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Abstract: The Hubbard model on the honeycomb lattice describes charge carriers in
graphene with short range interactions. While the interaction modifies several physical
quantities, like the value of the Fermi velocity or the wave function renormalization,
the a.c. conductivity has a universal value independent of the microscopic details of the
model: there are no interaction corrections, provided that the interaction is weak enough
and that the system is at half filling. We give a rigorous proof of this fact, based on exact
Ward Identities and on constructive Renormalization Group methods.

1. Introduction and Main Results

The effects of interactions in quantum many body theory at low temperatures pose noto-
riously difficult problems; in certain cases the physical properties of the system are
radically different in interacting and non interacting models, while in other cases, like
in the so-called Fermi liquids, a simple modification or renormalization of the physical
quantities is expected. There is, however, a very small group of phenomena which are
universal; the physical quantities appear to be protected from any renormalization due
to the interactions and their values do not dependent on the details of the model, but
rather upon fundamental constants. A celebrated example is provided by the Quantum
Hall Effect, in which the value of the plateaus only depend on the von Klitzing constant
h/e2 and not on the material parameters; universality appears to be related to topological
invariance [1,2] or to the presence of Ward Identities [3]. Other examples of universal
phenomena come from the physics of superconductivity, in which the magnetic quantum
h/e plays an important role.

In recent times, evidence for universality has been observed in the conductivity
of graphene, a one atom thick layer of graphite. Its electronic properties can be well
described in terms of a tight-binding model of electrons hopping from one site to a neigh-
boring one of a honeycomb lattice, but often this model is approximated by an effective
one expressed in terms of massless Dirac fermions in the two-dimensional continuum [4].
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Recent optical measurements [5,6] show that at half-filling and small temperatures, if
the frequency is in a range well inside the temperature and the band-width, the a.c. con-
ductivity is essentially constant and equal, up to a few percent, to σ0 = e2

h
π
2 . This value

only depends on the von Klitzing constant and not on the material parameters, like the
Fermi velocity; it is apparently universal, at least inside the experimental precision.

Is graphene a.c. conductivity truly universal? Theoretically, the computation of the
conductivity in the absence of interactions gives exactly the value σ0 = e2

h
π
2 , both in

the idealized Dirac description [7,8] and even in the more realistic tight binding model
[9]. However, since truly universal phenomena are quite rare in condensed matter, it is
important to understand whether this apparently universal value is just an artifact of the
idealized description in terms of non-interacting fermions or rather it is a robust property
still valid in the presence of electron-electron interactions, which are certainly present
and expected to play a role in real graphene. Such a question has been studied in the
physical literature, but contradictory results have been found, see [10–16]. The reason
for this is that the Dirac approximation, which works well for the free gas, is not very
accurate in the presence of interactions: the corrections to the conductivity are expressed
by logarithmically divergent integrals. One can argue that such divergence is spurious,
just an artifact of the Dirac approximation, and that a regularization must be adopted to
cure it (in the tight binding model, the lattice provides a natural cut-off); however, the
results appear to be regularization-dependent and no unique predictions can be drawn.

In this paper we consider the Hubbard model on the honeycomb lattice, as a model of
monolayer graphene with screened interactions, and we prove that the a.c. conductivity
has the universal value σ0 = e2

h
π
2 even in the presence of interactions: the interac-

tion corrections to the conductivity are vanishing, provided that the interaction is weak
enough and the system is in the half filled band case. Remarkably, the presence of the
lattice and its symmetries are essential to get the result. The idea of the proof is based on
the two main ingredients: (i) exact lattice Ward Identities (WI) relating the current-cur-
rent, vertex and 2-point functions; (ii) the fact that the interaction-dependent corrections
to the Fourier transform of the current-current correlations are differentiable with con-
tinuous derivative (in contrast, the free part is continuous and not differentiable at zero
frequency).

The paper is organized in the following way. In Sect. 1.1 we describe the model, in
Sect. 1.2 we derive the Ward Identities, in Sect. 1.3 (and Appendix A) we perform the
computation of the conductivity in the non interacting case, and in Sect. 1.4 we present
the proof of our main result, under some regularity assumptions on the current-current
correlations. The proof of these regularity properties, the full description of the expan-
sion for the current-current correlations and vertex functions, as well as the proof of
convergence of this expansion, is given in Sect. 2 (Appendix B and C collect the proof
of some symmetry properties extensively used in Sect. 2).

1.1. The model and the observables. We consider electrons on a two-dimensional hon-
eycomb lattice interacting via a local Hubbard interaction, as a model describing the
charge carriers in graphene. Its ground state properties at half-filling, including the
asymptotic behavior of the correlations at large distances, have already been analyzed in
[17,18]. In this subsection we recall the definition of the model and introduce some of
the key observables (density and current), which will allow us to define the conductivity,
i.e., the quantity of main interest in this paper.

The fermionic fields and the Hamiltonian. Let� = {n1�l1+n2�l2 : n1, n2 = 0, . . . , L−1}
be a periodic triangular lattice of period L , with basis vectors: �l1 = 1

2 (3,
√

3), �l2 =
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1
2 (3,−

√
3). Let us denote by �A = � and �B = � + �δi the A- and B-sublattices of

the honeycomb lattice, with �δi the n.n. vectors defined as:

�δ1 = (1, 0), �δ2 = 1

2
(−1,

√
3), �δ3 = 1

2
(−1,−√3). (1.1)

Notice that the definition of �B is independent of the choice of i . If �A and �B are two
arbitrary constant vectors, we introduce creation and annihilation fermionic operators
for electrons sitting at the sites of the A- and B- sublattices with spin index σ =↑↓ as

a±�x,σ = L−2
∑

�k∈BL

e±i �k(�x− �A)â±�k,σ , �x ∈ �A, (1.2)

b±�x,σ = L−2
∑

�k∈BL

e±i �k(�x− �B)b̂±�k,σ , �x ∈ �B, (1.3)

where BL = {�k = n1 �G1/L + n2 �G2/L : 0 ≤ ni < L}, with �G1,2 = 2π
3 (1,±

√
3), is the

first Brillouin zone; note that in the thermodynamic limit L−2∑�k∈BL
→ |B|−1

∫
B d�k,

with B = {�k = ξ1 �G1 + ξ2 �G2 : ξi ∈ [0, 1)} and |B| = 8π2/(3
√

3). The opera-
tors a±�x,σ , b±�x,σ satisfy the canonical anticommutation rules and are periodic over �;

their Fourier transforms are normalized in such a way that, if �k, �k′ are both in the first
Brillouin zone:

{âε�k,σ , âε
′
�k′,σ ′ } = L2δ�k,�k′δε,−ε′δσ,σ ′ , {b̂ε�k,σ , b̂ε

′
�k′,σ ′ } = L2δ�k,�k′δε,−ε′δσ,σ ′ . (1.4)

Moreover, they are quasi-periodic over the first Brillouin zone:

a±�k+ �Gi ,σ
= e±i �Gi · �Aa±�k,τ , b±�k+ �Gi ,τ

= e±i �Gi ( �B−�δ j )b±�k,τ , (1.5)

where ei �Gi �δ j = ei2π/3, for all values of i, j . The phases �A and �B are arbitrary, the
freedom in their choice corresponding to the freedom in the choice of the origins of
the two sublattices�A and�B (this symmetry is sometimes referred to as Berry-gauge
invariance). A convenient choice for �A and �B, which makes the fields â±�k,σ , b̂±�k,σ periodic

over the reciprocal lattice �∗, is �A = �0 and �B = �δ1, which reads:

a±�x,σ = L−2
∑

�k∈BL

e±i �k �x â±�k,σ , b±�x+�δ1,σ
= L−2

∑

�k∈BL

e±i �k �x b̂±�k,σ , �x ∈ �A. (1.6)

This is the choice made in [17,18], which will be used throughout this paper, too.
The Hamiltonian of the two-dimensional Hubbard model on the honeycomb lattice

at half-filling is H� = H0
�(t) + U V�, where H0

�(t) is the free Hamiltonian, describing
nearest neighbor hopping (t ∈ R is the hopping parameter):

H0
�(t) = H0

�({t�x, j })
∣∣
t�x, j≡ t ,

(1.7)
H0
�({t�x, j }) = −

∑

�x∈�A j=1,2,3

∑

σ=↑↓
(t�x, j a

+
�x,σb−�x+�δ j ,σ

+ t∗�x, j b
+
�x+�δ j ,σ

a−�x,σ ),
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and V� is the local Hubbard interaction:

V� =
∑

�x∈�A

(
a+
�x,↑a−�x,↑ −

1

2

)(
a+
�x,↓a−�x,↓ −

1

2

)
+
∑

�x∈�B

(
b+
�x,↑b−�x,↑ −

1

2

)(
b+
�x,↓b−�x,↓ −

1

2

)
.

(1.8)

The current and density operators. The current is defined as usual via the Peierls sub-
stitution, by modifying the hopping parameter along the bond (�x, �x + �δ j ) as

t → t�x, j ( �A) = t eie
∫ 1

0
�A(�x+s�δ j )·�δ j ds, (1.9)

where the constant e appearing at exponent is the electric charge and �A(�x) ∈ R
2 is a

periodic field on S� = {�x = Lξ1�l1 + Lξ2�l2 : ξi ∈ [0, 1)}. Its Fourier transform is

defined as �A(�x) = |S�|−1∑ �p∈D�
�A �pe−i �p�x , where |S�| = 3

√
3

2 L2 and D� = { �p =
n1 �G1/L + n2 �G2/L : ni ∈ Z}; note that in the thermodynamic limit |S�|−1∑ �p∈D�

→
(2π)−2

∫
R

2 d �p. If we denote by H�( �A) = H0
�({t�x, j ( �A)}) + U V� the modified Ham-

iltonian with the new hopping parameters, the lattice current is defined as �J (A)�p =
−|S�| ∂H�( �A)/∂ �A �p, which gives, at first order in �A,

�J (A)�p = �J �p +
1

|S�|
∑

�q∈D�


̂ �p,�q �A�q , (1.10)

where, if η j
�p = 1−e−i �p�δ j

i �p�δ j
,

�J �p = iet
1

L2

∑

�k∈BL
σ, j

�δ jη
j
�p
(
â+
�k+ �p,σ b̂−�k,σ e−i �k(�δ j−�δ1) − b̂+

�k+ �p,σ â−�k,σ e+i(�k+ �p)(�δ j−�δ1)
)

= iet
∑

�x∈�
σ, j

e−i �p�x �δ jη
j
�p
(
a+
�x,σb−�x+�δ j ,σ

− b+
�x+�δ j ,σ

a−�x,σ
) =: ev0

∑

�x∈�
j=1,2,3

e−i �p�x �δ jη
j
�p J j
�x

(1.11)

is the paramagnetic current (in the last rewriting, v0 = 3t/2 is the free Fermi velocity
and J j

�x = (2i/3)
(
a+
�x,σb−�x+�δ j ,σ

− b+
�x+�δ j ,σ

a−�x,σ
)

are the bond currents) and

[

̂ �p,�q

]
lm =

∑

�x∈�
j=1,2,3

e−i( �p+�q)�x (�δ j )l(�δ j )mη
j
�pη

j
�q
�x, j , (1.12)

with
�x, j = −e2t
∑
σ (a

+
�x,σb−�x+�δ j ,σ

+ b+
�x+�δ j ,σ

a−�x,σ ), is the diamagnetic tensor. Similarly,

the density operator is defined by coupling the local density to an external field, i.e., by
adding to the Hamiltonian a local chemical potential term of the form

M�(μ) = −
∑

�x∈�A

∑

σ=↑↓
μ(�x)a+

�x,σa−�x,σ −
∑

�x∈�B

∑

σ=↑↓
μ(�x)b+

�x,σb−�x,σ , (1.13)
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where μ(�x) = |S�|−1∑ �p∈D�
μ �pe−i �p�x is a periodic field on S�. If we denote by

H�(μ) = H0
�(t)+ U V� + M�(μ) the modified Hamiltonian in the presence of the local

chemical potential, the lattice density is defined as ρ̂ �p = −|S�| ∂H�(μ)/∂μ �p, which
gives

ρ̂ �p = 1

L2

∑

�k∈BL
σ=↑↓

(
â+
�k+ �p,σ â−�k,σ + e−i �p�δ1 b̂+

�k+ �p,σ b̂−�k,σ
)

=
∑

�x∈�A
σ=↑↓

e−i �p�x a+
�x,σa−�x,σ +

∑

�x∈�B
σ=↑↓

e−i �p�x b+
�x,σb−�x,σ =:

∑

�x∈�A

e−i �p�xρA
�x +

∑

�x∈�B

e−i �p�xρB
�x .

(1.14)

It will be convenient for the incoming discussion to think the two components of the
paramagnetic current Ĵ �p,l , l = 1, 2, as the spatial components of a “space-time” three-
components vector Ĵ �p,μ, μ = 0, 1, 2, with Ĵ �p,0 = eρ̂ �p. In the following, it will also be
convenient to introduce the reduced current �j �p, related to the paramagnetic current by

�J �p = v0 �j �p, (1.15)

with v0 = 3t/2 the free Fermi velocity.

Schwinger functions and response functions. The thermal state of the system at inverse
temperature β > 0, associated to the density matrix e−βH� , can be characterized in
terms of Schwinger functions and response functions. The Schwinger functions are the
analytic continuation to imaginary time of the off-diagonal elements of the reduced den-
sity matrices; the response functions give us information about the reaction of the system
to a diverse set of external probes within the linear response regime. They are defined
as follows. Let ψ±�x,σ = (a±�x,σ , b±�x+�δ1,σ

), let O(i)
�xi
, i = 1, . . . , n, be local monomials in

the ψ±�x,σ operators and let us denote by O(i)
xi = exi,0 H�O(i)

�xi
e−xi,0 H� the corresponding

imaginary-time evolved operators; here xi = (xi,0, �xi ) and xi,0 ∈ [0, β) is the imaginary
time. The average of a product of local operators in the thermal state of the system at
inverse temperature β > 0 is defined as

〈O(1)
x1
· · · O(n)

xn
〉
β,L
= Tr{e−βH�T(O(1)

x1 · · · O(n)
xn )}

Tr{e−βH�} , (1.16)

where T is the operator of fermionic time ordering, acting on a product of fermionic
fields as:

T(ψε1
x1,σ1,ρ1

· · ·ψεn
xn ,σn ,ρn

) = (−1)πψ
επ(1)
xπ(1),σπ(1),ρπ(1) · · ·ψεπ(n)xπ(n),σπ(n),ρπ(n) , (1.17)

where εi ∈ {+,−}, σi ∈ {↑,↓}, ρi ∈ {1, 2}, xi ∈ [0, β) × �,ψ±x,σ,1 = a±x,σ and, if

δi = (0, �δi ), ψ
±
x,σ,2 = b±x+δ1,σ

. Moreover, π is a permutation of {1, . . . , n}, chosen in
such a way that xπ(1)0 ≥ · · · ≥ xπ(n)0, and (−1)π is its sign. [If some of the time coor-
dinates are equal to each other, the arbitrariness of the definition is solved by ordering
each set of operators with the same time coordinate so that creation operators precede
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the annihilation operators.] Finally, we denote by 〈O(1)
x1 ; · · · ; O(n)

xn 〉β,L the correspond-
ing truncated expectations. We shall also use the notation 〈·〉β = limL→∞ 〈·〉β,L and
〈·〉 = limβ→∞ 〈·〉β .

Choosing the local operators O(i)
xi in Eq.(1.16) simply as monomials in the fermionic

fields, we get the Schwinger functions of order n:

Sβ,Ln (x1, ε1, σ1; . . . ; xn, εn, σn)ρ1,...,ρn = 〈ψε1
x1,σ1,ρ1

· · ·ψεn
xn ,σn ,ρn

〉
β,L
. (1.18)

Choosing the operators O(i)
xi as suitable combinations of the current and density opera-

tors, we get the current-current, density-density and current-density response functions:

K̂ β,L
μν (p) :=

1

βL2

∫ β/2

−β/2
dx0

∫ β/2

−β/2
dy0 e−i p0(x0−y0)〈J(x0, �p),μ; J(y0,− �p),ν〉β,L , (1.19)

where p = (p0, �p) ∈ 2π
β

Z×D� and J(x0, �p),μ = ex0 H� Ĵ �p,μe−x0 H� . An important role
will be also played in the following by the two- and three-point functions:

Ŝβ,L(k) := 1

βL2

∫

(β,L)
dx
∫

(β,L)
dy e+ik(x−y)Sβ,L2 (x,−, σ ; y,+, σ ), (1.20)

Ĝβ,L
2,1;μ(k,p) := 1

βL2

∫ β/2

−β/2
dx0

∫ β/2

−β/2
dy0

∫ β/2

−β/2
dz0 e+ik0(x0−y0)+i p0(x0−z0)

×〈J(z0, �p),μ;ψ−(x0,�k+ �p),σψ
+
(y0,�k),σ 〉β,L , (1.21)

where
∫
(β,L) dx is a shorthand for

∫ β/2
−β/2 dx0

∑
�x∈� and ψ±

(x0,�k),σ = ex0 H�ψ̂�k,σ e−x0 H� ,

with ψ̂±�k,σ = (â±�k,σ , b̂±�k,σ ). Here and in the following, we will exploit whenever possi-
ble the vectorial structure of ψ and the tensorial structure of products of ψ’s; to this
purpose, we will think of ψ− as a column vector and ψ+ as a row vector, so that, e.g.,
ψ+

x,σψ
−
y,σ will be naturally thought of as a scalar, while ψ−x,σψ+

y,σ will be thought of as

a 2 × 2 matrix. In particular, both Ŝβ,L(k) and Ĝβ,L
2,1;μ(k,p) (for any fixed choice of

μ ∈ {0, 1, 2}) can be thought of as 2× 2 matrices.

Conductivity. The ac conductivity in units such that � = 1 is related to the current-cur-
rent correlations via the Kubo formula [9], which reads, for all 2πβ−1Z � p0 �= 0 and
l,m ∈ {1, 2}:

σ
β
lm(p0) = − 2

3
√

3

1

p0

[
K̂ β

lm(p0, 0) +
βlm

]
, (1.22)

where K̂ β
lm(p) = limL→+∞ K̂ β,L

lm (p) and



β
lm = lim

L→∞
1

L2

∑

�x∈�
j=1,2,3

(�δ j )l(�δ j )m〈
�x, j 〉β,L (1.23)

is the diamagnetic contribution (see Eq. (1.12)) and the factor 2/(3
√

3) appearing in
Eq. (1.22) must be understood as the inverse of the area of the unit cell of the hexagonal
lattice.
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The main goal of this paper is to compute σβlm(p0) in the zero temperature and zero
frequency limit (taking the limits in a suitable order, so to make contact with experiments
on the optical conductivity of graphene), i.e., to compute the so-called universal optical
conductivity:

σlm := lim
p0→0+

lim
β→∞ σ

β
lm(p0). (1.24)

A key role in its computation will be played by Ward Identities, which show that the
quantities introduced above are not independent; on the contrary, they are related by
exact identities, which we now describe.

1.2. Conservation laws and Ward Identities. By definition ofρ(x0, �p) = ex0 H�ρ̂ �pe−x0 H� ,
we have:

∂x0ρ(x0, �p) = [H�, ρ(x0, �p)]. (1.25)

Computing explicitly the r.h.s. of this equation and using, in particular, the fact that
[V�, ρ �p] = 0, we find:

∂x0ρ(x0, �p) = t
∑

�x∈�
σ, j

e−i �p�x (1− e−i �p�δ j )(a+
x,σb−x+δ j ,σ

− b+
x+δ j ,σ

a−x,σ ). (1.26)

Comparing the r.h.s. of this equation with the definition of the paramagnetic current, we
recognize that Eq. (1.26) can be rewritten as a continuity equation:

− ie∂x0ρ(x0, �p) + i �p · �J(x0, �p) = 0. (1.27)

Using the continuity equation Eq.(1.27), we can easily derive an exact identity relating
three- and two-point functions. In fact, by the definition of Ĝβ,L

2,1;0(k,p), see Eq. (1.21),
and integrating by parts, we find:

i p0Ĝβ,L
2,1;0(k,p)

= 1

L2

∫ β/2

−β/2
dy0

∫ β/2

−β/2
dz0 e−ik0 y0−i p0z0∂z0〈J(z0, �p),0;ψ−(0,�k+ �p),σψ

+
(y0,�k),σ 〉β,L . (1.28)

The derivative with respect to z0 can act either on J(z0, �p),0, in which case we use the
continuity equation, or on the Heaviside step functions involved in the definition of
time-ordering operator T. After some straightforward algebra, and using the fact that

[ρ̂ �p, ψ̂−�k+ �p,σ ] = −M( �p)ψ̂−�k,σ , [ρ̂ �p, ψ̂+
�k,σ ] = ψ+

�k+ �p,σ M( �p), (1.29)

with

M( �p) =
(

1 0

0 e−i �p�δ1

)
, (1.30)

we end up with

−i p0Ĝβ,L
2,1;0(k,p) + p1Ĝβ,L

2,1;1(k,p) + p2Ĝβ,L
2,1;2(k,p)

= −eŜβ,L (k + p)M( �p) + eM( �p)Ŝβ,L(k). (1.31)
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Proceeding in the same way, we also find:

−i p0 K̂ β,L
0,0 (p) + p1 K̂ β,L

1,0 (p) + p2 K̂ β,L
2,0 (p) = 0, (1.32)

−i p0 K̂ β,L
0,m (p) + p1 K̂ β,L

1,m (p) + p2 K̂ β,L
2,m (p) = −

1

L2

[
�p · 〈
̂ �p,− �p〉β,L

]

m
, (1.33)

where m = 1, 2, and we used the fact that

e[ρ̂ �p, �J− �p] =
∑

�x∈�
j=1,2,3

( �p · �δ j ) �δ j |η j
�p|2
�x, j = �p · 
̂ �p,− �p. (1.34)

The term in the r.h.s. of Eq. (1.33) is known as the Schwinger term.
Note that from Eq.(1.33), setting, e.g., p2 = 0, we find that, for i = 1, 2,

K̂1i (p0, p1, 0) + lim
β,L→∞

1

L2 〈
[

̂(p1,0),(−p1,0)

]
1i 〉β,L = i

p0

p1
K̂0i (p0, p1, 0), (1.35)

provided the limits of these functions as β, L →∞ exist.
Now, if we knew that the correlations in Eq. (1.35) were continuous and continuously

differentiable at p = 0, from the latter equation we would conclude that limp→0[K̂1i (p)+

1i ] = 0 (with 
lm = limβ→∞
βlm , see Eq. (1.23)); moreover, continuous differen-
tiability together with the symmetry properties of our model would imply that (with a
proof analogous to the one of item (ii) in Proposition 1 below) limp→0 ∂p0 K̂1i (p) = 0.
Comparing these equations with the definition of the universal optical conductivity, see
Eqs. (1.22)–(1.24), then we would be tempted to conclude that σ1i = 0 (and a similar
argument would imply that σ2i = 0). This is in contrast with the explicit computation of
the conductivity in the non-interacting case, which will be discussed below. The solution
to this apparent paradox is that K̂lm(p) is not continuosly differentiable at p = 0. In
fact, as it will turn out from the following discussion, the regularity properties of the
Fourier transform of the current-current correlations play a crucial role in the physical
properties of the conductivity.

1.3. Properties of the non interacting model. In the absence of interactions, that is for
U = 0, the two-point function defined in Eq. (1.20) reads (see [17,18]):

Ŝβ,L(k)
∣∣∣
U=0
= 1

k2
0 + v2

0 |�(�k)|2
(

ik0 −v0�
∗(�k)

−v0�(�k) ik0

)
=: S0(k), (1.36)

where v0 = 3
2 t and �(�k) = 2

3

∑3
j=1 ei �k(�δ j−�δ1). The complex dispersion relation �(�k)

vanishes only at the two Fermi points

�p ±F =
(

2π

3
,± 2π

3
√

3

)
, (1.37)

close to which it behaves as follows:�( �p±F + �k′) = ik′1± k′2 + O(|�k′|2). The Schwinger
functions of higher order can be explictly computed in terms of S0(k) via the fermionic
Wick rule.
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Also the universal optical conductivity can be computed explicitly, see Appendix
A, and turns out to be equal to (restoring the presence of the dimensional constant
� = h/(2π) in the result):

σi j
∣∣
U=0 =

2

3
√

3

2e2v2
0

�
lim

p0→0+

∫
dk0

2π

∫

B

d�k
|B|

×Tr
{ S0(k + (p0, �0))− S0(k)

p0
�i (�k, �0)S0(k)� j (�k, �0)

}
, (1.38)

where

��(�k, �p) = 2

3

3∑

j=1

�δ j

(
0 ie−i �k(�δ j−�δ1)

−ie+i(�k+ �p)(�δ j−�δ1) 0

)
. (1.39)

Note that the r.h.s. of Eq. (1.38) depends on v0. Moreover, the integral is not uniformly
convergent in p0 as p0 → 0; in particular, it is well known that one cannot exchange
the limit with the integral [20]. An explicit computation, see Appendix A, yields

σi j
∣∣
U=0 =

e2

h

π

2
δi j , (1.40)

a value that, remarkably, does not depend on v0. It is also remarkable that the same value
of the conductivity is found in the so-called Dirac approximation, that is by replacing
S0(k) in Eq. (1.40) with its linear approximation around the Fermi points, in the presence
of an ultraviolet cutoff, i.e.,

∑

ω=±
χ(|�k − �pωF | ≤ ε)Ĝv0

ω (k0, �k − �pωF ),

Ĝv0
ω (k) =

( −ik0 −v0(−ik1 + ωk2)

−v0(ik1 + ωk2) −ik0

)−1

, (1.41)

where ε is a small positive number. Therefore, σi j
∣∣
U=0 does not depend on the lattice

parameters and, in this sense, we can say that the free conductivity is universal.

1.4. Universality of the conductivity. Let us now discuss the effects of the Hubbard
interaction. We will first recall the results of [17,18], concerning the thermodynamic
functions of the model, the Schwinger functions and, in particular, the two- and three-
point functions. Next, we will state our results concerning the interacting conductivity.

In Theorem 1 of [17], we proved that, if U is small enough (uniformly in the system
size and in the temperature), then the specific free energy fβ(U ) and the finite tem-
perature Schwinger functions in the thermodynamic limit are analytic functions of U ,
uniformly in β as β →∞, and so are the specific ground state energy e(U ) and the zero
temperature Schwinger functions in the thermodynamic limit. In particular, we proved
that the Fourier transform of the zero-temperature two-point function in the thermody-
namic limit is singular only at the Fermi points k = p±F = (0, �p±F ) and, close to the
singularities, if ω = ±, it can be written as

Ŝ(pωF + k′) = 1

Z

( −ik0 −vF�
∗( �p ωF + �k′)

−vF�( �p ωF + �k′) −ik0

)−1 (
1 + R(k′)

)
, (1.42)
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where Z and vF are two analytic functions of U , analytically close to their unperturbed
values,

Z = 1 + O(U 2), vF = v0 + O(U 2). (1.43)

Moreover the matrix R(k′) satisfies ||R(k′)|| ≤ C |k′|ϑ for some constants C, ϑ > 0
and |k′| small enough. In [18,19] we also announced the following result, whose proof
will be given below.

Theorem 2. There exists U0 > 0 such that for |U | ≤ U0 the three-point function
Eq. (1.21) is analytic in U, uniformly in β, L, and uniformly convergent to an ana-
lytic function as β, L → ∞, for all k �= p±F ,p �= 0 and for (minω |k − pωF |), |p| ·
(minω |k − pωF |)−1 sufficiently small. Moreover, the vertex function at the Fermi points
(in the thermodynamic and zero-temperature limits) is equal to:

lim
k→pωF

lim
p→0
[Ŝ(k + p)]−1Ĝ2,1;μ(k,p)[Ŝ(k)]−1 = eZμ�μ( �pωF , �0), (1.44)

where �i (�k, �p), i = 1, 2, were defined in Eq. (1.39), �0(�k, �p) = 1 and Zμ =
Zμ(U ), μ = 0, 1, 2, are analytic functions of U.

Note that the existence of the limits in Eq. (1.44) is part of the statement of the theo-
rem. An important consequence of Theorem 2 (also announced in [18,19]) is obtained by
combining its result with the WI Eq. (1.31): in fact, using Eqs. (1.42)–(1.44) in Eq. (1.31)
we find that the vertex functions are related to the wave function renormalization Z and
to the Fermi velocity vF by simple identities:

Z0 = Z , Z1 = Z2 = vF Z . (1.45)

These relations can be proven as follows: take the limits in the l.h.s. of Eq. (1.44) with
k = pωF + k′eμ and p = p′eμ, where e0 = (1, 0, 0), e1 = (0, 1, 0) and e2 = (0, 0, 1);
using Eq. (1.31) and Eq. (1.42) we can rewrite the l.h.s. of Eq. (1.44) (after having taken
p′ → 0) as:

−e(i)δμ,0 lim
k′→0
[Ŝ(pωF + k′eμ)]−1∂μ Ŝ(pωF + k′eμ)[Ŝ(pωF + k′eμ)]−1

= e(i)δμ,0 lim
k′→0

∂μ[Ŝ(pωF + k′eμ)]−1 (1.46)

that, using again Eq. (1.42), is equal to eZ(vF )
1−δμ,0�μ( �pωF , �0).

To summarize, at half filling, weak local electron-electron interactions do not change
the infrared behavior of correlations: they “just” change the values of some physical
parameters, namely the wave function renormalization Z , the Fermi velocity vF and the
vertex functions Zμ; the latter are related to Z and vF in a simple way, thanks to WIs.
The next natural question we would like to answer is how is the conductivity changed by
the presence of interactions. Since the infrared behavior of the interacting correlations
is the same as the non-interacting one, it is natural to expect that the interacting conduc-
tivity remains finite in the zero-temperature and zero-frequency limit; what is apriori
unclear is whether the zero-frequency conductivity remains universal in any reasonable
sense, in analogy with the universal behavior of the free conductivity. Quite remarkably,
we can prove that the interacting conductivity is universal in a very strong sense: namely,
we prove that σlm is not only independent of the details of the lattice, but it is also exactly
independent of U .
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Theorem 3. There exists a constant U0 > 0 such that, for |U | ≤ U0 and any fixed
p0 (non vanishing and sufficiently small), σβlm(p0) is analytic in U uniformly in β as
β →∞ and uniformly convergent to an analytic function of U as β →∞. Moreover,

σlm = lim
p0→0+

lim
β→∞ σ

β
lm(p0) = e2

h

π

2
δlm . (1.47)

Note that the limit β → ∞ is taken before the limit p0 → 0+. In other words,
the theorem says that the interaction corrections to the conductivity are negligible at
frequencies β−1 � p0 � t , in agreement with experiments on the optical conductivity
[5,6]. The above result says that all the interaction corrections to the conductivity cancel
out exactly, even if the Fermi velocity and the wave function are renormalized by the
interaction.

The proof of Theorem 3 is based on two main ingredients: (i) the use of the exact
Ward Identities Eqs. (1.32)–(1.33); (ii) the fact that the interaction-dependent corrections
to the Fourier transform of the current-current correlations are differentiable with con-
tinuous derivative (in contrast, the free part is continuous and not differentiable at zero
frequency). The main technical point of this paper is to control the regularity properties
of the interaction corrections to the conductivity, which are summarized in the following
proposition.

Proposition 1. There exists U0 > 0 such that, if |U | ≤ U0, then the current-cur-
rent function K̂ β,L

lm (p) is analytic in U, uniformly in β, L, for all sufficiently small

p �= 0 and it is uniformly convergent as β, L → ∞ to the function K̂lm(p) =
limβ→∞ limL→∞ K̂ β,L

lm (p), which is also analytic in U for all sufficiently p �= 0. The
latter function satisfies the following properties:

1. K̂lm(p) is continuous for all sufficiently small p ∈ R × B (in particular at p = 0)
and continuously differentiable for all sufficiently small p �= 0.

2. K̂lm(p) can be decomposed as:

K̂lm(p) = Zl Zm

Z2 〈ĵp,l; ĵ−p,m〉0,vF + Rμν(p), (1.48)

where:
(i) if 〈·〉0,vF

β,L is the average with respect to the density matrix e−βH0
�(

2
3 vF ) associated

to the non-interacting Hamiltonian with Fermi velocity vF , then

〈ĵp,l; ĵ−p,m〉0,vF = lim
β,L→∞

1

βL2

∫ β/2

−β/2
dx0

∫ β/2

−β/2
dy0 e−i p0(x0−y0)

×〈 j(x0, �p),l; j(y0,− �p),m〉0,vF
β,L ,

with j(x0, �p),l = ex0 H� j �p,l e−x0 H� and �j �p the reduced current defined in Eq. (1.15);
(ii) R(p) is continuously differentiable for all sufficiently small p ∈ R × B (in par-

ticular at p = 0); moreover, R(p0, �0) = R(−p0, �0).
One can immediately realize that Theorem 3 is a simple corollary of Proposition 1

and of the WIs Eqs. (1.32)–(1.33). In fact, from Eq. (1.33) computed at p = (0, p1, 0),
we find

K̂1i (0, p1, 0) + lim
β,L→∞

1

L2 〈
[

̂(p1,0),(−p1,0)

]
1i 〉β,L = 0 (1.49)
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that implies, using the continuity of K̂lm(p) at p = 0 stated in Proposition 1,

lim
p→0

K̂1i (p) = −
1i , (1.50)

and a similar argument shows that

lim
p→0

K̂lm(p) = −
lm (1.51)

for all l,m ∈ {1, 2}. Therefore, using again the continuity at p = 0 of the current-current
function and the definition of conductivity, we can rewrite

σlm = − 2

3
√

3
lim

p0→0+

1

p0

[
K̂lm(p0, �0)− K̂lm(0)

]
. (1.52)

We now use the decomposition Eq. (1.48) to rewrite the latter equation as

σlm = − 2

3
√

3
lim

p0→0+

1

p0

Zl Zm

Z2

[
〈ĵ(p0,�0),l; ĵ−(p0,�0),m〉0,vF − 〈ĵ0,l; ĵ0,m〉0,vF

]

− 2

3
√

3
lim

p0→0+

1

p0

[
Rlm(p0, �0)− Rlm(0)

]
. (1.53)

Now, using the identity Zi = ZvF , see Eq. (1.45), we conclude that the limit in the first
line reduces to the computation of the free conductivity Eq. (1.38) with v0 replaced by
vF : however, since the result does not depend on the Fermi velocity, from the first line
we simply get (e2/h)(π/2)δlm . On the other hand, the limit in the second line, using
the continuous differentiability of R(p), reduces to− 2

3
√

3
∂0 R(0), which is zero, simply

because R(p) is even in p.
This concludes the proof of Theorem 3, given Proposition 1. The rest of the paper

will be devoted to proofs of Theorem 2 and Proposition 1.

2. Regularity of the Current-Current Correlations

In this section we prove Theorem 2 and Proposition 1. We will use an extension of the
method discussed in [17]. We will assume that the reader is familiar with the proof in
[17] and we will only describe in detail the new aspects of the construction, as compared
to the one in [17]. Still, we will try to be as self-consistent as possible, possibly giving
reference to a well-defined section of [17] for the few technical aspects that will not be
fully reproduced here.

2.1. Grassman integral representation for the correlation functions. The goal is to prove
analyticity in U and regularity in k,p of the three-point and current-current functions.
We remind the reader that the proof of analyticity and the control of regularity of the
Schwinger functions (in particular, of the two-points function) has already appeared in
[17], see in particular Sect. 3.4 of [17]. The starting point of our construction is a repre-
sentation of the generating function for correlations in terms of a Grassmann functional
integral, completely analogous to the one used in [17] to write the generating function
for the Schwinger functions. The Grassmann functional integral we are interested in is
defined as follows.
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Let M ∈ N and χ0(t) be a smooth compact support function that is 1 for t ≤ a0
and 0 for t ≥ 2a0, with a0 a constant that can be chosen equal to, e.g., 1/3 (see the
condition on a0 appearing after Eq. (3.41) of [17] and read it for γ = 2). Let B∗β,L ={
2πβ−1(Z+ 1

2 )∩{k0 : χ0(2−M |k0|) > 0}}×BL . We consider the finite Grassmann alge-

bra generated by the Grassmannian variables {�̂±k,σ,ρ}σ=↑↓, ρ=1,2
k∈B∗β,L and a Grassmann inte-

gration
∫ [∏

k∈B∗β,L
∏ρ=1,2
σ=↑↓ d�̂+

k,σ,ρd�̂−k,σ,ρ
]

defined as the linear operator on the Grass-

mann algebra such that, given a monomial Q(�̂−, �̂+) in the variables �̂±k,σ,ρ , its action

on Q(�̂−, �̂+) is 0 except in the case Q(�̂−, �̂+) = ∏k∈B∗β,L
∏ρ=1,2
σ=↑↓ �̂

−
k,σ,ρ�̂

+
k,σ,ρ ,

up to a permutation of the variables. In this case the value of the integral is determined,
by using the anticommuting properties of the variables, by the condition

∫ [ ∏

k∈B∗β,L

ρ=1,2∏

σ=↑↓
d�̂+

k,σ,ρd�̂−k,σ,ρ
] ∏

k∈B∗β,L

ρ=1,2∏

σ=↑↓
�̂−k,σ,ρ�̂

+
k,σ,ρ = 1. (2.1)

Let us define the free propagator matrix ĝk as

ĝk = χ0(2
−M |k0|)

( −ik0 −v0�
∗(�k)

−v0�(�k) −ik0

)−1

, (2.2)

and the “Gaussian measure” P(dψ) as

P(d�) =
[ σ=↑↓∏

k∈B∗β,L

−β2 L4 [χ0(γ
−M |k0|)]2

k2
0 + v2

0 |�(�k)|2
d�̂+

k,σ,1d�̂−k,σ,1d�̂+
k,σ,2d�̂−k,σ,2

]

· exp
{
− (βL2)−1

σ=↑↓∑

k∈B∗β,L
�̂+

k,σ ĝ−1
k �̂−k,σ

}
. (2.3)

Let us also introduce the generating function

WM,β,L (A, φ) = log
∫

P(d�)eV(�)+(�,φ)+(A,J ), (2.4)

where

V(�) = −U
∑

ρ=1,2

∫

(β,L)
dx�+

x,↑,ρ�
−
x,↑,ρ�

+
x,↓,ρ�

−
x,↓,ρ, (2.5)

(�, φ) =
∑

σ=↑↓

∫

(β,L)
dx
(
�+

x,σ φ
−
x,σ + φ+

x,σ�
−
x,σ
)
, (2.6)

(A, J ) =
∑

τ=±

∫

(β,L)
dx Ax,τ J τx + v0

∑

j=1,2,3

∫

(β,L)
dx Ax, j J j

x , (2.7)

and, in the last line, denoting by σ1, σ2, σ3 the standard Pauli matrices,

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(2.8)
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and defining n± = (1± σ3)/2 and σ± = (σ1 ± iσ2)/2,

J±x =
∑

σ=↑↓
�+

x,σn±�−x,σ , J j
x = 2i

3

∑

σ=↑↓

[
�+

x,σ σ+�
−
x+δ j ,σ

−�+
x+δ j ,σ

σ−�−x,σ
]
.

(2.9)

We will be particularly concerned with the three-points functions:

G
M,β,L
2,1;� (z; x, y) = e

∂

∂Az,�

∂2

∂φ−y,σ ∂φ+
x,σ

WM,β,L(A, φ)
∣∣∣

A=φ=0
, � ∈ {+,−, 1, 2, 3},

(2.10)

and with the current-current response functions:

K
M,β,L
�, � (x; y) = e2 ∂2

∂Ax,�∂Ay,�
WM,β,L(A, φ)

∣∣∣
A=φ=0

, �, � ∈ {+,−, 1, 2, 3}.
(2.11)

The connection between these functions and the corresponding objects evaluated in the
Hamiltonian model of Sect. 1.1 is provided by the following proposition, which is the
analogue of Proposition 1 of [17].

Proposition 2. For any β, L < +∞, assume that there exists U0 independent of β and
L such that the three-points functions G M,β,L

2,1;� (z; x, y) and current-current response

functions K M,β,L
�, � (x; y) at distinct space-time points are analytic in the complex domain

|U | ≤ U0, uniformly convergent as M → ∞. Then, if |U | ≤ U0 and z, x, y are three
distinct space-time points,

e〈ρτz ;ψ−x,σψ+
y,σ 〉β,L = lim

M→∞G
M,β,L
2,1;τ (z; x, y), τ = ±, (2.12)

ev0〈J j
z ;ψ−x,σψ+

y,σ 〉β,L = lim
M→∞G

M,β,L
2,1; j (z; x, y), j = 1, 2, 3, (2.13)

where: the averages in the l.h.s are defined as in Eq. (1.16) and following lines; ρA
x =∑

σ a+
x,σa−x,σ and ρB

x =
∑
σ b+

x+δ1,σ
b−x+δ1,σ

. Moreover, if x, y are two distinct space-time
points,

e2〈ρτx ; ρτ
′

y 〉β,L = lim
M→∞ K

M,β,L
τ,τ ′ (x; y), τ, τ ′ = ±, (2.14)

e2v0〈ρτx ; J j
y 〉β,L = lim

M→∞ K
M,β,L
τ, j (x; y), τ = ±, j = 1, 2, 3, (2.15)

e2v2
0〈J j

x ; J j ′
y 〉β,L = lim

M→∞ K
M,β,L
j, j ′ (x; y), j, j ′ = 1, 2, 3, (2.16)

The proof of this statement is completely analogous to the one in Appendix B of
[17] and will not be repeated here. Note that, once the various correlation functions in
Proposition 2 are known, we can reconstruct the functions K̂ β,L

μν (p) and Ĝβ,L
2,1;μ(k,p) in

Eqs. (1.19)–(1.21) simply by Fourier transformation (provided the correlation functions
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in Proposition 2 have good enough decay properties so that the Fourier transform is well
defined), e.g.,

Ĝβ,L
2,1;0(k,p) = e

βL2

∫

(β,L)
dx
∫

(β,L)
dy
∫

(β,L)
dz eik(x−y)+ip(x−z)

× 〈(ρA
z + e−i �p�δ1ρB

z+δ1
);ψ−x,σψ+

y,σ 〉β,L ,

Ĝβ,L
2,1;l(k,p) = ev0

βL2

∫

(β,L)
dx
∫

(β,L)
dy
∫

(β,L)
dz eik(x−y)+ip(x−z)

×
3∑

j=1

〈(�δ j )lη
j
�p J j

z ;ψ−x,σψ+
y,σ 〉β,L ;

(2.17)

similar formulas are valid for K̂ β,L
μν (p).

2.2. Renormalization group. The naive perturbative expansion in U of WM,β,L (A, φ)
is affected by infrared divergences due to the singularity at the Fermi points of the free
propagator S0(k), see Eq. (1.36). The case with A = 0 has been studied in detail in [17],
where it has been shown that the apparent divergences affecting the naive perturbation
series can be cured by proper iterative resummations; these allowed us to recast the
original expansion into a new convergent expansion (uniformly in M, β, L) involving
a sequence of effective parameters Zh, vh , playing the role of effective wave function
renormalization and Fermi velocity at momentum scale 2h, h ≤ 0, relative to the Fermi
points. The iterative resummations can be implemented by using constructive fermionic
Renormalization Group (RG) techniques; a key point of the analysis, which make the
construction of the ground state possible, is the fact that density-density interactions
are irrelevant in a RG sense. In this section we review the iterative integration scheme
used to compute WM,β,L (A, φ), with particular emphasis on the novel aspects due to
presence of the external field A.

2.2.1. The ultraviolet integration. Proceeding as in Sects. 3.2 and 3.4 of [17], we decom-
pose the propagators ĝ(k) into sums of two propagators supported in the regions of k0
“large” and “small”. The regions of k0 large and small are defined in terms of the smooth
support function χ(t); the constant a0 entering in its definition is chosen so that the sup-

ports of χ0

(√
k2

0 + |�k − �p+
F |
)

and χ0

(√
k2

0 + |�k − �p−F |
)

are disjoint (e.g., a0 = 1/3 is

fine). We rewrite ĝ(k) as

ĝ(k) = ĝ(u.v.)(k) + ĝ(i.r.)(k), (2.18)

where, setting pωF = (0, �pωF ) with ω = ±:

ĝ(u.v.)(k) = ĝ(k)− ĝ(i.r.)(k), g(i.r.)(k) =
∑

ω=±
χ0(|k − pωF |)ĝ(k). (2.19)

Defining V (A, �, φ) = V(�) + (�, φ) + (A, J ), we can rewrite

eWM,β,L (A,φ) =
∫

P(d�)eV (A,�,φ)

=
∫

P(d�(i.r.))
∫

P(d�(u.v.))eV (A,�(i.r.)+�(u.v.),φ), (2.20)
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where P(d�(i.r.)) and P(d�(u.v.)) are the Gaussian integrations associated to the prop-
agators ĝ(i.r.)(k) and ĝ(u.v.)(k), respectively. Using Eq. (2.20) we can further rewrite the
generating functional as:

eWM,β,L (A,φ) =
∫

P(d�(i.r.)) exp
{ ∑

n≥1

1

n!E
T
u.v.(V (A, �

(i.r.) + ·, φ); n)}

=: e−βL2 F0,M

∫
P(d�(i.r.))eVM (�

(i.r.))+BM (A,�(i.r.),φ)+(φ,�(i.r.))+(A,J (i.r.)),

(2.21)

where: ET
u.v. is the truncated expectation with respect to the propagator ĝ(u.v.)(k); F0,M

is a constant; VM is the effective potential on scale 0; BM (A, �(i.r.), φ) collects the terms
depending on A, φ generated by the ultraviolet integration; J (i.r.) is defined in the same
way as J (see Eq. (2.9)) with � replaced by �(i.r.). As proved in [17] (see Eq. (3.36)
and Lemma 2 of [17]), the effective potential VM can be written as

VM (�
(i.r.)) =

∞∑

n=1

(βL2)−2n
∑

σ1,...,σn=↑↓

∑

ρ1,...,ρ2n=1,2

∑

k1,...,k2n

[ n∏

j=1

�̂
(i.r.)+
k2 j−1,σ j ,ρ2 j−1

�̂
(i.r.)−
k2 j ,σ j ,ρ2 j

]

·ŴM;2n;ρ(k1, . . . ,k2n−1) δ(

n∑

j=1

(k2 j−1 − k2 j )), (2.22)

where ρ = (ρ1, . . . , ρ2n) and we used the notation

δ(k) = δ(�k)δ(k0), δ(�k) = L2
∑

n1,n2∈Z

δ�k,n1 �G1+n2 �G2
, δ(k0) = βδk0,0, (2.23)

with �G1, �G2 the basis of �∗ defined after Eq. (1.3). Moreover (see Lemma 2 of [17]),
the constant F0,M and the kernels ŴM;2n;ρ are given by power series in U , convergent
in the complex disc |U | ≤ U0, for U0 small enough and independent of β, L ,M ; after
Fourier transform, the x-space counterparts of the kernels ŴM;2n;ρ satisfy the following
bounds:

∫
dx1 · · · dx2n

[ ∏

1≤i< j≤2n

||xi − x j ||mi, j
]∣∣WM;2n;ρ(x1, . . . , x2n)

∣∣

≤ β|�|Cn
m |U |max{1,n−1}, (2.24)

for some constant Cm > 0, where m = ∑
1≤i< j≤2n mi, j . The limits F0 =

limM→∞ F0,M and W2n;ρ(x1, . . . , x2n) = limM→∞WM;2n;ρ(x1, . . . , x2n) exist and
are reached uniformly in M , so that, in particular, the limiting functions are analytic in
the same domain |U | ≤ U0.

The functional BM (A, �(i.r.), φ) admits a very similar representation and bounds,
i.e.,
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BM (A, �
(i.r.), φ)

=
∞∑

n,m=0

1

(βL2)2n+m

∑

σ,ρ

�,γ

∑

k,p

[ n∏

j=1

ϕ̂+
k2 j−1,σ j ,ρ2 j−1,γ2 j−1

ϕ̂−k2 j ,σ j ,ρ2 j ,γ2 j

][ m∏

i=1

Â�i ,pi

]

·ŴM;2n,m;ρ,�;γ ({k j }, {pi }) δ
( n∑

j=1

(
k2 j−1 − k2 j

)−
m∑

i=1

pi

)
, (2.25)

where σ := (σ1, . . . , σn), � := (�1, . . . , �m) (with �i ∈ {+,−, 1, 2, 3}), γ =
(γ1, . . . , γ2n) (with γi ∈ {ext, int}), k = (k1, . . . ,k2n),p = (p1, . . . ,pm) and the

field ϕ̂ can be either �(i.r.) or φ, depending on the label γ , i.e., ϕ̂±k,σ,ext = φ̂±k,σ and

ϕ̂±k,σ,int = �̂
(i.r.)±
k,σ . The kernels ŴM;2n,m;ρ,�;γ are analytic in U , they admit bounds

analogous to Eq. (2.24), uniformly in γ and M , and converge uniformly as M →∞ to

limiting kernels denoted by Ŵ2n,m;ρ,�;γ (for this reason, the label M will not play any
important role in the following and will be dropped from now on). The proof of these
claims goes along the same lines as the proof of Lemma 2 in [17] and will not repeated
here.

The kernels Ŵ2n,m;ρ,�;γ satisfy a number of symmetry properties inherited from
the symmetries of the action and of the Gaussian integration, described and proved in
Appendix B. In particular, thinking of Ŵ2n,m;�;γ as tensors with entries Ŵ2n,m;ρ,�;γ
and defining Ŵ2,ω(k′) := W2,0;(int,int)(k′ + pωF ,k′ + pωF ), Ŵ�,�(p) := Ŵ0,2;�,�(p,−p),
Ŵ�,ω(k′,p) := Ŵ2,1;�;(int,int)(k′ + pωF + p,k′ + pωF ,p),

Ŵ2(k′) = −i z0k′0 + z1(k
′
1σ2 + ωk′2σ1) + O(|k′|2), (2.26)

Ŵτ,τ (p) = a + O(p2), Ŵτ,−τ (p) = a′�(τ �p)
3

+ O(p2), (2.27)

Ŵτ, j (p) = bτp0 + O(|p|2), (2.28)

Ŵ j, j ′(p) = e−ip(δ j+1−δ j ′+1)(cδ j, j ′ + c′) + O(|p|2), (2.29)

Ŵτ,ω(k′,p) = λ0 + λ3τσ3 + O(|k′| + |p|), (2.30)

Ŵ j,ω(k′,p) = λ1eiω 2π
3 ( j−1)σ3σ2 + O(|k′| + |p|), (2.31)

where the constants z0, z1, a, a′, b, c, c′, λ0, λ1, λ3 are all real. The proof of Eq. (2.26)
is in Lemma 3 of [17], while the proof of the remaining relations is in Appendix C.

2.2.2. The infrared integration. After the integration of the ultraviolet modes, we
decompose the infrared propagator as a sum of two quasi-particle propagators:

g(i.r.)(x − y) =
∑

ω=±
e−ip ω

F (x−y)g(≤0)
ω (x − y), (2.32)

where, if k′ = (k0, �k′),

g(≤0)
ω (x − y) = 1

βL2

∑

k′∈Bωβ,L
χ0(|k′|)e−ik′(x−y)

( −ik0 −v0�
∗(�k′ + �p ω

F )

−v0�(�k′ + �p ω
F ) −ik0

)−1

(2.33)
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and Bωβ,L =
{
2πβ−1(Z + 1

2 ) ∩ {k0 : χ0(2−M |k0|) > 0}}× { n1
L
�G1 + n2

L
�G2 − �p ω

F , 0 ≤
n1, n2 < L}. Correspondingly, we rewrite �(i.r.) and φ± as sums of two independent
Grassmann fields, �(i.r.)±x,σ = ∑

ω=± e±ipωF x�
(≤0)±
x,σ,ω and φ±x,σ =

∑
ω=± e±ipωF xφ±x,σ,ω,

and rewrite the generating functional as (dropping systematically the M label):

eWβ,L (A,φ) = e−βL2 F0+S(≥0)(A,φ)

×
∫

Pχ0,C0(d�
(≤0))eV(0)(�(≤0))+B(0)(A,�(≤0), φ)+(A�(≤0),T1�

(≤0))+(φ,�(≤0)),

(2.34)

where:

Pχ0,C0(d�
(≤0)) = N0

−1
[ χ0(|k′|)>0∏

k′∈Bωβ,L

∏

σ,ω,ρ

d�̂(≤0)+
k′,σ,ρ,ωd�̂(≤0)−

k′,σ,ρ,ω

]

· exp
{
− (βL2)−1

σ=↑↓∑

ω=±

χ0(|k′|)>0∑

k′∈Bωβ,L
χ−1

0 (|k′|)�̂(≤0)+
k′,σ,ωC0,ω(k′)�̂(≤0)−

k′,σ,ω }

(2.35)

and

C0,ω(k′) =
( −ik0 −v0�

∗(�k′ + �p ω
F )

−v0�(�k′ + �p ω
F ) −ik0

)

=: Z0

( −ik0 v0(ik′1 − ωk′2)
v0(−ik′1 − ωk′2) −ik0

)
(1 + R0,ω(k′)), (2.36)

with N0 chosen in such a way that
∫

Pχ0,C0(d�
(≤0)) = 1, Z0 = 1 and R0,ω a matrix

such that ||R0,ω(k′)|| ≤ C |k′|. Moreover, the functionals V(0), (A�(≤0), T1�
(≤0)) and

(φ,�(≤0)) are the same as VM , (A, J (i.r.)) and (φ,�(i.r.)) in Eq. (2.21), with�(i.r.) and
φ± rewritten in terms of �(≤0)

ω and φ±ω ; similarly S(≤0)(A, φ) + B(0) is the same as BM

after the same rewriting, with S(≤0) collecting all the terms depending on A and/or φ but
not on �(≤0). E.g., to be more explicit, defining Âω−ω

′
p′,� := ÂpωF−pω

′
F +p′,� and recalling

the definition of n±, i.e., n± = (1± σ3)/2,

(A�(≤0), T1�
(≤0)) = 1

(βL2)2

∑

ω,ω′,σ,�

∑

k′,p′
Âω−ω

′
p′,� �̂

(≤h)+
k′+p′,σ,ωT ω,ω′

�,1 (k′,p′)�̂(≤h)−
k′,σ,ω′ ,

(2.37)

with T ω,ω
′

τ,1 (k
′,p′) = nτ and

T ω,ω
′

j,1 (k
′,p′) = v0

2i

3
ei 2π

3 ( j−1)(ω′n+−ωn−)(σ+e−ik′(δ j−δ1) − σ−e+i(k′+p′)(δ j−δ1)
) ;
(2.38)

similar expressions are valid for the other functionals appearing in the exponent of
Eq. (2.34).
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The integration of Eq. (2.34) is performed in an iterative fashion, in order to provide
control over the infrared divergence caused by the singularity at k′ = 0 of the propagator
ĝ(≤0)
ω (k′), see Eqs. (2.33),(2.36). We define fh(k′) := χ0(2−h |k′|)−χ0(2−h+1|k′|) and

rewrite

χ0(|k′|) =
0∑

k=−∞
fk(k′) =: χh(k′) + fh+1(k′) + · · · + f0(k′). (2.39)

The integration procedure consists in the following: we first rewrite χ0 = χ−1 + f0

and correspondingly decompose the propagator g(≤0)
ω = g(≤−1)

ω + g(0)ω and the field
�
(≤0)
ω = �(≤−1)

ω +�(0)ω ; next, we integrate out the “0-mode”, i.e., the Grassmann field
�
(0)
ω , and re-express the result in terms of a new effective potential on scale−1; then we

iterate, by integrating out step by step the degrees of freedom on scale−1,−2, . . . , h +1,
with h < 0. After the integration of the fields on scales −1,−2, . . . , h + 1, we get:

eWβ,L (A,φ) = e−βL2 Fh+S(≥h)(A,φ)

·
∫

Pχh ,Ch (d�
(≤h))eV(h)(�(≤h))+B(h)(A,�(≤h),φ)+(A�(≤h),Th+1�

(≤h))+(φ,Q(h+1)�(≤h)),

(2.40)

where Fh,Ch,V(h), B(h), Th, Q(h) will be defined recursively (in particular, Fh,Ch
[called Ah in [17]], V(h), Q(h) have already been defined in [17]) and Pχh ,Ch (d�

(≤h)) is
defined in the same way as Pχ0,C0(d�

(≤0))with�(≤0), χ0,C0,ω, Z0, v0, R0,ω replaced
by �(≤h), χh,Ch,ω, Zh, vh, Rh,ω, respectively. Moreover,

V(h)(�) =
∞∑

n=1

(βL2)−2n
∑

σ ,ρ,ω,k′

[ n∏

j=1

�̂
(≤h)+
k′2 j−1,σ j ,ρ2 j−1,ω2 j−1

�̂
(≤h)−
k′2 j ,σ j ,ρ2 j ,ω2 j

]

· Ŵ (h)
2n;ρ;ω(k

′
1, . . . ,k′2n−1) δ(

2n∑

j=1

(−1) j (p
ω j
F + k′j )) (2.41)

and

B(h)(A, �, φ)

=
∗∑

n,m≥0

(βL2)−2n−m
∗∑

σ,ρ,�,γ ,ω

k′,p′

[ n∏

j=1

ϕ̂+
k′2 j−1,σ j ,ρ2 j−1,γ2 j−1,ω2 j−1

ϕ̂−k′2 j ,σ j ,ρ2 j ,γ2 j ,ω2 j

]

·
[ m∏

i=1

Â
ωi−ω′i
�i ,p′i

]
Ŵ (h)

2n,m;ρ,�;ω;γ ({k′j }, {p′i }) δ

×
( 2n∑

j=1

(−1) j+1(k′j + p
ω j
F

)−
m∑

i=1

(p′i + pωi
F − p

ω′i
F )
)
, (2.42)

where: the ∗’s on the sums recall the fact that only terms explicitly depending on ϕ̂±int =
�̂(≤h)± contribute to B(h); ω = (ω1, . . . , ω2n;ω1 − ω′1, . . . , ωm − ω′m).
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The terms (A�(≤h), Th+1�
(≤h)) and (φ, Q(h+1)�(≤h)) read:

(A�(≤h), Th+1�
(≤h)) = 1

(βL2)2

∑

ω,ω′,σ,�
k′,p′

Âω−ω
′

p′,� �̂
(≤h)+
k′+p′,σ,ωT ω,ω′

�,h+1(k
′,p′)�̂(≤h)−

k′,σ,ω′ ,

(2.43)

(φ, Q(h+1)�(≤h)) = 1

βL2

∑

ω,σ,k′

(
�̂
(≤h)+
k′,σ,ω Q̂(h+1)−

k′,ω φ̂−k′,σ,ω + φ̂+
k′,σ,ω Q̂(h+1)+

k′,ω �̂
(≤h)−
k′,σ,ω

)
,

(2.44)

for suitable matrices T ω,ω
′

�,h+1(k
′,p′) and Q̂(h+1)±

k′,ω , with Q(1)±
k′,ω = 1. The iterative proce-

dure goes on up to scale hβ , where hβ is the largest scale such that a0γ
hβ−1 < π

β
. The

result of the last iteration is eWβ,L (A,φ).

2.2.3. Localization and renormalization. In order to inductively prove Eq. (2.40), we
rewrite

V(h)(�(≤h)) = LV(h)(�(≤h)) + RV(h)(�(≤h)), (2.45)

where

LV(h)(�(≤h)) = 1

βL2

∑

σ,ω

∑

k′
�̂
(≤h)+
k′,σ,ωŴ (h)

2;(ω,ω)(k
′)�̂(≤h)−

k′,σ,ω , (2.46)

and RV(h) is given by (2.41) with
∑∞

n=1 replaced by
∑∞

n=2, that is it contains only the
monomials with four or more fields (note that in Eq. (2.46) the two fermionic fields have
the same ω-index; terms with two different quasi-particles indices are not allowed by
momentum conservation, see also the remark after (3.62) of [17]). Moreover, defining

W
(h)−
2,ω (k

′) := Ŵ (h)
2,0;(ω,ω);(int,ext)(k

′,k′), W
(h)+
2,ω (k

′) := Ŵ (h)
2,0;(ω,ω);(ext,int)(k

′,k′),

Ŵ (h)
�;ω,ω′(k

′,p′) :=
∑

ω1,ω2

Ŵ (h)
2,1;�;(ω,ω′;ω−ω′);(int,int)(k

′ + p′,k′,p′), (2.47)

we rewrite:

B(h)(A, �(≤h), φ) = LB(h)(A, �(≤h), φ) + RB(h)(A, �(≤h), φ), (2.48)

where

LB(h)(A, �(≤h), φ) = 1

βL2

∑

σ,ω,k′

(
�̂
(≤h)+
k′,σ,ωW

(h)−
2,ω (k

′)φ̂−k′,σ,ω + φ̂+
k′,σ,ωW

(h)+
2,ω �̂

−
k′,σ,ω

)

+
1

(βL2)2

∑

ω,ω′
σ,�

∑

k′,p′
Âω−ω

′
p′,� �̂

(≤h)+
k′+p′,σ,ωŴ (h)

�;ω,ω′(k
′,p′)�̂(≤h)−

k′,σ,ω .

(2.49)
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At this point we “reabsorb” LV(h) in the fermionic gaussian integration and LB(h) into
the definition of the effective source terms:

e−βL2 Fh+S(≥h)(A,φ)

×
∫

Pχh ,Ch (d�
(≤h))eV(h)(�(≤h))+B(h)(A,�(≤h),φ)+(A�(≤h),Th+1�

(≤h))+(φ,Q(h+1)�(≤h))

= e−βL2(Fh+eh)+S(≥h)(A,φ)
∫

Pχh ,Ch−1
(d�(≤h))eRV(h)(�(≤h))

·eRB(h)(A,�(≤h),φ)+(A�(≤h),Th�
(≤h))+(φ,Q(h)�(≤h)), (2.50)

where eh is a suitable constant (see Eq. (3.67) of [17]) and

Ch−1,ω(k′) = Ch,ω(k′) + χh(k′)Ŵ (h)
2;(ω,ω)(k

′),

Q̂(h)−
k′,ω = Q̂(h+1)−

k′,ω + Ŵ (h)
2;(ω,ω)(k

′)
1∑

k=h+1

ĝ(k)ω Q̂(k)−
k′,ω , (2.51)

Q̂(h)+
k′,ω = Q̂(h+1)+

k′,ω +
( 1∑

k=h+1

Q̂(k)+
k′,ω ĝ(k)ω

)
Ŵ (h)

2;(ω,ω)(k
′),

T ω,ω′
�,h (k′,p′) = T ω,ω′

�,h+1(k
′,p′) + Ŵ (h)

�;ω,ω′(k
′,p′).

The second and third equations in (2.51) can be proved as in [17], see Eqs. (3.111)–
(3.113). We are now ready to perform the integration of the �(h) field: we rewrite the
Grassmann field �(≤h) as a sum of two independent Grassmann fields �(≤h−1) +�(h)

and correspondingly we rewrite the r.h.s. of Eq. (2.50) as

e−βL2(Fh+eh)+S(≥h)(A,φ)
∫

Pχh−1,Ch−1(d�
(≤h−1))

∫
Pfh ,Ch−1

(d�(h))eRV(h)(�(≤h−1)+�(h))

· eRB(h)(A,�(≤h−1)+�(h),φ)+(A(�(≤h−1)+�(h)),Th(�
(≤h−1)+�(h)))+(φ,Q(h)(�(≤h−1)+�(h))),

(2.52)

where

Ch−1,ω(k′) = Ch,ω(k′) + Ŵ (h)
2;(ω,ω)(k

′). (2.53)

In [17] we proved (see Eqs. (3.68)–(3.69) and proof of Theorem 2 of [17]) that the single
scale propagator, defined as

∫
Pfh ,Ch−1

(d�(h))�(h)−x1,σ1,ω1�
(h)+
x2,σ2,ω2 = δσ1,σ2δω1,ω2 g(h)ω (x1 − x2),

g(h)ω (x1 − x2) = 1
βL2

∑
k′∈Bωβ,L e−ik′(x1−x2) fh(k′)

[
Ch−1,ω(k′)

]−1
,

(2.54)

can be rewritten as

g(h)ω (x1 − x2) = 1

βL2

∑

k′∈Bωβ,L
e−ik′(x1−x2)

· fh(k′)
Zh−1(k′)

( −ik0 vh−1(k′)(ik′1 − ωk′2)
vh−1(k′)(−ik′1 − ωk′2) −ik0

)−1

(1 + Rh−1,ω(k′))−1,

(2.55)
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with Zh−1, vh−1 two functions such that (choosing 0 < θ < 1)

|Zh−1(k′)− Zh(k′)| ≤ (const.)|U |2θh, Z0(k′) = Z0 = 1,
(2.56)∣∣vh−1(k′)− vh(k′)|

∣∣ ≤ (const.)|U |2θh, v0(k′) = v0 = 3

2
t,

and Rh−1,ω a matrix such that ||Rh−1,ω(k′)|| ≤ (const.)|k′|θ and, if 2h−1 ≤ |k′| ≤
2h+1, ||∂n

k′Rh−1,ω(k′)|| ≤ (const.)2(θ−n)h . The constants Zh := Zh(0) and vh := vh(0)
play the role of effective wave function renormalization and Fermi velocity on scale h.
Similarly, the local parts of the matrices T ω,ω

′
�,h (k′,p′) play the role of effective vertices;

in particular, the “relativistic” vertex functions, which represent the dominant contri-
bution in the infrared to the kernel of the three point function, are defined as (see the
subsection The three-point function below for more details):

Z0,h =
∑

τ=±
T ω,ωτ,h (0, 0), Z1,h = −σ2

3∑

j=1

(�δ j )1T ω,ωj,h (0, 0),

Z2,h = −ωσ1

3∑

j=1

(�δ j )2T ω,ωj,h (0, 0). (2.57)

From the symmetries discussed in Appendix B and C (see also Eqs. (2.30)–(2.31)),
Zμ,h, μ = 0, 1, 2, are all real, independent of ω and proportional to the identity matrix
and, therefore, they can be regarded as constants, as we will do in the following; more-
over, Z1,h = Z2,h, Z0,0 = 1, Z1,0 = Z2,0 = v0 and |Zμ,h−1− Zμ,h | ≤ (const.)|U |2θh ,
see Eq. (2.64) and the following discussion for a proof.

Now, going back to Eq. (2.52), if we integrate out the field on scale h and define:

e−βL2eh−1+S(≥h−1)(A,φ)+V(h−1)(�(≤h−1))+B(h−1)(A,�(≤h−1),φ) :=
= eS(≥h)(A,φ)

∫
Pfh ,Ch−1

(d�(h))eRV(h)(�(≤h−1)+�(h))+RB(h)(A,�(≤h−1)+�(h),φ)

·e(A�(h),Th�
(≤h−1))+(A�(≤h−1),Th�

(h))+(A�(h),Th�
(h))+(φ,Q(h)�(h)), (2.58)

we get Eq. (2.40) with h replaced by h − 1 (and Fh−1 = Fh + eh + eh).
The integration in Eq. (2.58) can be performed by expanding in series the exponen-

tial in the r.h.s. and integrating term by term with respect to the gaussian integration
Pfh ,Ch−1

(d�(h)). This gives rise to an expansion for Wβ,L(A, φ), which can be conve-
niently represented in terms of Gallavotti-Nicolò trees, as described in Sect. 3.3 of [17]
and in the next subsection.

2.2.4. Tree expansion. For each n ≥ 0 and m ≥ 2, we introduce a family T m
h,n of rooted

labelled trees, defined in a way similar to the family Th,n described in Sect. 3.3. of [17]
(which we refer to for more details), with the following minor modifications:

1. T m
h,n has n +m endpoints (rather than n); n of them are called normal endpoints and m

of them are called special endpoints; moreover, the special endpoints can be either of
type A or of type φ. If v is a normal endpoint, then, as in [17], it is associated to one of
the monomials with four or more Grassmann fields contributing to RV(0)(�(≤hv−1));
if v is a special endpoint of type A, then it is associated to one of the monomials con-
tributing to (A�(≤hv−1), Thv−1�

(≤hv−1)) − (A�(≤hv−2), Thv−1�
(≤hv−2)); if v is a
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special endpoint of type φ, then it is associated to one of the monomials contributing
to (φ, Q(hv−1)�(hv−1)).

2. Among the sets of field labels and external field labels associated to the vertex v,
denoted by Iv and Pv in [17], we distinguish the field labels of type A, ψ and φ;
we correspondingly introduce the sets P A

v , Pψv , Pφv , I A
v , Iψv and Iφv . All the trees

contributing to Wβ,L(A, φ)+βL2 Fhβ are characterized by the fact that Pψv0 = ∅ and

P A
v0
∪ Pφv0 �= ∅.

Given τ ∈ T m
h,n , the sets P#

v , # ∈ {A, φ, ψ}, satisfy several constraints that depend
on τ (see [17]). In particular:

a. denoting by v0 the vertex immediately following the root on τ , we have |Pψv0 | = 0
and |P A

v0
| + |Pφv0 | > 0; if v > v0, then |Pψv | > 0;

b. for any v ∈ τ , sets of external field labels such that |Pv| = |Pψv | = 2 are not
allowed (this follows from the definition of localization Eqs. (2.45)-(2.46) and from
the choice of “reabsorbing” at each step the local part into the gaussian integration,
see Eqs. (2.50), (2.52), (2.58));

c. if v is not an endpoint, then sets of external field labels such that |Pv| = 2 and
|Pψv | = |Pφv | = 1 or such that |Pv| = 3, |P A

v | = 1 and |Pψv | = 2 are not allowed
(this follows from the definition of localization Eqs. (2.48)–(2.49) and from the

choice of “reabsorbing” at each step the bilinear terms (φ,W
(h)
2,ω�) into the defi-

nition of (φ, Q(h)�) and the “vertex” terms (A�,W (h)
ω,ω′�) into the definition of

(A�, Th−1�), see Eq. (2.51)).

As in [17], we denote by Pτ the family of all the choices of P#
v compatible with these

constraints and by P the elements of Pτ . The generating functional can be expressed as
a sum over trees in the following fashion (analogous to Eqs. (3.77), (3.79), (3.87), (3.88)
of [17]):

Wβ,L(A, φ) + βL2 Fhβ =
∑

n≥0

∑

m≥2

∑

h≥hβ

∑

τ∈T m
h,n

∑

P∈Pτ

∑

T∈T

W(h)(τ,P, T ), (2.59)

where, as explained in [17], T is a suitable family of spanning trees. The contribution
W(h)(τ,P, T ) can be further rewritten as

W(h)(τ,P, T ) =
∫

dxv0 Ã(P A
v0
) φ̃(Pφv0

)W (h)
τ,P,T (xv0), (2.60)

where

Ã(P A
v0
) =

∏

f ∈P A
v0

e−i(pω( f )
F −pω

′( f )
F )·x( f )Aω( f )−ω′( f )

x( f ),�( f ) ,

φ̃(Pφv0
) =

∏

f ∈Pφv0

eiε( f )pω( f )
F ·x( f )φ

ε( f )
x( f ),σ ( f ),ω( f )

(2.61)
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and, calling v∗i , . . . , v∗n the endpoints of τ , putting hi = hv∗i and denoting by K (hi )

v∗i
(xv∗i )

the kernels associated to the endpoints,

W (h)
τ,P,T (xv0) =

[
n∏

i=1

K (hi )

v∗i
(xv∗i )

]

·
{ ∏

v not e.p.

1

sv!
∫

d PTv (tv) det Ghv,Tv (tv)
[∏

l∈Tv

δω−l ,ω+
l
δσ−l ,σ+

l

[
g(hv)ωl

(xl − yl)
]
ρ−l ,ρ+

l

]}
.

(2.62)

In the latter equation, d PT (t) is a probability measure with support on a set of t such
that tii ′ = ui · ui ′ for some family of vectors ui ∈ R

s of unit norm. Finally Gh,T (t) is a
Gram matrix, whose elements are given by, see [17], Eq. (3.83):

Gh,T
i j,i ′ j ′ = tii ′δω−l ,ω+

l
δσ−l ,σ+

l

[
g(h)ωl

(xi j − yi ′ j ′)
]
ρ−l ,ρ+

l
; (2.63)

this matrix takes into account all the possible contractions of fields not involved in the
spanning tree T . See [17] for more details. The effective potential V(h) and the effec-
tive source term B(h) admit representations very similar to Eqs. (2.59)–(2.60)–(2.62),
the main difference being that these are expressed as sums over trees and field labels
satisfying slightly different constraints: i.e., the trees contributing to V(h) do not have
special endpoints and are associated to external field labels such that P A

v0
= Pφv0 = ∅

and |Pψv0 | > 0; the trees contributing to B(h) have at least one special endpoint, and are
associated to external field labels such that |Pψv0 | > 0 and |P A

v0
| + |Pφv0 | > 0.

2.2.5. The kernels of the special endpoints of type A. In order to prove Theorem 2 and
Proposition 1, we will be particularly concerned with estimating the contributions with
|P A
v0
| = 2 and |Pφv0 | = 0 or with |P A

v0
| = 1 and |Pφv0 | + |Pψv0 | = 2. The key estimate that

we preliminarily need to prove is

||Ŵ (k)
�;ω,ω′(k

′,p′)|| ≤ (const.)|U |2θk, (2.64)

for all k ≤ 0 and with θ ∈ (0, 1), uniformly in k′,p′. Note that Eq. (2.64) implies, in
particular, that the kernel of the special endpoints of type A is uniformly bounded as

||T ω,ω′�,k (k′,p′)|| ≤ C0, (2.65)

for all k ≤ 0 and a suitable constant C0, and that |Zμ,h−1 − Zμ,h | ≤ (const.)|U |2θh ,
as claimed after Eq. (2.57). Let us proceed by induction: we assume the validity of
Eq. (2.64) for k > h (so that Eq. (2.65) is valid for all k > h) and prove it for k = h.
Using the tree expansion, we can rewrite:

Ŵ (h)
�;ω,ω̃(k

′,p′) = 1

βL2

∑

n≥1

∑

τ∈T 1
h,n

∗∑

P∈Pτ

∑

T∈T

×
∫

dxv0 ei(pωF +k′+p′)x−i(pω̃F +k′)y−i(pωF−pω̃F +p′)zW (h)
τ,P,T (xv0), (2.66)
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where the ∗ on the sum recalls that Pv0 = P A
v0
∪ Pψv0 , P A

v0
= { f1} and Pψv0 = { f2, f3}

(with ω( f1) = ω( f2) = ω,ω′( f1) = ω( f3) = ω̃, x( f1) = z, x( f2) = x, x( f3) =
y, �( f1) = �, ε( f2) = −ε( f3) = − and σ( f2) = σ( f3)). Using translation invariance,
the representation Eq. (2.62) and proceeding as in the proof of Theorem 2 of [17], we
get (see Eq. (3.93) of [17])

||Ŵ (h)
�;ω,ω̃(k

′,p′)|| ≤
∑

n≥1

∑

τ∈T 1
h,n

∗∑

P∈Pτ

∑

T∈T

∫ ∏

l∈T ∗
d(xl − yl)

[
n∏

i=1

|K (hi )

v∗i
(xv∗i )|

]

·
[ ∏

v not e.p.

1

sv! max
tv

∣∣det Ghv,Tv (tv)
∣∣
∏

l∈Tv

∣∣∣∣g(hv)ωl
(xl − yl)

∣∣∣∣
]
. (2.67)

The r.h.s. of this equation can be bounded dimensionally, using the scaling properties of
the propagators g(hv)ω (x) and of the Gram determinants det Ghv,Tv (tv) (see Eqs. (3.92),
(3.94) of [17]). Following the proof of Theorem 2 of [17] and using in particular
Eqs. (3.94)–(3.95)–(3.96), we get the analogue of Eq. (3.97) of [17], that is

||Ŵ (h)
�;ω,ω̃(k

′,p′)|| ≤
∑

n≥1

∑

τ∈T 1
h,n

∗∑

P∈Pτ

∑

T∈T

Cn

×
[ ∏

v not
e.p.

1

sv!2
hv
(
(
∑sv

i=1 |Pψvi |)−|P
ψ
v |−3(sv−1)

)][ ∏

v e.p.

C
|Pψv |

2 |U | |P
ψ
v |
2 −1

]
,

(2.68)

where pi = |Pv∗i | and C is a suitable positive constant, larger than the constant C0

appearing in Eq. (2.65) (in fact, in deriving this bound, we estimated the kernel of the
special endpoint of type A by using the inductive hypothesis Eq. (2.65)). The r.h.s. of this
expression can be rewritten in a convenient form, using the analogues of Eqs. (3.98)–
(3.100) of [17], that is (recalling that m is the number of special endpoints in τ – equal
to 1 in the current case),

∑

h not
e.p.

hv
[( sv∑

i=1

|Pψvi
|)− |Pψv |

]
= h(|Iψv0

| − |Pψv0
|) +

∑

h not
e.p.

(hv − hv′)(|Iψv | − |Pψv |),

∑

h not
e.p.

hv(sv − 1) = h(n + m − 1) +
∑

h not
e.p.

(hv − hv′)(n(v) + m(v)− 1), (2.69)

where: v′ is the vertex immediately preceding v on τ ; Iv ⊇ Pv is the set of field labels
associated to v (i.e., including both the internal and the external fields to v); n(v) is the
number of normal endpoints following v on τ ; m(v) is the number of special endpoints
following v on τ . Note that in the current case, where there is only one special endpoint
of type A,m(v) = |P A

v | and m = |P A
v0
|. Plugging Eq. (2.69) into Eq. (2.68) and using

Eq. (3.100) of [17], we get the analogue of Eq. (3.101) of [17], that is,
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||Ŵ (h)
�;ω,ω̃(k

′,p′)|| ≤
∑

n≥1

∑

τ∈T 1
h,n

∗∑

P∈Pτ

∑

T∈T

Cn2h(3−|Pψv0 |−|P A
v0
|)

·
[ ∏

v not
e.p.

1

sv!2
(hv−hv′ )(3−|Pψv |−|P A

v |)
]

·
[ ∏

v e.p.

2hv′ (|Pψv |+|P A
v |−3)

][ ∏

v e.p.

C
|Pψv |

2 |U | |P
ψ
v |
2 −1

]
, (2.70)

where we used that, if v is an endpoint, then |Iψv | = |Pψv |. At this point, by Eqs. (3.102)–
(3.103) of [17] and by the argument described after Eq. (3.103) of [17], we end up with
the analogue of Eq. (3.104) of [17], that is

||Ŵ (h)
�;ω,ω̃(k

′,p′)|| ≤ γ h(3−|Pψv0 |−|P A
v0
|+θ)∑

n≥1

Cn|U |n . (2.71)

Recalling that in the current case 3− |Pψv0 | − |P A
v0
| = 0, this proves the desired estimate

on the kernels of the special endpoints of type A, Eq. (2.64). A similar strategy also
allows us to prove that

T ω,ω
′

�,h (k′,p′) = T ω,ω
′

�,h (0, 0) + O
(
(|k′| + |p′|) + |U | (|k′| + |p′|)θ

)
, (2.72)

with θ ∈ (0, 1). Let us also recall that the kernels Q(h) of the special endpoints of type
φ admit a uniform bound of the form ||Q(h)|| ≤ C0, see Eq. (3.114) of [17]. We are now
ready to give the proof of Theorem 2 and Proposition 1.

2.2.6. The three-point function (Proof of Theorem 2). The goal is to bound Ĝβ,L
2,1;l(k,p)

at k �= p±F ,p �= 0, with |k − pωF | and |p| sufficiently small (and |p| � |k − pωF |), for
a given ω ∈ {+,−}. The three-point function, by definition, using Eqs. (2.10)–(2.12)–
(2.17) and Eqs. (2.59)–(2.62), can be rewritten as

Ĝβ,L
2,1;l(k,p) = e

βL2

3∑

j=1

(�δ j )lη
j
�p
∑

n≥0

∑

h≥hβ

∑

τ∈T 3
h,n

∗∗∑

P∈Pτ

∑

T∈T

×
∫

dxv0 eik(x−y)+ip(x−z)W (h)
τ,P,T (xv0), (2.73)

where the ∗∗ on the sum over P reminds us that Pv0 = P A
v0
∪ Pφv0 , P A

v0
= { f1} and

Pφv0 = { f2, f3}, with ω( f1) = ω′( f1) = ω( f2) = ω( f3) = ω, x( f1) = z, x( f2) =
x, x( f3) = y, �( f1) = j, ε( f2) = −ε( f3) = − and σ( f2) = σ( f3). The reason why
all the quasi-particle indices of the external legs are equal to ω is that, by assumption,
|p| � |k− pωF | � 1, so that by momentum conservation all other choices of quasi-par-

ticle indices give zero contribution to Ĝβ,L
2,1;l(k,p). The trees contributing to Ĝβ,L

2,1;l(k,p)
have a few more features that are worth remarking. First of all, among the three special
endpoints of τ ∈ T 3

h,n , one of them is of type A (let us call it vA and note that f1 ∈ P A
vA

),
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and the other two are of type φ (let us call them v+
φ, v
−
φ , with f2 ∈ Pφ

v−φ
and f3 ∈ Pφ

v+
φ
).

Moreover, let hk be the (negative) integer such that 2hk ≤ |k− pωF | < 2hk+1, and let |p|
be so small that 2hk−1 < |k + p − pωF | < 2hk+2: then, only trees with |hv±φ − hk| ≤ 1

and with h ≤ hk + 1 contribute to Ĝβ,L
2,1;l(k,p).

Now, let us distinguish in the r.h.s. of Eq. (2.73), the contributions with n = 0
and those with n ≥ 1. The latter can be bounded in a way completely analogous to
Ŵ (h)
�;ω,ω̃(k

′,p′), with the following important differences: in the current case m = 3 and

m(v) = m A(v) + mφ(v), with m A(v) = |P A
v | (resp. mφ(v) = |Pφv |) the number of

special endpoints of type A (resp. type φ) following v on τ . Taking this into account
and following the same strategy used to bound Ŵ (h)

�;ω,ω̃, see Eq. (2.67)–(2.68)–(2.69), we
get the analogue of Eq. (2.70), that is we can bound the contributions with n ≥ 1 to the
three point function by

e
∑

n≥1

∑

h≤hk+1

∑

τ∈T 3
h,n

∗∗∑

P∈Pτ

∑

T∈T

Cn2h(3−|Pψv0 |−|P A
v0
|−|Pφv0 |)

·
[ ∏

v not
e.p.

1

sv!2
(hv−hv′ )(3−|Pψv |−|P A

v |−|Pφv |)
]

·
[ ∏

v e.p.

2hv′ (|Pψv |+|P A
v |+|Pφv |−3)

][ ∏

v e.p.

C
|Pψv |

2 |U | |P
ψ
v |
2 −1

]
. (2.74)

Now note that, if v is a special endpoint of type φ, then |Pψv | + |P A
v | + |Pφv | − 3 = −1

and that, if v is a special endpoint of type A, then |Pψv |+ |P A
v |+ |Pφv |−3 = 0. Therefore,

using the fact that |Pv0 | = 3, we can rewrite Eq. (2.74) as

e 2−2hk
∑

n≥1

∑

h≤hk+1

∑

τ∈T 3
h,n

∗∗∑

P∈Pτ

∑

T∈T

Cn ·
[ ∏

v not
e.p.

1

sv!2
(hv−hv′ )(3−|Pv |)

]

·
[ ∏

v normal
e.p.

2hv′ (|Pv |−3)
][ ∏

v e.p.

C
|Pψv |

2 |U | |P
ψ
v |
2 −1

]
. (2.75)

The only potentially dangerous contributions to Eq. (2.75) are those coming from a
vertex v that is not an endpoint and such that |Pv| = 3. By construction, such a vertex
has necessarily |P A

v | = |Pψv | = |Pφv | = 1; on the other hand, by momentum con-
servation, 0 < hv − hv′ ≤ 2, simply because |p| � |k − pωF | � 1 and, therefore,
the quasi-momenta associated to the external fields φ and � have essentially the same
momentum scale (i.e., the two scales differ at most by 1); in conclusion, the overall
contribution coming from a vertex that is not an endpoint and such that |Pv| = 3 can be
bounded by an O(1) constant and gives no trouble. Therefore, Eq. (2.75) implies that
the overall contribution to Ĝβ,L

2,1;l(k,p) coming from trees with n ≥ 1 can be bounded

by (const.)|U |2(−2+θ)hk . We are left with the contributions coming from the trees with
n = 0, which read (defining k′ = k − pωF )
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e
hk+1∑

h,h′=hk

Q(h)+
k′+p,ω ĝ(h)ω (k′ + p)

[ 3∑

j=1

(�δ j )lη
j
�pT ω,ω

j,h
(k′,p)

]
g(h
′)

ω (k′)Q(h′)−
k′,ω , (2.76)

where h := max{h, h′}. Using Eq. (2.64), as well as the estimates on Q(h) and on the
two-point Schwinger function proved in [17], see Eqs. (3.114), (3.120)–(3.122) of [17],
we can rewrite Eq. (2.76) as

e
(

Ŝ(k + p)
[ 3∑

j=1

(�δ j )lη
j
�pT ω,ωj,hk

(k′,p)
]
Ŝ(k)

)(
1 + O(|U |2θhk)

)
, (2.77)

for some θ ∈ (0, 1). Moreover, using Eq. (2.72), we can further rewrite Eq. (2.77) as

e
(

Ŝ(k + p)Zl,hk�l( �p ωF , �0)Ŝ(k)
)(

1 + O(2hk) + O(|U |2θhk)
)
, (2.78)

where the vertex functions Zl,h were defined in Eq. (2.57) and we remind the reader
that �1( �p ωF , �0) = −σ2 and �2( �p ωF , �0) = −ωσ1. Theorem 2 is an immediate corollary
of the previous estimates and, in particular, of Eqs. (2.75)–(2.78). Using the fact that
|Zl,h − Zl,h−1| ≤ (const.)|U |2θh , we also find that the constants Zμ in the statement of
Theorem 2 coincide with the infrared limit of the running coupling constants Zμ,h , i.e.,
Zμ = limh→−∞ Zμ,h . ��

2.2.7. The response function (Proof of Proposition 1). In order to prove Proposition 1,
we start by deriving bounds on the current-current response function K β,L

lm (x − y) at
distinct space-time points, x �= y, which can be expressed in terms of the tree expansion
as follows:

K β,L
lm (x − y) = e2v2

0

3∑

j, j ′=1

(�δ j )l(�δ j ′)m
∑

n≥0

∑

h≥hβ

∑

τ∈T 2
h,n

∗∗∗∑

P∈Pτ

∑

T∈T

×
∫

dx∗v0
(Hj, j ′ ∗W (h)

τ,P,T )(xv0), (2.79)

where the ∗ ∗ ∗ on the sum over P recalls that Pv0 = P A
v0
= { f1, f2}, with ω( f1) −

ω′( f1) = ω( f2) − ω′( f2) = 0, x( f1) = x, x( f2) = y, x( f3) = y, �( f1) = j and
�( f2) = j ′; moreover, the ∗ over dxv0 recalls that we are integrating over all the vari-
ables in xv0 but x and y, which are fixed (and distinct); finally, Hj, j ′ is the Fourier

transform of η j
�pη

j ′
− �p and (Hj, j ′ ∗ W (h)

τ,P,T ) denotes the convolutions between Hj, j ′ and

Wτ,P,T . The trees contributing to K β,L
lm have two special endpoints of type A; we call

them v1 and v2, we denote by v∗ the rightmost vertex such that v∗ ≤ v1, v2 with respect
to the partial order induced by the tree and by h∗ its scale. Proceeding as in the previous
subsection, we distinguish the contributions to K β,L

lm coming from trees of order n = 0

or n ≥ 1; we denote the two by K (0)
lm and K (1)

lm , respectively. The latter can be bounded
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by (using a notation analogous to the one used in Eq. (2.67))

||K (1)
lm (x − y)|| ≤ e2v2

0

3∑

j, j ′=1

||Hj, j ′ ||L1

∑

n≥1

∑

h≥hβ

∑

τ∈T 2
h,n

∗∗∗∑

P∈Pτ

∑

T∈T

∫ ∗∏

l∈T ∗
d(xl − yl)

·
[

n∏

i=1

|K (hi )

v∗i
(xv∗i )|

][ ∏

v not e.p.

1

sv! max
tv

∣∣det Ghv,Tv (tv)
∣∣
∏

l∈Tv

∣∣∣∣g(hv)ωl
(xl − yl)

∣∣∣∣
]
,

(2.80)

where
∏∗

l∈T ∗ is the product over all lines of the (modified) spanning tree T ∗, but one line
belonging to the subtree Tx,y ⊂ T ∗ connecting x with y and contained in the cluster v∗
but not in any smaller one; let us call l this special line. Equation (2.80) can be bounded
in a way analogous to Eq. (2.67), with the important difference that the L1 norm of the
propagator associated to l is replaced by its L∞ norm, which has a factor 23h∗ more as
compared to the L1 norm; moreover, in order to take into account the decay between x

and y, we can extract a factor
Cn

N
1+(2h∗ |x−y|)N from the product of the propagators in the

spanning tree (here N ≥ 1 and CN is a suitable positive constant); we are still left with
an expression that can be estimated in the same way as Eq. (2.67), thus leading to the
upper bound

||K (1)
lm (x − y)|| ≤ e2v2

0

∑

n≥1

∑

h≥hβ

∑

τ∈T 2
h,n

∗∗∗∑

P∈Pτ

∑

T∈T

Cn2h(3−|Pv0 |) · 23h∗ · Cn
N

1+(2h∗ |x−y|)N

·
[ ∏

v not
e.p.

1

sv!2
(hv−hv′ )(3−|Pv |)

]
·
[ ∏

v e.p.

2hv′ (|Pv |−3)
][ ∏

v e.p.

C
|Pψv |

2 |U | |P
ψ
v |
2 −1

]
. (2.81)

Proceeding as in the previous subsections, we see that this can be further bounded as

||K (1)
lm (x − y)|| ≤ e2

∑

n≥1

∑

h≥hβ

∑

h∗≥h

Cn|U |n2h(1+θ)23h∗ Cn
N

1 + (2h∗ |x − y|)N
. (2.82)

Now, noting that, by construction, h ≤ h∗ and exchanging the order of summation over
h and h∗, we get (picking N = 5 and |U | small enough)

||K (1)
lm (x − y)|| ≤ (const.)e2|U |

∑

h∗≥hβ

2h∗(4+θ)

1 + (2h∗ |x − y|)5 , (2.83)

which implies

||K (1)
lm (x − y)|| ≤ (const.)e2|U | 1

1 + |x − y|4+θ (2.84)

and, therefore, in the limit β, L → ∞ (which exists by the uniformity of the bounds
and by the term by term convergence of the series, see Appendix D of [17] for more
details), the Fourier transform of K (1) is continuous and continuously differentiable for
all p ∈ R× B (in particular at p = 0).
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We are now left with the contributions to the response function coming from the trees
with n = 0, which read

K (0)
lm (x − y) = −2e2v2

0

3∑

j, j ′=1

(�δ j )l(�δ j ′)m
∑

h,h′≥hβ

∑

ω,ω′

∫
dk′dp′

(2π)2|B|2 ei(pωF−pω
′

F +p′)(x−y)

·η j

�pωF− �pω
′

F + �p′ η
j ′

−( �pωF− �pω
′

F + �p′)Tr{ĝ(h)ω (k′ + p′)T ω,ω
′

j,h
(k′,p′)ĝ(h

′)
ω′ (k

′)T ω
′,ω

j ′,h (k
′ + p′,−p′)},

where h = max{h, h′} and the factor 2 in the r.h.s. takes into account the summation
over the spin degrees of freedom. It is important to notice that the integral in the latter

expression can be rewritten as ei(pωF−pω
′

F )(x−y) f ω,ω
′; j, j ′

h,h′ (x− y), with f ω,ω
′; j, j ′

h,h′ (x− y) a
function admitting the dimensional bound:

|∂n
x f ω,ω

′; j, j ′
h,h′ (x)| ≤ cN 22(h+h′) 2n·max{h,h′}

1 + (2max{h,h′}|x|)N
, (2.85)

for all N ≥ 0. Equation (2.85) implies that the contributions to K (0)(x−y)with ω �= ω′
can be rewritten as ei(pωF−p−ωF )(x−y)Fω,−ω(x − y), with

|∂n
x Fω,−ω(x)| ≤ e2cN

∑

h,h′
22(h+h′) 2n·max{h,h′}

1 + (2max{h,h′}|x|)N
≤ e2 c′N

1 + |x|4+n
, (2.86)

for all N ≥ 4 + n. This implies, in particular, that we can rewrite

K (0)
lm (x − y) = −2e2v2

0

3∑

j, j ′=1

(�δ j )l(�δ j ′)m
∑

h,h′≥hβ

∑

ω

∫
dk′dp

(2π)2|B|2 eip(x−y)η
j
�p η

j ′
− �p′

·Tr{ĝ(h)ω (k′ + p)T ω,ω
j,h

(k′,p)ĝ(h
′)

ω (k′)T ω,ω
j ′,h (k

′ + p,−p)} + H (0)
lm (x − y),

where the Fourier transform of H (0)(x−y) is continuously differentiable in a neighbor-
hood of p = 0. Using Eq. (2.72) and the definition of Zl,h , we can further rewrite this
expression as

K (0)
lm (x − y) = −2e2v2

0

∑

h,h′≥hβ

∑

ω

Zl,h Zm,h′
∫

dk′dp
(2π)2|B|2 eip(x−y)η

j
�p η

j ′
− �p

·Tr{ĝ(h)ω (k′ + p)�l( �pωF , �0)ĝ(h
′)

ω (k′)�m( �pωF , �0)} + H
(0)
lm (x − y),

where the Fourier transform of H
(0)
(x − y) is continuously differentiable in a neigh-

borhood of p = 0. Finally, rewriting Zl,h = Zl + O(|U |2θh), using the expression of
the two-point function in terms of a sum of single scale propagators (see Eq. (3.121) of
[17]) and using the definition of ��(�k, �p) in Eq. (1.39), we get

K (0)
lm (x − y) = −2e2v2

0 Zl Zm

∫
dkdp

(2π)2|B|2 eip(x−y)η
j
�p η

j ′
− �p

·Tr{Ŝ(k + p)�l(�k, �0)Ŝ(k)�m(�k, �0)} + H̃ (0)
lm (x − y), (2.87)
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where the Fourier transform of H̃ (0)(x − y) is continuously differentiable in a neigh-
borhood of p = 0. Combining Eq. (2.87) with the explicit expression Eq. (1.42) for the
two point function and with the bounds derived above on K (1), we finally obtain the
statement of Proposition 1 (the parity property of R(p) stated in item 3 of Proposition 1
easily follows from the symmetry properties listed in Appendix B and C). ��
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Appendix A. The Conductivity of the Non-interacting System

In this appendix we prove Eq. (1.40), with σi j |U=0 given by Eq. (1.38):

σi j
∣∣
U=0 =

2

3
√

3

2e2v2
0

�
lim

p0→0+

∫
dk0

2π

∫

B

d�k
|B|

·Tr
{ S0(k + (p0, 0))− S0(k)

p0
�i (�k, �0)S0(k)� j (�k, �0)

}
, (A.1)

where |B| = 8π2/(3
√

3) and

�i (�k, �0) =
(

0 ai (�k)
a∗i (�k) 0

)
, (A.2)

with a1(�k) = 2i
3

[
1− ei 3

2 k1 cos
(√3

2 k2
)]

and a2(�k) = 2√
3

ei 3
2 k1 sin

(√3
2 k2

)
.

Let ε > 0 be a small number, independent of p0, to be eventually sent to zero. In the
integral to be evaluated, we distinguish between the region where |�(�k)| ≥ ε and the
region where |�(�k)| ≤ ε:

σi j
∣∣
U=0 =

2

3
√

3

2e2v2
0

�
lim
ε→0

lim
p0→0+

∫
dk0

2π

∫

B

d�k
|B|Tr

{ S0(k + (p0, 0))− S0(k)
p0

�i (�k, �0)

·S0(k)� j (�k, �0)
}
·
[
χ(|�(�k)| ≥ ε) + χ(|�(�k)| ≤ ε)

]
. (A.3)

The integral associated to the regionχ(|�(�k)| ≥ ε) is uniformly convergent as p0 → 0+:
therefore, we can exchange the integral with the limit and check that the integral of the
limit is zero (simply because the integrand is odd in k0). Next, in the integral associated
to the region χ(|�(�k)| ≤ ε)we rewrite the propagator as the relativistic propagator plus
a correction (similarly, we rewrite �i as its relativistic limit plus a correction). The cor-
rections are associated to absolutely convergent integrals, uniformly in p0 as p0 → 0+,
and one can easily check that their contribution after having taken ε → 0 is equal to
zero. We are left with (after having changed variables and having included a further
factor 2 coming from the summation over the two Fermi points):

σi j
∣∣
U=0

= 2

π

e2

h
lim
ε→0

lim
p0→0+

{
1

p0

∫
dk0

2π

∫

|�k′|≤ε
d�k′ 1

k2
0 + |�k′|2 Tr

{
σ j

(
ik0 ik′1 − k′2−ik′1 − k′2 ik0

)
σi

·
[ 1

(k0 + p0)2+|�k′|2
(

i(k0 + p0) ik′1 − k′2−ik′1 − k′2 i(k0 + p0)

)
− 1

k2
0 + |�k′|2

(
ik0 ik′1 − k′2−ik′1 − k′2 ik0

)]}}
,
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where σi , i = 1, 2, are the first two Pauli matrices. Now, if i �= j , the r.h.s. of this
equation is equal to

± 2

π

e2

h
lim
ε→0

lim
p0→0+

1

p0

∫
dk0

2π

∫

|�k′|≤ε
d�k′ 4k′1k′2

k2
0 + |�k′|2

( 1

(k0 + p0)2 + |�k′|2 −
1

k2
0 + |�k′|2

)
,

(A.4)

which is zero by the symmetry under the exchange �k′←→−�k′. If, on the contrary, i = j ,
we get:

σi i
∣∣
U=0 =

2

π

e2

h
lim
ε→0

lim
p0→0+

1

p0

∫
dk0

2π

∫

|�k′|≤ε
d�k′ 1

k2
0 + |�k′|2

×
[( 2k2

0

k2
0 + |�k′|2 −

2k0(k0 + p0)

(k0 + p0)2 + |�k′|2
)

+ (−1)i [2(k′1)2 − 2(k′2)2]

×
( 1

k2
0 + |�k′|2 −

1

(k0 + p0)2 + |�k′|2
)]
. (A.5)

Now, the terms in the integral proportional to 2(k′1)2− 2(k′2)2 are zero by the symmetry
under the exchange k′1←→k′2. Therefore, we are left with:

σi i
∣∣
U=0 =

2

π

e2

h
lim
ε→0

lim
p0→0+

1

p0

∫
dk0

2π

∫

|�k′|≤ε
d�k′ 1

k2
0 + |�k′|2

×
( 2k2

0

k2
0 + |�k′|2 −

2k0(k0 + p0)

(k0 + p0)2 + |�k′|2
)
, (A.6)

that is

σi i
∣∣
U=0 = 8

e2

h
lim
ε→0

lim
p0→0+

1

p0

∫ ε

0
dk · k

∫
dk0

2π

×
( k2

0

(k2
0 + k2)2

− k0(k0 + p0)[
(k0 + p0)2 + k2

] · [k2
0 + k2

]
)
. (A.7)

The integral in k0 can be evaluated by residues to give:

∫
dk0

2π i

[ k2
0

(k2
0 + k2)2

− k0(k0 + p0)[
(k0 + p0)2 + k2

] · [k2
0 + k2

]
]
= ∂k0

[ k2
0

(k0 + ik)2

]

k0=ik

−
[ k0(k0 + p0)[
(k0 + p0)2 + k2

] · [k0 + ik
]
]

k0=ik
−
[ k0(k0 + p0)[

k0 + p0 + ik
] · [k2

0 + k2
]
]

k0+p0=ik
,

(A.8)

that is

∫
dk0

2π

[ k2
0

(k2
0 + k2)2

− k0(k0 + p0)[
(k0 + p0)2 + k2

] · [k2
0 + k2

]
]
= p2

0

4k(p2
0 + 4k2)

. (A.9)
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Plugging (A.9) into (A.7) gives

σi i
∣∣
U=0 = 8

e2

h
lim
ε→0

lim
p0→0+

p0

16

∫ ε

0
dk

1

k2 + p2
0/4
= e2

h
lim
ε→0

lim
p0→0+

arctan(2ε/p0) = e2

h

π

2
,

(A.10)

which is the desired result.

Appendix B. Symmetry Transformations

In this Appendix we collect some symmetry properties of the fermionic action, i.e.,
some transformation of the fermionic fields and of the external sources that leave sep-
arately invariant both the gaussian fermionic integration P(d�) and the interactions
V(�), (�, φ), (A, J ). These symmetries will be also preserved by the multiscale integra-
tion and, therefore, they will allow us to exclude the presence of possibly dangerous terms
in the effective action at scale h, see Sect. 2 and Appendix C. In the following, we denote
byσ1, σ2, σ3 the standard Pauli matrices, we define n± = (1±σ3)/2, σ± = (σ1±iσ2)/2,
and we use the following convention for the Fourier transform of the A field: Ax,� =
(βL2)−1∑

p∈B̄β,L e−ipx Âp,�, where B̄β,L = 2πβ−1Z× BL and � ∈ {+,−, 1, 2, 3}.

Lemma B.1. For any choice of M, β, L, the fermionic Gaussian integration P(d�),
the interaction V(�) and the source terms (�, φ), (A, J ), defined in Eqs. (2.3)–(2.7),
are separately invariant under the following transformations (here γ ∈ {ext, int} and
ϕ̂k,σ,int = �̂k,σ , while ϕ̂k,σ,ext = φ̂k,σ ; whenever this will not create ambiguities, we
shall drop the labels σ and γ , i.e., we shall use ϕ̂±k as a shorthand for ϕ̂±k,σ,γ ):

(1) Spin flip: ϕ̂εk,σ,γ ↔ ϕ̂εk,−σ,γ ;

(2) Global U (1): ϕ̂εk,σ,γ → eiεασ ϕ̂εk,σ,γ , with ασ ∈ R independent of k;

(3) Spin SO(2):

(
ϕ̂εk,↑,·,γ
ϕ̂εk,↓,·,γ

)
→ e−iθσ2

(
ϕ̂εk,↑,·,γ
ϕ̂εk,↓,·,γ

)
, with θ ∈ T = R/2πZ independent

of k;

(4) Discrete rotations: ϕ̂−k → ei �k(�δ3−�δ1)n− ϕ̂−T k, ϕ̂
+
k → ϕ̂+

T ke−i �k(�δ3−�δ1)n− , Âp,τ →
ÂT p,τ ei �p(�δ3−�δ1)

1−τ
2 and Âp, j → ÂT p, j+1, with T k = (k0, e−i 2π

3 σ2 �k);
(5) Complex conjugation: ϕ̂εk → ϕ̂ε−k, Âp,± → Â−p,±, Âp, j → − Â−p, j and c →

c∗, where c is a generic constant appearing in P(d�), in V(�) or in (A, J );
(6.a) Horizontal reflections: ϕ̂−k → σ1ϕ̂

−
Rhk, ϕ̂

+
k → ϕ̂+

Rhkσ1, Âp,± → ÂRhp,∓ and

Âp, j → − ÂRhp,rh j e−i �p(�δ j−�δ1), with Rhk = (k0,−k1, k2) and rh1 = 1, rh2 =
3, rh3 = 2;

(6.b) Vertical reflections: ϕ̂εk → ϕ̂εRvk, Âp,± → ÂRvp,± and Âp, j → ÂRvp,rv j , with
Rvk = (k0, k1,−k2) and rv1 = 1, rv2 = 3, rv3 = 2;

(7) Particle-hole: ϕ̂−k → i ϕ̂+,T
Pk , ϕ̂

+
k → i ϕ̂−,TPk , Âp,± → Â−Pp,± and Âp, j →

− Â−Pp, j , with Pk = (k0,−k1,−k2);
(8) Inversion: �̂−k,σ →−iσ3�̂

−
I k,σ , �̂

+
k,σ →−i�̂+

I k,σ σ3, φ̂
−
k,σ → iσ3φ̂

−
I k,σ , φ̂

+
k,σ →

i φ̂+
I k,σ σ3, Âp,± → − ÂI p,± and Âp, j → ÂI p, j , with I k = (−k0, k1, k2).
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Proof. The proof of the fact that P(d�) and V(�) are separately invariant under the
transformations of the � fields has already been discussed in Sect. 3.1 of [17]. The fact
that (�, φ) = (βL2)−1∑

k,σ (�̂
+
k,σ φ̂

−
k,σ + φ̂+

k,σ �̂
−
k,σ ) is invariant is apparent from the

definitions. Therefore, here we are left with proving only the invariance of the term
(A, J ) under the transformations (4) to (8) of the list above. In order to verify these
symmetries, it is convenient to rewrite the source term in Fourier space:

(A, J ) = e

(βL2)2

∑

p∈B̄β,L
k∈B∗β,L

∑

τ=±
Âp,τ �̂

+
k+p,σnτ �̂

−
k,σ

+
ev0

(βL2)2

∑

p∈B̄β,L
k∈D∗β,L

∑

j=1,2,3

Âp, j �̂
+
k+p,σ

(
iσ+e−ik(δ j−δ1) − iσ−ei(k+p)(δ j−δ1)

)
�̂−k,σ ,

(B.1)

where it is implicit that the terms in the sums with k + p �∈ B∗β,L should be put equal to
zero.

Symmetry (4). The term

(∗) :=
∑

k,p,τ

Âp,τ �̂
+
k+p,σnτ �̂

−
k,σ (B.2)

in the first line of Eq. (B.1) is changed under (4) as:

(∗)→
∑

k,p,τ

ÂT p,τ ei �p(�δ3−�δ1)
1−τ

2 �̂+
T (k+p),σ

[
e−i(�k+ �p)(�δ3−�δ1)n−nτ e+i �k(�δ3−�δ1)n−]�̂−k,σ .

(B.3)

Using the definition of n±, we find that
[
e−i(�k+ �p)(�δ3−�δ1)n−nτ e+i �k(�δ3−�δ1)n−] = e−i �p(�δ3−�δ1)

1−τ
2 nτ , (B.4)

from which we see that (∗) is invariant under (4). Similarly, the term

(∗∗) :=
∑

k,p, j

Âp, j �̂
+
k+p,σ

(
iσ+e−ik(δ j−δ1) − iσ−ei(k+p)(δ j−δ1)

)
�̂−k,σ , (B.5)

in the second line of Eq. (B.1) is changed under (4) as:

(∗∗)→
∑

k,p, j

ÂT p, j+1 · �̂+
T (k+p),σ

·[e−i(k+p)(δ3−δ1)n−(iσ+e−ik(δ j−δ1) − iσ−ei(k+p)(δ j−δ1)
)
e+ik(δ3−δ1)n−]�̂−k,σ .

(B.6)

Using the definition of σ±, we find that eiθn−σ± = eiθ 1−τ
2 σ± and σ±eiθn− = eiθ 1+τ

2 σ±,
so that

[
e−i(k+p)(δ3−δ1)n−(iσ+e−ik(δ j−δ1) − iσ−ei(k+p)(δ j−δ1)

)
e+ik(δ3−δ1)n−]

= (iσ+e−ik(δ j−δ3) − iσ−ei(k+p)(δ j−δ3)
)
. (B.7)
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Plugging this identity into Eq. (B.6) and using the fact that k(δ j−δ3) = (T k)(δ j+1−δ1)

we see that also (∗∗) is invariant under (4).

Symmetry (5). The term (∗) is changed under (5) as:

(∗)→
∑

k,p,τ

Â−p,τ �̂
+
−(k+p),σnτ �̂

−
−k,σ , (B.8)

which is the same as (∗). Similarly, the term (∗∗) is changed under (5) as:

(∗∗)→
∑

k,p, j

(− Â−p, j )�̂
+
−(k+p),σ

(− iσ+e+ik(δ j−δ1) + iσ−e−i(k+p)(δ j−δ1)
)
�̂−−k,σ ,

(B.9)

which is the same as (∗∗).
Symmetry (6.a). The term (∗) is changed under (6.a) as:

(∗)→
∑

k,p,τ

ÂRhp,−τ �̂+
Rh(k+p),σ σ1nτ σ1�̂

−
Rhk,σ . (B.10)

Using the fact that σ1nτ σ1 = n−τ we see that this term is invariant under (5). The term
(∗∗) is changed under (6.a) as:

(∗∗)→
∑

k,p, j

(− ÂRhp,rh j )e
−ip(δ j−δ1) �̂+

Rh(k+p),σ

×[σ1(iσ+e−ik(δ j−δ1) − iσ−e+i(k+p)(δ j−δ1)
)
σ1
]
�̂−Rhk,σ , (B.11)

where
[
σ1(iσ+e−ik(δ j−δ1) − iσ−e+i(k+p)(δ j−δ1)

)
σ1
]

= −eip(δ j−δ1)(iσ+eik(δ j−δ1) − iσ−e−i(k+p)(δ j−δ1)). (B.12)

Using this identity and the fact that k(δ j − δ1) = −(Rhk)(δrh j − δ1), we see that (∗∗)
is invariant under (6.a).

Symmetry (6.b). The term (∗) is changed under (6.b) as:

(∗)→
∑

k,p,τ

ÂRvp,τ �̂
+
Rv(k+p),σnτ �̂

−
Rvk,σ , (B.13)

which is obviously the same as (∗). The term (∗∗) is changed under (6.b) as:

(∗∗)→
∑

k,p, j

ÂRvp,rv j �̂
+
Rv(k+p),σ (iσ+e−ik(δ j−δ1) − iσ−e+i(k+p)(δ j−δ1)

)
�̂−Rvk,σ .

(B.14)

Using the fact that k(δ j −δ1) = (Rvk)(δrv −δ1)we see that also (∗∗) is invariant under
(6.b).

Symmetry (7). The term (∗) is changed under (7) as:

(∗)→−
∑

k,p,τ

Â−Pp,τ �̂
−,T
P(k+p),σnτ �̂

−
Pk,σ =

∑

k,p,τ

Â−Pp,τ �̂
+
Pk,σnτ �̂

−
P(k+p),σ ,

(B.15)
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which is the same as (∗). The term (∗∗) is changed under (7) as:

(∗∗) →
∑

k,p, j

Â−Pp, j �̂
−,T
P(k+p),σ (iσ+e−ik(δ j−δ1) − iσ−e+i(k+p)(δ j−δ1)

)
�̂

+,T
Pk,σ

=
∑

k,p, j

Â−Pp, j �̂
+
Pk,σ (iσ+ei(k+p)(δ j−δ1) − iσ−e−ik(δ j−δ1)

)
�̂−P(k+p),σ .

(B.16)

Using the fact that k(δ j − δ1) = −(Pk)(δrv − δ1) we see that also (∗∗) is invariant
under (7).

Symmetry (8). The term (*) is changed under (8) as:

(∗)→
∑

k,p,τ

ÂI p,τ �̂
+
I (k+p),σ

[
σ3nτ σ3

]
�̂−I k,σ , (B.17)

which is the same as (∗). The term (∗∗) is changed under (8) as:

(∗∗)→−
∑

k,p, j

ÂI p, j �̂
+
I (k+p),σ

[
σ3(iσ+e−ik(δ j−δ1) − iσ−e+i(k+p)(δ j−δ1)

)
σ3
]
�̂−I k,σ .

(B.18)

Using the fact that σ3σ±σ3 = −σ± and that k(δ j − δ1) = (I k)(δ j − δ1) we see that
also (∗∗) is invariant under (8). ��

Appendix C. Symmetry Properties of the Kernels

In this appendix we prove Eqs. (2.27)–(2.31). We start by studying the symmetries of
the kernel quadratic in the external field A and by proving Eqs. (2.27)–(2.29). Next we
investigate the symmetries of the kernel quadratic in the fermionic fields � and linear
in the external field A and prove Eqs. (2.30)–(2.31).

The AA kernel. We consider the term quadratic in the external fields A� in the r.h.s.
of Eq. (2.25), which has the form (neglecting the dependence on the label M , defining
Ŵ�,�(p) := Ŵ0,2;(�,�)(p,−p) and assuming, without loss of generality, that Ŵ�,�(p) =
Ŵ�,�(−p)):

1

βL2

∑

p

[ ∑

τ,τ ′=+,−
Âp,τ Ŵτ,τ ′(p) Â−p,τ ′ + 2

∑

τ=±,
j=1,2,3

Âp,τ Ŵτ, j (p) Â−p, j

+
∑

j, j ′=1,2,3

Âp, j Ŵ j, j ′(p) Â−p, j ′
]
, (C.1)
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which must be invariant under the symmetry transformations listed in Appendix B. Using
symmetries (4)–(8) of Appendix B, we find that:

Ŵτ,τ ′(p) = Ŵτ,τ ′(T p)ei p
2 (δ3−δ1)(τ−τ ′) = Ŵ ∗τ,τ ′(−p)

= Ŵ−τ,−τ ′(Rhp) = Ŵτ,τ ′(Rvp) = Ŵτ,τ ′(I p), (C.2)

Ŵτ, j (p) = Ŵτ, j+1(T p)ei p
2 (δ3−δ1)(τ−1) = −Ŵ ∗τ, j (−p)

= −Ŵ−τ,rh j (Rhp)e−ip(δ j−δ1) = Ŵτ,rv j (Rvp) = −Ŵτ, j (I p), (C.3)

Ŵ j, j ′(p) = Ŵ j+1, j ′+1(T p) = Ŵ ∗j, j ′(−p)

= Ŵrh j,rh j ′(Rhp)eip(δ j−δ j ′ ) = Ŵrv j,rv j ′(Rvp) = Ŵ j, j ′(I p). (C.4)

Equations (C.2)–(C.4) imply that one can define natural covariant matrix elements as:

W̃τ,τ (p) := Ŵτ,τ (p), W̃τ,−τ (p) := 3

�(τ �p) Ŵτ,−τ (p), (C.5)

W̃τ, j (p) := eip(δ j−δ1)
1−τ

2 Ŵτ, j (p), (C.6)

W̃ j, j ′(p) := eip(δ j+1−δ j ′+1)Ŵ j, j ′(p), (C.7)

which satisfy the following natural transformation rules:

W̃τ,τ ′(p) = W̃τ,τ ′(T p) = W̃ ∗τ,τ ′(−p) = W̃−τ,−τ ′(Rhp) = W̃τ,τ ′(Rvp) = W̃τ,τ ′(I p),

W̃τ, j (p) = W̃τ, j+1(T p) = −W̃ ∗τ, j (−p) = −W̃−τ,rh j (Rhp) = W̃τ,rv j (Rvp)

= −W̃τ, j (I p), (C.8)

W̃ j, j ′(p) = W̃ j+1, j ′+1(T p) = W̃ ∗j, j ′(−p) = W̃rh j,rh j ′(Rhp) = W̃rv j,rv j ′(Rvp)

= W̃ j, j ′(I p).

At first order in p, defining W̃�,�(0) =: a�,� and ∂pμ W̃�,�(0) =: bμ�,�, with �, � ∈
{+,−, 1, 2, 3} and μ ∈ {0, 1, 2}, from the first of Eq. (C.8) we get aτ,τ ′ = (aτ,τ ′)∗ =
a−τ,−τ ′ (i.e., aτ,τ = a and aτ,−τ = a′, for some a, a′ ∈ R) and bμ

τ,τ ′ = 0,∀μ ∈ {0, 1, 2},
that is W̃τ,τ (p) = a + O(p2) and W̃τ,−τ (p) = a′ + O(p2), i.e.,

Ŵτ,τ (p) = a + O(p2), Ŵτ,−τ (p) = a′�(τ �p)
3

+ O(p2), a, a′ ∈ R, (C.9)

which proves Eq. (2.27). Similarly, from the second of Eq. (C.8), we get aτ, j = 0, bl
τ, j =

0 for l = 1, 2 and b0
τ, j = bτ , for some b ∈ R, that is

W̃τ, j (p) = bτp0 + O(p2) ⇒ Ŵτ, j (p) = bτp0 + O(p2), b ∈ R, (C.10)

which proves Eq. (2.28). Finally, from the third of Eq. (C.8), we get that a j, j ′ = cδ j, j ′+c′,
for some c, c′ ∈ R and bμj, j ′ = 0, for all μ ∈ {0, 1, 2} and j, j ′ ∈ {1, 2, 3}; that is,

W̃ j, j ′(p) = cδ j, j ′ + c′ + O(p2)⇒ Ŵ j, j ′(p) = e−ip(δ j+1−δ j ′+1)
[
cδ j, j ′ + c′

]
+ O(p2),

c, c′ ∈ R, (C.11)

which proves Eq. (2.29).
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The Aψψ kernel. We consider the term quadratic in�(i.r.) and linear in A� in the r.h.s. of
Eq. (2.25), which has the form (neglecting the dependence on the label M and defining
Ŵ�(k,p) := Ŵ2,1;�(k + p,k,p)):

1

(βL2)2

∑

k,p,σ

[∑

τ=±
Âp,τ �̂

(i.r.)+
k+p,σ Ŵτ (k,p)�̂(i.r.)−k,σ +

∑

j=1,2,3

Âp, j �̂
(i.r.)+
k+p,σ Ŵ j (k,p)�̂(i.r.)−k,σ

]
,

(C.12)

which must be invariant under the symmetry transformations listed in Appendix B. Using
symmetries (4)–(8) of Appendix B, we find that:

Ŵτ (k,p) = e−ip(δ3−δ1)
1−τ

2 ei(k+p)(δ3−δ1)n−Ŵτ (T k, T p)e−ik(δ3−δ1)n− = Ŵ ∗τ (−k,−p)

= σ1Ŵ−τ (Rhk, Rhp)σ1 = Ŵτ (Rvk, Rvp) = Ŵ T
τ (P(k + p),−Pp)

= σ3Ŵτ (I k, I p)σ3, (C.13)

Ŵ j (k,p) = ei(k+p)(δ3−δ1)n−Ŵ j+1(T k, T p)e−ik(δ3−δ1)n− = −Ŵ ∗j (−k,−p)

= −eip(δ j−δ1)σ1Ŵrh j (Rhk, Rhp)σ1 = Ŵrv j (Rvk, Rvp)

= −Ŵ T
j (P(k + p),−Pp) = −σ3Ŵ j (I k, I p)σ3. (C.14)

At k = pωF and p = 0 and defining Ŵτ (pωF , 0) =: ∑3
μ=0 aμω,τ σμ, with σ0 = 1 and

σ1, σ2, σ3 the standard Pauli matrices, the last identity in Eq. (C.13) reads:

a0
ω,τ + a1

ω,τ σ1 + a2
ω,τ σ2 + a3

ω,τ σ3 = a0
ω,τ − a1

ω,τ σ1 − a2
ω,τ σ2 + a3

ω,τ σ3, (C.15)

which implies a1
ω,τ = a2

ω,τ = 0; given this fact, the second identity in Eq. (C.13) implies
that a0

ω,τ = (a0−ω,τ )∗ and a3
ω,τ = (a3−ω,τ )∗; the third identity implies that a0

ω,τ is even
in τ , while a3

ω,τ is odd in τ ; the fourth and fifth identity imply that both a0
ω,τ and a3

ω,τ

are even in ω. In conclusion,

Ŵτ (pωF , 0) = a0 + τa3σ3, (C.16)

with a0 and a3 two real constants. This proves Eq. (2.30).
Similarly, defining Ŵ j (pωF , 0) =:∑3

μ=0 aμω, jσμ, the last identity in Eq. (C.14) reads

a0
ω, j + a1

ω, jσ1 + a2
ω, jσ2 + a3

ω, jσ3 = −a0
ω, j + a1

ω, jσ1 + a2
ω, jσ2 − a3

ω, jσ3, which implies

that a0
ω, j = a3

ω, j = 0; the first identity in Eq. (C.14) reads:

a1
ω, jσ1 + a2

ω, jσ2 = e−iω 2π
3
σ3
2 (a1

ω, j+1σ1 + a2
ω, j+1σ2)e

iω 2π
3
σ3
2 , (C.17)

which implies

(
a1
ω, j

a2
ω, j

)
= e−iω 2π

3 σ2

(
a1
ω, j+1

a2
ω, j+1

)
; the second identity in Eq. (C.14) implies

that a1
ω, j = −(a1−ω, j )

∗ and a2
ω, j = (a2−ω, j )

∗; the third identity implies that a1
ω, j =

−a1
ω,rh j and a2

ω, j = a2
ω,rh j ; the fourth identity implies that al

ω, j = al
−ω,rv j , with l = 1, 2;

the fifth identity implies that a1
ω, j = −a1−ω, j and a2

ω, j = a2−ω, j . Using the second, third,

fourth and fifth identities for j = 1 immediately gives a1
ω,1 = 0 and a2

ω,1 = a ∈ R. At



Universality of Conductivity in Interacting Graphene 355

this point, using the first identity, we get a1
ω,2 = −a1

ω,3 = ωa
√

3
2 and a2

ω,2 = a2
ω,3 = − a

2 ,
which means

Ŵ1(pωF ) = aσ2, Ŵ2(pωF ) = a(ω

√
3

2
σ1 − 1

2
σ2), Ŵ3(pωF ) = a(−ω

√
3

2
σ1 − 1

2
σ2),

(C.18)

that is

Ŵ j (pωF , 0) = aeiω 2π
3 ( j−1)σ3σ2, (C.19)

which proves Eq. (2.31). ��
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