrate epithelium by extending trans-epithelial dendrites and sample luminal antigens. CX3CR1+ LP 

mononuclear phagocytes are not able to migrate to lymph nodes. 

	
  

 

 

CD103+ LP cells represent bona fide DCs. They develop from non-monocytic precursor 

cells (Varol et al., 2009) and they expand in response to fms-like tyrosine kinase 3 ligand 

(Flt3L) and granulocyte macrophage colony stimulating factor (GM-CSF) (Bogunovic et 

al., 2009; Schulz et al., 2009). They were found to express CCR7, allowing them to 

migrate to the mLN (Bogunovic et al., 2009; Jaensson et al., 2008; Schulz et al., 2009) 

where they induce, at steady state, the differentiation of naive CD4+ T cells into FoxP3+ 

regulatory T cells, through a mechanism dependent on RA and TGF-β (Coombes et al., 

2007; Sun et al., 2007). Furthermore they induce the expression of the gut-homing 
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molecules CCR9 and α4β7 on responding T cells (Johansson-Lindbom et al., 2005). 

Under inflammatory conditions the tolerogenic features of the CD103+ DCs are lost. 

Indeed, in a model of T-cell induced colitis, CD103+ DCs sorted from mLNs have reduced 

ability to induce FoxP3+ regulatory T cells but they polarize T cells toward a Th1 

phenotype (Laffont et al., 2010). 

CX3CR1+ cells are now defined as macrophages, which derive from Ly6Chigh blood 

monocytes (Varol et al., 2009) and are dependent on macrophage colony stimulating 

factor (M-CSF) for their development (Schulz et al., 2009). This population has been 

identified as the one capable to sample the intestinal lumen extending protrusion through 

the epithelial cells (Niess et al., 2005) without disrupting the epithelial integrity (Rescigno 

et al., 2001). Moreover, TLR ligands and microbes such as Salmonella have been shown 

to increase the luminal sampling of CX3CR1+ cells (Chieppa et al., 2006), which has been 

demonstrated to be dependent on MyD88 signaling pathway (Arques et al., 2009). 

Recently, it has been found that LP CX3CR1+ cells can acquire antigens also from the 

blood stream that are then cross-presented to CD8+ T cells which then express IL-10, IL-

13 and IL-9 and could migrate into the intraepithelial compartment (Chang et al., 2013). 

Although they are loaded efficiently with luminal antigens, it has been shown that 

CX3CR1+ cells cannot migrate from LP to mLNs indeed they do not up-regulate CCR7 

even in presence of LPS (Schulz et al., 2009). Moreover, they poorly prime naive T cells, 

but preferentially support Th1/Th17 cell differentiation (Niess and Adler, 2010), which is 

favoured by commensal-derived factors, such as ATP (Atarashi et al., 2008). However, 

CX3CR1 has been shown to be import to oral tolerance establishment. For instance, 

CX3CR1-deficient mice showed impaired local Treg cell expansion and abrogated 

establishment of oral tolerance due to a reduced production of IL-10 by CX3CR1-

expressing macrophages (Hadis et al., 2011).  

In inflammatory conditions such as during a DSS-induced colitis model, DC-depleted mice 

reconstituted with Ly6Chigh monocyte with a resulting imbalance of the CD11b+ CX3CR1+ 

versus the CD11b− CD103high LP subsets, show severe signs of colitis indicating that 
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Ly6Chi monocyte-derived CD11b+ CX3CR1+ have a pro-inflammatory phenotype (Varol et 

al., 2009). 

Recent studies on intestinal dendritic cells and macrophages have added further insight 

on the populations present in the LP and their functions. Indeed, Cerovic et al. have found 

that not all the CX3CR1+ cells can be classified as macrophages. Indeed, a migratory 

population of CD103- CX3CR1int has been found in the lymph which has characteristics 

comparable to the ones of the “classical” CD103+ DC subset as they respond to Flt3 and 

present efficiently the antigen to CD4 and CD8 T cells, although they induce Th1 and 

Th17 cell polarization (Cerovic et al., 2013). Diehl at al. have investigated the possibility 

that also the CX3CR1high population is able to migrate into the mLNs in a CCR7-dependent 

manner upon antibiotic-induced dysbiosis (Diehl et al., 2013).  

On the other hand, using 2-photon microscopy, CD103+ cells have been found localized in 

the intestinal epithelium and they were found able to extend dendrites toward the lumen to 

take up bacteria but not soluble antigens (Farache et al., 2013). 

 

 

1.3 Oral tolerance vs Systemic ignorance 

	
  

The intestine is exposed continuously to a vast amount of foreign antigens that it has to 

discriminate. Indeed, it must distinguish between pathogens and harmless antigens, such 

as food proteins and commensal bacteria. For the first ones strong immune responses are 

required. By contrast, active immunity against harmless antigens would be detrimental, for 

instance hypersensitivity responses against dietary antigens or the microbiota can lead to 

inflammatory disorders such as coeliac disease and Crohn’s disease, respectively 

(Mowat, 2003). Therefore, the usual response to gut antigens is the induction of what is 

called oral tolerance. However, an important difference exists between the oral tolerance 

to gut bacteria and to food antigens: whereas the tolerance to food proteins affects both 

local and systemic immune responses, tolerance to gut microbes is only local while the 
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systemic immune system is left ignorant to these bacteria (Macpherson et al., 2000; 

Macpherson and Smith, 2006; Pabst and Mowat, 2012). Therefore in the next paragraphs, 

I will use the term oral tolerance to indicate the tolerance to food antigens and systemic 

ignorance referring to the (local) tolerance to the microbiota. 

 

1.3.1 Antigen uptake 

	
  

Physical barriers, described in the previous paragraphs, prevent the access of harmful 

bacteria into the underlying tissue. However, in the gut there are different ways in which 

antigens can reach and be taken up by LP antigen presenting cells (Fig. 1.4). One entry 

port for antigens is formed by M cells, which are present within the epithelium overlaying 

the Peyer's patches and lymphoid follicles. These cells actively transport molecules from 

the lumen into the underlying dome region (Pabst and Mowat, 2012). It is not yet clear 

whether the M-cell mediated antigen uptake is important for oral tolerance induction. 

Indeed, some reports shows that the lack of PP, by administration of lymphotoxin-β 

receptor antibody during gestation, reduced oral tolerance (Fujihashi et al., 2001), while 

others demonstrate that normal oral tolerance can be inducted in the absence of PPs 

(Spahn et al., 2001; Spahn et al., 2002). Moreover, M cells have been identified also in the 

intestinal villous epithelium, which are, similarly to PPs-M cells, capable to transport 

antigens and to induce antigen-specific immune responses in a PP-independent manner 

(Jang et al., 2004). 
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Figure 1.4: Mechanisms of antigen uptake in the gut (Pabst and Mowat, 2012). (I) Transcellular transport 

of particulate antigens via M cells; (II) Paracellular passage of soluble antigens; (III) Transcellular transport of 

antigens across epithelial cells; (IV) Exosome-dependent transport of antigens via MHC-II+ enterocytes; (V) 

CX3CR1high macrophages sample luminal antigens extending dendrites across the epithelial layer. The 

antigens that reach the LP are taken up by the migratory CD103+ DCs. 

 

 

Other routes by which antigens can reach LP have also been described. For instance, it 

has been reported that antigens can be transported by neonatal Fc receptor for IgG from 

the gut lumen into the intestinal lamina propria (Kelsall and Rescigno, 2004). Antigens 

with low molecular weight can diffuse into the LP though the tight junctions between 

epithelial cells while high molecular weight molecules can be transported through the 

epithelium by transcytosis. Luminal material can be transported into the intestinal tissue 

also within exosomes derived from major histocompatibility complex class II (MHC-II) 

expressing epithelial cells (Pabst and Mowat, 2012). Furthermore, it has been 

demonstrated that CX3CR1-expressing mononuclear phagocytes can directly sample 

antigens from the lumen extending dendrites crossing tight junctions between epithelial 
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cells without compromising the integrity of the epithelial barrier (Rescigno et al., 2001) 

(Niess et al., 2005). This process of antigen uptake has been shown to be mediated by 

MyD88-dependent signaling evoked by the interaction of epithelial TLRs with microbial 

products (Chieppa et al., 2006). Recently, it has been demonstrated that also the CD103+ 

DCs, patrolling the epithelial layer, can extend dendrites toward the lumen and sample 

particulate antigens (Farache et al., 2013). Additionally, at steady state goblet cells deliver 

soluble antigens with low molecular weight from the intestinal lumen to underlying CD103+ 

cells (McDole et al., 2012). 

 

1.3.2 Oral tolerance establishment 

 

It is known from many years that animals fed with a protein have reduced subsequent 

response to a systemic challenge with the same antigen (Macpherson and Smith, 2006). 

These classical experiments of delayed type hypersensitivity (DTH) responses are used to 

evaluate the establishment of oral tolerance to food proteins.  

Although the principal characteristic of oral tolerance is the systemic T cell 

hyporesponsiveness, it is well known that the main site of oral tolerance induction is the 

mLN. Indeed, it has been shown that mice lacking mLNs but not the one lacking PPs, 

cannot induce systemic tolerance to food antigens (Spahn et al., 2002; Worbs et al., 

2006). However, different observations suggested that oral tolerance could be induced 

outside the GALT. For instance, the intraperitoneal injection of serum from tolerized mice 

induces tolerance in the recipient animal (Macpherson and Smith, 2006). Furthermore, 

antigen delivery via the portal vein induces a response similarly to oral delivered antigens 

(Goubier et al., 2008). The induction of oral tolerance is possible outside the GALT 

because orally administered antigens can disseminate systemically and reach the liver via 

the portal circulation (Li et al., 2004; Pabst and Mowat, 2012).  

Different specialized antigen presenting cells are involved in oral tolerance induction such 

as liver sinusoidal endothelial cells, Kupffer cells and plasmacytoid DCs favor oral 
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tolerance induction (Thomson and Knolle, 2010). The importance of liver as “extra-

intestinal” place where oral tolerance is established is demonstrated also by the finding 

that portacaval shunting prevents the establishment of oral tolerance (Callery et al., 1989). 

 

1.3.3 Systemic immune ignorance 

 

Contrary to food proteins, intestinal microbiota is highly immunogenic indeed very low 

numbers of these bacteria given intravenously induce strong immune responses 

(Macpherson et al., 2000), indicating that in the case of commensal bacteria tolerance is 

established locally in the GALT while the systemic immune system remains ignorant. This 

setup is of primary importance because it avoids the tolerization of the systemic immune 

system, which is then able to respond efficiently to systemic sepsis from a commensal or 

a related bacterium (Macpherson and Smith, 2006).  

This compartmentalization is preserved by mLNs that work as a system of containment, or 

“firewall” (Hooper and Macpherson, 2010). Indeed, bacteria that have penetrated epithelial 

barrier or that have been sampled by intestinal DCs to induce mucosal immunity are 

carried to the mLNs where they remain confined since bacteria loaded-DCs cannot reach 

the thoracic duct and, hence, the systemic circulation (Fig. 1.5) (Macpherson and Smith, 

2006). The fundamental role of mLNs as firewall is demonstrated by the fact that after oral 

administration of Enterobacter cloacae (an aerobic component of the microbiota of SPF 

mice in some colonies), bacteria were recovered only from mLNs and not from spleen and 

liver that remain sterile (Macpherson and Uhr, 2004). Moreover, C57/BL6 mice in specific 

pathogen-free (SPF) conditions showed no serum IgG or IgA specific for E. cloacae but 

only specific secretory IgA in the intestinal washings (Macpherson et al., 2000). By 

contrast, removing mLNs before infecting mice via oral gavage resulted also in spleen 

colonization (Macpherson and Uhr, 2004) demonstrating that adaptive systemic ignorance 

is lost. 
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Figure 1.5: Anatomy of immune responses to antigens of intestinal origin (Macpherson and Smith, 

2006). Food proteins can induce both local and systemic tolerance, reaching the mLNs via the lymph or the 

liver via the hepatic portal vein. On the contrary, commensal bacteria carried by DCs to the mLNs induce only 

local immune tolerance while the systemic immune system remains unprimed. This is possible since the mLNs 

act as “firewall” that block further penetration of bacteria in the thoracic duct. 

 

 

Voedisch et al. have also demonstrated that mLNs block the access to systemic tissue to 

Salmonella functioning as a barrier preventing lethal systemic infection (Voedisch et al., 

2009).  

Together with the fundamental role of mLNs in preventing bacteria systemic 

dissemination, we envisage also the presence of a barrier at the endothelial cell level that 

blocks the penetration of bacteria into the blood stream via the blood capillaries located 

just beneath the epithelium (see Results section). 
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1.4 Blood Brain Barrier  

 

In 1904 Paul Ehrlich discovered that dyes injected into the vascular system were taken up 

by all organs except the brain and the spinal cord (Engelhardt, 2003). However, the term 

"blood brain barrier" (BBB) was coined later by Lewandowsky that demonstrated that 

neurotoxic agents were effective only when directly injected into the brain but not when 

injected into the vascular system (Engelhardt, 2003). Thanks to the use of electron-

microscopy, we have now deeper knowledge on which cell types form the BBB and how 

they modulate its development and maintenance.  

 

1.4.1 Structure and function of BBB 

 

The BBB is a selective barrier critical for the protection of CNS from toxins and from 

fluctuations in blood composition and, on the other hand, it is fundamental for the delivery 

of nutrients to the brain (Liebner et al., 2011). 

The BBB is formed by endothelial cells (ECs) that, with their structural properties, tightly 

restrict the trafficking of ions, molecules and cells between the blood and the brain. These 

properties include: specialized TJs and AJs between adjacent ECs that limit the 

paracellular movement of ions and molecules; the expression of transporters required for 

the movement of nutrients, like water-soluble amino acids and glucose, into the brain and 

for transporting out potentially toxic substances; lower rates of transcytosis compared to 

peripheral endothelium and the lack of fenestrations. Moreover, ECs limit extravasation of 

immune cells from the blood into the brain reducing the expression of leukocyte adhesion 

molecules (LAMs) (Abbott et al., 2006; Siegenthaler et al., 2013).  
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Figure 1.6: Schematic representation of the BBB (Siegenthaler et al., 2013). (a) Cellular components of 

the BBB. Capillaries (purple) in the CNS are covered by a pericyte (green), which are embedded in the 

vascular extracellular matrix (orange). Astrocytes (blue), extending cellular processes, contact the blood 

vessels. Together these cells form the Neuro-Vascular unit. (b) Barrier components of the brain ECs. TJs and 

AJs create a tight paracellular barrier and polarize the cells creating distinct luminal and abluminal membrane 

compartments, each of which is characterized by the expression of different transporters. The ECs are also 

characterized by low rates of transcytosis, mediated by low levels of Plvap protein. In addition ECs express 

low levels of leukocyte adhesion molecules, including ICAM1. 

 

 

The junctional complexes between endothelial cells include AJs and TJs, which are both 

important for the maintenance of cell-cell adhesion and for the activation of signaling 

pathways that control many EC functions (Paolinelli et al., 2011).  

In AJs, which are important for initiating cell-to-cell contacts, transmembrane cadherin 

proteins, in particular the endothelial specific Vascular Endothelial (VE)-cadherin, span the 

intercellular cleft and are linked through the cytoplasmic domain to the scaffolding proteins 

p120-catenin and β-catenin or plakoglobin, which, in turn, through the binding to α-

catenin, promote the anchorage to the actin cytoskeleton (Dejana, 1996; Giannotta et al., 

2013). Although the extracellular domain of VE-cadherin is necessary for clustering, the 
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intracellular association to the actin cytoskeleton is necessary to provide strength and 

cohesion to the junction (Navarro et al., 1995). Studies carried out using ECs with a null 

mutation of VE-cadherin (Vittet et al., 1997) or using an anti-VE-cadherin blocking 

monoclonal antibody (Corada et al., 1999) have highlighted the importance of VE-cadherin 

for the maintenance of the vascular integrity.  

TJs are particularly abundant and complex in the BBB where there is the need to strictly 

control paracellular permeability to polar solutes. They are formed by transmembrane 

proteins such as occludin (Furuse et al., 1993), claudins (Furuse et al., 1998), and 

junctional adhesion molecules (JAM) (Martin-Padura et al., 1998) linked to a number of 

cytoplasmic scaffolding and regulatory proteins such as Zonula occludens (ZO)-1, ZO-2, 

ZO-3 and cingulin (Abbott et al., 2010). These junctions in the brain capillaries significantly 

block the paracellular transport also of small ions such as Na+ and Cl-, so that the 

transendothelial electrical resistance (TEER), which is typically 2–20 ohm x cm2 in 

peripheral capillaries, can be more than 1,000 ohm x cm2 in brain endothelium (Abbott et 

al., 2006). 

Occludin was the first integral membrane protein to be found associated to TJ (Furuse et 

al., 1993). This protein was shown to be dispensable for TJ formation since occludin-

deficient mice are viable and develop normal TJs in most tissues (Saitou et al., 2000). By 

contrast, proteins belonging to claudin protein family were found to be necessary for the 

formation of TJ strands (Morita et al., 1999). The claudin gene family includes more than 

20 isoforms with high homology with occludin and are differently expressed among 

different tissues (Engelhardt, 2003). Peculiar of the brain endothelium are claudin (Cldn)-

5, Cldn-12 (Nitta et al., 2003) and Cldn-3 (Liebner et al., 2008) that are believed to be 

responsible for the establishment of endothelial barrier function. Indeed, it has been 

demonstrated that in experimental allergic encephalomyelitis and in glioblastoma 

multiforme the selective loss of Cldn-3, together with the loss of Cldn-1 and Cldn-5, is 

associated with a loss of BBB integrity (Wolburg et al., 2003) (Liebner et al., 2000). 

Moreover, it has been shown that the increased Cldn-3 expression by Wnt/β-catenin 
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pathway activation in ECs is associated to an enhanced barrier formation (Liebner et al., 

2008). Furthermore, claudin-5 deficient mice have a severely compromised and leaky 

BBB and die shortly after birth (Nitta et al., 2003). Therefore it appears that disappearance 

of either Cldn-3 or Cldn-5 from the tight junctional complexes can result in a compromised 

BBB.  

Together with occludin and claudins also JAM-A, B and C are expressed by brain 

endothelial cells and are involved in the formation and the maintenance of the tight 

junctions and of BBB integrity (Wyss et al., 2012; Yeung et al., 2008). 

The effectiveness of the TJs is regulated via the intracellular scaffold proteins ZO-1, ZO-2 

and ZO-3 which link the junctional molecules claudin and occludin via cingulin to the 

cytoskeleton and to several cytoplasmic signaling molecules that are involved in 

controlling the assembly and disassembly of TJ (Abbott et al., 2006). For instance, it has 

been shown that ZO-1 is a substrate of protein kinase C, which is crucial for the formation 

and regulation of TJs (Stuart and Nigam, 1995). 

In brain capillaries TJs, together with AJs, beyond the “gate” function, are also required for 

the maintenance of cell polarity, i.e. a correct differential distribution of enzymes and 

carriers between luminal and abluminal compartments (Paolinelli et al., 2011). The brain 

endothelial transporters that supply the brain with nutrients include the Glut-1 glucose 

carrier, Lat-1 amino acid carrier and transporters for nucleosides. Other transporters 

include the luminal P-glycoprotein (P-gp) and multidrug resistance-related proteins (MRP) 

that require ATP or the Na+ gradient created by the abluminal Na+,K+-ATPase to move 

compounds against a concentration gradient (Abbott et al., 2006).  

However, brain ECs in culture do not have all these features characteristic of the BBB-

phenotype indicating that these properties are induced by interactions with other cell 

types, namely pericytes, astrocytes and microglia, that together are termed as 

neurovascular unit (NVU) (Liebner et al., 2011).  
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1.4.2 Barriergenesis induction and regulation 

 

Stewart and Wiley with transplantation experiments have demonstrated for the first time 

that vessels derived from the coelomic cavity of chick embryos transplanted in the 

embryonic quail brain acquired BBB characteristic while brain vessels implanted in 

mesodermal tissue lack barrier characteristics (Stewart and Wiley, 1981). These 

observations are the direct evidence that the ECs are not “committed” to have barrier 

characteristics but these are induced by the neural tissue during embryogenesis. 

The earliest BBB marker to be expressed is the glucose transporter Glut-1 (at rodent 

embryonic day 12) (Daneman et al., 2010). It is initially expressed on both luminal and 

abluminal sides of the ECs while later in development, due to an increased demand for 

glucose, it has a higher localization at the abluminal membrane (Engelhardt, 2003). 

Although some TJ proteins such as cldn-5, occludin and ZO-1 are also present in blood 

vessels at the same embryonic stage (Daneman et al., 2010) the barrier functionality at 

this stage is incomplete since BBB becomes impermeable to horseradish peroxidase only 

at E13 in chick and at E15 in rats (Siegenthaler et al., 2013). At these early stages of 

development the BBB leakage could be attributed to the fact that brain blood vessels have 

still leaky properties such as high levels of trancytosis – identified by the expression of 

plasmalemma vesicle associated protein (Plvap) – and the expression of LAMs, in 

particular of ICAM-1 that promote leukocyte infiltration (Daneman et al., 2010). During the 

late gestation and the postnatal stages (in rodents) there is a gradual maturation of the 

BBB with an increased density and complexity of TJs (Kniesel et al., 1996) and the loss of 

the expression of ICAM-1 and Plvap (Daneman et al., 2010). 

The cell types that together form the NVU have been shown to play an important role 

during all these phases of the BBB development.  

One of the main players are the pericytes, a cell population that has been found at high 

density in the brain and closely associated to the nascent vessels at the early stages of 

development (Daneman et al., 2010). In vitro BBB model obtained co-culturing mouse 
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brain ECs with primary rat brain pericytes have suggested that pericytes are able to 

regulate BBB properties (Dohgu et al., 2005). Recently it has been demonstrated that 

brain pericytes are required for the stabilization of newly formed vessels and for 

development and maintenance of the BBB. Indeed, mice that lack the platelet derived 

growth factor B (PDGFBB) signaling that is required for pericytes recruitment in the brain 

show ECs hyperplasia, increased vessel diameter and permeability (Daneman et al., 

2010). Moreover, the lack of pericytes coverage during brain development have been 

associated to an increased expression of “leaky” vascular barrier, such as Plvap and 

LAMs while “tight” barrier features, i.e. TJ proteins and transporters, remained unchanged 

(Armulik et al., 2010; Daneman et al., 2010). These in vivo studies also suggested that 

pericytes are necessary for the establishment of astrocytes-vessel contact, which are 

important for the maintenance of BBB properties during the postnatal period (Armulik et 

al., 2010).  

Indeed, in the postnatal period (that corresponds to the second half of gestation in 

humans) astrocytes contact the brain endothelium via cellular processes or end-feet and 

start to influence the endothelial barrier properties (Daneman et al., 2010). One features of 

the astrocytes is the polarity of the cellular membrane at the end-feet structure. Indeed, 

some proteins, such as the water channel Aquaporin-4 (Aqp4), are expressed at the 

abluminal surface of the astrocyte processes. However the connection between the 

expression of Aqp4 and the maintenance of the BBB is not yet known (Liebner et al., 

2011).  

In vitro studies, using astrocyte-conditioned medium or the direct contact between 

astrocytes and ECs (Dehouck et al., 1990; Rubin et al., 1991), together with in vivo 

experiments in which astrocytes were transplanted into non-neural tissue (Janzer and 

Raff, 1987) have demonstrated their role in barrier maturation. 

Recent studies have described different ways by which astrocytes are able to promote 

BBB integrity. One of these is the activation of the Hedgehog (Hh) pathway. Indeed 

Alvarez et al. have demonstrated that both human and mouse astrocytes secrete Sonic 
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Hh (Shh) and that brain ECs express high levels of the receptor Patched-1 and of the 

downstream protein Smoothened suggesting that this pathway is used by these two 

cellular populations to communicate (Alvarez et al., 2011). The inactivation of Hh pathway 

in ECs leads to a decrease in the expression of TJ proteins, to higher vascular 

permeability and to increased leukocyte extravasation, all markers of BBB disruption 

(Alvarez et al., 2011).  

Additionally, the binding of the astrocyte-derived retinoic acid to its receptor RARβ on 

human ECs has been implicated in inducing barrier properties. Indeed, RA increases the 

expression of VE-cadherin, ZO-1 together with Glut-1 and P-gp transporters (Mizee et al., 

2013). 

Although all this evidence shows the important role of astrocytes and pericytes in 

enhancing BBB development, embryonic neural progenitors have been suggested to play 

an important role in inducing BBB properties in the initial phase of development. Indeed, 

even in the absence of pericytes, in an embryonic phase in which astrocytes are not yet 

generated, brain ECs express different BBB-associated proteins (Daneman et al., 2010). 

The central role for canonical Wnt ligands as neural progenitor signal for BBB 

development has emerged from different animal models that target the Wnt ligands or 

directly the β-catenin (Daneman et al., 2009; Liebner et al., 2008; Stenman et al., 2008).  

Wnt ligands are a family of 19 secreted glycoproteins able bind to Frizzled (Fzd) and low-

density lipoprotein receptor-related protein (LRP) receptors. In the canonical Wnt 

signaling, receptor ligation leads to the inactivation of a destruction complex composed by 

glycogen syntase kinase-3β (GSK-3β), the scaffolding protein axin and adenomatosis 

polyposis coli (APC) avoiding the phosphorylation of β -catenin and therefore its 

proteosome-mediated degradation. If β-catenin is not phosphorylated, it translocates to 

the nucleus where it regulates the transcription of target genes by binding to T-cell factor/ 

lymphoid enhancing factor (Tcf/LEF) transcription factors (Paolinelli et al., 2011). 

Moreover, Wnt/β-catenin signaling pathway activation can be regulated also by secreted 
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antagonists, such as Dickkopf homologs (Dkk1–4) and secreted frizzled-related protein 

families (sFRPs, 1–5) (MacDonald et al., 2009) (Fig. 1.7). 

 

Figure 1.7. Scheme of Canonical Wnt/β-catenin signaling pathway (Liebner and Plate, 2010). When no 

Wnt ligands are present or are inhibited by WIF, sFRPs and Dkk. cytosolic β-catenin is targeted to proteolytic 

degradation through phosphorylation by the APC-Axin-GSK3β destruction complex. In the "on-state" 

stimulation of Fzd receptors and their co-receptors Lrp5/6 by Wnt ligands, leads the accumulation of β-catenin 

in the cytoplasm, which is then able to enter into the nucleus activating target gene transcription through 

association with Tcf/LEF transcription factors. 

 

 

Using β-catenin-activated expression of nuclear β-galactosidase reporter mice, it was 

demonstrated that Wnt/β -catenin signaling pathway is activated in the vessels 

penetrating into the embryonic brain till E17.5 when its activation decreases (Liebner et 

al., 2008). The Wnt signaling follows the same kinetics of brain angiogenesis and BBB 

development supporting the idea that Wnt ligands are involved in brain vascularization 
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and induction of the BBB properties. Indeed, Liebner, et al. have found that the Wnt/β-

catenin pathway activation by Wnt3a induces the up-regulation of Cldn-3 and 

correspondingly a decrease of the Plvap “leaky” protein (Liebner et al., 2008). Moreover, 

other studies have demonstrated that also Wnt7a-mediated activation of Wnt/β-catenin 

pathway induces the up-regulation of BBB markers including Glut-1 and other transporters 

such as slc7a1 and slc7a5 (Daneman et al., 2009; Stenman et al., 2008).  

The Wnt signaling pathway is responsible not only for barrier maturation during 

embryogenesis but also for the BBB maintenance in the adult. Indeed, the inactivation of 

the pathway in postnatal mouse brain ECs leads to the down-regulation of the cldn3 and 

the up-regulation of Plvap (Liebner et al., 2008).  

ECs lose their barrier properties also under pathological conditions such as ischemia, 

brain tumors or Alzheimer’s disease. In these conditions BBB microvessels up-regulate 

Plvap (Carson-Walter et al., 2005; Sparks et al., 2000) that is therefore associated to 

immature or disrupted BBB.  

Plvap protein has been localized to caveolae and trans-endothelial channels of 

fenestrated capillaries (Herrnberger et al., 2012b; Stan et al., 2012). Studies using Plvap-

deficient mice have demonstrated the importance of Plvap also in the regulation of the 

permeability of fenestrated endothelial (not the brain since it has a continuous ECs layer). 

Indeed, mixed background Plvap -/- mice show loss of plasma proteins, tissue edema and 

dyslipidemia that finally results in multiple organ disfunction (Herrnberger et al., 2012b; 

Stan et al., 2012). 

 

 

1.5 Salmonella typhimurium infection 

 

Salmonella enterica serovars are Gram-negative facultative intracellular bacteria that 

through food and water can cause local gastroenteritis or systemic disease called typhoid 

fever, depending on the serovar. Indeed, in humans infections by Salmonella enterica 
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serovar Typhi (hereafter referred to as S. typhi) causes typhoid fever while Salmonella 

enterica serovar Typhimurium (referred to as S. typhimurium) induces only locally 

restricted infection. By contrast, mice are susceptible to oral infection with S. typhimurium, 

but not S.typhi, resembling the human systemic disease (Voedisch et al., 2009). Therefore 

S. typhimurium oral infection in mice is widely used as model of human systemic infection. 

The resistance of mice to S.typhi was firstly associated to an inhibitory effect of the host 

intestinal microbiota on the growth of the inoculated Salmonella. However, germfree mice 

were equally resistant to S.typhi systemic infection indicating that the microbiota does not 

influence the ability of different Salmonella serovars to spread systemically (Collins and 

Carter, 1978). Interestingly, Collins at al. have also demonstrated that the ability of S.typhi 

to reach distal organs such as spleen and lung is not obtained even in the absence of 

phagocytic cells that are necessary for bacterial clearance (Collins and Carter, 1978) 

indicating that other mechanisms are involved in the discrimination between local and 

systemic disease caused by different Salmonella strains. 

 

1.5.1 Mechanisms of invasion 

 

The preferential site of entry for S. typhimurium are the M cells present in the PPs (Jones 

et al., 1994; Pascopella et al., 1995). M cells continuously sample the gut lumen and 

transport particulate antigens including live bacteria into the LP where they are taken up 

by immune cells (Pabst and Mowat, 2012). One way by which Salmonella is transported in 

the PPs is through the caveolae (Lim et al., 2010).  

Caveolae are formed by lipid rafts rich in sphingolipids and cholesterol that oligomerize in 

the presence of caveolin-1 and caveolin-2 to form 60-80 nm diameter pits (Parton and 

Simons, 2007). They have been implicated in endocytosis and transcytosis, cholesterol 

trafficking, signaling and they can be used as entry portals by different pathogens such as 

E coli (Sukumaran et al., 2002) and Salmonella (Hoeke et al., 2013; Lim et al., 2010). In 

particular, it has been shown that Salmonella can down-regulate caveolin-2 expression by 
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increasing the expression of miR-29a both in vivo and in vitro (Hoeke et al., 2013). 

Experiments using epithelial cell lines have suggested that the reduced expression of 

caveolin-2 causes defects in epithelial cell renewal, which can favour pathogen invasion 

through the damaged epithelium (Hoeke et al., 2013). By contrast, Lim et al. have shown 

that Salmonella induces the up-regulation of caveolin-1 in PPs isolated from old mice 

favouring its trancytosis (Lim et al., 2010). 

Together with this passive transport, Salmonella is also able to induce rearrangements of 

the M cells cytoskeleton resulting in loss of integrity of the PP epithelium that allows rapid 

spreading to the organs before an immune response can be initiated (Jones et al., 1994; 

Pascopella et al., 1995). Moreover, it has been shown that Salmonella could transverse 

the gut epithelium, a process dependent on type III secretion system (TTSS)-1 for 

epithelial cell invasion and on TTSS-2 for trafficking to the basolateral side (Muller et al., 

2012).  

In addition to the passage through the M cells, Salmonella can invade the intestinal LP via 

an active sampling mechanism mediated by mononuclear phagocytes expressing 

CX3CR1 that have been described in the section ‘Mucosal dendritic cells’. 

Salmonella, like other intracellular bacterial pathogens have the ability to multiply inside 

vacuoles in the infected host cells. These vacuoles first acquire markers of the early 

endosomes, such as the early endosomal antigen 1 (EEA1), which are then replaced by 

markers of the late-endosomal system including Rab7, the lysosomal glycoproteins 

LAMP-1, LAMP-2 and LAMP-3/LIMP-1 and the vacuolar ATPase responsible for 

phagosome acidification. However these vacuoles never acquire the mannose-6-

phosphate receptor (M6PR), which delivers lysosomal hydrolases to the endosomal 

system. Therefore S. typhimurium actively manipulates host cell factors to create an 

intracellular compartment, distinct from a classical phagosome permissive for bacterial 

growth (Bakowski et al., 2008).  
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Two distinct TTSS encoded on Salmonella pathogenicity islands (SPIs) 1 and 2 are 

involved in invasion and survival in the host cells (Fig. 1.8).  

 

Figure 1.8. SPI-1 and SPI-2 TTSS in Salmonella infection. (modified from (Gilbreath et al., 2011)) After 

adhesion to the epithelium through fimbrial and nonfimbrial adhesins, Salmonella spp are translocated across 

the epithelial cell using SPI-1 T3SS effectors. SPI-2 effectors are then required for intracellular survival and for 

the maturation of the early endosome vesicles to the specialized vacuole, termed as Salmonella-containing 

vacuole (SCV). The SCV localizes near the Golgi apparatus that serves as an intracellular replicative niche. 

 

 

TTSSs are needle-like protein complexes that translocate bacterial virulence proteins 

(effectors) from the bacterial cytoplasm directly into the host-cell cytoplasm. These 

translocated effectors are able to alter host-cell functions such as signal transduction, 

cytoskeletal architecture, membrane trafficking, and cytokine gene expression (Galan, 

2001). 

Genes of the SPI-1 TTSS are activated upon contact with epithelial cells and are required 

for translocating effectors across the host cell plasma membrane (Galan, 2001). Some of 

these effector proteins, such as SopB, SopE, SopE2 and SipA are able to disrupt the 
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epithelial cell barrier by altering the localization of TJ proteins such as ZO-1 and occludin 

(Boyle et al., 2006). Such disruption may lead also to the exposure of TLR localized on the 

basal membrane of the epithelial cells to bacterial ligands inducing indirectly the activation 

of inflammatory response (Galan, 2001).  

TTSS-1 mutant strains administered by the oral route show an attenuated phenotype, 

demonstrating that SPI-1 encoded genes are necessary for the efficient entry of 

Salmonella into the host tissue (Galan and Curtiss, 1989). However TTSS-1 deficient 

strains are still able to reach the intestinal LP by a mechanism that is independent from 

the Salmonella intrinsic capability to invade the intestinal epithelium. The way by which 

also TTSS-1 mutant Salmonella penetrate into the intestine is through DCs, indeed 

depletion of DCs during the early phases of infection strongly reduces the bacterial 

spreading (Hapfelmeier et al., 2008). In line with this finding, it was shown that TTSS-1 is 

necessary for the colonization of PP, liver and spleen but not of mLNs, which indicates 

that the colonization of mLNs is mediated, by DCs sampling and migration to the draining 

lymph node (Martinoli et al., 2007; Voedisch et al., 2009). 

SPI-1 TTSS effector proteins have also been implicated in the stimulation of 

polymorphonuclear leukocytes (PMN) recruitment (SipA protein) (Lee et al., 2000) and in 

the induction of fluid accumulation and diarrhea (SopB, SopD, and SopA) (Wood et al., 

2000). However, TTSS-1 secreted protein SipB has been shown to be responsible for the 

induction of apoptosis in macrophages via caspase-1 activation (Hersh et al., 1999). 

The SPI-2 encoded TTSS has been associated to the ability of Salmonella to survive in 

host cells and to spread systemically (Ochman et al., 1996). Indeed, S. typhimurium 

mutated strains in TTSS-2 genes cannot establish systemic infection upon intra-peritoneal 

injection (Shea et al., 1996). In vitro studies have shown that expression of SPI-2 is 

induced inside the macrophages in the acidic phagosomal environment, which induces 

the activation of SPI-2-encoded regulatory system SsrA/B (Cirillo et al., 1998; Deiwick et 

al., 1999). Interestingly, Cirillo et al. have found that in contrast to SPI-1 deficient strains 

that are not able to colonize PPs but are still able to reach mLNs, SPI-2 mutants invade 
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PPs but are not found in the mLNs, liver and spleen indicating that SPI-2 is required to 

avoid Salmonella clearance by macrophages (Cirillo et al., 1998). Recently, it has been 

demonstrated by 2-photon microscopy that TTSS-2 is also involved in the invasion of the 

epithelium. Indeed, mutants for TTSS-2 reach the LP through the epithelial layer less 

efficiently compared to the WT strain (Muller et al., 2012). 
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AIM OF THE STUDY 

 

 

The intestine is continuously challenged by a vast amount of foreign antigens including a 

large community of commensal bacteria, collectively called the microbiota. Although the 

microbiota has established a symbiotic relationship with the host, it poses immense health 

challenges. For this reason, the intestine has adapted different strategies to limit 

opportunistic invasions by the resident microbiota avoiding pathologies such as 

bacteremia and chronic inflammation. In the past years, a lot of effort was made at 

understanding how the mucosal tolerance and the systemic ignorance is maintained, 

focusing in particular on the role of the epithelial cells and of the intestinal immune 

system. 

In this thesis, we investigated whether the intestinal endothelial cells, beyond the physical 

barrier and the intestinal immune system, form another layer of protection avoiding 

indiscriminate trafficking of molecules and bacteria from the gut into the blood stream.  

So we proceeded through these steps using as model the blood-brain barrier whose 

features have been extensively studied: 

• Identification of the “intestinal vascular unit” (counterpart of the neurovascular unit 

found in the brain) and analysis of the intestinal endothelial cell phenotype, 

focusing on the composition of the TJs and AJs; 

• Identification of markers to define the intestinal endothelial barrier integrity, starting 

from the analysis of the expression of Plvap, Cldn-3 and caveolin-1 since the up-

regulation of Plvap and caveolin-1 together with the down-regulation of Cldn-3 was 

associated to damaged BBB. To induce endothelial damage, we infected mice with 

Salmonella typhimurium; 

• Functional studies of the gut vascular barrier in which vascular permeability to 

molecules with different molecular mass was measured; 
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• Study of the mechanisms behind intestinal endothelial barrier modifications. We 

focused on Wnt/β-catenin signaling pathway since in the brain the activation of this 

signaling pathway leads to enhanced endothelial barrier properties. Moreover, we 

investigated if and how Salmonella could interfere with Wnt/β-catenin signaling 

pathway activation in endothelial cells to favour its systemic spreading. 
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MATERIALS AND METHODS 

 

3.1 Mice 

 

8-10 weeks old WT C57BL/6J mice were purchased from Harlan Laboratories.  

For some experiments, β-cateninlox(ex3)/lox(ex3) mice (Harada et al., 1999) (from E. Dejana, 

FIRC Institute of Molecular Oncology, Italy) were used. In these mice the exon3 of the β-

catenin gene (Catnb) that contains the serine/threonine residues phosphorylated by the 

GSK3β kinase, was flanked by two LoxP sequences. These mice were crossed with 

Cdh5(PAC)-CreERT2 mice (Monvoisin et al., 2006) (from E. Dejana), where upon 

tamoxifen treatment the Cre recombinase is expressed in VE-cadherin positive endothelial 

cells. To induce recombination Cdh5(PAC)-CreERT2/β-cateninlox(ex3)/lox(ex3) mice were fed 

with tamoxifen-enriched food (TAM 400, Harlan) for two weeks. Upon treatment, the β-

catenin exon3 is excised resulting in a gain-of-function (GOF) for the β-catenin in an 

endothelial specific manner. 

Cdh5(PAC)-CreERT2 /β-cateninlox(ex3)/lox(ex3) mice were screened for the presence of Cre 

enzyme by PCR using primers CreA 5'-CCA AAA TTT GCC TGC ATT ACC GGT CGA 

TGC-3' and CreB 5'-ATC CAG GTT ACG GAT ATA GT-3'. The cycling protocol used is 

the following: 

 

Table. 3.1: Cdh5(PAC)-CreERT2 /β-cateninlox(ex3)/lox(ex3) genotyping cycling protocol. 

 

 

To ensure that the exon 3 was efficiently excised in the endothelial cells of the intestine, 

small pieces of intestinal tissue were lysed, genomic DNA was extracted and tested for 

Step Temp. (°C) Time (s)
1 95 300
2 95 60
3 58 30 for 40 cycles
4 70 45
5 72 600
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the presence of the exon 3-deleted β-catenin allele. The PCR amplification protocol is the 

following: 

 

Table. 3.2: Cycling protocol used to analyze cre-mediated recombination in mouse intestinal tissues. 

 

 

Primers pair used to verify the cre-mediated recombination is: Del-Fw 5’-GCT GCG TGGG 

ACA ATG GCT AC-3’ and Del-Rv 5’-TGA GCC CTA GTC ATT GCA TAC-3’.	
   If the cre 

recombinase is present, the exon 3 is excised from the β-catenin gene in endothelial cells, 

and therefore two amplification bands are expected after genomic PCR: the lower one 

which is the deletion band and the upper one that corresponds to the wild-type allele 

present in non-ECs present in the preparation (Fig. 3.1).	
  

	
  

Figure 3.1: Cre mediated deletion of β-catenin exon 3 in vivo. Genomic PCR of duodenum, jejunum, ileum 

and colon from Cdh5(PAC)-CreERT2/β-cateninlox(ex3)/lox(ex3) mice. The lower band corresponds to the deleted 

allele and its weaker intensity is due to the high amount of non-ECs present in the lysate in which the 

recombination event does not occur. 

 

 

For in vitro experiments, MyD88 KO mice, and TLR4 KO mice, obtained by Dr S Akira 

(Osaka University, Japan), were used. 

Duodenum 

Je
junum 

Ile
um 

Colon 

Mark
er 

Wt allele 
Deleted allele 

Step Temp. (°C) Time (s)
1 95 300
2 95 60
3 65 30 for 40 cycles
4 72 120
6 72 900
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Mice were bred and maintained at IFOM-IEO Campus animal facility under specific 

pathogen-free conditions. All experiments were performed in accordance with the 

guidelines established in the Principles of Laboratory Animal Care (directive 86 /609 

/EEC). 

 

3.2 Bacteria 

 

S. typhimurium strains on SL1344 background were used for in vivo and in vitro 

experiments. For the in vivo experiments, an aroA mutant of Salmonella, auxotrophic for 

aromatic amino acids was used. It is characterized by an attenuated ability to replicate in 

vivo. For the in vitro experiments the strains used were: WT invasive strain (FB62); a S. 

typhimurium strain defective for the survival into the phagosome (BA83, SPI-2 KO); a 

noninvasive strain (BA34, SPI-1 KO) or into an endotoxin mutant (FB61, msbB). Moreover 

in some experiments WT DH5α E. coli strain or a modified strain expressing invasin from 

Yersinia enterocolitica was used. Bacterial strains were grown at 37°C in Luria broth 

supplemented with the appropriate antibiotics. 

 

3.3 Lung endothelial cells isolation 

 

For each isolation, three to four mice were used. Mouse lungs were removed from the 

thoracic cavity and placed in Hank's Balanced Salt Solution (HBSS) 1X. Lungs were cut 

into small pieces and then incubated with collagenase A (1,5 mg/mL; Roche Diagnostic) 

and DNase I (8 U/mL; Roche Diagnostic) for 75 min at 37°C under agitation. After the 

incubation, cell suspension was filtered through a 70-μm cell strainer and then through a 

40-μm filter and cell suspension was centrifuged for 5 min at 1200 rpm. The red blood 

cells were lysed with a hypotonic lysis buffer, washed and the cell pellet was subjected to 

the CD45 positive selection using CD45 Microbeads kit (Miltenyi Biotec). CD31 positive 
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cells were then purified from the CD45 negative population using the CD31 MACS beads 

(Miltenyi Biotec). After selection, the CD45-CD31+ cells were washed with complete 

MCDB131 medium (GIBCO), then resuspended in complete MCDB131 containing 100 

μg/mL heparin (Sigma-Aldrich) and 50 μg/mL EC growth supplement (homemade from 

calf brain) and plated into a gelatin-coated T-75 tissue culture flask.  

 

3.4 In vitro infection 

 

7*105 lung ECs were seeded in 6 well plates coated with gelatin. When they reached 

confluence (after 2 days), cells were infected with a ratio cell:bacteria 1:10 for 90 min. 

Cells were then washed and medium was replaced with complete MCDB131 containing 

100 μg/mL gentamycin. After 150 min ECs were lysed for the subsequent RNA analysis. 

 

3.5 Mice infection 

 

C57BL/6J, β-cateninlox(ex3)/lox(ex3) or Cdh5(PAC)-CreERT2 /β-cateninlox(ex3)/lox(ex3) mice were 

infected with 109 S.typhimurium ΔaroA via oral gavage and after 2h, 6h, 24h and 48h 

blood was collected from heart and serum was tested for the presence of alanine 

aminotransferases (ALT, Sentinel Diagnostic) following manufacturer protocol. PPs, 

mLNs, spleen and liver were harvested and incubated 1h at 37°C with gentamycin to kill 

external bacteria. Organs were then digested with 1mg/ml collagenase D (Roche) for 30 

minutes at 37°C and cells were plated on terrific broth agar plates together with sodium 

deoxycholate 1%, necessary to lyse the cells.  
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3.6 Immunofluorescence 

 

Duodenum, jejunum and ileum of untreated or infected mice were fixed o/n in 

paraformaldehyde (PFA), L-Lysine pH 7.4 and NaIO4 (periodate-lysine-paraformaldehyde 

(PLP) fixative buffer). Then they were washed, dehydrated with 20% sucrose for at least 4 

hours and included in OCT. 10 μm cryosections were rehydrated, blocked with 0.1M Tris-

HCl pH 7.4, 2% fetal bovine serum (FBS), 0.3% Triton X-100 before staining them with 

Plvap, Cldn-3, Cldn-5, Cldn-12, ZO-1, JAM-A, Occludin, VE-cadherin, GFAP, CD31, 

CD34, cingulin antibodies. Primary antibodies were incubated o/n at 4°C. Slices were then 

incubated with the appropriate fluorofore-conjugated secondary antibody. Before imaging, 

nuclei were counterstained with 4',6-diamidin-2-fenilindolo (DAPI). Confocal microscopy 

was performed on a Leica TCS SP5 laser confocal scanner mounted on a Leica DMI 

6000B inverted microscope equipped with motorized stage. Violet (405nm laser diode), 

blue (488nm argon laser), yellow (561nm laser diode) and red (633nm laser diode) laser 

lines that have been used for excitation. All images were acquired with a HCX PL APO 

40X (NA 1.25) oil immersion objective. Software used for all acquisitions was Leica LAS 

AF and ImageJ or Imaris (Bitplane) for images analysis. 

 

3.7 Permeability assay 

 

C57/BL6, β-cateninlox(ex3)/lox(ex3) and VE-Cadherin-CreERT2/β-cateninlox(ex3)/lox(ex3) mice were 

orally infected with 109 S.typhimurium ΔaroA. Immediately after infection or after 1h, 4h or 

24h were anesthetized with 2, 2, 2-Tribromoethanol and intestinal loops were exteriorized 

and ligated in different parts of the small intestine. 2mg of FITC-Dextran 20 KDa (Sigma-

Aldrich) were injected in the loop. After 1h blood samples were taken from the heart and 

the presence of the fluorofore was measured at fluorimeter (λExitation: 485 nm, λEmission: 

530nm). 
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3.8 RNA isolation and quantitation of gene expression by real-time PCR 

 

Total RNA was purified from cells using RNeasy Kits (QIAGEN). cDNA synthesis was 

performed using SuperScript III reverse transcriptase (Invitrogen) and random hexamers. 

Real-time PCR reactions were carried out using the SYBR Green PCR kit on the Applied 

Biosystems 7500 Fast Real-Time PCR System. Expression levels for each sample were 

normalized to the expression levels of Rpl32. Results were quantified using the 2-ΔΔCt 

method. 

 

Table. 3.3: Primer Table 

 

 

3.9 2-Photon intravital microscopy 

 

Before starting the intravital experiments mice were starved o/n to limit the presence of 

feces into the intestine, which could interfere with the acquisition of the images. Mice were 

left untreated or infected for 4 hours with 109 S.typhimurium ΔaroA before anesthetizing 

them with 3-4% inhaled isoflurane. Animals were kept under anesthesia for all the 

experiment, for maximum 2h and then sacrificed. For surgery, a 1-cm long incision was 

made on the skin to expose the peritoneal wall. An additional small incision was made on 

the peritoneum to expose the abdominal cavity. A 3- to 4-cm loop from the ileum was 

externalized and the mucosal surface was exposed by making a 1-cm cut longitudinally 

through the gut wall (Fig. 3.2). To avoid the loss of blood from broken capillaries, a 

cauterizer was used to cut the intestine. The intestinal content was removed washing with 

PBS, without disrupting the mucosal layer, and the outer layer of the intestine was fixed to 

Gene Forward (5'-3') Reverse (5'-3')
Rlp32 AAGCGAAACTGGCGGAAAC TAACCGATGTTGGGCATCAG
Axin2 TGACCGACGATTCCATGTC GTTCCACAGGCGTCATCTC
Plvap TACGCGACGTGAGATGGAG GATGATAGCGGCGATGAAG
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a glass slide with surgical glue. The opened intestine was covered with a glass coverslip 

and the space between the two glass slides was filled with PBS. Once the surgery is 

completed, the animal was placed on a heating surface set at 37°C and 2mg 4KDa or 

0.5mg 70KDa-FITC Dextran (Sigma-Aldrich) were injected into the tail vein. Intravital 

imaging was performed on a Leica TCS SP5 laser confocal scanner mounted on a Leica 

DM 6000CFS upright microscope, equipped with a Chameleon-XR (Coherent) Ti:Sapphire 

laser source directly coupled to the scanning head of the microscope using an infrared 

port. A Leica HCX APO L20X (NA 1.0) water immersion objective was employed for the 

analysis. For time-lapse image acquisition the stacks (with a z-step of 3 µm) over a depth 

of about 70 µm were acquired every 30 s and the two-photon excitation of FITC dye was 

performed at λ = 900 nm with a 512x512 pixel size and a pixel dwell time of 2.8 msec.  

 

Figure 3.2: Surgery scheme. An incision was made on the skin and then on the peritoneum to expose the 

abdominal cavity. A 3- to 4-cm loop from the distal ileum was exposed. A small cut was done using a 

cauterizer along the intestinal wall to expose the mucosal layer. 

 

 

3.10 Analysis of intravital imaging of vascular permeability  

 

For image analysis at select time-points, an area of interest (5×5 μm) was chosen inside 

and outside, considering as outside the region immediately adjacent to the blood vessel. 

The fluorescence intensity was determined in the areas of interest for both the FITC-

dextrans. For each time-point, the fluorescence intensity was measured for 10 areas 
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inside and 10 areas outside the blood vessels. To quantify the permeability of the 

intestinal blood vessels, the ratio between the outside and the inside fluorescence 

intensity and percent fluorescence was calculated by normalizing on the fluorescence ratio 

at the start of the acquisition. 

 

3.11 Antibiotic treatment protocol 

 

Animals were administered with ampicillin (1 g/L), vancomycin (500 mg/L), neomycin 

sulfate (1 g/L), and metronidazole (1 g/L; all antibiotics from MP Biomedicals) ad libitum in 

drinking water for four weeks (Rakoff-Nahoum et al., 2004) before infecting them with 109 

S.typhimurium ΔaroA. Since it is known that mice generally refrain from drinking the 

antibiotic cocktail for the bad taste of metronidazole, we frequently check the mice to be 

sure of their welfare. Moreover the depletion of intestinal microbiota was confirmed plating 

the feces at the end of the treatment. 

 

3.12 Statistics 

 

Statistical differences were evaluated using GraphPad Prism software. Values were 

compared using either a student t-test for single variable, 2-way ANOVA for two variables 

or non-parametric 2-tailed Mann-Whitney tests depending on the distribution of the data. 

In all the cases, the statistical test used is indicated in each figure legend. 

Results were represented as Mean ± SEM. *p<0.05, **p<0.01, ***p<0.001. 
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RESULTS 

 

 

4.1 “Gut Vascular Unit” identification and characterization 

 

4.1.1 Cellular composition of GVU and intestinal endothelial cell phenotype 

characterization 

 

The blood brain barrier is a specialized structure formed by the brain microvascular 

endothelium that strictly controls the exchanges between blood and brain parenchyma 

protecting the central nervous system from the constantly changing milieu of the blood 

stream (Paolinelli et al., 2011). Also in the intestine there is the necessity to confine the 

foreign potentially dangerous material present in the gut lumen outside from blood stream 

to avoid systemic dissemination. It has been demonstrated that commensal bacteria that 

reach the lymphatics do not penetrate into the thoracic duct and therefore they do not 

reach the systemic circulation since they remain confined into the mLNs (Hooper and 

Macpherson, 2010; Macpherson et al., 2012). However, what are the mechanisms by 

which bacteria are excluded from systemic dissemination through the blood vessels are 

still unknown. 

We hypothesized that also in the intestine there was a control of the endothelial 

permeability and we wondered whether there was a structure similar to the one described 

for the BBB. We used the knowledge on the BBB characteristics as model to characterize 

the intestinal vascular barrier and the intestinal endothelial cells phenotype. 

In the BBB, ECs display peculiar features such as the lack of fenestration, low pinocytic 

activity, the presence of elaborated junctional complexes that includes TJ and AJ proteins 

and the polarized expression of selective transporters (Daneman and Rescigno, 2009; 

Paolinelli et al., 2011). The brain ECs were found associated with pericytes, embedded by 
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the basal lamina, neurons, microglia and astrocytes endfeet that altogether constitute the 

neurovascular unit (NVU), essential for CNS homeostasis (Cardoso et al., 2010). 

In accordance with previous studies that have demonstrated that there is an extensive 

network of glial cells within the LP, with processes that reach the epithelial cell layer (Bush 

et al., 1998; Neunlist et al., 2007; Neunlist et al., 2008) and blood capillaries (Hanani and 

Reichenbach, 1994), we found that in the mouse gut, enteric glial cells, identified with the 

expression of the intermediate filament GFAP, are abundant in the intestinal LP and they 

extend their projections to the villi tips (Fig. 4.1). Moreover, similar to astrocytes in the 

brain, GFAP-positive glia forms several endfeet-like structures surrounding blood vessels 

particularly when they are located underneath the epithelial basal membrane (Fig. 4.1). 

Furthermore, ECs are associated with pericytes, stained with α-smooth muscle actin (α-

SMA; Fig. 4.1). 

 

Figure 4.1: Intestinal Vascular Unit characterization. Confocal images showing blood vessels (red, 

CD31/PECAM-1), enteric glial cells (green, GFAP) in the upper panel or pericytes (green, α-SMA) in the lower 

panel in cryosections from intestines of C57/BL6 mice. Actin filaments were stained with phalloidin (blue). 

Scale bars: in the upper panels 30 µm; in the lower panels 20 µm. 
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One peculiar feature of BBB capillaries is the presence of elaborated junctional complexes 

that includes TJ and AJ proteins. As shown in Figure 4.2A-F, similar to the cerebral 

endothelium, intestinal ECs express the main components of TJs, such as occludin (Fig. 

4.2A), the transmembrane junctional adhesion molecule–A (JAM-A, Fig 4.2C), claudin-5 

(Fig. 4.2E) and low levels of claudin-12 (Fig. 4.2F), as well as the cytoplasmic accessory 

proteins ZO-1 (Fig. 4.2B) and cingulin (Fig. 4.2D) involved in the connection of integral 

TJs to the actin cytoskeleton. Moreover, as shown in Figure 4.2B-C-D-F, also the 

intestinal epithelium expresses components of TJs. 

 



 55 

 

A

CLDN12CD31

CLDN5CD31

CD31 OccludinPhalloidin Merge

ZO-1 Merge

JAM-A Merge

CingulinCD31 Merge

Merge

Merge

Phalloidin

Phalloidin

Phalloidin

Phalloidin

Phalloidin

CD31

CD31

B

C

D

E

F



 56 

Figure 4.2: Intestinal endothelial cells express TJ proteins. Confocal images showing the localization of 

TJ proteins in blood vessels (CD31/PECAM-1, red). In green (A) Occludin, (B) ZO-1, (C) JAM-A, (D) cingulin, 

(E) claudin-5, (F) claudin-12. Every intestinal section was stained also with phalloidin (blue). Scale bars: (A, D) 

10 µm, (B, C, E, F) 20 µm.  

 

 

As shown in Figure 4.2E, claudin-5 seems to be expressed by a subset of CD31 positive 

vessels. To assess whether claudin-5 is differentially expressed by blood vessels and 

lymphatics, we stained the former with CD34 and the latter with LYVE-1 antibodies and 

Cldn-5 localization was evaluated. In Figure 4.3 the immunostaining demonstrates that 

Cldn-5 is expressed by LYVE-1 lymphatic endothelium but not by CD34 blood vessels. 

 

Figure 4.3: Lymphatics but not blood vessels express claudin-5. Confocal images showing the 

localization of claudin-5. In the upper panels, intestinal sections were stained for Cldn-5 (green) and CD34 

(red) to mark blood vessels while in the lower panels, sections were labeled with Cldn-5 (green) and LYVE-1 

(red) which is specifically expressed by lymphatic vessels. Every intestinal section was stained also with DAPI 

(blue) that marks cell nuclei. Scale bars: 50 µm. 
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Essential for the formation of the TJs are the AJs since they hold ECs together. In the gut, 

endothelial cells express the transmembrane VE-cadherin (Fig. 4.4) that forms AJs by 

homophilic interaction. As shown in Figure 4.4, intestinal epithelial cells as well as 

endothelium express also β-catenin in the intercellular junctions. 

 

Figure 4.4: Adherens Junction proteins expression in intestinal endothelial cells. Confocal images 

showing the expression of AJ proteins on blood vessels (CD31/PECAM-1, red). In green VE-cadherin (upper 

panel) or β-catenin (lower panel). Every intestinal section was stained also with phalloidin (blue). Scale bars: 

10 µm. 

 

 

Taken together these results demonstrate that in the intestine we can define a “gut 

vascular unit” (GVU) composed by pericytes, enteric glia that extends cellular processes 

around intestinal vessels and endothelial cells.  

Moreover, we found that intestinal endothelial cells express a peculiar set of TJs that 

probably allows these cells to restrict the trafficking of molecules within the paracellular 

space. However, the expression of transporters involved in the movement of substances 

between the intestinal LP and the blood together with the expression on ECs of leukocyte 
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adhesion molecules necessary for movement of immune cells from the blood into LP 

remain to be evaluated to have a complete picture of the intestinal endothelium properties.  

 

4.1.2 S. typhimurium modifies barrier properties of the intestinal endothelium 

 

In order to clearly define whether there is a vascular barrier in the intestine we analyzed 

the expression of Plasmalemma Vesicle Associated Protein-32 (Plvap/ MECA-32/ PV1) 

since in the brain it has been demonstrated that Plvap expression negatively correlates 

with the differentiation of the vasculature to form the BBB (Liebner et al., 2008). Indeed, 

when the endothelium differentiates to form the BBB at approximately E17, concomitantly 

to the activation of Wnt/β-catenin signaling pathway, MECA-32 antigen expression is 

downregulated (Hallmann et al., 1995) leading to increased barrier properties of the 

endothelium (Liebner et al., 2008). By contrast, BBB microvessels up-regulate Plvap 

under pathological conditions such as brain tumors or stroke (Carson-Walter et al., 2005). 

Analyzing Plvap expression in the small intestine by immunofluorescence, we found that 

at steady state all the 3 parts of the small intestine, namely duodenum, jejunum and ileum, 

do not express Plvap (Fig. 4.5). However, when mice were orally infected with Salmonella 

typhimurium, a pathogen capable to spread systemically in the mouse, we found that at 

early phases of infection Plvap was slightly up-regulated in CD34+ blood vessels of the 

jejunum and ileum and after 6h it was highly up-regulated in the same parts of the small 

intestine (Fig. 4.5). By contrast in the duodenum after infection Plvap is expressed at low 

levels only after 6h post-infection. Following the kinetics of Plvap expression, we found 

that at 24h after infection, the protein tends to return to basal levels in all the tracts of the 

intestine (Fig. 4.5). 
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Figure 4.5: Plvap expression on intestinal blood vessels. Confocal images showing blood vessels (green, 

CD34), Plvap (red) and cell nuclei (blue) in cryosections from different SI tracts of C57/BL6 mice at different 

time points after oral gavage with 109 S.typhimurium ΔaroA. Bars: 50µm. Images are representative of three 

independent experiments. 

 

 

4.1.3 Salmonella spreads systemically after oral infection 

 

To address whether the upregulation of Plvap correlates with reduced barrier properties of 

the intestinal endothelium and therefore with a systemic spreading of S. typhimurium, we 

challenged C57/BL6J mice intragastrically with 109 S. typhimurium ΔaroA. We used this 

auxotrophic mutant with low replicative capabilities in vivo because it allows us to evaluate 

the spreading of the bacteria reducing the effect of the bacterial replication on colony 

forming unit (CFU) counts. 
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Figure 4.6: S. typhimurium spreading after oral administration. Mice were orogastrically inoculated with 

109 S.typhimurium ΔaroA bacteria. After 2h, 6h, 24h and 48h CFUs in PPs, mLNs, spleen and liver were 

determined. Each data point represents an individual mouse. Error bars represent SEM. Results are pooled 

from 3 independent experiments. Student unpaired t-test with Welch’s correction for unequal variances was 

used to evaluate statistical significance. *P<0.05. 

 

 

We found that during the early phases of infection the first organs to be involved are the 

PPs and later mLNs and liver and finally the spleen are colonized (Fig. 4.6). Moreover, 

between 6h and 24h when there is the highest number of CFU in the liver, also alanine 

transaminases (ALT), indicators of liver damage, are high in the serum (Fig. 4.7). 
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Figure 4.7: Alanine transaminases after S. typhimurium infection. Blood from mice infected with 109 S. 

typhimurium ΔAroA was collected and serum was tested for the presence of alanine transaminases (ALT), as 

indicators of liver damage. Each circle represent the result obtained from one single mice. Error bars 

represent SEM. Data are representative of 3 independent experiments with similar results. 

 

 

4.1.4 S.typhimurium infection modulates caveolae formation in intestinal vessels 

 

Different studies have demonstrated that Plvap is necessary for the formation of 

endothelial diaphragms in the fenestrae and caveolae both in vitro (Ioannidou et al., 2006; 

Stan, 2004) and in vivo (Herrnberger et al., 2012a; Herrnberger et al., 2012b; Stan et al., 

2012) where the presence of diaphragms in organs with fenestrated vessels like the 

intestine are important in maintaining the endothelial barrier function. Indeed, Plvap 

deficient mice, that have impaired formation of diaphragms and consequently a leaky 

fenestrated endothelium, showed a selective loss of plasma proteins, edema, dyslipidemia 

and lethal protein-losing enteropathy (Stan et al., 2012). In the context of the blood-brain 

barrier, caveolin-1, the major component of the caveolae, has been associated to BBB 

breakdown, since in the early phase after barrier damage it is upregulated in the vessel of 

the lesion (Nag et al., 2007). Moreover it has been demonstrated that caveolae are 

involved in the entry of virus and bacteria such as E.coli K1 through brain microvascular 

endothelial cells (Sukumaran et al., 2002) and S. typhimurium, which has been 
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demonstrated to be transported into the intestinal M cells through caveolin-1 expressing 

caveolae (Lim et al., 2010).  

Based on these published data, we wondered whether also in intestinal endothelial cells 

caveolin-1, the caveolae membrane scaffolding protein, is expressed and if its expression 

is modulated during infection along with Plvap. Therefore we analyzed by 

immunofluorescence the expression of caveolin-1 in the intestine of untreated mice and 

mice orally infected with 109 S. typhimurium bacteria after different time points. 

 

Figure 4.8: Caveolin-1 is expressed in lymphatic and blood endothelial cells in the intestine and it is 

up-regulated upon infection. Confocal images showing Plvap expression (stained in green), caveolin-1 

(CAV-1 in red) and nuclei were stained with DAPI (blue) in cryosections from different SI tracts of C57/BL6 

mice at different time points after oral gavage with 109 S.typhimurium ΔaroA. Bars: 10 µm. Images are 

representative of three independent experiments. 
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We found that caveolin-1 was expressed in all the three part of the small intestine in both 

blood vessels, that after infection could be identified by the expression of Plvap, and in 

lymphatic vessels, that can be recognized also based on their position in the center of the 

villi. As shown in Fig. 4.8, at steady state caveolin-1 is expressed at low levels in all the 

SI, while after infection we found that it is up-regulated. In detail, in the duodenum 

Salmonella infection induces an higher expression of cav-1 first in the blood vessels and 

then in the lymphatics, and its expression is restored at low levels after 24 hours p.i. On 

the contrary, in the jejunum and ileum, we found a higher expression of caveolin-1 both in 

the blood and lymphatic vessels at 2h and 6h p.i. In the ileum the presence of caveolae 

remains high also after 24 hours after infection. 

Together, these results suggest that Salmonella infection is able to modulate the 

formation of caveolae in intestinal blood and lymphatic vessels and to change the Plvap 

expression on blood vessels modifying the endothelial barrier state. 

 

4.1.5 Claudin-3 expression on intestinal epithelium after S. typhimurium infection 

 

Together with the modulation of Plvap expression, it was demonstrated that in the brain 

Wnt/β-catenin signaling pathway is also able to up-regulate the expression of Claudin-3 

(Cldn-3) resulting in barrier maturation (Liebner et al., 2008). Starting from these findings, 

we wondered whether also in intestinal vessels Cldn-3 is modulated after infecting mice 

with S. typhimurium. We found that Cldn-3 is not expressed by intestinal ECs but 

interestingly its expression is modulated by the infection in the epithelium confirming what 

has been recently demonstrated by Corr et al. (Corr et al., 2013). We showed that Cldn-3 

is up-regulated after infection especially after 6 hours p.i. in the duodenum and jejunum 

while in the ileum it is expressed at steady state while it is down-regulated after infection 

(Fig. 4.9). Moreover, at 2 hours after infection we found a more basolateral localization of 

Cldn-3 compared to the other time points where it is localized at cell-cell junctions.
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Figure 4.9: Claudin-3 expression on intestinal epithelial cells after S. typhimurium infection. Confocal 

microphotographs showing blood vessels (green, CD34), Cldn-3 (red) and DAPI (blue) in 10 µm thick 

cryosections from different tracts of the small intestine of C57/Bl6 mice at different time points after oral 

gavage with 109 S.typhimurium ΔAroA. Bars: 50 µm.  

 

 

4.1.6 Permeability of the intestinal blood vessels is modified by S. typhimurium 

infection 

 

To understand whether after S. typhimurium infection the vascular barrier function is 

compromised, we tested endothelial permeability injecting 2 mg of 20 KDa FITC-Dextran 

in intestinal loops exteriorized from C57/Bl6J mice orally infected with 109 S.typhimurium 

ΔAroA. At different time points after Salmonella infection blood was harvested and tested 

for the presence of the fluorophore. As controls, intestinal loops from mice not infected 

were injected with the fluorophore-conjugated dextran. We found an accumulation of 
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FITC-dextran in the blood serum between 4h and 24h after infection, when conjugated 

dextran is injected in the duodenum or jejunum, while if it is injected in the ileum it reaches 

the blood stream after 24h (Fig. 4.10).  

 

 

Figure 4.10: S. typhimurium infection modifies barrier properties of intestinal endothelium. C57/BL6 

mice were orally infected with 109 S.typhimurium ΔAroA and immediately or after 1h, 4h or 24h were 

anesthetized and in different parts of the SI, intestinal loops were exteriorized and ligated. 2 mg of FITC-

Dextran 20 KDa were injected in the loop. After 1h blood was harvested from the heart and tested for the 

presence of the fluorophore. As control, uninfected mice were injected in the duodenum, jejunum or ileum with 

FITC-Dextran and blood was collected after 1h. Serum fluorescence was measured by a fluorimeter and from 

each value the fluorescence of the serum collected from an untreated mice was subtracted to eliminate the 

basal level of fluorescence. Results represent mean±SEM. n=4, for each condition. Statistical significance was 

evaluated using Student unpaired t-test with Welch’s correction for unequal variances. ** p<0.01.  

 

 

To assess that the increased passage of dextran was not simply due to an increased 

epithelial permeability, we decided to assess the inside-out increased vessel permeability. 

We adapted the protocol described by Xu and colleagues (Xu et al., 2012) to the multi-

photon confocal microscope present in our imaging facility to our purpose to analyze the 

modification of intestinal vessels barrier properties. Briefly, following anesthesia, a loop 

from the ileum of untreated mice or mice infected for 4 hours with 109 S.typhimurium 

ΔAroA was externalized and the mucosa was exposed by making an incision avoiding 

blood loss. Just before imaging, FITC-dextran with different molecular weights were 

injected into the tail vein and the extravasation of the dye was monitored via 2-photon 
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microscopy for at least 10 min every 30 s. As control dye, 4 KDa FITC-dextran was used. 

As shown in Fig. 4.11 in both untreated and Salmonella treated mice, the loss of 

intravascular fluorescence was very rapid and the visualization of lamina propria blood 

vessels morphology was lost immediately after fluorophore injection since 4 KDa dextran 

was not retained but it was accumulated in the intestinal lumen. 

 

Figure 4.11: Intestinal vessels are highly permeable to 4 KDa FITC-Dextran. Intestinal blood vessels 

permeability to 4 KDa FITC-dextran was visualized by intravital 2-photon microscopy. 2 mg 4 KDa FITC-

Dextran were injected i.v. and intestine was immediately imaged. Time-lapse images were acquired every 30s 

for 10 min. Yellow arrows indicate fluorophore extravasation through the gut epithelium into the intestinal 

lumen. Scale bar: 20 μm. n = 3. 

 

 

On the contrary, if 70 KDa FITC-dextran was injected i.v. in untreated C57/BL6J mice, it 

remains almost completely within the vessel (Fig. 4.12, upper panels), while when mice 

were infected with Salmonella the fluorophore started to extravasate just after few 

seconds after starting the imaging (Fig. 4.12, lower panels). After infection, 70 KDa 

dextran was able to extravasate and also to pass the epithelium indicating that Salmonella 

is able to modify both epithelial cell permeability, as extensively demonstrated, but also 

vascular barrier permeability. 
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Figure 4.12: Salmonella infection increases the vascular permeability to 70 KDa dextran. Intestinal 

blood vessels permeability to 70 KDa FITC-dextran was visualized by intravital 2-photon microscopy. 0.5 mg 

70 KDa FITC-Dextran were injected into the tail vein just before imaging in untreated or Salmonella infected 

mice (4h). Time-lapse images were acquired every 30s for 10 min. Yellow arrows indicate fluorophore exit 

from the vessels. Scale bar: 20 μm. n = 3. 

 

 

A ratiometric analysis of extra- versus intravascular fluorescent dye was also conducted to 

quantify the difference between the permeability to the dextrans with different molecular 

weight. At 10 min after dye injection, the relative fluorescence of 70KDa dextran injected 

in Salmonella infected mice is about 5.5-fold higher than the fluorescence of the same 

dextran injected into untreated mice. Conversely, the permeability of intestinal blood 

vessels to 4KDa dextran is equivalent between infected and non-infected mice (Fig. 4.13).  
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Figure 4.13: Ratiometric analysis of fluorescence intensity of extra- versus intravascular dextrans in 

untreated and Salmonella-infected mice. An area of 5×5 μm was chosen inside and outside the blood 

vessel. The fluorescence intensity was determined in the areas for both the FITC-dextrans in untreated and 

infected mice. For each time-point, the fluorescence intensity was measured for 10 areas inside and 10 areas 

outside the blood vessel and the ratio between the outside and the inside fluorescence intensity was 

calculated and normalized on the fluorescence ratio at time 0. The ratio was plotted in percentage over time. 

Results are represented as mean±SEM. Statistical significance was evaluated using 2-way ANOVA. * p<0.05.  

 

 

4.2 Mechanisms behind the intestinal endothelial barrier modifications 

 

4.2.1 Bacterial invasiveness is not involved in the changes of the intestinal 

endothelial barrier 

 

We have shown that S. typhimurium is able to modify the endothelial barrier properties in 

the gut and to colonize distal organs, such as liver and spleen. Therefore, we wondered 

whether this could be explained only by the capacity of Salmonella to cross the epithelial 

barrier and hence to reach the endothelial barrier or by the fact that Salmonella is able to 

actively modulate a signaling cascade necessary for the modification of the intestinal 

endothelial barrier. To answer to the first question we infected mice with a non-pathogenic 

strain of E. coli or with an E. coli strain made capable to cross the epithelial barrier by the 

expression of the Yersinia enterocolitica Inv protein (E. colipInv). 

Yersinia invasin, a protein of the outer membrane, has been demonstrated to be involved 

in the entry of the enteropathogenic bacterium into non-phagocytic cells through the 

binding to β1 integrin. The binding to the integrin activates the focal adhesion kinase and 

cytoskeletal proteins that lead to the formation of pseudopods that engulf the bacteria into 

the host cell  (Alrutz and Isberg, 1998).  
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Figure 4.14: E.coli as well as the invasive strain E.colipInv are not able to spread in the systemic 

circulation after oral administration. Mice were orogastrically inoculated with 109 E.coli (blue dots) or 

E.colipInv (red dots). After 2h, 6h, 24h and 48h CFUs in PPs, mLNs, spleen, liver, small intestine, divided into 

duodenum, jejunum, ileum, and colon were determined. Each data point represents an individual mouse. Error 

bars represent SEM. To evaluate statistical significance between the groups, 2-way ANOVA was used. 

*P<0.05, **P<0.01. 

 

 

Although we were able to find E.coli expressing the Yersinia invasin in the duodenum, 

jejunum, ileum and colon meaning that it was able to cross the epithelial layer and to 

reach the intestinal lamina propria (Fig .14, lower panels) and few bacteria were also 

found in the PPs and in the mLNs, we did not find E.colipInv in the liver and spleen even 

after 48 hours p.i. (Fig 4.14, upper panels, red dots), meaning that, although it is invasive, 

E.colipInv is not able to disseminate systemically. As control, mice were infected with a 

non-pathogenic E.coli strain, which was found neither in the intestine nor in the mLNs, 

liver and spleen (Fig 4.14, blue dots). These data suggest that the capacity of Salmonella 

to cross the intestinal endothelium and to modify its barrier characteristics is not simply 

due to the fact that it is able to cross the gut epithelium and reach the underlying vessels 

Spleen

2h 2h 6h 6h 24
h

24
h

48
h

48
h NT NT

0

0.05

0.10

0.15
C

FU
/1

06 
ce

lls

E.Coli E.ColipInv

mLNs

2h 2h 6h 6h 24
h

24
h

48
h

48
h NT NT

0

0.5

1.0

1.5

2.0

C
FU

/1
06 

ce
lls

PP

2h 2h 6h 6h 24
h

24
h

48
h

48
h NT NT

0

1

2

3

4

5

C
FU

/1
06 

ce
lls

Liver

2h 2h 6h 6h 24
h

24
h

48
h

48
h NT NT

0

0.5

1.0

1.5

2.0

C
FU

/1
06 

ce
lls

Duodenum

C
FU

/1
06 

ce
lls

2h 2h 6h 6h 24
h

24
h

48
h

48
h NT NT

0

200

400

600 *

2h 2h 6h 6h 24
h

24
h

48
h

48
h NT NT

0

200

400

600

Jejunum

C
FU

/1
06 

ce
lls

2h 2h 6h 6h 24
h

24
h

48
h

48
h NT NT

0

200

400

600

Ileum

C
FU

/1
06 

ce
lls

2h 2h 6h 6h 24
h

24
h

48
h

48
h NT NT

0

200

400

600

800
Colon

C
FU

/1
06 

ce
lls

** *



 70 

but to an active process probably involving the activation/repression of signaling pathways 

and/or modification of cell-cell junctions. 

 

4.2.2 S. typhimurium negatively regulates Wnt/β-catenin signaling pathway 

 

The second hypothesis that could explain the capacity of Salmonella to disseminate 

systemically is its ability to actively modify the intestinal endothelial barrier by modulating 

a signaling pathway. 

Canonical Wnt/β-catenin signalling pathway was demonstrated to be involved in vascular 

development in the embryo (Cattelino et al., 2003) and in particular in the formation of the 

blood-brain barrier. Indeed, at embryonic day 9.5 there is a marked activation of β-catenin 

in endothelial cells of brain capillaries which then decreases between days 15.5 and 17.5 

(Liebner et al., 2008). In the brain, the activation of β-catenin correlates with the down-

regulation of Plvap and maturation of the BBB. Moreover, it has been shown that Wnt/β-

catenin signaling pathway is involved in S. typhimurium infection in intestinal epithelial 

cells (Duan et al., 2007; Liu et al., 2010; Sun et al., 2005; Zhang et al., 2012). Thus, we 

hypothesized that β-catenin activation may be responsible for the establishment also of 

the “gut vascular unit” and that it could be regulated by S. typhimurium also in endothelial 

cells. To support this hypothesis, we used an in vitro system in which primary lung 

endothelial cells, isolated from C57/BL6 mice, were infected with S. typhimurium and the 

expression of Axin2 gene, one of the downstream targets of β-catenin, was analyzed by 

RT-PCR. We used primary lung endothelial cells for the in vitro experiments because of 

the lack of established mouse intestinal endothelial cell lines and we were not yet able to 

obtain a large number of primary murine intestinal endothelial cells and to propagate them 

in culture. We found that lung ECs infected with the Salmonella WT strain express less 

Axin2 compared to the Wnt3a treated cells, that has been used as positive control and 

compared to the untreated cells (Fig. 4.15). Lung ECs were also infected with mutated 

Salmonella strains, specifically a SPI-2 deleted strain (BA83), a noninvasive SPI-1 mutant 
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strain (BA34) or an endotoxin mutant (FB61, msbB). Only when cells were infected with 

BA83 strain the down-regulation of Axin2 was abrogated (Fig. 4.15) indicating that 

probably proteins encoded by T3SS pathogenicity islands 2 are involved in blocking the 

activation of the Wnt/β-catenin signaling pathway in the endothelium. Moreover, we 

infected ECs also with WT E. coli strain or an invasive E.coli strain (DH5αpInv). Analyzing 

Axin2 expression levels, only the invasive E. coli strain but not the non-pathogenic one is 

able to reduce the activation of β-catenin (Fig. 4.15). 

 

Figure 4.15: Wnt/β-catenin signaling pathway activation state after infection with different strains of S. 

typhimurium and E. coli. Primary lung endothelial cells were infected with WT S.typhimurium (FB62), a SPI-

2 deleted strain (BA83), a noninvasive SPI-1 mutant strain (BA34), an endotoxin mutant (FB61, msbB) or with 

a WT DH5α E. coli strain or a modified strain expressing invasin from Y. enterocolitica. Cells were infected 

with a MOI 1:10 for 1h, washed and left with medium containing gentamycin for 90 min. Alternatively, cells 

were treated with 100 ng/ml of recombinant Wnt3a as positive control. Cells were then lysed and expression 

of Axin2 was assessed by RT-PCR. Results are pooled from 3 independent experiments. Results represent 

mean±SEM. Statistical significance between untreated (PBS) and treated samples was evaluated using two-

tailed Student’s t-test. *p<0.05, **p<0.01, ***p<0.001.  

 

 

In the in vivo experiment, shown in Figure 4.14, we found that E.colipInv was not able to 
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*** * ** * 

* 

P
B
S

F
B
6
2

F
B
6
1

D
H

5
a

D
H

5
ap

IN
V

B
A

3
4

B
A

8
3

W
n
t3

a

W
n
t3

a+
F
B
6
2

0

2

4

6

Ax
in
2

F
o

ld
 i
n

c
re

a
s
e



 72 

invasive E.coli should not be able to down-regulate Axin2. However, we unexpectedly 

observed that E.colipInv is able to down-regulate Axin2 although to a lower extent than S. 

typhimurium (Fig. 4.15). These results suggest that S. typhimurium and an invasive strain 

of E. coli, at least in vitro, are able to affect the translocation of β-catenin to the nucleus 

where it binds lymphoid enhancer factor (Lef)/T cell factor (TCF) and modulates the 

transcription of target genes, such as Axin2. It remains to be established whether Axin2 

can be considered as the best marker of all of the target genes of Wnt signaling and 

whether the two bacteria control differently the Wnt pathway and hence a panel of target 

genes should be analyzed to have a complete picture. In addition, it would be interesting 

to know whether the difference in the downregulation of Axin2 in response to Salmonella 

or E. colipInv can account for the different behavior of the two bacteria in vivo. Moreover, it 

seems that TTSS SPI-2 is involved in the modulation of β-catenin activity. The possible 

implication in vivo could be that infection with Salmonella reduces the stability of β-catenin 

in the intestinal endothelium consequently inducing the up-regulation of Plvap and, in 

general, the destabilization of the barrier to favour its systemic spreading. 

 

4.2.3 MyD88 signaling regulates β-catenin activation state in endothelial cells  

 

Toll-like receptors (TLRs) act as primary sensors for microbial components whose 

engagement by the bacterial ligands culminates with the activation of the transcription 

factor nuclear factor-kappaB (NF-kappaB). The endothelial cells express a number of 

TLR, such as TLR2, 3, 4 and 6 in the brain endothelium (Nagyoszi et al., 2010) or TLR4 

(Ogawa et al., 2003) and 5 (Maaser et al., 2004) in the intestinal endothelial cells. Once 

vascular endothelial cells are stimulated by LPS, they become activated and are 

characterized by an enhanced expression of cell adhesion molecules (CAM) with an 

increased leukocyte adhesion and tissue recruitment from the circulation (Ogawa et al., 

2003). 
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In epithelial cells, Salmonella is known to activate upon TLR engagement both the pro-

inflammatory NF-κB signaling pathway and the β-catenin signaling pathway. Moreover it 

has been demonstrated a direct physical interaction between the NF-κB p50 subunit and 

β-catenin upon infection (Duan et al., 2007; Sun et al., 2005). 

Since we have shown that S. typhimurium infection induces the reduction of β-catenin 

activation (Fig 4.16) in endothelial cells we wondered whether this modulation is mediated 

by TLRs and by MyD88 through which most surface TLRs, such as TLR2 and TLR4, 

signal. 

 

 

Figure 4.16: TLR4 engagement in endothelial cells is not required for Wnt/β-catenin signaling 

pathway. Primary lung endothelial cells from WT or TLR4-deficient mice were infected with WT S.typhimurium 

(FB62), a SPI-2 deleted strain (BA83), a noninvasive SPI-1 mutant strain (BA34), an endotoxin mutant (FB61, 

msbB) or with a non-pathogenic (DH5α) or invasive (DH5αpINV) E. coli strains. Cells were infected with a MOI 

1:10 for 1h, washed and left with medium containing gentamycin for 90 min. As positive control, cells were 

treated with 100 ng/ml of recombinant Wnt3a. Cells were then lysed and expression of Axin2 was assessed 

by RT-PCR. Results represent mean±SEM.  
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For this purpose, primary lung endothelial cells isolated from WT, TLR4 KO and MyD88 

KO mice were infected with WT Salmonella or mutated strains for SPI-2, SPI-1 or 

endotoxin or with E. coli WT or invasive strains and Axin2 expression was evaluated as 

indicator of β-catenin activation. As shown in Fig. 4.16, TLR4 ligation is not involved in the 

reduced activation of β-catenin that we observed with WT lung endothelial cells. However, 

the effect seemed to be mediated by the signal transduction protein MyD88 since the 

canonical Wnt/β-catenin signaling pathway is completely shut off in MyD88 deficient 

endothelial cells (Fig. 4.17). Interestingly, the absence of MyD88 in endothelial cells 

induces the reduction of β-catenin activation even in the absence of TLR ligands or in 

presence of the Wnt3a, known to activate the Wnt/β-catenin pathway and therefore the 

transcription of Axin2 (Fig. 4.17).  

 

Figure 4.17: β-catenin activation after infection in endothelial cells is dependent on MyD88. Primary 

lung endothelial cells from WT or MyD88 KO mice were infected with WT S.typhimurium (FB62), a SPI-2 

mutated strain (BA83), a noninvasive SPI-1 mutant strain (BA34), an endotoxin mutant (FB61) or with a WT 

DH5α E. coli strain or a modified strain expressing invasin from Y. enterocolitica. As control for the β-catenin 

activation state, cells were treated with 100 ng/ml of recombinant Wnt3a. ECs were then lysed and expression 

of Axin2 was assessed by RT-PCR. Results represent mean±SEM. Statistical significance between WT and 

KO samples was evaluated using two-way ANOVA test. *p<0.05, **p<0.01, ***p<0.001.  
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This effect is confirmed also by analyzing the expression of Plvap, another gene inversely 

modulated by the activation of β-catenin in endothelial cells. Indeed, as shown in Fig. 

4.18, MyD88 deficiency caused the up-regulation of Plvap gene independently from the 

presence of bacteria and Wnt ligands.  

These preliminary results suggest an unknown interaction between β-catenin and MyD88 

adaptor protein. An explanation for the interaction between MyD88 and β-catenin could be 

that MyD88 is important to maintain a basal level of active β-catenin that could be 

involved in the maintenance of endothelial barrier similarly to what happens for the 

intestinal epithelium in which Wnt/β-catenin signaling is important for the maintenance of 

intestinal homeostasis (Fevr et al., 2007). MyD88 is downstream of most TLRs and of IL-

1/IL-18 signaling pathways (Warner and Nunez, 2013). Hence, basal activation of β-

catenin may be the response of either IL-1 signaling or endogenous ligands of TLRs via 

MyD88.  

Moreover during infection it has been shown that MyD88 plays an important role in 

controlling the systemic spreading of C. rodentium (Gibson et al., 2008) that could be 

obtained also by regulating Wnt/β-catenin pathway at endothelial barrier level. 
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Figure 4.18: Plvap expression after infection of endothelial cells is dependent on MyD88. Primary lung 

endothelial cells from WT or MyD88 KO mice were infected with WT S.typhimurium (FB62), a SPI-2 (BA83), 

SPI-1 (BA34), or endotoxin (FB61) mutated strains or with DH5α E. coli or invasin-expressing strains. As 

control for the β-catenin activation state, cells were treated with 100 ng/ml of recombinant Wnt3a. ECs were 

then lysed and expression of Plvap was assessed by Real Time-PCR. Results represent mean±SEM. 

Statistical significance between WT and KO samples was evaluated using two-way ANOVA test. ***p<0.001.  

 

 

4.2.4 Wnt/β-catenin signaling pathway controls Salmonella systemic spreading in 

vivo 

 

To assess the role of β-catenin in the formation of the gut-vascular barrier in vivo, we 

used a mouse line in which β-catenin is active specifically in endothelial cells in an 

inducible way. In β-cateninlox(ex3)/lox(ex3) mice, the exon3 of the β-catenin gene (Catnb), that 

contains the serine/threonine residues phosphorylated by the GSK3β kinase, is flanked by 

two LoxP sites (Harada et al., 1999). These mice were crossed with Cdh5(PAC)-CreERT2 

mice where Cre recombinase is inserted downstream of VE-cadherin (Cdh5) promoter 

(Monvoisin et al., 2006). Upon tamoxifen treatment the Cre recombinase is expressed in 

VE-cadherin positive endothelial cells and the β-catenin exon3 is excised resulting in a 

gain-of-function (GOF) mouse strain, i.e. where β-catenin becomes constitutively active. 

We decided to use this mouse line and not a mouse line in which β-catenin is activated in 

all the tissue because in the intestine β-catenin is known to be involved in intestinal 

epithelial cell proliferation and differentiation (Fevr et al., 2007; Pinto et al., 2003) and also 

because we wanted to assess the role of β-catenin activation only in endothelial cells as 

Salmonella affects β-catenin activation in epithelial cells (Liu et al., 2010; Zhang et al., 

2012). 

Hence, we infected intragastrically Cdh5(PAC)-CreERT2 X β-cateninlox(ex3)/lox(ex3) GOF mice 

with 109 S. typhimurium ΔaroA. Before starting the experiments, excision of exon3 was 

verified by PCR (see Materials and Methods section). 
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Figure 4.19: S. typhimurium systemic spreading is reduced in β-catenin gain-of-function mice. 

Cdh5(PAC)-CreERT2 X β-cateninlox(ex3)/lox(ex3) GOF mice or β-cateninlox(ex3)/lox(ex3) control mice were infected 

p.o. with 109 S.typhimurium ΔaroA. After 2h, 6h and 24h CFUs in PPs, mLNs, spleen, liver, small intestine and 

colon were determined. Each data point represents an individual mouse. Error bars represent SEM. Results 

are representative of 2 independent experiments with similar results. Student unpaired t-test with Welch’s 

correction for unequal variances was used to determine statistical significance. *P<0.05. 

 

 

If β-catenin is involved in modulating the endothelial barrier in the gut, we expect that 

when β-catenin is made constitutively active, the barrier integrity should be maintained 

and therefore Salmonella should not be able to spread systemically. 

As expected, we found that S. typhimurium was able to invade and colonize different 

segments of the small intestine and colon of GOF mice and Cre-negative control mice in 

the same way (Fig. 4.19, lower panels), indicating that the constitutive activation of β-

catenin in endothelium did not have indirect effects on intestinal epithelium permeability. 

However, between 6h and 24h when there was the highest number of CFU in the liver of 

control mice, we found fewer bacteria in the livers of GOF mice. The same result was 

obtained also for the spleen at 24h post infection (Fig. 4.19, upper panels). These data 

indicate that when β-catenin is activated in blood ECs, Salmonella is not able to modify 
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the endothelial barrier and spread systemically indeed it cannot reach either the liver or 

the spleen crossing the intestinal blood vessels but it can only reach the mLNs (Fig. 4.19, 

upper panels) by the lymphatics where probably it will remain confined  (Voedisch et al., 

2009). 

 

4.2.5 Permeability of the intestinal blood vessels is modified by S. typhimurium 

infection 

 

To assess the functionality of the intestinal barrier in Cdh5(PAC)-CreERT2 X β-

cateninlox(ex3)/lox(ex3) GOF mice at steady state and after challenge with S. typhimurium, we 

tested endothelial permeability injecting 2 mg of 20 KDa FITC-conjugated dextran in 

intestinal loops exteriorized from Cre+ GOF mice and Cre- control mice orally infected with 

109 S.typhimurium ΔAroA.  

 

Figure 4.20: S. typhimurium do not modifies endothelial permeability of intestinal blood vessels of 

Cdh5(PAC)-CreERT2 X β-cateninlox(ex3)/lox(ex3) gain-of-function mice. Cdh5(PAC)-CreERT2 X β-

cateninlox(ex3)/lox(ex3) GOF mice and cre-negative control mice were orally infected with 109 S.typhimurium 

ΔAroA and after 4h or 24h were anesthetized and intestinal loops were exteriorized and ligated. 2 mg of FITC-

Dextran 20 KDa were injected in the loop. After 1h blood was harvested from the heart and tested for the 

presence of the fluorophore. As control uninfected mice were injected in the duodenum, jejunum or ileum with 

FITC-Dextran and blood was collected after 1h. Serum fluorescence was measured at fluorimeter and from 

each value the fluorescence of the serum collected from naive mice was subtracted to eliminate the basal 

Cre + Cre -

1.5

3.0

4.5

Fl
uo

re
sc

en
ce

 U
ni

ts

Duodenum

on
ly 

Dex
tra

n 4h 24
h

on
ly 

Dex
tra

n 4h 24
h

0

105

105

105

Jejunum

on
ly 

Dex
tra

n 4h 24
h

on
ly 

Dex
tra

n 4h 24
h

0

5.0 105

1.0 106

1.5 106

2.0 106

Fl
uo

re
sc

en
ce

 U
ni

ts

Ileum

Fl
uo

re
sc

en
ce

 U
ni

ts

ns
ns

ns

on
ly 

Dex
tra

n 4h 24
h

on
ly 

Dex
tra

n 4h 24
h

0

5.0 104

1.0 105

1.5 105 ns
ns

ns
ns

ns
ns

0.06 * ns
ns



 79 

level of fluorescence. Results represent mean±SEM. Statistical significance was evaluated using Student 

unpaired t-test with Welch’s correction for unequal variances. *p<0.05, ns: not significant.  

 

 

Analyzing the fluorescence in the blood serum we found an accumulation of FITC-Dextran 

at 4h after infection, when conjugated dextran was injected in the duodenum or jejunum of 

cre recombinase negative control mice, as expected from the previous experiments (Fig. 

4.10), but not in the β-catenin GOF mice where permeability to the 20 KDa dextran is not 

modified even after infection (Fig. 4.20). In contrast, when fluorophore-conjugated dextran 

was injected in ligated ileum in all time points analyzed there was only a slight difference 

between GOF and control mice (Fig. 4.20). Moreover, we noticed a difference between 

the results of the permeability experiments carried out with Cre- control mice and the WT 

C57/BL6J mice (purchased from Harlan) when FITC-dextran was injected in the ileum. 

This discrepancy could be explained taking into account the fact that the ileum is most 

colonized part of the small intestine by the intestinal microbiota and that it is highly 

possible that the composition of the intestinal flora is different between animals bred in our 

animal facility and mice purchased from an external company, indicating a possible role of 

the microbiota in the modulation of vascular barrier function in the gut. It is likely that a 

different composition of the microbiota may modify the epithelial (for example by 

modulating Cldn-3 expression) and/or endothelial barrier, thus influencing the segment of 

the intestine that is more prone to be invaded by Salmonella. 

All together these results suggest that Salmonella influences β-catenin activation state in 

intestinal endothelial cells in vivo to facilitate its spreading to systemic districts.  
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4.3 Role of microbiota in GVU formation 

 

4.3.1 Colonization of the intestine by the microbiota induces barrier maturation 

 

The intestinal microbiota exerts a multiplicity of functions in our body such as nutrient 

absorption, xenobiotic metabolism, angiogenesis, maturation of the immune system and 

plays a key role in the intestinal barrier maturation (Hooper et al., 2001; Natividad and 

Verdu, 2013). Another uninvestigated role of the intestinal flora could be to induce the 

formation of the GVU during the postnatal period and to maintain vascular barrier integrity 

during adulthood.  

To understand the role of gut microbiota in the establishment of vascular barrier we 

analyzed the presence of bacteria in the organs of C57/BL6 mice after weaning when the 

switch from lactation to solid food is known to change the bacterial composition of the 

offspring gut. We tested different time points after weaning but we found the highest 

difference between day 8 and day 10 post-weaning. We found that at day 8 some bacteria 

of the intestinal flora reached both the mLNs and the liver, while at day 10 we did not find 

any bacteria in both organs (Fig. 4.21). 

 

Figure 4.21: Intestinal vascular barrier became mature after weaning. C57Bl/6 mice were weaned and 

after 8 or 10 days bacterial number in the mLNs and liver were evaluated. Each data point represents an 

individual mouse. Error bars represent SEM. Mann-Whitney test was used to determine statistical significance. 
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These results suggest that in the early phases of life, the GVU can be modified by the diet 

(from breast milk to solid food) and/or by the gut microbiota that may be participating in 

the formation and maturation of the intestinal barrier. However, till now we cannot clearly 

dissect out the role of the microbiota on epithelial and on endothelial barrier maturation.  

Another interesting aspect of the relationship between the intestinal microbiota of the 

offspring and pregnancy is the exchange of bacteria between the maternal gut and the 

newborn. Indeed, although it is commonly accepted that the intrauterine environment is 

sterile, it has been reported the presence of bacteria in the intrauterine environment that 

are probably involved in the prenatal colonization of the newborn. Enterococcus, 

Streptococcus, Staphylococcus, or Propionibacterium bacterial genera were found in the 

umbilical cord blood suggesting translocation of the mother’s gut bacteria via the 

bloodstream (Jimenez et al., 2005; Matamoros et al., 2013). Moreover, another strong 

influence in the development of the newborn intestinal microbiota is breast milk. In fact, in 

breast milk bacterial strains from Streptococcus and Staphylococcus genera were isolated 

(Fernandez et al., 2013; Matamoros et al., 2013). How the maternal gut microbiota 

reaches the newborn via umbilical cord blood or via the milk through the lactating gland is 

unknown. In both cases, a role for dendritic cells has been hypothesized (Fernandez et 

al., 2013; Jimenez et al., 2005), but another possibility could be that during pregnancy the 

maternal gut-vascular barrier may be more permissive to the microbiota.  

To test this hypothesis we harvested the intestine of female mice as soon as the offspring 

were weaned and we stained them for Plvap molecule that we have identified as marker 

of vascular barrier damage. 

Duodenum Jejunum Ileum

PLVAP CD34 DAPI
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Figure 4.22: Plvap expression on intestinal blood vessels of lactating females. Confocal images 

showing blood vessels (green, CD34), Plvap (red) and DAPI (blue) in cryosections from duodenum, jejunum 

and ileum of C57/BL6 female mice at the end of lactation. Bars: 30µm.  

 

 

Analyzing the small intestine of lactating females, we found that Plvap is expressed in the 

duodenum and at lower levels in the jejunum (Fig. 4.22), while in normal mice we have 

previously shown that at steady state Plvap is not express in any part of the small 

intestine. Although this is still only a preliminary result, it may indicate that during 

pregnancy the intestinal vascular barrier could be more permeable explaining why the 

microbiota is found in the systemic circulation or in the mammary gland. 

 

4.3.2 Antibiotic treatment increases S. typhimurium systemic spreading 

capabilities 

 

Another possible role of the microbiota is to maintain the GVU integrity in order to 

preserve the health of our body. 

For this reason we treated mice with broad spectrum antibiotics (ampicillin, vancomycin, 

neomycin sulfate and metronidazole) for 4 weeks before challenging them with 

S.typhimurium ΔaroA.  
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Figure 4.23: S. typhimurium spreading after antibiotic treatment. C57/BL6 mice received in the drinking 

water a mixture of antibiotics (Abx) to eliminate most of the endogenous microbiota (ampicillin, metronidazole, 

neomycin, vancomycin). After 4 weeks, mice were inoculated p.o. with 109 S.typhimurium ΔaroA bacteria. 

After 2h or 6h CFUs in PPs, mLNs, spleen and liver were determined. Each data point represents an 

individual mouse. Error bars represent SEM. Results are pooled from 2 independent experiments. Student 

unpaired t-test with Welch’s correction for unequal variances *P<0.05, **P<0.01. 

 

 

As shown in Fig. 4.23, antibiotic treatment resulted in an increase in the translocation of 

Salmonella to the liver and spleen. This result suggests that the reduced number of the 

microbiota present into the intestine after antibiotic treatment could bring the gut vascular 

barrier to an immature state which is more permissive for Salmonella entry. However, we 

cannot exclude that the increased translocation of bacteria after antibiotic treatment is 

also due to a higher ability of Salmonella to penetrate the epithelial barrier in the absence 

of competing microbiota.  
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DISCUSSION 

 

 

In this work we have identified an intestinal vascular barrier that controls the systemic 

dissemination of food antigens and invasive bacteria that can be either accidentally 

ingested with the diet or be resident within the microbiota. 

Drawing a parallel between the well-known BBB and the newly identified gut vascular 

barrier (GVB) many similarities can be found. For both of them, the body has evolved a 

set of mechanisms to avoid the indiscriminate movement of molecules, cells and bacteria 

from blood to the brain parenchyma in the BBB and from the subepithelial space to the 

blood in the case of the GVB. However, the BBB and GVB display different characteristics 

due to the fact that these two endothelia should fulfill distinct functions. For instance, the 

BBB should avoid the uncontrolled movement of any substances from the blood into the 

brain parenchyma to protect the CNS from the constantly changing milieu of the blood 

stream. For this reason, the brain endothelium is continuous, paracellular trafficking is 

avoided by TJs, transcytosis is limited and the controlled movement of substances is 

achieved by the polarized expression of transporters (Abbott et al., 2006; Siegenthaler et 

al., 2013). By contrast, the intestinal endothelium is not continuous and it should be 

permeable to nutrients, due to the absorptive function of the gut. However, it displays 

barrier characteristics to preserve the body from the spreading of intestinal microbiota and 

pathogens that could cross the epithelium and has size limit exclusion to large molecules.  

Indeed molecules with low molecular weight can diffuse via the paracellular route while 

high molecular weight molecules can be transported by transcytosis. The paracellular 

trafficking of molecules with high molecular mass is avoided by the presence of TJs and 

AJs proteins at cell-to-cell junctions. 

We found that, similar to the cerebral endothelium, intestinal ECs express the main 

components of TJs (occludin, JAM-A, Cldn-12, as well as the cytoplasmic proteins ZO-1 

and cingulin) and AJs (VE-cadherin and junctional β-catenin). Moreover, in line with 
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previous studies that have demonstrated that there is an extensive network of glial cells 

within the LP with processes that reach the epithelial cell layer (Bush et al., 1998; Neunlist 

et al., 2007; Neunlist et al., 2008) and blood capillaries (Hanani and Reichenbach, 1994), 

we found that in the mouse gut, enteric glial cells (the equivalent of astrocytes in the brain) 

entail contacts with blood vessels, particularly when they are located in proximity to the 

epithelium. Different studies have highlighted the importance of enteric glial cells in the 

intestine. Indeed mice lacking GFAP+ cells died for fulminant jejuno-ileitis characterized by 

massive destruction of the epithelial layer together with microvascular disturbances that 

result in bacterial spreading into the blood (Bush et al., 1998). Enteric glia was found to 

regulate mucosal barrier function secreting S-nitrosoglutathione (Savidge et al., 2007) 

which induces an increased expression of ZO-1 and occludin in the epithelium (Flamant et 

al., 2011). Whether gut glial cells may confer a barrier phenotype also to intestinal ECs, 

resembling the astrocytes in the brain, is still unknown. This possibility is however 

supported by the finding that transplantation of enteric glia into the damaged spinal cord 

accelerates the repair of vasculature at the site of injury and the induction of barrier 

properties (Jiang et al., 2005). 

Gut ECs were found associated also to pericytes that together with enteric glial cells form 

what we call “gut vascular unit” (GVU). However the influence of these cells on the ECs 

barrier phenotype remains to be established. 

 

We hypothesize that the role of the GVB is to exclude from the systemic circulation 

bacteria or other unwanted molecules that have been translocated from the gut lumen. To 

define clearly whether there is a functional vascular barrier we analyzed the expression of 

Plvap protein as barrier marker. 

Different reports have demonstrated that in the BBB, Plvap is a marker of “leaky” vascular 

barriers (Armulik et al., 2010; Daneman et al., 2010) and Liebner et al. have found that 

Wnt/β-catenin signaling pathway activation is responsible for the down-regulation of Plvap 

expression on ECs during barrier maturation (Liebner et al., 2008). 
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Analyzing the expression of Plvap in the intestinal blood vessels we found that it is not 

expressed at steady state but it is up-regulated in the jejunum, ileum and to a smaller 

extent in the duodenum upon infection with S. typhimurium following the same kinetics of 

Salmonella spreading to the liver. This is in accordance with the observation that in vitro 

Salmonella is able to reduce β-catenin activation and therefore could induce Plvap up-

regulation. Moreover, we found that TTSS encoded by pathogenicity islands 2 are 

involved in blocking the activation of the Wnt/β-catenin signaling pathway in the 

endothelium since TTSS-2 mutated strain fail to down-regulate Axin2, used as marker of 

Wnt/β-catenin signaling pathway activation.  

Interestingly, Cirillo et al. have found that SPI-2 mutants are able invade PPs but were not 

found in the mLNs, liver and spleen and this was linked to the fact that SPI-2 is required to 

avoid Salmonella clearance by macrophages (Cirillo et al., 1998). In light of our results, 

the inability of TTSS-2 mutant to spread systemically could also be due to the fact that 

they are not able to pass the intestinal endothelium and reach the blood stream.  

Moreover, we found that an E.coli strain expressing Y. enterocolitica invasin gene was 

able to reduce the activation of β-catenin although it was not able to disseminate 

systemically in vivo. These results suggests that other Wnt/β-catenin target genes should 

be analyzed to have a complete picture and to be sure that Axin2 can be considered as 

the best marker of all of the target genes of Wnt signaling. Another possibility is that the 

difference between the behavior of Salmonella or E. colipInv can be in the modulation of 

other signaling pathways. 

The involvement of the Wnt/β-catenin signaling pathway in maintenance of the integrity of 

the GVB is demonstrated also by the experiments carried out with Cdh5(PAC)-CreERT2 X 

β-cateninlox(ex3)/lox(ex3) mice where, upon tamoxifen treatment, β-catenin becomes 

constitutively active in endothelial cells. We used this mouse line and not a mouse line in 

which β-catenin is activated in all the tissue because in the intestine β-catenin is known to 

be involved in intestinal epithelial cell proliferation and differentiation (Fevr et al., 2007; 

Pinto et al., 2003) and also because we wanted to assess the role of β-catenin activation 
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only in endothelial cells as Salmonella affects β-catenin activation in epithelial cells (Liu et 

al., 2010; Zhang et al., 2012). Using these mice we found that when β-catenin is activated 

in vascular ECs, S. typhimurium is not able to spread systemically indeed it cannot reach 

either the liver or the spleen crossing the intestinal blood vessels. However, Salmonella 

can still reach the mLNs by the lymph but does not recirculate through the thoracic duct 

into the blood circulation since mLNs work as “firewall” (Hooper and Macpherson, 2010) 

(Macpherson and Smith, 2006). Thus the mLN firewall can limit also pathogen spreading 

to systemic sites.  

Together with the down-regulation of the “leaky” protein Plvap, the BBB acquires the 

expression of tight junction proteins during the establishment of endothelial barrier 

function. These proteins include Cldn-5 (Nitta et al., 2003) and Cldn-3 whose expression 

is increased by Wnt/β-catenin pathway activation in ECs (Liebner et al., 2008). 

Analyzing the expression of these proteins in the intestine we found that Cldn-5 is only 

expressed in the lymphatics while Cldn-3 is not expressed in the ECs. However, we found 

that Cldn-3 is expressed by the epithelial layer and its expression and cell localization are 

modulated by Salmonella infection in line with what has been recently demonstrated by 

Corr et al. (Corr et al., 2013). The importance of Cldn-3 in the establishment of epithelial 

barrier function has been demonstrated also by the study on probiotics by Patel et al. 

Indeed, the treatment of neonatal mice that show an immature epithelial barrier, with 

Lactobacillus rhamnosus GG induces an increased expression of Cldn-3 in the epithelium 

and the maturation of barrier function (Patel et al., 2012). Interestingly, the authors pointed 

out that this probiotic strain has a protective function at low doses while the administration 

of a high dose of live probiotic induces death of the animals because of sepsis. This 

suggests that neonatal mice, beyond an immature epithelial barrier, could have also an 

immature vascular barrier still permeable to bacteria. 

Patel and colleagues have also shown that the maturation of the intestinal epithelium is 

abrogated in MyD88-/- mice indicating that MyD88-dependent TLR signaling may play a 

role in inducing intestinal barrier function (Patel et al., 2012). We suspected that MyD88 
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could also be involved in the maintenance of the GVB. Indeed, we found that the absence 

of MyD88 in endothelial cells induced the reduction of β-catenin activation concomitantly 

with the up-regulation of Plvap gene even in the absence of exogenous TLR or Wnt 

ligands indicating that MyD88 is required in ECs for the maintenance of endothelial barrier 

properties (or at least for the inhibition of “leaky” proteins like Plvap), via a still unknown 

mechanism.  

The importance of MyD88 in the control of the permeability of the gut vascular 

endothelium together with a role in the maintenance of the epithelial barrier integrity is 

suggested by different studies in which MyD88-deficient mice show higher susceptibility to 

C. rodentium infection compared to WT controls – the bacterium was clearly identified 

inside the blood vessels of KO mice – (Gibson et al., 2008) and higher susceptibility to 

DSS-induced colitis, although the pathology seems to be not directly associated to 

bacteremia but to a compromised expression of cytoprotective factors by MyD88-/- 

epithelium (Rakoff-Nahoum et al., 2004). Additionally, it was found that the lack of MyD88 

adapter-like (Mal) protein on non-hematopoietic cells induces increased susceptibility to 

oral infection with S. typhimurium. Furthermore, Mal-deficient mice show perturbed barrier 

function with increased systemic spreading of Salmonella and increased blood 

permeability following infection (Corr et al., 2013).  

During the early phase of BBB breakdown, blood vessels in the site of lesion express 

another marker of leaky endothelial barrier, namely caveolin-1 (Nag et al., 2007), which 

has been associated to caveolae. Interestingly, in organs with fenestrated vessels like the 

intestine, Plvap protein was found localized at stomatal diaphragms of fenestrae and 

caveolae and it was found to be important for the maintenance of the endothelial barrier 

function (Herrnberger et al., 2012b; Stan et al., 1999; Stan et al., 2012). 

It has been demonstrated that caveolae are involved in the entry of viruses and bacteria 

such as E.coli K1 and Salmonella (Hoeke et al., 2013; Lim et al., 2010). In particular, it 

has been shown that Salmonella can down-regulate caveolin-2 expression by increasing 

the expression of miR-29a both in vivo and in vitro (Hoeke et al., 2013). In the small 
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intestine we found that caveolin-1 was expressed in blood vessels and in lymphatics and 

interestingly, we found that after infection it is up-regulated in both of them. The 

expression of caveolin-1, and therefore the increase in caveolae formation, could be 

another way by which Salmonella could spread in both the lymph and the blood.  

Together with the increase of caveolin-1 and of Plvap we functionally tested the presence 

of endothelial barrier using fluorophore-conjugated dextrans. Two approaches have been 

used: an “outside-inside” method in which dextran was injected into ligated intestinal loops 

and the presence of dextran in the serum was measured and an “inside-out” approach in 

which dextrans with different molecular weight were injected i.v. and the extravasation of 

the dextrans was visualized using 2-photon microscopy. 

Using both methods it was clear that Salmonella infection could reduce the functionality of 

the intestinal vascular barrier. In particular, using 2-photon microscopy we found that 

under steady state the GVB was permeable to 4KDa dextran but not to 70KDa dextran, 

indicating that the endothelial barrier in the intestine did not restricts the trafficking of small 

molecules – unlike the BBB in which the size exclusion is for molecules with molecular 

mass higher than 500 Da (Pardridge, 2005). However, the size exclusion limit of the GVB 

has to be identified. 

Using the same experimental set up, we assessed also the functionality of the intestinal 

barrier in Cdh5(PAC)-CreERT2 X β-cateninlox(ex3)/lox(ex3) GOF mice at steady state and after 

challenge with S. typhimurium. As expected, we found that in mice with a constitutively 

active β-catenin, ECs permeability to the dextran is not modified even after infection. 

Interestingly, we noticed a difference in the permeability to dextran of the ileal endothelium 

in Cre- control mice and WT C57/BL6J mice (purchased from Harlan). This discrepancy 

could be explained taking into account the fact that the composition of the intestinal flora 

is different between animals bred in our animal facility and mice purchased from an 

external company, indicating a possible role of the microbiota in the modulation of 

vascular barrier function in the gut. It is possible that components of the microbiota may 

modify both the endothelial barrier and the epithelial one. For instance, microbiota could 



	
   90 

modulate Cldn-3 expression in the epithelium so that higher expression of Cldn-3 in the 

ileum could tighten the epithelial barrier avoiding the trafficking of molecules in the last 

part of the intestine. This modulation cannot be excluded since we have found a 

modulation of Cldn-3 expression by S. typhimurium. Indeed we showed that Cldn-3 is up-

regulated in the duodenum and jejunum and down-regulated in the ileum during infection. 

The down-regulation of Cldn-3 in the ileum could induce an increased epithelial 

permeability in this intestinal tract and it could be also possible that this favours DCs to 

sample luminal antigens extending their dendrites through the epithelial layer, in 

accordance to what was found by Chieppa et al. who showed an increased number of 

dendrites in the ileum upon Salmonella infection (Chieppa et al., 2006) (Fig. 5.1).  

Of note, although the results of “outside-inside” permeability assays could be influenced 

by the presence of another barrier – the epithelium – with the 2-photon experiments where 

an “inside-outside” method was used, we could analyze the effect of Salmonella on 

endothelial permeability excluding the effects on the epithelium. 
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Figure 5.1 Scheme of the findings of this work. We have shown that at steady state Plvap is not expressed 

in the endothelial cells of the small intestine similarly to Caveolin-1, which is low express in the blood vessels. 

Upon infection both proteins were up-regulated mostly in blood vessels of the jejunum and ileum. Reducing 

the integrity of the endothelial barrier in these parts of the SI, Salmonella could favour its systemic spreading. 

Moreover, at steady state we found high expression of Cldn-3 in the epithelial layer of the ileum but not in the 

duodenum and jejunum. During S. typhimurium infection, Cldn-3 expression is up-regulated in the duodenum 

and jejunum and down-regulated in the ileum where the epithelial barrier could be less tight than the steady 

state. It could be possible that this could favour luminal antigens sampling by DCs extending their dendrites 

through the epithelial layer, in accordance to what was found by Chieppa et al. who showed an increased 

number of dendrites in the ileum upon Salmonella infection. 

 

 

Since the intestinal microbiota was shown to play a key role in the intestinal barrier 

maturation (Hooper et al., 2001; Natividad and Verdu, 2013) we wondered whether it 

could induce also the formation of the GVB during the postnatal period and maintain 

vascular barrier integrity during adulthood. Preliminary data show that soon after weaning 

the epithelial and/or endothelial barrier are not yet formed since we found intestinal 

bacteria in the liver and mLNs. However, after 10 days post-weaning we did not find any 

bacteria in these organs indicating that the endothelial barrier maturation can be induced 

by the gut microbiota, although we cannot exclude the contribution of the diet (from breast 

milk to solid food). Moreover, till now we cannot clearly dissect out the role of the 

microbiota on epithelial and on endothelial barrier maturation.  

On the other hand, the role of the microbiota in the maintenance of the GVB during 

adulthood was addressed treating mice with broad-spectrum antibiotics before challenging 

with S.typhimurium. We found that antibiotic treatment resulted in an increase in the 

translocation of Salmonella to the liver and spleen suggesting that the reduced number of 

the microbiota could modify the gut vascular barrier so that it is more permissive for 

Salmonella entry. However, we cannot exclude that the increased translocation of bacteria 

after antibiotic treatment is also due to a higher ability of Salmonella to penetrate the 

epithelial barrier in the absence of competing microbiota.  
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The importance of the intestinal endothelial barrier was also suggested by studies on 

human diseases. For instance, it was shown that one feature of IBD is the increased 

intestinal vascular permeability that leads to tissue edema and damage (Oshima et al., 

2001). Interestingly, the alteration of the vascular permeability in IBD patients is not 

restricted to the intestinal vessels but affects also the vasculature of other organs such as 

the brain (Hathaway et al., 1999). 

Furthermore, it has been found that in neonates, non-typhoidal Salmonella spp (included 

S. typhimurium serovar) that are usually able to cause only local infection, could cause 

bacteriemia and meningitis (van Sorge et al., 2011), suggesting that during infancy the gut 

endothelial barrier is still permeable and also non-typhoidal Salmonella spp are able to 

spread systemically and reach the brain. Another possibility is that in neonates the 

intestinal endothelium has not yet acquired some characteristics that can be involved in 

the discrimination between typhoidal and non-typhoidal Salmonella enterica serovars. 

 

In conclusion, we have identified and characterized the gut vascular barrier and we have 

shown that it plays a fundamental role in controlling the spreading of molecules and 

bacteria to systemic sites. To have a complete picture of the features of this newly 

discovered barrier we will analyze the gene expression profile of mouse isolated intestinal 

ECs with a next-generation sequencing approach. 

Moreover, we showed that Salmonella typhimurium infection could modify GVB integrity. 

One way by which S. typhimurium is able to modify the barrier properties of the intestinal 

blood vessels is through the negative regulation of the Wnt/β-catenin signaling pathway. 

In vitro we have identified the TTSS-2 as the possible negative regulator of the β-catenin 

signaling pathway, therefore in next future we will investigate the role of TTSS-2 in vivo. 

Another interesting point that we would like to examine in depth is the role of the 

microbiota in the maturation and maintenance of the GVB. To this aim we will analyze the 
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barrier properties in the endothelium of newborns, before and after weaning and in mice 

treated with antibiotics. 

Finally, we will evaluate whether also in the human intestine there is a GVU as in the 

mouse gut and if it will be the case we will use an organ culture method developed in our 

laboratory to infect human intestine with Salmonella to analyze the endothelial cells 

phenotype.  
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