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Introduction

Galerkin finite element methods are widely used for the numerical solution of
linear parabolic problems. There is a vast literature of corresponding a priori
error bounds, most of which are derived without invoking a quasi-optimality
result like Ceá’s Lemma; see the monograph of Thomée [41]. This differs
from the analysis of linear elliptic problems, as Douglas and Dupont [21]
recognized already in 1970.

A quasi-optimality result states the equivalence between the error of the
method and the best error within the underlying discrete space. The interest
for such a result is motivated by the fact that it is stronger than error bounds
of optimal order. In fact, given a suitable discrete space, quasi-optimality
implies error bounds of optimal order, but not vice versa: for example, op-
timal order error bounds may require more regularity than the minimal one
indicated by approximation theory or, more subtle, the bound may not van-
ish whenever the error does so. Moreover optimal order error bounds provide
information of asymptotic nature, while quasi-optimality goes beyond and in
particular covers the computational range.

There are some known results of quasi-optimality in the framework of
parabolic problems. Concerning fixed spatial semi-discretizations, Douglas
and Dupont [21] derived a quasi-optimality result in a norm involving a
time derivative of order 1/2, assuming that the initial error vanishes. This
approach has been generalized by Baiocchi and Brezzi [3] to fractions around
1/2 and by Tomarelli [42] also to general initial values. Other three results
concern quasi-optimality for the approximation in space in simpler norms,
which are related to the standard weak formulation of parabolic problems.
However, none of these results perfectly mimics the elliptic case. Dupont [22]
derived quasi-optimality in a norm close to the one of H1(H−1) ∩ L2(H1),
but that depends on the discretization. This approach has been generalized
in [4, 24, 26] in the context of moving mesh methods and in [25] also for
Navier-Stokes equations. The other two results, [13, 30] require that the L2-
projection is H1-stable. With this assumption, Hackbusch [30] in particular
established stability in L2(H1), while Chrysafinos and Hou [13] showed quasi-
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optimality in H1(H−1) ∩ L2(H1).
Concerning more general spatial discretizations, Dupont in [22] analyses

the case where the spatial mesh is allowed to change with time and proposes a
remarkable counterexample. The discretization is based on one dimensional
finite elements in space, and backward Euler in time. The best approximation
error converges to zero as the mesh-size h and the time step τ independently
converge to zero. However, the spatial mesh changes every time-step in a way
that, if h, τ → 0 such that h4/τ → ∞, then the discrete solution does not
converge to the exact solution. This reveals that a quasi-optimality result
does not hold, at least when the spatial discretization changes. For more
general problems, Chrysafinos and Walkington [14] prove that the error in
the L2(L∞) ∩ L2(H1)-norm can be bounded by the error given by a suitable
local projection, and an extra term, that vanishes if the spatial discretization
remains the same.

This thesis concerns linear parabolic equations, with a uniformly elliptic
operator that may depend on time. The approach to the analysis of the
backward Euler-Galerkin method is based on the framework given by the
inf-sup condition. In order to shed light on various aspects, we analyse
separately the spatial discretization, the time discretization and the issue of
varying the spatial discretization, and combine them in an analysis of the
backward Euler- Galerkin method.

Concerning approximation in space we prove that the H1-stability of
the L2-projection is a necessary condition for quasi-optimality, both in the
H1(H−1) ∩ L2(H1)-norm and in the L2(H1)-norm.

Furthermore we investigate the discretization only in time by the back-
ward Euler method. Under the assumption that the time partition is lo-
cally quasi-uniform, we prove that the error in a norm that mimics the
H1(H−1)∩L2(H1)-norm is equivalent to the sum of the best errors with piece-
wise constants for the exact solution and its time derivative. Concerning the
L2(H1)-norm, we observe lack of stability, and therefore of quasi-optimality.
Nevertheless, the L2(H1)-norm of the discrete solution is bounded in terms
of a stronger norm of the exact solution, and we derive an abstract error
estimate where the right-hand side is equivalent to the error.

Moreover we address the topic of varying the spatial discretization. Given
a partition of the time interval, we allow for modifications of the spatial
discretization every time step. Assuming the L2-projection to be H1-stable,
we prove that the error is bounded, up to a constant, by the best error and
an extra term that arises from the modifications of the spatial discretization,
and vanishes if these do not occur. This result is valid for both the broken
H1(H−1)∩L2(H1)-norm and the L2(H1)-norm. This extra term is consistent
with Dupont’s counterexample, in that it converges to zero if h4/τ → 0.
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Collecting all the previous results, we analyse the backward Euler-Gal-
erkin method.

Finally we derive to error estimates, in the case the spatial discretization
is based on finite elements. We provide error bounds in terms of the local
mesh-size, the local time step and the regularity of the exact solution. The
latter is measured with Sobolev spaces of possible fractional order.

Organization

The thesis is organized as follows. In Chapter 1 we recall Petrov-Galerkin
approximations and we derive lower bounds for the quasi-optimality constant.
In Chapter 2 we cast abstract parabolic problems into the setting given by
the inf-sup condition. We consider two formulations: in the “standard”
one the solution is sought in L2(H1) ∩ H1(H−1), while in the “natural”
formulation the solution belongs to L2(H1). Chapters 3–6 are dedicated
to the discretization. Each one is divided into two parts: the first part
is associated to the standard formulation and concerns approximation in
L2(H1)∩H1(H−1), while the second part is related to the natural formulation
and deals with approximation in L2(H1). More specifically, in Chapter 3 we
study the spatial semidiscretization, in Chapter 4 the semidiscretization in
time, in Chapter 5 the variable spatial discretization and in Chapter 6 the
backward-Euler Galerkin method. We conclude in Chapter 7 with the error
bounds. The approximation of the time derivative involves the H−1-norm
in space. In order to deal with this term, we define a suitable interpolation
operator, which allows for duality arguments.

Theorems, propositions, remarks, etc. share the same numbering and are
numbered per chapter.

Acknowledgements
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Chapter 1

The Quasi-Optimality Constant
for Petrov-Galerkin
Approximations

Petrov-Galerkin approximations that are inf-sup stable are known to be near-
best [2], in the sense that there exists a constant q > 0 such that

‖u− U‖ ≤ q inf
V
‖u− V ‖ . (1.1)

This means that the error of the Galerkin approximation U is equivalent to
the best error with respect to the discrete space. This is also called a sym-
metric error estimate [21, 22], to stress that the norm on the right-hand side
coincides with the one on the left-hand side. The result in (1.1) provides in-
formation of non-asymptotic nature about the quality of the approximation,
and it is useful for deriving a priori error estimates. Of course this is signif-
icant for practical computation only if q is of moderate size. Upper bounds
for q are given in [2, 7, 12, 48].

In this chapter we provide a formula for q in terms of the bilinear form of
the variational problem and in terms of the discrete spaces. We regain the
known upper bound and we also furnish lower bounds for q, which are useful
in Chapter 3.

The chapter is organized as follows. In Section 1.1, we recall the frame-
work of Petrov-Galerkin approximations and the inf-sup theory, which is
a key instrument in establishing our results. In Section 1.2 we derive the
aforementioned formula for q. Finally in Section 1.3 we analyse the non-
conforming case.
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1.1 Petrov-Galerkin approximation

We start by briefly reviewing Petrov-Galerkin approximation in Banach re-
flexive spaces. See also the original work of Babuška [2] and, for example,
the textbook [27].

1.1.1 The abstract problem

We introduce the abstract problem to be approximated. Let (X1, ‖·‖1) and
(X2, ‖·‖2) be two real Banach spaces, and let X2 be also reflexive. The dual
space X∗2 of X2 is equipped with the usual dual norm ‖`‖∗2 = sup‖ϕ‖2=1 `(ϕ)
for ` ∈ X∗2 . Moreover, let b be a real-valued bounded bilinear form on X1×X2

and let Cb be the continuity constant of b:

Cb := sup
v∈X1

sup
ϕ∈X2

b(v, ϕ)

‖v‖1 ‖ϕ‖2

. (1.2)

We consider the problem

given ` ∈ X∗2 , find u ∈ X1 such that ∀ϕ ∈ X2 b(u, ϕ) = `(ϕ) (1.3)

and say that it is well-posed if, for any ` ∈ X∗2 , there exists a unique solution
that continuously depends on `. The spaces X1 and X2 are called trial and
test space, respectively. Problem (1.3) is well-posed if and only if there hold
the following two conditions:

cb := inf
v∈X1

sup
ϕ∈X2

b(v, ϕ)

‖v‖1 ‖ϕ‖2

> 0 (uniqueness), (1.4a)

(b(v, ϕ) = 0 ∀v ∈ X1)⇒ ϕ = 0 (existence). (1.4b)

The quantity cb is the so-called inf-sup constant. An equivalent condition to
(1.4) is

inf
v∈X1

sup
ϕ∈X2

b(v, ϕ)

‖v‖1 ‖ϕ‖2

= inf
ϕ∈X2

sup
v∈X1

b(v, ϕ)

‖v‖1 ‖ϕ‖2

> 0. (1.5)

This equality allows to exchange the spaces where infimum and supremum
are taken and it is a consequence of

1

cb
=
∥∥B−1

∥∥
L(X∗2 ,X1)

=
∥∥B−∗∥∥L(X∗1 ,X2)

, (1.6)

where the linear operator B ∈ L(X1, X
∗
2 ) is given by B(v)(ϕ) = b(v, ϕ), and

B∗ ∈ L(X2, X
∗
1 ) is its adjoint B∗(ϕ)(v) = B(v)(ϕ). Equation (1.6) tells that
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‖u‖1 ≤ c−1
b ‖`‖

∗
2, so c−1

b may be viewed as an absolute condition number for
solving (1.3) with respect to ‖·‖1 and ‖·‖2. Consequently, problem (1.3) is
well-conditioned if the inf-sup constant cb is not too small.

One could also consider a problem with right-hand side in X∗1 , so that X1

becomes the test space and X2 the trial space:

given g ∈ X∗1 , find φ ∈ X2 such that ∀v ∈ X1 b(v, φ) = g(v). (1.7)

We call (1.7) the dual problem of the primal problem (1.3). Thanks to (1.5)
the well-posedness of primal and dual problem are equivalent.

1.1.2 Petrov-Galerkin method

We next review Petrov-Galerkin methods for problem (1.3). For notational
simplicity, we take the viewpoint that a Petrov-Galerkin method is charac-
terized by one pair of subspaces, instead of a family of pairs. Given two
nontrivial and proper subspaces Mi ⊂ Xi, i = 1, 2, the Petrov-Galerkin
method M = M1 ×M2 reads

given ` ∈ X∗2 , find UM ∈M1 such that ∀ϕ ∈M2 b(UM , ϕ) = `(ϕ). (1.8)

Replacing Xi by Mi, i = 1, 2, we see that method M is well-defined, or
problem (1.8) is well-posed, if and only if there hold

cM := inf
v∈M1

sup
ϕ∈M2

b(v, ϕ)

‖v‖1 ‖ϕ‖2

> 0, (1.9a)

(b(v, ϕ) = 0 ∀v ∈M1)⇒ ϕ = 0 (1.9b)

The quantity cM is the so-called discrete inf-sup constant. If M1 and M2

have finite dimension, it is necessary for (1.9) that dim(M1) = dim(M2). In
this case, (1.9a) and (1.9b) are equivalent.

We say that the method M is stable if there exists a constant k such that,
for every ` ∈ H∗2 ,

‖UM‖1 ≤ k ‖u‖1 . (1.10)

It is easy to see that the best constant k in (1.10) is the norm of the Ritz pro-
jection RM : X1 →M1, which maps any exact solution on its corresponding
approximate solution. More precisely, RM is defined by

∀ϕ ∈M2 b(RMu, ϕ) = b(u, ϕ). (1.11)

For a well-defined method M , the map RM is also well-defined and it is
actually a projection onto the nontrivial proper subspace M1.
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One may also consider the dual Petrov-Galerkin method M2×M1 for the
dual problem (1.7):

given g ∈ X∗1 , find ΦM ∈M2 such that ∀v ∈M1 b(v,ΦM) = g(v). (1.12)

Thanks again to (1.5) the well-posedness of (1.12) is equivalent to the one
of (1.8). We denote by R∗M : X2 → M2 the dual Ritz projection defined,
similarly to (1.11), by

∀v ∈M1 b(v,R∗Mφ) = b(v, φ).

1.2 The quasi-optimality constant

The quasi-optimality constant qM of a method M is the smallest constant
q ≥ 0 such that, for any ` ∈ X∗2 , there holds

‖u− UM‖1 ≤ q inf
v∈M1

‖u− v‖1 . (1.13)

In view of UM ∈M1, there holds qM ≥ 1.
We briefly provide an overview of the history of (1.13), in case X1 is a

Hilbert space. The first result of type (1.13) is due to Céa, [12, Prop. 3.1],
who proved it in 1964 for a symmetric bilinear form. Denoted by αb the
coercivity constant of the bilinear form, the upper bound for q is given by

qM ≤
√
Cb
αb
.

Birkhoff, Schultz and Varga in 1968 [7, Thm. 13] extended the result to the
non-symmetric case, but still with identical trial and test space, with

qM ≤
Cb
αb
.

In 1970, Babuška [2, Thm. 2.2] proved (1.13) for the more general setting
described in Section 1.1, with

qM ≤ 1 +
Cb
cM

.

Finally Xu and Zikatanov [48, Thm. 2] in 2003 improved the bound by
Babuška:

qM ≤
Cb
cM

.
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Theorem 1.2 provides a formula for qM in terms of b and the discrete spaces.
It allows to derive also lower bounds for qM and regain the upper bound by
Xu and Zikatanov. We remark that the bound by Babuška is valid in the
more generic case when X1 is a Banach space.

We first show the equivalence between quasi-optimality and stability, with
qM = ‖RM‖L(X1). In fact, since b is a bounded bilinear form, RM is also linear
and bounded. Therefore,

∀v ∈M1 u−RMu = (I −RM)(u− v),

which implies qM = ‖I −RM‖L(X1). In order to link this to ‖RM‖L(X1) we
exploit [48, Lemma 5], that we recall for convenience.

Lemma 1.1. Let H be a Hilbert space, and P : H → H a nontrivial idem-
potent operator, that is, 0 6= P 2 = P 6= I. Then the following identity holds

‖P‖L(H) = ‖I − P‖L(H) .

Applying Lemma 1.1 with P = RM yields

qM = ‖RM‖L(X1) . (1.14)

This equality allows to derive the following theorem.

Theorem 1.2 (Quasi-optimality). Assume that X1 is a Hilbert space, (1.2)
is finite, problem (1.3) is well-posed, and method M is well-defined. Then
the quasi-optimality constant of M satisfies:

qM = sup
ϕ∈M2

inf
v∈M1

‖v‖1

b(v, ϕ)
sup
x∈X1

b(x, ϕ)

‖x‖1

= sup
v∈M1

inf
ϕ∈M2

‖v‖1

b(v, ϕ)
sup
x∈X1

b(x, ϕ)

‖x‖1

. (1.15)

Proof. We introduce the following norm on X2

‖ϕ‖b := sup
v∈X1

b(v, ϕ)

‖v‖1

,

which is equivalent to ‖·‖2, with cb ‖ϕ‖2 ≤ ‖ϕ‖b ≤ Cb ‖ϕ‖2, for every ϕ ∈M2.
Moreover the inf-sup and continuity constants of b with respect to ‖·‖b are
equal:

inf
ϕ∈X2

sup
v∈X1

b(v, ϕ)

‖ϕ‖b ‖v‖1

= sup
ϕ∈X2

sup
v∈X1

b(v, ϕ)

‖ϕ‖b ‖v‖1

= 1.

Method M is well-defined with respect to ‖·‖b too, and the discrete inf-sup
constant, denoted by βM , enjoys the symmetry (1.5):

βM := inf
ϕ∈M2

sup
v∈M1

b(v, ϕ)

‖ϕ‖b ‖v‖1

= inf
v∈M1

sup
ϕ∈M2

b(v, ϕ)

‖ϕ‖b ‖v‖1

.
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Using formula (1.14), we derive that qM = β−1
M . Indeed, given v ∈ X1, there

holds

βM ‖RMv‖1 ≤ sup
ϕ∈M2

b(RMv, ϕ)

‖ϕ‖b
= sup

ϕ∈M2

b(v, ϕ)

‖ϕ‖b
≤ ‖v‖1 (1.16)

whence

qM = ‖RM‖L(X1) ≤ β−1
M .

The other direction follows by similar arguments and the symmetry (1.5).
For every ϕ ∈M2, we have

‖ϕ‖b ≤ sup
v∈X1

b(v, ϕ)

‖v‖1

= sup
v∈X1

b(RMv, ϕ)

‖v‖1

≤ ‖RM‖L(X1) sup
v∈M1

b(v, ϕ)

‖v‖1

,

that is, βM ≥ ‖RM‖−1
L(X1) = q−1

M .

We notice that (1.15) involves only discrete test functions. We consider
a norm ‖·‖] on M2, that can differ from the inherited norm ‖·‖2, and can
depend on the discrete space M2, but such that

c]M := inf
ϕ∈M2

sup
v∈M1

b(v, ϕ)

‖ϕ‖] ‖v‖1

> 0 and (1.17a)

C]
M := sup

ϕ∈M2

sup
v∈M1

b(v, ϕ)

‖ϕ‖] ‖v‖1

≤ C]
X1×M2

:= sup
v∈X1

sup
ϕ∈M1

b(v, ϕ)

‖ϕ‖] ‖v‖1

<∞.

(1.17b)

The following bounds follow from (1.15) and elementary inequalities.

Corollary 1.3 (Upper and Lower bounds). Under the hypothesis of Theorem
1.2 the quasi-optimality constant of M satisfies:

max

{
cb
cM

,
C]
X1×M2

C]
M

}
≤ qM ≤ min

{
Cb
cM

,
C]
X1×M2

c]M

}
. (1.18)

In the upper bound we recognize the constant in [48].

Remark 1.4 (Another error norm). One could think to measure the error
in another norm ‖·‖∼. Of course ‖·‖∼ has to be well-defined on X1, but it
may happen that the bilinear form b is not continuous on X1×X2 equipped
with ‖·‖∼ and ‖·‖2, respectively. However, if (X1, ‖·‖∼) is still a Hilbert
space, we get qM = ‖RM‖L((X1,‖·‖∼)). If b is continuous on X1×M2 equipped
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respectively with ‖·‖∼ and ‖·‖2, and the corresponding inf-sup constant does
not degenerate, we deduce from Corollary 1.3 that

C̃X1×M2

C̃M
≤ qM ≤

C̃X1×M2

c̃M
,

where C̃X1×M2 , C̃M and c̃M are respectively defined as C]
X1×M2

, C]
M and c]M

of (1.17) with ‖·‖∼ in place of ‖·‖1 and ‖·‖] = ‖·‖2.

Remark 1.5 (Quasi-optimality of dual method).
We can exchange the spaces X1 and M1 with X2 and M2 respectively, and
consider the quasi-optimality constant q∗M related to the dual Galerkin solu-
tion and defined as the smallest constant q∗ ≥ 0 such that

‖φ− ΦM‖2 ≤ q∗ inf
η∈M2

‖φ− η‖2 .

Assuming X2 to be a Hilbert space, we derive as above that q∗M = ‖R∗M‖L(X2)

and recalling (1.5) we have that

max

{
cb
cM

,
C]
M1×X2

C]
M

}
≤ q∗M ≤ min

{
Cb
cM

,
C]
M1×X2

c]M

}
,

where C]
M1×X2

is defined as C]
X1×M2

of (1.17) and C]
M and c]M are as in (1.17)

with (M1, ‖·‖]) in place of (M2, ‖·‖]), and (X2, ‖·‖2) in place of (X1, ‖·‖1).
We notice that q∗M and qM share the bounds

cb
cM
≤ qM , q

∗
M ≤

Cb
cM

.

1.3 The non–conforming case

In the previous section M1 ⊂ X1, M2 ⊂ X2 and the exact solution satisfies

b(u, ϕ) = `(ϕ), ∀ϕ ∈M2. (1.19)

In this section we analyse the case where M1 * X1 or M2 * X2 or the
discrete solution is defined via a bilinear form bM and a linear functional `M
possibly different from b and `. Inserting the exact solution u in the discrete
problem may not give an equality as in (1.19).

We endow M1 and M2 with ‖·‖1,∼ and ‖·‖2,∼ respectively, which may
differ from ‖·‖1 and ‖·‖2. We assume that bM : X1 + M1 ×M2 → R is a
continuous bilinear form with respect to ‖·‖1,∼ and ‖·‖2,∼, with constant C∼
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and that it satisfies the inf-sup condition on (M1, ‖·‖1,∼)× (M2, ‖·‖2,∼), with
constant cM . Given `M ∈M∗

2 , the discrete problem reads

find UM ∈M1 such that, ∀ϕ ∈M2, bM(UM , ϕ) = `M(ϕ).

In order to estimate the error ‖u− UM‖1,∼ we follow the strategy in [11, Sect.
10.1]. We consider the Ritz-projection RM : X1 +M1 →M1 such that

∀ϕ ∈M2 bM(RMv, ϕ) = bM(v, ϕ),

and we bound the error in terms of the deviation of UM from RMu:

‖u− UM‖1,∼ ≤ ‖u−RMu‖1,∼ + ‖RMu− UM‖1,∼ .

We assume that (X1 +M1, ‖·‖1,∼) is a Hilbert space, applying the results of
the previous section we get

‖u−RMu‖1,∼ ≤
C∼
cM

inf
v∈M1

‖u− v‖1,∼ .

Regarding ‖RMu− UM‖1,∼, we have

cM ‖RMu− UM‖1,∼ ≤ sup
ϕ∈M2

bM(RMu− UM , ϕ)

‖ϕ‖2,∼
≤ C∼ ‖RMu− UM‖1,∼ .

The term

sup
ϕ∈M2

bM(RMu− UM , ϕ)

‖ϕ‖2,∼
= sup

ϕ∈M2

bM(u, ϕ)− `M(ϕ)

‖ϕ‖2,∼

can be seen as a consistency error, due to the fact that the exact solution
does not satisfy the discrete problem. It measures implicitly the discrepancy
between b and bM and ` and `M . Therefore

‖u− UM‖1,∼ ≤
C∼
cM

inf
v∈M1

‖u− v‖1,∼ + c−1
M sup

ϕ∈M2

bM(u, ϕ)− `M(ϕ)

‖ϕ‖2,∼
.

We notice that the right-hand side is equivalent to the error, in fact

C∼
cM

inf
v∈M1

‖u− v‖1,∼ + c−1
M sup

ϕ∈M2

bM(u, ϕ)− `M(ϕ)

‖ϕ‖2,∼

≤ C∼
cM

(
‖u− UM‖1,∼ + ‖RMu− UM‖1,∼

)
≤ C∼
cM

(
C∼
cM

+ 2

)
‖u− UM‖1,∼ .



Chapter 2

Abstract Linear Parabolic
Problem

The purpose of this chapter is to recall the setting of abstract linear parabolic
problems, whose Petrov-Galerkin approximations we are interested in. In
order to apply the results of Chapter 1 we reformulate the problem by means
of a bilinear form in two different ways. The first one, called “standard”,
involves the time derivative of the exact solution, while in the second one,
called “natural”, the time derivative is shifted to the test function.

The chapter is organized as follows. In Section 2.1 we specify the nota-
tions and the common assumptions on the two bilinear formulations of the
problem. In Section 2.2 and 2.3 we present the standard and natural weak
formulation respectively. We recall the proof of well-posedness by means of
the inf-sup theory, whose structure is reproduced in the discrete framework,
and we provide bounds for the constants associated to the bilinear forms. In
Section 2.4 we recall some regularity results to motivate the assumptions for
the error estimates in Chapter 7.

2.1 Abstract parabolic problem

Parabolic initial boundary value problems are defined on a space-time cylin-
der Q = Ω× I, where Ω ⊂ Rn and I = (0, T ), T > 0 is a time interval. The
unknown function u can be interpreted as a time-dependent function with
values in a functional space. The problem can thus be rewritten as an initial
value problem that formally reads

u′ + Au = f in I, u(0) = w, (2.1)

where A is an elliptic operator acting on a Hilbert space V which also takes
into account the boundary conditions, f is a forcing term, and w is an initial

17
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value from a Hilbert space W . We specify below the assumptions on the
spaces V and W and the elliptic operator A.

We assume that (V, ‖·‖V ) and (W, ‖·‖W ) are two separable Hilbert spaces
such that

V ⊂ W ⊂ V ∗

forms a Hilbert triplet. More precisely, we assume that the embedding V ⊂
W is continuous and dense, view W ∗ as a subspace of V ∗, and identify W
and its dual W ∗ with the help of Riesz representation theorem. The scalar
product in W as well as the duality pairing of V ∗ × V is denoted by 〈·, ·〉.
The norm on V ∗ is indicated by ‖·‖V ∗ = sup‖v‖V =1 〈·, v〉.

We will use H-valued functions depending on time, where H is a Hilbert
space, e.g. H = V,W, V ∗. For the corresponding function spaces, see e.g. [28,
Sect. 5.9.2] for a brief review. In particular, we use the following ones over a
proper time interval J . Let Cr(J ;H), r ∈ N, denote the space of all functions
from J to H that are continuous, together with their classical derivatives up
to order r and let C∞0 (J ;H) denote the space of all functions in ∩r∈NCr(J ;H)
with compact support in J . Furthermore L2(J ;H) denotes the space of
functions of the form J → H that are measurable and square-integrable
with respect to the Bochner integral. With H1(J ;H) we denote the space of
all functions in L2(J ;H) whose distributional derivative is square-integrable.
Finally, we set H1(J ;V, V ∗) := {v ∈ L2(J ;V ) | v′ ∈ L2(J ;V ∗)}. If J = I,
we suppress the time interval and write, e.g., H1(V, V ∗) := H1(I;V, V ∗) for
short.

We assume that the elliptic operator A arises from a bilinear form a that
depends on time and is bounded and coercive in the following sense:

a(·; v, ϕ) is measurable in I for any v, ϕ ∈ V, (2.2a)

νa := inf
t∈I

inf
‖v‖V =1

a(t; v, v) > 0, (2.2b)

Ca := sup
t∈I

sup
‖v‖V =‖ϕ‖V =1

a(t; v, ϕ) <∞, (2.2c)

where inf and sup with respect to time are essential ones. Note that (2.2b)
and (2.2c) are equivalent to requiring that

∫
I
a(t, ·, ·) dt is a bilinear form on

L2(V ) with optimal coercivity and continuity constants νa and Ca, respec-
tively.

The operator A in (2.1) is of the form I → L(V, V ∗) and defined by the
requirement

〈A(t)v, ϕ〉 = a(t; v, ϕ),

for any t ∈ I. In the following lemma about the adjoint inverse A−∗(t) :=
[A(t)∗]−1 we suppress t for notational simplicity.
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Lemma 2.1 (Adjoint inverse of elliptic operator). If A arises from a bilinear
form a that is coercive and continuous on V with constants νa and Ca, then
the adjoint inverse exists and satisfies

C−1
a ‖`‖V ∗ ≤

∥∥A−∗`∥∥
V
≤ ν−1

a ‖`‖V ∗ and
〈
`, A−∗`

〉
≥ νa

∥∥A−∗`∥∥2

V
.

for any ` ∈ V ∗.

Proof. The Lax-Milgram Theorem implies that A is invertible and so its
(adjoint) inverse exists. Taking ψ = A−∗`, we obtain the first inequality

‖`‖V ∗ = ‖A∗ψ‖V ∗ = sup
‖ϕ‖V =1

a(ϕ, ψ) ≤ Ca
∥∥A−∗`∥∥

V

from the continuity of a. Its coercivity and the definition of A∗ give the third
inequality,

νa
∥∥A−∗`∥∥2

V
≤ a(A−∗`, A−∗`) =

〈
`, A−∗`

〉
,

which in turn implies the second one.

A typical example of a parabolic problem is

∂tu− div(A∇u) = f in Ω× (0, T )
u = 0 on ∂Ω× (0, T )

u(0) = u0 in Ω,
(2.3)

where A satisfies, for every x ∈ Ω, t ∈ (0, T ), and ξ ∈ Rn

λ|ξ|2 ≤ ξ ·A(x, t)ξ ≤ Λ|ξ|2,

with Λ ≥ λ > 0. Problem (2.3) fits into the above framework with V =
H1

0 (Ω), W = L2(Ω), and V ∗ = H−1(Ω).

2.2 Standard weak formulation

We recall the setting of the standard weak formulation, rewrite it in the form
(1.3), and provide bounds for the constants associated to the bilinear form.

Assume that V ⊂ W ⊂ V ∗, a and A are as in §2.1. The standard weak
formulation of the abstract initial value problem (2.1) reads

given f ∈ L2(V ∗) and w ∈ W, find u ∈ H1(V, V ∗) such that

u′ + Au = f in I, u(0) = w.
(2.4)

The differential equation should be interpreted in the sense of V ∗-valued dis-
tributions. The initial condition, which is formulated in an essential manner,
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is meaningful thanks to the embedding H1(V, V ∗) ⊂ C0(W ); see [28, Sect.
5.9.2, Thm. 3]. Problem (2.4) is well-posed; see, e.g. [28, Sect. 7.1.2] for a
proof by means of the Faedo-Galerkin method.

Throughout this section we set

X1 := H1(V, V ∗) with ‖v‖2
1 := ‖v(0)‖2

W +

∫
I

‖v‖2
V + ‖v′‖2

V ∗ , (2.5a)

X2 := {ϕ = (ϕ0, ϕ1) | ϕ0 ∈ W,ϕ1 ∈ L2(V )}

with ‖ϕ‖2
2 := ‖ϕ0‖2

W +

∫
I

‖ϕ1‖2
V ,

(2.5b)

b(v, ϕ) := 〈v(0), ϕ0〉+

∫
I

〈v′, ϕ1〉+ a(·; v, ϕ1) (2.5c)

and

`(ϕ) := 〈w,ϕ0〉+

∫
I

〈f, ϕ1〉 .

We refer to b as the standard bilinear form. With these definitions, (2.4)
is equivalent to (1.3). Note that the decoupling of differential equation and
initial condition in the test space reflects the essential nature of the latter.
The term ‖v(0)‖W in the definition of ‖·‖1 allows to avoid the use of the
embedding H1(V, V ∗) ⊂ C0(W ) when bounding the continuity constant Cb.
If it is omitted, there appears a dependence on T for small T in the following
results.

The following proposition investigates the properties of the bilinear form
b. Its proof of the inf-sup condition for b contains elements from Ern and
Guermond [27, Thm. 6.6] and Stevenson and Schwab [38, Thm. 5.1]. To-
gether with the abstract theory of Chapter 1, Proposition 2.2 provides not
only an alternative approach to existence and uniqueness for (2.4) but also
serves as a guideline for analysing Galerkin approximation in space.

Proposition 2.2 (Standard bilinear form). The bilinear form b in (2.5) is
continuous and satisfies the inf-sup condition with

Cb ≤
√

2 max{1, Ca}, cb ≥
min{νa, C−1

a , νaC
−1
a }

2
.

Proof. In order to verify the first bound, let v ∈ X1 and ϕ = (ϕ0, ϕ1) ∈ X2

and derive

b(v, ϕ) ≤ ‖v(0)‖W ‖ϕ0‖W +

∫
I

(
‖v′‖V ∗ + Ca ‖v‖V

)
‖ϕ1‖V

≤
(
‖v(0)‖2

W + 2

∫
I

‖v′‖2
V ∗ + C2

a ‖v‖
2
V

)1/2(
‖ϕ0‖2

W +

∫
I

‖ϕ1‖2
V

)1/2

≤
√

2 max{1, Ca} ‖v‖1 ‖ϕ‖2 .
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Next, we verify the second bound, which implies the inf-sup condition
(1.4a). Given v ∈ X1 \ {0}, we choose

ϕ0 = 2v(0) and ϕ1(t) = v(t) + A−∗(t)v′(t), t ∈ I.

Using the identities a(·; v, A−∗v′) = 〈v′, v〉 and 2
∫
I
〈v′, v〉 = ‖v(T )‖2

W −
‖v(0)‖2

W , coercivity (2.2b) of the elliptic bilinear form and Lemma 2.1, we
derive

b(v, ϕ) = ‖v(0)‖2
W +

∫
I

〈
v′, A−∗v′

〉
+ a(·; v, v) + ‖v(T )‖2

W

≥ min{1, νa}
(
‖v(0)‖2

W +

∫
I

∥∥A−∗v′∥∥2

V
+ ‖v‖2

V

) (2.6)

and

‖v(0)‖2
W +

∫
I

∥∥A−∗v′∥∥2

V
+ ‖v‖2

V ≥ min{1, C−2
a } ‖v‖

2
1 . (2.7)

On the other hand, using again Lemma 2.1, we obtain

‖ϕ‖2
2 ≤ 4

(
‖v(0)‖2

W +

∫
I

‖v‖2
V +

∥∥A−∗v′∥∥2

V

)
. (2.8)

Combining (2.6) and (2.7) yields b(v, ϕ) > 0 and so ϕ 6= 0. Using first (2.6)
and (2.8) and then (2.7) we arrive at

b(v, ϕ)

‖ϕ‖2

≥ min{νa, C−1
a , νaC

−1
a }

2
‖v‖1

which implies the second claimed bound.
Finally, we verify the non-degeneracy condition (1.4b). To this end, we

assume that ϕ satisfies
∀v ∈ X1 b(v, ϕ) = 0 (2.9)

and observe∫
I

〈v′, ϕ1〉 = −
∫
I

a(·; v, ϕ1) ≤ Ca ‖v‖L2(V ) ‖ϕ1‖L2(V ) .

for all v ∈ C∞0 (V ). Since C∞0 (V ) is dense in L2(V ) and the spaces L2(V )∗ and
L2(V ∗) are isomorphic, we obtain the additional regularity ϕ1 ∈ H1(V ∗). We
therefore can integrate by parts in (2.9) and see that ϕ1 ∈ H1(V, V ∗) solves
the backward-in-time problem

∀v ∈ X1 〈v(T ), ϕ1(T )〉 − 〈v(0), ϕ1(0)− ϕ0〉+

∫
I

〈−ϕ′1, v〉+ a(·; v, ϕ1) = 0.
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We derive −ϕ′1 + A∗ϕ1 = 0, ϕ1(T ) = 0 and ϕ1(0) = ϕ0 by testing with
appropriate functions v ∈ X1. Using these facts for v = ϕ1 yields

1

2
‖ϕ0‖2

W + νa ‖ϕ1‖2
L2(V ) ≤ 0

and we conclude ϕ = 0.

2.3 Natural weak formulation

In order to obtain a solution notion that requires less regularity in time, one
may integrate by parts the terms with the time derivative, assuming the test
function to be more regular. There is essentially an exchange between trial
and test space, which loses its two-components structure. This entails that
the initial condition is formulated in a natural way.

Assume that V ⊂ W ⊂ V ∗, a and A are as in Section 2.1. In their terms
the natural weak formulation may be written as:

given ` ∈ {ϕ ∈ H1(V, V ∗) : ϕ(T ) = 0}∗ find u ∈ L2(V ) such that

∀ϕ ∈ H1(V, V ∗) with ϕ(T ) = 0,

∫
I

−〈ϕ′, u〉+ 〈Au, ϕ〉 = `(ϕ).
(2.10)

We could choose ` of the form

`(ϕ) := 〈w,ϕ(0)〉+

∫
I

〈f, ϕ〉 , (2.11)

where f ∈ L2(V ∗) and w ∈ W . In this case the solution of Problem (2.4)
also verifies (2.10). Throughout this section we set

X1 := L2(V ) with ‖v‖2
1 :=

∫
I

‖v‖2
V ,

X2 := {ϕ ∈ L2(V ) | ϕ′ ∈ L2(V ′), ϕ(T ) = 0}

with ‖ϕ‖2
2 :=

∫
I

‖ϕ‖2
V + ‖ϕ′‖2

V ∗ ,

b(v, ϕ) :=

∫
I

−〈ϕ′, v〉+ a(·; v, ϕ). (2.12)

With these definitions, (2.10) is equivalent to (1.3). The following proposition
verifies the inf-sup condition for b, and shows that Problem (2.10) is well-
posed. In the case ` is as in (2.11) its unique solution coincides with the one
of Problem (2.4) and belongs to H1(V, V ∗).
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Proposition 2.3 (Natural bilinear form). The bilinear form b in (2.12) is
continuous and satisfies the inf-sup condition (1.4) with

Cb ≤
√

2 max{1, Ca}, cb ≥
νa√

2
min{1, C−1

a }. (2.13)

Proof. The proof follows the same lines as the one of Proposition 2.2. The
main difference concerns the second bound, where we prove the symmetric
variant of (1.4a). For every ϕ ∈ X2 we take as test function v = ϕ− A−1ϕ′,
and we exploit Lemma 2.1 with A∗ in place of A.

Remark 2.4 (Duality). The similarities between Propositions 2.2 and 2.3
are not a coincidence. In fact, Problem (2.10) and the dual problem of (2.4)
with equal right-hand-side ` ∈ H1(V, V ∗)∗ are strictly related. If we apply
an affine transformation in time, and define û := u(T − ·), from (2.10) we
have that û satisfies, for every v ∈ H1(V, V ∗) with v(0) = 0,∫

I

〈v′, û〉+ 〈A∗(T − ·)v, û〉 = `(v). (2.14)

On the other hand, the solution (φ0, φ1) of the aforementioned dual problem
satisfies, for every v ∈ H1(V, V ∗) with v(0) = 0,∫

I

〈v′, φ1〉+ 〈Av, φ1〉 = `(v),

that is (2.14) with A in place of A∗(T − ·).

2.4 Regularity results

We recall some regularity results for the standard formulation. For the rest
of this section, let u be the solution of (2.4).

We start with temporal regularity. We set D(A) := {v ∈ V, Av ∈ W}
and assume u0 ∈ D(A(0)), f ∈ H1(V ∗) ∩ L2(V ) and A ∈ C1(L(V, V ∗)).
Then, see [36, Sect. 11.1.4], it holds

u′ ∈ H1(V ∗) ∩ L2(V ).

Concerning spatial regularity, we assume that A is independent of time and
symmetric, that is 〈Au, v〉 = 〈Av, u〉 for every u, v ∈ V . Moreover assume
that the injection of V in W is compact, u0 ∈ V and f ∈ L2(W ). Then, see
[40, Ch. II, Thm. 3.3], it holds

u ∈ L2(D(A)) ∩ C0(V ), and u′ ∈ L2(W ).
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For higher regularity, assume that Ω ⊂ Rd is a bounded domain, V =
H1

0 (Ω), W = L2(Ω), V ∗ = H−1(Ω) and A is of the form

Au = − div(A∇u)

with A = (aij(x))di,j=1. Assume that ∂Ω is C2m+2, aij ∈ C2m+1(Ω̄), u0 ∈
H2m+1(Ω) ∩H1

0 (Ω), and

dkf

dtk
∈ L2(H2m−2k), k = 0, . . . ,m.

Assume also that the following compatibility conditions hold

g1 := f(0)− Au0 ∈ H1
0 (Ω), . . . , gm :=

dm−1f

dtm−1
(0)− Agm−1 ∈ H1

0 (Ω).

Then, see [28, Sect. 7.1, Thm. 6], it holds

dku

dtk
∈ L2(H2m+2−2k), k = 0, . . . ,m+ 1.



Chapter 3

The Role of the L2-projection in
the Spatial Semidiscretization

Galerkin finite element methods are widely used for the numerical solution
of parabolic problems, see the monograph [41] of Thomée for an overview of
the corresponding error bounds. Remarkably, the derivation of most a priori
error bounds for linear parabolic problems differs from those for linear elliptic
problems: a quasi-optimality (or near best) result like Céa’s Lemma is not
invoked.

Douglas and Dupont [21] recognized this difference in 1970, and derived
a quasi-optimality result for the approximation in space in a norm involving
a time derivative of order 1/2, assuming that the initial error vanishes. This
approach has been generalized by Baiocchi and Brezzi [3] to fractions around
1/2 and by Tomarelli [42] also to general initial values.

Other three results, that we are aware of, concern quasi-optimality for the
approximation in space in simpler norms, which are related to the standard
and natural weak formulations of parabolic problems recalled in Chapter 2.
However, none of these results perfectly mimics the elliptic case. Dupont [22]
derived quasi-optimality in a norm close to the one of H1(H−1)∩L2(H1), but
that depends on the discretization. The other two results, [13, 30] require
that the L2-projection is H1-stable. With this assumption, Hackbusch [30]
in particular established stability in L2(H1), while Chrysafinos and Hou [13]
showed quasi-optimality in H1(H−1) ∩ L2(H1).

The purpose of this chapter is to clarify the role of this hypothesis, provid-
ing an approach to quasi-optimality by means of the inf-sup theory, recalled
in Chapter 1. In particular we re-establishes the last three results, show
that they are interrelated, and that the H1-stability of the L2-projection in
[30, 13] is necessary.

The chapter is organized as follows. Section 3.1 concerns conforming di-
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cretizations of Hilbert triplets and the relationship between the L2-projection
and the norms on the dual discrete space. In Sections 3.2 and 3.3 we anal-
yse Galerkin approximations in the L2(H1) ∩ H1(H−1)- and L2(H1)-norm
respectively. In other words, we apply the Petrov-Galerkin method of Sec-
tion 1.1 to the standard and natural weak formulation respectively. In both
cases we prove that the H1-stability of the L2-projection is necessary for
quasi-optimality.

3.1 Conforming discretization of Hilbert tri-

plets

Let V ⊂ W ⊂ V ∗ be a Hilbert triplet like in §2.1 and S a finite-dimensional,
non-trivial, and proper subspace of V . Observe that S is also a subspace of
W and thus, with the identification S∗ = S, also of V ∗.

As a subspace of V or W , we equip S with the norm ‖·‖V or ‖·‖W ,
respectively. As a subspace of V ∗, the situation is less clear. In fact, we may
equip S∗ = S with

‖s‖V ∗ = sup
‖ϕ‖V =1

〈s, ϕ〉 or ‖s‖S∗ := sup
ϕ∈S:‖ϕ‖V =1

〈s, ϕ〉 . (3.1)

The two alternatives give precedence to one of the following two properties
of S = S∗: S is a subset of V ∗ and S∗ is a dual space of (S, ‖·‖V ). In what
follows we show that parabolic quasi-optimality requires that the two norms
in (3.1) are equivalent. In view of S ⊂ V , we immediately see that

∀s ∈ S ‖s‖S∗ ≤ ‖s‖V ∗ .

Since S is finite-dimensional, also the other direction is true up to a constant,
which may not be uniform for a family of subspaces.

In order to reveal the nature of the critical equivalence constant

cS := sup
s∈S∗

‖s‖V ∗
‖s‖S∗

,

we observe that the duality pairing arising in both norms of (3.1) is closely
related with the scalar product of W in the given setting. We therefore
associated with S its W -orthogonal projection and investigate its relationship
with the spaces of the Hilbert triplet and dual of S.

The W -orthogonal projection onto S, or W -projection for short, is defined
as follows:

∀w ∈ W,ϕ ∈ S PSw ∈ S and 〈PSw,ϕ〉 = 〈w,ϕ〉 . (3.2)
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This linear projection acting on W has the following properties: it is sym-
metric and there hold ‖PS‖L(W ) = 1 = ‖I − PS‖L(W ), where I is the identity
operator. It is also a linear projection acting on V thanks to S ⊂ V . The
following lemma, which essentially can be found also in Chrysafinos and Hou
[13], shows that PS may be viewed also as a linear projection acting on V ∗.
For the sake of completeness, we provide its proof.

Lemma 3.1 (W -projection in V ∗). The linear projection PS extends to V ∗,
maintaining its symmetry in that 〈`1, PS`2〉 = 〈`2, PS`1〉 for all `1, `2 ∈ V ∗.

Proof. First note that, thanks to S ⊂ V , the right-hand side of (3.2) is
defined also if w ∈ W is replaced by some functional ` ∈ V ∗. In this case,
given some basis {ej}nj=1 of S and assuming PS` =

∑n
j=1 αjej, definition (3.2)

is equivalent to the linear system

n∑
j=1

〈ei, ej〉αj = 〈`, ei〉 , i = 1, . . . , n.

Since its matrix is symmetric and positive definite, the latter admits a unique
solution and PS` is well-defined for any ` ∈ V ∗.
If `1, `2 ∈ V ∗, the symmetry of the scalar product in W yields

〈`1, PS`2〉 = 〈PS`1, PS`2〉 = 〈PS`2, PS`1〉 = 〈`2, PS`1〉 .

The next proposition shows that the critical equivalence constant for the
norms in (3.1) is intimately related to PS.

Proposition 3.2 (W -projection and norm equivalence on discrete dual).
The equivalence constant cS can be expressed in terms of the projection PS
as follows:

cS = ‖PS‖L(V ∗) = ‖I − PS‖L(V ∗) = ‖I − PS‖L(V ) = ‖PS‖L(V ) .

Proof. Since PS is a linear projection on the nontrivial proper subspace S of
V and V ∗, Lemma 1.1 implies the second and last inequality. We conclude
by showing

‖PS‖L(V ∗) = ‖PS‖L(V ) and ‖PS‖L(V ∗) ≤ cS ≤ ‖PS‖L(V ) .

The equality readily follows from

∀ϕ ∈ V, ` ∈ V ∗ 〈PS`, ϕ〉 = 〈`, PSϕ〉 ,
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which is a consequence of the symmetry statement in Lemma 3.1. To show
the first inequality, let ` ∈ V ∗ and observe

‖PS`‖V ∗ ≤ cS ‖PS`‖S∗ = cS ‖`‖S∗ ≤ cS ‖`‖V ∗ .

Finally, the second inequality follows from

‖s‖V ∗ = sup
‖ϕ‖V =1

〈s, ϕ〉 = sup
‖ϕ‖V =1

〈s, PSϕ〉 ≤ ‖PS‖L(V ) ‖s‖S∗

for every s ∈ S.

3.2 Galerkin approximation

in L2(H1)∩ H1(H−1)

We recall the Galerkin approximation of the standard weak formulation and
derive a discrete inf-sup condition by mimicking the proof of Proposition 2.2.
This allows to establish that the Galerkin approximation is well-defined and
that it satisfies a symmetric error estimate. Throughout this section we set
X1 := H1(V, V ∗), X2 := W × L2(V ) with norms

‖v‖2
1 = ‖v(0)‖2

W +

∫ T

0

‖v′‖2
V ∗ + ‖v‖2

V , ‖ϕ‖2
2 = ‖ϕ0‖2

W +

∫ T

0

‖ϕ1‖2
V .

Moreover u0 ∈ W , f ∈ L2(V ), and the bilinear form b : X1 × X2 → R and
` ∈ X∗2 are given by

b(v, ϕ) := 〈v(0), ϕ0〉+

∫
I

〈v′, ϕ1〉+ a(·; v, ϕ1),

`(ϕ) := 〈w,ϕ0〉+

∫
I

〈f, ϕ1〉 ,

as in Section 2.2.
Let S ⊂ V be a finite-dimensional subspace and recall that S is also a

subspace of W and V ∗ and that it is identified with its dual. The Galerkin
approximation of (2.4) is

given f ∈ L2(V ∗) and s ∈ S, find US ∈ H1(S) such that

∀t ∈ I, ϕ ∈ S, 〈U ′S(t), ϕ〉+ a(t;US(t), ϕ) = 〈f(t), ϕ〉 , U(0) = s;
(3.3)

see also Thomée [41, Ch. 1]. Of course s ∈ S should be an approximation of
the initial value w ∈ W .
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We set

M := M1 ×M2 with M1 := H1(S), M2 := S × L2(S) (3.4)

and observe Mi ⊂ Xi for i = 1, 2, where we use that S is also a subset of
W and V ∗. With these definitions, (3.3) is equivalent to (1.8) if and only if
s = PSw, where PS is the W -orthogonal projection onto S; see also (3.2).
For the rest of this section we assume (3.4) and s = PSw.

In order to establish the crucial inf-sup condition for M , one may try to
proceed as in the corresponding part of the proof of Proposition 2.2. However
for v ∈M1, the function A−∗v′ may not be in M2. To remedy, we propose to
replace A by its discrete counterpart AS : I → L(S, S∗) defined by

〈AS(t)v, ϕ〉 = a(t; v, ϕ).

Unfortunately, this replacement comes at the price that the set M1 has to be
equipped with the S-dependent norm

‖v‖2
1;S := ‖v(0)‖2

W +

∫
I

‖v‖2
V + ‖v′‖2

S∗ (3.5)

and that the argument provides a lower bound for

c̃M := inf
v∈M1

sup
ϕ∈M2

b(v, ϕ)

‖v‖1;S ‖ϕ‖2

,

a variant of the discrete inf-sup constant cM .

Proposition 3.3 (Standard bilinear form and Galerkin approximation). If
we equip, respectively, M1 and M2 with ‖·‖1;S and ‖·‖2, the bilinear form b
in (2.5) is continuous and satisfies the inf-sup condition on M1 ×M2 with

C̃M ≤
√

2 max{1, Ca}, c̃M ≥
min{νa, C−1

a , νaC
−1
a }

2
.

Proof. As the proof mimics the one of Proposition 2.2, we comment only on
the differences after having replaced, respectively, X1, X2, A and ‖·‖1 by M1,
M2, AS and ‖·‖1;S.

When verifying the continuity, the replacement of the norm ‖·‖V ∗ by the
weaker one ‖·‖S∗ is compensated by the fact that the test function comes
from the semidiscrete space M2. In order to derive the lower bound for c̃M ,
we choose

ϕ0 = 2v(0) and ϕ1(t) = v(t) + A−∗S (t)v′(t), t ∈ I,
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and exploit

C−1
a ‖`‖S∗ ≤

∥∥A−∗S (t)`
∥∥
V
≤ ν−1

a ‖`‖S∗ and
〈
`, A−∗S (t)`

〉
≥ νa

∥∥A−∗S (t)`
∥∥2

V
,

which follow by applying Lemma 2.1 with M1, M2 and AS in place of X1, X2

and A. Verifying the non-degeneracy goes along the same lines.

Remark 3.4 (Relation between A and AS). The replacement of A by AS may
be seen also in the following way: we replace A−∗v′ ∈ X2 by an approximation
in M2. In view of the norm of X2, another natural approximation appears to
be the pointwise Ritz projection RS with respect to the elliptic bilinear form
a. These two replacements actually coincide. In fact, there holds

∀t ∈ I, ` ∈ V ∗, ϕ ∈ S a(t;AS(t)−1`|S, ϕ) = 〈`, ϕ〉 = a(t;A(t)−1`, ϕ)

= a(t;RSA(t)−1`, ϕ)

and so A−1
S ` = RSA

−1`|S for all ` ∈ V ∗.

Of course, Proposition 3.3, together with the abstract theory of Chapter 1,
provides an alternative proof that the Galerkin approximation with s = PSw
is well-defined for any f ∈ L2(V ∗) and w ∈ W . It also provides an error
estimate, with the help of Remark 1.4. In fact, the S-dependent norm ‖·‖1;S

is defined also on X1 and so can be used to measure the error. Noteworthy,
the bilinear b is not continuous when X1 and X2 are equipped with ‖·‖1;S and
‖·‖2: consider v(t) = αtv0, t ∈ I, where v0 ⊥ S, for α → ∞. The resulting
error estimate corresponds to [22, Thm. 2.1] by Dupont.

Corollary 3.5 (Quasi-optimality in the S-dependent norm). The Galerkin
approximation (3.3) with s = PSw satisfies the following symmetric error
estimate with respect to the S-dependent norm (3.5):

‖u− UM‖1;S ≤ 2
√

2 max
{
ν−1
a , C2

a , ν
−1
a C2

a

}
inf
v∈M1

‖u− v‖1;S (3.6)

Proof. In view of Proposition 3.3, it remains to observe

C̃X1×M2 = sup
v∈X1

sup
ϕ∈M2

b(v, ϕ)

‖v‖1,S ‖ϕ‖2

≤
√

2 max{1, Ca}

and to apply Corollary 1.3.
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3.2.1 Quasi-optimality and L2-projection

The error notion in Corollary 3.5 depends on the discretization through the
space S. This dependence may be troublesome, for example when comparing
errors corresponding to different meshes. We now aim at a result without
this disadvantage, by replacing the norm ‖·‖1;S by ‖·‖1.

Proposition 3.6 (Discrete inf-sup constant). The discrete inf-sup constant
cM of the Galerkin method (3.4) is encased in terms of the V -stability of the
W -projection:

c̃M
‖PS‖L(V )

≤ cM ≤
C̃M

‖PS‖L(V )

.

Proof. Elementary inequalities yield

inf
v∈M1

‖v‖1,S

‖v‖1

c̃M ≤ cM ≤ inf
v∈M1

‖v‖1,S

‖v‖1

C̃M .

We then prove

cS = sup
v∈M1

‖v‖1

‖v‖1,S

=

(
inf
v∈M1

‖v‖1,S

‖v‖1

)−1

. (3.7)

In fact, since cS ≥ 1, we easily derive ‖v‖1 ≤ cS‖v‖1,S. On the other hand,

choosing vn(t) = φ sin(2πnt
T

), with φ ∈ S, we have

‖vn‖2
1

‖vn‖2
1,S

=

1
2
T
(
‖φ‖2

V + 4π2n2

T 2 ‖φ‖2
V ∗

)
1
2
T
(
‖φ‖2

V + 4π2n2

T 2 ‖φ‖2
S∗

) .
Taking the supremum over n ∈ N we get

sup
v∈M1

‖v‖1

‖v‖1,S

≥ sup
φ∈S

‖φ‖V ∗
‖φ‖S∗

= cS.

Combining this with Proposition 3.2 gives the claimed bounds.

Taking advantage that c̃M and C̃M can be bounded as in Proposition 3.3,
we derive the following theorem.

Theorem 3.7 (Quasi-optimality). The Galerkin method (3.4) is quasi-opti-
mal with

κ−1
a ‖PS‖L(V ) ≤ qM ≤ κa ‖PS‖L(V )

with κa := 2
√

2 max{ν−1
a , C2

a , C
2
aν
−1
a }.
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Proof. We insert the bounds of Propositions 2.2, 3.3 and 3.6 in Corollary 1.3

cb
cM
≤ qM ≤

Cb
cM

.

The upper bound in Theorem 3.7, which corresponds to [13, Thm. 3.4]
shows that the V -stability of the W -projection is sufficient for quasi-opti-
mality. The lower bound reveals that this stability is not just a convenient
assumption, but also necessary.

3.3 Galerkin approximation in L2(H1)

We consider the Galerkin approximation of the natural weak formulation, and
derive, in a similar fashion as in Proposition 2.3, a discrete inf-sup constant.
For the rest of this section, let X1 := L2(V ), X2 := {ϕ ∈ H1(V, V ∗) : ϕ(T ) =
0}, with norms

‖v‖2
1 =

∫ T

0

‖v‖2
V , ‖ϕ‖2

2 =

∫ T

0

‖ϕ′‖2
V ∗ + ‖ϕ‖2

V .

The bilinear form b : X1 ×X2 → R

b(v, ϕ) :=

∫
I

−〈ϕ′, v〉+ a(·; v, ϕ),

and the linear functional ` ∈ X∗2 are as in Section 2.3.
Let S ⊂ V be a finite-dimensional subspace. We set

M1 := L2(S) ⊂ X1, M2 := {ϕ ∈ H1(S) : ϕ(T ) = 0} ⊂ X2. (3.8)

The results in Section 3.2 suggest to endow M2 with the S-dependent norm

‖ϕ‖2
2;S :=

∫
I

‖ϕ‖2
V + ‖ϕ′‖2

S∗ ,

while M1 inherits the X1-norm.
With these choices the Galerkin method (3.8) for the natural weak for-

mulation is well-defined:

Proposition 3.8 (Natural bilinear form and Galerkin approximation).
The bilinear form in (2.12) is continuous and satisfies the inf-sup condition
on (M1, ‖·‖1)× (M2, ‖·‖2;S) with

CM ≤
√

2 max{1, Ca}, cM ≥
νa√

2
min{1, C−1

a }.

Proof. The proof mimics the one of Proposition 2.3, in the same way as the
proof of Proposition 3.3 follows the one of Proposition 2.2. In particular the
test function used to verify the bound for cM is v = ϕ− A−1

S ϕ′.
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3.3.1 Quasi-optimality and L2-projection

We recall from Chapter 1 that stability is equivalent to quasi-optimality with
qM = ‖RM‖L(X1). In [30, Thm. 3.4] Hackbusch proved some error estimates

for the Galerkin approximation in space, assuming the L2-projection to be
H1-stable. With a particular choice of the involved parameters, the result
corresponds to the L2(H1)-stability of the Galerkin solution. For convenience
we recall the proof in the case of interest.

Theorem 3.9. The Galerkin method (3.8) is quasi-optimal, satisfying the
following estimate

‖u− UM‖1 ≤ ‖PS‖L(V )

(
1 +

Ca
νa

)
inf
v∈X1

‖u− v‖1 .

Proof. In view of qM = ‖RM‖L(X1), our aim is to find a stability estimate for
‖UM‖1. We first exploit the triangle inequality to get

‖UM‖1 ≤ ‖UM − PSu‖1 + ‖PSu‖1 . (3.9)

Secondly, we estimate ‖UM − PSu‖1 in terms of ‖u− PSu‖1, which we finally
bound thanks to the stability of PS. Let us set η := UM − PSu. From the
definition of PS and UM , we have, for every ϕ ∈M2,∫

I

−〈ϕ′, η〉 =

∫
I

−〈ϕ′, UM − u〉 =

∫
I

〈A(u− UM), ϕ〉 . (3.10)

This implies that η ∈ H1(S). Integrating by parts in (3.10) gives, for every
ϕ ∈ C∞0 (S), ∫

I

〈η′, ϕ〉+ 〈Aη, ϕ〉 =

∫
I

〈A(u− PSu), ϕ〉 , (3.11)

which, by density, holds for every ϕ ∈ L2(S). Testing (3.10) with ϕ =
(T − t)φ, φ ∈ S, integrating by parts and subtracting (3.11), gives η(0) = 0,
and finally testing (3.11) with ϕ = η, we get

1

2
‖η(T )‖2

W + νa ‖η‖2
1 ≤ Ca ‖u− PSu‖1 ‖η‖1 ,

from which we deduce

‖η‖1 ≤
Ca
νa
‖u− PSu‖1 .

Inserting this result in (3.9) we get

‖U‖1 ≤
Ca
νa
‖I − PS‖L(V ) ‖u‖1 + ‖PS‖L(V ) ‖u‖1 ≤ ‖PS‖L(V )

(
1 +

Ca
νa

)
‖u‖1 ,

which is equivalent to the thesis.
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The following theorem reveals that the stability of PS is also necessary
for the quasi-optimality of the Galerkin method (3.8).

Theorem 3.10. The Galerkin method (3.8) is quasi-optimal with

νa min{1, C−2
a }

2
‖PS‖L(V ) ≤ qM ≤

2 max{C2
a , 1}

νa
‖PS‖L(V ) . (3.12)

Proof. We resort to Corollary 1.3, where we take ‖·‖] = ‖·‖2;S. We start

by bounding C]
X1×M2

from below and from above. To derive a lower bound

for C]
X1×M2

, we proceed in a similar way as in the proof of Proposition 2.3.
Thanks also to (3.7) we obtain

C]
X1×M2

= sup
ϕ∈M2

sup
v∈X1

b(v, ϕ)

‖ϕ‖2;S ‖v‖1

≥ sup
ϕ∈M2

b(ϕ− A−1ϕ′, ϕ)

‖ϕ‖2;S ‖ϕ− A−1ϕ′‖1

≥ νa√
2

min{1, C−1
a } sup

ϕ∈M2

‖ϕ‖2

‖ϕ‖2;S

=
νa√

2
min{1, C−1

a }cS.

Concerning the upper bound we recall the bound for Cb in Proposition 2.3
and we get

C]
X1×M2

= sup
ϕ∈M2

sup
v∈X1

b(v, ϕ)

‖ϕ‖2;S ‖v‖1

≤

(
sup
ϕ∈M2

‖ϕ‖2

‖ϕ‖2;S

)(
sup
ϕ∈M2

sup
v∈X1

b(v, ϕ)

‖ϕ‖2 ‖v‖1

)
≤ CbcS ≤

√
2 max{1, Ca}cS.

To complete the proof we combine these bounds with Propositions 3.2 and
3.8.

Remark 3.11 (Duality). Theorem 3.10 can essentially be deduced from
Theorem 3.7. To explain this, we consider the Galerkin solution (Φ0

M ,Φ
1
M)

associated to the dual method of (3.4) for a problem with right-hand side
` ∈ H1(V, V ∗)∗, defined by:

∀v ∈ H1(S)
〈
v(0),Φ0

M

〉
+

∫
I

〈
v′,Φ1

M

〉
+
〈
Av,Φ1

M

〉
= `(v).

The relationship between the Galerkin solution UM of method (3.8) and
(Φ0

M ,Φ
1
M) mirrors the one in Remark 2.4 between the corresponding exact

solutions u and (φ0, φ1). If we set ÛM := UM(T − ·) and û := u(T − ·), we
have, for every v ∈ H1(S) with v(0) = 0,∫

I

〈v′, ÛM − û〉+ 〈A∗(T − ·)v, ÛM − û〉 = 0 and (3.13a)∫
I

〈
v′,Φ1

M − φ1

〉
+
〈
Av,Φ1

M − φ1

〉
= 0. (3.13b)
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From Remark 1.5 and Theorem 3.7 we deduce that the quasi-optimality
constant q∗M of the dual method of (3.4) satisfies q∗M ≈ ‖PS‖L(V ). This

link between q∗M and ‖PS‖L(V ) arises from the second component φ1 − Φ1
M

of the error, the one related to the differential equation. In view of (3.13)
also û− ÛM behaves in the same manner and therefore the quasi-optimality
constant of method (3.8) also satisfies qM ≈ ‖PS‖L(V ). This also illustrates
the link between the results by Hackbusch [30] and Chrysafinos and Hou [13].





Chapter 4

Discretization in time with the
Backward Euler Method

In Chapter 3 we study one aspect of the approximation of parabolic problems,
namely Galerkin approximations in space. In this chapter we analyse only
the time discretization. We focus on one particular method, the implicit
or backward Euler method. We adopt the viewpoint that the discrete trial
and test spaces are subsets of the continuous ones, but the bilinear form
that defines the discrete solution differs from the one that defines the exact
solution. We assess quasi-optimality within the framework of the standard
and natural weak formulations.

The chapter is organized as follows. Section 4.1 concerns the standard
formulation. Under the assumption that the time partition is locally quasi-
uniform, we prove that the error in a norm that mimics the H1(H−1) ∩
L2(H1)-norm is equivalent to the sum of the best errors with piecewise con-
stants for the exact solution and its time derivative. Section 4.2 concerns
the natural formulation. We observe lack of stability in the L2(H1)-norm.
Therefore a quasi-optimality result cannot hold, and we propose an abstract
error estimate in the spirit of Section 1.3. Moreover we consider a modifi-
cation of the right-hand side, which gives rise to a stable method. However,
since the error does not vanish whenever the best error does, the method is
still not quasi-optimal.

37
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4.1 Standard formulation

Assume that V ⊂ W ⊂ V ∗, a and A are as in Section 2.1, while, as in Section
2.2, X1 = H1(V, V ∗) and X2 = W × L2(V ) with norms

‖v‖2
1 = ‖v(0)‖2

W +

∫ T

0

‖v′‖2
V ∗ + ‖v‖2

V , ‖ϕ‖2
2 = ‖ϕ0‖2

W +

∫ T

0

‖ϕ1‖2
V .

Moreover u0 ∈ W , f ∈ L2(V ), and the bilinear form b : X1 × X2 → R and
` ∈ X∗2 are given by

b(v, ϕ) = 〈v(0), ϕ0〉+

∫ T

0

〈v′, ϕ1〉+ 〈Av, ϕ1〉 ,

`(ϕ) = 〈u0, ϕ0〉+

∫ T

0

〈f, ϕ1〉 .

Finally let N ∈ N and P be a partition

0 =: t0 < t1 < . . . < tN := T

of I = (0, T ) into N subintervals In := (tn−1, tn], with size τn := |In| =
tn − tn−1, and let τP := maxn τn. The discrete solution provided by the
backward Euler scheme is given by

U0 = u0 ∈ W
Un ∈ V such that, for every φ ∈ V, (4.1)〈

Un − Un−1

τn
, φ

〉
+ 〈AnUn, φ〉 = 〈Fn, φ〉 , n = 1, . . . , N,

where An and Fn are approximations of A|In and f |In , respectively. In order
to cast this scheme in the framework of Section 1.1, we consider the spaces

M1 : = S1,0(P , V ) := {v ∈ C0(V ), v|In ∈ P1(In, V ), n = 1, . . . , N}, (4.2a)

M̂2 : = S0,−1(P , V ) := {ϕ ∈ L2(V ), ϕ|In = ϕn ∈ V, n = 1, . . . , N}, (4.2b)

M2 : = W × M̂2, (4.2c)

where P1(J, V ) indicates the space of functions from the time interval J to
V that are piecewise polynomials of degree at most one. With this choice
M1 ⊂ X1 and M2 ⊂ X2. In order that it satisfies the inf-sup condition, we
define the bilinear form bM : M1 ×M2 → R as follows

bM(v, ϕ) := 〈v(0), ϕ0〉+
N∑
n=1

∫
In

〈v′, ϕn〉+
〈
AΠ̂v, ϕn

〉
, (4.3)
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where Π̂ : X1 → M̂2 is a suitable operator, such that, for every v ∈ P1(In, V ),

Π̂v|In = v(tn). (4.4)

The presence of the operator Π̂ introduces a non-consistency, in that, for
ϕ ∈M2, in general b(u, ϕ) 6= bM(u, ϕ). Given ψn : In → R

ψn(t) :=
6(t− tn−1)

τ 2
n

− 2

τn
,

the operator Π̂ can be defined by

Π̂v|In := Πnv :=

∫
In

vψn, v ∈ X1. (4.5)

Before examining the properties of Π̂, we recall the Poincaré and Friedrichs
inequality in one dimension with optimal constants. Assume that J = [a, b] ⊂
R is an interval and that v ∈ H1(J). Then, see [8, p. 105],∥∥∥∥v − 1

|J |

∫
J

v

∥∥∥∥
L2(J)

≤ b− a
π
‖v′‖L2(J) . (4.6)

Moreover, if v(a) = v(b) = 0,

‖v‖L2(J) ≤
b− a
π
‖v′‖L2(J) . (4.7)

The optimal constant 1/π corresponds to the square root of the inverse of the
first eigenvalue of the Laplacian over the interval J . If the function vanishes
in only one of the endpoints, namely v(a) = 0 or v(b) = 0, then (4.7) is
still valid with the price of a bigger constant. In fact, assume v(a) = 0 and
consider the symmetric extension ṽ of v to the interval J̃ = [a, 2b− a]. Since
ṽ ∈ H1(J̃) and v(a) = v(2b− a) = 0, we can apply (4.7) and get

‖v‖L2(J) =
1√
2
‖ṽ‖L2(J̃) ≤

2b− 2a√
2π
‖ṽ′‖L2(J̃) =

2

π
(b− a) ‖v′‖L2(J) . (4.8)

To see that the constant 2/π is optimal consider the function v ∈ H1(J)
such that v(x) = sin( π

2(b−a)
(x− a)), for x ∈ J . Similar considerations hold if

v(b) = 0.

We collect the properties of Π̂ in the following remark.

Remark 4.1 (Properties of Π̂). The operator Π̂ defined in (4.5) is linear and
satisfies the following properties, for n = 1, . . . , N :
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(i) for every v ∈ P(In, V ), Πnv = v(tn),

(ii) for every v ∈ L2(In, V ), ‖Πnv‖L2(In,V ) ≤ 2 ‖v‖L2(In,V ), and the constant
is optimal.

(iii) for every v ∈ H1(In, V
∗),

‖Πnv − v(tn)‖V ∗ ≤
4

π

√
τn inf

c∈V ∗
‖v′ − c‖L2(In,V ∗)

.

Proof. Property (i) follows from∫
In

ψn(t) dt =

∫ 1

0

6s− 2 ds = 1 and∫
In

ψn(t)
t− tn−1

τn
dt =

∫ 1

0

(6s− 2)s ds = 1.

Property (ii) follows from

‖Πnv‖V ≤
∫
In

‖v‖V |ψ
n| ≤ ‖v‖L2(In,V ) ‖ψ

n‖L2(In) = 2τ−1/2
n ‖v‖L2(In,V ) . (4.9)

To see that the constant is optimal, take φ ∈ V and v ∈ L2(In, V ) such that

∀t ∈ In, v(t) =
φ

τ
−3/8
n

(t− tn−1)−3/8.

We have that ‖Πnv‖L2(In,V ) =
√
τn ‖φ‖V , and

‖v‖2
L2(In,V ) =

∫
In

‖φ‖2
V

(t− tn−1)−3/4

τ
−3/4
n

dt = 4τn ‖φ‖2
V .

Concerning Property (iii), we take P ∈ P1(In, V
∗) such that P (tn−1) =

v(tn−1) and P (tn) = v(tn). Exploiting Property (i), (4.9) and the Friedrichs
inequality we get

‖Πnv − v(tn)‖V ∗ = ‖Πn(v − P )‖V ∗ ≤ 2τ−1/2
n ‖v − P‖L2(In,V ∗)

≤ 4

π
τ 1/2
n ‖v′ − P ′‖L2(In,V ∗)

.

Property (iii) follows from P ′ = 1
τn

∫
τn
v′.
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The superscript n, as well as the hat over Π, reminds that Πn applied to
an affine function gives its value at the right endpoint of the interval In.

Taking An : V → V ∗ such that, for every v ∈ V ,

Anv :=
1

τn

∫
In

A(t)v dt, (4.10)

and Fn := 1
τn

∫
In
f(t) dt, the solution UM ∈M1 such that, for every ϕ ∈M2,

bM(UM , ϕ) = 〈u0, ϕ0〉+
N∑
n=1

∫
In

〈f, ϕn〉 ,

is such that UM(tn) coincides with Un given by (4.1).

We endow M1 with

‖v‖2
1,P := ‖v(0)‖2

W +
N∑
n=1

∫
In

‖v′‖2
V ∗ + ‖Πnv‖2

V ,

while the space M2 inherits the ‖·‖2-norm. With these choices, the continuity
and inf-sup constants of bM are uniformly bounded.

Proposition 4.2. The bilinear form (4.3) is continuous and fulfills the inf-
sup condition (1.9) on (M1, ‖·‖1,P)× (M2, ‖·‖2) with

CM ≤
√

2 max{1, Ca}, cM ≥
min{νa, C−1

a , νaC
−1
a }

2
.

Moreover, it is also continuous on (X1, ‖·‖1,P)× (M2, ‖·‖2) and CX1×M2 sat-
isfies the same bound as CM .

Proof. The proof mimics the one of Proposition 2.2. Concerning the lower
bound for cM , we observe first that An satisfies the hypotheses of Lemma
2.1, so that

ϕ0 = 2v(0), ϕn = Πnv + A−∗n v′|In , n = 1, . . . , N

is a suitable test function. We remark that∫
In

〈AΠnv, ϕn〉 =

∫
In

〈AnΠnv, ϕn〉
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and that

‖v(0)‖2
W +

N∑
n=1

∫
In

2 〈v′, v(tn)〉

= ‖v(0)‖2
W +

N∑
n=1

2 ‖v(tn)‖2
W − 2 〈v(tn−1), v(tn)〉

=
N∑
n=1

‖v(tn)‖2
W − 2 〈v(tn−1), v(tn)〉+ ‖v(tn−1)‖2

W

=
N∑
n=1

‖v(tn)− v(tn−1)‖2
W ≥ 0.

To verify the non-degeneracy condition (1.9b), it suffices to take v(tn) = ϕn,
n = 1, . . . , N , and v(0) = 0. We have that

0 = ‖ϕ1‖2
W +

N∑
n=2

‖ϕn‖2
W − 〈ϕn−1, ϕn〉+

N∑
n=1

∫
In

〈Aϕn, ϕn〉

≥ νa

N∑
n=1

∫
In

‖ϕn‖2
V

implies ϕn = 0, for n = 1, . . . , N . By the density of V in W we also get that
ϕ0 = 0.

We are in the situation described in Section 1.3. In order to derive an
abstract error estimate, we need to bound the consistency error. We observe
that, for every ϕ ∈M2,

bM(u, ϕ)− `(ϕ) = bM(u, ϕ)− b(u, ϕ) =

∫ T

0

〈
A(Π̂u− u), ϕ

〉
≤ Ca

∥∥∥u− Π̂u
∥∥∥
L2(V )

‖ϕ‖L2(V ) .

We consider Q : X1 → M2 defined by Qv|In := Qnv := 1
τn

∫
In
v. Because of

stability of Π̂ and its invariance over piecewise constants, we have∥∥∥u− Π̂u
∥∥∥2

L2(V )
= ‖u−Qu‖2

L2(V ) +
∥∥∥Qu− Π̂u

∥∥∥2

L2(V )

= ‖u−Qu‖2
L2(V ) +

∥∥∥Π̂(Qu− u)
∥∥∥2

L2(V )
≤ 5 ‖u−Qu‖2

L2(V ) .

(4.11)
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This implies that the consistency error can be bounded in terms of a best
error:

sup
ϕ∈M2

bM(u, ϕ)− `(ϕ)

‖ϕ‖2

≤
√

5Ca ‖u−Qu‖L2(V ) =
√

5Ca inf
z∈M̂2

‖u− z‖L2(V ) .

(4.12)

Theorem 4.3. The Galerkin Method (4.2) with bM as in (4.3) satisfies(
‖u′ − U ′M‖

2
L2(V ∗) +

∥∥∥u− Π̂UM

∥∥∥2

L2(V )
+ ‖u(0)− UM(0)‖2

W

)1/2

≤
√

2κa inf
v∈M1

(
‖u′ − v′‖2

L2(V ∗) +
∥∥∥Π̂u− Π̂v

∥∥∥2

L2(V )
+ ‖u(0)− v(0)‖2

W

)1/2

+ (
√

2ka +
√

10) inf
z∈M̂2

‖u− z‖L2(V ) , (4.13)

where κa =
√

8 max{ν−1
a , C2

a , ν
−1
a C2

a} and ka := 2
√

5Ca max{ν−1
a , Ca, ν

−1
a Ca}.

Moreover

‖u′ − U ′M‖
2
L2(V ∗) +

∥∥∥u− Π̂UM

∥∥∥2

L2(V )
+ ‖u(0)− UM(0)‖2

W → 0 as τP → 0.

Proof. From Proposition 4.2, the results in Section 1.3 and (4.12) we get(
‖u′ − U ′M‖

2
L2(V ∗) +

∥∥∥Π̂u− Π̂UM

∥∥∥2

L2(V )
+ ‖u(0)− UM(0)‖2

W

)1/2

≤ κa inf
v∈M1

(
‖u′ − v′‖2

L2(V ∗) +
∥∥∥Π̂u− Π̂v

∥∥∥2

L2(V )
+ ‖u(0)− v(0)‖2

W

)1/2

+ ka inf
z∈M̂2

‖u− z‖L2(V ) ,

Combining with (4.11), we get (4.13). In order to prove convergence, we
exploit the density of C∞(V ) in H1(V, V ∗), see [47, Lemma 25.1]. Given
ε > 0, we take w ∈ C∞(V ) such that

‖u′ − w′‖2
L2(V ∗) + ‖u− w‖2

L2(V ) ≤ ε.

By the trace theorem we have ‖u(0)− w(0)‖2
W ≤ C(T )ε. We use the triangle

inequality in (4.13), and choose suitable functions v ∈ M1 and z ∈ M̂2.
Concerning the infimum on M1, we take v ∈M1 such that

v(tn) = w(tn), n = 0, . . . , N.
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Consider first ‖w′ − v′‖2
L2(In,V ∗)

. We can write

w′(t)− w(tn)− w(tn−1)

τn
=

1

τn

∫
In

w′(t)− w′(s) ds =
1

τn

∫
In

∫ t

s

w′′(ξ) dξ,

so that ∥∥∥∥w′(t)− w(tn)− w(tn−1)

τn

∥∥∥∥
V ∗
≤ τ 1/2

n

(∫
In

‖w′′‖2
V ∗

)1/2

.

Squaring, integrating over In, and summing over n gives

‖w′ − v′‖2
L2(V ∗) ≤ τ 2

P ‖w′′‖
2
L2(V ∗) . (4.14)

Regarding the term
∥∥∥Π̂w − Π̂v

∥∥∥2

L2(In,V )
, thanks to (4.4) we have

Π̂w − Π̂v =

∫
In

wψn − w(tn) =

∫
In

(w(t)− w(tn))ψn(t) dt

=

∫
In

∫ t

tn

w′(s) dsψn(t) dt,

so that ∥∥∥Π̂w − Π̂v
∥∥∥
V
≤ 2τ 1/2

n

(
‖w′‖2

V

)1/2

.

Squaring, integrating over In and summing over n gives∥∥∥Π̂w − Π̂v
∥∥∥2

L2(V )
≤ τ 2

P ‖w′‖
2
L2(V ) . (4.15)

Concerning the infimum on M̂2 we take z ∈ M̂2 such that zn = w(tn),
n = 1, . . . , N . Thanks to the Friedrichs inequality we get

‖w − z‖2
L2(V ) ≤ τP ‖w′‖L2(V ) . (4.16)

Combining (4.14)–(4.16) it is possible to choose τP such that

‖w′ − v′‖2
L2(V ∗) +

∥∥∥Π̂w − Π̂v
∥∥∥2

L2(V )
+ ‖w − z‖2

L2(V ) ≤ ε,

which completes the proof.
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In the right-hand side of (4.13) the distance between u and M1 is mea-
sured in a norm which involves both the function itself and its time deriva-
tive. We simplify this coupled approximation problem and provide a bound
in terms of the best errors for u′ and u with piecewise constants. The price
we pay is that the constant depends on

µP := sup
n

τn−1

τn
,

which measures how small the following step is compared to the previous
one. In analogy to the definition of S0,−1(P , V ), we set

S0,−1(P , V ∗) := {ϕ ∈ L2(V ∗), ϕ|In = ϕn ∈ V ∗, n = 1, . . . , N},

which appears in the following theorem.

Theorem 4.4. The Galerkin method (4.2) with bM as in (4.3) satisfies

‖u′ − U ′M‖
2
L2(V ∗) +

∥∥∥u− Π̂UM

∥∥∥2

L2(V )
+ ‖u(0)− UM(0)‖2

W

≤ C1 inf
v∈S0,−1(P,V ∗)

‖u′ − v‖2
L2(V ∗) + C2 inf

z∈S0,−1(P,V )
‖u− z‖2

L2(V ) ,

where C1 := 2κ2
a(π

2 + 32 + 32µP)/π2 and C2 := (
√

2ka +
√

10)2.

Proof. We prove the result for u ∈ X1 ∩ C0(V ), the case u ∈ X1 ⊂ C0(W )
follows by density. We choose v ∈M1 such that

v(tn) = Πnu, n = 1, . . . , N, and v(0) = u(0).

This implies Π̂u − Π̂v = 0. Concerning ‖u′ − v′‖L2(In,V ∗)
we observe, for

n = 2, . . . , N ,

u′−v′ = u′−Πnu− Πn−1u

τn
= u′− 1

τn

∫
In

u′+
u(tn)− Πnu− u(tn−1) + Πn−1u

τn
.

(4.17)
Thanks to Property (iii) of Remark 4.1, we get

1

τn

(
‖Πnu− u(tn)‖2

V ∗ +
∥∥Πn−1u− u(tn−1)

∥∥2

V ∗

)
≤ 16

π2
inf
c∈V ∗
‖u′ − c‖2

L2(In,V ∗)
+

16

π2

τn−1

τn
inf
c∈V ∗
‖u′ − c‖2

L2(In−1,V ∗)
. (4.18)

Combining (4.17)–(4.18) we get

‖u′ − v′‖2
L2(In,V ∗)

≤ π2 + 32

π2
inf
c∈V ∗
‖u′ − c‖2

L2(In,V ∗)

+
32

π2
µP inf

c∈V ∗
‖u′ − c‖2

L2(In−1,V ∗)
.
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For n = 1, we have

u′ − Π1u− u(0)

τ1

= u′ − 1

τ1

∫
I1

u′ +
u(t1)− Π1u

τ1

,

so that

‖u′ − v′‖2
L2(I1,V ∗)

≤ π2 + 16

π2
inf
c∈V ∗
‖u′ − c‖2

L2(I1,V ∗)
.

Summing over n we get

‖u′ − v′‖L2(V ∗) ≤
π2 + 32 + 32µP

π2
inf

w∈S0,−1(P,V ∗)
‖u′ − w‖2

L2(V ∗) .

The assertion follows combining this with Theorem 4.3.

Assuming additional regularity

We provide an alternative to Theorem 4.4. We assume that the exact solution
is more regular and we get a bound where the constant does not depend on
µP .

We propose a different definition of Π̂. In place of (4.5), if v ∈ C0(V ), we
set

Π̂v|In := v(tn), n = 1, . . . , N, (4.19)

so that (4.4) is trivially fulfilled. Proposition 4.7 remains valid, but the

interpolation operator Π̂ is not stable in L2(V ) any more, and therefore, for
the consistency error, we only get that

sup
ϕ∈M2

bM(u, ϕ)− `(ϕ)

‖ϕ‖2

≤ Ca

∥∥∥u− Π̂u
∥∥∥
L2(V )

. (4.20)

Mimicking the reasoning in the proof of Theorem 4.3 we get the following
theorem.

Theorem 4.5. Assume u ∈ C0(V ). The Galerkin Method (4.2) with bM as

in (4.3), and Π̂ as in (4.19) satisfies(
‖u′ − U ′M‖

2
L2(V ∗) +

∥∥∥u− Π̂UM

∥∥∥2

L2(V )
+ ‖u(0)− UM(0)‖2

W

)1/2

≤
√

2κa inf
v∈M1

(
‖u′ − v′‖2

L2(V ∗) +
∥∥∥Π̂u− Π̂v

∥∥∥2

L2(V )
+ ‖u(0)− v(0)‖2

W

)1/2

+

(
ka√

5
+ 1

)∥∥∥u− Π̂u
∥∥∥
L2(V )

,

where κa =
√

8 max{ν−1
a , C2

a , ν
−1
a C2

a} and ka = 2
√

5Ca max{ν−1
a , Ca, ν

−1
a Ca}.
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4.2 Natural formulation

In this section we look at the discretization of the natural formulation and
analyse two different methods. To motivate them, observe first that, if v(0) =
0 and we set ϕN+1 = 0, we can rewrite bM in (4.3) as

bM(v, ϕ) =
N∑
n=1

∫
In

〈
v(tn)− v(tn−1)

τn
, ϕn

〉
+
〈
AΠ̂v, ϕn

〉
=

N∑
n=1

〈v(tn), ϕn〉 − 〈v(tn−1), ϕn〉+

∫
In

〈Av(tn), ϕn〉

=
N∑
n=1

〈v(tn), ϕn〉 − 〈v(tn), ϕn+1〉+

∫
In

〈Av(tn), ϕn〉

=
N∑
n=1

∫
In

−
〈
v(tn),

ϕn+1 − ϕn
τn

〉
+ 〈Av(tn), ϕn〉 .

We can thus interpret v as a piecewise constant function, whose value in each
interval is given by v(tn). Correspondingly, ϕ can be seen as a continuous
piecewise polynomial of first degree, with values in the left-endpoint of the
intervals equal to ϕn. Assuming qΠ is an operator such that qΠϕ|In = ϕ(tn−1)
for an affine function in In, we can write

bM(v, ϕ) =
N∑
n=1

∫
In

−〈vn, ϕ′〉+
〈
Avn, qΠϕ

〉
.

In this view, the right-hand side ` becomes

`(ϕ) = 〈u0, ϕ(0)〉+
N∑
n=1

∫
In

〈
f, qΠϕ

〉
. (4.21)

However, it is also possible to consider

˜̀(ϕ) = 〈u0, ϕ(0)〉+
N∑
n=1

∫
In

〈f, ϕ〉 .

In the following, we analyse these two points of view, highlighting their ad-
vantages and drawbacks. For the rest of this section, assume that V ⊂ W ⊂
V ∗, a and A are as in Section 2.1, while, as in Section 2.3, X1 = L2(V ),
X2 = {ϕ ∈ H1(V, V ∗), ϕ(T ) = 0} with norms

‖v‖2
1 =

∫ T

0

‖v‖2
V , ‖ϕ‖2

2 =

∫ T

0

‖ϕ′‖2
V ∗ + ‖ϕ‖2

V ,
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and the bilinear form b : X1 ×X2 → R is given by

b(v, ϕ) =

∫ T

0

−〈ϕ′, v〉+ 〈Av, ϕ〉 .

4.2.1 Backward Euler method

We first notice that ` ∈ X∗2 could be of the following form

`(ϕ) = 〈u0, ϕ(0)〉+

∫ T

0

〈ϕ′, f1〉+ 〈f2, ϕ〉 ,

where u0 ∈ W , f1 ∈ L2(V ) and f2 ∈ L2(V ∗). Its representation in terms of
u0, f1 and f2 is not unique, since we can add, for example,

0 = 〈f(0), ϕ(0)〉+

∫ T

0

〈f ′, ϕ〉+ 〈ϕ′, f〉 , f ∈ H1(V ).

Therefore, given ` ∈ X∗2 it is not always possible to define univocally a right-
hand side for the discrete problem mimicking (4.21), and thus, given an exact
solution in X1, the discrete solution is not well-defined.

To avoid this problem, we consider ` ∈ X∗2 of the following form

`(ϕ) := 〈g0, ϕ(0)〉+

J−1∑
j=1

〈
gj, ϕ(t̃j)

〉
+

∫ T

0

〈f, ϕ〉 , (4.22)

where f ∈ L2(V ∗), (gj)
J
j=0 ⊂ W and 0 =: t̃0 < t̃1 < . . . < t̃J =: T . Note

that, thanks to the embedding X2 ⊂ C0(W ), there holds ` ∈ X∗2 . With this
choice, the solution u of

b(u, ϕ) = `(ϕ), ∀ϕ ∈ X2, (4.23)

belongs to H1((t̃j−1, t̃j);V, V
∗) ⊂ C0([t̃j−1, t̃j];W ), for j = 1, . . . , J . Inte-

grating by parts piecewise shows that u also satisfies, for every (ϕ, φ) ∈
L2(V )×W J ,

〈u(0), φ0〉+

J−1∑
j=1

〈
u(t̃+j )− u(t̃−j ), φj

〉
+

J∑
j=1

∫ t̃j

t̃j−1

〈u′ + Au, ϕ〉

=

J−1∑
j=0

〈gj, φj〉+

∫ T

0

〈f, ϕ〉 , (4.24)
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where u(t−) := lims↗t u(s) and u(t+) := lims↘t u(s) denote respectively the
left and right limit of the function u to the time t. Equation (4.24) implies
in particular that u(t̃+j ) − u(t̃−j ) = gj, that is, u is allowed to jump at the

points t̃j, j = 1, . . . , J − 1.
In order to discretize (4.23), as in Section 4.1 we consider a partition P

of (0, T ), 0 =: t0 < t1 < . . . < tN := T . We require that P is subordinate to
(t̃j)

J−1
j=1, that is, for every j = 1, . . . , J −1 there exists n ∈ {1, . . . , N−1} such

that tn = t̃j. Every subinterval In := [tn−1, tn) is left-closed and right-open,
and its size is denoted by τn := |In|. Moreover let τP := maxn τn be the
biggest time-step. We consider the spaces

M1 : = {v ∈ L2(V ), v|In = vn ∈ V, n = 1, . . . , N}, (4.25a)

M2 : = {ϕ ∈ C0(V ), ϕ|In ∈ P1(In, V ), n = 1, . . . , N, ϕ(T ) = 0}. (4.25b)

We notice that M1 ⊂ X1, and M2 ⊂ X2. We define the bilinear form
bM : X1 ×X2 → R as follows

bM(v, ϕ) :=
N∑
n=1

∫
In

−〈ϕ′, vn〉+
〈
Avn, qΠϕ

〉
, (4.26)

where the operator qΠ : X2 → M̂2 is defined by

qΠv|In := Πnv :=

∫
In

vψn, (4.27)

with

ψn(t) :=
−6(t− tn−1)

τ 2
n

+
4

τn
.

Remark 4.6 (Properties of qΠ). The operator qΠ defined in (4.27) satisfies
the following properties, for n = 1, . . . , N :

(i) for every v ∈ P(In, V ), Πnv = v(tn−1),

(ii) for every v ∈ L2(In, V ), ‖Πnv‖L2(In,V ) ≤ 2 ‖v‖L2(In,V ),

Proof. Property (i) follows from∫
In

ψn(t) dt =

∫ 1

0

−6s+ 4 ds = 1 and∫
In

ψn(t)
t− tn−1

τn
dt =

∫ 1

0

(−6s+ 4)s ds = 0.
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Property (ii) follows from

‖Πnv‖V ≤
∫
In

‖v‖V |ψn| ≤ ‖v‖L2(In,V ) ‖ψn‖L2(In) = 2τ−1/2
n ‖v‖L2(In,V ) .

(4.28)

The subscript n, as well as the overturned hat over Π, reminds that Πn

applied to an affine function gives its value in the left endpoint of the interval
In. The right-hand side ` is replaced by

`M(ϕ) := 〈g0, ϕ(t0)〉+

J−1∑
j=1

〈
gj, ϕ(t̃j)

〉
+

∫ T

0

〈
f, qΠϕ

〉
. (4.29)

We endow M2 with

‖ϕ‖2
2,P :=

N∑
n=1

∫
In

‖ϕ′‖2
V ∗ + ‖Πnϕ‖2

V ,

while the space M1 inherits the ‖·‖1-norm. We observe that, for every ϕ ∈
M2,

∥∥∥ϕ− qΠϕ
∥∥∥2

L2(V )
=

N∑
n=1

∫
In

∥∥∥∥ϕ(tn)− ϕ(tn−1)

τn
(t− tn−1)

∥∥∥∥2

V

dt

=
N∑
n=1

τn
3
‖ϕ(tn)− ϕ(tn−1)‖2

V

≤ 2

3

N−1∑
n=1

τn
τn+1

∫
In+1

‖ϕ(tn)‖2
V +

2

3

N∑
n=1

∫
In

‖ϕ(tn−1)‖2
V

≤ 2

3
(µP + 1)

∥∥∥qΠϕ
∥∥∥2

L2(V )
, (4.30)

so that

‖ϕ‖2 ≤
√

4

3
(2µP + 5) ‖ϕ‖2,P . (4.31)

With an example, we show that we cannot avoid the dependence on µP in
(4.31). In fact, assume V = H1

0 (Ω), and W = L2(Ω), with Ω ⊂ Rd. Fix
n̄ ∈ {1, . . . , N − 1}, and consider the function ϕ ∈M2 such that

ϕ(tn) =

{
0 if n 6= n̄,
φm if n = n̄,
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where φm is the m-th eigenfunction of the Laplacian, with corresponding
eigenvalue λm. We have

‖ϕ′‖2
L2(V ∗) =

∫
In̄

‖φm‖2
V ∗

τn̄
+

∫
In̄+1

‖φm‖2
V ∗

τn̄+1

= λ−1
m

(
τ−1
n̄ + τ−1

n̄+1

)
and

‖ϕ‖2
L2(V ) =

∫
In̄

‖φm‖2
V

(t− tn̄−1)2

τ 2
n̄

dt+

∫
In̄+1

‖φm‖2
V

(t− tn̄+1)2

τ 2
n̄+1

dt

=
λm
3

(τn̄ + τn̄+1),

while ∥∥∥qΠϕ
∥∥∥2

L2(V )
=

∫
In̄+1

‖φm‖2
V = τn̄+1λm.

Therefore we obtain

‖ϕ‖2
2

‖ϕ‖2
2,P

=
τ 2
n̄τn̄+1λ

2
m + τn̄τ

2
n̄+1λ

2
m + 3τn̄ + 3τn̄+1

3(τn̄τ 2
n̄+1λ

2
m + τn̄ + τn̄+1)

≥ τ 2
n̄τn̄+1λ

2
m

3(τn̄τ 2
n̄+1λ

2
m + τn̄ + τn̄+1)

m→∞−→ τn̄
3τn̄+1

.

We prove that the continuity and inf-sup constants of bM are uniformly
bounded.

Proposition 4.7. The bilinear form (4.26) is continuous and fulfills the inf-
sup condition (1.9) on (M1, ‖·‖1)× (M2, ‖·‖2,P) with

CM ≤
√

2 max{1, Ca} cM ≥
νa√

2
min{1, C−1

a }.

Moreover, it is also continuous on (X1, ‖·‖1,P)× (M2, ‖·‖2) and CX1×M2 sat-
isfies the same bound as CM .

Proof. The proof mimics the one of Proposition 2.3. Concerning the lower
bound for cM we take as test function

vn = Πnϕ− A−1
n ϕ|′In , n = 1, . . . , N
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where An is defined in (4.10) and observe

N∑
n=1

∫
In

−2 〈ϕ′, ϕ(tn−1)〉 =
N∑
n=1

2 ‖ϕ(tn−1)‖2
W − 2 〈ϕ(tn), ϕ(tn−1)〉

= ‖ϕ(t0)‖2
W +

N∑
n=1

‖ϕ(tn)‖2
W − 2 〈ϕ(tn), ϕ(tn−1)〉+ ‖ϕ(tn−1)‖2

W

≥
N∑
n=1

‖ϕ(tn)− ϕ(tn−1)‖2
W ≥ 0. (4.32)

The non-degeneracy condition (1.9b) is proved taking ϕ(tn) = vn+1.

From (4.32) we also get that

N∑
n=1

‖ϕ(tn)− ϕ(tn−1)‖2
W ≤

N∑
n=1

∫
In

−2 〈ϕ′, ϕ(tn−1)〉 ≤ ‖ϕ‖2,P . (4.33)

Remark 4.8. Assume N = J , so that P is given by 0 = t̃0 < t̃1 < . . . < t̃J =
T . If u ∈M1 then f = Au and bM(u, ϕ) = `(ϕ) for every ϕ ∈M2. Therefore
UM = u.

We are in the situation described on Section 1.3. In order to derive an
abstract error estimate, we write the consistency error as follows:

bM(u, ϕ)− `M(ϕ) = bM(u, ϕ)− b(u, ϕ) + `(ϕ)− `M(ϕ)

=

∫ T

0

〈
Au− f, qΠϕ− ϕ

〉
Combining Proposition 4.7 with the results in Section 1.3, we obtain the
following.

Proposition 4.9. The Galerkin method (4.25) with bM as in (4.26) and `M
as in (4.29) satisfies

‖u− UM‖1 ≤ 2ν−1
a max{1, C2

a} inf
v∈M1

‖u− v‖1

+ 2ν−1
a max{1, Ca} sup

ϕ∈M2

∫ T

0

〈
Au− f, qΠϕ− ϕ

〉
‖ϕ‖2,P

. (4.34)

Moreover, if µP = supn
τn−1

τn
<∞, then

‖u− UM‖1 → 0 as τP → 0.
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Proof. Given ε > 0, the best error in L2(V ) can be bounded in terms of
ε as in the proof of Theorem 4.3. Concerning the consistency error, take
w ∈ C0(W ) such that ‖Au− f − w‖L2(V ∗) < ε. This is possible thanks to

the density of C0(W ) in L2(V ∗). We add and subtract w, so that

sup
ϕ∈M2

∫
I

〈
Au− f, ϕ− qΠϕ

〉
‖ϕ‖2,P

≤ sup
ϕ∈M2

∫
I

〈
Au− f − w,ϕ− qΠϕ

〉
‖ϕ‖2,P

+ sup
ϕ∈M2

∫
I

〈
w,ϕ− qΠϕ

〉
‖ϕ‖2,P

.

Concerning the first term on the right-hand side, we recall (4.30) and get∫
I

〈
Au− f − w,ϕ− qΠϕ

〉
≤
√
µP + 1 ‖Au− f − w‖L2(V ∗) ‖ϕ‖2,P .

Regarding the second term, we recall (4.33) and get

∥∥∥ϕ− qΠϕ
∥∥∥2

L2(W )
=

N∑
n=1

τn
3
‖ϕ(tn)− ϕ(tn−1)‖2

W ≤
τP
3
‖ϕ‖2

2,P ,

so that ∫
I

〈
w,ϕ− qΠϕ

〉
≤
√

3τP
3
‖w‖L2(W ) ‖ϕ‖2,P .

It is thus possible to choose τP such that

sup
ϕ∈M2

∫
I

〈
w,ϕ− qΠϕ

〉
‖ϕ‖2,P

≤ ε,

so that

sup
ϕ∈M2

∫
I

〈
Au− f, ϕ− qΠϕ

〉
‖ϕ‖2,P

≤ (1 +
√
µP + 1)ε.

The second term in the right-hand side of (4.34), due to the consistency
error, is not expressed in terms of a best error. Proposition 4.10 below
reveals that the method is not stable in L2(V ), so it is not possible to bound
the consistency error in terms of the best error in L2(V ). However estimate
(4.34) satisfies the property that the right-hand side is equivalent to the error
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‖u− UM‖1 and can be used as a starting point for deriving error estimates.
Moreover, recalling that Au− f = −u′ on every In and (4.30) we get

‖UM‖1 . ‖u‖1 +
( N∑
n=1

∫
In

‖u′‖2
V ∗

)1/2

,

where the hidden constant depends also on µP .

Proposition 4.10. The Galerkin method (4.25) with bM as in (4.26) and
`M as in (4.29) is not stable in L2(V ).

Proof. To prove that the method is not stable, an example is sufficient. As-
sume A = −∆, the function φ1 is the first eigenfunction of the Laplacian
with eigenvalue λ1, and τ := τ1 = . . . = τN , with τ ≤ λ1. The W -norm,
V -norm and V ∗-norm of φ1 are given by

‖φ1‖2
W = 1, ‖φ1‖2

V = λ1, ‖φ1‖2
V ∗ =

1

λ1

.

We consider the function

u(t) =

{
0 0 ≤ t ≤ tN−1

(t− tN−1)ρφ1 tN−1 < t ≤ T
,

where ρ > 0. Its time derivative is given by

u′(t) =

{
0 0 ≤ t < tN−1

ρ(t− tN−1)ρ−1φ1 tN−1 < t ≤ T
.

We prove that
‖u− UM‖1

‖u‖1

→∞ as ρ→∞

by bounding the consistency error from below. To this end, we choose ϕu ∈
M2 such that ϕu(tN−1) = −φ1, ϕu(t0) = . . . = ϕu(tN−2) = 0. Moreover, since

ϕu − qΠϕu ∈ LN := span(t− tN−1)ξ, ξ ∈ V , we project u′|IN on LN that is,
we take QNu

′ such that, for every ξ ∈ V ,∫
IN

〈u′(t), (t− tN−1)ξ〉 dt =

∫
IN

〈QNu
′(t), (t− tN−1)ξ〉 dt.

A calculation gives

QNu
′(t) =

3ρ

ρ+ 1
τ ρ−2
N (t− tN−1)φ1, ∀t ∈ IN .
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We compute∫
IN

〈
u′, ϕu − qΠϕu

〉
=

∫
IN

〈
QNu

′,−ϕu(tN−1)

τ
(t− tN−1)

〉
dt

= 〈φ1, φ1〉
∫
IN

3ρ

ρ+ 1
τ ρ−3(t− tN−1)2

=
ρ

ρ+ 1
τ ρ,

and

‖ϕu‖2
2,P =

∫
IN−1

∥∥∥∥φ1

τ

∥∥∥∥2

V ∗
dt+

∫
IN

∥∥∥∥φ1

τ

∥∥∥∥2

V ∗
+ ‖φ1‖2

V dt

=
2 + λ−2

1 τ 2

τλ1

≤ 3

τλ1

,

while the L2(V )-norm of u is given by

‖u‖2
L2(V ) =

∫
IN

‖φ1‖2
V (t− tN−2)2ρ dt

=
τ 2ρ+1

2ρ+ 1
‖φ1‖2

V = λ1
τ 2ρ+1

2ρ+ 1
.

We can bound the consistency error from below as follows

sup
ϕ∈M2

∑
n

∫
In

〈
f − Au, ϕ− qΠϕ

〉
‖ϕ‖2,P

≥

∫
IN

〈
u′, ϕu − qΠϕu

〉
‖ϕu‖2,P

=
ρ

ρ+ 1

τ ρ+ 1
2

√
λ1√

3
,

so that

‖u− UM‖1

‖u‖1

≥ 1

3
√

2
sup
ϕ∈M2

bM(u, ϕ)− `M(ϕ)

‖ϕ‖2,P
≥ ρ(2ρ+ 1)1/2

3(ρ+ 1)
√

6

ρ→+∞−→ +∞.

4.2.2 A variant

The second method still involves the spaces M1 and M2 of (4.25), the bilinear

form of (4.26) with qΠ as in (4.27), but it does not modify the right-hand
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side of the continuous problem. More precisely, given ` ∈ X∗2 , the discrete
problem reads

find UM ∈M1 such that, ∀ϕ ∈M2, bM(UM , ϕ) = `(ϕ).

Every ` ∈ X∗2 also belongs to M∗
2 , and (4.31) guarantees that ‖`‖M∗2 ≤√

4(2µP + 5)/3 ‖`‖X∗2 . Proposition 4.7 ensures that the discrete problems
are thus uniformly well-posed for every ` ∈ X∗2 , and not only for those of the
form (4.29) considered in Section 4.2.1.

Proposition 4.11. Assume that the exact solution u belongs to M1. If
bM(u, ϕ) = `(ϕ) for every ϕ ∈M2 then u = 0.

Proof. If bM(u, ϕ) = `(ϕ), then bM(u, ϕ) = b(u, ϕ) for every ϕ ∈M2. There-
fore ∫ T

0

〈
Au, ϕ− qΠϕ

〉
= 0 ∀ϕ ∈M2.

Taking ϕ(tk−1) = unδnk, where un := u|In we get, for n = 2, . . . , N ,∫
In−1

〈
Aun−1,

un
τn−1

(t− tn−2)

〉
dt+

∫
In

〈
Aun,−

un
τn

(t− tn−1)

〉
dt = 0,

and, for n = 1,

0 = −
∫
I1

〈
Au1,−

ϕ(t0)

τ1

t

〉
dt =

∫
I1

〈
Au1,

u1

τ1

t

〉
dt

=

∫
I1

〈
A
u1√
τ1

√
t,
u1√
τ1

√
t

〉
dt ≥ νa

∫
I1

t

τ1

‖u1‖2
V dt =

νaτ1

2
‖u1‖2

V .

Therefore u1 = 0, and by induction un = 0 for every n = 1, . . . , N .

Therefore the method cannot be quasi-optimal, because it occurs that the
best error vanishes, whereas the error does not.

We write the consistency error as follows:

bM(u, ϕ)− `M(ϕ) = bM(u, ϕ)− b(u, ϕ) + `(ϕ)− `M(ϕ)

=

∫ T

0

〈
Au, qΠϕ− ϕ

〉
.

Combining Proposition 4.7 with the results in Section 1.3, we obtain the
following.
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Proposition 4.12. The Galerkin method (4.25) with bM as in (4.26) and
without modifications of the right-hand side satisfies

‖u− UM‖1 ≤ 2ν−1
a max{1, C2

a} inf
v∈M1

‖u− v‖1

+ 2ν−1
a max{1, Ca} sup

ϕ∈M2

∫ T
0

〈
Au, qΠϕ− ϕ

〉
‖ϕ‖2,P

. (4.35)

Moreover, if µP = supn
τn−1

τn
<∞, then

‖u− UM‖1 → 0 as τP → 0.

Proof. It follows the same lines as the proof of Proposition 4.9.

Remark 4.13. Assuming µP <∞ the Galerkin method (4.25) with bM as in
(4.26) and without modifications of the right-hand side is stable, since from
(4.35) follows

‖u− UM‖1 ≤ C(νa, Ca, µP) ‖u‖1 .





Chapter 5

Varying the Spatial
Discretization

In Chapter 3 we show that a necessary and sufficient condition for the
semidiscrete Galerkin approximation to be quasi-optimal is the H1-stability
of the L2-projection. In Chapter 4 we prove that the error related to the
standard formulation is equivalent to the sum of best errors for the exact so-
lution and its time derivative. What if we discretize in both space and time?
Can we expect an equivalence between the error and suitable best errors?

Todd Dupont in [22] presents a remarkable example. The discretization
takes place in space with one-dimensional finite elements, and in time with
backward Euler. The spatial mesh changes every time-step in such a way
that, if the mesh-size h and the time step τ are such that h4/τ → ∞, then
the discrete solution does not converge to the exact solution as h, τ → 0.
However, the best errors for the solution and its time derivative tend to zero
as h, τ → 0, independently of their ratio. These best errors are intended
with respect to the space of piecewise constants in time with values, in each
subinterval, in the corresponding finite element space.

This reveals that, in addition to the best errors of above, some extra terms
arise in the bound for the error, at least when the spatial discretizations are
allowed to change. In a more general setting, Chrysafinos and Walkington
[14] prove that the error in the L2(L∞)∩L2(H1)-norm can be bounded by the
error given by a suitable local projection, and an extra term, that vanishes
if the spatial discretization remains the same.

In order to better understand the situation, in this chapter we deal with
the modification of the spatial discretizations and we add the time discretiza-
tion only in Chapter 6.

The chapter is organized as follows. Section 5.1 concerns the standard
formulation, while Section 5.2 the natural formulation. In both cases we

59
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find the same term that disturbs the quasi-optimality. It vanishes if the
spatial discretization does not change, and behaves like h4/τ in the context
of Dupont’s example, as shown in Chapter 7.

The results of this chapter are the outcome of a collaboration with Chris-
tian Kreuzer.

5.1 Standard formulation

Assume that V ⊂ W ⊂ V ∗, a and A are as in Section 2.1, while, as in Section
2.2, X1 = H1(V, V ∗) and X2 = W × L2(V ) with norms

‖v‖2
1 = ‖v(0)‖2

W +

∫ T

0

‖v′‖2
V ∗ + ‖v‖2

V , ‖ϕ‖2
2 = ‖ϕ0‖2

W +

∫ T

0

‖ϕ1‖2
V .

Moreover u0 ∈ W , f ∈ L2(V ), and the bilinear form b : X1 × X2 → R and
` ∈ X∗2 are given by

b(v, ϕ) = 〈v(0), ϕ0〉+

∫ T

0

〈v′, ϕ1〉+ 〈Av, ϕ1〉 ,

`(ϕ) = 〈u0, ϕ0〉+

∫ T

0

〈f, ϕ1〉 .

Furthermore, as in Section 4.1, let N ∈ N and P be a partition

0 = t0 < t1 < . . . < tN = T

of I = (0, T ) into N subintervals In := (tn−1, tn]. We consider a sequence
of finite-dimensional subspaces {Vn}Nn=0 ⊂ V . Approximation of the initial
value takes place in V0, while for n = 1, . . . , N , the approximation in the n-th
interval In occurs in Vn. The W -orthogonal projection on Vn is denoted by
Pn, and, motivated by the results in Chapter 3, we assume that {Pn}Nn=0 is
uniformly stable in V , with

σ := sup
n=0,...,N

sup
v∈V

‖Pnv‖V
‖v‖V

.

In addition we denote by An : I → L(Vn,V∗n) the discrete counterparts of A,
that is,

∀ϕ ∈ Vn, 〈An(t)v, ϕ〉 = 〈A(t)v, ϕ〉 .
Finally we set

SL2

(P ,V) := {ϕ ∈ L2(V ), ϕ|In ∈ L2(In,Vn), n = 1, . . . , N},
SH1

(P ,V) := {v ∈ L2(V ), v|In ∈ H1(In,Vn), n = 1, . . . , N},
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and we consider the spaces

M1 := {v ∈ SH1

(P ,V), v(0) ∈ V0, (5.1a)

v(t+n−1) = Pnv(tn−1), n = 1, . . . , N},
M2 := V0 × SL

2

(P ,V), (5.1b)

where v(t+) := lims↘t v(s) denotes the right limit of the function v to the
time t. We notice that M2 ⊂ X2, while in general M1 * X1. Thus we are
in a non-conforming situation and we invoke the results of Section 1.3. If we
choose Vn = S for every n = 0, . . . , N , then M1 coincides with H1(S), M2

coincides with S×L2(S), and we are back in the situation of Section 3.2. We
remark that the constraints v(t+n−1) = Pnv(tn−1) in the definition of M1 can
be seen as a discrete replacement of the embedding X1 ⊂ C0(W ). The space
M2 inherits the ‖·‖2-norm, while M1 is endowed with the broken counterpart
of ‖·‖1:

‖v‖2
1,P := ‖v(0)‖2

W +
N∑
n=1

∫
In

‖v′‖2
V ∗ + ‖v‖2

V .

We replace b with its broken counterpart

bM(v, ϕ) := 〈v(0), ϕ0〉+
N∑
n=1

∫
In

〈v′, ϕ〉+ 〈Av, ϕ〉 , (5.2)

so that bM is well-defined also on M1 × M2. We prove that the discrete
problem is well-posed and derive a quasi-optimality result in M1.

5.1.1 Quasi-optimality in a space with constraints

Proposition 5.1. The bilinear form (5.2) is continuous and satisfies the
inf-sup condition (1.9) on M1 ×M2 with

CM ≤
√

2 max{1, Ca}, cM ≥
min{νa, C−1

a σ−1, νaC
−1
a σ−1}

2
.

Moreover, it is also continuous on (X1, ‖·‖1,P)× (M2, ‖·‖2) and CX1×M2 sat-
isfies the same bound as CM .

Proof. The proof mimics those of Propositions 2.2 and 3.3. In order to derive
the lower bound for cM we choose, for every v ∈M1,

ϕ0 = 2v(0), ϕ|In = v|In + A−∗n (v′|In), n = 1, . . . , N.
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In addition we exploit ‖v′‖V∗n ≥ σ−1 ‖v′‖V ∗ and

‖v(0)‖2
W +

N∑
n=1

‖v(tn)‖2
W −

∥∥v(t+n−1)
∥∥2

W
≥

N−1∑
n=0

‖v(tn)‖2
W −

∥∥v(t+n )
∥∥2

W

=
N−1∑
n=0

‖v(tn)‖2
W − ‖Pn+1v(tn)‖2

W =
N−1∑
n=0

‖v(tn)− Pn+1v(tn)‖2
W ≥ 0.

Concerning the non-degeneracy condition (1.9b), if bM(v, ϕ) = 0 for every
v ∈ M1, the argument in the proof of Proposition 2.2 gives ϕ|In := ϕn ∈
H1(In,Vn) for every n = 1, . . . , N . Integrating by parts in bM(v, ϕ) = 0 we
have

〈v(0), ϕ0〉+
N∑
n=1

〈v(tn), ϕ(tn)〉−
〈
v(t+n−1), ϕ(t+n−1)

〉
+

∫
In

−〈ϕ′, v〉+〈Av, ϕ〉 = 0.

Testing with suitable functions, we get, for n = 1, . . . , N , −ϕ′n + A∗nϕn = 0,
ϕ(tn) = Pnϕ(t+n ), ϕ0 = P0ϕ(0+) and ϕ(T ) = 0. Proceeding with a backward
induction we get that ϕn = 0, for every n = N, . . . , 1 and ϕ0 = 0.

We notice that bM = b on X1 ×M2, so that bM(u, ϕ) = `(ϕ) for every
ϕ ∈ M2 and the consistency error vanishes. Applying the results of Section
1.3 we get the following proposition.

Proposition 5.2. The Galerkin solution UM of method (5.1) with bM as in
(5.2) satisfies the following estimate

‖u− UM‖1,P ≤ κσ inf
v∈M1

‖u− v‖1,P , (5.3)

with κσ := 2
√

2 max{ν−1
a , C2

aσ, ν
−1
a C2

aσ}.

5.1.2 Abstract error estimate

The infimum on the right-hand side of (5.3) is on functions v that belong to
M1. Therefore v|In ∈ Vn and v|In+1 ∈ Vn+1 are not independent but linked by
v(t+n ) = Pn+1v(tn). This puts some limitations in the approximation power
of Vn+1. We consider the unconstrained version of M1:

M̂1 := {v ∈ SH1

(P ,V), v(0) ∈ V0} (5.4)

and aim at an error estimate that involves the best error on M̂1. To this end
we insert a particular choice of v = Iu ∈M1 in the right-hand side of (5.3).



63

In order to have a near-best approximation on In, one could think of taking
Iu|In = Pnu, n = 1, . . . , N . However, in general

lim
t↘tn

Pn+1u(t) = Pn+1u(tn) 6= Pn+1Pnu(tn),

which violates the constraint in the definition of M1. To overcome this
problem we introduce a correction z ∈ M̂1 defined iteratively starting with
z(0) := 0 and such that

lim
t↘tn−1

z(t) = PnPn−1u(tn−1) + Pnz(tn−1)− Pnu(tn−1)

=: z+
n ∈ Vn,

(5.5a)

n = 1, . . . , N . The function z+
n ∈ Vn represents the deviation from the W -

projection at tn−1. We let evolve this defect in In by defining z|In =: zn ∈
H1(In;Vn) to be the semidiscrete solution of the homogeneous parabolic
problem

z′n + Anzn = 0 in L2(In;V∗n) and zn(tn−1) = z+
n . (5.5b)

We define I : X1 +M1 →M1 as

(Iu)|In := (Pnu)|In + zn, n = 1, . . . , N, and (Iu)(0) := P0u(0).
(5.6)

We investigate the properties of I in the following

Proposition 5.3 (Properties of I). The interpolation operator I defined in
(5.6) with zn as in (5.5) is a linear projection onto M1, and it is stable with
respect to ‖·‖1,P with

‖Iu‖1,P ≤ σκσ ‖u‖1,P .

Proof. Thanks to (5.5a), Iu ∈ M1 for every u ∈ X1 + M1. Linearity follows
from linearity of Pn and of the equation in (5.5b). Invariance over M1 is due
to the fact that, for every u ∈ M1, Pnu = u and z+

n = 0, n = 1, . . . , N − 1.
Concerning stability, we exploit the fact that bM satisfies the inf-sup condition
on M1 ×M2. Therefore there exists ϕ ∈M2 such that

cM ‖Iu‖ ‖ϕ‖ ≤ bM(Iu, ϕ). (5.7)

Using the definition of z, the continuity of bM and the V -stability of Pn we



64

get

bM(Iu, ϕ) = 〈Iu(0), ϕ0〉+
N∑
n=1

∫
In

〈(Iu)′, ϕn〉+ 〈AIu, ϕn〉

= 〈P0u(0), ϕ0〉+
N∑
n=1

∫
In

〈(Pnu+ zn)′, ϕn〉+ 〈A(Pnu+ zn), ϕn〉

= 〈P0u(0), ϕ0〉+
N∑
n=1

∫
In

〈(Pnu)′, ϕn〉+ 〈APnu, ϕn〉

≤ CMσ ‖u‖1,P ‖ϕ‖2 .

Combining this with (5.7) gives the assertion.

Thanks to Propositions 5.2–5.3, the choice of I ensures that

‖u− Iu‖1,P ≈ ‖u− UM‖1,P ,

with hidden constants depending on νa, Ca and σ. In order to further esti-
mate ‖u− Iu‖1,P we split it as

‖u− Iu‖1,P ≤ ‖u− Pu‖1,P + ‖z‖1,P , (5.8)

where (Pu)|In := Pnu. The stability of Pn allows to relate the first term on

the right-hand side with the best-error in M̂1. We bound ‖z‖1,P with the
help of the following proposition.

Proposition 5.4. The correction z defined in (5.5), satisfies

C−1
z ‖z‖

2
1,P ≤

N∑
n=1

∥∥zn(t+n−1)
∥∥2

W
− ‖zn(tn)‖2

W ≤ c−1
z ‖z‖

2
1,P , (5.9a)

where

Cz := ν−1
a max{1, C2

aσ
2} and cz := min{C−1

a , νa}. (5.9b)

Moreover,

N∑
n=1

∥∥zn(t+n−1)
∥∥2

W
− ‖zn(tn)‖2

W

≤ ‖P1(I − P0)u(t0)‖2
W +

N−1∑
n=1

∥∥P+
n (I − Pn)u(tn)

∥∥2

W
, (5.9c)

where P+
n denotes the W -projection onto Vn ⊕ Vn+1, n = 1, . . . , N − 1.
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Proof. To proof (5.9a) we proceed as in the proof of Proposition 5.1 and test
(5.5b) with zn + A−∗n z′n and integrate over In. We get

0 = ‖zn(tn)‖2
W −

∥∥zn(t+n−1)
∥∥2

W
+

∫
In

〈Anzn, zn〉+
〈
z′n,A−∗n z′n

〉
.

The bounds follow from continuity and coercivity of An, Lemma 2.1 and
summing over n. Concerning (5.9c), we have

N∑
n=1

∥∥zn(t+n−1)
∥∥2

W
− ‖zn(tn)‖2

W

≤ ‖P1P0u(t0)− P1u(t0)‖2
W

+
N−1∑
n=1

‖Pn+1Pnu(tn) + Pn+1zn(tn)− Pn+1u(tn)‖2
W − ‖zn(tn)‖2

W .

(5.10)

Since Vn+1 ⊂ Vn ⊕ Vn+1 we have Pn+1 = P+
n Pn+1 = Pn+1P

+
n and we can

bound every term in the sum in the right-hand side in the following way:

‖Pn+1Pnu(tn) + Pn+1zn(tn)− Pn+1u(tn)‖2
W

=
∥∥Pn+1Pnu(tn) + Pn+1zn(tn)− Pn+1P

+
n u(tn)

∥∥2

W

≤
∥∥Pnu(tn) + zn(tn)− P+

n u(tn)
∥∥2

W

=
∥∥Pnu(tn)− P+

n u(tn)
∥∥2

W
+ ‖zn(tn)‖2

W .

Inserting this in (5.10) gives (5.9c).

Combining (5.3) with (5.8) and (5.9), and recalling that Pn is uniformly
stable we get the following result.

Theorem 5.5. The Galerkin solution UM of method (5.1) with bM as in
(5.2) satisfies the following estimate

‖u− UM‖1,P ≤ κσσ inf
v∈M̂1

‖u− v‖1,P

+ κσ
√
Cz

(
‖P1(I − P0)u(t0)‖2

W +
N−1∑
n=1

∥∥P+
n (I − Pn)u(tn)

∥∥2

W

)1/2

.

(5.11)

Remark 5.6. If Vn+1 ⊂ Vn for every n = 0, . . . , N − 1, then P1(I −P0) and
P+
n (I − Pn) = 0, and we get

‖u− UM‖1 ≤ κσσ inf
v∈H1(S)

‖u− v‖1 .
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In particular, if Vn = S for every n = 0, . . . , N , we recover qualitatively one
of the results of Theorem 3.7.

To give an idea of the sharpness and the limitations of estimate (5.11),
we consider the following example.

Example 5.7 (Discretization with eigenfunctions). Assume Ω ⊂ Rd, V =
H1

0 (Ω), W = L2(Ω), V ∗ = H−1(Ω), u0 ∈ L2(Ω) and A = −∆. We consider
the homogeneous equation

∂tu−∆u = 0 in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(x, 0) = u0 in Ω,

whose exact solution is given by

u(x, t) =
∞∑
j=1

〈u0, φj〉 e−λjtφj(x),

where {φj}∞j=1 are the eigenfunctions of the Laplacian, with corresponding
eigenvalues {λj}∞j=1.

For the discretization, we consider an even N and a uniform partition
in time, with τ1 = . . . = τN =: T/N , and thus tn = nT/N , n = 0, . . . , N.
Moreover we set Vn = Seven if n is even, otherwise Vn = Sodd, with

Seven := span{φ1, . . . , φm−1, φm}, Sodd := span{φ1, . . . , φm−1, φm+1}.

We want to compute the difference between the error and the bound in (5.11).
The function U given by

U(x, 0) =
m∑
j=1

〈u0, φj〉φj(x), U(x, t) =
m−1∑
j=1

〈u0, φj〉 e−λjtφj(x), t > 0,

belongs to M1 and solves the discrete problem. The error ‖u− U‖1,P is given
by

‖u− U‖2
1,P = ‖u(0)− U(0)‖2

W +
N∑
n=1

∫
In

‖u′ − U ′‖2
V ∗ + ‖u− U‖2

V

=
∞∑

j=m+1

〈u0, φj〉2 +

∫
I

∞∑
j=m

〈u0, φj〉2 2λje
−2λjt dt

=
∞∑

j=m+1

〈u0, φj〉2 +
∞∑
j=m

〈u0, φj〉2 (1− e−2λjT ).
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Since Seven ⊕ Sodd = span{φ1, . . . , φm+1}, we get

P+
n (I − Pn)u(tn) =

{
〈u0, φm+1〉φm+1e

−λm+1tn if n even

〈u0, φm〉φme−λmtn if n odd
,

while P1(I − P0)u0 = 〈u0, φm+1〉φm+1. We recall that N is even and obtain

‖P1(I − P0)u0‖2
W +

N−1∑
n=1

∥∥P+
n (I − Pn)u(tn)

∥∥2

W

= 〈u0, φm+1〉2 +

N/2−1∑
k=1

〈u0, φm+1〉2 e−2λm+1t2k +

N/2−1∑
k=0

〈u0, φm〉2 e−2λmt2k+1

= 〈u0, φm+1〉2
N/2−1∑
k=0

(
e−

4λm+1T

N

)k
+ 〈u0, φm〉2 e−

2λmT
N

N/2−1∑
k=0

(
e−

4λmT
N

)k
,

and

inf
v∈M̂1

‖u− v‖2
1,P =

∞∑
j=m+1

〈u0, φj〉2 +

∫
I

∞∑
j=m+2

〈u0, φj〉2 2λje
−2λjt dt

+

N/2∑
k=1

∫
I2k

〈u0, φm+1〉2 2λm+1e
−2λm+1t dt

+

N/2−1∑
k=0

∫
I2k+1

〈u0, φm〉2 2λme
−2λmt dt.

Therefore

inf
v∈M̂1

‖u− v‖2
1,P + ‖P1(I − P0)u0‖2

W +
N−1∑
n=1

∥∥P+
n (I − Pn)u(tn)

∥∥2

W

− ‖u− U‖2
1,P

= 〈u0, φm+1〉2 e−
2λm+1T

N

(
1− e−2λm+1T

1− e−
4λm+1T

N

)

+ 〈u0, φm〉2 e
−4λmT

N

(
1− e−2λmT

1− e− 4λmT
N

)
.

We notice that this difference may get big, if we take N � λm+1. On the
other hand, if N � λm, it converges to 0 as m→∞.
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5.2 Natural formulation

Assume that V ⊂ W ⊂ V ∗, a and A are as in Section 2.1, while, as in Section
2.3, X1 = L2(V ), X2 = {ϕ ∈ H1(V, V ∗), ϕ(T ) = 0} with norms

‖v‖2
1 =

∫ T

0

‖v‖2
V , ‖ϕ‖2

2 =

∫ T

0

‖ϕ′‖2
V ∗ + ‖ϕ‖2

V ,

and the bilinear form b : X1 ×X2 → R is given by

b(v, ϕ) =

∫ T

0

−〈ϕ′, v〉+ 〈Av, ϕ〉 .

We take ` ∈ X∗2 of the form

`(ϕ) = 〈g0, ϕ(0)〉+

J−1∑
j=1

〈
gj, ϕ(t̃j)

〉
+

∫ T

0

〈f, ϕ〉 ,

with f ∈ L2(V ∗), (gj)
J−1
j=0 ⊂ W and 0 = t̃0 < t̃1 < . . . < t̃J = T , as in Section

4.2.1. We recall that, with this choice, the solution u of

b(u, ϕ) = `(ϕ), ∀ϕ ∈ X2, (5.12)

belongs to H1((t̃j−1, t̃j);V, V
∗) ⊂ C0([t̃j−1, t̃j];W ), for j = 1, . . . , J . Moreover

it also satisfies, for every (ϕ, φ) ∈ L2(0, T ;V )×W J ,

〈u(0), φ0〉+

J−1∑
j=1

〈
u(t̃+j )− u(t̃−j ), φj

〉
+

J∑
j=1

∫ t̃j

t̃j−1

〈u′ + Au, ϕ〉

=

J−1∑
j=0

〈gj, φj〉+

∫ T

0

〈f, ϕ〉 , (5.13)

where u(t−) := lims↗t u(s) denotes the left limit of the function u to the time
t.

Let P be a partition of (0, T ), 0 =: t0 < t1 < . . . < tN := T , that
is subordinate to (t̃j)

J−1
j=1, that is, for every j = 1, . . . , J − 1 there exists

n ∈ {1, . . . , N} such that tn = t̃j. We indicate by J the set of indices n
which correspond to an index j. Similarly as Section 5.1 a finite-dimensional
subspace Vn ⊂ V is related to every subinterval In := [tn−1, tn). Note that
In is left-closed and right-open. The W -orthogonal projections Pn onto Vn,
n = 1, . . . , N are assumed to be uniformly stable in V , with

σ := sup
n=1,...,N

sup
v∈V

‖Pnv‖V
‖v‖V

.
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Moreover let An : I → L(Vn,V∗n) be the discrete counterpart of A. We
consider the spaces

M1 := {v ∈ L2(V ), v|In ∈ L2(In;Vn), n = 1, . . . , N}, (5.14a)

M2 := {ϕ ∈ L2(V ), ϕ|In ∈ H1(In;Vn), n = 1, . . . , N,

ϕ(t−n ) = Pnϕ(tn), n = 1, . . . , N − 1, ϕ(T ) = 0}. (5.14b)

The space M1 ⊂ X1 and inherits its norm, while M2 * X2 in general and it
is endowed with the broken counterpart of ‖·‖2:

‖ϕ‖2
2,P :=

N∑
n=1

∫
In

‖ϕ′‖2
V ∗ + ‖ϕ‖2

V .

If we choose Vn = S for every n = 1, . . . , N , then M1 and M2 coincide
respectively with L2(S) and H1(S) and we are in the situation of Section
3.3. We remark that the constraints ϕ(t−n ) = Pnϕ(tn) in the definition of M2

can be seen as a discrete replacement of the embedding X2 ⊂ C0(W ).
We replace b with its broken counterpart

bM(v, ϕ) :=
N∑
n=1

∫
In

−〈ϕ′, v〉+ 〈Av, ϕ〉 , (5.15)

so that bM is well-defined also on M2. Moreover we replace ` with

`M(ϕ) := 〈g0, ϕ(0)〉+

J−1∑
j=1

〈
gj, ϕ(t̃+j )

〉
+

∫ T

0

〈f, ϕ〉 , (5.16)

so that `M is well-defined also on M2. We prove that the discrete problem
is well-posed, and then invoke the results of Section 1.3, since we are in a
non-conforming setting.

Proposition 5.8. The bilinear form (5.15) is continuous and satisfies the
inf-sup condition (1.9) on M1 ×M2 with

CM ≤
√

2 max{1, Ca}, cM ≥
νa√

2
min{1, C−1

a σ−1}.

Moreover it is also continuous on (X1, ‖·‖1)× (M2, ‖·‖2,P) and CX1×M2 sat-
isfies the same bound as CM .

Proof. The proof mimics the one of Propositions 2.3 and 5.1. In order to
derive the lower bound for cM we choose, for every ϕ ∈M2,

v|In = ϕ|In − A−1
n (ϕ′|In), n = 1, . . . , N.
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In addition we exploit ‖ϕ′‖V∗n ≥ σ−1 ‖ϕ′‖V ∗ and

N∑
n=1

‖ϕ(tn−1)‖2
W −

∥∥ϕ(t−n )
∥∥2

W
≥ ‖ϕ(0)‖2

W +
N−1∑
n=1

‖ϕ(tn)‖2
W −

∥∥ϕ(t−n )
∥∥2

W

= ‖ϕ(0)‖2
W +

N−1∑
n=1

‖ϕ(tn)‖2
W − ‖Pnϕ(tn)‖2

W

= ‖ϕ(0)‖2
W +

N−1∑
n=1

‖ϕ(tn)− Pnϕ(tn)‖2
W ≥ 0. (5.17)

Concerning the non-degeneracy condition (1.9b), if bM(v, ϕ) = 0 for every
ϕ ∈ M2, the argument in the proof of Proposition 2.2 gives, for every n =
1, . . . , N , v ∈ H1(In,Vn). As in the proof of Proposition 5.1 we get, for
n = 1, . . . , N , v′n + Anvn = 0, v(tn) = Pn+1v(t−n ) and v(0) = 0. By induction
on n we get v|In = 0, for every n = 1, . . . , N .

Applying the results of Section 1.3 we get

‖u− UM‖1 ≤ 2ν−1
a max{1, Caσ,C2

aσ} inf
v∈M1

‖u− v‖1

+
√

2ν−1
a max{1, Caσ} sup

ϕ∈M2

bM(u, ϕ)− `M(ϕ)

‖ϕ‖2,P
. (5.18)

5.2.1 Abstract error estimate

Our purpose is to bound the consistency error that appears in the right-hand
side of (5.18).

Proposition 5.9 (Bound for the consistency error). The consistency error
in (5.18) satisfies

sup
ϕ∈M2

bM(u, ϕ)− `M(ϕ)

‖ϕ‖2,P
≤

(
N−1∑
n=1

∥∥(I − Pn)P+
n u(t−n )

∥∥2

W

) 1
2

, (5.19)

where P+
n is the W -projection onto Vn ⊕ Vn+1, n = 1, . . . , N − 1.

Proof. We notice first that from (5.17) we deduce that

N−1∑
n=1

‖ϕ(tn)− Pnϕ(tn)‖2
W ≤

N∑
n=1

‖ϕ(tn−1)‖2
W −

∥∥ϕ(t−n )
∥∥2

W

=
N∑
n=1

∫
In

−〈ϕ′, ϕ〉 ≤ ‖ϕ‖2
2,P . (5.20)
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Our aim is then to bound bM(u, ϕ)− `M(ϕ) in terms of the left-hand side of
(5.20). Since the exact solution u of (5.12) is piecewise in H1(V ∗) we can
integrate by parts in time, and get, for every ϕ ∈M2,

bM(u, ϕ)− `M(ϕ)

=
N∑
n=1

(∫
In

〈−ϕ′, u〉+ 〈Au, ϕ〉
)
−

J−1∑
j=0

〈
gj, ϕ(t̃+j )

〉
−
∫ T

0

〈f, ϕ〉

=
N∑
n=1

(〈
ϕ(t+n−1), u(t+n−1)

〉
−
〈
ϕ(t−n ), u(t−n )

〉
+

∫
In

〈u′, ϕ〉+ 〈Au, ϕ〉
)

−
J−1∑
j=0

〈
gj, ϕ(t̃+j )

〉
−
∫ T

0

〈f, ϕ〉 .

Moreover u also solves (5.13) and u(t+n ) = u(t−n ) for every n /∈ J. Therefore,

bM(u, ϕ)− `M(ϕ)

=
N∑
n=1

〈
ϕ(t+n−1), u(t+n−1)

〉
−
〈
ϕ(t−n ), u(t−n )

〉
−

J−1∑
j=1

〈
gj, ϕ(t̃+j )

〉
=

N−1∑
n=1,n/∈J

〈
ϕ(t+n ), u(t+n )

〉
−
〈
ϕ(t−n ), u(t−n )

〉
+

J−1∑
j=1

〈
ϕ(t̃+j ), u(t̃+j )

〉
−
〈
ϕ(t̃−j ), u(t̃−j )

〉
−
〈
u(t̃+j )− u(t̃−j ), ϕ(t̃+j )

〉
=

N−1∑
n=1

〈
ϕ(t+n ), u(t−n )

〉
−
〈
ϕ(t−n ), u(t−n )

〉
=

N−1∑
n=1

〈
ϕ(t+n ), u(t−n )

〉
−
〈
Pnϕ(t+n ), u(t−n )

〉
. (5.21)

Every term in the sum on the right-hand side of (5.21) can be rewritten,
introducing P+

n , as〈
ϕ(t+n ), u(t−n )

〉
−
〈
Pnϕ(t+n ), u(t−n )

〉
=
〈
ϕ(t+n ), P+

n u(t−n )
〉
−
〈
ϕ(t+n ), P+

n u(t−n )
〉

=
〈
ϕ(t+n )− Pnϕ(t+n ), P+

n u(t−n )
〉

=
〈
ϕ(t+n )− Pnϕ(t+n ), (I − Pn)P+

n u(t−n )
〉

≤
∥∥ϕ(t+n )− Pnϕ(t+n )

∥∥
W

∥∥(I − Pn)P+
n u(t−n )

∥∥
W
. (5.22)

Combining (5.21)–(5.22) with (5.20) we get (5.19).
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Combining (5.18) with Proposition 5.9 we get

Theorem 5.10. The Galerkin solution UM of method (5.14) with bM as in
(5.15) and `M as in (5.16) satisfies

‖u− UM‖1 ≤ 2ν−1
a max{1, Caσ,C2

aσ} inf
v∈M1

‖u− v‖1

+
√

2ν−1
a max{1, Caσ}

(
N−1∑
n=1

∥∥(I − Pn)P+
n u(t−n )

∥∥2

W

) 1
2

.

Remark 5.11. The following statements are equivalent

(i) Vn+1 ⊆ Vn, for every n = 1, . . . , N − 1;

(ii) sup
ϕ∈M2

bM(u, ϕ)− `M(ϕ)

‖ϕ‖2,P
= 0.

In this case,
‖u− UM‖1 ≤ C(νa, Ca, σ) inf

v∈M1

‖u− v‖1 ,

that is, we recover one of the results of Theorem 3.10.

Proof. (i)⇒(ii) follows from (5.19). Concerning (ii)⇒(i), from (5.21)–(5.22)
and (ii) follows that〈

ϕ, (I − Pn)P+
n u(t−n )

〉
= 0, ∀ϕ ∈ Vn+1.

Therefore, it holds 0 = Pn+1(I − Pn)Pn+ = Pn+1(I − Pn). Hence, for every
vn+1 ∈ Vn+1, we have

‖vn+1 − Pnvn+1‖2
W = 〈vn+1 − Pnvn+1, vn+1 − Pnvn+1〉

= 〈vn+1, vn+1 − Pnvn+1〉
= 〈vn+1, Pn+1vn+1 − Pn+1Pnvn+1〉 = 0,

that is vn+1 = Pnvn+1, and vn+1 ∈ Vn.



Chapter 6

Full Discretization with the
Backward Euler-Galerkin
Method

In this chapter we analyse the backward Euler-Galerkin method, with the
help of the results in Chapters 3–5. We discretize in both time and space
and the spatial discretization may vary.

6.1 Standard formulation

Assume that V ⊂ W ⊂ V ∗, a and A are as in Section 2.1, while, as in Section
2.2, X1 = H1(V, V ∗) and X2 = W × L2(V ) with norms

‖v‖2
1 = ‖v(0)‖2

W +

∫ T

0

‖v′‖2
V ∗ + ‖v‖2

V , ‖ϕ‖2
2 = ‖ϕ0‖2

W +

∫ T

0

‖ϕ1‖2
V .

Moreover u0 ∈ W , f ∈ L2(V ), and the bilinear form b : X1 × X2 → R and
` ∈ X∗2 are given by

b(v, ϕ) = 〈v(0), ϕ0〉+

∫ T

0

〈v′, ϕ1〉+ 〈Av, ϕ1〉 ,

`(ϕ) = 〈u0, ϕ0〉+

∫ T

0

〈f, ϕ1〉 .

Moreover, as in Section 4.1, let N ∈ N and P be a partition

0 = t0 < t1 < . . . < tN = T

73
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of I = (0, T ) into N subintervals In = (tn−1, tn], with

µP = sup
n

τn−1

τn
<∞.

As in Section 5.1 we consider a sequence of finite-dimensional subspaces
{Vn}Nn=0 ⊂ V . Approximation of the initial value takes place in V0, while for
n = 1, . . . , N , the approximation in the n-th interval In occurs in Vn. The
W -orthogonal projection on Vn is denoted by Pn, and {Pn}Nn=0 is assumed
to be uniformly stable in V , with

σ = sup
n=0,...,N

sup
v∈V

‖Pnv‖V
‖v‖V

.

In addition the operator An : Vn → V∗n, which can be seen both as the
discrete-in-time counterpart of An of Section 5.1, or the discrete-in-space
counterpart of An of Section 4.1, is defined by

Anv :=
1

τn

∫
In

An(t)v dt.

We set
S0,−1(P ,V) := {ϕ ∈ L2(V ), ϕ|In ∈ Vn, n = 1, . . . , N}

and consider the spaces

M1 := {v ∈ L2(V ), v(0) ∈ V0, v|In ∈ P1(In,Vn), (6.1a)

v(t+n−1) = Pnv(tn−1), n = 1, . . . , N},
M2 := V0 × S0,−1(P ,V), (6.1b)

where v(t+) := lims↘t v(s) denotes the right limit of the function v to the
time t. We notice that M2 ⊂ X2, while in general M1 * X1. They are
finite-dimensional spaces, with dim(M1) = dim(M2). We remark that the
constraints v(t+n−1) = Pnv(tn−1) can be seen as a discrete replacement of the
embedding X1 ⊂ C0(W ). The space M2 inherits the ‖·‖2-norm, while M1 is
endowed with

‖v‖2
1,P := ‖v(0)‖2

W +
N∑
n=1

∫
In

‖v′‖2
V ∗ +

∥∥∥Π̂v
∥∥∥2

V
,

where Π̂ is defined, for n = 1, . . . , N , as in Section 4.1:

Π̂v|In = Πnv =

∫
In

vψn, with ψn(t) =
6(t− tn−1)

τ 2
n

− 2

τn
.
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Moreover we set Π0u = u(0). We replace b with

bM(v, ϕ) := 〈v(0), ϕ0〉+
N∑
n=1

∫
In

〈v′, ϕn〉+
〈
AΠ̂v, ϕn

〉
, (6.2)

so that bM is well-defined also on M1 × M2. We prove that the discrete
problem is well-posed.

Proposition 6.1. The bilinear form (6.2) is continuous and satisfies the
inf-sup condition (1.9) on M1 ×M2 with

CM ≤
√

2 max{1, Ca}, cM ≥
min{νa, C−1

a σ−1, νaC
−1
a σ−1}

2
.

Moreover, it is also continuous on (X1, ‖·‖1,P)× (M2, ‖·‖2) and CX1×M2 sat-
isfies the same bound as CM .

Proof. The proof mimics those of Proposition 4.2 and 5.1. We derive the
lower bound for cM and the non-degeneracy condition (1.9b) follows since
dim(M1) = dim(M2) <∞. We choose, for every v ∈M1,

ϕ0 = 2v(0), ϕn = Πnv + A−∗n (v′|In), n = 1, . . . , N.

In addition, we exploit ‖v′‖V∗n ≥ σ−1 ‖v′‖V ∗ and

‖v(0)‖2
W +

N∑
n=1

∫
In

2 〈v′, v(tn)〉

= ‖v(0)‖2
W +

N∑
n=1

2 ‖v(tn)‖2
W − 2

〈
v(t+n−1), v(tn)

〉
≥

N∑
n=1

‖v(tn)‖2
W − 2 〈Pnv(tn−1), v(tn)〉+ ‖v(tn−1)‖2

W

=
N∑
n=1

‖v(tn)− v(tn−1)‖2
W ≥ 0.

We are in the situation described in Section 1.3. In order to derive an
abstract error estimate, we need to bound the consistency error. We recall
that

S0,−1(P , V ) = {v ∈ L2(V ), v|In ∈ V, n = 1, . . . , N}
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is the space of piecewise constants with values in V . We observe that, thanks
to (4.11), we have, for every ϕ ∈M2,

bM(u, ϕ)− `(ϕ) = bM(u, ϕ)− b(u, ϕ) =

∫ T

0

〈
A(Π̂u− u), ϕ

〉
≤
√

5Ca inf
z∈S0,−1(P,V )

‖u− z‖L2(V ) ‖ϕ‖L2(V ) . (6.3)

Proposition 6.2. The Galerkin solution UM of method (6.1) with bM as in
(6.2) satisfies the following estimate(
‖u′ − U ′M‖

2
L2(V ∗) +

∥∥∥u− Π̂UM

∥∥∥2

L2(V )
+ ‖u(0)− UM(0)‖2

W

)1/2

≤
√

2κσ inf
v∈M1

(
‖u′ − v′‖2

L2(V ∗) +
∥∥∥Π̂u− Π̂v

∥∥∥2

L2(V )
+ ‖u(0)− v(0)‖2

W

)1/2

+ (
√

2kσ +
√

10) inf
z∈S0,−1(P,V )

‖u− z‖L2(V ) , (6.4)

where we recall κσ = 2
√

2 max{ν−1
a , C2

aσ, ν
−1
a C2

aσ}, while we set kσ :=
2
√

5Ca max{ν−1
a , Caσ, ν

−1
a Caσ}.

Proof. From Proposition 6.1, the results in Section 1.3 and (6.3) we get(
‖u′ − U ′M‖

2
L2(V ∗) +

∥∥∥Π̂u− Π̂UM

∥∥∥2

L2(V )
+ ‖u(0)− UM(0)‖2

W

)1/2

≤ κσ inf
v∈M1

(
‖u′ − v′‖2

L2(V ∗) +
∥∥∥Π̂u− Π̂v

∥∥∥2

L2(V )
+ ‖u(0)− v(0)‖2

W

)1/2

+ kσ inf
z∈S0,−1(P,V )

‖u− z‖L2(V ) .

Combining with (4.11), we get (6.4).

The first infimum on the right-hand side of (6.4) is on functions v that
belong to M1. Therefore v|In ∈ Vn and v|In+1 ∈ Vn+1 are not independent but
linked by v(t+n ) = Pn+1v(tn). Moreover the norm involves both the function
itself and its time derivative. We aim at an error estimate that involves the
best errors for u and u′ in S0,−1(P ,V). To this end we insert a particular

choice of v = Îu ∈ M1 in the first infimum in right-hand side of (6.4). We
imitate the structure of the interpolation operator of Section 5.1.2 and define
Î : X1 +M1 →M1 as

Îu := Ξu+ Z, (6.5)
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where Ξu(0) := P0u(0) and, for n = 1, . . . , N ,

∀t ∈ In, (Ξu)(t) := (Ξnu)(t) := Pn

(
Πn−1u− Πnu

τn
(tn − t) + Πnu

)
,

(6.6)
and Z is such that Z(0) = 0 and Z|In := Zn ∈ P1(In,Vn) satisfies

Z ′n + AnΠnZn = 0 and (6.7a)

Zn(t+n−1) = PnPn−1Πn−1u+ PnZ(tn−1)− PnΠn−1u =: Z+
n ∈ Vn. (6.7b)

We investigate the properties of Î in the following

Proposition 6.3 (Properties of Î). The interpolation operator Î defined in
(6.5) with Ξ as in (6.6) and Z as in (6.7) is a linear projection onto M1, and
it is stable with respect to ‖·‖1,P with∥∥∥Îu∥∥∥

1,P
≤ C(νa, Ca, σ, µP) ‖u‖1,P .

Proof. Thanks to (6.7b), Îu ∈ M1 for every u ∈ X1 +M1. Linearity follows
from linearity of Pn and of the equation in (6.7a). Invariance over M1 is due
to the fact that, for every u ∈M1, Ξnu = u|In and Z+

n = 0, n = 1, . . . , N −1.
Concerning stability, we proceed as in the proof of Proposition 5.3. We
exploit the fact that bM satisfies the inf-sup condition on M1 ×M2, and the
definition of Zn. We get that

cM

∥∥∥Îu∥∥∥
1,P
≤ CM ‖Ξu‖1,P . (6.8)

Moreover, thanks to the V -stability of Pn we have

‖Ξu‖1,P ≤
√

3σ
√

4µP + 5 ‖u‖1,P . (6.9)

In fact, for n = 1, . . . , N ,

‖ΠnΞnu‖V = ‖PnΠnu‖V ≤ σ ‖Πnu‖V ,

while for ‖Ξnu
′‖2
V ∗ we have for n = 1

‖Ξ1u
′‖2
V ∗ ≤ σ2

∥∥∥∥Π1u− u(0)

τ1

∥∥∥∥2

V ∗

≤ 2σ2

(∥∥∥∥ 1

τ1

∫
I1

u′
∥∥∥∥2

V ∗
+

∥∥∥∥Π1u− u(t1)

τ1

∥∥∥∥2

V ∗

)

≤ 2π2 + 32

π2

σ2

τ1

‖u′‖2
L2(In,V ∗)

,
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and for n = 2, . . . , N

‖Ξnu
′‖2
V ∗ ≤ σ2

∥∥∥∥Πnu− Πn−1u

τn

∥∥∥∥2

V ∗

≤ 3σ2

(∥∥∥∥ 1

τn

∫
In

u′
∥∥∥∥2

V ∗
+

∥∥∥∥Πnu− u(tn)

τn

∥∥∥∥2

V ∗
+

∥∥∥∥Πn−1u− u(tn−1)

τn

∥∥∥∥2

V ∗

)

≤ 3σ2

(
π2 + 16

π2τn
‖u′‖2

L2(In,V ∗)
+

16

π2

τn−1

τ 2
n

‖u′‖2
L2(In−1,V ∗)

)
.

Combining (6.8)–(6.9) gives the assertion.

Thanks to Proposition (6.3), the choice of Î ensures that∥∥∥u− Îu∥∥∥
1,P
≈ inf

v∈M1

‖u− v‖1,P ,

with hidden constants depending on νa, Ca, σ and µP . In order to further
estimate ‖u− Iu‖1,P , we split it as∥∥∥u− Îu∥∥∥

1,P
≤ ‖u− Ξu‖1,P + ‖Z‖1,P , (6.10)

and we bound the two terms on the right-hand side separately.

Proposition 6.4. The operator Ξ defined in (6.6) satisfies the following
bound:

‖u− Ξu‖2
1,P ≤ 3σ2π

2 + 16 + 16π2

π2
inf

v∈S0,−1(P,V)
‖u′ − v‖2

L2(V ∗)

+ 4σ2 inf
w∈SL2 (P,V)

‖u− w‖2
L2(V ) + inf

v0∈V0

‖u(0)− v0‖2
W ,

where SL2
(P ,V) := {z ∈ L2(V ), z|In ∈ L2(In,Vn), n = 1, . . . , N}.

Proof. We notice first that ‖u(0)− Ξu(0)‖W = ‖u(0)− P0u(0)‖W is the best

error in V0 in the W -norm. Regarding
∥∥∥Π̂(u− Ξu)

∥∥∥2

L2(V )
we have, for n =

1, . . . , N ,∥∥∥Π̂(u− Ξu)
∥∥∥2

L2(In,V )
=

∫
In

‖Πnu− PnΠnu‖2
V ≤ 4 ‖u− Pnu‖2

L2(In,V ) .

By V -stability of Pn we get∥∥∥Π̂(u− Ξu)
∥∥∥2

L2(V )
≤ 4σ2 inf

w∈SL2 (P,V)
‖u− w‖2

L2(V ) .
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Concerning ‖u′ − (Ξu)′‖2
L2(V ∗), we insert Pn

(
1
τn

∫
In
u′
)

for n = 2, . . . , N :

u′ − PnΠnu− PnΠn−1u

τn

= u′ − Pn
(

1

τn

∫
In

u′
)

+
Pnu(tn)− PnΠnu

τn

+
PnΠn−1u− Pnu(tn−1)

τn
. (6.11)

We bound separately∥∥∥∥Pnu(tn)− PnΠnu

τn

∥∥∥∥2

L2(In,V ∗)

=
1

τn
‖Pnu(tn)− PnΠnu‖2

V ∗

≤ 16σ2

π2
inf
c∈V ∗
‖u′ − c‖2

L2(In,V ∗)
, (6.12)

and∥∥∥∥Pnu(tn−1)− PnΠn−1u

τn

∥∥∥∥2

L2(In,V ∗)

=
1

τn

∥∥Pnu(tn−1)− PnΠn−1u
∥∥2

V ∗

≤ 16σ2µP
π2

inf
c∈V ∗
‖u′ − c‖2

L2(In−1,V ∗)
. (6.13)

Combining (6.11)–(6.13) we get, for n = 2, . . . , N ,

‖u′ − (Ξu)′‖2
L2(In,V ∗)

≤ 3σ2

(
π2 + 16

π2
inf
c∈Vn
‖u′ − c‖2

L2(In,V ∗)

16µP
π2

inf
c∈Vn−1

‖u′ − c‖2
L2(In,V ∗)

)
.

For n = 1, we have

u′ − P1Π1u− P1u(0)

τ1

= u′ − P1

(
1

τ1

∫
I1

u′
)

+
P1u(t1)− P1Π1u

τ1

and thus

‖u′ − (Ξu)′‖2
L2(I1,V ∗)

≤ 2π2 + 32

π2
σ2 inf

c∈V1

‖u′ − c‖2
L2(I1,V ∗)

.

The thesis follows by summing ‖u′ − (Ξu)′‖2
L2(In,V ∗)

over n.
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Proposition 6.5. The correction Z defined in (6.7), satisfies

‖Z‖2
1,P ≈

N∑
n=1

∥∥Zn(t+n−1)
∥∥2

W
− ‖Zn(tn)‖2

W −
∥∥Zn(tn)− Zn(t+n−1)

∥∥2

W
, (6.14a)

where the hidden constants are given by Cz in the .-direction, and cz in the
&-direction, being Cz and cz as in (5.9b). Moreover,

N∑
n=1

∥∥Zn(t+n−1)
∥∥2

W
− ‖Zn(tn)‖2

W

≤ ‖P1(I − P0)u(t0)‖2
W +

N−1∑
n=1

∥∥P+
n (I − Pn)Πnu

∥∥2

W
, (6.14b)

where P+
n denotes the W -projection onto Vn ⊕ Vn+1, n = 1, . . . , N − 1.

Proof. The proof follows the same lines as the proof of Proposition 5.4. The
only difference is that, when testing (6.7a) with Zn + A−∗n Z ′n and integrating
over In, we get

0 = 2 ‖Zn(tn)‖2
W − 2

〈
Zn(t+n−1), Zn(tn)

〉
W

+

∫
In

〈AnZn, Zn〉+
〈
Z ′n,A−∗n Z ′n

〉
,

and
N∑
n=1

2
〈
Zn(t+n−1), Zn(tn)

〉
W
− 2 ‖Zn(tn)‖2

W

=
N∑
n=1

∥∥Zn(t+n−1)
∥∥2

W
− ‖Zn(tn)‖2

W −
∥∥Zn(tn)− Zn(t+n−1)

∥∥2

W
.

Combining Propositions 6.2, 6.4 and 6.5 we get

Theorem 6.6. The Galerkin solution UM of method (6.1) with bM as in
(6.2) satisfies the following estimate

‖u′ − U ′M‖
2
L2(V ∗) +

∥∥∥u− Π̂UM

∥∥∥2

L2(V )
+ ‖u(0)− UM(0)‖2

W

≤ C0 inf
v0∈V0

‖u(0)− v0‖2
W + C1 inf

v∈S0,−1(P,V)
‖u′ − v‖2

L2(V ∗)

+ C2 inf
w∈SL2 (P,V)

‖u− w‖2
L2(V ) + C3 inf

z∈S0,−1(P,V )
‖u− z‖L2(V )

+ C4

(
‖P1(I − P0)u(t0)‖2

W +
N−1∑
n=1

∥∥P+
n (I − Pn)Πnu

∥∥2

W

)
,

where C0 := 6κ2
σ, C1 := 18κ2

σσ
2(π2 + 16 + 16µP)/π2, C2 := 24κ2

σσ
2, C3 :=

3(
√

2kσ +
√

10)2, C4 := 6ν−1
a κσ max{1, C2

aσ
2}.
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We notice that there are two best errors involving u and the L2(V )-norm.
One regards only the time discretization, while the other just the spatial
discretization. The best error for u′ in the L2(V ∗)-norm, instead, couples the
spatial and the time discretizations.

Assuming additional regularity

As in Section 4.1, we assume that the exact solution u belongs to C0(V ), and
provide a bound with constants independent of µP . For v ∈ C0(V ) we set

Π̂v|In := v(tn). (6.15)

Proposition 6.1 is still valid, but the consistency error can only be bounded,
as in (4.20), by

sup
ϕ∈M2

bM(u, ϕ)− `(ϕ)

‖ϕ‖2

≤ Ca

∥∥∥u− Π̂u
∥∥∥
L2(V )

.

The following proposition is the counterpart of Proposition 6.2.

Proposition 6.7. Assume u ∈ C0(V ). The Galerkin solution UM of method

(6.1) with bM as in (6.2), and Π̂ as in (6.15) satisfies(
‖u′ − U ′M‖

2
L2(V ∗) +

∥∥∥u− Π̂UM

∥∥∥2

L2(V )
+ ‖u(0)− UM(0)‖2

W

)1/2

≤
√

2κσ inf
v∈M1

(
‖u′ − v′‖2

L2(V ∗) +
∥∥∥Π̂u− Π̂v

∥∥∥2

L2(V )
+ ‖u(0)− v(0)‖2

W

)1/2

+

(
kσ√

5
+ 1

)∥∥∥u− Π̂u
∥∥∥
L2(V )

, (6.16)

where we recall κσ = 2
√

2 max{ν−1
a , C2

aσ, ν
−1
a C2

aσ}, and kσ = 2
√

5Ca·
·max{ν−1

a , Caσ, ν
−1
a Caσ}.

In place of Ξ defined in (6.6) we can set, for every n = 1, . . . , N ,

∀t ∈ In, (Ξu)(t) := Pn

(
u(tn)− u(tn−1)

τn
(tn − t) + u(tn)

)
, (6.17)

while Ξu(0) is still defined as P0u(0).
Correspondingly, we change the definition of Z+

n in (6.7), setting

Z+
n := PnPn−1u(tn−1) + PnZ(tn−1)− Pnu(tn−1).

With this choices Îu = Ξu + Z belongs to M1. In place of Theorem 6.6 we
get the following result.
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Theorem 6.8. Assume u ∈ C0(V ). The Galerkin solution UM of method

(6.1) with bM as in (6.2) and Π̂ as in (6.15) satisfies

‖u′ − U ′M‖
2
L2(V ∗) +

∥∥∥u− Π̂UM

∥∥∥2

L2(V )
+ ‖u(0)− UM(0)‖2

W

≤ C̃1 inf
v0∈V0

‖u(0)− v0‖2
W + C̃1

N∑
n=1

∫
In

∥∥∥∥u′ − Pn 1

τn

∫
In

u′
∥∥∥∥2

V ∗

+ C̃1

N∑
n=1

τn ‖u(tn)− Pnu(tn)‖2
V + C̃2

∥∥∥u− Π̂u
∥∥∥2

L2(V )

+ C̃3

(
‖P1(I − P0)u(t0)‖2

W +
N−1∑
n=1

∥∥P+
n (I − Pn)u(tn)

∥∥2

W

)
,

where C̃1 := 6κ2
σ, C̃2 := 3(kσ/

√
5 + 1)2, C̃3 := 6ν−1

a κσ max{1, C2
aσ

2}.

Proof. We insert v = Îu in the infimum on the right-hand side of (6.16). As
in (6.10) we use triangle inequality and split∥∥∥u− Îu∥∥∥

1,P
≤ ‖u− Ξu‖1,P + ‖Z‖1,P .

Concerning ‖Z‖1,P , we notice that it can be bounded as in Proposition 6.5
with u(tn) in place of Πnu. Concerning ‖u− Ξu‖1,P we observe that

(Ξu|In)′ = Pn
u(tn)− u(tn−1)

τn
= Pn

1

τn

∫
In

u′,

and that (Ξu)(tn) = Pnu(tn), n = 1, . . . , N .

6.2 Natural formulation

Assume that V ⊂ W ⊂ V ∗, a and A are as in Section 2.1, while, as in Section
2.3, X1 = L2(V ), X2 = {ϕ ∈ H1(V, V ∗), ϕ(T ) = 0} with norms

‖v‖2
1 =

∫ T

0

‖v‖2
V , ‖ϕ‖2

2 =

∫ T

0

‖ϕ′‖2
V ∗ + ‖ϕ‖2

V ,

and the bilinear form b : X1 ×X2 → R is given by

b(v, ϕ) =

∫ T

0

−〈ϕ′, v〉+ 〈Av, ϕ〉 .
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Moreover, as in Sections 4.2.1 and 5.2, ` ∈ X∗2 is of the following form

`(ϕ) = 〈g0, ϕ(0)〉+

J−1∑
j=1

〈
gj, ϕ(t̃j)

〉
+

∫ T

0

〈f, ϕ〉 ,

with f ∈ L2(V ∗), (gj)
J−1
j=0 ⊂ W and 0 = t̃0 < t̃1 < . . . < t̃J = T . Given N ∈ N

the partition P
0 = t0 < t1 < . . . < tN = T

of I = (0, T ) into N subintervals In = [tn−1, tn), satisfies

µP = sup
n

τn−1

τn
<∞,

and it is subordinate to (t̃j)
J
j=1. In addition, as in Section 5.2, we consider

a sequence of finite-dimensional subspaces {Vn}Nn=1 ⊂ V . For n = 1, . . . , N ,
the approximation in the n-th interval In occurs in Vn. The W -orthogonal
projection on Vn is denoted by Pn, and {Pn}Nn=1 is assumed to be uniformly
stable in V , with

σ = sup
n=1,...,N

sup
v∈V

‖Pnv‖V
‖v‖V

.

Finally, as in Section 6.1, the operator An : Vn → V∗n, is defined by

Anv =
1

τn

∫
In

An(t)v dt.

We consider the spaces

M1 := {v ∈ L2(V ), v|In ∈ Vn, n = 1, . . . , N}, (6.18a)

M2 := {ϕ ∈ L2(V ), ϕ|In ∈ P1(In,Vn), ϕ(T ) = 0, (6.18b)

ϕ(t−n ) = Pnϕ(tn), n = 1, . . . , N − 1}.

We notice that M1 ⊂ X1, while in general M2 * X2. They are finite-
dimensional spaces with dim(M1) = dim(M2). We remark that the con-
straints ϕ(t−n ) = Pnϕ(tn) can be seen as a discrete replacement of the em-
bedding X2 ⊂ C0(W ). The space M1 inherits the ‖·‖1-norm, while M2 is
endowed with

‖ϕ‖2
2,P :=

N∑
n=1

∫
In

‖ϕ′‖2
V ∗ +

∥∥∥qΠϕ
∥∥∥2

V
,

where qΠ is defined for n = 1, . . . , N as in Section 4.2:

qΠv|In = Πnv =

∫
In

vψn, with ψn(t) =
−6(t− tn−1)

τ 2
n

+
4

τn
.



84

We replace b with

bM(v, ϕ) :=
N∑
n=1

∫
In

−〈vn, ϕ′〉+
〈
Avn, qΠϕ

〉
, (6.19)

so that bM is well-defined also on M1 ×M2, and ` with

`M(ϕ) := 〈g0, ϕ(0)〉+

J−1∑
j=1

〈
gj, ϕ(t̃j)

〉
+

∫ T

0

〈
f, qΠϕ

〉
. (6.20)

We prove that the discrete problem is well-posed.

Proposition 6.9. The bilinear form (6.19) is continuous and satisfies the
inf-sup condition (1.9) on M1 ×M2 with

CM ≤
√

2 max{1, Ca}, cM ≥
νa√

2
min{1, C−1

a σ−1}.

Moreover, it is also continuous on (X1, ‖·‖1,P)× (M2, ‖·‖2) and CX1×M2 sat-
isfies the same bound as CM .

Proof. The proof mimics those of Propositions 4.7 and 5.8. We derive the
lower bound for cM and the non-degeneracy condition (1.9b) follows since
dim(M1) = dim(M2) <∞. We choose, for every v ∈M1,

vn = Πnϕ− A−1
n (ϕ′|In), n = 1, . . . , N.

In addition, we exploit ‖ϕ′‖V∗n ≥ σ−1 ‖ϕ′‖V ∗ and

N∑
n=1

∫
In

−2 〈ϕ′, ϕ(tn−1)〉 =
N∑
n=1

2 ‖ϕ(tn−1)‖2
W − 2

〈
ϕ(t−n ), ϕ(tn−1)

〉
≥ ‖ϕ(0)‖2

W +
N∑
n=1

‖ϕ(tn)‖2
W − 2 〈Pnϕ(tn), ϕ(tn−1)〉+ ‖ϕ(tn−1)‖2

W

= ‖ϕ(0)‖2
W +

N∑
n=1

‖ϕ(tn)− ϕ(tn−1)‖2
W ≥ 0. (6.21)
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In order to derive an abstract error estimate, we need to bound the con-
sistency error. We write, for every ϕ ∈M2

bM(u, ϕ)− `M(ϕ)

=
N∑
n=1

∫
In

−〈ϕ′, u〉+
〈
Au, qΠϕ

〉
−

J−1∑
j=0

〈
gj, ϕ(t̃j)

〉
−
∫ T

0

〈
f, qΠϕ

〉
=

N∑
n=1

−
〈
ϕ(t−n ), u(t−n )

〉
+ 〈ϕ(tn−1), u(tn−1)〉

+

∫
In

〈u′, ϕ〉+
〈
Au− f, qΠϕ

〉
−

J−1∑
j=0

〈
gj, ϕ(t̃j)

〉
=

∫ T

0

〈
Au− f, qΠϕ− ϕ

〉
+

N−1∑
n=1

〈
ϕ(tn), u(t−n )

〉
−
〈
Pnϕ(tn), u(t−n )

〉
.

(6.22)

We split the right-hand side into two contributions and we mimic the bounds
in Sections 4.2.1 and 5.2.1. We obtain the following

Theorem 6.10. The Galerkin solution UM of method (6.18) with bM as in
(6.19) and `M as in (6.20) satisfies the following estimate

‖u− UM‖1 ≤ 2ν−1
a max{1, Caσ,C2

aσ} inf
v∈M1

‖u− v‖1

+
√

2ν−1
a max{1, Caσ} sup

ϕ∈M2

∫ T
0

〈
Au− f, qΠϕ− ϕ

〉
‖ϕ‖2,P

+ 2ν−1
a max{1, Caσ}

√
µP + 2

(
N−1∑
n=1

∥∥(I − Pn)P+
n u(t−n )

∥∥2

W

)1/2

.

Proof. Combine (6.22) with (5.22) to obtain, for every ϕ ∈M2,

bM(u, ϕ)− `M(ϕ)

≤
∫ T

0

〈
Au− f, ϕ− qΠϕ

〉
+

(
N−1∑
n=1

‖ϕ(tn)− Pnϕ(tn)‖2
W

)1/2(N−1∑
n=1

∥∥(I − Pn)P+
n u(t−n )

∥∥2

W

)1/2

.

Moreover, we recall from (5.20) that

N−1∑
n=1

‖ϕ(tn)− Pnϕ(tn)‖2
W ≤

∫
In

‖ϕ′‖2
V ∗ + ‖ϕ‖2

V ≤ 2(µP + 2) ‖ϕ‖2
2,P .
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Therefore

sup
ϕ∈M2

bM(u, ϕ)− `M(ϕ)

‖ϕ‖2,P

≤ sup
ϕ∈M2

∫ T
0

〈
Au− f, ϕ− qΠϕ

〉
‖ϕ‖2,P

+
√

2
√
µP + 2

(
N−1∑
n=1

∥∥(I − Pn)P+
n u(t−n )

∥∥2

W

)1/2

.

The thesis follows by the results in Section 1.3.

As alternative to (6.22) we can also write, for every ϕ ∈M2

bM(u, ϕ)− `M(ϕ)

=
N∑
n=1

∫
In

−〈ϕ′, u〉+
〈
Au, qΠϕ

〉
−

J−1∑
j=0

〈
gj, ϕ(t̃j)

〉
−
∫ T

0

〈
f, qΠϕ

〉
=

N∑
n=1

∫
In

−〈ϕ′, u〉 −
〈
u′, qΠϕ

〉
−

J−1∑
j=0

〈
gj, ϕ(t̃j)

〉
=

N∑
n=1

〈
u(t+n−1), ϕ(tn−1)

〉
−
〈
u(t−n ), ϕ(tn−1)

〉
+

∫
In

−〈ϕ′, u〉

− 〈u(0), ϕ(0)〉 −
J−1∑
j=1

〈
u(t̃+j )− u(t̃−j ), ϕ(t̃j)

〉
=

N∑
n=1

〈
u(t−n ), ϕ(tn)− ϕ(tn−1)

〉
+

∫
In

−〈ϕ′, u〉 . (6.23)

Furthermore, for every ϕ ∈M2 and for every Wn ∈ Vn, we have

∫
In

−〈ϕ′,Wn〉 = 〈ϕ(tn−1),Wn〉 −
〈
ϕ(t−n ),Wn

〉
= 〈ϕ(tn−1),Wn〉 − 〈ϕ(tn),Wn〉 .
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Choosing Wn = Pnu(t−n ), and adding to (6.23) for n = 1, . . . , N , we get

bM(u, ϕ)− `M(ϕ)

=
N∑
n=1

〈
u(t−n )− Pnu(t−n ), ϕ(tn)− ϕ(tn−1)

〉
+

∫
In

−
〈
ϕ′, u− Pnu(t−n )

〉
≤

N−1∑
n=1

∥∥P+
n (I − Pn)u(t−n )

∥∥
W
‖ϕ(tn)− ϕ(tn−1)‖W

+
N∑
n=1

‖ϕ′‖L2(In,V ∗)

∥∥u− Pnu(t−n )
∥∥
L2(In,V )

.

We notice that, from (6.21), we have, for every ϕ ∈M2

N∑
n=1

‖ϕ(tn)− ϕ(tn−1)‖2
W ≤

N∑
n=1

∫
In

−2 〈ϕ′, ϕ(tn−1)〉 ≤ ‖ϕ‖2
2,P .

Therefore we can bound the consistency error independently of µP :

sup
ϕ∈M2

bM(u, ϕ)− `M(ϕ)

‖ϕ‖2,P

≤

(
N−1∑
n=1

∥∥P+
n (I − Pn)u(t−n )

∥∥2

W

)1/2

+

(
N∑
n=1

∫
In

∥∥u− Pnu(t−n )
∥∥2

V

)1/2

.

Applying the results in Section 1.3 we obtain the following theorem.

Theorem 6.11. The Galerkin solution UM of method (6.18) with bM as in
(6.19) and `M as in (6.20) satisfies the following estimate

‖u− UM‖1 ≤ 2ν−1
a max{1, Caσ,C2

aσ} inf
v∈M1

‖u− v‖1

+
√

2ν−1
a max{1, Caσ}

(
N∑
n=1

∫
In

∥∥u− Pnu(t−n )
∥∥2

V

)1/2

+
√

2ν−1
a max{1, Caσ}

(
N−1∑
n=1

∥∥(I − Pn)P+
n u(t−n )

∥∥2

W

)1/2

.





Chapter 7

A Priori Error Estimates for
FEM

In this chapter we derive error estimates in the case the spatial discretization
occurs by means of finite elements, exploiting the results in Chapters 3–6.

The chapter is divided into two parts. In the first part, we consider exact
solutions with integer regularity, that is, they belong to Sobolev spaces of
integer order. Notice that, in the standard formulation, the approximation
of the time derivative involves the H−1-norm in space. We therefore use a
suitable interpolation operator, well-defined in L2, which allows for duality
arguments. In the second part, we consider more general exact solutions,
that can have only fractional regularity. In this setting, the interpolation
operator mentioned above cannot be used for functions with regularity less
than L2. We therefore define an interpolation operator that acts on H−1 and
has values in the space of continuous and piecewise polynomial functions of
degree one.

The structure of the two parts is similar. We start with fixing the nota-
tion and giving some auxiliary results. We then describe the interpolation
operator and its approximation properties in particular in H−1. Finally we
derive the error estimates for both the standard and the natural formulation.

7.1 Notation and auxiliary results

Functional spaces

Let Ω ⊂ Rd be a bounded polyhedral domain, with Lipschitz boundary ∂Ω.
We denote with C0(Ω) the space of continuous functions over Ω and with
Ck(Ω) the space of functions such that, for every multi-index α with |α| = k,

89
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Dαf ∈ C0(Ω). Moreover we set C∞(Ω) :=
⋂
k∈NC

k(Ω), and C∞0 indicates
the subspace of C∞(Ω) of functions with compact support in Ω.

Given p ∈ [1,∞), we indicate with Lp(Ω) the space of functions whose
absolute value, raised to the p-th power, has finite integral over Ω, and with
L∞(Ω) the space of essentially bounded functions. With Lp0(Ω) we indicate
the subspace of Lp(Ω) of functions with mean value zero. Given a subdomain
ω ⊂ Ω, we denote with ‖·‖0,p;ω the Lp-norm, and with ‖·‖0,∞;ω the L∞-norm.

Moreover, the Sobolev space Wm,p(Ω), m ∈ N, p ∈ [1,∞], consists of all
functions f in Lp(Ω), such that, for every multi-index α with order |α| = m,
Dαf exists in the weak sense and belongs to Lp(Ω). For p = 2 we write
Hm(Ω) := Wm,2(Ω). Form = 0 we setH0(Ω) := L2(Ω). We denote by |·|m,p;ω
and ‖·‖m,p;ω the Wm,p-seminorm and the Wm,p-norm on ω ⊂ Ω, respectively.

Furthermore, we denote with H1
0 (Ω) the subspace of H1(Ω) of those functions

that vanish on the boundary ∂Ω, and H−1(Ω) is the dual of H1
0 (Ω). For every

f ∈ H−1(Ω) the dual norm is defined as

‖f‖−1;Ω := sup
ϕ∈H1

0 (Ω)

〈f, ϕ〉
|ϕ|1,2;Ω

.

Finite element spaces

Let T be a conforming simplicial mesh of Ω. We denote by

σT := max
K∈T

diam(K)

ρK

the shape parameter of T , where diam(K) and ρK indicate, respectively, the
diameter of the element K and the maximum diameter of a ball inscribed in
K.

We indicate with V the set of vertices of T . A subscript K, Ω, etc. to
V indicates that only the vertices contained in the index-set are considered.
Similarly, TΩ indicates the set of elements contained in Ω, while T∂Ω denotes
the set of elements with at least a vertex on ∂Ω. For every vertex z ∈ V and
for every element K ∈ T we set

ωz :=
⋃
K∈T
K3z

K, ωK :=
⋃
z∈VK

ωz, ω̃z :=
⋃
K⊂ωz

ωK . (7.1)

When we write K ⊂ ωz, we intend that K ∈ T , even if not explicitly
specified.

We denote by #ωK := #{K̃ ∈ T , K̃ ⊂ ωK} the number of simplices in
the patch ωK , and with

νT := max
K∈T

#ωK
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the maximum number of simplices in a patch.
The space

S`,0(T ) := {v ∈ C0(Ω), v ∈ P`(K), ∀K ∈ T }

is the space of continuous piecewise polynomial functions on T , while

S`,00 (T ) := S`,0(T ) ∩H1
0 (Ω)

is the subspace of S`,0(T ) of those functions with zero boundary values.
Furthermore, we denote by N the set of nodes of S`,0(T ). Again, a subscript
K, Ω, etc. to N indicates that only the nodes contained in the index-set are
considered. We denote by {φz}z∈N the nodal basis, that is, for every z ∈ N ,

φz ∈ S`,0(T ) and for every y ∈ N , φz(y) = δyz.

We recall that {φz}z∈N forms a partition of unity, that is,∑
z∈N

φz = 1.

We denote by ωz := supp(φz), the support of φz, z ∈ N . Note that, if z is a
vertex node, ωz coincides with the star around z defined in (7.1). The local
L2(K)-dual basis functions {ψKz }z∈NK , K ∈ T , have the crucial property
that, for every y, z ∈ NK , ∫

K

ψKz φy = δzy.

Norms under affine transformations

Let the reference d-simplex be defined as K̂ := convhull{0, e1, . . . , ed}, where
e1, . . . , ed denotes the canonical basis in Rd. Moreover let ĥ := diam(K̂) be
the diameter of K̂, and ρ̂ be the maximum diameter of a ball inscribed in K̂.
For every K ∈ T , there exists an affine transformation F : Rd → Rd such
that F (K̂) = K. We denote with B the non-singular matrix associated to
F . We recall (see [15] p. 117-120) that, for every v ∈ Wm,p(K), there hold

|v|m,p;K ≤ C(m, p, d)
∥∥B−1

∥∥m | det(B)|1/p |v ◦ F |m,p;K̂ , (7.2a)

|v ◦ F |m,p;K̂ ≤ C(m, p, d) ‖B‖m | det(B)|−1/p |v|m,p;K , (7.2b)

and that

‖B‖ ≤ diam(K)

ρ̂
,

∥∥B−1
∥∥ ≤ diam(K̂)

ρK
, det(B) =

|K|
|K̂|

. (7.2c)
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In particular, we consider the change of norms for the basis and dual basis
functions. We denote by {φ̂ẑ} and {ψ̂ẑ} respectively the basis and dual basis
functions on K̂. For every K ∈ T , and for every z ∈ NK , there exists an
affine transformation F : Rd → Rd with F (K̂) = K, and F (ẑ) = z. There
may be different choices for ẑ, which nevertheless lead to the same value of
‖φ̂ẑ‖K̂ . However, ‖∇φ̂ẑ‖K̂ depends on the chosen node. For this reason, we

take a ẑ with minimal sum of the coordinates, so that ‖∇φ̂ẑ‖K̂ is unique.

Since ψ̂ẑ = (detB)ψKz ◦ F , we have

‖φz‖0,2;K =
|K|1/2

|K̂|1/2
‖φ̂ẑ‖0,2;K̂ , ‖φz‖0,2;ωz

=
|ωz|1/2

|K̂|1/2
‖φ̂ẑ‖0,2;K̂ , (7.3)

‖∇φz‖0,2;K ≤
ĥ|K|1/2

ρK |K̂|1/2
‖∇φ̂ẑ‖0,2;K̂ , ‖∇φz‖0,∞;K ≤

ĥ

ρK
‖∇φ̂ẑ‖0,∞;K̂ , (7.4)

∥∥ψKz ∥∥0,2;K
=
|K̂|1/2

|K|1/2
‖ψ̂ẑ‖0,2;K̂ . (7.5)

Polynomial approximation in Sobolev spaces

We recall some basic results. Assume ω is star-shaped with respect to a ball.
Set

ρmax := sup{ρ, ω is star-shaped with respect to a ball of radius ρ}

and

γ :=
diam(ω)

ρmax

.

Assume k, m ∈ N with k ≤ m. Then it holds, see [11, Lemma (4.3.8)],

inf
P∈Pm

|f − P |k,2;ω ≤ C(m, d, γ)diam(ω)m−k |f |m,2;ω . (7.6)

For convex domains, the constant can be taken independently of γ, see
[46] where it is also explicitly expressed.

Moreover, we recall from [43] that the squared global best error in S`,00 (T )
with respect to the H1-seminorm is equivalent, up to a constant, to the sum
of the squared local best errors in P`(K), that is, for every u ∈ H1

0 (Ω),

inf
v∈S`,00 (T )

|u− v|21,2;Ω ≈
∑
K∈T

inf
P∈P`(K)

|u− P |21,2;K . (7.7)

Th constant in the &-direction is given by one, while the one in the .-
direction depends on d, `, and σT .
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Bounds for the Poincaré and Friedrichs constants

The Poincaré constant of a patch of elements can be bounded explicitly,
applying Proposition 2.10 of [45] with a decomposition of ωK into elements.
We recall that the Poincaré constant of a simplex is given by π−1, see [5, 35].
Recalling that #ωK stands for the numbers of elements in ωK , we get

CP,ωK ≤
4

π
(#ωK − 1)1/2

(
1

2
+ π

)1/2

max
1≤i≤#ωK

diam(Ki)|ωK |1/2

diam(ωK)|Ki|1/2
.

As in [44] we can also bound the Friedrichs constant of a patch in terms of
the corresponding Poincaré constant. In fact, if ∂ωK ∩∂Ω is a set of non-zero
(d− 1)-dimensional measure, and f ∈ H1

0 (Ω), we have

‖f‖0,2;ωK
≤ ‖f − cK‖0,2;ωK

+ ‖cK‖0,2;ωK

≤ ‖f − cK‖0,2;ωK
+ |cK ||ωK |1/2 =

|ωK |1/2

|∂ωK ∩ ∂Ω|

∣∣∣∣∫
∂ωK∩∂Ω

f − cK
∣∣∣∣ ,
(7.8)

with cK := 1
|ωK |

∫
ωK
f . For every face E ⊂ ∂ωK∩∂Ω, let KE the element such

that E ⊂ ∂KE and KE ⊂ ωK . Exploiting the Trace Theorem [44, Corollary
4.5], we get∫

E

|f − cK | ≤
|E|
|KE|1/2

(
‖f − cK‖0,2;KE

+ d−1diam(KE) ‖∇f‖0,2;KE

)
. (7.9)

Summing over E ⊂ ∂ωK ∩ ∂Ω gives∫
∂ωK∩∂Ω

|f − cK |

≤ (d+ 1)|∂ωK ∩ ∂Ω|1/2 max
E⊂∂ωK∩∂Ω

(
|E|
|KE|

)1/2

‖f − cK‖0,2;ωK

+
d+ 1

d
|∂ωK ∩ ∂Ω|1/2 max

E⊂∂ωK∩∂Ω

(
|E|diam(KE)2

|KE|

)1/2

‖∇f‖0,2;ωK
.

(7.10)

Combining (7.8)–(7.10), we obtain

CF,ωK ≤

(
1 + (d+ 1) max

E⊂∂ωK∩∂Ω

(
|E|
|KE|

)1/2 |ωK |1/2

|∂ωK ∩ ∂Ω|1/2

)
CP,ωK

+
d+ 1

d
max

E⊂∂ωK∩∂Ω

(
|E|diam(KE)2

|KE|diam(ωK)2

)1/2 |ωK |1/2

|∂ωK ∩ ∂Ω|1/2
.



94

We set
CP := max

K∈TΩ
CP,ωK , CF := max

K∈T∂Ω

CF,ωK ,

and note that they are bounded in terms of σT .

7.2 Interpolation and dual norms I

When bounding the error in the H1(H1, H−1)-norm, we have to deal with
an approximation problem in H−1. To this end we need an interpolation
operator allowing for duality arguments. Since we are working with functions
of integer regularity, we can consider an interpolation operator that is well-
defined in L2.

We define Π0 : L2(Ω)→ S`,00 (T ) as

Π0f :=
∑
z∈NΩ

(∫
ωz

fφ∗z

)
φz. (7.11)

For every z ∈ NΩ, the function φ∗z ∈ L2(ωz) is given by

φ∗z :=
∑

K: NK3z

|K|
|ωz|

ψKz , (7.12)

where {ψKz }z∈NK are the local L2(K)-dual basis functions.
Moreover we define Π∗0 : L2(Ω)→ span{φ∗z}z∈NΩ

as

Π∗0g :=
∑
z∈NΩ

(∫
ωz

gφz

)
φ∗z. (7.13)

For every f ,g ∈ L2(Ω), we have

(Π0f, g)L2(Ω) =

∫
Ω

(∑
z∈NΩ

(∫
ωz

fφ∗z

)
φz

)
g =

∑
z∈NΩ

(∫
ωz

fφ∗z

)(∫
Ω

φzg

)

=

∫
Ω

f

(∑
z∈NΩ

(∫
ωz

φzg

)
φ∗z

)
= (f,Π∗0g)L2(Ω). (7.14)

The following properties of {φ∗z}z∈NΩ
are useful.

Remark 7.1. The functions {φ∗z}z∈NΩ
defined in (7.12) satisfy

(i)

∫
Ω

φyφ
∗
z = δyz, for every y ∈ NΩ.
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(ii) ‖φ∗z‖0,2;K =
|K̂|1/2|K|1/2

|ωz|
‖ψ̂ẑ‖0,2;K̂ and ‖φ∗z‖0,2;ωz

=
|K̂|1/2

|ωz|1/2
‖ψ̂ẑ‖0,2;K̂ .

Proof. The definition of φ∗z in terms of the dual basis functions implies (i):∫
K

φyφ
∗
z =

∫
K

φy
|K|
|ωz|

ψKz =
|K|
|ωz|

δyz,

for every K ⊂ ωz. Property (ii) is a consequence of the definition of φ∗z and
(7.5).

As a consequence, we get the following proposition.

Proposition 7.2 (Properties of Π0 and Π∗0). The interpolation operator Π0

defined in (7.11) satisfies the following properties

(i) Invariance over S`,00 (T ). For every f ∈ S`,00 (T ),

Π0f = f.

(ii) Stability in L2. For every f ∈ L2(Ω), for every K ∈ T ,

‖Π0f‖0,2;K ≤ C(d, `) ‖f‖0,2;ωK
.

(iii) Stability in H1. For every f ∈ H1
0 (Ω),

∀K ∈ TΩ, |Π0f |1,2;K ≤ C(d, `, CP )
diam(ωK)

ρK
|f |1,2;ωK

,

∀K ∈ T∂Ω, |Π0f |1,2;K ≤ C(d, `, CF )
diam(ωK)

ρK
|f |1,2;ωK

.

The interpolation operator Π∗0 defined in (7.13) satisfies the following prop-
erties:

(iv) Local invariance over constants. For every c ∈ R, for every K ∈ TΩ,

(Π∗0cχωK )|K = cχK .

(v) Stability in L2. For every ϕ ∈ L2(Ω), for every K ∈ T ,

‖Π∗0ϕ‖0,2;K ≤ C(d, `) ‖ϕ‖0,2;ωK
.
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Proof. Invariance over S`,00 (T ) is a consequence of Property (i) of Remark
7.1.

Concerning stability of Π0 in L2, we use the Cauchy-Schwarz inequality
and Property (ii) of Remark 7.1 to obtain

‖Π0f‖0,2;K ≤
∑
z∈NK

∣∣∣∣∫
ωz

fφ∗z

∣∣∣∣ ‖φz‖0,2;K

≤
∑
z∈NK

‖f‖0,2;ωz
‖φ∗z‖0,2;ωz

‖φz‖0,2;K

≤
∑
z∈NK

‖f‖0,2;ωz

|K|1/2

|ωz|1/2
‖ψ̂ẑ‖0,2;K̂‖φ̂ẑ‖0,2;K̂

≤ C(d, `) ‖f‖0,2;ωK
. (7.15)

Concerning stability of Π0 in H1, we set, for every f ∈ H1
0 (Ω),

cK(f) :=


1

|ωK |

∫
ωK

f if K ∈ TΩ

0 if K ∈ T∂Ω

. (7.16)

We use the invariance of Π over S1,0
0 (T ), the Cauchy-Schwarz inequality,

(7.4), Property (ii) of Remark 7.1 and we get

|Π0f |1,2;K = |Π0f − cK(f)|1,2;K = |Π0f − Π0cK(f)|1,2;K

≤
∑
z∈NK

‖f − cK(f)‖0,2;ωz
‖φ∗z‖0,2;ωz

‖∇φz‖0,2;K

≤ C(d, `)
∑
z∈NK

‖f − cK(f)‖0,2;ωz

|K|1/2

ρK |ωz|1/2
‖ψ̂ẑ‖0,2;K̂‖∇φ̂ẑ‖0,2;K̂

≤ C(d, `)ρ−1
K ‖f − cK(f)‖0,2;ωK

. (7.17)

To obtain (iii), for every K ∈ TΩ, we exploit the Poincaré inequality, while
for every K ∈ T∂Ω, we observe that ωK has one or more faces lying on the
boundary ∂Ω, and therefore we exploit the Friedrichs inequality.

Concerning (iv), by linearity of Π∗0, it is sufficient to show the assertion
for c = 1. We compute first∫

ωz

φz =
∑
K⊂ωz

∫
K

φz =
∑
K⊂ωz

|K|d!

∫
K̂

φ̂ẑ = |ωz|d!

∫
K̂

φ̂ẑ.

Therefore we have

(Π∗0χωK )|K =
∑
z∈NK

(∫
ωz

φz

)
φ∗z|K =

∑
z∈NK

d!|K|
(∫

K̂

φ̂ẑ

)
ψKz .
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We denote by ζ :=
∑

z∈NK

∫
K̂
φ̂ẑψ

K
z ∈ P`(K). For every y ∈ NK , we have

(ζ, φy)L2(K) =
∑
z∈NK

(∫
K̂

φ̂ẑ

)∫
K

ψKz φy =

∫
K̂

φ̂ŷ =
1

|K|d!
(χK , φy)L2(K).

Consequently ζ = 1
|K|d!

χK and (Π∗0χωK )|K = χK .

Concerning stability of Π∗0 in L2, we proceed as in (7.15) and get

‖Π∗0ϕ‖0,2;K ≤
∑
z∈NK

∣∣∣∣∫
ωz

ϕφz

∣∣∣∣ ‖φ∗z‖0,2;K

≤
∑
z∈NK

‖ϕ‖0,2;ωz
‖φz‖0,2;ωz

‖φ∗z‖0,2;K

≤
∑
z∈NK

‖ϕ‖0,2;ωz

|K|1/2

|ωz|1/2
‖ψ̂ẑ‖0,2;K̂‖φ̂ẑ‖0,2;K̂

≤ C(d, `) ‖ϕ‖0,2;ωK
.

Approximation properties

With the following propositions we analyse the approximation properties of
Π0 in the H1-seminorm, in the L2-norm and in the H−1-norm.

Proposition 7.3 (Approximation in H1). The interpolation operator Π0

defined in (7.11) satisfies, for every f ∈ H1
0 (Ω),

|f − Π0f |1,2;Ω ≤ C(d, CP , CF , σT )

( ∑
K∈TΩ

inf
P∈P`(K)

|f − P |21,2;K

)1/2

.

Proof. We denote by QK ∈ S`,00 (T )|ωK a best approximation to f in the
H1-seminorm. By Properties (i) and (iii) of Proposition 7.2 we get

|f − Π0f |21,2;Ω =
∑
K∈T

|f − Π0f |21,2;K =
∑
K∈T

|f −QK |21,2;K + |QK − Π0f |21,2;K

≤ C(d, CP , CF )
∑
K∈T

diam(ωK)2

ρ2
K

|f −QK |21,2;ωK
.

The assertion follows thanks to (7.7) applied to the triangulation induced by
T on ωK .
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Next we investigate approximation in L2, with the help of the variant of
Π0 that has value in S`,0(T ). For every f ∈ L2(Ω) we set

Π̃0f :=
∑
z∈N

(∫
ωz

fφ∗z

)
φz, (7.18)

where {φ∗z}z∈N are defined in (7.12). The difference with Π0 is that the sum

is on N and not only on NΩ. For this reason Π̃0 is invariant on S`,0(T ), and
enjoys the same properties of Π0.

Proposition 7.4 (Approximation in L2). The interpolation operator Π0 de-
fined in (7.11) satisfies, for every f ∈ H1

0 (Ω),

‖f − Π0f‖0,2;Ω ≤ C(d, `, σT )
(∑
K∈T

inf
P∈S`,0(T )|ωK

‖f − P‖2
0,2;ωK

+
∑
K∈T∂Ω

diam(K)2 inf
P∈S`,0(T )|ωK

|f − P |21,2;ωK

)1/2

.

Proof. As a consequence of Properties (i) and (ii) of Proposition 7.2, we
have, for every K ∈ TΩ,

‖f − Π0f‖0,2;K ≤ C(d, `) inf
P∈S`,0(T )|ωK

‖f − P‖0,2;ωK
. (7.19)

For the elements in T∂Ω, we use the strategy of [16], and insert Π̃0f :

‖f − Π0f‖0,2;K ≤
∥∥∥f − Π̃0f

∥∥∥
0,2;K

+
∥∥∥Π̃0f − Π0f

∥∥∥
0,2;K

. (7.20)

The first term can be bounded as in (7.19). The second term is the norm of
a polynomial on K that can be expressed by means of the basis functions.
Since (Π̃0f)(z) = (Π0f)(z), for every z ∈ NΩ, we have∥∥∥Π̃0f − Π0f

∥∥∥
0,2;K

≤
∑

z∈NK∩∂Ω

|(Π̃0f)(z)| ‖φz‖0,2;K .

We choose an element Kz with a face Ez on the boundary ∂Ω and such that
z ∈ NEz . First we map to the reference (d− 1)-simplex, use the equivalence
of norms on a finite dimensional space, and map back to Ez. Then, inserting
f |∂Ω = 0, and exploiting the Trace Theorem [44, Corollary 4.5] and the
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Young inequality, we get

|(Π̃0f)(z)| ≤
∥∥∥Π̃0f

∥∥∥
0,∞;Ez

≤ C(d, `)|Ez|−1/2
∥∥∥Π̃0f

∥∥∥
0,2;Ez

= C(d, `)|Ez|−1/2
∥∥∥Π̃0f − f

∥∥∥
0,2;Ez

≤ C(d, `)
1

|Kz|1/2

(∥∥∥Π̃0f − f
∥∥∥

0,2;Kz

+diam(Kz)
1/2
∥∥∥Π̃0f − f

∥∥∥1/2

0,2;Kz

∣∣∣Π̃0f − f
∣∣∣1/2
1,2;Kz

)
≤ C(d, `)

1

|Kz|1/2

(∥∥∥Π̃0f − f
∥∥∥

0,2;Kz
+ diam(Kz)

∣∣∣Π̃0f − f
∣∣∣
1,2;Kz

)
.

Recalling (7.3), and invoking invariance of Π̃0 over S`,0(T ) and its stability
in L2 and H1, we obtain

∑
z∈NK∩∂Ω

|(Π̃0f)(z)| ‖φz‖0,2;K

≤ C(d, `)
∑

z∈NK∩∂Ω

|K|1/2

|Kz|1/2

(∥∥∥Π̃0f − f
∥∥∥

0,2;Kz
+ diam(Kz)

∣∣∣Π̃0f − f
∣∣∣
1,2;Kz

)

≤ C(d, `, σT )
∑

z∈NK∩∂Ω

(
inf

P∈S`,0(T )|ωKz
‖f − P‖0,2;ωKz

+diam(Kz) inf
P∈S`,0(T )|ωKz

|f − P |1,2;ωKz

)
.

For every K ∈ T∂Ω with a face on the boundary ∂Ω the number of elements
K̃ such that NK̃∩∂Ω ∩ NK∩∂Ω 6= ∅ is bounded in terms of σT . Therefore, we
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have

∑
K∈T∂Ω

∥∥∥Π̃0f − Π0f
∥∥∥2

0,2;K

≤ C(d, `, σT )
∑
K∈T∂Ω

∑
z∈NK∩∂Ω

(
inf

P∈S`,0(T )|ωKz
‖f − P‖2

0,2;ωKz

+ diam(Kz)
2 inf
P∈S`,0(T )|ωKz

|f − P |21,2;ωKz

)

≤ C(d, `, σT )
∑
K∈T∂Ω

(
inf

P∈S`,0(T )|ωK
‖f − P‖2

0,2;ωK

+diam(K) inf
P∈S`,0(T )|ωK

|f − P |21,2;ωK

)
. (7.21)

The next proposition concerns the H−1-norm.

Proposition 7.5 (Approximation in H−1). The interpolation operator Π0

defined in (7.11) satisfies, for every f ∈ L2(Ω),

‖f − Π0f‖−1;Ω ≤ C(d, `, CP , νT )

(∑
K∈T

diam(ωK)2 ‖f‖2
0,2;K

)1/2

. (7.22)

Moreover, if f ∈ H1
0 (Ω), it holds

‖f − Π0f‖−1;Ω

≤ C(d, `, CP , σT )

(∑
K∈T

diam(ωK)2 inf
P∈S`,0(T )|ωK

‖f − P‖2
0,2;ωK

+
∑
K∈T∂Ω

diam(ωK)4 inf
P∈S`,0(T )|ωK

|f − P |20,2;ωK

)1/2

.

(7.23)

Proof. We start with (7.22). We exploit first (7.14) and that f ∈ L2(Ω) to
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get

‖f − Π0f‖−1;Ω = sup
ϕ∈H1

0 (Ω)

〈f − Π0f, ϕ〉
|ϕ|1,2;Ω

= sup
ϕ∈H1

0 (Ω)

〈f, ϕ− Π∗0ϕ〉
|ϕ|1,2;Ω

≤ sup
ϕ∈H1

0 (Ω)

∑
K∈T

∫
K
f(ϕ− Π∗0ϕ)

|ϕ|1,2;Ω

≤ sup
ϕ∈H1

0 (Ω)

∑
K∈T ‖f‖0,2;K ‖ϕ− Π∗0ϕ‖0,2;K

|ϕ|1,2;Ω

. (7.24)

Recalling the definition of cK(·) in (7.16), by means of Properties (iv) and
(v) and the Poincarè or Friedrichs inequality, we get

‖ϕ− Π∗0ϕ‖0,2;K ≤ C(d, `) ‖ϕ− cK(ϕ)‖0,2;ωK

≤ C(d, `, CP , CF )diam(ωK) |ϕ|1,2;ωK
. (7.25)

Finally, using the Cauchy-Schwarz inequality for sums in (7.24) and (7.25),
we arrive at

‖f − Π0f‖−1;Ω

≤ C(d, CP , CF ) sup
ϕ∈H1

0 (Ω)

∑
K∈T ‖f‖0,2;K diam(ωK) |ϕ|1,2;ωK

|ϕ|1,2;Ω

≤ C(d, CP , CF , νT )

(∑
K∈T

diam(ωK)2 ‖f‖2
0,2;K

)1/2

,

where the constant also depends on the number of elements in a patch.

Concerning (7.23) we exploit also Property (i) of Proposition 7.2 and,
similarly as in (7.24), we get

‖f − Π0f‖−1;Ω = sup
ϕ∈H1

0 (Ω)

〈f − Π0f, ϕ− Π∗0ϕ〉
|ϕ|1,2;Ω

≤ C(d, CP , CF ) sup
ϕ∈H1

0 (Ω)

∑
K∈T ‖f − Π0f‖0,2;K ‖ϕ− Π∗0ϕ‖0,2;K

|ϕ|1,2;Ω

.
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By means of (7.25), (7.19), (7.20) and (7.21), we obtain

‖f − Π0f‖−1;Ω

≤ C(d, CP , CF ) sup
ϕ∈H1

0 (Ω)

∑
K∈T ‖f − Π0f‖0,2;K diam(ωK) |ϕ|1,2;ωK

|ϕ|1,2;Ω

≤ C(d, CP , CF , νT )

(∑
K∈T

diam(ωK)2 ‖f − Π0f‖2
0,2;K

)1/2

≤ C(d, CP , CF , νT )

(∑
K∈T

diam(ωK)2 inf
P∈S`,0(T )

‖f − P‖2
0,2;ωK

+ diam(ωK)4 inf
P∈S`,0(T )

|f − P |20,2;ωK

)1/2

.

As in [39], we apply (7.6) together with Theorem 7.1 of [23], where the
subdomains are the interior of pairs of elements that share a common face. In
this way the constant depends on σT . Combining with Propositions 7.5–7.3
we get the following corollary.

Corollary 7.6. Assume 1 ≤ m ≤ ` + 1 and assume f ∈ Hm(Ω) ∩ H1
0 (Ω).

Then, the interpolation operator Π0 defined in (7.11) satisfies

‖f − Π0f‖−1;Ω ≤ C(d, `, CP , CF , σT )

(∑
K∈T

diam(ωK)2m+2 |f |2m,2;ωK

)1/2

,

‖f − Π0f‖0,2;Ω ≤ C(d, `, CP , CF , σT )

(∑
K∈T

diam(ωK)2m |f |2m,2;ωK

)1/2

,

|f − Π0f |1,2;Ω ≤ C(d, `, CP , CF , σT )

(∑
K∈T

diam(K)2m−2|f |2m,2;K

)1/2

.

7.3 Standard formulation and integer regu-

larity

In this section we derive error estimates for the approximation of the solution
u of the parabolic problem in the standard formulation. We assume for u
integer regularity.
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We recall that u ∈ H1(H1
0 , H

−1) satisfies, for every (ϕ0, ϕ1) ∈ L2 ×
L2(H1

0 ),

〈u(0), ϕ0〉+

∫ T

0

〈u′, ϕ1〉+ 〈Au, ϕ1〉 = 〈u0, ϕ0〉+

∫ T

0

〈f, ϕ1〉 .

7.3.1 Spatial semidiscretization

In order to apply the results in Chapter 3, we require that T belongs to a
family of triangulations for which the L2-projection onto S`,00 is H1-stable.
Conditions that guarantee this assumption can be found in [10, 17]. Moreover
in [32] it is proven that the L2-projection is H1-stable on S1,0

0 where the
meshes are adaptively generated by newest vertex bisection in 2d.

We recall that the semidiscrete solution U ∈ H1(S`,00 (T )) satisfies, for
every (ϕ0, ϕ1) ∈ S`,00 (T )× L2(S`,00 (T )),

〈U(0), ϕ0〉+

∫ T

0

〈U ′, ϕ1〉+ 〈AU,ϕ1〉 = 〈u0, ϕ0〉+

∫ T

0

〈f, ϕ1〉 .

We combine the results in Section 3.2 and in 7.2 to obtain the following
theorem.

Theorem 7.7. Assume 2 ≤ m ≤ `+ 1. Assume u ∈ L2(Hm) and, if m = 2,
u′ ∈ L2(Hm−2) otherwise u′ ∈ L2(Hm−2 ∩H1

0 ). Then we have

‖u(0)− U(0)‖2
0,2;Ω +

∫ T

0

‖u′(t)− U ′(t)‖2
−1;Ω + |u(t)− U(t)|21,2;Ω dt

.
∑
K∈T

diam(ωK)2m−2 |u(0)|2m−1,2;ωK

+

∫ T

0

∑
K∈T

diam(ωK)2m−2 |u′(t)|2m−2,2;ωK
+ diam(K)2m−2 |u(t)|2m,2;K dt.

The hidden constant depends on the H1-norm of the L2-projection on S`,00 (T ),
the coercivity and continuity constants of the parabolic problem, the dimen-
sion d, the polynomial degree ` and the shape-parameter σT .

Proof. We recall that Theorem 3.7 in particular states that

‖u(0)− U(0)‖2
0,2;Ω +

∫ T

0

‖u′(t)− U ′(t)‖2
−1;Ω + |u(t)− U(t)|21,2;Ω dt

. inf
V ∈H1(S`,00 (T ))

(
‖u(0)− V (0)‖2

0,2;Ω

+

∫ T

0

‖u′(t)− V ′(t)‖2
−1;Ω + |u(t)− V (t)|21,2;Ω dt

)
.
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We insert a particular choice in the infimum on the right-hand side:

∀t ∈ [0, T ], V (t) := Π0u(t).

Since u ∈ H1(Hm, Hm−2) entails u ∈ C0(Hm−1), the assertion follows by
applying Corollary 7.6.

7.3.2 Semidiscretization in time

We recall that P is a partition 0 = t0 < t1 < . . . < tN = T of the time
interval (0, T ) into subintervals In = (tn−1, tn], and that µP := supn τn/τn+1.
Moreover we recall that

S1,0(P , H1
0 ) = {v ∈ C0(H1

0 ), v|In ∈ P1(In, H
1
0 ), n = 1, . . . , N},

S0,−1(P , H1
0 ) = {φ ∈ L2(H1

0 ), φ|In ∈ H1
0 , n = 1, . . . , N}.

The semidiscrete solution U ∈ S1,0(P , H1
0 ) satisfies, for every ϕ ∈ L2 ×

S0,−1(P , H1
0 ),

〈U(0), ϕ0〉+
N∑
n=1

∫
In

〈U ′, ϕn〉+ 〈AU(tn), ϕn〉 = 〈u0, ϕ0〉+
N∑
n=1

∫
In

〈f, ϕn〉 .

We exploit the results in Section 4.1 and obtain the following theorem.

Theorem 7.8. Assume u′ ∈ H1(H1
0 , H

−1). Then

‖u(0)− U(0)‖2
0,2;Ω +

N∑
n=1

∫
In

‖u′ − U ′‖2
−1;Ω + |u− U(tn)|21,2;Ω

.
N∑
n=1

τ 2
n

∫
In

‖u′′‖2
−1;Ω + τ 2

n

∫
In

|u′|21,2;Ω ,

where the hidden constant depends on the coercivity and continuity constants
of the parabolic problem.

Proof. Since u ∈ H1(H1) implies u ∈ C0(H1), we can apply Theorem 4.5,
which states that

‖u(0)− U(0)‖2
0,2;Ω +

N∑
n=1

∫
In

‖u′(t)− U ′(t)‖2
−1;Ω + |u(t)− U(tn)|21,2;Ω dt

.
N∑
n=1

∫
In

|u(t)− u(tn)|21,2;Ω dt+ inf
v∈S1,0(P,H1

0 )

(
‖u(0)− v(0)‖2

0,2;Ω

+
N∑
n=1

∫
In

‖u′(t)− v′(t)‖2
−1;Ω + |u(tn)− v(tn)|21,2;Ω dt

)
.
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Choosing v ∈ S1,0(P , H1
0 ) such that

v(tn) = u(tn), n = 0, . . . , N,

we have that

v′(t)|In =
u(tn)− u(tn−1)

τn
=

1

τn

∫
In

u′.

Exploiting the Poincaré or Friedrichs inequality on the subintervals In, we
get the assertion.

7.3.3 Varying the spatial discretization

We consider a sequence {Tn}Nn=0 of triangulations that belongs to a family
for which the L2-projection is uniformly H1-stable. The sequence of finite-
dimensional spaces {Vn}Nn=0 ⊂ H1

0 (Ω) is given by {S`,00 (Tn)}Nn=1. The L2-
projection onto S`,00 (Tn) is denoted by Pn and P+

n indicates the L2-projection
onto S`,00 (Tn)⊕ S`,00 (Tn+1). We recall that

SL2

(P ,V) = {v ∈ L2(H1
0 ), v|In ∈ L2(S`,00 (Tn)), n = 1, . . . , N},

SH1

(P ,V) = {v ∈ L2(H1
0 ), v|In ∈ H1(S`,00 (Tn)), n = 1, . . . , N}.

The semidiscrete solution U belongs to the space

{v ∈ SH1

(P ,V), v(0) ∈ S`,00 (T0), v(t+n−1) = Pnv(tn−1), n = 1, . . . , N}

and satisfies, for every (ϕ0, ϕ) ∈ S`,00 (T0)× SL2
(P ,V),

〈U(0), ϕ0〉+
N∑
n=1

∫
In

〈U ′, ϕ〉+ 〈AU,ϕ〉 = 〈u0, ϕ0〉+

∫ T

0

〈f, ϕ〉 .

We resort to the results in Section 5.1 and derive the following theorem.

Theorem 7.9. Assume 2 ≤ m ≤ `+1, and assume u ∈ C0(Hm). Moreover,
if m = 2 assume u′ ∈ L2(L2), otherwise, u′ ∈ L2(Hm−2∩H1

0 ). Then we have

‖u(0)− U(0)‖2
0,2;Ω +

N∑
n=1

∫
In

‖u′ − U ′‖2
−1;Ω + |u− U |21,2;Ω

.
∑
K∈T0

diam(ωK)2m |u(0)|2m,2;ωK

+
N∑
n=1

∫
In

∑
K∈Tn

diam(ωK)2m−2|u′(t)|2m−2,2;ωK
+ diam(K)2m−2|u(t)|2m,2;K dt

+
N−1∑
n=0

∑
K∈Tn

diam(ωK)2m|u(tn)|2m,2;ωK
.
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The hidden constant depends on the maximum of the H1-norms of the L2-
projection on S`,00 (Tn), the coercivity and continuity constants of the parabolic
problem, the dimension d, the polynomial degree ` and the shape parameters
σTn.

Proof. We exploit Theorem 5.5, which states that

‖u(0)− U(0)‖2
0,2;Ω +

N∑
n=1

∫
In

‖u′ − U ′‖2
−1;Ω + |u− U |21,2;Ω

. inf
v∈{v∈SH1

(P,V),

v(0)∈S`,00 (T0)}

‖u(0)− v(0)‖2
0,2;Ω +

N∑
n=1

∫
In

‖u′ − v′‖2
−1;Ω + |u− v|21,2;Ω

+ ‖P1(I − P0)u(t0)‖2
0,2;Ω +

N−1∑
n=1

∥∥P+
n (I − Pn)u(tn)

∥∥2

0,2;Ω
. (7.26)

The infimum on the right-hand side of (7.26) can be bounded as in Theorem
7.7. Given n = 0, . . . , N , we indicate with Πn

0 the interpolation operator Π0

that acts onto S`,00 (Tn) and choose v ∈ SH1
(P ,V) such that,

v(0) = Π0
0u(0),

and, for every n = 1, . . . , N ,

∀t ∈ In v(t) = Πn
0u(t).

Concerning the terms ‖P+
n (I − Pn)u(t−n )‖0,2;Ω, we have, for every n = 1, . . . ,

N − 1,∥∥P+
n (I − Pn)u(tn)

∥∥2

0,2;Ω
≤ ‖(I − Pn)u(tn)‖2

0,2;Ω

≤ ‖(I − Πn
0 )u(tn)‖2

0,2;Ω

≤ C(d, `)
∑
K∈Tn

diam(ωK)2m |u(tn)|2m,2;ωK
, (7.27)

and similarly for
∥∥P+

1 (I − P0)u(t0)
∥∥

0,2;Ω
.

Remark 7.10 (Dupont’s example). We consider the example presented by
Dupont in [22, Sect. 4]. There, the time partition is uniform, and the spa-
tial partitions in 1d are also uniform, with possible exceptions next to the
endpoints of the spatial domain. Every time step, the endpoints of the new
spatial partition coincide with the midpoints of the previous intervals. The
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spatial discretization occurs with continuous piecewise affine functions, and
denoted with τ the uniform time-step and with h the mesh-size, there is no
convergence as h, τ → 0, if h4/τ goes to infinity. Since the exact solution is
smooth, we can apply Theorem 7.9 with ` = 1 and m = 2. We notice that

N−1∑
n=0

∑
K∈Tn

diam(ωK)2m|u(tn)|2m,2;ωK
.
h4

τ
sup

n=1,...,N
‖u(tn)‖2

2,2;Ω .

Therefore if h, τ → 0 in such a way that h4/τ → 0, the semidiscrete solution
converges to the exact one.

7.3.4 Full discretization with the backward-Euler Gal-
erkin method

Assume P to be as in Section 7.3.2 and {Tn}Nn=0 to be as in Section 7.3.3.
We recall that

S0,−1(P ,V) = {v ∈ L2(H1
0 ), v|In ∈ S

`,0
0 (Tn), n = 1, . . . , N}.

The discrete solution U belongs to the space

{v ∈ L2(H1
0 ), v(0) ∈ S`,00 (T0), v|In ∈ P1(In, S

`,0
0 (Tn)),

v(t+n−1) = Pnv(tn−1), n = 1, . . . , N}

and satisfies, for every ϕ ∈ S`,00 (T0)× S0(P ,V),

〈U(0), ϕ0〉+
N∑
n=1

∫
In

〈U ′, ϕn〉+ 〈AU(tn), ϕn〉 = 〈u0, ϕ0〉+
N∑
n=1

∫
In

〈f, ϕn〉 .

In view of the results in Section 6.1, we get the following theorem.

Theorem 7.11. Assume 2 ≤ m ≤ ` + 1. Assume u ∈ L2(Hm), u′ ∈
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H1(H1
0 , H

−1) ∩ L2(Hm−2). Then

‖u(0)− U(0)‖2
0,2;Ω +

N∑
n=1

∫
In

‖u′ − U ′‖2
−1;Ω + |u− U(tn)|21,2;Ω

.
∑
K∈T0

diam(ωK)2m−2 |u(0)|2m−1,2;ωK

+
N∑
n=1

τ 2
n

∫
In

‖u′′‖2
−1;Ω +

∑
K∈Tn

diam(ωK)2m−2

∫
In

|u′|2m−2,2;ωK

+ τ 2
n

∫
In

|u′|21,2;Ω +
∑
K∈Tn

diam(ωK)2m−2

∫
In

|u|2m,2;ωK

+
N−1∑
n=1

τ−1
n

∑
K∈Tn

diam(ωK)2m

∫
In

|u|2m,2;ωK

The hidden constant depends on the maximum of the H1-norms of the L2-
projection on S`,00 (Tn), the coercivity and continuity constants of the parabolic
problem, the dimension d, the polynomial degree `, the shape parameters σTn,
and the parameter µP .

Proof. We exploit Theorem 6.6, which states that

‖u(0)− U(0)‖2
0,2;Ω +

N∑
n=1

∫
In

‖u′ − U ′‖2
−1;Ω + |u− U(tn)|21,2;Ω

. inf
v0∈S`,00 (T0)

‖u(0)− v0‖2
0,2;Ω + inf

v∈S0,−1(P,V)
‖u′ − v‖2

L2(H−1)

+ inf
w∈SL2 (P,V)

‖u− w‖2
L2(H1) + inf

z∈S0,−1(P,H1)
‖u− z‖2

L2(H1)

+ ‖P1(I − P0)u(0)‖2
0,2;Ω +

N−1∑
n=1

∥∥P+
n (I − Pn)Πnu

∥∥2

0,2;Ω
.

Concerning the infima on the right-hand side, we insert v0 = Π0
0u(0) ∈

S`,00 (T0), v ∈ S0,−1(P ,V), w ∈ SL2
(P ,V) and z ∈ S0,−1(P , H1) such that, for

n = 1, . . . , N ,

v|In = Pn
1

τn

∫
In

u′, w|In = Πn
0u|In , z|In =

1

τn

∫
In

u.

The terms ‖u(0)− Π0
0u(0)‖0,2;Ω and ‖u− Πn

0u‖L2(In,H1
0 ) can be bounded as

in Theorem 7.9, while
∥∥∥u− 1

τn

∫
In
u
∥∥∥
L2(In,H1

0 )
can be bounded as in Theorem

7.8.
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Concerning
∥∥∥u′ − Pn 1

τn

∫
In
u′
∥∥∥
L2(In,H−1)

, because of the H−1-stability of

Pn, we have∥∥∥∥u′ − Pn 1

τn

∫
In

u′
∥∥∥∥2

L2(In,H−1)

≤ 2 ‖u′ − Pnu′‖2
L2(In,H−1) + 2

∥∥∥∥Pn(u′ − 1

τn

∫
In

u′
)∥∥∥∥2

L2(In,H−1)

. ‖u′ − Πn
0u
′‖2
L2(In,H−1) +

∥∥∥∥u′ − 1

τn

∫
In

u′
∥∥∥∥2

L2(In,H−1)

.
∫
In

∑
K∈Tn

diam(ωK)2m−2 |u′|2m−2,2;ωK
+ τ 2

n

∫
In

‖u′′‖2
−1;Ω .

Regarding the terms ‖P+
n (I − Pn)Πnu‖0,2;Ω, we notice that P+

n (I−Pn)Πnu =
Πn(P+

n (I − Pn)u), and therefore∥∥P+
n (I − Pn)Πnu

∥∥
0,2;Ω
≤
∫
In

‖(I − Pn)u‖0,2;Ω |ψn|

≤ 2τ−1/2
n ‖(I − Πn

0 )u‖L2(In,L2) .

Summing over n and exploiting Corollary 7.6, we get

N−1∑
n=1

∥∥P+
n (I − Pn)Πnu

∥∥2

0,2;Ω
.

N−1∑
n=1

τ−1
n

∫
In

∑
K∈Tn

diam(ωK)2m |u|2m,2;ωK
. (7.28)

For ‖P1(I − P0)u(0)‖0,2;Ω we proceed as in the proof of Theorem 7.9 and get

‖P1(I − P0)u(0)‖0,2;Ω ≤ C(`, d)
∑
K∈Tn

diam(ωK)2m−2|u(0)|2m−1,2;ωK
.

Assume that T0 = T1 = . . . = TN =: T are uniform meshes with mesh-size
h and that the time partition is also uniform, with time-step τ . If ` = 1 and
m = 2, the upper barrier is of the form

C(u)

(
h2 + τ 2 +

h4

τ

)
. (7.29)

If we assume some relation between h and τ , then (7.29) becomes

C(u)
(
h2 + h3

)
if h ∼ τ,

C(u)
(
h2 + h4

)
if h2 ∼ τ.



110

In case ` = 2 and m = 3, the upper barrier is of the form

C(u)

(
h4 + τ 2 +

h6

τ

)
and if h2 ∼ τ then the three terms converge with the same rate C(u)h4.

7.4 Natural formulation and integer regular-

ity

In this section we derive error estimate for the approximation of solution u
of the parabolic problem in the natural formulation. As in Section 7.3 we
assume for u integer regularity.

We recall that 0 = t̃0 < t̃1 < . . . < t̃J = T is a partition of the
time interval (0, T ), and that u ∈ L2(H1

0 ) satisfies, for every ϕ ∈ {ϕ ∈
H1(H1

0 , H
−1), ϕ(T ) = 0},∫ T

0

−〈ϕ′, u〉+ 〈Au, ϕ〉 =

J−1∑
j=0

〈
gj, ϕ(t̃j)

〉
+

∫ T

0

〈f, ϕ〉 .

7.4.1 Spatial semidiscretization

As in 7.3.1 we require that T belongs to a family for which the L2-projection
onto S`,00 is uniformly stable. We recall that the semidiscrete solution U ∈
L2(S`,00 (T )) satisfies, for every ϕ ∈ {H1(S`,00 (T )), ϕ(T ) = 0},∫ T

0

−〈ϕ′, U〉+ 〈AU,ϕ〉 =

J−1∑
j=0

〈
gj, ϕ(t̃j)

〉
+

∫ T

0

〈f, ϕ〉 .

We combine the results in Section 3.3 and in 7.2 to obtain the following
theorem.

Theorem 7.12. Assume u ∈ L2(Hm), with 1 ≤ m ≤ `+ 1. Then we have∫ T

0

|u(t)− U(t)|21,2;Ω .
∫ T

0

∑
K∈T

diam(K)2m−2 |u(t)|2m,2;K .

The hidden constant depends on the H1-norm of the L2-projection on S`,00 (T ),
the coercivity and continuity constants of the parabolic problem, the dimen-
sion d, the polynomial degree ` and the shape parameter σT .



111

Proof. We recall that Theorem 3.10 in particular states that∫ T

0

|u(t)− U(t)|21,2;Ω . inf
V ∈L2(S`,00 (T ))

∫ T

0

|u(t)− V (t)|21,2;Ω .

The assertion follows from Corollary 7.6, by inserting

∀t ∈ [0, T ], V (t) := Π0u(t)

in the infimum on the right-hand side.

7.4.2 Semidiscretization in time

We recall that P is a partition 0 = t0 < t1 < . . . < tN = T of (0, T ) into
subintervals In = [tn−1, tn), subordinate to 0 = t̃0 < t̃1 < . . . < t̃J = T and
that

S1,0(P , H1
0 ) = {v ∈ C0(H1

0 ), v|In ∈ P1(In, H
1
0 ), n = 1, . . . , N},

S0,−1(P , H1
0 ) = {φ ∈ L2(H1

0 ), φ|In ∈ H1
0 , n = 1, . . . , N}.

The semidiscrete solution U ∈ S0,−1(P , H1
0 ) satisfies, for every ϕ ∈ {φ ∈

S1,0(P , H1
0 ), φ(T ) = 0},

N∑
n=1

∫
In

−〈ϕ′, U〉+ 〈AU,ϕ(tn−1)〉 =

J−1∑
j=0

〈
gj, ϕ(t̃j)

〉
+

N∑
n=1

∫
In

〈f, ϕ(tn−1)〉 .

Moreover we recall that the discrete test space is endowed with

‖ϕ‖2
2,P =

N∑
n=1

∫
In

‖ϕ′‖2
−1;Ω + |ϕ(tn−1)|21,2;Ω .

We observe that, given a Hilbert space Y ,

‖ϕ− ϕ(tn−1)‖2
L2(In,Y ) =

∫
In

(t− tn−1)2

τ 2
n

‖ϕ(tn)− ϕ(tn−1)‖2
Y

=
τn
3
‖ϕ(tn)− ϕ(tn−1)‖2

Y . (7.30)

In case Y = H−1(Ω), we have

N∑
n=1

τ−2
n ‖ϕ− ϕ(tn−1)‖2

L2(In,H−1) ≤
1

3

N∑
n=1

∫
In

∥∥∥∥ϕ(tn)− ϕ(tn−1)

τn

∥∥∥∥2

−1;Ω

≤ 1

3
‖ϕ‖2

2,P . (7.31)

Exploiting the results in Section 4.2.1 we get the following theorem.
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Theorem 7.13. Assume that, for every n = 1, . . . , N , u|In ∈ H1(In, H
1
0 ).

Then,

‖u− U‖2
L2(H1

0 ) .
N∑
n=1

τ 2
n

∫
In

|u′|21,2;Ω .

The hidden constant depends on the coercivity and continuity constants of
the parabolic problem.

Proof. We apply Proposition 4.9, which states that

‖u− U‖L2(H1
0 ) . inf

v∈S0,−1(P,H1
0 )
‖u− v‖L2(H1

0 )

+ sup
ϕ∈S1,0(P,H1

0 )
ϕ(T )=0

N∑
n=1

∫
In

〈Au− f, ϕ− ϕ(tn−1)〉

‖ϕ‖2,P
. (7.32)

We insert v in the infimum on the right-hand side of (7.32) such that, for
every n = 1, . . . , N ,

v|In =
1

τn

∫
In

u,

and we exploit the Poincaré inequality on every In. Concerning the supre-
mum on the right-hand side of (7.32), we exploit Cauchy-Schwarz inequality
for integrals and for sums to get

N∑
n=1

∫
In

〈Au− f, ϕ− ϕ(tn−1)〉 ≤
N∑
n=1

∫
In

|Au− f |1,2;Ω ‖ϕ− ϕ(tn−1)‖−1;Ω

≤

(
N∑
n=1

τ 2
n ‖Au− f‖

2
L2(In,H1)

)1/2( N∑
n=1

τ−2
n ‖ϕ− ϕ(tn−1)‖2

L2(In,H−1)

)1/2

.

We recall that Au− f = −u′ on In. The thesis follows by (7.31) and taking
the supremum over ϕ ∈ {φ ∈ S1,0(P , H1

0 ), φ(T ) = 0}.

7.4.3 Varying the spatial discretization

We consider a sequence {Tn}Nn=0 of triangulations that belongs to a family
for which the L2-projection is uniformly H1-stable. The sequence of finite-
dimensional spaces {Vn}Nn=1 ⊂ H1

0 (Ω) is given by {S`,00 (Tn)}Nn=1. The L2-
projection onto S`,00 (Tn) is denoted by Pn and P+

n indicates the L2-projection
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onto S`,00 (Tn)⊕ S`,00 (Tn+1). We recall that

SL2

(P ,V) = {v ∈ L2(H1
0 ), v|In ∈ L2(S`,00 (Tn)), n = 1, . . . , N}

SH1

(P ,V) = {v ∈ L2(H1
0 ), v|In ∈ H1(S`,00 (Tn)), n = 1, . . . , N}.

The semidiscrete solution U ∈ SL2
(P ,V) satisfies, for every ϕ ∈ {φ ∈

SH1
(P ,V), φ(t−n ) = Pnφ(tn), n = 1, . . . , N − 1, φ(T ) = 0},

N∑
n=1

∫
In

−〈ϕ′, U〉+ 〈AU,ϕ〉 =

J−1∑
j=1

〈
gj, ϕ(t̃j)

〉
+

∫ T

0

〈f, ϕ〉 .

We resort to the results in Section 5.2 and derive the following theorem.

Theorem 7.14. Assume 1 ≤ m ≤ ` + 1, and assume that, for every n =
1, . . . , N , u|In ∈ C0(In, H

m). Then we have

‖u− U‖2
L2(H1

0 ) .
N∑
n=1

∫
In

diam(K)2m−2|u(t)|2m,2;K dt

+
N−1∑
n=1

∑
K∈Tn

diam(ωK)2m|u(t−n )|2m,2;ωK
.

The hidden constant depends on the maximum of the H1-norms of the L2-
projection on S`,00 (Tn), the coercivity and continuity constants of the parabolic
problem, the dimension d, the polynomial degree ` and the shape parameters
σTn.

Proof. The proof mimics the one of Theorem 7.9. We exploit Theorem 5.10,
which states that

‖u− U‖2
L2(H1

0 ) . inf
v∈SL2 (P,V)

‖u− v‖2
L2(H1

0 )

+
N−1∑
n=1

∥∥P+
n (I − Pn)u(t−n )

∥∥2

0,2;Ω
. (7.33)

In the infimum on the right-hand side of (7.33), we insert v ∈ SL2
(P ,V) such

that, for every n = 1, . . . , N ,

∀t ∈ In v(t) = Πn
0u(t).

The terms ‖P+
n (I − Pn)u(t−n )‖0,2;Ω can be bounded as in (7.27).
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7.4.4 Full discretization with the backward-Euler Gal-
erkin method

Assume P to be as in Section 7.4.2 and {Tn}Nn=0 to be as in Section 7.4.3.
We recall that

S0,−1(P ,V) = {v ∈ L2(H1
0 ), v|In ∈ S

`,0
0 (Tn), n = 1, . . . , N},

and we set

S1,0−(P ,V) = {ϕ ∈ L2(H1
0 ), ϕ|In ∈ P1(In, S

`,0
0 (Tn)),

ϕ(t−n ) = Pnϕ(tn), n = 1, . . . , N}.

The discrete solution U ∈ S0,−1(P ,V) satisfies

N∑
n=1

∫
In

−〈ϕ′, U〉+ 〈AU,ϕ(tn−1)〉 =

J−1∑
j=0

〈
gj, ϕ(t̃j)

〉
+

N∑
n=1

∫
In

〈f, ϕ(tn−1)〉

for every ϕ ∈ {φ ∈ S1,0−(P ,V), φ(T ) = 0}. In view of the results in Section
6.2, we get the following theorem.

Theorem 7.15. Assume 1 ≤ m ≤ ` + 1. Assume that, for every n =
1, . . . , N , u|In ∈ C0(In, H

m) ∩H1(In, H
1
0 ). Then

‖u− U‖2
L2(H1

0 )

.
N∑
n=1

τ 2
n

∫
In

|u′|21,2;Ω +
∑
K∈Tn

diam(ωK)2m−2

∫
In

|u|2m,2;ωK

+
N−1∑
n=1

∑
K∈Tn

diam(ωK)2m
∣∣u(t−n )

∣∣2
m,2;ωK

.

The hidden constant depends on the maximum of the H1-norms of the L2-
projection on S`,00 (Tn), the coercivity and continuity constants of the parabolic
problem, the dimension d, the polynomial degree `, the shape parameters σTn.

Proof. We exploit Theorem 6.11, which states that

‖u− U‖2
L2(H1

0 )

. inf
v∈S0,−1(P,V)

‖u− v‖2
L2(H1

0 ) +
N∑
n=1

∫
In

∣∣u− Pnu(t−n )
∣∣2
1,2;Ω

+
N−1∑
n=1

∥∥P+
n (I − Pn)u(t−n )

∥∥2

0,2;Ω
.
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Concerning the infimum on the right-hand side, we insert v ∈ S0,−1(P ,V),
such that, for n = 1, . . . , N ,

v|In = Πn
0

1

τn

∫
In

u.

Because of the stability of Π0 in H1, we have∥∥∥∥u− Πn
0

1

τn

∫
In

u

∥∥∥∥2

L2(In,H1
0 )

≤ 2 ‖u− Πn
0u‖

2
L2(In,H1

0 ) + 2

∥∥∥∥Πn
0

(
u− 1

τn

∫
In

u

)∥∥∥∥2

L2(In,H1
0 )

. ‖u− Πn
0u‖

2
L2(In,H1

0 ) +

∥∥∥∥u− 1

τn

∫
In

u

∥∥∥∥2

L2(In,H1
0 )

.
∫
In

∑
K∈Tn

diam(ωK)2m−2 |u|2m,2;ωK
+ τ 2

n

∫
In

|u′|21,2;Ω . (7.34)

Regarding
∫
In
|u− Pnu(t−n )|21,2;Ω we insert Pnu and by stability of Pn in H1

we get, for n = 1, . . . , N ,∫
In

∣∣u− Pnu(t−n )
∣∣2
1,2;Ω
≤ 2

∫
In

|u− Pnu|21,2;Ω +
∣∣Pnu− Pnu(t−n )

∣∣2
1,2;Ω

.
∫
In

|u− Πn
0u|

2
1,2;Ω +

∫
In

∣∣u− u(t−n )
∣∣2
1,2;Ω

.
∫
In

∑
K∈Tn

diam(ωK)2m−2 |u|2m,2;ωK
+ τ 2

n

∫
In

|u′|21,2;Ω .

Regarding the terms ‖P+
n (I − Pn)u(t−n )‖0,2;Ω, they can be bounded as in

(7.27).

7.5 Additional notation

We introduce some more notation, in order to derive error bounds in terms
of fractional regularity.

For 0 < s < 1, we indicate with Hs(Ω) the space of functions for which

|f |2s,2;Ω := (1− s)
∫

Ω×Ω

|f(x)− f(y)|2

|x− y|d+2s
dx dy
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is finite, and we endow it with ‖·‖2
s,2;Ω := ‖·‖2

0,2;Ω + |·|2s,2;Ω. The coefficient√
1− s is motivated by the results in [9], where it is proven that, for a smooth

domain Ω,

lim
s→1

(1− s)
∫

Ω×Ω

|f(x)− f(y)|2

|x− y|d+2s
dx dy ≈ |f |21,2;Ω .

The space Hs
0(Ω) denotes the completion of C∞0 (Ω) with respect to ‖·‖s,2;Ω.

We recall that Hs
0(Ω) = Hs(Ω) for s < 1/2, see [29, Cor. 1.4.4.5], while

Hs
0(Ω) = {f ∈ Hs(Ω), f |∂Ω = 0}, for s > 1/2, see [29, Cor. 1.5.1.6]. The

dual space H−s(Ω) of Hs
0(Ω) is endowed with

‖f‖−s;Ω := sup
ϕ∈Hs(Ω)

〈f, ϕ〉
‖ϕ‖s,2;Ω

.

If θ ∈ R+, and θ = m+ s with m ∈ N, s ∈ (0, 1), the space Hθ(Ω) is defined
by

Hθ(Ω) := {f ∈ Hm(Ω), |Dαf |s,2;Ω <∞,∀|α| = m}.

We set

|f |2θ,2;Ω :=
∑
|α|=m

|Dαf |2s,2;Ω

and we endow Hθ(Ω) with ‖f‖2
θ,2;Ω := ‖f‖2

m,2;Ω + |f |2θ,2;Ω.

We remark that, for every m ∈ N, and for every ω1, ω2 ⊂ Ω, such that
|ω1 ∩ ω2| = 0, it holds

‖·‖2
m,2;ω1

+ ‖·‖2
m,2;ω2

= ‖·‖2
m,2;ω1∪ω2

.

However, for noninteger θ, in general we can only affirm that

‖·‖2
θ,2;ω1

+ ‖·‖2
θ,2;ω2

≤ ‖·‖2
θ,2;ω1∪ω2

. (7.35)

Given a Hilbert space Y and a proper time interval J , we define for s ∈ (0, 1)
the space Hs(J, Y ) as the subspace of L2(J, Y ) of those functions for which

|f |2Hs(J,Y ) :=

∫
J×J

‖f(t)− f(τ)‖2
Y

|t− τ |2s+1
dt dτ

is finite.
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The real method of interpolation

Let (B0, B1) be a couple of Banach spaces with B1 ⊂ B0. For every t > 0
and every f ∈ B0, the K-functional of the couple (B0, B1) is given by

K(f, t, B0, B1) := K(f, t) := inf
g∈B1

‖f − g‖B0
+ t ‖g‖B1

.

We recall that, as a function of t, K(f, t) is increasing and subadditive, see
[18, Ch. 6, Prop. 1.1].

Given two parameters s ∈ (0, 1) and q ∈ [1,∞), the intermediate spaces
(B0, B1)s,q are defined by

(B0, B1)s,q := {f ∈ B0, ‖f‖(B0,B1)s,q
<∞},

where

‖f‖q(B0,B1)s,q
:= s(1− s)q

∫ ∞
0

(
t−sK(f, t)

)q dt

t
.

As in [34], we put the non-standard coefficient s(1− s)q in the definition of
‖ · ‖q(B0,B1)s,q

. This guarantees that

‖f‖B0
= ‖f‖(B0,B0)s,q

, ∀s ∈ (0, 1), q ∈ [1,∞).

Moreover, the following result, see [6, Sect. 3.5], holds with C = 1:

∀f ∈ B1, ‖f‖(B0,B1)s,q
≤ C ‖f‖1−s

B0
‖f‖sB1

. (7.36)

In fact, exploiting [1, Thm. 7.16 (a), Lemma 7.19 (b)] it holds, for every
f ∈ B1 and t > 0,

‖f‖(B0,B1)s,q
≤ t−s max{‖f‖B0

, t ‖f‖B1
}.

Choosing t = ‖f‖B0
/ ‖f‖B1

as in [6], we get (7.36) with C = 1.

We also recall the following result about interpolation of operators. See,
for example, [6, Thm. 3.1.2].

Lemma 7.16. Assume that (A0, A1) and (B0, B1) are two pairs of Banach
spaces as above, and that T is a linear operator that maps Ai to Bi, i = 0,
1. Then T maps As,q to Bs,q and there holds

‖T‖L(As,q ,Bs,q)
≤ ‖T‖1−s

L(A0,B0) ‖T‖
s
L(A1,B1) .
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Moduli of continuity and K-functional

We recall that the modulus of continuity of a function f ∈ L2(Ω) is defined
by

ω(f, t)2 := sup
|h|<t
‖∆h(f)‖0,2;Ω , t ≥ 0,

where ∆h is the difference operator:

∆h(f)(x) :=

{
f(x+ h)− f(x) if x, x+ h ∈ Ω,
0 otherwise.

We recall that, as a function of t, ω(f, t)2 is non-decreasing and subadditive,
see [18, Ch. 2, Sect. 6]. We also recall the averaged modulus of continuity,
that is given by

w(f, t)2 :=

(
1

td

∫
|h|<t
‖∆h(f)‖2

0,2;Ω dh

)1/2

, t > 0.

A straightforward inequality yields, for every t > 0,

w(f, t)2
2 ≤ min

{
1,

diam(Ω)d

td

}
C(d)ω(f, t)2

2. (7.37)

Concerning the converse inequality, if Ω ⊂ R is an interval, we have, see [18,
Ch. 6, Lemma 5.1],

ω(f, t)2 ≤ Cw(f, t)2, ∀t ≤ |Ω|. (7.38)

The modulus of continuity is related to the variant of the K-functional
of the couple (L2, H1), where the H1-norm is replaced by the H1-seminorm.
More precisely, if f ∈ L2(Ω) and t > 0, we set

K|·|(f, t, L
2, H1) := inf

g∈H1
‖f − g‖0,2;Ω + t |g|1,2;Ω .

If Ω ⊂ R is an interval or if Ω ⊂ Rd is a Lipschitz domain, there hold, see
[18, Ch. 6, Thm. 2.4] and [31, Thm. 1],

∀t ∈ (0, 1) ω(f, t)2 & K|·|(f, t, L
2(Ω), H1(Ω)), (7.39a)

∀t ∈ (0,∞) ω(f, t)2 . K|·|(f, t, L
2(Ω), H1(Ω)). (7.39b)

The hidden constant in (7.39a) depends on the geometry of Ω.
We recall that L2

0(Ω) denotes the subspace of L2(Ω) of functions with
mean value zero. We provide a proof of

(L2
0(Ω), L2

0(Ω) ∩H1(Ω))s,2 = L2
0(Ω) ∩Hs(Ω),

see [11, Thm. 14.2.3], in the case Ω ⊂ R is an interval, in order to highlight
how the constants depend on s.
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Lemma 7.17. Let Ω ⊂ R be an interval with diam(Ω) ≤ 1. Then,

(L2
0(Ω), L2

0(Ω) ∩H1(Ω))s,2 = L2
0(Ω) ∩Hs(Ω),

where L2
0(Ω) ∩ H1(Ω) is endowed with |·|1,2;Ω. Furthermore, for every f ∈

L2
0(Ω) ∩Hs(Ω),

‖f‖(L2
0(Ω),H1(Ω)∩L2

0(Ω))s,2
≤ C |f |s,2;Ω , (7.40)

where the constant is independent of s, and

|f |s,2;Ω ≤ C(s) ‖f‖(L2
0(Ω),H1(Ω)∩L2

0(Ω))s,2
, (7.41)

where C(s) . s−1/2 for s→ 0.

Proof. We start with (7.40). We first notice that, for every t ≥ diam(Ω) and
for every g ∈ H1(Ω) ∩ L2

0(Ω), the Poincaré inequality yields

K(f, t) ≤ ‖f‖0,2;Ω ≤ ‖f − g‖0,2;Ω + ‖g‖0,2;Ω ≤ ‖f − g‖0,2;Ω + diam(Ω) |g|1,2;Ω .

Thus K(f, t) ≤ K(f, diam(Ω)) and thanks also the subadditivity and mono-
tonicity of K(f, ·), we have

s

∫ ∞
diam(Ω)

t−2s−1K(f, t)2 dt ≤ diam(Ω)−2s

2
K(f, diam(Ω))2

≤ 2diam(Ω)−2sK

(
f,

diam(Ω)

2

)2

≤ 4s

22s − 1

∫ diam(Ω)

diam(Ω)
2

t−2s−1K(f, t)2 dt

≤ 2

ln 2

∫ diam(Ω)

0

(
t−sK(f, t)

)2 dt

t
. (7.42)

Therefore,

‖f‖2
(L2

0(Ω),H1(Ω)∩L2
0(Ω))s,2

≤ C(1− s)
∫ diam(Ω)

0

(
t−sK(f, t)

)2 dt

t
.

We observe that, for f ∈ L2
0(Ω), we have K(f, t, L2

0(Ω), L2
0(Ω) ∩ H1) =

K|·|(f, t, L
2, H1). We can exploit thus (7.39a) and (7.38), to get

‖f‖2
(L2

0(Ω),H1(Ω)∩L2
0(Ω))s,2

≤ C(1− s)
∫ ∞

0

(
t−sw(f, t)2

)2 dt

t
. (7.43)
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Finally, by Fubini’s Theorem, see [19] for details, we have

|f |2s,2;Ω =
1− s
2s+ d

∫ ∞
0

[t−sw(f, t)2]2
dt

t
. (7.44)

Combining (7.43)–(7.44) gives (7.40).
On the other hand, by (7.44), (7.37) and (7.39b), we have

|f |s,2;Ω ≤ C(1− s)
∫ ∞

0

t−2sK(f, t)2 dt

t
,

from which (7.41) follows readily.

We notice that (7.44), (7.37) and (7.39b) also hold for Lipschitz domains
in Rd, and therefore also does (7.41).

Fractional Poincaré inequality in 1d

We apply Lemma 7.16 with T = I, q = 2, (A0, A1) = (L2
0(Ω), H1(Ω)∩L2

0(Ω)),
and (B0, B1) = (L2

0(Ω), L2
0(Ω)) where Ω ⊂ R is an interval. We have

‖T‖L(A0,B0) = 1, ‖T‖L(A1,B1) ≤
1

π
diam(Ω).

Hence, for s ∈ (0, 1),

‖T‖L(As,2,Bs,2) ≤
1

πs
diam(Ω)s,

and, for every f ∈ (L2
0(Ω), H1(Ω) ∩ L2

0(Ω))s,2,

‖f‖0,2;Ω = ‖f‖(L2
0(Ω),L2

0(Ω))s,2
≤ 1

πs
diam(Ω)s ‖f‖(L2

0(Ω),H1(Ω)∩L2
0(Ω))s,2

.

Taking into account (7.40) we get, for every f ∈ Hs(Ω) with
∫

Ω
f = 0,

‖f‖0,2;Ω ≤ Cdiam(Ω)s |f |s,2;Ω . (7.45)

Useful inequalities

The following lemma helps bounding the Hs-seminorm of a product on a
finite element star ω.

Lemma 7.18. Assume ω is a star of T . Assume f ∈ W 1,∞(ω) and g ∈
Hs(ω) with s ∈ (0, 1). Then fg ∈ Hs(ω) with

|fg|2s,2;ω ≤ 2 ‖f‖2
0,∞;ω |g|

2
s,2;ω + C(d, σT )(diam(ω))2−2s ‖∇f‖2

0,∞;ω ‖g‖
2
0,2;ω .
(7.46)



121

Proof. Adding and subtracting f(x)g(y) in the definition of |fg|2s,2;ω we get

|fg|2s,2;ω ≤ 2(1− s)
∫
ω×ω

|f(x)|2|g(x)− g(y)|2

|x− y|d+2s
d(x, y)

+ 2(1− s)
∫
ω×ω

|g(y)|2|f(x)− f(y)|2

|x− y|d+2s
d(x, y).

We bound the two terms on the right-hand side separately. First we have

2(1− s)
∫
ω×ω

|f(x)|2|g(x)− g(y)|2

|x− y|d+2s
d(x, y) ≤ 2 ‖f‖2

0,∞;ω |g|
2
s,2;ω .

Concerning the second term we observe that

sup
x,y∈ω

|f(x)− f(y)|
|x− y|

≤ C(σT ) ‖∇f‖0,∞;ω .

In fact, if the segment [x, y] ⊂ ω we can apply the Mean Value Theorem and
get

|f(x)− f(y)| ≤ ‖∇f‖0,∞;ω |x− y|.
Otherwise, let Kx and Ky be two elements such that x ∈ Kx, and y ∈ Ky.
Following the ideas in [37, Lemma 3.4, Case 2], we take m ∈ Kx ∩Ky such
that the convex angle α between x−m and y −m is maximum. This angle
is bounded away from zero in terms of σT . By the Cosine Theorem we get

(1−max{0, cosα})(|x−m|2 + |y −m|2) ≤ |x− y|2,

so that

|f(x)− f(y)| ≤ |f(x)− f(m)|+ |f(m)− f(y)|
≤ ‖∇f‖0,2;ω (|x−m|+ |y −m|)
≤ C(σT ) ‖∇f‖0,2;ω |x− y|.

Therefore, we have

2(1− s)
∫
ω×ω

|g(y)|2|f(x)− f(y)|2

|x− y|d+2s
d(x, y)

≤ 2(1− s) sup
x,y∈ω

|f(x)− f(y)|2

|x− y|2

∫
ω

|g(y)|2
∫
ω

|x− y|2−d−2s dx dy

≤ C(d, σT )(1− s) ‖∇f‖2
0,∞,ω

∫
ω

|g(y)|2
∫ diam(ω)

0

ρ2−2s−1 dρ dy

≤ C(d, σT )(diam(ω))2−2s ‖∇f‖2
0,∞;ω ‖g‖

2
0,2;ω .
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For s ∈ (0, 1), the space H1(Ω) is embedded in Hs(Ω), see, for exam-
ple, [20]. We provide a proof, in order to underline that the constant is
independent of s.

Lemma 7.19. Let Ω ⊂ Rd be a Lipschitz domain. Then, there exists a
constant that depends on Ω but independent of s, such that, for every f ∈
H1(Ω) and s ∈ (0, 1),

|f |s,2;Ω ≤ C ‖f‖1,2;Ω .

Proof. We recall (7.44), which also holds for Lipschitz domain, and we exploit
(7.37), to get

|f |2s,2;Ω ≤ C(d)(1−s)
(
ω(f, diam(Ω))2diam(Ω)−2s+

∫ diam(Ω)

0

t−2s−1ω(f, t)2
2 dt
)
.

By the monotonicity and subadditivity of ω(f, ·), reasoning similarly as in
(7.42), we get

ω(f, diam(Ω))2diam(Ω)−2s ≤ C

∫ diam(Ω)

0

t−2s−1ω(f, t)2 dt

≤ C max{1, diam(Ω)2−2s}
∫ 1

0

t−2s−1ω(f, t)2 dt.

The thesis follows by (7.39b) and

K(f, t) ≤ t ‖f‖1,2;Ω , ∀t ∈ (0, 1), f ∈ H1(Ω).

We conclude with an upper bound for ‖f‖s,2;Ω, in the spirit of (7.36).

Lemma 7.20. Assume s ∈ (0, 1). For every f ∈ H1(Ω) we have

‖f‖s,2;Ω ≤ C(s)
(
‖f‖0,2;Ω + ‖f‖1−s

0,2;Ω |f |
s
1,2;Ω

)
, (7.47)

where the constant grows with s−1/2.

Proof. As in the proof of (7.41) we get

|f |s,2;Ω .
1√
s
‖f‖(L2,H1)s,2

.

Thanks to (7.36) we obtain

|f |s,2;Ω .
1√
s
‖f‖1−s

0,2;Ω ‖f‖
s
1,2;Ω

.
1√
s

(
‖f‖0,2;Ω + ‖f‖1−s

0,2;Ω |f |
s
1,2;Ω

)
.
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Simplices and barycentric coordinates

We recall that a d-simplex K ⊂ Rd is the convex hull of the d + 1 points
aj = (aij)

d
i=1, j = 0, . . . , d:

K :=

{
x =

d∑
j=0

λjaj, 0 ≤ λj ≤ 1, j = 0, . . . , d,
d∑
j=0

λj = 1

}
.

The points aj are called the vertices of the simplex and are such that a0 −
a1, . . . , a0 − ad are linearly independent.

The barycentric coordinates λj = λj(x), 0 ≤ j ≤ d, of any point x =
(xi)

d
i=1 ∈ K are the unique solutions of the linear system

d∑
j=0

λjaj = xi, i = 1, . . . , d

d∑
j=0

λj = 1

.

We denote by ΛK : K → Rd+1 the operator that maps any point in K to its
barycentric coordinates:

x 7→ ΛK(x) := (λ0(x), . . . , λd(x)).

Given a mutiindex α = (α0, . . . , αd), the integral of the barycentric monomial
λα = Πd

i=0λ
αi
i over a simplex K is given by∫

K

λα =
α!

(|α|+ d)!
d!|K|, (7.48)

where α! := Πd
i=0αi!, and |α| :=

∑d
i=0 αi.

Reference stars

Because of (7.35), when bounding in terms of the Hθ-(semi)norm, it is in
general not possible to split the norm on contributions from simplices. In
(7.64) below we need the analogous of (7.2a) for stars ωz, z ∈ V . To this end,
as in [37], we divide them in equivalence classes, and fix for each a reference
star. First of all, there are interior stars, for which z is an interior point of ωz,
and boundary stars for which z is a boundary point of ωz. By construction,
z is a common vertex, that is, a vertex that is shared by all d-dimensional
simplices of the star ωz. For boundary stars, it may be that z is not the
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only common vertex. Two stars ω1 and ω2 are topologically equivalent if
and only if there exists a bijection F : ω1 → ω2, such that F and its inverse
F−1 are continuous and affine on each simplex. An equivalence class can be
characterized by the number of d-dimensional simplices in the star and by
the lists of vertices shared by every pair of the simplices. Since the number of
simplices in a star of T is bounded uniformly in terms of the shape parameter
σT , the number of equivalence classes appearing in T is finite. For each such
equivalence class, we fix a reference star with the common vertex, or one
common vertex, in the origin. Moreover, if the equivalence class consists of
interior stars, all other vertices are on the unit sphere Sd−1, otherwise they
are on the semisphere Sd−1∩Rd

+ with Rd
+ := {x = (x1, . . . , xd), xi ≥ 0 for i =

1, . . . , d}.

Polynomial approximation in fractional Sobolev spaces

We conclude this section with an analogous of (7.6) for estimates in fractional
order Sobolev spaces. Assume θ ∈ R, with θ = m+ s, m ∈ N and s ∈ (0, 1).
Then it holds, see [23, Prop. 6.1]

inf
P∈Pm+1

‖f − P‖0,2;ω ≤ C(m, d, γ, s)diam(ω)θ |f |θ,2;ω . (7.49)

The constant in (7.49) grows with s−1/2 and (1− s)−1/2 if s→ 0 or s→ 1.

7.6 Interpolation and dual norms II

The interpolation operator of Section 7.2 is well-defined for functions in L2.
In order to approximate less regular functions, we introduce an interpolator
operator with the same structure of Π0, but that acts on H−1 and has values
in S1,0

0 (T ).
For every z ∈ VΩ we define φ∗z ∈ H1

0 (ωz) as

∀K ⊂ ωz,∀x ∈ K, φ∗z(x) :=
1

|ωz|
p`(ΛK(x)), (7.50a)

where p` is given by

p`((λ0, . . . , λd)) := λ`

(
a1λ

2
` + a2

d∑
j=0
j 6=`

λ2
j + a3λ`

d∑
j=0
j 6=`

λj + a4

d−1∑
j=0
j 6=`

d∑
i=j+1
i 6=`

λiλj

)
.

(7.50b)
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The index ` refers to the barycentric coordinate associate to the vertex z in
K and the coefficients are given by

a1 := d+ 1, a2 := −1

2
(d+ 1)(d+ 2)(d+ 5),

a3 :=
1

2
(d+ 1)(d2 + 7d+ 16), a4 := 2(d+ 1).

Remark 7.21. The definition (7.50b) of the polynomial p` ensures that

(i)
d∑
`=0

p` = d+ 1;

(ii)

∫
K

p`λk = |K|δk`, for every k = 0, . . . , d;

(iii) φ∗z ∈ H1
0 (ωz);

(iv) ‖φ∗z‖0,2;K = C(d)
|K|1/2

|ωz|
and ‖φ∗z‖0,2;ωz

=
C(d)

|ωz|1/2
;

(v) |φ∗z|1,2;K ≤ C(d)
|K|1/2

|ωz|ρK
.

Proof. Since
∑d

`=0 λ` = 1 we have

d+ 1 = (d+ 1)

(
d∑
`=0

λ`

)3

= (d+ 1)
d∑
`=0

λ3
` + 3(d+ 1)

d∑
j,`=0
`6=j

λ2
jλ` + 6(d+ 1)

d−2∑
`=0

d−1∑
j=`+1

d∑
i=j+1

λiλjλ`

= a1

d∑
`=0

λ3
` + (a2 + a3)

d∑
j,`=0
j 6=`

λ2
jλ` + 3a4

d−2∑
`=0

d−1∑
j=`+1

d∑
i=j+1

λiλjλ`

= a1

d∑
`=0

λ3
` + a2

d∑
`=0

d∑
j=0
j 6=`

λ2
jλ` + a3

d∑
`=0

d∑
j=0
j 6=`

λjλ
2
` + a4

d∑
`=0

d−1∑
j=0
j 6=`

d∑
i=j+1
i 6=`

λiλjλ`

=
d∑
`=0

p`.
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Concerning Property (ii), if k 6= `, we exploit (7.48) and we compute

(4 + d)!

∫
K

a1λ
3
`λk + a2λ

3
kλ` + a2

d∑
j=0
j 6=k,`

λ2
jλkλ` + a3λ

2
`λ

2
k + a3

d∑
j=0
j 6=k,`

λ2
`λkλj

+ a4λ`λ
2
k

d∑
j=0
j 6=k,`

λj + a4λ`λk

d−1∑
j=0
j 6=k,`

d∑
i=j+1
i 6=k,`

λjλi

= d!|K|
(

6a1 + 6a2 + 2(d− 1)a2 + 4a3 + 2(d− 1)a3 + 2(d− 1)a4

+
(d− 1)(d− 2)

2
a4

)
= 0. (7.51)

Instead, if j = `, we test (i) with λ` and integrate over K. Exploiting (7.51)
we get ∫

K

p`λ` = (d+ 1)

∫
K

λ` = |K|.

Concerning (iii), we remark that φ∗z ∈ H1(K) for every K ⊂ ωz, and that
p` is a multiple of λ`, so that φ∗z|∂ωz = 0. Moreover p` is symmetric with
respect to permutations where ` is fixed. This guarantees that φ∗z ∈ H1

0 (ωz).
In fact, let K1 and K2 be two simplices such that Ki ⊂ ωz, i = 1, 2 and
K1 ∩K2 is an m-simplex, 0 ≤ m ≤ d− 1. Let `1 and `2 be the indices of the
barycentric coordinate associated to z inK1 andK2 respectively. Let σ be the
permutation that exchanges only `1 with `2, and let Σ ∈ R(d+1)×(d+1) be the
corresponding matrix. More precisely, σ(`1) = `2, σ(`2) = `1 and σ(j) = j
for every j = 0, . . . , d, j 6= `1, `2. Moreover there exists a permutation σ′

with matrix Σ′ such that σ(`2) = `2 and for every x ∈ K1 ∩K2

ΛK2(x) = Σ′ΣΛK1(x).

Therefore, for every x ∈ K1 ∩K2

p`1(ΛK1(x)) = pσ(`1)(ΣΛK1(x)) = p`2(ΣΛK1(x)) = p`2(Σ′ΣΛK1(x))

= p`2(ΛK2(x)).

Properties (iv) and (v) follow from the definition of φ∗z, (7.48) and (7.2).

We define Π : H−1(Ω)→ S1,0
0 (T ) as

Πf :=
∑
z∈VΩ

〈f, φ∗z〉φz. (7.52)
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Moreover we define Π∗ : H−1(Ω)→ span{φ∗z}z∈VΩ
as

Π∗g :=
∑
z∈VΩ

〈g, φz〉φ∗z. (7.53)

For every f ∈ H−1(Ω), g ∈ H1
0 (Ω), we have

〈Πf, g〉 =

〈∑
z∈VΩ

〈f, φ∗z〉φz, g

〉
=
∑
z∈VΩ

〈f, φ∗z〉 〈φz, g〉

=

〈
f,
∑
z∈VΩ

〈g, φz〉φ∗z

〉
= 〈f,Π∗g〉 . (7.54)

With the following proposition we analyse the properties of Π and Π∗.

Proposition 7.22 (Properties of Π and Π∗). The interpolation operator Π
defined in (7.52) satisfies the following properties:

(i) Invariance over S1,0
0 (T ). For every f ∈ S1,0

0 (T ),

Πf = f.

(ii) Stability in L2. For every f ∈ L2(Ω), for every K ∈ T ,

‖Πf‖0,2;K ≤ C(d) ‖f‖0,2;ωK
.

(iii) Stability in H1. For every f ∈ H1
0 (Ω),

∀K ∈ TΩ |Πf |1,2;K ≤ C(d, CP )
diam(ωK)

ρK
|f |1,2;ωK

,

∀K ∈ T∂Ω |Πf |1,2;K ≤ C(d, CF )
diam(ωK)

ρK
|f |1,2;ωK

.

The interpolation operator Π∗ defined in (7.53) satisfies the following prop-
erties:

(iv) Local invariance over constants. For every c ∈ R, for every K ∈ TΩ,

(Π∗cχωK )|K = cχK .

(v) Stability in L2. For every ϕ ∈ L2(Ω), for every K ∈ T

‖Π∗ϕ‖0,2;K ≤ C(d) ‖ϕ‖0,2;ωK
.
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(vi) Stability in H1. For every ϕ ∈ H1
0 (Ω),

∀K ∈ TΩ, |Π∗ϕ|1,2;K ≤ C(d, CP )
diam(ωK)

ρK
|ϕ|1,2;ωK

,

∀K ∈ T∂Ω, |Π∗ϕ|1,2;K ≤ C(d, CF )
diam(ωK)

ρK
|ϕ|1,2;ωK

.

Proof. We start with (i), which is equivalent to Πφz = φz for every z ∈ NΩ.
This in turn is equivalent to

∀y, z ∈ NΩ

∫
Ω

φzφ
∗
y = δyz. (7.55)

This is a direct consequence of Property (ii) of Remark 7.21.

Concerning (iv), by linearity of Π∗ it is sufficient to show the assertion
for c = 1. We exploit Property (i) of Remark 7.21 and get

(Π∗χωK )|K =
∑
z∈VK

(∫
ωz

φz

)
φ∗z|K =

|ωz|
d+ 1

∑
z∈VK

φ∗z|K =
1

d+ 1

d∑
`=0

p`χK

= χK .

Concerning Property (ii) and (v), we can proceed as in the proof of
Proposition 7.2, using Property (iv) of Remark 7.21.

Property (iii), is also proved in the same way as Property (iii) of Proposi-
tion 7.2, exploiting the invariance over S1,0

0 (T ) and the Friedrichs or Poincaré
inequality. The proof of Property (vi) also goes along the same lines, exploit-
ing Property (iv), and recalling the definition of cK(·) of (7.16), we get

|Π∗ϕ|1,2;K = |Π∗ϕ− cK(ϕ)|1,2;K = |Π∗ϕ− Π∗cK(ϕ)|1,2;K

≤
∑
z∈VK

‖ϕ− cK(ϕ)‖0,2;ωz
‖φz‖0,2;ωz

|φ∗z|1,2;K

≤ C(d)
∑
z∈VK

‖ϕ− cK(ϕ)‖0,2;ωz

|K|1/2

ρK |ωz|1/2

≤ C(d)ρ−1
K ‖ϕ− cK(ϕ)‖0,2;ωK

.

Property (vi) follows by means of the Poincaré inequality, for every K ∈ TΩ,
or the Friedrichs inequality, for every K ∈ T∂Ω.
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Approximation properties

The following propositions investigate the approximation properties of Π in
the H1-seminorm, in the L2-norm and in the H1-norm.

We start with the H1-seminorm. The following proposition is the coun-
terpart of Proposition 7.3. The proof goes along the same lines.

Proposition 7.23 (Approximation in H1). The interpolation operator Π
defined in (7.52) satisfies, for every f ∈ H1

0 (Ω),

|f − Πf |1,2;Ω ≤ C(d, CP , CF , σT )

( ∑
K∈TΩ

inf
P∈P1(K)

|f − P |21,2;K

)1/2

.

Combining with (7.49) we get, for every f ∈ H1+s(Ω) ∩ H1
0 (Ω) with

s ∈ (0, 1),

|f − Πf |1,2;Ω ≤ C(d, s, CP , CF , σT )

(∑
K∈T

diam(K)2s|f |21+s,2;K

)1/2

. (7.56)

Next we investigate approximation in L2. Mimicking (7.18), we define the
variant of Π that has value in S1,0(T ) as

Π̃f :=
∑
z∈V

〈f, φ∗z〉φz,

where {φ∗z}z∈V are as in (7.50). The difference with Π is that the sum is on

V and not only on VΩ. For this reason Π̃ is invariant on S1,0(T ), and enjoys
the same properties of Π.

Proposition 7.24 (Approximation in L2). The interpolation operator Π
defined in (7.52) satisfies, for every f ∈ Hs

0(Ω), s ∈ (0, 1), s 6= 1/2,

‖f − Πf‖0,2;Ω ≤ C(d, σT )
(∑
K∈T

diam(ωK)2s |f |2s,2;ωK

)1/2

.

Proof. Properties (i) and (ii) of Proposition 7.22 imply, for every K ∈ TΩ,

‖f − Πf‖0,2;K ≤ C(d) inf
P∈S1,0(T )|ωK

‖f − P‖0,2;ωK
. (7.57)

For the elements in T∂Ω, we insert Π̃f , as in (7.20), so that we are left with∥∥∥Π̃f − Πf
∥∥∥

0,2;K
. Since f ∈ L2(Ω), we get∥∥∥Π̃f − Πf

∥∥∥
0,2;K

≤
∑

z∈VK∩∂Ω

∣∣∣∣∫
ωz

fφ∗z

∣∣∣∣ ‖φz‖0,2;K .
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We denote by ρz the distance from ∂ωz ∩ ∂Ω. The function ρ−sz f belongs to
L2(ωz), see [29, Thm. 1.4.4.3], and we have∫

ωz

fφ∗z =

∫
ωz

ρ−sz fφ∗zρ
s
z ≤ diam(ωz)

s ‖φ∗z‖0,2;ωz

∥∥ρ−sz f
∥∥

0,2;ωz

≤ C
diam(ωz)

s

|ωz|1/2
|f |s,2;ωz

.

Recalling also (7.3), we get

∑
K∈T∂Ω

( ∑
z∈VK∩∂Ω

|K|1/2

|ω|1/2
diam(ωz)

s |f |s,2;ωz

)2

≤ C(d)
∑
K∈T∂Ω

diam(ωK)2s |f |2s,2;ωK
.

The thesis follows combining (7.57) with [23, Thm. 7.1] and (7.49).

For s = 1/2 we have

‖f − Πf‖0,2;Ω ≤ C(d, σT )
(∑
K∈T

diam(ωK) |f |21/2,2;ωK

+
∑
K∈T∂Ω

diam(ωK)
∥∥ρ−1/2f

∥∥2

0,2;ωK

)1/2

. (7.58)

The term
∥∥ρ−1/2f

∥∥
0,2;ωK

cannot in general be bounded by |f |1/2,2;ωK
, see [33,

Thm. 11.7].

Remark 7.25. Proceeding as in the proof of Proposition 7.24 we also get a
bound for ‖f − Π0f‖0,2;Ω in case f ∈ Hs

0(Ω), s ∈ (0, 1), s 6= 1/2

‖f − Π0f‖0,2;Ω ≤ C(d, `, σT )
(∑
K∈T

diam(ωK)2s |f |2s,2;ωK

)1/2

.

Proposition 7.26 (Approximation in H−1). The interpolation operator Π
defined in (7.52) satisfies:

(i) For every f ∈ H−s(Ω) with s ∈ (0, 1),

‖f − Πf‖−1;Ω ≤ C(d, CP , σT )

(∑
z∈V

diam(ωz)
2−2s ‖f‖2

−s;ωz

)1/2

.

(7.59)
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(ii) For every f ∈ L2(Ω)

‖f − Πf‖−1;Ω ≤ C(d, CP , νT )

(∑
K∈T

diam(ωK)2 ‖f‖2
0,2;K

)1/2

.

Proof. We start with (i) exploiting (7.54) and the fact that {φz}z∈V form a
partition of unity:

‖f − Πf‖−1;Ω = sup
ϕ∈H1

0 (Ω)

〈f − Πf, ϕ〉
|ϕ|1,2;Ω

= sup
ϕ∈H1

0 (Ω)

〈f, ϕ− Π∗ϕ〉
|ϕ|1,2;Ω

= sup
ϕ∈H1

0 (Ω)

∑
z∈V

〈f, (ϕ− Π∗ϕ)φz〉
|ϕ|1,2;Ω

≤ sup
ϕ∈H1

0 (Ω)

∑
z∈V

sup
ψ∈Hs

0(ωz)

〈f, ψ〉
‖ψ‖s,2;ωz

|ϕ|1,2;Ω

‖(ϕ− Π∗ϕ)φz‖s,2;ωz

≤

(∑
z∈V

diam(ωz)
2−2s

(
sup

ψ∈Hs
0(ωz)

〈f, ψ〉
‖ψ‖s,2;ωz

)2)1/2

· sup
ϕ∈H1

0 (Ω)

(∑
z∈V

diam(ωz)
2s−2
‖(ϕ− Π∗ϕ)φz‖2

s,2;ωz

|ϕ|21,2;Ω

)1/2

. (7.60)

The thesis follows by bounding the supremum over ϕ ∈ H1
0 (Ω) on the right-

hand side. To this end, we set cK(·) as in (7.16). By means of Properties
(iii) and (iv) of Proposition 7.22 and the Poincaré or Friedrichs inequality,
we get, for every z ∈ V ,

‖(ϕ− Π∗ϕ)φz‖2
0,2;ωz

≤ ‖ϕ− Π∗ϕ‖2
0,2;ωz

=
∑
K⊂ωz

‖ϕ− cK(ϕ)− Π∗(ϕ− cK(ϕ))‖2
0,2;K

≤ C(d)
∑
K⊂ωz

‖ϕ− cK(ϕ)‖2
0,2;ωK

≤ C(d, CP , CF )
∑
K∈ωz

diam(ωK)2 |ϕ|21,2;ωK
. (7.61)

Taking into account the multiple counting in the sum over the elements of a
star, we obtain

‖(ϕ− Π∗ϕ)φz‖2
0,2;ωz

≤ ‖ϕ− Π∗ϕ‖2
0,2;ωz

≤ C(d, CP , CF , νT )diam(ω̃z)
2 |ϕ|21,2;ω̃z

. (7.62)
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Moreover we apply (7.46) and get

|(ϕ− Π∗ϕ)φz|2s,2;ωz
≤ 2 ‖φz‖2

0,∞;ωz
|ϕ− Π∗ϕ|2s,2;ωz

+ C(d, σT )diam(ωz)
2−2s ‖∇φz‖2

0,∞;ωz
‖ϕ− Π∗ϕ‖2

0,2;ωz
.

(7.63)

Concerning the first term on the right-hand side, we map to the reference
stars and we exploit the embedding H1(ω̂) ⊂ Hs(ω̂), see Lemma 7.19:

|ϕ− Π∗ϕ|2s,2;ωz
≤ C(d) max

K⊂ωz
ρ−2s
K

|ωz|
|ω̂|
|(ϕ− Π∗ϕ) ◦ F |2s,2;ω̂

≤ C(d) max
K⊂ωz

ρ−2s
K

|ωz|
|ω̂|
‖(ϕ− Π∗ϕ) ◦ F‖2

1,2;ω̂ . (7.64)

We bound the two terms of the ‖·‖1,2;ω̂-norm separately. Concerning the

L2-norm we map back to every simplex in ωz and proceed as in (7.61)

‖(ϕ− Π∗ϕ) ◦ F‖2
0,2;ω̂ =

∑
T̂∈ω̂

‖(ϕ− Π∗ϕ) ◦ F‖2
0,2;T̂

≤
∑
K⊂ωz

|T̂ |
|K|
‖ϕ− cK − Π∗(ϕ− cK)‖2

0,2;K

≤ C(d, CP , CF )
∑
K⊂ωz

|T̂ |
|K|

diam(ωK)2 |ϕ|21,2;ωK
. (7.65)

Concerning the H1-seminorm we exploit property (vi) of Proposition 7.22
and get

|(ϕ− Π∗ϕ) ◦ F |21,2;ω̂ =
∑
T̂∈ω̂

|(ϕ− Π∗ϕ) ◦ F |21,2;T̂

≤
∑
K⊂ωz

|T̂ |
|K|

diam(K)2 |ϕ− Π∗ϕ|21,2;K

≤ C(d, CP , CF )
∑
K⊂ωz

diam(ωK)2

ρ2
K |K|

diam(K)2 |ϕ|21,2;ωK
.

(7.66)

Combining (7.64)–(7.66), and taking into account the multiple counting in
the sum over the elements of a star, we obtain

|ϕ− Π∗ϕ|2s,2;ωz

. diam(ω̃z)
2−2s max

K⊂ωz

diam(ω̃z)
2s

ρ2s
K

max
K⊂ωz

|ωz|diam(K)2

|K|ρ2
K

|ϕ|21,2;ω̃z
, (7.67)
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where the hidden constant depends on d, CP , CF , and νT . Concerning the
second term on the right-hand side of (7.63), we combine (7.62) with

‖∇φz‖2
0,∞;ωz

≤ C(d) max
K⊂ωz

ρ−2
K .

Combining this with (7.63) and (7.67), we get

|(ϕ− Π∗ϕ)φz|2s,2;ωz
≤ C(d, CP , CF , νT , σT )diam(ωz)

2−2s|ϕ|21,2;ω̃z .

Inserting this and (7.61) into (7.60), and taking into account the multiple
counting in the sum over z ∈ V , gives the first assertion.

Regarding (ii), since f ∈ L2(Ω), we can write

‖f − Πf‖−1;Ω = sup
ϕ∈H1

0 (Ω)

〈f − Πf, ϕ〉
|ϕ|1,2;Ω

= sup
ϕ∈H1

0 (Ω)

〈f, ϕ− Π∗ϕ〉
|ϕ|1,2;Ω

≤ sup
ϕ∈H1

0 (Ω)

∑
K∈T

∫
K
f(ϕ− Π∗ϕ)

|ϕ|1,2;Ω

≤ sup
ϕ∈H1

0 (Ω)

∑
K∈T ‖f‖0,2;K ‖ϕ− Π∗ϕ‖0,2;K

|ϕ|1,2;Ω

.

We proceed as in (7.65) and use the Cauchy-Schwarz inequality for sums to
obtain

‖f − Πf‖−1;Ω ≤ C(d, CP , CF ) sup
ϕ∈H1

0 (Ω)

∑
K∈T ‖f‖0,2;K diam(ωK) |ϕ|1,2;ωK

|ϕ|1,2;Ω

≤ C(d, CP , CF , νT )

(∑
K∈T

diam(ωK)2 ‖f‖2
0,2;K

)1/2

.

7.7 Standard formulation and fractional reg-

ularity

In this section we derive error estimates for the approximation of the solution
u of the parabolic problem in the standard formulation. We extend the results
of Section 7.3 to exact solutions belonging to fractional order Sobolev spaces.

7.7.1 Spatial semidiscretization

As in Section 7.3.1 we require that T belongs to a family of triangulations
for which the L2-projection onto S`,00 is H1-stable. We assume U ∈ S`,00 (T )
to be as in Section 7.3.1.
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With the tools in Sections 7.5–7.6 we obtain the following extension of
Theorem 7.7.

Theorem 7.27. Assume 1 < θ ≤ ` + 1 with θ = m + s, m ∈ N, s ∈ (0, 1),
θ 6= 3/2, 5/2. Moreover assume u ∈ L2(Hθ), and, if θ < 5/2, u′ ∈ L2(Hθ−2)
otherwise u′ ∈ L2(Hθ−2

0 ). Then we have

‖u(0)− U(0)‖2
0,2;Ω +

∫ T

0

‖u′(t)− U ′(t)‖2
−1;Ω + |u(t)− U(t)|21,2;Ω

.
∑
K∈T

diam(K)2θ−2 |u(0)|2θ−1,2;ωK

+

∫ T

0

∑
K∈T

diam(ωK)2θ−2 |u′(t)|2θ−2,2;ωK
+ diam(K)2θ−2 |u(t)|2θ,2;K .

The hidden constant depends on the H1-norm of the L2-projection on S`,00 (T ),
the coercivity and continuity constants of the parabolic problem, the dimen-
sion d, the parameter s, the polynomial degree ` and the shape-parameter
σT .

Proof. The proof mimics the one of Theorem 7.7. In case θ ≥ 2, we still
interpolate with Π0 of Section 7.2 and invoke Propositions 7.3–7.5 combined
with (7.49) together with [23, Thm. 7.1]; recall also Remark 7.25. In case
θ ∈ (1, 2), instead, u′ does not belong to L2(L2) and we take

∀t ∈ [0, T ] V (t) := Πu(t) ∈ S1,0
0 (T ) ⊂ S`,00 (T ).

Because of the low regularity of the function, we cannot exploit the full ap-
proximation power of S`,00 (T ), and we do not waste in taking V ∈ H1(S1,0

0 (T )).
The assertion follows from Propositions 7.24–7.26 and (7.56).

Remark 7.28. In case θ = 3/2 or θ = 5/2 we apply (7.58) and get similar
bounds. The difference consists in an additional term on the right-hand side,
which is ∑

K∈T∂Ω

diam(ωK)
∥∥ρ−1/2u(0)

∥∥2

0,2;ωK

in case θ = 3/2, or∫ T

0

∑
K∈T∂Ω

diam(ωK)3
∥∥ρ−1/2u′(t)

∥∥2

0,2;ωK

in case θ = 5/2. Similar considerations are valid also for the theorems below.
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7.7.2 Semidiscretization in time

Let U ∈ S1,0(P , H1
0 ) be as in Section 7.3.2, and assume supn τn < 1. By

means of the fractional Poincaré inequality, we obtain the following extension
of Theorem 7.8.

Theorem 7.29. Assume s ∈ (0, 1), u ∈ Hs(H1
0 ) and u′ ∈ Hs(H−1). Then

‖u(0)− U(0)‖2
0,2;Ω +

∫ T

0

‖u′ − U ′‖2
−1;Ω + |u− U(tn)|21,2;Ω

.
N∑
n=1

τ 2s
n ‖u′‖

2
Hs(In,H−1) + τ 2s

n ‖u‖
2
Hs(In,H1) ,

where the hidden constant depends on the coercivity and continuity constant
of the parabolic problem and on the parameter µP , but it is independent of s.

Proof. We apply Theorem 4.4, which states that

‖u(0)− U(0)‖2
0,2;Ω +

N∑
n=1

∫
In

‖u′ − U ′‖2
−1;Ω + |u− U(tn)|21,2;Ω

. inf
v∈S0,−1(P,H−1)

‖u′ − v‖2
L2(H−1) + inf

z∈S0,−1(P,H1
0 )
‖u− z‖2

L2(H1
0 ) .

We insert v ∈ S0,−1(P , H−1) and z ∈ S0,−1(P , H1
0 ) such that, for n =

1, . . . , N ,

v|In =
1

τn

∫
In

u′, and z|In =
1

τn

∫
In

u

in the infima on the right-hand side. The thesis follows applying (7.45).

7.7.3 Full discretization with the backward Euler-Gal-
erkin method

We assume that the sequence {Tn}Nn=0 of triangulations belongs to a family
for which the L2-projection is uniformly H1-stable.

Let U be as in Section 7.3.4. Combining the results in Sections 7.7.1–7.7.2
we obtain the following extension of Theorem 7.11.

Theorem 7.30. Assume s ∈ (0, 1) and θ ∈ (1, `+1), with θ = m+ s̄, m ∈ N,
s̄ ∈ (0, 1) and θ 6= 3/2, 5/2. Assume u ∈ L2(Hθ) ∩Hs(H1

0 ), and, if θ < 5/2,
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u′ ∈ L2(Hθ−2) ∩Hs(H−1), otherwise u′ ∈ L2(Hθ−2
0 ) ∩Hs(H−1). Then

‖u(0)− U(0)‖2
0,2;Ω +

N∑
n=1

∫
In

‖u′ − U ′‖2
−1;Ω + |u− U(tn)|21,2;Ω

.
∑
K∈T0

diam(ωK)2θ−2 |u(0)|2θ−1,2;ωK

+
N∑
n=1

τ 2s
n ‖u′‖

2
Hs(In,H−1) +

∫
In

∑
K∈Tn

diam(ωK)2θ−2 |u′|2θ−2,2;ωK

+ τ 2s
n ‖u‖

2
Hs(In,H1

0 ) +

∫
In

∑
K∈Tn

diam(ωK)2θ−2 |u|2θ,2;ωK

+
N−1∑
n=1

τ−1
n

∫
In

∑
K∈Tn

diam(ωK)2θ |u|2θ,2;ωK
.

The hidden constant depends on the maximum of the H1-norms of the L2-
projection on S`,00 (Tn), the coercivity and continuity constants of the parabolic
problem, the dimension d, the parameter s̄, the polynomial degree `, the shape
parameters σTn and the parameter µP , but it is independent of s.

Proof. The proof mimics the one of Theorem 7.11. As in Theorem 7.29 we
use (7.45) to bound the terms∥∥∥∥u− 1

τn

∫
In

u

∥∥∥∥
L2(In,H1)

and

∥∥∥∥u′ − 1

τn

∫
In

u′
∥∥∥∥
L2(In,H−1)

.

As in Theorem 7.27, if θ ≥ 2 we bound the contributions involving the
interpolation operator Π0 with the help of (7.49), [23, Thm. 7.1] and Remark
7.25. If θ ∈ (1, 2) we use Π in place of Π0 in the treatment of the time
derivative.

7.8 Natural formulation and fractional regu-

larity

In this section we derive error estimate for the approximation of the solution
u of the parabolic problem in the natural formulation. We extend the results
of Section 7.4 to exact solutions belonging to fractional order Sobolev spaces.
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7.8.1 Spatial semidiscretization

Since Theorem 7.12 does not involve the approximation of the time derivative
in the L2(H−1)-norm, we can easier extend this result. With the help of
(7.49) with [23, Thm. 7.1], we get

Theorem 7.31. Assume 1 ≤ θ ≤ `+1, with θ = m+s, m ∈ N and s ∈ (0, 1).
Moreover assume u ∈ L2(Hθ). Then we have∫ T

0

|u(t)− U(t)|21,2;Ω .
∫ T

0

∑
K∈T

diam(K)2θ−2 |u(t)|2θ,2;K .

The hidden constant depends on the H1-norm of the L2-projection on S`,00 (T ),
the coercivity and continuity constants of the parabolic problem, the dimen-
sion d, the parameter s, the polynomial degree ` and the shape parameter
σT .

7.8.2 Semidiscretization in time

Assume supn τn < 1 and let U ∈ S0,−1(P , H1
0 ) be as in Section 7.4.2. We

recall (4.33) and (4.30) and use (7.30) with Y = L2(Ω) and Y = H1
0 (Ω), to

obtain

N∑
n=1

τ−1
n ‖ϕ− ϕ(tn−1)‖2

L2(In,L2) ≤
1

3

N∑
n=1

∫
In

‖ϕ(tn)− ϕ(tn−1)‖2
0,2;Ω

≤ 1

3
‖ϕ‖2

2,P , (7.68a)

and

N∑
n=1

‖ϕ− ϕ(tn−1)‖2
L2(In,H1) ≤

1

3

N∑
n=1

∫
In

|ϕ(tn)− ϕ(tn−1)|21,2;Ω

≤ 2

3
(µP + 1) ‖ϕ‖2

2,P . (7.68b)

Theorem 7.32. Assume s ∈ (0, 1) and that, for every n = 1, . . . , N , u|In ∈
Hs(In, H

1
0 ) and, if s ∈ (0, 1/2], u′|In ∈ L2(In, H

2s−1), otherwise u′|In ∈
Hs(In, H

−1). Then,

‖u− U‖2
L2(H1

0 ) .
N∑
n=1

τ 2s
n ‖u‖

2
Hs(H1

0 ) +

 τ 2s
n ‖u′‖

2
L2(In,H2s−1) if s ∈ (0, 1/2]

τ 2s
n ‖u′‖

2
Hs(In,H−1) if s ∈ (1/2, 1)

.

The hidden constant depends on the coercivity and continuity constants of
the parabolic problem, on s and on the parameter µP if s 6= 1/2.
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Proof. We apply Proposition 4.9, which states that

‖u− U‖L2(H1
0 ) . inf

v∈S0,−1(P,H1
0 )
‖u− v‖L2(H1

0 )

+ sup
ϕ∈S1,0(P,H1

0 )
ϕ(T )=0

N∑
n=1

∫
In

〈Au− f, ϕ− ϕ(tn−1)〉

‖ϕ‖2,P
. (7.69)

We insert v ∈ S0,−1(P , H1
0 ) such that, for every n = 1, . . . , N ,

v|In =
1

τn

∫
In

u,

in the infimum on the right-hand side of (7.32), and we exploit (7.45) on
every In. Concerning the supremum on the right-hand side of (7.69), we
first consider the case s = 1/2. Exploiting (7.68a), we get, for every ϕ ∈
S1,0(P , H1

0 ) with ϕ(T ) = 0,

N∑
n=1

∫
In

〈Au− f, ϕ− ϕ(tn−1)〉

≤
N∑
n=1

‖Au− f‖L2(In,L2) ‖ϕ− ϕ(tn−1)‖L2(In,L2)

≤

(
N∑
n=1

τn ‖Au− f‖2
L2(In,L2)

)1/2( N∑
n=1

τ−1
n ‖ϕ− ϕ(tn−1)‖2

L2(In,L2)

)1/2

≤ 1

3

(
N∑
n=1

τn ‖Au− f‖2
L2(In,L2)

)1/2

‖ϕ‖2,P . (7.70)

Dividing by ‖ϕ‖2,P and taking the supremum over ϕ, we get the assertion
for s = 1/2.

For the case s ∈ (0, 1/2), we exploit (7.47) and we obtain, for every
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ϕ ∈ S1,0(P , H1
0 ) with ϕ(T ) = 0,

N∑
n=1

∫
In

〈Au− f, ϕ− ϕ(tn−1)〉

≤
N∑
n=1

∫
In

‖Au− f‖2s−1;Ω ‖ϕ− ϕ(tn−1)‖1−2s,2;Ω

≤ C(s)

(
N∑
n=1

∫
In

‖Au− f‖2s−1;Ω |ϕ− ϕ(tn−1)|1−2s
1,2;Ω ‖ϕ− ϕ(tn−1)‖2s

0,2;Ω

+
N∑
n=1

∫
In

‖Au− f‖2s−1;Ω ‖ϕ− ϕ(tn−1)‖0,2;Ω

)
. (7.71)

In order to bound the first sum on the right-hand side, we apply twice the
Hölder inequality for three functions with 1

p
+ 1

q
+ 1

r
= 1, being p = 2, q = 2

1−2s

and r = 1
s
:

N∑
n=1

∫
In

‖Au− f‖2s−1;Ω |ϕ− ϕ(tn−1)|1−2s
1,2;Ω ‖ϕ− ϕ(tn−1)‖2s

0,2;Ω

≤
N∑
n=1

τ sn ‖u′‖L2(In,H2s−1) ‖ϕ− ϕ(tn−1)‖1−2s
L2(In,H1

0 ) ·

· τ−sn ‖ϕ− ϕ(tn−1)‖2s
L2(In,L2)

≤

(
N∑
n=1

τ 2s
n ‖u′‖

2
L2(In,H2s−1)

) 1
2
(

N∑
n=1

‖ϕ− ϕ(tn−1)‖2
L2(In,H1

0 )

) 1−2s
2

·

·

(
N∑
n=1

τ−1
n ‖ϕ− ϕ(tn−1)‖2

L2(In,L2)

)s

.

We exploit (7.68) to get

N∑
n=1

∫
In

‖Au− f‖2s−1;Ω |ϕ− ϕ(tn−1)|1−2s
1,2;Ω ‖ϕ− ϕ(tn−1)‖2s

0,2;Ω

.

(
N∑
n=1

τ 2s
n ‖u′‖

2
L2(In,H2s−1)

) 1
2

‖ϕ‖2
2,P . (7.72)

Concerning the second sum on the right-hand side of (7.71), as in (7.70), we
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get

N∑
n=1

∫
In

‖Au− f‖2s−1;Ω ‖ϕ− ϕ(tn−1)‖0,2;Ω

.

(
N∑
n=1

τn ‖u′‖2
L2(In,H2s−1)

) 1
2

‖ϕ‖2
2,P . (7.73)

Since supn τn < 1, we have τn < τ 2s
n for every n = 1, . . . , N , and this term

can be bounded by (7.72). The assertion then follows for s ∈ (0, 1/2).
For s ∈ (1/2, 1), we write, for every ϕ ∈ {φ ∈ S1,0(P , H1

0 ), φ(T ) = 0},
and every n = 1, . . . , N ,∫

In

〈f − Au, ϕ− ϕ(tn−1)〉 =

∫
In

〈u′, ϕ− ϕ(tn−1)〉

=
〈
u(t−n ), ϕ(tn)− ϕ(tn−1)

〉
+

∫
In

−〈ϕ′, u〉

=
〈
u(t−n )− Πnu, ϕ(tn)− ϕ(tn−1)

〉
+

∫
In

−〈ϕ′, u− Πnu〉

≤
∥∥u(t−n )− Πnu

∥∥
−1;Ω
|ϕ(tn)− ϕ(tn−1)|1,2;Ω

+ ‖ϕ′‖L2(In,H−1) ‖u− Πnu‖L2(In,H1
0 ) . (7.74)

Summing over n = 1, . . . , N , we get

N∑
n=1

∫
In

〈f − Au, ϕ− ϕ(tn−1)〉

≤

(
N∑
n=1

τ−1
n

∥∥u(t−n )− Πnu
∥∥2

−1;Ω

)1/2( N∑
n=1

τn |ϕ(tn)− ϕ(tn−1)|21,2;Ω

)1/2

+

(
N∑
n=1

‖u− Πnu‖2
L2(In,H1

0 )

)1/2

‖ϕ′‖L2(H−1) .

We bound the second contribution by means of (4.11) and (7.45). Concerning
the first contribution, we exploit Property (iii) of Remark 4.1 and (7.45) to
obtain

τ−1
n

∥∥u(t−n )− Πnu
∥∥2

−1;Ω
. inf

c∈H−1
‖u′ − c‖2

L2(In,H−1) . τ 2s
n ‖u′‖Hs(In,H−1) .

Combining this with (7.68b) completes the proof for s ∈ (1/2, 1).
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7.8.3 Full discretization with the backward-Euler Gal-
erkin method

Assume supn τn < 1 and let U ∈ S0,−1(P ,V) be as in Section 7.4.4. Thanks
to the H1-stability of the L2-projection, proceeding as in (4.30) gives, for
every ϕ ∈ S1,0−(P ,V),

N∑
n=1

τn
∣∣ϕ(t−n )− ϕ(tn−1)

∣∣2
1,2;Ω

=
N∑
n=1

τn |Pnϕ(tn)− ϕ(tn−1)|21,2;Ω . ‖ϕ‖2
2,P .

(7.75)

Theorem 7.33. Assume s ∈ (0, 1) and θ ∈ (1, ` + 1), with θ = m + s̄,
m ∈ N, s̄ ∈ (0, 1). Assume that, for every n = 1, . . . , N , u|In ∈ C0(In, H

θ) ∩
Hs(In, H

1
0 ), and, if s ∈ (0, 1/2], u′|In ∈ L2(In, H

2s−1), otherwise u′|In ∈
Hs(In, H

−1). Then

‖u− U‖2
L2(H1

0 )

.
N∑
n=1

τ 2s
n ‖u‖

2
Hs(In,H1

0 ) +
∑
K∈Tn

diam(ωK)2θ−2

∫
In

|u|2θ,2;ωK

+
N−1∑
n=1

∑
K∈Tn

diam(ωK)2θ
∣∣u(t−n )

∣∣2
θ,2;ωK

+
N∑
n=1


τ 2s
n

∫
In

‖u′‖2
2s−1;Ω if s ∈ (0, 1/2]

τ 2s
n ‖u′‖

2
Hs(In,H−1) if s ∈ (1/2, 1)

.

The hidden constants depend on the maximum of the H1-norms of the L2-
projection on S`,00 (Tn), the coercivity and continuity constants of the parabolic
problem, the parameters s and s̄, the dimension d, the polynomial degree `,
the shape parameters σTn.

Proof. We exploit Theorem 6.10, which states that

‖u− U‖L2(H1
0 ) . inf

v∈S0,−1(P,V)
‖u− v‖L2(H1

0 )

+ sup
ϕ∈S1,0− (P,V)

ϕ(T )=0

N∑
n=1

∫
In

〈Au− f, ϕ− ϕ(tn−1)〉

‖ϕ‖2,P

+

(
N−1∑
n=1

∥∥(I − Pn)P+
n u(t−n )

∥∥2

0,2;Ω

)1/2

. (7.76)
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We insert v ∈ S0,−1(P ,V) such that, for n = 1, . . . , N ,

v|In = Πn
0

1

τn

∫
In

u

in the infimum on the right-hand side. Proceeding as in (7.34), we obtain
with the help of (7.45) and (7.49):∥∥∥∥u− Πn

0

1

τn

∫
In

u

∥∥∥∥2

L2(In,H1
0 )

.
∫
In

∑
K∈Tn

diam(ωK)2θ−2 |u|2θ,2;ωK
+τ 2s

n ‖u‖
2
Hs(In,H1

0 ) .

The terms ‖(I − Pn)P+
n u(t−n )‖2

0,2;Ω can be bounded as in (7.27). Concerning
the supremum on the right-hand side of (7.76), we proceed as in the proof of
Theorem 7.32. If s ∈ (0, 1/2), we recall that (7.68a)–(7.68b) are still valid,
so that we obtain

sup
ϕ∈S1,0− (P,V)

ϕ(T )=0

N∑
n=1

∫
In

〈Au− f, ϕ− ϕ(tn−1)〉

‖ϕ‖2,P
.

(
N∑
n=1

τ 2s
n ‖u′‖

2
L2(In,H2s−1)

)1/2

.

In case s ∈ (1/2, 1), as in (7.74), we get, for every n = 1, . . . , N ,∫
In

〈f − Au, ϕ− ϕ(tn−1)〉 ≤
∥∥u(t−n )− Πnu

∥∥
−1;Ω

∣∣ϕ(t−n )− ϕ(tn−1)
∣∣
1,2;Ω

+ ‖ϕ′‖L2(In,H−1) ‖u− Πnu‖L2(H1
0 ) ,

By means of (7.75) we can conclude

sup
ϕ∈S1,0− (P,V)

ϕ(T )=0

N∑
n=1

∫
In

〈Au− f, ϕ− ϕ(tn−1)〉

‖ϕ‖2,P

.

(
N∑
n=1

τ 2s
n ‖u′‖

2
Hs(In,H−1) + τ 2s

n ‖u‖
2
Hs(In,H1

0 )

)1/2

.
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