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Introduction

Galerkin finite element methods are widely used for the numerical solution of
linear parabolic problems. There is a vast literature of corresponding a priori
error bounds, most of which are derived without invoking a quasi-optimality
result like Ced’s Lemma; see the monograph of Thomée [41]. This differs
from the analysis of linear elliptic problems, as Douglas and Dupont [21]
recognized already in 1970.

A quasi-optimality result states the equivalence between the error of the
method and the best error within the underlying discrete space. The interest
for such a result is motivated by the fact that it is stronger than error bounds
of optimal order. In fact, given a suitable discrete space, quasi-optimality
implies error bounds of optimal order, but not vice versa: for example, op-
timal order error bounds may require more regularity than the minimal one
indicated by approximation theory or, more subtle, the bound may not van-
ish whenever the error does so. Moreover optimal order error bounds provide
information of asymptotic nature, while quasi-optimality goes beyond and in
particular covers the computational range.

There are some known results of quasi-optimality in the framework of
parabolic problems. Concerning fixed spatial semi-discretizations, Douglas
and Dupont [21] derived a quasi-optimality result in a norm involving a
time derivative of order 1/2, assuming that the initial error vanishes. This
approach has been generalized by Baiocchi and Brezzi [3] to fractions around
1/2 and by Tomarelli [42] also to general initial values. Other three results
concern quasi-optimality for the approximation in space in simpler norms,
which are related to the standard weak formulation of parabolic problems.
However, none of these results perfectly mimics the elliptic case. Dupont [22]
derived quasi-optimality in a norm close to the one of H'(H~') N L*(H"),
but that depends on the discretization. This approach has been generalized
in [4, 24, 26] in the context of moving mesh methods and in [25] also for
Navier-Stokes equations. The other two results, [13, 30] require that the L2-
projection is H'-stable. With this assumption, Hackbusch [30] in particular
established stability in L*(H"), while Chrysafinos and Hou [13] showed quasi-
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optimality in H'(H~') N L*(H').

Concerning more general spatial discretizations, Dupont in [22] analyses
the case where the spatial mesh is allowed to change with time and proposes a
remarkable counterexample. The discretization is based on one dimensional
finite elements in space, and backward Euler in time. The best approximation
error converges to zero as the mesh-size h and the time step 7 independently
converge to zero. However, the spatial mesh changes every time-step in a way
that, if h, 7 — 0 such that h*/7 — oo, then the discrete solution does not
converge to the exact solution. This reveals that a quasi-optimality result
does not hold, at least when the spatial discretization changes. For more
general problems, Chrysafinos and Walkington [14] prove that the error in
the L*(L>) N L*(H')-norm can be bounded by the error given by a suitable
local projection, and an extra term, that vanishes if the spatial discretization
remains the same.

This thesis concerns linear parabolic equations, with a uniformly elliptic
operator that may depend on time. The approach to the analysis of the
backward Euler-Galerkin method is based on the framework given by the
inf-sup condition. In order to shed light on various aspects, we analyse
separately the spatial discretization, the time discretization and the issue of
varying the spatial discretization, and combine them in an analysis of the
backward Euler- Galerkin method.

Concerning approximation in space we prove that the H!-stability of
the L2-projection is a necessary condition for quasi-optimality, both in the
HY(H')N L*(H')-norm and in the L?*(H')-norm.

Furthermore we investigate the discretization only in time by the back-
ward Euler method. Under the assumption that the time partition is lo-
cally quasi-uniform, we prove that the error in a norm that mimics the
H'(H Y)NL?(H')-norm is equivalent to the sum of the best errors with piece-
wise constants for the exact solution and its time derivative. Concerning the
L?(H"Y)-norm, we observe lack of stability, and therefore of quasi-optimality.
Nevertheless, the L?(H')-norm of the discrete solution is bounded in terms
of a stronger norm of the exact solution, and we derive an abstract error
estimate where the right-hand side is equivalent to the error.

Moreover we address the topic of varying the spatial discretization. Given
a partition of the time interval, we allow for modifications of the spatial
discretization every time step. Assuming the L2-projection to be H!-stable,
we prove that the error is bounded, up to a constant, by the best error and
an extra term that arises from the modifications of the spatial discretization,
and vanishes if these do not occur. This result is valid for both the broken
H'(H Y)NL?*(H")-norm and the L*(H')-norm. This extra term is consistent
with Dupont’s counterexample, in that it converges to zero if h*/7 — 0.



Collecting all the previous results, we analyse the backward Euler-Gal-
erkin method.

Finally we derive to error estimates, in the case the spatial discretization
is based on finite elements. We provide error bounds in terms of the local
mesh-size, the local time step and the regularity of the exact solution. The
latter is measured with Sobolev spaces of possible fractional order.

Organization

The thesis is organized as follows. In Chapter 1 we recall Petrov-Galerkin
approximations and we derive lower bounds for the quasi-optimality constant.
In Chapter 2 we cast abstract parabolic problems into the setting given by
the inf-sup condition. We consider two formulations: in the “standard”
one the solution is sought in L*(H') N H'(H™'), while in the “natural”
formulation the solution belongs to L*(H'). Chapters 3-6 are dedicated
to the discretization. Each one is divided into two parts: the first part
is associated to the standard formulation and concerns approximation in
L*(HY)YNH'(H™'), while the second part is related to the natural formulation
and deals with approximation in L?*(H'). More specifically, in Chapter 3 we
study the spatial semidiscretization, in Chapter 4 the semidiscretization in
time, in Chapter 5 the variable spatial discretization and in Chapter 6 the
backward-Euler Galerkin method. We conclude in Chapter 7 with the error
bounds. The approximation of the time derivative involves the H~!'-norm
in space. In order to deal with this term, we define a suitable interpolation
operator, which allows for duality arguments.

Theorems, propositions, remarks, etc. share the same numbering and are
numbered per chapter.
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Chapter 1

The Quasi-Optimality Constant
for Petrov-(zalerkin
Approximations

Petrov-Galerkin approximations that are inf-sup stable are known to be near-
best [2], in the sense that there exists a constant ¢ > 0 such that

lv = Ul < qinf flu = V][ (1.1)

This means that the error of the Galerkin approximation U is equivalent to
the best error with respect to the discrete space. This is also called a sym-
metric error estimate [21, 22], to stress that the norm on the right-hand side
coincides with the one on the left-hand side. The result in (1.1) provides in-
formation of non-asymptotic nature about the quality of the approximation,
and it is useful for deriving a priori error estimates. Of course this is signif-
icant for practical computation only if ¢ is of moderate size. Upper bounds
for ¢ are given in [2, 7, 12, 48].

In this chapter we provide a formula for ¢ in terms of the bilinear form of
the variational problem and in terms of the discrete spaces. We regain the
known upper bound and we also furnish lower bounds for ¢, which are useful
in Chapter 3.

The chapter is organized as follows. In Section 1.1, we recall the frame-
work of Petrov-Galerkin approximations and the inf-sup theory, which is
a key instrument in establishing our results. In Section 1.2 we derive the
aforementioned formula for ¢. Finally in Section 1.3 we analyse the non-
conforming case.
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1.1 Petrov-Galerkin approximation

We start by briefly reviewing Petrov-Galerkin approximation in Banach re-
flexive spaces. See also the original work of Babuska [2] and, for example,
the textbook [27].

1.1.1 The abstract problem

We introduce the abstract problem to be approximated. Let (Xi,||||,) and
(X2, [||ly) be two real Banach spaces, and let X, be also reflexive. The dual
space X5 of Xj is equipped with the usual dual norm [|€||; = supy,, —1 £(¢)
for ¢ € XJ. Moreover, let b be a real-valued bounded bilinear form on X; x X5
and let (', be the continuity constant of b:

b
Cp := sup sup M

. (1.2)
vexs pexs [Vl ]l

We consider the problem

given ¢ € X, find u € X; such that Vo € Xo  b(u, ¢) = () (1.3)

and say that it is well-posed if, for any ¢ € X3, there exists a unique solution
that continuously depends on ¢. The spaces X; and X5 are called trial and
test space, respectively. Problem (1.3) is well-posed if and only if there hold
the following two conditions:

b
¢y = inf sup bw.p) >0 (uniqueness), (1.4a)
vexs pexa [|V]l; Il
(b(v,) =0 Yve X;)=p=0 (existence). (1.4b)

The quantity ¢, is the so-called inf-sup constant. An equivalent condition to

(1.4) is
b b
inf sup blv.o) = inf sup blv.e) > 0. (1.5)
vexipeXs [Vl llelly  pexavexs l0lly 12l
This equality allows to exchange the spaces where infimum and supremum
are taken and it is a consequence of
) HB -

(1.6)

— =B |
C L(X3,X1 L(X7,X2) "

where the linear operator B € £(X, XJ) is given by B(v)(¢) = b(v, ), and
B* € L( Xy, XT) is its adjoint B*(¢)(v) = B(v)(p). Equation (1.6) tells that
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lull, < ' |14]l5, so ¢; ' may be viewed as an absolute condition number for

solving (1.3) with respect to [|-||; and ||-||,. Consequently, problem (1.3) is
well-conditioned if the inf-sup constant ¢;, is not too small.

One could also consider a problem with right-hand side in X7, so that X,
becomes the test space and X, the trial space:

given g € X7, find ¢ € X5 such that Yo € X7 b(v, ¢) = g(v). (1.7)

We call (1.7) the dual problem of the primal problem (1.3). Thanks to (1.5)
the well-posedness of primal and dual problem are equivalent.

1.1.2 Petrov-Galerkin method

We next review Petrov-Galerkin methods for problem (1.3). For notational
simplicity, we take the viewpoint that a Petrov-Galerkin method is charac-
terized by one pair of subspaces, instead of a family of pairs. Given two
nontrivial and proper subspaces M; C X;, ¢« = 1,2, the Petrov-Galerkin
method M = M; x M reads

given ¢ € X, find Uy; € M; such that Vo € My b(Up, ) = (). (1.8)

Replacing X; by M;, ¢ = 1,2, we see that method M is well-defined, or
problem (1.8) is well-posed, if and only if there hold

b
cy = inf sup blv.o) > 0, (1.9a)
vey pens [|Vlly [l
(b(v,p) =0 Yve M)=p=0 (1.9b)

The quantity ¢y, is the so-called discrete inf-sup constant. If M; and M,
have finite dimension, it is necessary for (1.9) that dim(M;) = dim(Ms). In
this case, (1.9a) and (1.9b) are equivalent.
We say that the method M is stable if there exists a constant k such that,
for every (¢ € H3,
1Uaell, < &, (1.10)

It is easy to see that the best constant k in (1.10) is the norm of the Ritz pro-
jection Ry; : X7 — My, which maps any exact solution on its corresponding
approximate solution. More precisely, R, is defined by

Vo € M, b(Ryu, @) = b(u, ). (1.11)

For a well-defined method M, the map R); is also well-defined and it is
actually a projection onto the nontrivial proper subspace M.
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One may also consider the dual Petrov-Galerkin method M, x M for the
dual problem (1.7):

given g € X7, find ®5; € M, such that Yo € My b(v, ®py) = g(v). (1.12)

Thanks again to (1.5) the well-posedness of (1.12) is equivalent to the one
of (1.8). We denote by R}, : Xo — M, the dual Ritz projection defined,
similarly to (1.11), by

Vv € M, b(v, Ry 0) = b(v, ¢).

1.2 The quasi-optimality constant

The quasi-optimality constant qj; of a method M is the smallest constant
g > 0 such that, for any ¢ € X3, there holds

- U < gq inf — . 1.13
= Uil < g inf Jlu— o], (1.13)

In view of Uy; € My, there holds ¢ > 1.

We briefly provide an overview of the history of (1.13), in case X; is a
Hilbert space. The first result of type (1.13) is due to Céa, [12, Prop. 3.1],
who proved it in 1964 for a symmetric bilinear form. Denoted by «; the
coercivity constant of the bilinear form, the upper bound for ¢ is given by

Ch
am <\ —.
ap

Birkhoff, Schultz and Varga in 1968 [7, Thm. 13] extended the result to the
non-symmetric case, but still with identical trial and test space, with

au < —.
Qy

In 1970, Babuska [2, Thm. 2.2] proved (1.13) for the more general setting
described in Section 1.1, with

C
C]M§1+—b.
Cy

Finally Xu and Zikatanov [48, Thm. 2] in 2003 improved the bound by
Babuska:

qu < —.
Cym
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Theorem 1.2 provides a formula for ¢, in terms of b and the discrete spaces.
It allows to derive also lower bounds for ¢y, and regain the upper bound by
Xu and Zikatanov. We remark that the bound by Babuska is valid in the
more generic case when X is a Banach space.

We first show the equivalence between quasi-optimality and stability, with

auv = || R | LX) In fact, since b is a bounded bilinear form, R, is also linear
and bounded. Therefore,

Vv € M, u— Ryu=(I— Ry)(u—wv),

which implies g = [[I — Rul|z(x,). In order to link this to || Rl we
exploit [48, Lemma 5], that we recall for convenience.

Lemma 1.1. Let H be a Hilbert space, and P : H — H a nontrivial idem-
potent operator, that is, 0 # P? = P # I. Then the following identity holds

HPHL(H) = || — PH[:(H)'
Applying Lemma 1.1 with P = R, yields
v = [ Rallgx,) - (1.14)
This equality allows to derive the following theorem.

Theorem 1.2 (Quasi-optimality). Assume that X is a Hilbert space, (1.2)
is finite, problem (1.3) is well-posed, and method M is well-defined. Then
the quasi-optimality constant of M satisfies:

b b
qu = sup inf [oll sup z.¢) sup inf ol sup (x’gp)_
pEM2 vEM, b(U, (,0) zeX, H.?S”l vEM] wEM, b(’U, 30) zEX] Hle

(1.15)

Proof. We introduce the following norm on X,

b(v, )
lll, == sup :
’ veX, H'U”l
which is equivalent to ||-||,, with ¢, |||l < [l¢ll, < Cb ll¢ll,, for every ¢ € M.

Moreover the inf-sup and continuity constants of b with respect to ||-||, are

equal:
b b

pexzvexy [l Vil vexzvexy lolly vl B
Method M is well-defined with respect to ||-||, too, and the discrete inf-sup

constant, denoted by (), enjoys the symmetry (1.5):

By = inf sup —b(v,gp) = inf sup —b(v,cp)

eervery 19l 10lly  vern pensy llelly Il0lly
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Using formula (1.14), we derive that gy, = ;. Indeed, given v € X, there
holds

b(Ryv, b(v,
Bt | Ragll, < sup 2E02) o M) (1.16)

pEM> HQDHI) pEM2 ||90||b

whence
dMm = HRMH£(X1) < 51741-

The other direction follows by similar arguments and the symmetry (1.5).
For every ¢ € M,, we have

b(v, @) b(Rav, @) b(v, @)
[, < sup = ——— < [|[Ru]| sup ,
"Texs olly eexi ol £ e vl
that is, Bar > | Rasllzx,) = o 0

We notice that (1.15) involves only discrete test functions. We consider
a norm ||-||, on My, that can differ from the inherited norm |[-[|,, and can
depend on the discrete space Ms, but such that

b
¢, = inf sup v, o) >0 and (1.17a)
M veEM; ||90||ﬁ ol
b(v, ¢) b(v, ¢)
C% = sup sup — "~ < C* = sup sup ———— < 00.
M e vent el llvll, = M T wex penn el vl
(1.17b)

The following bounds follow from (1.15) and elementary inequalities.

Corollary 1.3 (Upper and Lower bounds). Under the hypothesis of Theorem
1.2 the quasi-optimality constant of M satisfies:

# #
max {&, Sy } < gu < min {ﬁ, —OXlﬁXM2 } . (1.18)

e’ CH M cy
In the upper bound we recognize the constant in [48].

Remark 1.4 (Another error norm). One could think to measure the error
in another norm ||-|| . Of course ||-||_ has to be well-defined on X;, but it
may happen that the bilinear form b is not continuous on X; x X, equipped
with [|-|| . and ||||,, respectively. However, if (X, |-]|.) is still a Hilbert
space, we get gy = ||RM||L((X1’”,”~)). If b is continuous on X; x M, equipped
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respectively with [|-|| _ and [-||,, and the corresponding inf-sup constant does
not degenerate, we deduce from Corollary 1.3 that

C()(1><]\42 < qM <

CXl XM2
CM 6M

)

where C'x,xa,, Car and &y are respectively defined as Cﬁm My C%, and ¢,
of (1.17) with [|-|| L in place of [|-[|; and [|-||, = [|-|l,-

Remark 1.5 (Quasi-optimality of dual method).

We can exchange the spaces X; and M; with X, and M, respectively, and
consider the quasi-optimality constant g}, related to the dual Galerkin solu-
tion and defined as the smallest constant ¢* > 0 such that

— By, < ¢ inf |6 — 7,
16— ®arlly < ¢ inf o~ nll,

Assuming X5 to be a Hilbert space, we derive as above that ¢3; = || R}l £ (x,)
and recalling (1.5) we have that

i #
max 4 <2 —OMlXX2 < ¢3; < min ﬁ —OMlXXZ
e’ C’f\/f - o e’ CL ’

where O}j\/llx x, 18 defined as Cﬁm a, Of (1.17) and C%, and ¢, are as in (1.17)
with (M, HHu) in place of (Ma, ”Hu>7 and (X, ||-]|,) in place of (Xi,||],)-
We notice that g3, and gs share the bounds

Cp

G <oty <2
CM_ M, M—CM‘

1.3 The non—conforming case
In the previous section M; C X, My C X, and the exact solution satisfies
b(u, ) = L(p), YV € Ms. (1.19)

In this section we analyse the case where M, SZ X, or M, g X5 or the
discrete solution is defined via a bilinear form b,; and a linear functional ¢;;
possibly different from b and ¢. Inserting the exact solution u in the discrete
problem may not give an equality as in (1.19).

We endow M; and M, with [|-[|; _ and [|-[[, . respectively, which may
differ from |-||, and ||-||,. We assume that by, : X7 + M; x My — R is a
continuous bilinear form with respect to [-[|; _ and [|-||, , with constant C..
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and that it satisfies the inf-sup condition on (M, ||-||, ) x (Ma, |||, ), with
constant cy;. Given ¢ € M, the discrete problem reads

find Uy, € M; such that, Vo € My, by (Up,0) = L ().

In order to estimate the error ||u — Uy||, .. we follow the strategy in [11, Sect.
10.1]. We consider the Ritz-projection Ry : Xy + M; — M, such that

Vo € M, b (Rav, ) = by (v, ),
and we bound the error in terms of the deviation of U, from Rjsu:
Ju—=Unmll, ~ <llu—Rarully o + | Ryw —Unl, -

We assume that (X7 + My, ||-||, ) is a Hilbert space, applying the results of
the previous section we get

— < = — .
= Ragull . < == inf flu o]l

Regarding || Ryu — Uy, ., we have

by (Ryw — Unp, )

eur || Rarw — Unrlfy o < sup < Cu||Ryu = Unlfy -

peM> H90H2,N
The term
by (R -U b 4
sup v (Raru M, P) — sup m(u, @) m(p)
pe Mo ”(JOHQ,N pEM> ||()0||2,N

can be seen as a consistency error, due to the fact that the exact solution
does not satisfy the discrete problem. It measures implicitly the discrepancy
between b and by, and ¢ and ¢,;. Therefore

C. . _ bar(u, ) — 4
||U—UM||17N < — inf ||u—v||17N+ch sup m (U, ©) M(SD)‘

Cp veEMy pEM>2 H(')OHZN

We notice that the right-hand side is equivalent to the error, in fact

CN . b 3 _g
—— inf [ju—v|, . +cy sup (s ) = (@)
Car vEM: ’ peM 1l
C.
< == (JJu = Ustlly - + 1 Rarw = Ui )
CM b b

C. [C.
s—(—+ﬂM4wm.
Cyp CMm ’



Chapter 2

Abstract Linear Parabolic
Problem

The purpose of this chapter is to recall the setting of abstract linear parabolic
problems, whose Petrov-Galerkin approximations we are interested in. In
order to apply the results of Chapter 1 we reformulate the problem by means
of a bilinear form in two different ways. The first one, called “standard”,
involves the time derivative of the exact solution, while in the second one,
called “natural”, the time derivative is shifted to the test function.

The chapter is organized as follows. In Section 2.1 we specify the nota-
tions and the common assumptions on the two bilinear formulations of the
problem. In Section 2.2 and 2.3 we present the standard and natural weak
formulation respectively. We recall the proof of well-posedness by means of
the inf-sup theory, whose structure is reproduced in the discrete framework,
and we provide bounds for the constants associated to the bilinear forms. In
Section 2.4 we recall some regularity results to motivate the assumptions for
the error estimates in Chapter 7.

2.1 Abstract parabolic problem

Parabolic initial boundary value problems are defined on a space-time cylin-
der @ = Q x I, where Q C R" and I = (0,7), T > 0 is a time interval. The
unknown function u can be interpreted as a time-dependent function with
values in a functional space. The problem can thus be rewritten as an initial
value problem that formally reads

u+Au=fin I, u(0) = w, (2.1)

where A is an elliptic operator acting on a Hilbert space V' which also takes
into account the boundary conditions, f is a forcing term, and w is an initial

17
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value from a Hilbert space W. We specify below the assumptions on the
spaces V and W and the elliptic operator A.
We assume that (V, ||-||,,) and (W, ||-||,;;) are two separable Hilbert spaces
such that
Vcwcv:

forms a Hilbert triplet. More precisely, we assume that the embedding V' C
W is continuous and dense, view W* as a subspace of V*, and identify W
and its dual W* with the help of Riesz representation theorem. The scalar
product in W as well as the duality pairing of V* x V is denoted by (:,-).
The norm on V* is indicated by [|-[|y,. = supy, - (-, v).

We will use H-valued functions depending on time, where H is a Hilbert
space, e.g. H =V, W, V*. For the corresponding function spaces, see e.g. [28,
Sect. 5.9.2] for a brief review. In particular, we use the following ones over a
proper time interval J. Let C"(J; H), r € N, denote the space of all functions
from J to H that are continuous, together with their classical derivatives up
to order  and let C3°(J; H) denote the space of all functions in N,enC"(J; H)
with compact support in J. Furthermore L?*(J; H) denotes the space of
functions of the form J — H that are measurable and square-integrable
with respect to the Bochner integral. With H'(J; H) we denote the space of
all functions in L?(J; H) whose distributional derivative is square-integrable.
Finally, we set H*(J;V,V*) := {v € LA(J;V) | v € L*(J;V*}. If J =1,
we suppress the time interval and write, e.g., H'(V,V*) := H'(I;V,V*) for
short.

We assume that the elliptic operator A arises from a bilinear form a that
depends on time and is bounded and coercive in the following sense:

a(+; v, p) is measurable in I for any v, € V, (2.2a)

Vo = inf inf a(t;v,v) >0, (2.2b)
el ffofly =1

C,:=sup  sup a(t;v, ) < oo, (2.2¢)

tel fvlly=lelly=1

where inf and sup with respect to time are essential ones. Note that (2.2b)
and (2.2c) are equivalent to requiring that [, a(t,-,-)dt is a bilinear form on
L?(V') with optimal coercivity and continuity constants v, and C,, respec-
tively.

The operator A in (2.1) is of the form I — L£(V,V*) and defined by the
requirement

(A, ) = alt; v, @),
for any ¢ € I. In the following lemma about the adjoint inverse A~*(t) :=
[A(t)*]~! we suppress t for notational simplicity.
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Lemma 2.1 (Adjoint inverse of elliptic operator). If A arises from a bilinear
form a that is coercive and continuous on V with constants v, and C,, then
the adjoint inverse exists and satisfies

Ca el < A7l < v elly- and (€. A70) > v || A5

for any 0 € V*.

Proof. The Lax-Milgram Theorem implies that A is invertible and so its
(adjoint) inverse exists. Taking 1) = A~*¢, we obtain the first inequality

ve = 1Al = sup alp,v) < Cu[|A~0]),

H@”v:l

1]

from the continuity of a. Its coercivity and the definition of A* give the third
inequality,
vo [|[AC|)}, < alA™ 6 AT ) = (6, AL

which in turn implies the second one. O

A typical example of a parabolic problem is

O —div(AVu) = f  inQx(0,7)
u = 0 ondx(0,7) (2.3)
u(0) = wup in €,
where A satisfies, for every z € 2, t € (0,7), and £ € R”
AP < & Az, )€ < AJEP,

> 0. Problem (2.3) fits into the above framework with V' =
L*(Q2), and V* = H 1(Q).

2.2 Standard weak formulation

We recall the setting of the standard weak formulation, rewrite it in the form
(1.3), and provide bounds for the constants associated to the bilinear form.

Assume that V C W C V*, a and A are as in §2.1. The standard weak
formulation of the abstract initial value problem (2.1) reads

given f € L*(V*) and w € W, find u € H'(V,V*) such that

v+ Au=fin I, u(0)=uw. (24)

The differential equation should be interpreted in the sense of V*-valued dis-
tributions. The initial condition, which is formulated in an essential manner,
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is meaningful thanks to the embedding H*(V,V*) C C°(W); see [28, Sect.
5.9.2, Thm. 3]. Problem (2.4) is well-posed; see, e.g. [28, Sect. 7.1.2] for a
proof by means of the Faedo-Galerkin method.

Throughout this section we set

X = B,V with o2 = [o(0)]2 + / lol2 + )2, . (2.50)
Xy :={p = (00, 01) | po € W,ip1 € L*(V)}
. (2.5b)
with  [lg]2 = lpoll3 + / ol
b(v, @) = (v(0), o) + / (W o1) + al5v,01) (2.5¢)
I

and
() == (w, o) + / (Fron).

We refer to b as the standard bilinear form. With these definitions, (2.4)
is equivalent to (1.3). Note that the decoupling of differential equation and
initial condition in the test space reflects the essential nature of the latter.
The term ||v(0)]|,;, in the definition of |||, allows to avoid the use of the
embedding H'(V,V*) C C°(W) when bounding the continuity constant Cj.
If it is omitted, there appears a dependence on T for small 7" in the following
results.

The following proposition investigates the properties of the bilinear form
b. Its proof of the inf-sup condition for b contains elements from Ern and
Guermond [27, Thm. 6.6] and Stevenson and Schwab [38, Thm. 5.1]. To-
gether with the abstract theory of Chapter 1, Proposition 2.2 provides not
only an alternative approach to existence and uniqueness for (2.4) but also
serves as a guideline for analysing Galerkin approximation in space.

Proposition 2.2 (Standard bilinear form). The bilinear form b in (2.5) is
continuous and satisfies the inf-sup condition with
min{v,, C; !, v,C; 1}

5 .

Proof. In order to verify the first bound, let v € X; and ¢ = (pg, 1) € Xo
and derive

b(0,0) < IOl ool + [ (191 + Calelly ) ol

1/2 1/2
2 2 2 2 2
< (||v<o>||w 2 / |2 + c2 ||v||v) (||900||w T / ||so1||v)

< V2max{1, Co} [|oll, [l -

C, < \/imax{l, Cu}s cp >
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Next, we verify the second bound, which implies the inf-sup condition
(1.4a). Given v € X; \ {0}, we choose

@o=2v(0) and ¢(t) =v(t)+ A ()0(t), t €.

Using the identities a(-;v, A7) = (v/,v) and 2 [, (v/,v) = Jo(T)|13, —
[0(0)]|7,, coercivity (2.2b) of the elliptic bilinear form and Lemma 2.1, we
derive

b0,9) = 0O+ [ (A=) +as0.0) + oI
! (2.6)
zmmﬂwﬁ(mmm;+[wwww3me)

and
2 : _
wam+[waﬂn+MMzmqu%MM- (2.7)

On the other hand, using again Lemma 2.1, we obtain
2 2 e 2
leoll; < 4 (HU(O)HW + /] lvlly +[]A v'||V) : (2.8)

Combining (2.6) and (2.7) yields b(v, ¢) > 0 and so ¢ # 0. Using first (2.6)
and (2.8) and then (2.7) we arrive at

b(v, ) S min{v,, C; ', v,C; '} ol
> v
el 2 !

which implies the second claimed bound.
Finally, we verify the non-degeneracy condition (1.4b). To this end, we

assume that ¢ satisfies
Yoe X, bv,p) =0 (2.9)

and observe

J o == [ative) < Cullllag, ol
for all v € C5°(V). Since C§°(V) is dense in L?(V') and the spaces L*(V)* and
L?(V*) are isomorphic, we obtain the additional regularity ¢, € H'(V*). We
therefore can integrate by parts in (2.9) and see that ¢; € H'(V, V*) solves
the backward-in-time problem

Voe Xy (o(T),¢i(T)) = (v(0), £2(0) = o) +/I<—<p’1,v> +a(sv,91) =0.
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We derive —¢| + A*p1 = 0, ¢1(T) = 0 and ¢1(0) = ¢o by testing with
appropriate functions v € X;. Using these facts for v = ¢, yields

1 2 2
5 lally + v llei gy, <0

and we conclude ¢ = 0. [

2.3 Natural weak formulation

In order to obtain a solution notion that requires less regularity in time, one
may integrate by parts the terms with the time derivative, assuming the test
function to be more regular. There is essentially an exchange between trial
and test space, which loses its two-components structure. This entails that
the initial condition is formulated in a natural way.

Assume that V C W C V*, a and A are as in Section 2.1. In their terms
the natural weak formulation may be written as:

given £ € {p € H'(V,V*) : ¢(T) = 0}* find u € L*(V) such that

Ve € HVV?) with ¢(T) =0, [ = (&0 + (Au ) = ()

(2.10)

We could choose ¢ of the form
fle) = (w0 + [ (1), (2.11)

where f € L*(V*) and w € W. In this case the solution of Problem (2.4)
also verifies (2.10). Throughout this section we set

Xy = (V) with o] = / ol
Xy i={pe L*(V)| ¢ € L*(V'),o(T) = 0}
with g2 := / Il + 1212

o) i= [ = (o) +atio.). (2.12)

With these definitions, (2.10) is equivalent to (1.3). The following proposition
verifies the inf-sup condition for b, and shows that Problem (2.10) is well-
posed. In the case £ is as in (2.11) its unique solution coincides with the one
of Problem (2.4) and belongs to H'(V, V*).
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Proposition 2.3 (Natural bilinear form). The bilinear form b in (2.12) is
continuous and satisfies the inf-sup condition (1.4) with

Vq
V2

Proof. The proof follows the same lines as the one of Proposition 2.2. The
main difference concerns the second bound, where we prove the symmetric
variant of (1.4a). For every ¢ € X, we take as test function v = ¢ — A71¢/
and we exploit Lemma 2.1 with A* in place of A. ]

Cy < V2max{1,C,}, Cp > min{1,C;'}. (2.13)

Remark 2.4 (Duality). The similarities between Propositions 2.2 and 2.3
are not a coincidence. In fact, Problem (2.10) and the dual problem of (2.4)
with equal right-hand-side ¢ € H'(V,V*)* are strictly related. If we apply
an affine transformation in time, and define @ := w(7 — -), from (2.10) we
have that 4 satisfies, for every v € H*(V,V*) with v(0) = 0,

/I (W, ) + (A%(T = Yo, &) = £(0). (2.14)

On the other hand, the solution (¢g, ¢1) of the aforementioned dual problem
satisfies, for every v € HY(V,V*) with v(0) = 0,

/I (261 + (Av, br) = £(0),

that is (2.14) with A in place of A*(T — ).

2.4 Regularity results

We recall some regularity results for the standard formulation. For the rest
of this section, let u be the solution of (2.4).

We start with temporal regularity. We set D(A) := {v € V, Av € W}
and assume ug € D(A(0)), f € HY (V)N L*(V) and A € CYL(V,V*)).
Then, see [36, Sect. 11.1.4], it holds

u' € HY(V*) N LA(V).

Concerning spatial regularity, we assume that A is independent of time and
symmetric, that is (Au,v) = (Av,u) for every u,v € V. Moreover assume
that the injection of V in W is compact, uy € V and f € L*(W). Then, see
[40, Ch. TI, Thm. 3.3], it holds

ue L*(D(A)NCV), and o € L*(W).



24

For higher regularity, assume that Q C R¢ is a bounded domain, V =
Hi(Q), W =L*(Q), V* = H () and A is of the form

Au = —div(AVu)

with A = (a;;(2))f,_;. Assume that 0Q is C*™ 2 a;; € C*™HQ), uy €
H*™ Q) N H(Q), and

dkf L2 H2m—2k k= 0

W S ( ), =U,...,m.

Assume also that the following compatibility conditions hold

B dm—lf

g1 := f(0) — Aug € H&(Q), sy Om = W(O) — Agm—1 € Hol(Q)-

Then, see [28, Sect. 7.1, Thm. 6], it holds

dku

WELQ(HQT’HQ_QIC), k?ZO,,m+1



Chapter 3

The Role of the L?-projection in
the Spatial Semidiscretization

Galerkin finite element methods are widely used for the numerical solution
of parabolic problems, see the monograph [41] of Thomée for an overview of
the corresponding error bounds. Remarkably, the derivation of most a priori
error bounds for linear parabolic problems differs from those for linear elliptic
problems: a quasi-optimality (or near best) result like Céa’s Lemma is not
invoked.

Douglas and Dupont [21] recognized this difference in 1970, and derived
a quasi-optimality result for the approximation in space in a norm involving
a time derivative of order 1/2, assuming that the initial error vanishes. This
approach has been generalized by Baiocchi and Brezzi [3] to fractions around
1/2 and by Tomarelli [42] also to general initial values.

Other three results, that we are aware of, concern quasi-optimality for the
approximation in space in simpler norms, which are related to the standard
and natural weak formulations of parabolic problems recalled in Chapter 2.
However, none of these results perfectly mimics the elliptic case. Dupont [22]
derived quasi-optimality in a norm close to the one of H'(H~')NL*(H"), but
that depends on the discretization. The other two results, [13, 30] require
that the L?-projection is H'-stable. With this assumption, Hackbusch [30]
in particular established stability in L?(H'), while Chrysafinos and Hou [13]
showed quasi-optimality in H'(H ') N L*(H"').

The purpose of this chapter is to clarify the role of this hypothesis, provid-
ing an approach to quasi-optimality by means of the inf-sup theory, recalled
in Chapter 1. In particular we re-establishes the last three results, show
that they are interrelated, and that the H!-stability of the L2-projection in
[30, 13] is necessary.

The chapter is organized as follows. Section 3.1 concerns conforming di-
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cretizations of Hilbert triplets and the relationship between the L?-projection
and the norms on the dual discrete space. In Sections 3.2 and 3.3 we anal-
yse Galerkin approximations in the L?(H') N H'(H')- and L*(H')-norm
respectively. In other words, we apply the Petrov-Galerkin method of Sec-
tion 1.1 to the standard and natural weak formulation respectively. In both
cases we prove that the H1l-stability of the L?-projection is necessary for
quasi-optimality.

3.1 Conforming discretization of Hilbert tri-
plets

Let V C W C V* be a Hilbert triplet like in §2.1 and S a finite-dimensional,
non-trivial, and proper subspace of V. Observe that S is also a subspace of
W and thus, with the identification S* = S, also of V*.

As a subspace of V or W, we equip S with the norm |-||;; or |||y,
respectively. As a subspace of V*, the situation is less clear. In fact, we may
equip S* = S with

ve = sup (s,p) or |sllg- :=  sup  (s,9). (3.1)
llelly =1 weS:||o|ly=1

Is]

The two alternatives give precedence to one of the following two properties
of S = 5% S is asubset of V* and S* is a dual space of (S,]-||;,). In what
follows we show that parabolic quasi-optimality requires that the two norms
in (3.1) are equivalent. In view of S C V, we immediately see that

Vs e S II's|

< |Is|

S* V* .

Since S is finite-dimensional, also the other direction is true up to a constant,
which may not be uniform for a family of subspaces.
In order to reveal the nature of the critical equivalence constant

HS| v

Y

S*

Cs 1= sup
sES*

we observe that the duality pairing arising in both norms of (3.1) is closely
related with the scalar product of W in the given setting. We therefore
associated with S its W-orthogonal projection and investigate its relationship
with the spaces of the Hilbert triplet and dual of S.

The W-orthogonal projection onto S, or W-projection for short, is defined
as follows:

YweW,pe S Psw € S and (Psw, ¢) = (w, ¢) . (3.2)
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This linear projection acting on W has the following properties: it is sym-
metric and there hold || Ps| ;) =1 = |[{ — Ps|| 4y, where I is the identity
operator. It is also a linear projection acting on V' thanks to S C V. The
following lemma, which essentially can be found also in Chrysafinos and Hou
[13], shows that Ps may be viewed also as a linear projection acting on V*.
For the sake of completeness, we provide its proof.

Lemma 3.1 (W-projection in V*). The linear projection Ps extends to V*,
maintaining its symmetry in that ({1, Psla) = (la, Psly) for all (1,0 € V*.

Proof. First note that, thanks to S C V, the right-hand side of (3.2) is
defined also if w € W is replaced by some functional ¢ € V*. In this case,
given some basis {e;}_; of S and assuming Ps{ = 37, a;e;, definition (3.2)
is equivalent to the linear system

n

Z(ei,ej)ozj: (loe;y, i=1,...,n.

J=1

Since its matrix is symmetric and positive definite, the latter admits a unique
solution and Pg/ is well-defined for any ¢ € V'*.
If ¢4, {5 € V*, the symmetry of the scalar product in W yields

(01, Psly) = (Pgly, Psly) = (Psly, Psly) = ({y, Psly) . O

The next proposition shows that the critical equivalence constant for the
norms in (3.1) is intimately related to Ps.

Proposition 3.2 (W-projection and norm equivalence on discrete dual).
The equivalence constant cs can be expressed in terms of the projection Ps
as follows:

s = ||PS||£(V*) = [I7 - PS“L(V*) = [I7 - PSHL(V) = HPSHE(V)‘

Proof. Since Ps is a linear projection on the nontrivial proper subspace S of
V and V*, Lemma 1.1 implies the second and last inequality. We conclude
by showing

HPSHE(V*) = HPSHL(V) and HPSHﬁ(V*) S cs < HPSHL(V)‘
The equality readily follows from

VoeV leV” (Pst,p) = ({, Psp) ,
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which is a consequence of the symmetry statement in Lemma 3.1. To show
the first inequality, let £ € V* and observe

| Ps]

ve S cs|[Pslllg. = cs |[llg < cs 4]

V-

Finally, the second inequality follows from

Islly- = sup (s,p) = sup (s,Psp) <[ Psllzo I8
llelly =1 llselly, =1

S*

for every s € S. ]

3.2 (Galerkin approximation
in L2 (HY)N HY(H™)

We recall the Galerkin approximation of the standard weak formulation and
derive a discrete inf-sup condition by mimicking the proof of Proposition 2.2.
This allows to establish that the Galerkin approximation is well-defined and
that it satisfies a symmetric error estimate. Throughout this section we set
X, :=HYV,V*), Xy := W x L*(V) with norms

T T

2 2 2 2 2 2 2

[olly = [l(0)llw +/ [y~ +lolly s llelly = lleoll +/ leally -
0 0

Moreover uy € W, f € L*(V), and the bilinear form b : X; x X, — R and
¢ € X; are given by

b(0,9) = (00).50) + [ oin) + aliv, ),

() = (w, po) + / foen).

as in Section 2.2.

Let S C V be a finite-dimensional subspace and recall that S is also a
subspace of W and V* and that it is identified with its dual. The Galerkin
approximation of (2.4) is

given f € L*(V*) and s € S, find Ug € H'(S) such that

VteLpeS, (Ut)e)+alt:Us(t)g) = (ft).e), UO)=s O

see also Thomée [41, Ch. 1]. Of course s € S should be an approximation of
the initial value w € W.
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We set
M := M, x My with M, := H'(S), My =S x L*(9) (3.4)

and observe M; C X; for ¢« = 1,2, where we use that S is also a subset of
W and V*. With these definitions, (3.3) is equivalent to (1.8) if and only if
s = Psw, where Pg is the W-orthogonal projection onto S; see also (3.2).
For the rest of this section we assume (3.4) and s = Pgw.

In order to establish the crucial inf-sup condition for M, one may try to
proceed as in the corresponding part of the proof of Proposition 2.2. However
for v € My, the function A~*v" may not be in M,. To remedy, we propose to
replace A by its discrete counterpart Ag : I — L£(S,S*) defined by

{(As(t)v, ) = a(t; v, ¢).

Unfortunately, this replacement comes at the price that the set M; has to be
equipped with the S-dependent norm

o (3.5)

ol = IO + [ ol + 101
and that the argument provides a lower bound for

b
cy = inf sup ﬂ,
veEM1 peM>2 ||U||1;S ||(IO||2

a variant of the discrete inf-sup constant cy;.

Proposition 3.3 (Standard bilinear form and Galerkin approximation). If
we equip, respectively, My and My with ||-||,.g and ||-||,, the bilinear form b
in (2.5) is continuous and satisfies the inf-sup condition on My x My with

min{v,, Oyt vaCy '}

Cv < V2max{1,C,}, Car > 5

Proof. As the proof mimics the one of Proposition 2.2, we comment only on
the differences after having replaced, respectively, X7, X5, A and [|-||; by M;,
My, As and ||,

When verifying the continuity, the replacement of the norm ||-||,.. by the
weaker one ||-||. is compensated by the fact that the test function comes
from the semidiscrete space Ms. In order to derive the lower bound for ¢,
we choose

po=2v(0) and @i(t) =v(t) + A" ()0 (1), t € 1,
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and exploit

c e s and (0 A5 (0)0) > v, [|A5* ()],

o <457 @, < vl

which follow by applying Lemma 2.1 with M;, M, and Ag in place of X7, X,
and A. Verifying the non-degeneracy goes along the same lines. O]

Remark 3.4 (Relation between A and Ag). The replacement of A by Ag may
be seen also in the following way: we replace A~*v" € X5 by an approximation
in Ms. In view of the norm of X5, another natural approximation appears to
be the pointwise Ritz projection Rg with respect to the elliptic bilinear form
a. These two replacements actually coincide. In fact, there holds

VteIleV,peS alt; As(t) s, ) = (L, p) = alt; A(t) "', p)
= a(t; RgA(t) ™'Y, @)

and so Ag'l = RgA™Ys for all £ € V*.

Of course, Proposition 3.3, together with the abstract theory of Chapter 1,
provides an alternative proof that the Galerkin approximation with s = Psw
is well-defined for any f € L?*(V*) and w € W. It also provides an error
estimate, with the help of Remark 1.4. In fact, the S-dependent norm |[-|,.g
is defined also on X; and so can be used to measure the error. Noteworthy,
the bilinear b is not continuous when X; and X, are equipped with ||| .5 and
||-||5: consider v(t) = atvy, t € I, where vy L S, for &« — oco. The resulting
error estimate corresponds to [22, Thm. 2.1] by Dupont.

Corollary 3.5 (Quasi-optimality in the S-dependent norm). The Galerkin
approximation (3.3) with s = Psw satisfies the following symmetric error
estimate with respect to the S-dependent norm (3.5):

lu — Unllyg < Qﬂmax{ugl,C’f v, 'CZ} iI}\g |lu—vll;.q (3.6)
’ veEM) ’

’7a

Proof. In view of Proposition 3.3, it remains to observe

~ b
Cx,xm, = sup sup M < ﬁmax{l,Ca}
vexs peMy [l g 1]l

and to apply Corollary 1.3. O
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3.2.1 Quasi-optimality and L?-projection

The error notion in Corollary 3.5 depends on the discretization through the
space S. This dependence may be troublesome, for example when comparing
errors corresponding to different meshes. We now aim at a result without
this disadvantage, by replacing the norm ||-||,.¢ by [|-[|;.

Proposition 3.6 (Discrete inf-sup constant). The discrete inf-sup constant
ey of the Galerkin method (3.4) is encased in terms of the V -stability of the
W -projection:

CyMm CM

Sem S gp
1Psll v 1Psll v

Proof. Elementary inequalities yield

v (Y
N

vEM; ||U||1 veEM; ||U||1

v
%Zmpmm:<ﬁnl

veM; HU”LS

Chr.

We then prove

Lﬂl. (3.7)

verry ||vlly

In fact, since cg > 1, we easily derive [jv]|; < CSHUHLS' On the other hand,
choosing v, (t) = ¢sin(%Z2), with ¢ € S, we have

2

V)

;

2 2,2
loz ST} + 2 1o

2
loallis 37 (llol + 2 1o

2
S*

Taking the supremum over n € N we get

ol - o

= sup
vEM, ||U||1,s ges [|9]

v _

Cs.

S*
Combining this with Proposition 3.2 gives the claimed bounds. O

Taking advantage that ¢,; and Cs can be bounded as in Proposition 3.3,
we derive the following theorem.

Theorem 3.7 (Quasi-optimality). The Galerkin method (3.4) is quasi-opti-
mal with

ko 1Psll oy < anr < Ko llPsll vy

with k, = 2v/2max{v; ', C2 C?v;1}.
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Proof. We insert the bounds of Propositions 2.2, 3.3 and 3.6 in Corollary 1.3
C
Lo<gy < O
Cyr Cpmr
The upper bound in Theorem 3.7, which corresponds to [13, Thm. 3.4]
shows that the V-stability of the W-projection is sufficient for quasi-opti-
mality. The lower bound reveals that this stability is not just a convenient
assumption, but also necessary.

3.3 Galerkin approximation in L*(H!)

We consider the Galerkin approximation of the natural weak formulation, and
derive, in a similar fashion as in Proposition 2.3, a discrete inf-sup constant.
For the rest of this section, let X; := L*(V), Xy :={p € HY(V,V*): o(T) =
0}, with norms

2 r 2 2 _ r /
iy = llollv,  lellz= [ lI#]
0 0

The bilinear form b: X; x Xo — R
bo0) = [ = () + alivn),

and the linear functional ¢ € X are as in Section 2.3.
Let S C V be a finite-dimensional subspace. We set
M, = L*(S) C X, My :={pec H(S): o(T)=0}C X,. (3.8)

The results in Section 3.2 suggest to endow M, with the S-dependent norm

2 2
lol2s = / Il + ¢

while M, inherits the X;-norm.
With these choices the Galerkin method (3.8) for the natural weak for-
mulation is well-defined:

2
ve T el

2
S*

Proposition 3.8 (Natural bilinear form and Galerkin approximation).

The bilinear form in (2.12) is continuous and satisfies the inf-sup condition
on (My, |[-[l) x (Ma, [|||5;s) with

Va
V2
Proof. The proof mimics the one of Proposition 2.3, in the same way as the

proof of Proposition 3.3 follows the one of Proposition 2.2. In particular the
test function used to verify the bound for ¢y is v = p — Ag'y’. O

Cyr < V2max{1,C,}, ey > —=min{l,C; '}
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3.3.1 Quasi-optimality and L?-projection

We recall from Chapter 1 that stability is equivalent to quasi-optimality with
am = | Rallg(x,)- In [30, Thm. 3.4] Hackbusch proved some error estimates
for the Galerkin approximation in space, assuming the L2-projection to be
H'-stable. With a particular choice of the involved parameters, the result
corresponds to the L?( H')-stability of the Galerkin solution. For convenience
we recall the proof in the case of interest.

Theorem 3.9. The Galerkin method (3.8) is quasi-optimal, satisfying the
following estimate

Co .
o= Ul < 1Psley (14 52) g = ol
Proof. In view of qar = || R||zx,)» our aim is to find a stability estimate for
Unrll;- We first exploit the triangle inequality to get
1
10mlly < 1Us = Psully + [ Psul], - (3.9)

Secondly, we estimate ||[Up; — Psul|, in terms of ||u — Psul|,, which we finally
bound thanks to the stability of Ps. Let us set n := Uy — Psu. From the
definition of Pg and Uy, we have, for every ¢ € My,

[~ = [~ tn=—u = [Au-vip. Ba0)
This implies that n € H'(S). Integrating by parts in (3.10) gives, for every
p € C57(9),

/ (o o) + (An, o) = / (A(u— Psu), ), (3.11)

I I
which, by density, holds for every ¢ € L?(S). Testing (3.10) with ¢ =
(T —t)p, ¢ € S, integrating by parts and subtracting (3.11), gives 1(0) = 0,
and finally testing (3.11) with ¢ = n, we get

1
— (D)5 + va 0l < Callu = Psull, Inll,
2
from which we deduce
Ca
H77||1 < o ||u - PS“||1 .

a

Inserting this result in (3.9) we get

Co Co
101 < 207 = Pellg el + 1Psll g Tl < sl (14 2 ) .

which is equivalent to the thesis. O
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The following theorem reveals that the stability of Ps is also necessary
for the quasi-optimality of the Galerkin method (3.8).

Theorem 3.10. The Galerkin method (3.8) is quasi-optimal with

v, min{1, C; %} 2max{C? 1}
5 HPS“c(V) < qu < - HPSHC(V) : (3.12)
Proof. We resort to Corollary 1.3, where we take [|-[|, = [|-[|5,s. We start

by bounding C’g(lx v, irom below and from above. To derive a lower bound

for C’gﬁx M,» We proceed in a similar way as in the proof of Proposition 2.3.
Thanks also to (3.7) we obtain

b(v, ¢) blo — A7¢ p)
c = sup sup ——————— > sup 7
Al peEMz vEX] HQDHQ;S [vll; — pent HSD”Q;S o — A~1¢/ ||

i1rni1r1{1,C’a_1} sup lol, _ va

V2 pEM> ||90||2;S B V2

Concerning the upper bound we recall the bound for Cj, in Proposition 2.3
and we get

b b
CgﬁxMz = Ssup sup M < (sup o1l ) (sup sup —(U’@) )

pEMa vEX) H@”z;s [oll; = \eers H<P||2;s peMs vexy |0y vl

> min{1, C; '}cs.

< Cyeg < \/ﬁmax{l, Ca}es.

To complete the proof we combine these bounds with Propositions 3.2 and
3.8. [

Remark 3.11 (Duality). Theorem 3.10 can essentially be deduced from
Theorem 3.7. To explain this, we consider the Galerkin solution (®9,, ®},)
associated to the dual method of (3.4) for a problem with right-hand side
¢ € HY(V,V*)*, defined by:

vo e H'(S)  (v(0),®},) +/I<v’,<1>}w> + (Av, @},) = ((v).

The relationship between the Galerkin solution Uy of method (3.8) and
(®9,, ®1,) mirrors the one in Remark 2.4 between the corresponding exact
solutions u and (¢g, ¢1). If we set Uyp; := Up (T — -) and @ := u(T — -), we
have, for every v € H'(S) with v(0) = 0,

/@/, Upr — @) + (A5(T — Yo, Uy — 4y =0 and (3.13a)

1

/@’, Dy — ) + (Av, @y, — ¢1) = 0. (3.13b)
1
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From Remark 1.5 and Theorem 3.7 we deduce that the quasi-optimality
constant gy, of the dual method of (3.4) satisfies ¢j; ~ |Psl|zy,. This
link between ¢, and [|Ps||, arises from the second component ¢; — ol
of the error, the one related to the differential equation. In view of (3.13)
also @ — Uy behaves in the same manner and therefore the quasi-optimality
constant of method (3.8) also satisfies i & || Ps|[ (). This also illustrates
the link between the results by Hackbusch [30] and Chrysafinos and Hou [13].






Chapter 4

Discretization in time with the
Backward Euler Method

In Chapter 3 we study one aspect of the approximation of parabolic problems,
namely Galerkin approximations in space. In this chapter we analyse only
the time discretization. We focus on one particular method, the implicit
or backward FEuler method. We adopt the viewpoint that the discrete trial
and test spaces are subsets of the continuous ones, but the bilinear form
that defines the discrete solution differs from the one that defines the exact
solution. We assess quasi-optimality within the framework of the standard
and natural weak formulations.

The chapter is organized as follows. Section 4.1 concerns the standard
formulation. Under the assumption that the time partition is locally quasi-
uniform, we prove that the error in a norm that mimics the H'(H~) N
L*(H')-norm is equivalent to the sum of the best errors with piecewise con-
stants for the exact solution and its time derivative. Section 4.2 concerns
the natural formulation. We observe lack of stability in the L?(H')-norm.
Therefore a quasi-optimality result cannot hold, and we propose an abstract
error estimate in the spirit of Section 1.3. Moreover we consider a modifi-
cation of the right-hand side, which gives rise to a stable method. However,
since the error does not vanish whenever the best error does, the method is
still not quasi-optimal.

37
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4.1 Standard formulation

Assume that V C W C V*, a and A are as in Section 2.1, while, as in Section
2.2, X, = H(V,V*) and Xy = W x L*(V') with norms

T

2

ool el = el + [ el
0

T
ol = o ()13, + / v

0

Moreover uy € W, f € L*(V), and the bilinear form b : X; x Xy — R and
¢ € X are given by

(v, 0) = (0(0), o) + / W o1) + (Av, 1)

£(p) = (uo, o) +/o (f, 1)

Finally let N € N and P be a partition
O==tg<ti1 <...<ty:=T

of I = (0,T) into N subintervals I,, := (t,_1,t,], with size 7, := |I,| =
t, — tn_1, and let 7p := max, 7,. The discrete solution provided by the
backward Euler scheme is given by

Uy=ueW
U, € V such that, for every ¢ € V, (4.1)
U,—U,_
<T—17¢>+<AnUn7¢>:<Fn,¢>, nzl,...,N,

where A, and F), are approximations of A|; and f|;,, respectively. In order
to cast this scheme in the framework of Section 1.1, we consider the spaces

M, : =8P, V):={ve®(V)vl, e P(L,,V),n=1,...,N}, (4.2a)
My : = SYHP, V) ={pec L*(V), |, =pn €V,n=1,...,N}, (4.2b)
My =W x M, (4.2¢)
where P'(.J, V) indicates the space of functions from the time interval J to
V' that are piecewise polynomials of degree at most one. With this choice

M; C X7 and My C X5. In order that it satisfies the inf-sup condition, we
define the bilinear form b, : M; x My — R as follows

bar(v,0) 1= (0(0), o) + i / W)+ (Allo,gn), (43)
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where 11 : X — J/\/[\Q is a suitable operator, such that, for every v € P*(I,,, V),
Iv|;, = v(t,). (4.4)

The presence of the operator II introduces a non-consistency, in that, for
@ € My, in general b(u, p) # by (u, ). Given ™ : I, - R

. 6(t —tn 1) 2
¢ (t) = 2 -
T2 Tn
the operator II can be defined by
o, =" := / vy, v e X;. (4.5)
In

Before examining the properties of ﬁ, we recall the Poincaré and Friedrichs
inequality in one dimension with optimal constants. Assume that J = [a, ] C
R is an interval and that v € H*(J). Then, see [8, p. 105],

!

v—— [

1715
0

Moreover, if v(a) = v(b) = 0,

b—a
g (4.6

<
L2(J)

b—a

||U||L2(J) < “U/HL?(J)' (4.7)
The optimal constant 1/m corresponds to the square root of the inverse of the
first eigenvalue of the Laplacian over the interval J. If the function vanishes
in only one of the endpoints, namely v(a) = 0 or v(b) = 0, then (4.7) is
still valid with the price of a bigger constant. In fact, assume v(a) = 0 and
consider the symmetric extension @ of v to the interval .J = [a, 2b — a]. Since

v € HY(J) and v(a) = v(2b — a) = 0, we can apply (4.7) and get

1 . 2b—2a . 2
||U||L2(J) = E ||U||L2(J) < W ||U,||L2(j) = ;(b —a) ||U/||L2(J) . (48)

To see that the constant 2/7 is optimal consider the function v € H'(J)

such that v(z) = sin(57—(x — a)), for € J. Similar considerations hold if

2(b—a)
v(b) = 0.
We collect the properties of II in the following remark.

Remark 4.1 (Properties of IT). The operator II defined in (4.5) is linear and
satisfies the following properties, forn =1,..., N:
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(i) for every v € P(L,, V), [I"v = v(t,),

(i) for every v € L*(1,,, V), ITT"0]| 21, vy < 2[vll 12 (s, v)> and the constant
is optimal.

(iii) for every v € H'(1,,V*),

M0 = o (tn)[]y

\/T—n mf o' —ell 2, v -
Proof. Property (i) follows from

1
wn(t)dt:/ 6s—2ds=1 and
In 0

t—tn '
YPU(t)———dt = [ (6s—2)sds = 1.
I 0

Tn

Property (ii) follows from

" wl]y, < /I lolly 19" < Mol g2 19" 221y = 270 2 10l 2y - (49)
To see that the constant is optimal, take ¢ € V and v € L?(1,,, V) such that

vt € I, v(t) = _Q;/8(t—tn )78,
Tn

We have that [[II"0[| .5, vy = v/Tu |¢]ly, and

2 - ) 2
ol = ol e — "t = am 612

n

Concerning Property (iii), we take P € P!(I,,V*) such that P(t, 1) =
v(t,—1) and P(t,) = v(t,). Exploiting Property (i), (4.9) and the Friedrichs
inequality we get

[0 — v (tn)]

ye = [II"(v = P)|

e <202 v - Plleg, v

4
< S = Plgag e

Property (iii) follows from P’ =+ [ /. O

n YTn
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The superscript n, as well as the hat over II, reminds that II" applied to
an affine function gives its value at the right endpoint of the interval I,,.
Taking A,, : V — V* such that, for every v € V,

1
A= — [ A(t)vdt, (4.10)

™n JI,

and F,, := % fln f(t)dt, the solution Uy; € M; such that, for every ¢ € Mj,

by (Unt, ) = (uo, o) + Z/I (f,en),

is such that Uy(t,,) coincides with U, given by (4.1).
We endow M; with

N
2 2
lol2p = o)+ / v
n=1 n

o+ )3,

while the space M; inherits the [|-||,-norm. With these choices, the continuity
and inf-sup constants of b, are uniformly bounded.

Proposition 4.2. The bilinear form (4.3) is continuous and fulfills the inf-
sup condition (1.9) on (M, [|-[|; p) X (M, [|-[|y) with

min{v,, C;!, v,C1}

Cu < ﬂmaX{l,Ca}, cv > 5

Moreover, it is also continuous on (X, |||, 5) X (Ma, |||l;) and Cx,xwm, sat-
isfies the same bound as C)y.

Proof. The proof mimics the one of Proposition 2.2. Concerning the lower
bound for cp;, we observe first that A, satisfies the hypotheses of Lemma
2.1, so that

o = 2v(0), on =10+ A%, n=1,....,N

is a suitable test function. We remark that

/(AH"U,(pn>:/ (A, 11", o)

In In
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and that

PO+ / 2(0', u(t,))

= [lv(0 ||W+22||v i — 2 (0(ta-1), v(ta)

NE

lo(ta)lly = 2 (0(ta-r), v(ta)) + o (ta-)llyy

1

S
Il

[o(ta) = 0(ta—1)llyy 2 0.

NE

1

S
Il

To verify the non-degeneracy condition (1.9b), it suffices to take v(t,) = ¢,
n=1,...,N,and v(0) = 0. We have that

N N
2 2
0= lerliy + X el = (onroin) + 3 / (A, on)
=2 n=1 n
2
> uaZ lenl?

I‘IL

implies ¢, =0, forn =1,..., N. By the density of V in W we also get that
Yo = 0. ]

We are in the situation described in Section 1.3. In order to derive an
abstract error estimate, we need to bound the consistency error. We observe
that, for every ¢ € My,

bar(u, ) — £(@) = by (u, p) — b(u, @) = /OT <A(ﬁu —u), 90>

; u—Hu‘

oy 12l

We consider @) : X; — M, defined by Qul|;, = Qv := Ti fI v. Because of
stability of Il and its invariance over piecewise constants, we have

~ |2 ~ ]2
2
Hu - HUHB(V) = [Ju — Qull72y + HQU — Hu‘

L2(V)
<5 |lu— Qull 2y
(4.11)

9 —~ 2
= llu = Qulyy, + || i(@Qu —w) ,
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This implies that the consistency error can be bounded in terms of a best
error:

bar(u, o) — 4 ;
sup 22 = 8O) o 561 1y — Qull gy = VEC, inf [l — 2l g2y,
vers NIl il
(4.12)

Theorem 4.3. The Galerkin Method (4.2) with by as in (4.3) satisfies

R ) 1/2
(I = Vil o= T+ ) - 001

/2
. 2 — - 2 '
e (L | i S OO
+ (V2ho + V10) inf flu— 2|2, (4.13)
z€M>

where K, = vV8max{v, !, C2, v 1C?} and k, = 2v/5C, max{v; !, C,,v;1C,}.
Moreover

= Uhgll3zyey + Hu - ﬁUM( + [[u(0) = U (0)]1% = 0 as 7p — 0.

2
L2(V)

Proof. From Proposition 4.2, the results in Section 1.3 and (4.12) we get

R R 9 1/2
(||u' Uil + [T =10 |, |+ lu0) - UM(0>||3v)

R 2 1/2
sﬁamf(wﬂ—vwgwﬂ+unu—nvL%W+wwm>—vwm@)

veMy

k inf =2l s
zEMo

Combining with (4.11), we get (4.13). In order to prove convergence, we
exploit the density of C*(V) in H'(V,V*), see [47, Lemma 25.1]. Given
e > 0, we take w € C*°(V') such that

2 2
Ju" — w/HL?(v*) + [lu = wl2n) <€

By the trace theorem we have ||u(0) — w(0)||5, < C(T)e. We use the triangle

inequality in (4.13), and choose suitable functions v € M; and z € M.
Concerning the infimum on M, we take v € M; such that

v(tn) = w(t,), n=20,...,N.
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Consider first ||w’ — v’||2LQ(In7V*). We can write

et G RUACE S ) UCLS

Tn Tn JI n

w(tn) — w(t,_1)

1/2
2
)"

2 2
[’ — U/HL2(V*) <75 ||w”||L2(V*) : (4.14)

-

sﬁﬂ(/\mw
Vi In

Squaring, integrating over [,,, and summing over n gives

~ 12
Regarding the term ”Hw — H’U‘

, thanks to (4.4) we have
L2(1,,,V)

Hw — Tv = /1 WY — wit,) = / (w(t) — w(t,)) " () dt

In

=£L}@@wwm

1/2
<2 1/2( ! 2) .
s <2 (el

Squaring, integrating over I,, and summing over n gives

so that
[~ i

Jfiw -

2
2 12
L) < 7p lw'llz2 vy - (4.15)

Concerning the infimum on M\Q we take z € M\g such that z, = w(t,),
n=1,..., N. Thanks to the Friedrichs inequality we get

2
[Jw — Z||L2(V) < Tp “w/”L?(V) : (4.16)

Combining (4.14)—(4.16) it is possible to choose 7p such that
/ 2 I =12 2
Jw' — v ||L2(V*) + HHw - HUHH(\/) + [Jw — ZHLZ(V) <

which completes the proof. O
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In the right-hand side of (4.13) the distance between u and M; is mea-
sured in a norm which involves both the function itself and its time deriva-
tive. We simplify this coupled approximation problem and provide a bound
in terms of the best errors for v’ and u with piecewise constants. The price
we pay is that the constant depends on

Tn—1
pip = sup —,

n Tn

which measures how small the following step is compared to the previous
one. In analogy to the definition of S®~1(P, V), we set

SCHP VY i ={p e LA (V*), 0|1, =pn €V, n=1,...,N},
which appears in the following theorem.

Theorem 4.4. The Galerkin method (4.2) with by as in (4.3) satisfies

2 - 2 2
I = Uty + | = iU ey T 1(0) = U (O)
. / 2 . 2
< Uesoyl}ll(fp,v*) [u' = |2y + Co zGSOlelf(P,V) lu =272y -

where Cy := 2k2(7% + 32 4+ 32up) /7% and Cy = (v/2k, +/10)2.

Proof. We prove the result for v € X; N C%(V), the case u € X; C CO(W)
follows by density. We choose v € M; such that

v(t,) ="u, n=1,...,N, and v(0) = u(0).

This implies Mu — v = 0. Concerning [|u’ — v'| ;2 (I.,v+) We observe, for
n=2...,N

My — It 1 t,) — II"u — u(t, — -1
/ / / U u:u/__/ u’+u( ) u u( 1)+ u'
Tn In

Uu—vw =44 ———"—" "
Tn Tn

(4.17)
Thanks to Property (iii) of Remark 4.1, we get

1 n 2 n— 2
- (HH w—uty) |2 + [T =ty )| V*)
16 . 2 16 Th—1 . 2
S F Clé%/f* ul — CHLQ(In,V*) + p . CIEI%/f* ’U,/ — CHL2(In71,V*) . (418)
Combining (4.17)—(4.18) we get
2
2 T+ 32 . 2
HU’ i U/HLQ(IW,,V*) S 7T2 clen‘/f* ’u/ — CHLQ(In,V*)

32 . / 2
+ —2HP Clenvf* lu" = ellz2g, ey -
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For n = 1, we have

u — = uUu — — u 9
7—1 Tl Il 7-1
so that 2 16
, 02 ™+ . / 2
Il = 'l zaqy ey < = b " = ellza, gy -

Summing over n we get

7%+ 32 + 32up

/ / : / 2
HU — v HL2(V*) < 2 wESOvl}%f(‘P,V*) ’U — wHLQ(V*) .
The assertion follows combining this with Theorem 4.3. [

Assuming additional regularity

We provide an alternative to Theorem 4.4. We assume that the exact solution
is more regular and we get a bound where the constant does not depend on
Hp- N
We propose a different definition of IT. In place of (4.5), if v € C°(V), we
set N
ol;, :==v(ty,), n=1,...,N, (4.19)
so that (4.4) is trivially fulfilled. Proposition 4.7 remains valid, but the

interpolation operator II is not stable in L?(V') any more, and therefore, for
the consistency error, we only get that

sup bar(u, ) — L(p)

< Cq
pEMs el

. (4.20)

L2(V)

u—ﬁu)

Mimicking the reasoning in the proof of Theorem 4.3 we get the following
theorem.

Theorem 4.5. Assume u € C°(V). The Galerkin Method (4.2) with by as
in (4.3), and 11 as in (4.19) satisfies

R 1/2
(I = Vil + = T+ ) - 001

2
L2(v)

1/2
. 2 -~ 5 2
< Ve inf (I = ey + = T, 4 10) - o0 )

k ~
+(—=+1 Hu — Hu‘
(\/6 )
where vy = V/S8max{v; ', C2 v 1C?} and k, = 2/5C, max{v; !, Cy,v;1C,}.

' a

2
L2(

Y

L2(V)
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4.2 Natural formulation

In this section we look at the discretization of the natural formulation and
analyse two different methods. To motivate them, observe first that, if v(0) =
0 and we set ¢n11 = 0, we can rewrite by, in (4.3) as

st (S0 )

= Z (V(tn), n) — (V(tn-1), ©n) +/] (Av(tn), n)

= 3 (wlta)sin) = (olta) i) + [ (Avlta)o i)

_ i/ _ <v(tn), %%;%> + (Av(tn), @n) -

We can thus interpret v as a piecewise constant function, whose value in each
interval is given by v(t,). Correspondingly, ¢ can be seen as a continuous
piecewise polynomial of first degree, with values in the left-endpoint of the
intervals equal to ¢,. Assuming IT is an operator such that ng\ 5, = @(th_1)
for an affine function in I,,, we can write

(v, ) Z/ (Un, @) Avn,l_[g0>
In

In this view, the right-hand side ¢ becomes

() = (0, 9(0) + f; | (rie). (421)

However, it is also possible to consider

) = (uo, +Z/ (f, o

In the following, we analyse these two points of view, highlighting their ad-
vantages and drawbacks. For the rest of this section, assume that V. C W C
V* a and A are as in Section 2.1, while, as in Section 2.3, X; = L?(V),
Xo={p € H(V,V*),p(T) = 0} with norms

2 g 2 2 g 112
ol = [Chellys lel= [l
0 0

vt el
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and the bilinear form b : X; x Xy — R is given by
T
b(v, ) = / — (¢, v) + (Av, ©) .
0

4.2.1 Backward Euler method
We first notice that ¢ € X could be of the following form

() = (o, 9(0)) + / @)+ (o)

where ug € W, fi € L*(V) and f, € L?(V*). Its representation in terms of
ug, f1 and fy is not unique, since we can add, for example,

0= (£(0),0(0)) + / o)+ {ohf). fe V).

Therefore, given ¢ € X it is not always possible to define univocally a right-
hand side for the discrete problem mimicking (4.21), and thus, given an exact
solution in X, the discrete solution is not well-defined.

To avoid this problem, we consider ¢ € X of the following form

J-1 T
() = (g0, 0(0)) + > _{gj / (f, ), (4.22)
Jj=1 0
where f € L*(V*), (gj)]—g € W and 0 =: fy < #; < ... < t; = T. Note

that, thanks to the embeddmg X, C C°(W), there holds ¢ € X;. With this
choice, the solution u of

belongs to HY((t;_1,%;); V,V*) € C[t;_1,%;;; W), for j = 1,...,9. Inte-

grating by parts piecewise shows that u also satisfies, for every (¢,¢) €
LA(V) x WY,

O+ X (ulEr) i)+ 3 [+ Au)

-1

S

(95, 65) + / (.0, (4.24)

<.
I
o
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where u(t™) := lim, ~ u(s) and u(t") := limy s u(s) denote respectively the
left and right limit of the function u to the time ¢. Equation (4.24) implies
in particular that w(f}) — u(f;) = g;, that is, u is allowed to jump at the
pointsfj,jzl,...,]—l.

In order to discretize (4.23), as in Section 4.1 we consider a partition P
of (0,7),0=:ty <ty <...<ty:=T. Werequire that P is subordinate to
(fj)g;i, that is, for every j = 1,...,9—1 there exists n € {1,..., N —1} such
that t,, = ;. Every subinterval I,, := [t,_;,t,) is left-closed and right-open,
and its size is denoted by 7, := |I,|. Moreover let 7p := max, 7, be the
biggest time-step. We consider the spaces

M :={vel*(V)v|l, =v,€V,n=1,...,N}, (4.25a)
My :={peC'V), |, €PYL,,V),n=1,...,N,o(T) =0} (4.25b)
We notice that M; C Xi, and M, C X,. We define the bilinear form

bar : X7 X Xo — R as follows

N

bulvg) = [

n=11In

— (¢, va) + <Avn, ﬁgp> , (4.26)

where the operator I Xy — ]\//72 is defined by

o|;, := v ::/ U, (4.27)
In
v 6(t—t, 1) | 4
- - In-1
L) = et 2
()= )y 2

Remark 4.6 (Properties of 11). The operator 11 defined in (4.27) satisfies
the following properties, for n =1,..., N:

(i) for every v € P(I,,V), II,v = v(t,_1),
(ii) for every v € L*(I,,V), IMLollp2r, vy < 210l 2, vy

Proof. Property (i) follows from

1
1/1n(t)dt:/ —6s+4ds=1 and
In 0

1
/ w"(z‘)t_t"‘1 dt:/ (—6s +4)sds = 0.
In 0

Tn
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Property (ii) follows from

Mpolly, < /I olly [l < oll o, 0 1¥nll z2gr,y = 2702 10l gy, vy

(4.28)
0

The subscript n, as well as the overturned hat over II, reminds that II,
applied to an affine function gives its value in the left endpoint of the interval
I,,. The right-hand side ¢ is replaced by

J—1

O () = (g0, (to)) +Z<gj,so(5j)>+/0 <f, ﬁs0>- (4.29)

=1

We endow M, with

N
2
||90||2,7> = Z 1¢']
n=1 In

while the space M; inherits the ||-||,-norm. We observe that, for every ¢ €
M27

2
v+ el

2 N _ 2
= Sp(tn) @(tn—l)
—1II = t—1t,— dt
o=l =2 f [
N T,
= Zg” le(ta) — e(ta-1)ll}
n=1
N—-1 N
2 ™ / 9 2 / 9
< - o(tn + = O(tn—
s ) el + 53 [ ettt
2 1ol 4
< 1 ( : 30
< 3(pp +1) ||y - (4.30)
so that
4
el < 5(2u7> +5) [lellyp - (4.31)

With an example, we show that we cannot avoid the dependence on pup in
(4.31). In fact, assume V = H}(Q), and W = L*(Q), with Q C R%. Fix
ne{l,...,N — 1}, and consider the function ¢ € M, such that

(p(tn):{() if n # 7,

Om ifn=n,
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where ¢,, is the m-th eigenfunction of the Laplacian, with corresponding
eigenvalue \,,. We have

2 2
/112 ||¢m| Vo / ||¢m| Vo -1 -1 -1
g=f P R S0 (T
1% ||L2(v ) . Tm e Tatl ( +1)
and
2 5 (t— tn—1)2 2 (t— tn+1)2
loliary = [ oty P ary [ o il
In Ta Tas1 Ta+1
Am
= ?(Tﬁ + Tat1),
while

Jfis

2
2
= — Ty )\ .
L2(V) /ml [9mlly = 7ms12m

Therefore we obtain

H‘PH; _ Tg7ﬁ+1)\2n + TﬁTg—&-l)\gn + 377 + 3Tat1
HSDHS,P 3(TaTa 1 A2, + Ta + Tag1)
> - Ta’z;—ﬁJrl)‘gn m—hgo Th ‘
TaTa 1 A2, + Ta + Tag1) 371

We prove that the continuity and inf-sup constants of by, are uniformly
bounded.

Proposition 4.7. The bilinear form (4.26) is continuous and fulfills the inf-
sup condition (1.9) on (M, [|-[|;) x (My, |||y p) with

Va

V2

1.p) X (Mo, ||-[y) and Cx,xwm, sat-

Cv < V2max{1,C,} cm > min{1,C; '}.

Moreover, it is also continuous on (Xi, ||
isfies the same bound as Cyy.

Proof. The proof mimics the one of Proposition 2.3. Concerning the lower
bound for c¢;; we take as test function

vn:Hngo—A;ngoVIn, n=1,...,N
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where A,, is defined in (4.10) and observe

N N
> [ <206 eltas)) = o 2leltan)l — 2 {etta) i)
n=1"Yn n=1
N
= lle(to)lly + D lle(taliy = 2 (@(ta), @(tam)) + llo(tu-n)liy
n=1
N
> " lplta) — (a1l > 0. (4.32)
n=1
The non-degeneracy condition (1.9b) is proved taking ¢(t,) = vn11. O

From (4.32) we also get that

S llplt) - plta ) <3 / 20 b)) < ol (433)

Remark 4.8. Assume N = 7, so that Pisgiven by 0 =ty <1, < ... <t, =
T. If u € My then f = Au and by (u, p) = £(p) for every ¢ € M,. Therefore
UM = U.

We are in the situation described on Section 1.3. In order to derive an
abstract error estimate, we write the consistency error as follows:

bar(u, 0) — Car (@) = bar(u, ) — b(u, ) + £(p) — Lar()

2/0T<Au—f,ﬁ<p—<p>

Combining Proposition 4.7 with the results in Section 1.3, we obtain the
following.

Proposition 4.9. The Galerkin method (4.25) with by as in (4.26) and €y
as in (4.29) satisfies

= Uil < 20 mac{1,C2} it Jlu o]

T N

/ <Au — f1lp — 90>

+ 2u, ' max{1,C,} sup 22 .
peMs Il

(4.34)

Moreover, if up = sup, ™= < oo, then

lu—Unll; =0 as 1 — 0.
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Proof. Given € > 0, the best error in L?(V) can be bounded in terms of
¢ as in the proof of Theorem 4.3. Concerning the consistency error, take
w € C°(W) such that ||Au— f — W||2(y+y < €. This is possible thanks to

the density of C°(W) in L?*(V*). We add and subtract w, so that

. /I<Au —f[ie— ﬁso>

pEM> HSOHQ,P

/I<Au—f—w,so—ﬁ90> /I<w,so—ﬁs0>'

< sup + sup
pEM> H‘PHQ,P peM> H‘P”z?

Concerning the first term on the right-hand side, we recall (4.30) and get

[{Au= 1 —wp-Tie) < Vip+ TlAu = £ = wlagn ol
I
Regarding the second term, we recall (4.33) and get
2 P 2
| = Z lp(tn) = plta-0)liy < 2 el

so that

~ 37’7)
[ (wo=Tie) < 5 ol el

It is thus possible to choose 7p such that

[ (w1t

sup <,
PEM: HSDH2,7>
so that
[ (au- 1.0~ Tio)
sup L < (1++/pup+1e O
pEMa2 HQOHQ,P

The second term in the right-hand side of (4.34), due to the consistency
error, is not expressed in terms of a best error. Proposition 4.10 below
reveals that the method is not stable in L?(V), so it is not possible to bound
the consistency error in terms of the best error in L*(V'). However estimate
(4.34) satisfies the property that the right-hand side is equivalent to the error
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|lu — Un||; and can be used as a starting point for deriving error estimates.
Moreover, recalling that Au — f = —u on every I,, and (4.30) we get

N Lo\ /2
sl S el + (3 [ i)
n=1 n

where the hidden constant depends also on pup.

Proposition 4.10. The Galerkin method (4.25) with by as in (4.26) and
Car as in (4.29) is not stable in L*(V).

Proof. To prove that the method is not stable, an example is sufficient. As-
sume A = —A, the function ¢; is the first eigenfunction of the Laplacian
with eigenvalue Ay, and 7 := 7 = ... = 7y, with 7 < A\;. The W-norm,
V-norm and V*-norm of ¢; are given by

1

loali =1 llonlly =2 lolly = -

We consider the function

| (t—tn1)Phr <t <T

where p > 0. Its time derivative is given by

u'(t)— 0 0<t<itn_
T plt—tn1) o by <t <T

We prove that
|u = Unll

[y
by bounding the consistency error from below. To this end, we choose ¢, €
M, such that ¢, (ty_1) = —¢1, @u(te) = ... = @u(tny_2) = 0. Moreover, since
Ou — ﬁgou € Ly :=span(t —ty_1)&, £ € V, we project u'|;, on Ly that is,
we take @) yu' such that, for every £ € V,

— 00 as p — 00

/ (W (0), (t — ty1)E) dt = / (Qutl (1), (t — ty_1)E) dt.

[N IN

A calculation gives

3 _
Quu'(t) = prlT;; (t—tyaa)g,  VEE Iy
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We compute

/1 <u’,90u — ﬁsou> = /]N <QNu’, —M(t _ tN1)> &

= <¢1>¢1>/I 3P TPt —ty_q)?

NP1
— P
p+1 "
and
2 2
9 1 1 2
o= (2] aer [ 2] e o
In_1 V* In V*
24 A%
N 7')\1

3
< N\
- T>\1
while the L?(V)-norm of u is given by

2 2
uwwmzzuwma—mzwa
N

2p+1 2p+1

T
S 2p+1

T

2
= A )
||¢1||V 12p+1

We can bound the consistency error from below as follows

>0 i, <f — Au,p — ﬁ90> y Jis <U’, P — ﬁsou>

sup

peMo lellop lPullyp
_p YN
p+1 V3
so that
B _ 1/2
lu — Ul s 1 sup bu(u, ) — Lu(p) > PRP+D " povee |
ull, 3v/2 peits el p 3(p+1)v/6

4.2.2 A variant

The second method still involves the spaces M; and Ms of (4.25), the bilinear
form of (4.26) with II as in (4.27), but it does not modify the right-hand
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side of the continuous problem. More precisely, given ¢ € X, the discrete
problem reads

find Uy € My such that, Yo € My, by (U, ) = ().

Every { € X3 also belongs to M7, and (4.31) guarantees that [|(],, <

V4(2up +5)/3 €]l ;. Proposition 4.7 ensures that the discrete problems
are thus uniformly well-posed for every ¢ € X3, and not only for those of the

form (4.29) considered in Section 4.2.1.

Proposition 4.11. Assume that the exact solution u belongs to My. If
bar(u, ) = £(p) for every ¢ € My then u = 0.

Proof. 1f by(u, ) = (), then by (u, @) = b(u, ) for every ¢ € My. There-
fore

/0T<Au,go—ﬁgp>:0 Yo € Ms.

Taking ¢(tx_1) = UunOnk, where wu, := u|;, we get, forn=2,..., N,

/ <Aun_1, n (t—tn_2)> dt+/ <Aun,—@(t—tn_1)> dt =0,
In_1 Tn—1 I, Tn

and, forn =1,

I 71 I 71

Uy 2 t 2 VaT1 2
= A—\/E,—\/%> dtzya/ — ||lu dt = up ||y -
[ (as=vi e [l e = 2

Therefore u; = 0, and by induction u,, = 0 for every n =1,..., N. O

Therefore the method cannot be quasi-optimal, because it occurs that the
best error vanishes, whereas the error does not.
We write the consistency error as follows:

bar(u, 0) = ar(p) = b (u, ) — b(u, ) + £(p) — Lar(p)
:/o <Au,ﬁ<p—<p>.

Combining Proposition 4.7 with the results in Section 1.3, we obtain the
following.
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Proposition 4.12. The Galerkin method (4.25) with by as in (4.26) and

without modifications of the right-hand side satisfies

e — Ul < 20 masc{1,C2} it flu = o]

B fOT <Au, Iy — g0>
+ 2y,  max{1,C,} sup

pEM ||<P||2,7>
Moreover, if up = sup,, T;—;l < 00, then
lu—=Unmll; =0 as T — 0.

Proof. Tt follows the same lines as the proof of Proposition 4.9.

(4.35)

]

Remark 4.13. Assuming pp < 0o the Galerkin method (4.25) with by, as in
(4.26) and without modifications of the right-hand side is stable, since from

(4.35) follows
lv = Unilly < C(va, Ca, pip) [lull, -






Chapter 5

Varying the Spatial
Discretization

In Chapter 3 we show that a necessary and sufficient condition for the
semidiscrete Galerkin approximation to be quasi-optimal is the H!-stability
of the L%-projection. In Chapter 4 we prove that the error related to the
standard formulation is equivalent to the sum of best errors for the exact so-
lution and its time derivative. What if we discretize in both space and time?
Can we expect an equivalence between the error and suitable best errors?

Todd Dupont in [22] presents a remarkable example. The discretization
takes place in space with one-dimensional finite elements, and in time with
backward Euler. The spatial mesh changes every time-step in such a way
that, if the mesh-size h and the time step 7 are such that h*/7 — oo, then
the discrete solution does not converge to the exact solution as h, 7 — 0.
However, the best errors for the solution and its time derivative tend to zero
as h, 7 — 0, independently of their ratio. These best errors are intended
with respect to the space of piecewise constants in time with values, in each
subinterval, in the corresponding finite element space.

This reveals that, in addition to the best errors of above, some extra terms
arise in the bound for the error, at least when the spatial discretizations are
allowed to change. In a more general setting, Chrysafinos and Walkington
[14] prove that the error in the L*(L*)NL?(H"')-norm can be bounded by the
error given by a suitable local projection, and an extra term, that vanishes
if the spatial discretization remains the same.

In order to better understand the situation, in this chapter we deal with
the modification of the spatial discretizations and we add the time discretiza-
tion only in Chapter 6.

The chapter is organized as follows. Section 5.1 concerns the standard
formulation, while Section 5.2 the natural formulation. In both cases we

29
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find the same term that disturbs the quasi-optimality. It vanishes if the
spatial discretization does not change, and behaves like h*/7 in the context
of Dupont’s example, as shown in Chapter 7.

The results of this chapter are the outcome of a collaboration with Chris-
tian Kreuzer.

5.1 Standard formulation

Assume that V C W C V*, a and A are as in Section 2.1, while, as in Section
2.2, X, = H(V,V*) and Xy = W x L*(V) with norms

T T
2 2 2 2 2 2 2
loll? = Ilo(O)12, + / W+ ol2, el = el + / Il

Moreover uy € W, f € L*(V), and the bilinear form b : X; x X, — R and
¢ € X are given by

b(v, ) = (0(0), o) + / W o1) + (Av, 1)

(@) = {up, o) + / o)

Furthermore, as in Section 4.1, let N € N and P be a partition

O=to<ti<...<ty=T

of I = (0,7) into N subintervals I,, := (t,—1,t,). We consider a sequence
of finite-dimensional subspaces {V,}Y_ C V. Approximation of the initial
value takes place in V, while forn = 1,..., N, the approximation in the n-th

interval [,, occurs in V,,. The W-orthogonal projection on V,, is denoted by
P,, and, motivated by the results in Chapter 3, we assume that {B,}_, is
uniformly stable in V', with

o HPnU”V
0= Ssup sup
n=0,...,N veV ||U||v

In addition we denote by A,, : I — L(V,,, V*) the discrete counterparts of A,
that is,

Vo eV, (Au(t)v,0) = (At)v, ) .
Finally we set
S P, V) :={pe L*(V), ¢|1, € L*(I,,V,), n=1,... N},
STP, V) :={ve L*V), v|;, € H'(I,,V,), n=1,..., N},
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and we consider the spaces

M, = {v e ST (P, V), v(0) € V,, (5.1a)
v(th ) = Pw(t,_1), n=1,...,N},
M, := Vo x S¥(P,V), (5.1b)

where v(t) = lim,\+ v(s) denotes the right limit of the function v to the
time t. We notice that M, C Xs, while in general M, Q X;. Thus we are
in a non-conforming situation and we invoke the results of Section 1.3. If we
choose V,, = S for every n = 0,..., N, then M; coincides with H'(S), M,
coincides with S x L?(S), and we are back in the situation of Section 3.2. We
remark that the constraints v(t ;) = P,v(t,_;) in the definition of M; can
be seen as a discrete replacement of the embedding X; € C°(W). The space

M, inherits the ||-||,-norm, while M; is endowed with the broken counterpart
of [[-[ly:

2
2t ol

N
Mm:M@m+ijw
n=1 n

We replace b with its broken counterpart

Wm@:Mwm+Z[wm+me (5.2)

so that by, is well-defined also on M; x M,. We prove that the discrete
problem is well-posed and derive a quasi-optimality result in M;.

5.1.1 Quasi-optimality in a space with constraints

Proposition 5.1. The bilinear form (5.2) is continuous and satisfies the
inf-sup condition (1.9) on My x My with

min{v,, C; o™ v,C o™}

Cy < \/§max{1,C'a}, cy > 5

Moreover, it is also continuous on (Xi, [|-||; p) x (Ma, [|-||ly) and Cx, xn, sat-
i1sfies the same bound as Cyy.

Proof. The proof mimics those of Propositions 2.2 and 3.3. In order to derive
the lower bound for ¢); we choose, for every v € M,

o = 2v(0), olr, =v|, + A*(V'|r,), n=1,...,N.
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In addition we exploit ||v/|ly. > o~ |[v'[|}. and

N
o)1+ 3 ot 1%, — ol HW>Z||v W = o@Dl
o
= S o) I3 = I1Pusio(ta ||W—Z||v — Poo(ta)l% > 0.
n=0

Concerning the non-degeneracy condition (1.9b), if by(v, ) = 0 for every
v € M, the argument in the proof of Proposition 2.2 gives ¢|;, = ¢, €
HY(I,,V,) for every n = 1,..., N. Integrating by parts in by (v, ) = 0 we
have

0).¢0)+) <'U(tn)v(p(tn»_<U(t:—1)790(t:’z_—1)>+/I — (¢, v)+{Av, ) = 0.

Testing with suitable functions, we get, for n =1,..., N, —¢!, + Af p, =0,
o(tn) = Pop(th), wo = Pop(0T) and o(T') = 0. Proceeding with a backward
induction we get that ¢, =0, for every n = N, ... 1 and ¢y = 0. O

We notice that by = b on X; x My, so that by(u,p) = €(p) for every
@ € M, and the consistency error vanishes. Applying the results of Section
1.3 we get the following proposition.

Proposition 5.2. The Galerkin solution Uy of method (5.1) with by as in
(5.2) satisfies the following estimate

-U < ko inf |lu — , 5.3
Ju M||177D =k Ug}vﬁ |u U||1,7> (5.3)
with K, := 2v/2max{y; !, C?a, v, C20}.

5.1.2 Abstract error estimate

The infimum on the right-hand side of (5.3) is on functions v that belong to
M. Therefore v|;, € V,, and v|; 1 € V11 are not independent but linked by
v(tt) = Pu,yqv(t,). This puts some limitations in the approximation power
of V,,11. We consider the unconstrained version of Mj:

M, = {ve 8" (P,V), v(0) € Vo} (5.4)

and aim at an error estimate that involves the best error on ]\//71 To this end
we insert a particular choice of v = Zu € M; in the right-hand side of (5.3).
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In order to have a near-best approximation on I,,, one could think of taking
Zu|;, = Pyu, n=1,..., N. However, in general

hm Pn+1u(t) = Pn+1u(tn) # Pn+1Pnu(tn),

tN\itn

which violates the constraint in the de/ﬁ\nition of M;. To overcome this
problem we introduce a correction z € M; defined iteratively starting with
2(0) := 0 and such that

lim z(t) = P, P, qu(t,_1) + Puz(tn_1) — Pou(t,_1)
PNtn—1 (5.5a)
=: z:[ eV,

n =1,...,N. The function 2z € V,, represents the deviation from the W-
projection at ¢, ;. We let evolve this defect in I,, by defining z|;, =: 2, €
H'(I,;V,) to be the semidiscrete solution of the homogeneous parabolic
problem

2+ Az, =0 in L*(1,;V}) and  z,(t,_1) = 2. (5.5b)
We define 7 : X; + M; — M as
(Zu)|r, == (Pou)|r, + 20, n=1,...,N, and (Zu)(0) := Pyu(0).
We investigate the properties of Z in the following

Proposition 5.3 (Properties of Z). The interpolation operator I defined in
(5.6) with z, as in (5.5) is a linear projection onto My, and it is stable with
respect to |||, p with

IZull, p < ohio [[ully p -

Proof. Thanks to (5.5a), Zu € M; for every u € X; + M;. Linearity follows
from linearity of P, and of the equation in (5.5b). Invariance over M is due
to the fact that, for every u € My, P,u =uw and 27 =0, n=1,...,N — 1.
Concerning stability, we exploit the fact that b, satisfies the inf-sup condition
on M; x Ms. Therefore there exists ¢ € My such that

e [[Zull lell < bar(Zu, ). (5.7)

Using the definition of z, the continuity of by, and the V-stability of P, we
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get

bas (T, 9) = (Tu(0), 90) + 3 / (Tw) o) + (ATu, )
— (Bu(0), 00) + 3 / (Pati+ z) s 0n) + (A(Pati + 7). 00)

— (Ryu(0), 00) + 3 / (Put), o0) + (AP, 1)

< Cuolullyp llell; -
Combining this with (5.7) gives the assertion. O
Thanks to Propositions 5.2-5.3, the choice of Z ensures that
Ju — I“HLP ~ [|u— UMHLP )

with hidden constants depending on v,, C, and ¢. In order to further esti-
mate ||u — Zul|, » we split it as

||u—Iu||1773 < ||U_PU||1,P+ ||Z”1,7Dv (5.8)

where (Pu)|;, := P,u. The stability of P, allows to relate the first term on
the right-hand side with the best-error in M;. We bound ||z|, , with the
help of the following proposition.

Proposition 5.4. The correction z defined in (5.5), satisfies

N
_ 2 _
CHI2lT e < D ety = Nzl < < 1215 (5.92)
n=1
where
C.:=v,'max{1,C%0*} and c,:=min{C," v,}. (5.9b)
Moreover,

P (A el EACYI

N-1

< |\P(I = Poyu(to)l3y + D | (T = Poyu(ta)]);, (5.9¢)

n=1

where P denotes the W -projection onto V,, &V, 41, n=1,...,N — 1.
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Proof. To proof (5.9a) we proceed as in the proof of Proposition 5.1 and test
(5.5b) with z, + A, *z/ and integrate over I,,. We get

0= ||Zn(tn)||12/v - Hzn(t:z_—l)HIZ/v +/ (Anzn, 2n) + <Z;Z7A7:*Z;z

n

The bounds follow from continuity and coercivity of A,, Lemma 2.1 and
summing over n. Concerning (5.9¢), we have

S et Dy = Izt

< ||PiPou(to) — Pru(to) |3y
N—-1
+ Z HPnJrlpnu(tn) + PnJrlZn(tn) - PnJrlu(tn)HI%V - Hzn(tn)HIQ/V .

n=1

(5.10)

Since V11 C V, ®V, 11 we have P,,1 = P/ P,,; = P,.1 P, and we can
bound every term in the sum in the right-hand side in the following way:

| Pt Pau(tn) + Pos1za(tn) — Poru(ts) |y
= || Posi Pau(ta) + Posrza(ta) — Pt Piulty)|[5,
< || Paulta) + za(tn) — Puty)|)?,
= || Paulta) = Pruta)lfy + 1z (ta) iy
Inserting this in (5.10) gives (5.9¢). O

Combining (5.3) with (5.8) and (5.9), and recalling that P, is uniformly
stable we get the following result.

Theorem 5.5. The Galerkin solution Uy of method (5.1) with by as in
(5.2) satisfies the following estimate

|u — UM||1,7D < Koo inf flu— U||1,7D
veMy

N1 1/2
T (uau-&mu&u@{ HP;u—Pnuanw;) |

n=1

(5.11)

Remark 5.6. If V,, ., C V, forevery n =0,..., N — 1, then P;(I — Fy) and
PH(I — P,) =0, and we get

Ju=Usilly < o _inf u =],
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In particular, if V,, = S for every n = 0,..., N, we recover qualitatively one
of the results of Theorem 3.7.

To give an idea of the sharpness and the limitations of estimate (5.11),
we consider the following example.

Example 5.7 (Discretization with eigenfunctions). Assume Q C R? V =
H}(Q), W = L*Q), V* = H ), up € L*(Q) and A = —A. We consider
the homogeneous equation
Ou—Au=0 inQx(0,7),
u=0 ondQx(0,7),
u(z,0) =ug in €,

whose exact solution is given by

Z Ug, gb] )\jtqu(w),

j=1
where {¢;}32, are the eigenfunctions of the Laplacian, with corresponding
eigenvalues {\;}32,
For the discretization, we consider an even N and a uniform partition
in time, with 4 = ... = 7y =: T/N, and thus ¢, = nT/N, n =0,...,N.
Moreover we set V,, = Seven if 1 is even, otherwise V,, = Syqq, With

Seven = Spa’n{gbla R ¢m—17 gbﬂ’L}’ Sodd = Span{gbl, s 7¢m—17 ¢m+1}‘
We want to compute the difference between the error and the bound in (5.11).
The function U given by

-1

= (uo, ¢;) ¢;( Uz, t) =Y (ug, ;) e Nto,(x), t >0,

]:]_ ] 1

3

belongs to M; and solves the discrete problem. The error [ju — U], 5 is given
by

I+ [l = Uy

lu— UJp = u(0) ||W+Z / I — U2

_ (1, ¢;)° /Z (ug, ¢;)° 226”2t dt

Jj= m+1
e

= Z (uo, ¢;) +Z uo,gbj (1 —e N7,

j=m+1
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Since Seven @ Soaa = span{ @1, ..., dmi1}, we get

(U0, Pmt1) ¢m+167’\m+1t” if n even

PH(I—P,)u(t,) =
n ( )U( ) { <U0, ¢m> ¢me—>\mtn if n odd

while P(I — Py)ug = (uo, Om+1) dms1. We recall that N is even and obtain

N-1
2 2
I1PL( — Po)uollyy + Z |51 = Pou(ta) ||,
n=1
N/2-1 N/2-1
= <u0’¢m+1>2+ Z <u07¢m+1>2 e~ PAmtitae | Z <u07¢m>2 e~ Pmtaria
k=1 k=0
N/2-1 N/2-1
TNk _2ApT AT\
<U0, ¢m+1>2 Z (6 ) + <u07¢m>26 N Z <€ N ) ,
k=0 k=0
and
inf [lu—vlip= ) (uO,¢j>2+/ 3" (uo, 65)2 20 e PV dt
vEM; j=m-+1 I j=m—+2
N/2
+ Z (0, 1)’ 2Amre et dt
k=1 Y T2k
N/2-1
+ ) (o, Pm)” 2Ame™ 2t dt.
k=0 Iog41
Therefore
N-1
. 2 2 2
ler% lu =} p + 1P = Po)uolly + D [P (1 = Payulta) ||y
v 1 n=1
2
— Jlu — U||1,73
21T [ 1 — e 2 m+1T
= (uo, ¢m+1>2€ N (—umm
1l—e 7~

—axpr 1 — 6_2>‘mT
+ (ug, dm) e~ N <W) -
l—e"nw

We notice that this difference may get big, if we take N > A,,11. On the
other hand, if N < \,,, it converges to 0 as m — oc.
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5.2 Natural formulation

Assume that V C W C V*, a and A are as in Section 2.1, while, as in Section
2.3, X, =L*(V), Xo={p € H(V,V*),¢(T) = 0} with norms

2 r 2 2 r 1112
Joll? = / W, el = / Il
0 0

ve el

and the bilinear form b : X; x Xy — R is given by

b(o, ) = / (@) + (Av, )

We take ¢ € X3 of the form

) = (g ¢ +Z<gj, /O<f,so>,

with f € L2(V*), (g;)/2g CW and 0 =ty <t < ... <{; =T, as in Section
4.2.1. We recall that, with this choice, the solution u of

b(u, p) = £(p), Vo € Xo, (5.12)

belongs to H'((;_1,%;); V,V*) C C°([t;_1,t;;; W), for j = 1,..., 7. Moreover
it also satisfies, for every (p,¢) € L*(0,T;V) x W,

); o) +Z<u ) — uf(t ¢]>+Z/ (U + Au, @)
‘ g5 63) + /0 (f.0). (5.13)

where u(t7) := lim, ~ u(s) denotes the left limit of the function u to the time
t.

Let P be a partition of (0,7),0 =:ty < t; < ... < ty := T, that
is subordinate to (tj)j 1, that is, for every j = 1,...,9 — 1 there exists
n € {1,...,N} such that t, = tJ. We indicate by J the set of indices n
which correspond to an index j. Similarly as Section 5.1 a finite-dimensional
subspace V,, C V is related to every subinterval I,, := [t,_1,t,). Note that
I, is left-closed and right-open. The W-orthogonal projections P, onto V,,
n=1,..., N are assumed to be uniformly stable in V', with

- 1ol
0 = Ssup sup :
n=1,..., N veV ||U||V
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Moreover let A, : I — L(V,, V) be the discrete counterpart of A. We
consider the spaces

M; = {v e L*(V),v|;, € L*(I,;V,), n=1,...,N}, (5.14a)
My :={p e L*(V),¢l1, € H'(I,;;V,), n=1,...,N,
o(ty) = Pup(ty), n=1,...,N —1,¢(T) = 0}. (5.14b)

The space M; C X; and inherits its norm, while M, ¢ X, in general and it
is endowed with the broken counterpart of ||-||,:

N
2
lelor =D [ I
n=1 In

If we choose V,, = S for every n = 1,..., N, then M; and M, coincide
respectively with L?(S) and H'(S) and we are in the situation of Section
3.3. We remark that the constraints ¢(t,,) = P,¢(t,) in the definition of My
can be seen as a discrete replacement of the embedding X, C CO(W).

We replace b with its broken counterpart

2
ve T el

bus(v,9) = Y / (o) + (Av, ) (5.15)

so that by, is well-defined also on M,. Moreover we replace ¢ with

) = o) + 3 (g3 0@} + [ (). (616)

so that £;; is well-defined also on M,. We prove that the discrete problem
is well-posed, and then invoke the results of Section 1.3, since we are in a
non-conforming setting.

Proposition 5.8. The bilinear form (5.15) is continuous and satisfies the
inf-sup condition (1.9) on My x My with

Cv < V2max{1,C,}, ey > i1(nin{1,0a_1c7_1}.
V2
Moreover it is also continuous on (X1, ||-||;) X (My, [|[lyp) and Cx,xu, sat-
i1sfies the same bound as Cyy.

Proof. The proof mimics the one of Propositions 2.3 and 5.1. In order to
derive the lower bound for cj; we choose, for every ¢ € My,

oln, = ¢l — AN L),  n=1,...,N.
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In addition we exploit ||¢'[ly. > o' ||¢|ly~ and

S leta )l = [l |l = 1l (0) ||W+Z||so W = Nl |y
= Jlo(0 ||W+Z||so i = P (ta) I3y

=||90(0)|!3V+Z||<ﬂ(tn)— o (ta)llyy > 0. (5.17)

Concerning the non-degeneracy condition (1.9b), if by(v, ) = 0 for every
@ € My, the argument in the proof of Proposition 2.2 gives, for every n =
1,...,N, v € H(I,,V,). As in the proof of Proposition 5.1 we get, for
n=1,...,N, v, + A, =0, v(t,) = P,y10(t,) and v(0) = 0. By induction
on n we get v|;, =0, for every n =1,..., N. ]

Applying the results of Section 1.3 we get
lu = Unlly < 20" max{1, Coo, Cjo} inf Ju—oll,
vell

+ \/§Va_1 max{1,C,0} sup bar(u, 9) - EM(SO).
pEM> ||90||2,7D

(5.18)

5.2.1 Abstract error estimate

Our purpose is to bound the consistency error that appears in the right-hand
side of (5.18).

Proposition 5.9 (Bound for the consistency error). The consistency error
in (5.18) satisfies

qup 2y (:9) = (ZHI P) t;)}|§v>2, (5.19)

peMs HSOH
where PY is the W-projection onto V,, &V, .1, n=1,...,N — 1.
Proof. We notice first that from (5.17) we deduce that

> ) = Pasttolly < Y- ottty ~ ot
=3 [ sl 620
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Our aim is then to bound by (u, ) — £a(p) in terms of the left-hand side of
(5.20). Since the exact solution u of (5.12) is piecewise in H'(V*) we can
integrate by parts in time, and get, for every ¢ € My,

bar(u, ) — € ()

i(/fﬂww <Aus0) Z@Jsﬁ )) — / (f, %)

n=1

i:(@ 1)) = (eltn) ulty)) +/In (', ) + (Au, 90>)
- g@jv%@(ﬁ» - /OT (f.0)

Moreover u also solves (5.13) and u(t}) = u(t;) for every n ¢ J. Therefore,

—

= ST (o), ult)) = (), u(tn)

= 3 (lth)ult)) = (Pup(t), ulty)) (5.21)

Every term in the sum on the right-hand side of (5.21) can be rewritten,
introducing P;f, as

(p(ty),ult > <Pn%0t+ t,)) = (p(th), Prult,)) — (e(th), Bru(t,))
< )P+ ( )

(o(t ) (I = Po)Pfu(t,))
Hso(ti |y [[(7 = Pa) Plu(ty)

IA I

M-

Combining (5.21)—(5.22) with (5.20) we get (5.19). O
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Combining (5.18) with Proposition 5.9 we get

Theorem 5.10. The Galerkin solution Uy of method (5.14) with by as in
(5.15) and €y as in (5.16) satisfies

|u— Unll, < 20, max{1, C,o,C2%0} inf |ju— o,
veEM,

2

+V2u,  max{1, Coo) <2 17 = PPt >H3v>

Remark 5.11. The following statements are equivalent

(i) Vour €V, foreveryn=1,...,N — 1;

(i) sup bar(u, ©) — ()

= 0.
PEM> H‘P”zp

In this case,
lu = Untlly € C(vay Cov) inf Jlu— ol
vEM,

that is, we recover one of the results of Theorem 3.10.

Proof. (i)=-(ii) follows from (5.19). Concerning (ii)=-(i), from (5.21)-(5.22)
and (ii) follows that

{p,(I = P,)Pu(t;)) =0, Vo € V.

Therefore, it holds 0 = P,.1(I — P,)Pn* = P,.1(I — P,). Hence, for every
Unt1 € V,p1, we have

HUnJrl - P’n/UTL+1HI2/V = <Un+1 - PnUnJrla Un41 — annJrl)
= <Un+1a Un+1 — ann-i—l)
= <Un+17 PnJrlUnJrl - PnJranUnJrl) = 07

that is v,11 = Pyvpy1, and v, € V. O



Chapter 6

Full Discretization with the
Backward Euler-Galerkin
Method

In this chapter we analyse the backward Euler-Galerkin method, with the
help of the results in Chapters 3-5. We discretize in both time and space
and the spatial discretization may vary.

6.1 Standard formulation

Assume that V. C W C V*, a and A are as in Section 2.1, while, as in Section
2.2, Xy = H(V,V*) and Xy = W x L*(V) with norms

T

2

2 ol el = el +/ lonl?
0

T
ol = [o() 13, + / v

0

Moreover ug € W, f € L*(V), and the bilinear form b : X; x X; — R and
¢ € X are given by

b(v, ) = (0(0), 0o) + / (W) + (Av, 1)
() = {up, o) + / oor)

Moreover, as in Section 4.1, let N € N and P be a partition
O=to<ti<...<ty=T

73
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of I =(0,7T) into N subintervals I,, = (t,_1,t,], with

Tn—1

Up = sup < 0.

As in Section 5.1 we consider a sequence of finite-dimensional subspaces
{V,,})_, € V. Approximation of the initial value takes place in Vj, while for
n =1,...,N, the approximation in the n-th interval I,, occurs in V,,. The
W-orthogonal projection on V,, is denoted by P,, and {P,}Y_, is assumed
to be uniformly stable in V', with

P,v
g = Sup Sup M
n=0,...,N veV ||U||V
In addition the operator 4, : V, — V; which can be seen both as the
discrete-in-time counterpart of A, of Section 5.1, or the discrete-in-space
counterpart of A, of Section 4.1, is defined by

40— / A, () dt.
I,

Tn

We set
S*YP,V) = {p e LA(V),¢l, € Vyyn=1,...,N}

and consider the spaces

M, = {v e L*(V),v(0) € Vo,v|;, € P'(I,,V,), (6.1a)
vt ) =Puw(t,_1),n=1,...,N},
My = Vo x 8" (P, V), (6.1b)

where v(t") := lims; v(s) denotes the right limit of the function v to the
time ¢. We notice that M, C X,, while in general M; ¢ X;. They are
finite-dimensional spaces, with dim(M;) = dim(M;). We remark that the
constraints v(t} ;) = P,v(t,_1) can be seen as a discrete replacement of the
embedding X; C C°(W). The space M, inherits the ||-||,-norm, while M; is
endowed with

N
2
2 2 2 =
o1 5 = 1O+ 3= [ 11+ o]
n=1 n
where 11 is defined, for n =1,..., N, as in Section 4.1:

ﬁU|1n =II"v = / vyp",  with " (t) = ———F — —.
['VL
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Moreover we set 1% = u(0). We replace b with

bar(v, @) := (v(0), o) + ﬁ: /In (V' on) + <Aﬁv, g0n> , (6.2)

so that by, is well-defined also on M; x M,. We prove that the discrete
problem is well-posed.

Proposition 6.1. The bilinear form (6.2) is continuous and satisfies the
inf-sup condition (1.9) on My x My with

min{v,, C; o™ v,C o™}

C1M S ﬁmax{l,C’a}, Cm 2 2

Moreover, it is also continuous on (X1, ||-||; p) X (Ma, [|-||) and Cx, s, sat-
isfies the same bound as Cyy.

Proof. The proof mimics those of Proposition 4.2 and 5.1. We derive the
lower bound for ¢;; and the non-degeneracy condition (1.9b) follows since
dim(M;) = dim(Ms) < co. We choose, for every v € Mj,

o = 2v(0), on=MMv+4a*1'), n=1,...,N.

In addition, we exploit [|v/]|y. > o~ |[v/||y. and
N
OIZ +3 / 20, o(ty)
n=1 n
N
= [lv(0)17, + Z 2ot |5y — 2 (v(tE_1), v(ta))
n=1

Hv(tn”ﬁv — 2(Pyu(ty_1),v(tn)) + Hv(tn—l)H%/V

WE

3
Il
_

lolta) — vltas)ll3 = 0. =

I
WE

3
Il
—

We are in the situation described in Section 1.3. In order to derive an
abstract error estimate, we need to bound the consistency error. We recall
that

SOUP,V) = {v € LA(V),oly, € Vin=1,..., N}
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is the space of piecewise constants with values in V. We observe that, thanks
to (4.11), we have, for every ¢ € M,

bar(u, ) — £(@) = by (u, 0) — blu, @) = /OT <A(ﬁu —u), s0>

<VEC _int a2l Il (63

Proposition 6.2. The Galerkin solution Uy of method (6.1) with by as in
(6.2) satisfies the following estimate

) R ) 1/2
(I = Ol + o= ][+ ) - G001

2

1/2
. 2 = = 2
< Ve, inf (I = ey + [Tl o) =l )

L2(V)
+ (V2ky + V10) LN U P10 (6.4)
where we recall kK, = 2v2max{v; !, C?o,v;'C20}, while we set ky =

2v/5C, max{v; !, C,o, v Coo}.

Proof. From Proposition 6.1, the results in Section 1.3 and (6.3) we get

, R R 9 1/2
(Huf Ul + [ =0, 4 u0) - UM<0>||3V)

R R 9 1/2
<ot (10 =Py + = T+ ) e

L2(V)
+ ko zeso,izllﬁp,\/) lu = 2l 27y -
Combining with (4.11), we get (6.4). O

The first infimum on the right-hand side of (6.4) is on functions v that
belong to M;. Therefore v|;, € V,, and v|;,,, € V41 are not independent but
linked by v(t}) = P,y1v(t,). Moreover the norm involves both the function
itself and its time derivative. We aim at an error estimate that involves the
best errors for u and v’ in S“~ (P, V). To this end we insert a particular
choice of v = Zu € M, in the first infimum in right-hand side of (6.4). We
imitate the structure of the interpolation operator of Section 5.1.2 and define
I:X1+ M, — M as

Zu:=Zu+ 7, (6.5)
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where Zu(0) := Pyu(0) and, forn=1,..., N,

Hn—l — T
VeI,  (Zu)(t) = Ew)(t) =P, (M(tn — )+ H”u) ,
Tn
(6.6)
and Z is such that Z(0) = 0 and Z|;, := Z, € P}(I,,V,,) satisfies
Zl+a,11"Z, =0 and (6.7a)

Zn(th )= PPy 1" w4+ P, Z(t,_) — P,JI" 'u=: ZF €V,,. (6.7b)

We investigate the properties of 7 in the following

Proposition 6.3 (Properties of f) The interpolation operator 7 defined in
(6.5) with = as in (6.6) and Z as in (6.7) is a linear projection onto My, and
it is stable with respect to ||-||, p with

HIUH17D S C(Vaa Caaaa M'P) ||u||1,73‘ :

Proof. Thanks to (6.7b), Zu € M, for every u € X, + M. Linearity follows
from linearity of P, and of the equation in (6.7a). Invariance over M; is due
to the fact that, for every uw € My, Z,u = ul;, and ZF =0, n=1,...,N—1.
Concerning stability, we proceed as in the proof of Proposition 5.3. We
exploit the fact that b,, satisfies the inf-sup condition on M; x M,, and the
definition of Z,,. We get that

eu Hqum < Oy [|Zull,p (6.8)

Moreover, thanks to the V-stability of P, we have

HEUHLP < \/ga\/ 4/17>+5||u||1’73. (6.9)
In fact, forn=1,..., N,
" Epully, = B ully, < o [Tl
while for ||Z,u/||?. we have for n = 1

1, 2
%/* < Ty — u(0)
< e

< 202 l/ u’
T L

27T2 -+ 32 O'2 12
< T2 . [ Z2 1, ) 5

| |

ST

V*
2 N HHlu —u(ty)
1

2
V*

V*
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and forn=2,...,N

M — 171 2
IE [ < 0* | ———
Tn v
< 352 l/ ] - HH u—u(t,) N ”H Yu —u(t, 1)
B Tn J1, Ay Tn Ve Tn Ve
2
o [T+ 16 2 16 7,1 2

<30 (R I g+ 23 5 W )

Combining (6.8)—(6.9) gives the assertion. O

Thanks to Proposition (6.3), the choice of 7 ensures that

o~ 7o

~ inf —
P Jof flu—vllyp,

with hidden constants depending on v,, C,, ¢ and pup. In order to further
estimate ||u — Zul|, », we split it as

|u=Zu| _ <llu=Zullp+ 121, 5. (6.10)

and we bound the two terms on the right-hand side separately.

Proposition 6.4. The operator = defined in (6.6) satisfies the following

bound:
2 2
=112 7 4+ 16 + 167 _ ,
2 ; o2 . B )
+40 welegfpw) lu = wllzay + inf [[u(0) = wolly

where S¥* (P, V) := {z € L*(V), 2|1, € L*(I,,V,),n=1,...,N}.
Proof. We notice first that ||u(0) — Zu(0)|y, = [Ju(0) — Pou(0)|ly; is the best
2

we have, for n =
L2(V)

error in Vj in the W-norm. Regarding Hﬁ(u — Eu)‘

n n, (|2 2
oy = L I = PPl < 4= Pl -

By V-stability of P, we get

2

< 40° inf u—wl? )
L2(v) weSL(PV) | HLZ(V)
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Concerning ||u" — (Eu)’HiZ(V*), we insert P, (% I u’) forn=2...,N:

. PII"w— PII" 1y

Tn

i (L [ ) Bt
Tn I Tn
Pan_lu — PnU(tnfl)

u

+

. (6.11)
Tn
We bound separately
Pou(t,) — PO || 1
‘ u(tn) u = L Paulty) — P2
Tn L2(In,V*) Tn
160’2 . 2
<2 Inf = llia, e (6.12)

and

Combining (6.11)—(6.13) we get, for n =2,..., N,

Pou(tn-1) — PO ' ||?

Tn

2
V*

_ % 1Pau(tas) — PITLa

L2(In,V*)

160-2//“73 . / 2
< 2 clel%/f lo" = ellia, vy - (6.13)

2
—_ 2 T _'_ 16 . 2
Ju" — (:u)/HL?(In,V*) < 30° ( T2 Clel%fn lu = C||L2(In,V*)
167 inf ||u' — c||2
7T2 c€Vy_1 LQ(ITHV*) ’

For n = 1, we have

and thus

_ 9 2m? + 32 . 9
|l — (:U)I||L2(11,V*) < — 2 o’ Cle%;fl | — CHL2(11,V*) .

The thesis follows by summing ||u’ — (Eu)’Hiz(Imv*) over n.
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Proposition 6.5. The correction Z defined in (6.7), satisfies

N
1ZI5 5 = > | Zat Dy = 120ty = (| Za(tn) = Zu(ti 1)), » (6.14a)
n=1

where the hidden constants are given by C, in the <-direction, and c, in the
= -direction, being C, and c, as in (5.9b). Moreover,

N
SN ZalE ) = 1Zatt)lI
n=1

N—-1
<P = Poulto)lfy + Y | BF(I = Py, (6.14D)

n=1
where P denotes the W-projection onto V,, @V, 41, n=1,...,N — 1.

Proof. The proof follows the same lines as the proof of Proposition 5.4. The
only difference is that, when testing (6.7a) with Z, + 4, *Z! and integrating
over I,, we get

0= 2| Zu(ta)llyy = 2(Zu(ti_1), Zu(ta))y +/ (AnZn, Z0) +(2,, 2, Z,)

n

and

S 2(Za(t 1) Zalta) )y — 211 Za(ta) I

N
=S N2t DNy~ 1Zatd = | Za(t) = Zati )|}, . O
n=1

Combining Propositions 6.2, 6.4 and 6.5 we get

Theorem 6.6. The Galerkin solution Uy of method (6.1) with by as in
(6.2) satisfies the following estimate

9 —~ 2
o = Ui lgagey + |fu =T, o+ u(®) = Uns O,

. 2 . / 2
< Co inf [u(0) = vollyy + Cy L. 1’ = vl

. , ‘
e weSIL%fP,V) e = wlzeq) +Cs sesoiin e = 22y

N—-1
+ Oy (HPl(f— Po)uto) iy + > || PH(T - an“uHiV) 7

n=1
where Cy = 6k2, Cy := 18k202(7? 4+ 16 + 16up) /w2, Cy := 24K202, C5 =
3(v2k, +/10)?, Cy := 6v; 'k, max{1, C%c?}.
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We notice that there are two best errors involving u and the L?(V')-norm.
One regards only the time discretization, while the other just the spatial
discretization. The best error for «’ in the L?(V*)-norm, instead, couples the
spatial and the time discretizations.

Assuming additional regularity

As in Section 4.1, we assume that the exact solution u belongs to C°(V'), and
provide a bound with constants independent of yp. For v € C°(V') we set

o|;, = v(t,). (6.15)

Proposition 6.1 is still valid, but the consistency error can only be bounded,
as in (4.20), by

p D9 1) _
B

..
L2(V)

The following proposition is the counterpart of Proposition 6.2.

Proposition 6.7. Assume u € C°(V'). The Galerkin solution Uy of method
(6.1) with by as in (6.2), and II as in (6.15) satisfies

2

1/2
+ [|[u(0) — Unr (012
2w) [u(0) = U ( )Hw)

(Hw — Updllzoey + Hu — Uy

T 1/2
< V2K, Uler}\gl (||u Ul z2 e + || Hu — v L) + [[u(0) — v(0)||3

k ~
+(—=+1 Hu - Hu‘
()
where we recall K, = 2v/2max{v; ', C%0,v;'C%0}, and k, = 2/5C,
-max{v;t, C,o,v;1C,o}.

6.16
2wy’ (6.16)

In place of = defined in (6.6) we can set, for every n =1,..., N,

tn) — ultn_1)

Viel,  (Su)(t) =P, (“( (ta — t) + u(tn)) . (6.17)

while Zu(0) is still defined as Pyu(0).
Correspondingly, we change the definition of Z in (6.7), setting
Z;l_ = Pnpn,1U(tn,1) + PnZ(tnfl) — Pn'LL(tn,l)

With this choices Zu = Zu + Z belongs to M. In place of Theorem 6.6 we
get the following result.
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Theorem 6.8. Assume u € C°(V). The Galerkin solution Uy of method
(6.1) with by as in (6.2) and 11 as in (6.15) satisfies

9 ~ 2
o~ Uselagey + [ = W0 [, + 1(0) = Uae O,

2

N
N ~ 1
<Gy inf [[u(0) — vl + C o
<ot 0 —ulfy <3 = f ]
N 2
~ 2 o I
G X u(t) = Puattn) Iy + o~ ..,

+ Gy (uau — Po)u(to)llyy + Z | PH(T - Pn>u<tn>Hiv> :

n=1
where Cy == 6k2, Cy == 3(ko/V/5 4+ 1)2, Cs := 61 'ky max{1, C202}.

Proof. We insert v = Zu in the infimum on the right-hand side of (6.16). As
in (6.10) we use triangle inequality and split

_7 H <|u-=2 A
Hu u S |u —Zull, p + 12, »

Concerning || Z||, p, we notice that it can be bounded as in Proposition 6.5
with u(t,) in place of II"u. Concerning ||u — Zul|, , we observe that

tn) — ul(t,— 1
(EU’In)/ = Pnu< ) U( 1> = Pn_ ul’

Tn Tn JI, n

and that (Zu)(t,) = Pyu(t,), n=1,...,N. O

6.2 Natural formulation

Assume that V' C W C V*, a and A are as in Section 2.1, while, as in Section
2.3, X, =L*V), Xo ={p € H{(V,V*),p(T) = 0} with norms

2 g 2 2 g /
lolli= [ llollv.  lellz= [ l¢|
0 0

and the bilinear form b : X; x Xy — R is given by

2
ve el

b(o, ) = / (o) + (Av, ).
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Moreover, as in Sections 4.2.1 and 5.2, ¢ € X is of the following form
J-1 ~ T
) = v l0) + 3 (a0 + [ 1£.0),
j=1

with f € L2(V*), (g;)72g CWand 0 =1y <f; < ... <f; =T. Given N € N
the partition P
O=to<ti <...<ty=T

of I = (0,7) into N subintervals I,, = [t,—1,t,), satisfies

Tn—1

fip = Sup < 00,
n

n

and it is subordinate to (t});zl. In addition, as in Section 5.2, we consider
a sequence of finite-dimensional subspaces {V,}"_, c V. Forn=1,..., N,
the approximation in the n-th interval I,, occurs in V,,. The W-orthogonal
projection on V,, is denoted by P,, and {P,}_, is assumed to be uniformly
stable in V| with

o HPnUHV
g = Sup Ssup-—y :
n=1,..., N veV HUHV

Finally, as in Section 6.1, the operator 4, : V,, — V7 is defined by

1
4,0 = —/ A, (t)vdt.
Tn I,
We consider the spaces
M, ={ve L*(V),v|;, €V,,n=1,...,N}, (6.18a)
My i={p € LA(V), ¢l1, € P'(1, V), o(T) = 0, (6.18)

o(t)) = Pyp(ty),n=1,...,N —1}.

We notice that M; C X, while in general M, Q X5. They are finite-
dimensional spaces with dim(M;) = dim(M;). We remark that the con-
straints ¢(t;)) = P,p(t,) can be seen as a discrete replacement of the em-
bedding Xy C C°(W). The space M, inherits the [|-]|,-norm, while M, is

endowed with v
2
IolZp =3 / I
n=1 n

where 11 is defined for n = 1,..., N as in Section 4.2:

_ —6(t — t,— 4
v, = ,v = / vy, with ¥, (t) = (—21) T
ITL T

n Tn

9 -~ 2
o+ e,
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We replace b with

(v, ) Z/} (U, @) Avn,H90> (6.19)

so that by is well-defined also on M; x M,, and ¢ with

Crr () == (g0, ¢ (0 +Z<gj7 /OT<f,TvI<P>- (6.20)

We prove that the discrete problem is well-posed.

Proposition 6.9. The bilinear form (6.19) is continuous and satisfies the
inf-sup condition (1.9) on My x My with

Cu < \/§max{1,0a}, v > %min{l,(]alal}.

Moreover, it is also continuous on (X, [|-[|; p) X (Ma, ||||,) and Cx,xn, sat-
isfies the same bound as C)y.

Proof. The proof mimics those of Propositions 4.7 and 5.8. We derive the

lower bound for ¢y, and the non-degeneracy condition (1.9b) follows since
dim(M;) = dim(Ms) < co. We choose, for every v € M;,

Un:HnQO—/’Zl,;l(QOIhn), n=1,...,N.

In addition, we exploit ||¢’ v+ and

vy 2 ot l¢|
3 / 24t} = D2l —2(). )
> ()1, +Z lolta) I3 — 2 (Pup(tn)s 9ta)) + lplta )%

= [l (0) 5 + Z lio(ta) = @(ta-1)llyy 2 0. (6.21)

]
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In order to derive an abstract error estimate, we need to bound the con-
sistency error. We write, for every ¢ € M,

bar (v, go)N— Cu ()
- |~ e+ (i) - z (o706}~ [ (£.18)
- fj— ((t), u(t)) + (Pl 1), ultn )
+ /I (o) + (Au - f,Tip) - ]ZO (95 ¢(E;))
[ (o) + Nz (ot 1) = (Pup(t) )

(6.22)

We split the right-hand side into two contributions and we mimic the bounds
in Sections 4.2.1 and 5.2.1. We obtain the following

Theorem 6.10. The Galerkin solution Uy of method (6.18) with by as in
(6.19) and €y as in (6.20) satisfies the following estimate

|u — Unrll, < 2v, ' max{1,Cho,C20} inf |lu— o],
vEM

<Au— f.1p — >
) ()0 gp

+V2u; ' max{1, C,o} sup :

PEM> el p

N-1 1/2
2v, ' max{1, C,o }v/pp + 2 (Z (1 - P@PJ@L(Q)H%) .

Proof. Combine (6.22) with (5.22) to obtain, for every ¢ € My,

< [ (au=roo-Tie)
N-1 12 /N 1/2
+ (Z [ (tn) _Pn‘p(tn)||12/v) (Z H(I_Pn)ij_u(t;)Hiv> :

n=1

Moreover, we recall from (5.20) that

ZHSO — Pro(tn HW_/ 11y~ + lllly, < 2(up +2) llell5p -
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Therefore

up D019 = ()
pEM> ||90||2,7>

T peM; ||€0||2,73

N-1 V2
NN, (Z (1 - Pn)PJU(tE)Hiv) '

The thesis follows by the results in Section 1.3. [

As alternative to (6.22) we can also write, for every ¢ € My

bar(u, ) — € ()

_ ;/In — (¢ u) + <Au,ﬁg&> 3 (95,9(F;)) — i <f’ ﬁ¢>
=3 [ i (i) - St
- i (ult 1) eltnes)) = (e pltaca)) + [ = ()
— (u(0), ¢(0)) — :i (u(th) —u(ty), (i)
= ﬁ; (u(ty), o(tn) = @(tn-1)) + /1 — (¢, u). (6.23)
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Choosing W,, = P,u(t,, ), and adding to (6.23) forn =1,..., N, we get
bar(u, 0) — Lar(ep)

(u(ty) — Pou(ty), o(tn) — ¢(ta-1)) + /1 — (¢, u— Pu(t;,))

I
M-

2

HPJI Pou(t,)]]y le(tn) = o(tn)lly

3
Il
_

+Z 16/ 2t ey e = Pttt || 2 0

We notice that, from (6.21), we have, for every ¢ € My

S () — gl ) <3 / 2 (b)) < Nl

Therefore we can bound the consistency error independently of pp:

sup bar(u, ©) — L ()
PEM> ||90||2779

N-1 1/2 N 1/2
< (Sheu-roliy) + (3 [ - ratl:)

Applying the results in Section 1.3 we obtain the following theorem.

Theorem 6.11. The Galerkin solution Uy of method (6.18) with by as in
(6.19) and £y as in (6.20) satisfies the following estimate

lu — Unll, < 2v, ' max{1,C,o,C%0} inf |ju— o,
vEM,

N 1/2
+\/§Va—1 max{1,C,o} (Z/ HU—PnU(tT_L)Hf/>
n=1 In

N1 1/2
+V2u ' max{1, Cyo'} (Z H(I_PH)PTTU(ZSTL)HIQ/V> :
n=1






Chapter 7

A Priori Error Estimates for
FEM

In this chapter we derive error estimates in the case the spatial discretization
occurs by means of finite elements, exploiting the results in Chapters 3—6.

The chapter is divided into two parts. In the first part, we consider exact
solutions with integer regularity, that is, they belong to Sobolev spaces of
integer order. Notice that, in the standard formulation, the approximation
of the time derivative involves the H~!-norm in space. We therefore use a
suitable interpolation operator, well-defined in L?, which allows for duality
arguments. In the second part, we consider more general exact solutions,
that can have only fractional regularity. In this setting, the interpolation
operator mentioned above cannot be used for functions with regularity less
than L?. We therefore define an interpolation operator that acts on H~! and
has values in the space of continuous and piecewise polynomial functions of
degree one.

The structure of the two parts is similar. We start with fixing the nota-
tion and giving some auxiliary results. We then describe the interpolation
operator and its approximation properties in particular in H~!. Finally we
derive the error estimates for both the standard and the natural formulation.

7.1 Notation and auxiliary results

Functional spaces

Let Q C R? be a bounded polyhedral domain, with Lipschitz boundary 95.
We denote with C°(£2) the space of continuous functions over € and with
C*(€2) the space of functions such that, for every multi-index a with |a| = ,

89
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Def € C°2). Moreover we set C(Q) 1= [,y C*(Q), and C§° indicates
the subspace of C*(2) of functions with compact support in 2.

Given p € [1,00), we indicate with LP(§2) the space of functions whose
absolute value, raised to the p-th power, has finite integral over €2, and with
L>(Q) the space of essentially bounded functions. With L5(Q2) we indicate
the subspace of LP(2) of functions with mean value zero. Given a subdomain
w C €, we denote with [|-[|; ., the LP-norm, and with ||-|, ., the L>-norm.

Moreover, the Sobolev space W™P(Q), m € N, p € [1, o0, consists of all
functions f in LP(Q2), such that, for every multi-index a with order |a| = m,
D> f exists in the weak sense and belongs to LP(§2). For p = 2 we write
H™(Q) := W™*(Q). Form = 0 weset H°(Q) := L*(2). We denote by ||, ..
and [-[],,, ., the W P-seminorm and the W"™P-norm on w C €2, respectively.
Furthermore, we denote with H] (£2) the subspace of H'(€2) of those functions
that vanish on the boundary 99, and H~!() is the dual of H} (). For every
f € H1(Q) the dual norm is defined as

lsgm sip — 9

PEHL(Q) |90|1,2;Q '

Finite element spaces
Let T be a conforming simplicial mesh of 2. We denote by

diam(K)
o7 = max ————
KeT PK

the shape parameter of 7, where diam(K) and px indicate, respectively, the
diameter of the element A and the maximum diameter of a ball inscribed in
K.

We indicate with V the set of vertices of 7. A subscript K, €, etc. to
V indicates that only the vertices contained in the index-set are considered.
Similarly, Tq indicates the set of elements contained in €2, while Ty denotes
the set of elements with at least a vertex on 0. For every vertex z € V and
for every element K € T we set

W, 1= U K, wg:= U Wy, Wy i= U Wi (7.1)

KeT 2EVK KCw,
K>z

When we write K C w,, we intend that K € 7T, even if not explicitly
specified. B _

We denote by #wg := #{K € T,K C wk} the number of simplices in
the patch wg, and with

VT = max #Wg
7 KET#
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the maximum number of simplices in a patch.
The space

ST ={veC'(Q),vePK),VK €T}
is the space of continuous piecewise polynomial functions on 7, while
So(T) == S*°(T) N Hy ()

is the subspace of S%°(T) of those functions with zero boundary values.
Furthermore, we denote by N the set of nodes of S“°(T). Again, a subscript
K, Q, etc. to N indicates that only the nodes contained in the index-set are
considered. We denote by {®. }.cn the nodal basis, that is, for every z € N,

¢. € SYO(T) and for every y € N, ¢.(y) = Jy..

We recall that {¢, }.en forms a partition of unity, that is,

2eN

We denote by w, := supp(¢.), the support of ¢., z € N. Note that, if z is a
vertex node, w, coincides with the star around z defined in (7.1). The local
L*(K)-dual basis functions {¢X}.cn,., K € T, have the crucial property

that, for every y, 2 € Nk,
/ w?@/ = 02y
K

Norms under affine transformations

Let the reference d-simplex be defined as K = convhull{0, ey, ..., eq}, where
e1, ..., eq denotes the canonical basis in R%. Moreover let h := diam(f( ) be
the diameter of & , and p be the maximum diameter of a ball inscribed in K.
For every K € T, there exists an affine transformation F' : RY — R? such

that F'(K) = K. We denote with B the non-singular matrix associated to
F. We recall (see [15] p. 117-120) that, for every v € W™P(K), there hold

[Uhgirc < Clm,p,d) [B7Y|" |det(B) P oo Fl, i, (7.20)
”U ° F|m,p;f( S C(m7p7 d) ||BHm | det(B)l_l/p |U‘m,p;K ? (72b)
and that
diam (K diam (K K
) < Bt gy o Bl gy KL (7
p PK | K|
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In particular, we consider the change of norms for the basis and dual basis
functions. We denote by {qu} and {@EZ} respectively the basis and dual basis
functions on K. For every K € T, and for every z € Ny, there exists an
affine transformation F : R? — R? with F(K) = K, and F(2) = z. There
may be different choices for Z, which nevertheless lead to the same value of
||g£z||K However, ||VQZA>Z||K depends on the chosen node. For this reason, we
take a 2 with minimal sum of the coordinates, so that ||[V¢;|  is unique.
Since ¢: = (det B)yYX o F, we have

B |K|1/2 R B |wz|1/2 )
H‘bzuo,z;K - \k|1/2 H¢2H0,2;K7 ||¢Z||0,2;wz - \k\l/Q H¢2Ho,2;K> (7-3>
hIK|V2 . ho\ -
quz . S—Av,g B Vz o S—Vg« 00 K 7.4
IV o2 pK\KP/?“ D2llogis  IVP:llo oo pKII P2llopesicr (74)
K K
”¢z HO,2;K - ’K’1/2Hw2H0,2;f(' (7.5)

Polynomial approximation in Sobolev spaces

We recall some basic results. Assume w is star-shaped with respect to a ball.
Set

Pmax := sup{p, w is star-shaped with respect to a ball of radius p}

and
diam(w)
yi=—"

pmax

Assume k, m € N with £ < m. Then it holds, see [11, Lemma (4.3.8)],

nf | = Plys < Cmdoy)diam(@)" ™ [l (76)
For convex domains, the constant can be taken independently of v, see
[46] where it is also explicitly expressed.
Moreover, we recall from [43] that the squared global best error in S5°(7)
with respect to the H'-seminorm is equivalent, up to a constant, to the sum
of the squared local best errors in P(K), that is, for every u € H}(Q),

inf |u—ovl},,~ g inf |u—P
veS5O(T) " ooy PEPU(K)

T - (7.7)

Th constant in the =>-direction is given by one, while the one in the <-
direction depends on d, ¢, and o7.
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Bounds for the Poincaré and Friedrichs constants

The Poincaré constant of a patch of elements can be bounded explicitly,
applying Proposition 2.10 of [45] with a decomposition of wy into elements.
We recall that the Poincaré constant of a simplex is given by 71, see [5, 35].
Recalling that #wg stands for the numbers of elements in wg, we get

diam(K;)|wg|"/?
1<i<#hor diam(wg )| K;|1/2

4 1 1/2
Cru, < ;(#WK — 1)1/2 (5 + 7T)

As in [44] we can also bound the Friedrichs constant of a patch in terms of
the corresponding Poincaré constant. In fact, if dwg MO is a set of non-zero
(d — 1)-dimensional measure, and f € H}(Q), we have

1l 2re < 1 = excllo g T lerllo i

1/2 |2
SIF = excllopus + lexllon ™™ = 5 "aa

f—cKk

Ow ¢ NON

)

(7.8)

with cx = ﬁ fwK f. For every face E C Owg NOS2, let Kg the element such
that £ C 0Kg and Kg C wg. Exploiting the Trace Theorem [44, Corollary
4.5], we get

2] L
J 17 =exl < i (IF = exll, + 4 diama () [9 ) - (79)

Summing over £ C dwg N OS2 gives

/ f — ex]
Ow g NON

E| 1/2
< 1/2 | _
< (d+1)|0wx NOQ? max (|KE|> 1f = cxllo 2
d+1 12 |E|diam (K 5)%\ "/
+ T’(%JK N aQ’ Ecgrjj?(}((ﬁaﬁ ‘KE| vaHO,Q;UJK :
(7.10)

Combining (7.8)—(7.10), we obtain

B\ Y2 1/2
CF,wK S (1 + (d+ 1) max < | | ) |wK| ) CP#UK

ECOwrgNoN |KE| |a(,UK ﬂaQP/Q

d+1 ( |E|diam (K )? )1/2 w12

d EBcowgnoo \ |Kp|diam(wg )2 |Owg N OQ/2




94

We set

Cp:=max Cp Cr = max Cp
KeTg WD KeTaa WK

and note that they are bounded in terms of o.

7.2 Interpolation and dual norms 1

When bounding the error in the H'(H', H~')-norm, we have to deal with
an approximation problem in H~!. To this end we need an interpolation
operator allowing for duality arguments. Since we are working with functions
of integer regularity, we can consider an interpolation operator that is well-
defined in L2.

We define TI, : L2(Q) — S¢°(T) as

Mof = > ( / fcbi) ¢-. (7.11)
z€Nq Wz
For every z € Ng, the function ¢} € L?(w,) is given by

g= 3 Eyr (7.12)

K: Nk>z |wz|

where {¢)X}.cn,. are the local L?(K)-dual basis functions.
Moreover we define ITj, : L?(Q) — span{¢*}.cn;, as

= 3 ([ 90.) o (7.13)
zENq Wz

For every f,g € L*(2), we have

(Tof.9)s20) = | (XNj ( / Z f¢z> asz) > ( / Z fsbi) ( / @g)
- /Q / (Z ( / Z @g) ¢z> — (£.1L9) 1200, (7.14)

ZGNQ
The following properties of {¢%}.cns, are useful.

Remark 7.1. The functions {¢}}.cn;, defined in (7.12) satisfy

(i) / Gyt = 8y, for every y € No.
0
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’K|1/2‘K‘1/2
||

Proof. The definition of ¢! in terms of the dual basis functions implies (i):

K|« |K]
0,00 = [ by 0K = b
/K Y K y‘WZ| jw. | !
for every K C w,. Property (ii) is a consequence of the definition of ¢¥ and
(7.5). O

‘K|12

||¢2||072;K and ||¢:’||072;wz - ’ ’1/2||¢2H02K

(i) [[9Zllo 2 =

As a consequence, we get the following proposition.

Proposition 7.2 (Properties of Iy and IIf). The interpolation operator I,
defined in (7.11) satisfies the following properties

(i) Invariance over Sy°(T). For every f € S5°(T),
Iof =1
(ii) Stability in L*. For every f € L*(Q), for every K € T,

HHOfHO’Z;K S C(d7 é) Hf”O,Q;wK :

(iii) Stability in H'. For every f € H} (),

i
VE €To,  |HMof]yqp < C(d,0 Oy Jam(@r)

‘f‘l,Q;wK ’

diam(wg)

VK € 7—897 |H0f|12K C(d E CF) |f|1,2;wK .

The interpolation operator I defined in (7.13) satisfies the following prop-
erties:

(iv) Local invariance over constants. For every c € R, for every K € Tg,
(MgeXuwr )k = exx-
(v) Stability in L?. For every o € L*(Q), for every K € T,

||H 90||02K <C(d, ) ||90H02wK :



96

Proof. Invariance over Sg°(T) is a consequence of Property (i) of Remark
7.1.

Concerning stability of Il in L?, we use the Cauchy-Schwarz inequality
and Property (ii) of Remark 7.1 to obtain

IMofllop < 3 / ié

2€Nk

S Z HfHO,Q;wZ H¢ZHO,2;0JZ

ZGNK

|K|1 /2
<Y HfHom 1/2||¢z\|o2KH¢z|!o2K

zGNK

S C(d7 e) HfH0,2;wK : (715>

||O,2;K

¢ZH0,2;K

Concerning stability of Iy in H!, we set, for every f € H}(Q),

1
- itKeTs
cr(f) =4 okl /,,JKf v (7.16)
0 if K € Thq

We use the invariance of II over SS’O(’T), the Cauchy-Schwarz inequality,
(7.4), Property (ii) of Remark 7.1 and we get

|H0f|1,2;K = |lof — ek (f >|12K = Mo f — Mocr (1)1, 2K

Z 1f—ex(f ”ozwz e Ho2wz V(bZHOQK
ZENK
K2 ;
< C’(d,ﬁ) Z Hf_CK(f)||O,2;wz —1/2||1/’2||0,2;K||V¢2||0,2;K
ZGNK pK|wz|
< C(d, @p;{l 1f = CK(f)HO,Q;wK : (7.17)

To obtain (éii), for every K € Tq, we exploit the Poincaré inequality, while

for every K € Tyq, we observe that wg has one or more faces lying on the

boundary 052, and therefore we exploit the Friedrichs inequality.
Concerning (iv), by linearity of 11}, it is sufficient to show the assertion

for ¢ = 1. We compute first
S IKlat [ 6: = foulat [ bs

/wquz—m/@—m

Therefore we have

Ml = 3 (/ | o) oche = 3 il [ de) o

ZGNK
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We denote by ¢ := >\ I Qggwf € PYK). For every y € Nk, we have

N N 1
o= ( /K @) /K oK, = /K by = T ek Bisao

2eNK

Consequently ¢ = ﬁXK and (I xwe )|k = Xk
Concerning stability of II} in L?, we proceed as in (7.15) and get

Mellons < 3 | [ 00u{ 162l
2eNK wz
< Z ||¢||0,2;wz ||¢Z||O,2;wz ||¢2||0,2;K
ZGNK
‘K|1 /2
<> ||90||o,z,wz |1/2||¢z||ozK||¢z||ozK
ZENK
< Cd, 0) [lello 20 - .

Approximation properties

With the following propositions we analyse the approximation properties of
II, in the H'-seminorm, in the L?-norm and in the H~'-norm.

Proposition 7.3 (Approximation in H'). The interpolation operator I,
defined in (7.11) satisfies, for every f € H}(Q),

1/2
|f =T fl; 00 < C(d, CP7CF7(7T)< > inf |f- P|f,2;;<> -

PcePt{(K
KeTq EPA(K)

Proof. We denote by Qx € Sg°(T)|w, a best approximation to f in the
H'-seminorm. By Properties (i) and (4ii) of Proposition 7.2 we get

f = Tofl} o0 = D If = Toflfok = > 1f = Qxliox +1Qx — Tof[ 5

KeT KeT

<C(d,Cp,Cp) Z M

KeT

|f QK‘12UJK

The assertion follows thanks to (7.7) applied to the triangulation induced by
T on wg. N
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Next we investigate approximation in L?, with the help of the variant of
I1p that has value in S%°(T). For every f € L*(Q) we set

fif = 3 ([ for) o (7.18)
2eN Wz

where {¢%}.cn are defined in (7.12). The difference with Ilj is that the sum
is on A and not only on Ny. For this reason Il is invariant on S“°(7T), and
enjoys the same properties of Ilj.

Proposition 7.4 (Approximation in L?). The interpolation operator Iy de-
fined in (7.11) satisfies, for every f € H} (),

. 2
If =Iofllgp0 < C(d, £, UT)(I;P@Z}&%% 1 = Pllo 21

1/2
. 2 . 2
£ 3 dam(K) it |f =Pl )

Proof. As a consequence of Properties (i) and (ii) of Proposition 7.2, we
have, for every K € Tg,

I = o fllogc < O 0),_nt 1 = Plogay - (719)

For the elements in Tsq, we use the strategy of [16], and insert ﬁo f:

I = Tofllyse < || £ = Thot|

+ Hﬁof — Hof‘

. (7.20)

0,2;K 0,2; K
The first term can be bounded as in (7.19). The second term is the norm of

a polynomial on K that can be expressed by means of the basis functions.
Since (Ilof)(2) = (I f)(2), for every z € Ng, we have

Y 1)@ 6oz -

2ENKnan

| or =110,

<
0,2;K

We choose an element K, with a face E, on the boundary 02 and such that
z € Ng,. First we map to the reference (d — 1)-simplex, use the equivalence
of norms on a finite dimensional space, and map back to E,. Then, inserting
flaa = 0, and exploiting the Trace Theorem [44, Corollary 4.5] and the
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Young inequality, we get

o)) < |[Tof]|, < O OB |Tof

= C(d, 0| B2 |Tlos — 1

0,2;F,

0,2;E,

< ctwhes ([

0,2;K,

+diam (K 1/2 HH f— fH

1/2
12K,
12Kz>

< Cld.0) K, ]1/2 (HHOf fHoz;Kz + diam(K;

Recalling (7.3), and invoking invariance of Il over S%O(T) and its stability
in L? and H', we obtain

Y @) -l s

zeENKno0

1/2 N
<cn Y ,'?Wz (HHof—f

zENK o0

< C(d,l,o7) Z ( inf Hf_PHo,2;wKz

PeSHO(T
2€NKnan (Do,

+ diam(K,) |II

1,2;KZ)

0,2;K

+diam(K,) inf |f = Ply g ) :

PESLO(T) .

For every K € Tpq with a face on the boundary d€) the number of elements
K such that N, N Nknoo # 0 is bounded in terms of o. Therefore, we
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have

Z Hﬂof Hof’

KeTon

0,2;K

2
d L, UT Z Z (p Se%)n7f-)| “f B PHO’Q;WKZ

KeTon zeNknan

+ diam(K,)? 'inf |f = P|i2;wKz>

<Cton) Y ( inf S = P,

PcSt0 w
KeTog V€ (Mlwg

diam (K inf — PP, . 7.21
+diam( )Pesf%l(TmK |f |1,2,wK) (7.21)

The next proposition concerns the H~!-norm.

Proposition 7.5 (Approximation in H~1). The interpolation operator 11,
defined in (7.11) satisfies, for every f € L*(Q),

KeT

1/2
If = Tofll_yq < (dwp,w(Zdiam(wKVufHS,Q;K) . (722)

Moreover, if f € Hg(S), it holds

If = o fll -1

gC(d,E,Cp,aT)<Zdiam(wK)2 - Pl

P 2,0
KeT €50 Mlex

1/2
+ Z diam(wK)4 inf)‘ ’f_P’gQ;wK) :

PeSto(T
KeTon (Mlexe

(7.23)

Proof. We start with (7.22). We exploit first (7.14) and that f € L*(Q) to
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get

I~ Ty = sup W —Holer o (e = 1e)

peHL(Q) |90|1,2;Q PeHL(Q) |90|1,2;Q
< oup ZKeT e [l — )
 peH(Q) lol1,2:0
< ZKGT ”fH0,2;K I — HSSOHOQ;K (7.24)
 peHl(Q) l¢]1.2:0

Recalling the definition of ¢x(-) in (7.16), by means of Properties (iv) and
(v) and the Poincare or Friedrichs inequality, we get

o = 5ol < Cd0) [l = cx(©)llp g
< C(d, ¢, Cp, Cr)diam(wi) ] o, - (7.25)

Finally, using the Cauchy-Schwarz inequality for sums in (7.24) and (7.25),
we arrive at

If = o fll -1

di
< C(d,Cp,CF) > ket Iflloox diam(wr) @] 5.,

PEHL () l©]1,2:0

1/2
< C(d,Cp,Cr,vr) ( > diam(wg)? ||f||(2),2;K> )

KeT

where the constant also depends on the number of elements in a patch.

Concerning (7.23) we exploit also Property (i) of Proposition 7.2 and,
similarly as in (7.24), we get

Hf—HofH,l;Q = sup < 0 0P)
PEHG(Q) |(10’1,2;Q
< C(d,Cp,Cp) sup Lowcer 1] = oS llozuc 9 = Uoelloie

PEHL(Q) el 20
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By means of (7.25), (7.19), (7.20) and (7.21), we obtain

Hf - HOf”—l;Q
—1I e diam(w _
< C(d,Cp,Cp) sup ZKGT ILf 0f||0,2,K (wk) |90|1,2,wK

peHE(Q) p]1,2:0

1/2
S C(d7 CP> CF7 VT) < Z dla’m(wK)2 ||f - HOfH3,2§K>

KeT

SC(d,CP,CF,VT)<Zdiam(wK)Q et IF = P15 20

KeT

1/2
_ 4 . 2
+ diam(wg) Peg}’g(T) |f - P|0,2;WK> . O

As in [39], we apply (7.6) together with Theorem 7.1 of [23], where the
subdomains are the interior of pairs of elements that share a common face. In
this way the constant depends on o7. Combining with Propositions 7.5-7.3
we get the following corollary.

Corollary 7.6. Assume 1 < m < {+ 1 and assume f € H™(Q) N H(Q).
Then, the interpolation operator Ily defined in (7.11) satisfies

1/2
If = o fl|_1q < C(d,0.Cp,Cr,or)| Y diam(wg 2m+2|f’lmzw) :

KeT

1/2
If =Iofllgp0 < C(d, €, Cp,Cr,07) Zdiam(wK)leflig;wK) :

KeT

1/2
|f H0f|1ZQ C(dﬁ CP7CF7UT) Zdlam 2m 2|f|m2K> .

KeT

7.3 Standard formulation and integer regu-
larity
In this section we derive error estimates for the approximation of the solution

u of the parabolic problem in the standard formulation. We assume for u
integer regularity.
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We recall that w € H'(H}, H™') satisfies, for every (pg,¢1) € L* X
L?(Hy),

w®w®+é<%%ﬂﬂmwﬁ=me+A<ﬁ%%

7.3.1 Spatial semidiscretization

In order to apply the results in Chapter 3, we require that 7 belongs to a
family of triangulations for which the L2-projection onto Sg,o is H'-stable.
Conditions that guarantee this assumption can be found in [10, 17]. Moreover
in [32] it is proven that the L?projection is H'-stable on Sy° where the
meshes are adaptively generated by newest vertex bisection in 2d.

We recall that the semidiscrete solution U € H'(S5°(T)) satisfies, for
every (0, 1) € SE°(T) x LA(SE°(T)).

T T
OO o)+ [ (Uo0) + (A1) = o) + [ {Fo).
0 0
We combine the results in Section 3.2 and in 7.2 to obtain the following
theorem.

Theorem 7.7. Assume 2 <m < {+1. Assume uw € L*(H™) and, if m = 2,
u' € L2(H™ %) otherwise u' € L*(H™ >N H}). Then we have

nwm—vmm&ﬂ+A|W@—Uﬁm2@+mw—vmﬁmdt

, _ 2
< Z diam (wg )™ 2 |U(0)|m_1,2;w;<
KeT

T
*/‘ZﬁmmwMQW@&mW+@mWW”w®&M&-
0 ke

The hidden constant depends on the H'-norm of the L?-projection on SS’O(T),
the coercivity and continuity constants of the parabolic problem, the dimen-
sion d, the polynomial degree ¢ and the shape-parameter o .

Proof. We recall that Theorem 3.7 in particular states that
T
1u(0) = U(0)[[5 20 +/O [/ (8) = U @))% 10, + [ult) = U]} .

. 2
S b (u(0) = VO)} s
VeH(Sy"(T))

[ @ = VO o+ ) = VO 0 )
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We insert a particular choice in the infimum on the right-hand side:
vVt € (0,77, V(t) := Mpu(t).

Since v € H'(H™, H™?) entails v € C°(H™ 1), the assertion follows by
applying Corollary 7.6. O]

7.3.2 Semidiscretization in time

We recall that P is a partition 0 = tg < t; < ... < ty = T of the time
interval (0,7) into subintervals I,, = (t,,—1,t,], and that pup := sup,, 7n/Tnt1.
Moreover we recall that

SY(P, HY) = {v e C°(HY),v|;, € P(I,,H)),n=1,...,N},
8"~ NP, Hy) ={¢ € L*(Hy), 9|1, € Hy,n=1,...,N}.

The semidiscrete solution U € S'™W(P, Hy) satisfies, for every ¢ € L? X
S*~1(P, Hp),

Oin) + 3 [ (U ) + (AT ta)oi) = o) + 3 [ (Fond.

We exploit the results in Section 4.1 and obtain the following theorem.

Theorem 7.8. Assume v’ € H'(H}, H™'). Then

N
[u(0) = UO) 500 + D [ e/ = U710 + lu=U(ta)]} 5
I
n=1 n

N
2 2
S0 [ a7 [ Wl
n=1 In In

where the hidden constant depends on the coercivity and continuity constants
of the parabolic problem.

Proof. Since u € H'(H") implies u € C°(H"), we can apply Theorem 4.5,
which states that

Ju(0) - ||m+2 / 1 (1) = U 1+ [u(t) — U(t)[2 e el

<Z e det_int  (u(0) = 001

€SL.O(P,H

4—}2 o' (¢ (@H2h9+¢u@n)—1mugﬁ2@(ﬂ>_

ITL
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Choosing v € SM0(P, H}) such that
v(t,) = u(ty), n=20,...,N,

V'(t)|1, = ultn) = ultns) = i/j v

Tn Tn

we have that

Exploiting the Poincaré or Friedrichs inequality on the subintervals I,,, we
get the assertion. O

7.3.3 Varying the spatial discretization

We consider a sequence {7,}"_, of triangulations that belongs to a family
for which the L?-projection is uniformly H'-stable. The sequence of finite-
dimensional spaces {V,}N_, € H}(Q) is given by {S5°(T,)}Y_,. The L*
projection onto 55’0(7;) is denoted by P, and P; indicates the L?-projection
onto SG°(T,) @ S5°(Ti1). We recall that

SY(P,V) = {v € L*(H}), vls, € L*(S°(T)), n
S"(P,V) = {v € L*(Hy), v|, € H'(S°(T2)), n
The semidiscrete solution U belongs to the space
{ve ST (P, V), v(0) € SL°(To), v(th ) = Poo(tyy), n=1,...,N}
and satisfies, for every (o, ) € So*°(T5) x S’ (P, V),

1,....NY,
1,....NY.

OREIEDS / (U, ) + (AU, ) = (o, 00) + / ().

We resort to the results in Section 5.1 and derive the following theorem.

Theorem 7.9. Assume 2 < m < (+1, and assume u € C°(H™). Moreover,
if m =2 assume u' € L*(L?*), otherwise, v’ € L*(H™ 2N H}). Then we have

N
2
[u(0) = U(0)][5,5,0 + Z/I [ = U0 + [u = Ul 50
n=1 n

<) diam(wi)*™ [u(0)]7, 5.,
KeTo

N
£37 [ 5 diamon P (O, (K u(0),
n=1

Inger,

N—-1
+ Z Z dlam(wK)zm\u(tn) 7271,2;wK‘

n=0 KeT,



106

The hidden constant depends on the mazimum of the H'-norms of the L*-
projection on Sg’o(ﬁ), the coercivity and continuity constants of the parabolic
problem, the dimension d, the polynomial degree ¢ and the shape parameters

0T, -

Proof. We exploit Theorem 5.5, which states that
N
[u(0) = U(0)[I5 5.0, + Z/} o = U'|2 1+ lu = Ul 50
n=1"v"

N

. 2 2 2

N 1nf; Ju(0) — U(O)Ho,2;9 + Z/ lu’ — U/”—l;Q + |u— U‘I,Q;Q
ve{veSH (P,V), n=1 " In

v(0)€S3 % (7o)}
N-1 )
+[1P(I = Ro)u(to)lo.z0 + D (1B (1 = Pa)ulta)[lg0 - (7:26)
n=1

The infimum on the right-hand side of (7.26) can be bounded as in Theorem
7.7. Given n =0, ..., N, we indicate with IIfj the interpolation operator Il
that acts onto S5°(7;,) and choose v € S#' (P, V) such that,

v(0) = Igu(0),
and, for every n=1,..., N,
vVt e I, v(t) = Iju(t).

Concerning the terms || P (I — P,)u(t,))||y 4.0, We have, for every n =1, ...,
N -1,

2
1P = Puulta) |2y < 10T = Pou(t) 1 5
< = 1I)u(t) 2

<C(d,0) Y diam(wg )™ |u(tn) 2 5 (7:27)
KeTn
and similarly for || P (I — Py)u(to)]|, .- O

Remark 7.10 (Dupont’s example). We consider the example presented by
Dupont in [22, Sect. 4]. There, the time partition is uniform, and the spa-
tial partitions in 1d are also uniform, with possible exceptions next to the
endpoints of the spatial domain. Every time step, the endpoints of the new
spatial partition coincide with the midpoints of the previous intervals. The
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spatial discretization occurs with continuous piecewise affine functions, and
denoted with 7 the uniform time-step and with h the mesh-size, there is no
convergence as h, 7 — 0, if h*/7 goes to infinity. Since the exact solution is
smooth, we can apply Theorem 7.9 with £ = 1 and m = 2. We notice that

N-1 4

. m h 2
Z Z dlam(wK)2 |U(tn)‘3n,2;wk S . SUPN”U(tn)sz;Q-

n=0 KeT, n=1,...,

Therefore if h, 7 — 0 in such a way that h*/7 — 0, the semidiscrete solution
converges to the exact one.

7.3.4 Full discretization with the backward-Euler Gal-
erkin method

Assume P to be as in Section 7.3.2 and {7,})_, to be as in Section 7.3.3.
We recall that

SV P, V) = {v e L*(H}),v|;, € S;°(T),n=1,...,N}.
The discrete solution U belongs to the space

{v e L*(Hy), v(0) € S5°(To), vli, € P (Lo, 55" (Ta)),
vt ) = Pow(t,y), n=1,...,N}

and satisfies, for every p € Sg°(7Tg) x S°(P, V),
N N
OO0+ > [ W) + AU ) = (o) + 3 [ (Fr).
n=1"1In n=1"1In
In view of the results in Section 6.1, we get the following theorem.

Theorem 7.11. Assume 2 < m < (+ 1. Assume u € L*(H™), u' €



108

HY(HY, H™Y) N L2(H™2). Then

N
[u(0) = U(O)lg00+ D, [ e/ = U'|% 10+ [u = U(tn)]; 0
I
n=1 n

< Z diam(wg )™ 2 |u(0)|3n—1,2;w;<
KeTo

N
+) o / 2 1 + Y diam(wg )™ / [
n=1 In 7 In -

KeTn

1 [ fant Y dinm(o™ [l
I In

KeTn
N-1
+ ZT;l Z diam(wK)Qm/ |u\72n72;wK
n=1 KeT, In

The hidden constant depends on the mazimum of the H'-norms of the L?-
projection on 55’0(7;), the coercivity and continuity constants of the parabolic
problem, the dimension d, the polynomial degree £, the shape parameters o, ,
and the parameter pp.

Proof. We exploit Theorem 6.6, which states that

N
[u(0) = UO) 1300+ Y [ o/ = U2 1 + [ = U(ta) ]} 50

< inf o JJu(0) — w2, +  inf U = 0|3
S B PR A T A
+ weleI;(m) lu = wllZ2 gy + veso p gy [ = 2|72
N-1
2 w112
IR = Bo)u()lazq + 3 [P ( = P
n=1
Concerning the infima on the right-hand side, we insert vy = IJu(0) €

Se(Tg), v € SO NP, V), w e S¥(P,V) and z € S% (P, H') such that, for
n=1,...,N,

1 1
v, = Po— | W, w|r, = Muly,, zlr, = —/ u.
Tn In Tn In
The terms [Ju(0) — TTju(0)l|g 5 and [ju — ng”LQ(ImHé) can be bounded as

can be bounded as in Theorem
L2(I,,HY)

in Theorem 7.9, while Hu —— [ u‘

7.8.



109

because of the H~!l-stability of
L2(I, H-1)

”Tn fIn

P,, we have

2
1
u—-P,— | U
I,

L2(I,,H™ 1)
2
<2 ||u’ _ Pnu/||i2(I"’H71) + 2 ‘

1
P, (u' - = / u')
T J1,

2
/ ]' /
u——1 u
Tn J1,  p21,,H-

< [ 3 damen ™ gt / e "

In KeT,

L2(I,,H-1)

2
S =T 2, -y +

Regarding the terms || P, (I — P,)IT"ul|y 5., we notice that Py (1 —P,)I"u =
(Pt (I — P,)u), and therefore

1P =PIy < [ 10 = Podulg v

< 27'71_1/2 (1 — Hg)u“LQ(In,L?) :

Summing over n and exploiting Corollary 7.6, we get

N-1 N-1

EZWﬁU—IMH%m$Q§ %1/ > diam(wi)®™ [ul?, o, - (7:28)

n=1 =1 In KET

3

For || Py (I — Po)u(0)]|g 9., We proceed as in the proof of Theorem 7.9 and get
1P = Po)u(0)llg a0 < C(4d) Y diam(wr)™*[u(0)]} 1 2. O
KeTn

Assume that 7o = 71 = ... = Ty =: T are uniform meshes with mesh-size
h and that the time partition is also uniform, with time-step 7. If / = 1 and
m = 2, the upper barrier is of the form

h4
O@)Oﬂ+7?+7). (7.29)
If we assume some relation between h and 7, then (7.29) becomes

C(u) (W* + h*) if h~ T,
C(u) (W* + h*) if h? ~ 7.
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In case ¢{ = 2 and m = 3, the upper barrier is of the form
h6
C(u) (h4 +7°+ )

and if h? ~ 7 then the three terms converge with the same rate C(u)h?.

7.4 Natural formulation and integer regular-
ity
In this section we derive error estimate for the approximation of solution
of the parabolic problem in the natural formulation. As in Section 7.3 we
assume for u integer regularlty
We recall that 0 = #, < &, < ... < t, = T is a partition of the

time interval (0,7), and that u € L*(H}) satisfies, for every ¢ € {p €
H'(Hg, H™'),(T) = 0},

/OT—@ W+ () = 3 (g5.0(0) >+/ )

7=0

7.4.1 Spatial semidiscretization

As in 7.3.1 we require that 7 belongs to a family for which the L2-projection
onto Sy is uniformly stable. We recall that the semidiscrete solution U €

Lz(Sg’O(T)) satisfies, for every ¢ € {Hl(Sg’O(T)), o(T) =0},

/0—<¢/,U>+<AU,QD>:Z_:<gja90<£j)>+/0 (f, ).

We combine the results in Section 3.3 and in 7.2 to obtain the following
theorem.

Theorem 7.12. Assume u € L2(Hm), with 1 <m < {¢-+1. Then we have

/OTyu(t)— U(t hmw/ 2 diam (K ) -

KeT

The hidden constant depends on the H'-norm of the L*-projection on SS’O(T),
the coercivity and continuity constants of the parabolic problem, the dimen-
sion d, the polynomaial degree ¢ and the shape parameter o.
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Proof. We recall that Theorem 3.10 in particular states that

T T
| ) -v@haas it [ - VOR .
0 (7)) Jo

VeL2(sy°
The assertion follows from Corollary 7.6, by inserting
vt € (0,77, V(t) := yu(t)
in the infimum on the right-hand side. ]

7.4.2 Semidiscretization in time

We recall that P is a partition 0 =ty < t; < ... <ty =T of (0,7) into
subintervals I,, = [t,_1,t,), subordinate to 0 =ty < t; < ... < t;, =T and
that

SY(P,Hy) = {v e C'(HY),v|;, € P(I,,HY),n=1,...,N},
S* NP, Hy) ={¢ € L*(H;), 9|1, € Hy,n=1,...,N}.

The semidiscrete solution U € S%~1(P, H}) satisfies, for every ¢ € {¢ €
SY(P, Hy), ¢(T) = 0},

> [ U+ A plt)) = X el@) + 3 [ et

Moreover we recall that the discrete test space is endowed with

N
2 2 2
lellzp = 191210 + [e(ta-1)]1 20
I
n=1 n

We observe that, given a Hilbert space Y,

(t — ln— )2
I — @(tn—1)||i2(1n,y) = /1 Tl lo(tn) — @(tn—l)“i
Tn
=3 llelta) - P(ta-1)ly - (7.30)

In case Y = H~ (), we have

N 1 N
- 2

S e = et ) oy <53 /

n=1 n=1 n

1
<3 lol2. (7.31)

Exploiting the results in Section 4.2.1 we get the following theorem.

2

SO(tn) - @(tnfl)

—1;Q
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Theorem 7.13. Assume that, for everyn = 1,...,N, u|;, € H'(I,, H}).
Then,

N
2 2
Ju= Uy $ 3072 [ 1o
n=1 In

The hidden constant depends on the coercivity and continuity constants of
the parabolic problem.

Proof. We apply Proposition 4.9, which states that

Ju — U||L2(H(}) S inf Ju— UHL?(H(})

ve8O—1(P,H})
N
> [ tu=fi = ltan)
+  sup = I

peS1O(P HY) ||S0||2,7>
©(T)=0

(7.32)

We insert v in the infimum on the right-hand side of (7.32) such that, for

everyn=1,..., N, .
vlzn:—/ u,
Tn J1,

and we exploit the Poincaré inequality on every [,. Concerning the supre-
mum on the right-hand side of (7.32), we exploit Cauchy-Schwarz inequality
for integrals and for sums to get

N N
; /In <AU — fv Y — ()O(tn—l)> S nz:l /In |AU - f|172;Q ||90 - QD(tn_l)H_l;Q

N 12 , N 1/2
2 - 2
< <Z 7’3 | Au — fHLQ(In,H1)> (Z Tn ? I — 90<tn—1)HL2(In,H1)> :
n=1

n=1

We recall that Au — f = —u’ on I,,. The thesis follows by (7.31) and taking
the supremum over ¢ € {¢p € SY(P, H}), ¢(T) = 0}. O

7.4.3 Varying the spatial discretization

We consider a sequence {7,}"_, of triangulations that belongs to a family
for which the L?-projection is uniformly H!-stable. The sequence of finite-
dimensional spaces {V,}\_, ¢ H}(Q) is given by {S5°(T,)}Y_,. The L*
projection onto S5°(7,) is denoted by P, and P; indicates the L?-projection
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onto S5(7,) @ S5 (Trs1). We recall that

SY(P,V) = {ve LAHY), v|r, € L2(S(T)), n=1,...,N}
ST (P, V) = {v e LA2(HY), v|;, € H(S(T)), n=1,...,N}.

The semidiscrete solution U € S¥(P,V) satisfies, for every ¢ € {¢ €
ST(P.V), é(t;) = Pud(ta),n=1,...,N — 1, ¢(T) = 0},

HZJZ;/I”—W,W ]i (95 /OT<f,<p>-

=1

.

We resort to the results in Section 5.2 and derive the following theorem.

Theorem 7.14. Assume 1 < m < { + 1, and assume that, for every n =
1,. € C%I,, H™). Then we have

N
2 . m—
o= Ul £ 3 | i (K20,
n=1 n

N-1
+ > D diam(wr) ™ fult;) [, 2,

n=1 KeT,

The hidden constant depends on the mazimum of the H'-norms of the L?-
projection on 5570(7;), the coercivity and continuity constants of the parabolic
problem, the dimension d, the polynomial degree ¢ and the shape parameters

o7, -

Proof. The proof mimics the one of Theorem 7.9. We exploit Theorem 5.10,
which states that

o 2 < . o 2
[u UHLQ(H(}) ~ uesgl(fp,V) [u UHLQ(H&)
— N\ 12
+ > P - P)u(ty)]]g 00 - (7.33)

In the infimum on the right-hand side of (7.33), we insert v € S¥*(P, V) such
that, for every n =1,..., N,

vVt eI, v(t) = Iju(t).

The terms || P, (I — P,)u(t;)llo4q can be bounded as in (7.27). O



114

7.4.4 Full discretization with the backward-Euler Gal-
erkin method

Assume P to be as in Section 7.4.2 and {7,}»_, to be as in Section 7.4.3.
We recall that

S YP,V) = {ve L*H}), vl € S°(T),n=1,...,N},
and we set
SYT(P,V) = {p € L*(Hy), ¢, € P (1, 55" (T2)).
p(t,) = Pup(tn), n=1,...,N}.

The discrete solution U € S~ (P, V) satisfies

}:[ (@, U) + (AU, @(tn-1)) zx$,5>+§:/ (f,¢(ta-1))

for every ¢ € {¢ € S0 (P, V), ¢(T) = 0}. In view of the results in Section
6.2, we get the following theorem.

Theorem 7.15. Assume 1 < m < {+ 1. Assume that, for every n =
1 N, u|;, € C°(L,, H™)N H'(I,,, H}). Then

e
2
HU—UHLz (HY)

<Z / |U|12sﬂL Z diam(wg)*" ™ |U|m2wK

KeT, In
Zm‘ |
+§ E diam (wg )“™ |u(t 2o
n=1 KeT,

The hidden constant depends on the mazimum of the H'-norms of the L*-
projection on 55’0(7;), the coercivity and continuity constants of the parabolic
problem, the dimension d, the polynomial degree £, the shape parameters o, .

Proof. We exploit Theorem 6.11, which states that

2
lu — U||L2(H1)

N2
5 ESOlnlf'PV)H UHL2 H1 +Z ‘U_P”u(tnMLQ;Q

S P
n=1
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Concerning the infimum on the right-hand side, we insert v € S»~*(P,V),
such that, forn=1,... N,

1
n
U|In =1y —
n JI,

£

Because of the stability of ITy in H', we have

2

u—IIf— [ u
Tn I,

L2(In,H})
2

no12
< 2fju— H0U||L2(1n,Hg) +2 ‘

1
IT§ (u - —/ u)
Tn I,

L2(I,, H})
1 2
2
SR e
Tn J1, NL2(1,,H2)
< [ diam(wr)™ 2 uf? ,,, + 72 / WPae.  (734)
In ger, In

Regarding fln lu — Pou(t;)|? ., we insert P,u and by stability of P, in H'
we get, forn=1,..., N,

2 N2
S |u - H8u|172;§2 + /I ‘u - u(tn)‘lg;g
n

In
. _ 2
< [ 3 a2 iy 7 [ Wl
In KeT, fn

Regarding the terms ||PS(1 — P,)u(t;)|lg o0, they can be bounded as in
(7.27). O

7.5 Additional notation

We introduce some more notation, in order to derive error bounds in terms
of fractional regularity.
For 0 < s < 1, we indicate with H*(Q2) the space of functions for which
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is finite, and we endow it with ||||§2(2 = ||||(2)2Q + ||§QQ The coefficient
V1 — s is motivated by the results in [9], where it is proven that, for a smooth
domain (2,

. 2
11m(1—s)/Q Q—|f(x) T 40 dy | 5.

s—1 |z — y|d+2s

The space Hj(€2) denotes the completion of C5°(Q2) with respect to |||, .-
We recall that Hi(Q) = H*(Q) for s < 1/2, see [29, Cor. 1.4.4.5], while
H{(Q) = {f € H*(Q), floa = 0}, for s > 1/2, see [29, Cor. 1.5.1.6]. The
dual space H*(Q2) of H§(2) is endowed with

”fH,S;Q ‘= sup <f7 90)

pEHS(Q) H(IOHE;‘,Q;Q '

If € R*, and § = m + s with m € N, s € (0, 1), the space H?(Q) is defined
by
HY(Q) := {f € H™(Q), |D*fls20 < 00,¥|a| = m}.

We set
2 2
|f‘9,2;§2 = Z ’Daf|s,2;ﬂ

|a|=m

. 2 2 2
and we endow H°() with ||f||9,2;ﬂ = ||f||m2Q + |f|9,2;Q'

We remark that, for every m € N, and for every wy, wy C €2, such that
lw1 Nwy| = 0, it holds

2 2 2
H.Hm72;w1 + ”'Hm,Q;wg = ||.Hm,2;w1Uw2 :

However, for noninteger 6, in general we can only affirm that

2 2 2
H'H9,2;wl + H.H072;UJQ < H.H072;UJIUUJ2 : (735>

Given a Hilbert space Y and a proper time interval J, we define for s € (0, 1)
the space H*(J,Y) as the subspace of L*(J,Y") of those functions for which

2 - () = @Iy
‘f'HS(J,Y) T /]XJ |t _ 7-|2s—|—1 dtdr

is finite.



117

The real method of interpolation

Let (By, B1) be a couple of Banach spaces with B; C By. For every ¢t > 0
and every f € By, the K-functional of the couple (By, By) is given by

K<f7t7 B0>B1) = K(f7 t) = giengl ||f - gHBO +1 ”g”Bl :

We recall that, as a function of ¢, K(f,t) is increasing and subadditive, see
[18, Ch. 6, Prop. 1.1].

Given two parameters s € (0,1) and ¢ € [1,00), the intermediate spaces
(By, B1)s,4 are defined by

(Bo, Bl)s,q = {f S BO? Hf“(Bo,Bl)s,q < OO}’

where

., = 5= 9 [ (K (0)"

As in [34], we put the non-standard coefficient s(1 — s)g in the definition of
| - ||((IB0 Bi)eg’ This guarantees that

HfHBO = ||fH(B0,B0)5,q ) Vs € (O’ 1)7q € [1700)'

Moreover, the following result, see [6, Sect. 3.5, holds with C' = 1:

VieBi,  fllss.. <N IG - (7.36)

In fact, exploiting [1, Thm. 7.16 (a), Lemma 7.19 (b)] it holds, for every
f € Bl and t > 0,

1 l5o.51)., <t max{|[ g, t1f]lg,}-

Choosing t = || f|lg, / I fll 5, as in [6], we get (7.36) with C' = 1.
We also recall the following result about interpolation of operators. See,
for example, [6, Thm. 3.1.2].

Lemma 7.16. Assume that (Ao, A1) and (By, B1) are two pairs of Banach

spaces as above, and that T is a linear operator that maps A; to B;, i = 0,
1. Then T maps As 4 to By, and there holds

1—s s
1T g ey < NN ca0,80) 1T 2 0ar,5,) -
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Moduli of continuity and K-functional

We recall that the modulus of continuity of a function f € L*(Q) is defined
by
w(f,t)2 := sup ||Ah(f)“0,2;g’ t >0,

|h|<t

where Ay, is the difference operator:

N A

We recall that, as a function of ¢, w(f,t)s is non-decreasing and subadditive,
see [18, Ch. 2, Sect. 6]. We also recall the averaged modulus of continuity,
that is given by

1 1/2
w1l an) e
<

A straightforward inequality yields, for every ¢ > 0,
diam ()¢

2 .
o1 < 1,92

bctauts. o (7.37)
Concerning the converse inequality, if 2 C R is an interval, we have, see [18,
Ch. 6, Lemma 5.1],

w(f,t)e < Cw(f,t)s, vt < 9. (7.38)

The modulus of continuity is related to the variant of the K-functional
of the couple (L?, H'), where the H'-norm is replaced by the H!-seminorm.
More precisely, if f € L?*(Q2) and ¢t > 0, we set

KH(f? ta L27 Hl) = infl ||f - gl|0,2;Q +1 |g|1,2;Q :
geH
If Q C R is an interval or if  C R? is a Lipschitz domain, there hold, see
[18, Ch. 6, Thm. 2.4] and [31, Thm. 1],
Vte (0,1)  w(fit)e 2 K(f,t, L2(Q), H(Q)), (7.39a)
Ve (0,00)  w(fit)e S Kyy(f,t, LH(Q), H(Q)). (7.39b)

The hidden constant in (7.39a) depends on the geometry of (2.
We recall that LZ(Q) denotes the subspace of L?(2) of functions with
mean value zero. We provide a proof of
(L5(Q), Lo(Q) N H'(Q))s2 = Lg(Q) N H* (),

see [11, Thm. 14.2.3], in the case  C R is an interval, in order to highlight
how the constants depend on s.
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Lemma 7.17. Let Q C R be an interval with diam(Q2) < 1. Then,
(Lo(), Lo() N HY(Q))s2 = Lg(Q) N H(Q),

where Lg(2) N HY(Q) is endowed with |-|, 5. Furthermore, for every f €
L() N H*(Q),
Il Lz mr@nzz@)).. < C 1 laza s (7.40)

where the constant is independent of s, and
[fls20 < CO) 1f ll 239y, @n22@)).z - (7.41)

where C(s) < 572 for s — 0.

Proof. We start with (7.40). We first notice that, for every ¢t > diam(2) and
for every g € H'(Q) N L3(2), the Poincaré inequality yields

K(ft) < Hf”(),Q;Q <|[f- 9”0,2;9 + H9H0,2;Q <|f- 9“0,2;9 + diam(§2) ‘9‘1,2;9'

Thus K(f,t) < K(f,diam(£2)) and thanks also the subadditivity and mono-
tonicity of K(f,-), we have

s/oo LR (F 12 dt < WKU, diam(9))?
: 2

iam(2)
2
< 2diam(Q) " * K (f, dlam(Q))

4s diam(2) et )
S 228 — ]_ diam () t K(f’ t) dt
2
) diam(Q) dt

(K (f,1))" —

- (142)

= In2
Therefore,

) diam(€2) ., 5 dt
120,11 @nrz@)).. < €= 5)/0 (t°K(f,1)) e

We observe that, for f € L3(Q), we have K(f,t,L3(Q),L3(Q) N H') =
K\ (f,t,L* H"). We can exploit thus (7.39a) and (7.38), to get

1 sy, < CO=) [ (uiron) S ()
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Finally, by Fubini’s Theorem, see [19] for details, we have

2 1—s [% dt
o= 3 [ 0l 0P (7.44)

Combining (7.43)—(7.44) gives (7.40).
On the other hand, by (7.44), (7.37) and (7.39b), we have

dt

oo < C=s) [ K0P

from which (7.41) follows readily. ]
We notice that (7.44), (7.37) and (7.39b) also hold for Lipschitz domains
in R?, and therefore also does (7.41).

Fractional Poincaré inequality in 1d

We apply Lemma 7.16 with T = I, g = 2, (Ao, A;) = (L3(Q), HY(Q)NLE(Q)),
and (By, By) = (L3(2), L3(2)) where Q C R is an interval. We have

L.
HT”L(AO,BO) =1, ”THE(Al,Bl) < ;d1am(Q).
Hence, for s € (0, 1),
HT”L(A 2,Bs.2) < —dlam(Q)

and, for every f € (L3(Q), H' () N L3(2))s.2,

7oz = 1l sgcansaena < @) [l i
Taking into account (7.40) we get, for every f € H*(Q) with [, f =0,

1Fllo 20 < Cdiam(Q) | fl, .00 (7.45)

Useful inequalities

The following lemma helps bounding the H?®-seminorm of a product on a
finite element star w

Lemma 7.18. Assume w is a star of T. Assume f € WH®(w) and g €
H*(w) with s € (0,1). Then fg € H*(w) with

1£905 2 < 2117115 s 1915 2 + C (s 07) (diam(w))* > IV £ 15 oo Hgﬂé,g;w- )
7.46
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2
$,2;w

Proof. Adding and subtracting f(z)g(y) in the definition of |f¢|

[/ (@)Plg(z) —gW)I® ,

we get

|fg|§72;w < 2(1 - S) / |I — y|d+25 (.T, y)
2 _ 2
+%1_$/‘\mwuqzﬁiwﬂd@0)

We bound the two terms on the right-hand side separately. First we have

(19 [ H@9@) =9 4, ) <212 10

|z — gl

Concerning the second term we observe that

oy @ = FOI _

ryew | =y

(JT) vaHO,oo;w :

In fact, if the segment [z, y] C w we can apply the Mean Value Theorem and
get
[f(@) = FW < IV Fllo oo [z — 9l

Otherwise, let K, and K, be two elements such that z € K, and y € K.
Following the ideas in [37, Lemma 3.4, Case 2|, we take m € K, N K, such
that the convex angle a between x —m and y — m is maximum. This angle
is bounded away from zero in terms of o7. By the Cosine Theorem we get

(1 —max{0, cosa})(|z —m|* + [y — m|?) < |z —y]?,
so that

[f(@) = f(y)l < |f(@) = fFm)| + | f(m) = f(y)]
<V F o (2 = ml + |y —ml)

< C(UT) vaHO,Q;w |x - yl

Therefore, we have

<201-5) sp LEZIOE [ige [0y asay

diam(w)
< Cldor)(1=9) IVl [loF [ 7 dpay
w 0
< C(d; o) (diam(w))** [ V15 0 19015,2.- =
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For s € (0,1), the space H'(Q) is embedded in H*(f2), see, for exam-
ple, [20]. We provide a proof, in order to underline that the constant is
independent of s.

Lemma 7.19. Let Q C R? be a Lipschitz domain. Then, there exists a
constant that depends on €2 but independent of s, such that, for every f €

H'Y(Q) and s € (0,1),
[fleze < Clliflh2q-

Proof. We recall (7.44), which also holds for Lipschitz domain, and we exploit
(7.37), to get

2 . . 27 —2s diam({) —2s5—1 2
250 < C(d)(1 3)(w(f,d1am(Q)) diann(0) | ¢ w(ﬁt)zdt).

By the monotonicity and subadditivity of w(f,-), reasoning similarly as in
(7.42), we get

diam(§2)
w(f,diam(Q))?diam(Q) "% < C/ 2 (f, 1) dt
0

1
< C'max{1, diam(Q)2_2s}/ 2 f, 1) dt
0
The thesis follows by (7.39b) and
E(f.t) <tlflipe,  VE€(0,1), f€ H(Q). O

We conclude with an upper bound for || f||, .o, in the spirit of (7.36).
Lemma 7.20. Assume s € (0,1). For every f € H'(Q2) we have

112 < C6) (I1floza+ 1F 620 115 20) (7.47)

where the constant grows with s~ /2.

Proof. As in the proof of (7.41) we get

1
|flsoa S 7 1N 2,0y,

Thanks to (7.36) we obtain

‘f's,Q;Q 7 Hf“02Q ||f||129
— (Ul + 1550 7T ) - s

&I
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Simplices and barycentric coordinates

We recall that a d-simplex K C R? is the convex hull of the d + 1 points
a; = (aij)le, j = O, A ,d:

d d
K = {:L‘:Z)\jaj,og)\jSl,ij,...,d,Z/\jzl}.
j=0 7=0

The points a; are called the vertices of the simplex and are such that ay —
ay,...,ay — aq are linearly independent.

The barycentric coordinates \; = \;(z), 0 < j < d, of any point = =
(r;,)4, € K are the unique solutions of the linear system

d

Z/\jaj:xi, Zzl,,d
j=0

d

> a=1

7=0

We denote by Ax : K — R the operator that maps any point in K to its
barycentric coordinates:

z = Ag(z) == (No(2), ..., Aa(x)).

Given a mutiindex a = («p, . . ., aq), the integral of the barycentric monomial
AY =TI A over a simplex K is given by
/ A K| (7.48)
k (lal+ar " '
where a! :=TI¢_jo;!, and |a| := Z?:o ;.

Reference stars

Because of (7.35), when bounding in terms of the H’-(semi)norm, it is in
general not possible to split the norm on contributions from simplices. In
(7.64) below we need the analogous of (7.2a) for stars w,, z € V. To this end,
as in [37], we divide them in equivalence classes, and fix for each a reference
star. First of all, there are interior stars, for which z is an interior point of w,,
and boundary stars for which z is a boundary point of w,. By construction,
z is a common vertex, that is, a vertex that is shared by all d-dimensional
simplices of the star w,. For boundary stars, it may be that z is not the
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only common vertex. Two stars w; and ws are topologically equivalent if
and only if there exists a bijection F': w; — ws, such that F' and its inverse
F~! are continuous and affine on each simplex. An equivalence class can be
characterized by the number of d-dimensional simplices in the star and by
the lists of vertices shared by every pair of the simplices. Since the number of
simplices in a star of 7 is bounded uniformly in terms of the shape parameter
o7, the number of equivalence classes appearing in 7 is finite. For each such
equivalence class, we fix a reference star with the common vertex, or one
common vertex, in the origin. Moreover, if the equivalence class consists of
interior stars, all other vertices are on the unit sphere S?!, otherwise they
are on the semisphere S™'NR? with RY := {z = (z1,...,24), z; > 0 for i =

1,....d.

Polynomial approximation in fractional Sobolev spaces

We conclude this section with an analogous of (7.6) for estimates in fractional
order Sobolev spaces. Assume 6 € R, with § =m + s, m € Nand s € (0,1).
Then it holds, see [23, Prop. 6.1]

inf[|f = Pllog,, < Clm, d, vy, s)diam(@)’ [flya,, . (7.49)

pepmtl

The constant in (7.49) grows with s='/2 and (1 —s)""/2if s - 0 or s — 1.

7.6 Interpolation and dual norms 11

The interpolation operator of Section 7.2 is well-defined for functions in L2.
In order to approximate less regular functions, we introduce an interpolator
operator with the same structure of Iy, but that acts on H~! and has values
in S3°(7).

For every z € Vg we define ¢ € H} (w.) as

1
VK Cw;,Vr € K, o (x) =

z

pe(Ak(z)), (7.50a)

w- |

where p, is given by

d d d-1 d
pe((Qos -5 M) == Ao (mg tapy Ntash > Ntasd Y )\Z-)\]) :
j=0 §=0 j=0 i=j+1
J#L J#l J#L AL
(7.50b)
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The index ¢ refers to the barycentric coordinate associate to the vertex z in
K and the coefficients are given by

1
ap:=d+1, az = —7(d+1)(d+2)(d +5),
1
as ‘= §(d+1)<d2+7d+ 16), ay ‘= 2(d+ 1)

Remark 7.21. The definition (7.50b) of the polynomial p, ensures that

d
i) Zpg:d—i—l;
=0

(ii) / perg = | K |0k, for every k=0, ..., d;
K

(iif) ¢7 € Hy(ws);

. . K| ) C(d)
(iv) ”¢z”0,2;1{ = C(d) .| and H¢z”0,2;w2 = W?
|K|1/2
(V) 1%l 0 < C(d) -
e = O o
Proof. Since ZZ:O A¢ = 1 we have
J 3
d+1=(d+1 (Z )\e)
d d-2 d-1 d
=(d+1)> XN +3(d+1) Z)\Q/\g+6(d+1) > AN
=0 4,6=0 0=0 j=t+1i=j+1
L#£5
d d -2 d-1 d
= a Z )\Z) + (CLQ + a3) Z /\?/\g + 3@4 Z Z )\i/\j/\ﬁ
=0 5,6=0 (=0 j=(+1i=j+1
J#L
d d d d d-1
S SETRTS 3) SIVIYRN 5) SV BN 5) 3b SETRE
=0 (=0 j=0 =0 j=0 £=0 j=0 i=j+1
Jj#t J#L J#L i#EL
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Concerning Property (ii), if & # ¢, we exploit (7.48) and we compute

d d
(4+d)! / XA+ @ XA+ a2 Y NN+ asAIAL +as > AN
K

j=0 j=0
kL kL
d d—1 d
FasdAy >Nt addd Y ) A
j=0 =0 i=j+1
kL G£kC itk L
= d'|K| (6@1 —I— 6@2 —|— 2(d — ]_)CLQ —|— 4@3 + 2(d — 1)(13 —f- Q(d — 1)&4
d—1)(d—2
Ao,y 5

Instead, if j = ¢, we test (i) with A, and integrate over K. Exploiting (7.51)

we get
K K

Concerning (iil), we remark that ¢¢ € H'(K) for every K C w,, and that
pe is a multiple of A, so that ¢%|s,. = 0. Moreover p, is symmetric with
respect to permutations where £ is fixed. This guarantees that ¢ € H}(w,).
In fact, let K7 and K5 be two simplices such that K; C w,, i = 1,2 and
K1 N Ky is an m-simplex, 0 < m < d— 1. Let ¢; and /5 be the indices of the
barycentric coordinate associated to z in K and K5 respectively. Let o be the
permutation that exchanges only ¢, with £, and let ¥ € R@HDx(@+1) he the
corresponding matrix. More precisely, o(f1) = 3, 0({y) = {1 and o(j) = j
for every j = 0,...,d, j # {1,f3. Moreover there exists a permutation o’
with matrix ¥’ such that o(fy) = ¢5 and for every z € K1 N K,

AK2 (.T) = E/EAKl (LE)
Therefore, for every x € K1 N Ky

DPey (AK1 (I)) = pa(f1)(EAK1 (CL’)) = D (ZAKI ([E)) = pb(Z,EAKl (w))
= P, (AKz <x>>

Properties (iv) and (v) follow from the definition of ¢%, (7.48) and (7.2). O

We define IT : H=1(Q) — S3°(T) as

Mf = (f,¢}) 6. (7.52)

z€Va
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Moreover we define IT* : H~1(Q) — span{¢}.cy, as

g = (g,¢-) 4. (7.53)

2€Vq

For every f € H™Y(Q), g € H}(Q), we have

(I1f,g) = <Z (f. ) ¢z,g> = 3" (.60 (6.09)

z2€Vq z€Vq

=<ﬂ§:@¢d@>=(ﬂmm- (7.54)

z€Vqo
With the following proposition we analyse the properties of I and IT*.

Proposition 7.22 (Properties of IT and I1*). The interpolation operator 11
defined in (7.52) satisfies the following properties:

(i) Invariance over Sy°(T). For every f € Sy°(T),
f = f.
(ii) Stability in L*. For every f € L*(Q), for every K € T,
L f [l 2 < C() 1 f lo 200 -

(iii) Stability in H'. For every f € H} (),

diam(wgk)

VK €Tq |Hf|1,2;K < C(d> CP)

‘f’1,2;wK ?

diam(wp)

VK € 759 |Hf|]_,2;K S C(d7 OF) ‘f|172;wK :

PK

The interpolation operator I1* defined in (7.53) satisfies the following prop-
erties:

(iv) Local invariance over constants. For every ¢ € R, for every K € T,
(I X )i = X
(v) Stability in L?. For every p € L*(Q), for every K € T

||H*SOHO,2;K S C<d) ‘|¢||0,2;wK :
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(vi) Stability in H'. For every ¢ € H}(Q),

diam(w
VK € Tao, 1T 90|12K C(d, CP)ﬁ

|g0|172;wK 9

diam(w
VK € Taa, 1T 90’121( C(d, CF)ﬁ

‘90‘1,2;0.)[( .

Proof. We start with (i), which is equivalent to II¢, = ¢, for every z € N.
This in turn is equivalent to

Yy, z € No / D=0y = Oy (7.55)
0

This is a direct consequence of Property (ii) of Remark 7.21.
Concerning (iv), by linearity of II* it is sufficient to show the assertion
for ¢ = 1. We exploit Property (i) of Remark 7.21 and get

el = X ([ o) otle - 1 T v dHZW

2€VK

Concerning Property (i7) and (v), we can proceed as in the proof of
Proposition 7.2, using Property (iv) of Remark 7.21.

Property (7i7), is also proved in the same way as Property (iii) of Proposi-
tion 7.2, exploiting the invariance over Sy°(7) and the Friedrichs or Poincaré
inequality. The proof of Property (vi) also goes along the same lines, exploit-
ing Property (iv), and recalling the definition of cx(+) of (7.16), we get

|H*%0|1,2;K = [I"p — cx(¥)], 2K T — I ck (9)]; 2K
Z lp — cx (e H02wz Hsz [ ‘12K
2€VK
@ Y llo - exlo)l —‘K‘m
¢ —cklp 0,2w- 172
oyl P |we|

< O(d)pit || — i (@) llo, 250 -

Property (vi) follows by means of the Poincaré inequality, for every K € 7o,
or the Friedrichs inequality, for every K € Tyq. O
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Approximation properties

The following propositions investigate the approximation properties of II in
the H'-seminorm, in the L?-norm and in the H'-norm.

We start with the H'-seminorm. The following proposition is the coun-
terpart of Proposition 7.3. The proof goes along the same lines.

Proposition 7.23 (Approximation in H'). The interpolation operator TI
defined in (7.52) satisfies, for every f € HL (),

1/2
’f Hf’lQQ (d CP7OF70T)< Z Pel]lgf(‘K) |f - P|%,2;K> .

KeTq

Combining with (7.49) we get, for every f € H'™(Q) N H} () with
€ (0,1),

1/2
If = Hf|129 C(d,s,Cp,CF,07) (Z diam (K |f|1+32K> . (7.56)

KeT

Next we investigate approximation in L% Mimicking (7.18), we define the
variant of II that has value in SYO(7) as

f = (f %) o,
z€Y

where {¢%},cy are as in (7.50). The difference with II is that the sum is on
V and not only on Vg. For this reason I is invariant on S1°(7), and enjoys
the same properties of II.

Proposition 7.24 (Approximation in L?). The interpolation operator II
defined in (7.52) satisfies, for every f € H3(Q2), s € (0,1), s # 1/2,

_ . 1/2
I = Tf gz < Cldor) (Y diam(wr)™ [£125,,, )

KeT

Proof. Properties (i) and (i) of Proposition 7.22 imply, for every K € 7o,

IF =TSl < C@ ,_nt 1 = Plou- (757)

For the elements in Ty, we insert Il f, asin (7.20), so that we are left with
Hﬁf—HfH . Since f € L*(Q), we get
0,2; K
| ro:

fir s

xS 2

2€VK NN

HO,Q;K :
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We denote by p, the distance from dw, N 0. The function p;*f belongs to
L*(w,), see [29, Thm. 1.4.4.3], and we have

[ ton= [ oo < diam(o) 162, 12
diam(w,)*
< CW s 250
Recalling also (7.3), we get
2
K 1/2 . .
> (X ) .,
jwl"/
KeToa \2€Vknoa
d) Y diam(wg)* [ £l -
KeTaq
The thesis follows combining (7.57) with [23, Thm. 7.1] and (7.49). O

For s = 1/2 we have

1 = 11 ly0 < Clds o) (D diam(wre) 1113 5

KeT

1/2
+ Y dame) o722, ) (759)

KeTaqn

The term Hp_l/QfHO p, CONMOL in general be bounded by [f], 5., . see [33,
Thm. 11.7].

Remark 7.25. Proceeding as in the proof of Proposition 7.24 we also get a
bound for [[f —Ilof|ly 4. in case f € Hj(S2), s € (0,1), s # 1/2

1/2
1 = Mo flly 0 < O o) (D diam(wr) f25, )
KeT

Proposition 7.26 (Approximation in H~!). The interpolation operator 11
defined in (7.52) satisfies:

(i) For every f € H *(Q) with s € (0,1),

1/2
If —Ifl 10 < C(d,Cp,07) (Zdiam(wz)g‘%llflﬁs;wz) :

z€V

(7.59)
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(ii) For every f € L*(Q)
1/2
If = Tfl 0 < Cd, Cp,vr) (Zdiam(wK)2 Hinz;x) :
KeT

Proof. We start with (i) exploiting (7.54) and the fact that {¢,}.cy form a
partition of unity:

f—1If, ¢ [ip— g
1 =Tl = swp 0O, STl
PEHF(Q) |<P|1,2;Q weHL (D) |90|1,2;Q
— II* .
— sup (f, (o —1I"p)¢-)
PEH(Q) Loy |90|1,2;Q

< sup Z sup <f ¢>

 peHi(Q) oy YEHS(w:) ||¢||s2wz |80|12Q

Zdiam(w )2 sup <f ¥) N
: vesw) 1], o0

1%
. 1/2
b ol =11 so)gszui,m)

’90|1,2;Q

|| (410 - H*(P)(bz ||s,2;wz

IN

sup (Z diam(w,) (7.60)

PEH}(Q)

The thesis follows by bounding the supremum over ¢ € H}(€2) on the right-
hand side. To this end, we set cx(-) as in (7.16). By means of Properties
(77i) and (iv) of Proposition 7.22 and the Poincaré or Friedrichs inequality,
we get, for every z € V,

X 2 . 112
[(p—1I ¢)¢z||o,2;wz <ll¢—1I 90||0,2;wz

= 3l = exle) ~ (0 = ex(@)) 2

KCLUZ
Z ||S0_CK ||02wK
KCw;
< C(d,Cp,Cp) Y diam(wg)?[¢l; 4, - (T.61)

Kew,

Taking into account the multiple counting in the sum over the elements of a
star, we obtain

1 = TT*0) 8- 15 910, < Mo = TG o,
< C(d,Cp, Cp,vy)diam(@.)? |} 5.5 - (7.62)
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Moreover we apply (7.46) and get

* 2 2 * 12
’(gp - H Qp)¢z‘s’2;wz S 2 ||¢Z”O7oo;wz |()0 - H 90|s,2;wz
+ C(d, or)diam(w.)* "> [V s, lo = @l .
(7.63)

Concerning the first term on the right-hand side, we map to the reference
stars and we exploit the embedding H'(&) C H*(®), see Lemma 7.19:

* —2s Wy *
o~ T, < C(d) max pi2 22 (o ) o P

— KCow, ‘@‘ $,2;0
—2s |w2‘ *
< O max pi* 2 e =T0@) 0 Fllipg. (764)

We bound the two terms of the -], ,.,-norm separately. Concerning the
L?-norm we map back to every simplex in w, and proceed as in (7.61)

1 = T1*@) © Flff 5 = D lI(p = ") 0 Fl5 5.z

Tew
T .
< 3 e = e =T (e = el e
KCw,
T ..
< C(d,Cp,Cr) > %dlam(wK)Q 17 0 (7.65)
KCw;

Concerning the H'-seminorm we exploit property (vi) of Proposition 7.22
and get

(p = T'p) 0 Flipe = 3 lp = TUg) 0 Fli

Tew
< md 2 _ * 2
= Z |K| lam(K> |§0 I 90|1,2;K

KCw,

diam(wg) 21 12
< Od.Cp. Cr) ), — o pr—diam(E) [l 5,
KCw K
(7.66)

Combining (7.64)—(7.66), and taking into account the multiple counting in
the sum over the elements of a star, we obtain
* 12
’SO —1II 90’3,2;102

< diam(@,)22 max TE)" | Jwsldiam(K)”
~ KCw: P Kco.  |K|p%

|90|i2;wz . (7.67)
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where the hidden constant depends on d, Cp, Cr, and vy. Concerning the
second term on the right-hand side of (7.63), we combine (7.62) with

||v¢z‘|§7oo;wz S C(d) max pf_(z

KCUJZ

Combining this with (7.63) and (7.67), we get
|(§0 - H*¢>¢Z|§,2;wz < C(dv Cp,Cp,vr, O-T>diam(wz>2_2s|90|%,2;§z'

Inserting this and (7.61) into (7.60), and taking into account the multiple
counting in the sum over z € V, gives the first assertion.
Regarding (i), since f € L?(2), we can write

||f . Hf||_1;Q = sup <f _ Hf7 90> = sup <f7§0 — H*(p>

YEHL(Q) |S0|1,2;Q PEHL () |90|1,2;Q
< sup ZKET fK f(SO - H*SO)

peHL(Q) l©]1,2:0
< ZKeT HfHO,z;K I — H*‘PHOQ;K
N PEHL(Q) |90|1,2;Q

We proceed as in (7.65) and use the Cauchy-Schwarz inequality for sums to
obtain

ZKET ||f||o,2;1< diam(wk) |<P|1,2;wK

”f - Hfufl;g S C(d, CP,CF)

PEH () [©]1,2:0
1/2
< C(d,Cp,Cr,vr) ( > diam(wy)” ||f||§,2;K> : O
KeT

7.7 Standard formulation and fractional reg-
ularity

In this section we derive error estimates for the approximation of the solution
u of the parabolic problem in the standard formulation. We extend the results
of Section 7.3 to exact solutions belonging to fractional order Sobolev spaces.

7.7.1 Spatial semidiscretization

As in Section 7.3.1 we require that 7 belongs to a family of triangulations
for which the L2-projection onto S5° is H'-stable. We assume U € S5°(T)
to be as in Section 7.3.1.
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With the tools in Sections 7.5-7.6 we obtain the following extension of
Theorem 7.7.

Theorem 7.27. Assume 1 <0 </{+1 withf =m+s, meN, s € (0,1),
0 # 3/2,5/2. Moreover assume u € L*(H?), and, if 0 < 5/2, u' € L*(H?)
otherwise u' € L*(HS™?). Then we have

[u(0) = U(0)lg 0 + /O /() = U (D21 + lu(t) = UD)]]

< Z diam (K )?0~2 \U(O)‘;AQ;W
KeT

T
[ im0y (RS 0
0 ket

The hidden constant depends on the H'-norm of the L?*-projection on SS’O(T),
the coercivity and continuity constants of the parabolic problem, the dimen-
sion d, the parameter s, the polynomial degree ¢ and the shape-parameter

gT.

Proof. The proof mimics the one of Theorem 7.7. In case 0 > 2, we still
interpolate with Iy of Section 7.2 and invoke Propositions 7.3—7.5 combined
with (7.49) together with [23, Thm. 7.1]; recall also Remark 7.25. In case
6 € (1,2), instead, v’ does not belong to L*(L?) and we take

Vi e [0,T]  V(t):=Tu(t) € S°(T) c SE(T).

Because of the low regularity of the function, we cannot exploit the full ap-
proximation power of S5°(7), and we do not waste in taking Ve H'(Sy°(T)).
The assertion follows from Propositions 7.24-7.26 and (7.56). O

Remark 7.28. In case = 3/2 or § = 5/2 we apply (7.58) and get similar
bounds. The difference consists in an additional term on the right-hand side,

which is 2
> diam(wie) [[p2u(0) [
KeTaa
in case § = 3/2, or

T
N diam(wi)? |07 ()| o

0 KeToa

in case # = 5/2. Similar considerations are valid also for the theorems below.
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7.7.2 Semidiscretization in time

Let U € SY°(P, H}) be as in Section 7.3.2, and assume sup, 7, < 1. By
means of the fractional Poincaré inequality, we obtain the following extension
of Theorem 7.8.

Theorem 7.29. Assume s € (0,1), u € H*(H}) and v’ € H*(H™"). Then
2 T 2 2
[u(0) = U)o 20 + /0 lv" = U2 + [ = Utn) [ 50
N
S ome i
n=1

where the hidden constant depends on the coercivity and continuity constant
of the parabolic problem and on the parameter up, but it is independent of s.

2 2
He(I,H-1) T 7’35 [l Hs(I,,H)

Proof. We apply Theorem 4.4, which states that

N
2
1u(0) = U (0)[I5 0, + Z/I lu = U0 + [u = U(ta)l} 50
n=1 n

< : I 2 . i 2
~Y UEsO,}}%;’Hfl) Hu UHLQ(Hfl) + zeSO,lrll(f'pJ{é) HU/ ZHL2(H6) .

We insert v € S» Y (P,H!) and 2z € S% (P, H}) such that, for n =
1.....N,

1 1
vl, = — | W, and  z|;, = —/ u
In

Tn JI, n Tn

in the infima on the right-hand side. The thesis follows applying (7.45). O

7.7.3 Full discretization with the backward Euler-Gal-
erkin method

We assume that the sequence {7,}_, of triangulations belongs to a family
for which the L2-projection is uniformly H'-stable.

Let U be as in Section 7.3.4. Combining the results in Sections 7.7.1-7.7.2
we obtain the following extension of Theorem 7.11.

Theorem 7.30. Assume s € (0,1) and 0 € (1,+1), with§ = m+5, m € N,
5€(0,1) and 0 # 3/2,5/2. Assume u € L*(H®) N H*(H}), and, if § < 5/2,
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u' € L2(H2) N H*(H™Y), otherwise ' € L*(HS™*) N H*(H'). Then

KeTo
N

+ ZTsS HUIH?{S(I”,H / Z diam(wg )*~ |u'[;_ 22w

In keT,
7 il + [ 3 i

In keT,

—1—2 / Z diam (wg ) ‘“’020”(-

I

n KeT,

The hidden constant depends on the maximum of the H'-norms of the L*-
projection on 55’0(7;), the coercivity and continuity constants of the parabolic
problem, the dimension d, the parameter s, the polynomial degree £, the shape
parameters or, and the parameter up, but it is independent of s.

Proof. The proof mimics the one of Theorem 7.11. As in Theorem 7.29 we
use (7.45) to bound the terms
u — 1 / u
Tn J1,

1
u— — u
Tn J1,

As in Theorem 7.27, if # > 2 we bound the contributions involving the
interpolation operator Iy with the help of (7.49), [23, Thm. 7.1] and Remark
7.25. If 0 € (1,2) we use II in place of Iy in the treatment of the time
derivative. ]

and

L2(I,,H?') L2(I,,H-1)

7.8 Natural formulation and fractional regu-
larity
In this section we derive error estimate for the approximation of the solution

u of the parabolic problem in the natural formulation. We extend the results
of Section 7.4 to exact solutions belonging to fractional order Sobolev spaces.
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7.8.1 Spatial semidiscretization

Since Theorem 7.12 does not involve the approximation of the time derivative
in the L2(H~')-norm, we can easier extend this result. With the help of
(7.49) with [23, Thm. 7.1], we get

Theorem 7.31. Assume 1l <6 < (+1, withf® = m+s, m € Nands € (0,1).
Moreover assume u € L*(H?). Then we have

/0 ut) — Uy < / S diam (K22 [u(t) 2

KeT

The hidden constant depends on the H'-norm of the L?-projection on 55’0(7'),
the coercivity and continuity constants of the parabolic problem, the dimen-
sion d, the parameter s, the polynomial degree ¢ and the shape parameter

agT.

7.8.2 Semidiscretization in time

Assume sup,, 7, < 1 and let U € 8> Y(P, H}) be as in Section 7.4.2. We
recall (4.33) and (4.30) and use (7.30) with Y = L*(Q) and Y = H}(Q), to
obtain

— 2 1 2
D7 o= elta )iy < 32 | elta) = el 20
n=1 n=1 In
1
< zllelsp, (7.684)
and
N 1 N
2 2
Z [ — Qp(tnfl)HLQ(In,Hl) < 3 Z [p(tn) = ©(tn-1)]i 20
n=1 n=1 L,
2
< 3l +1) lellzp - (7.68b)

Theorem 7.32. Assume s € (0,1) and that, for everyn =1,...,N, u|;, €
Hé(IL,, HY) and, if s € (0,1/2], u'|;, € L*(I,, H*™1), otherwise u'|;, €
H*(IL,, H™Y). Then,

) N ” ) Tn2$ Hu1’|i2(lmst_1) if s € (0,1/2]
Ju— UHL?(Hg) < ZTn ||UHH8(H5) + 9 11 112 _
n=1 W s gy s € (1/2,1)

The hidden constant depends on the coercivity and continuity constants of
the parabolic problem, on s and on the parameter up if s # 1/2.
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Proof. We apply Proposition 4.9, which states that

lu — U||L2(Hg) S inf ”U_U”L2(H5)

veSY—1(P,HE)
N
> [ tu-fio = ltan)
+ sup n=t - In

peS1O(P,HY) ||S0||2,7>
©(T)=0

(7.69)

We insert v € S~ (P, H}) such that, for every n =1,..., N,

1
v, = — u,
T J1,

in the infimum on the right-hand side of (7.32), and we exploit (7.45) on
every I,. Concerning the supremum on the right-hand side of (7.69), we
first consider the case s = 1/2. Exploiting (7.68a), we get, for every ¢ €
SYO(P, H}) with o(T) = 0,

3 / (Au— oo — plta))

N
Z | Au — f”L?(ImL?) [ — @(tn—1>||L2(1n,L2)

N 2 /N
2 - 2
(Z T || Au — f”L?(In,L2)> (Z ol — 90<tn1)”L2(In,L2)>
— n=1

1/2

C«JI>—‘

1/2
Z T || Au — f||iQ(In,L2>> Il - (7.70)
=1

Dividing by ||¢ll, and taking the supremum over ¢, we get the assertion
for s =1/2.

For the case s € (0,1/2), we exploit (7.47) and we obtain, for every
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o € SY(P, HY) with o(T) =0,

> [ (Au=fio = elta)

N
<y / 1A = Flls v e = @(tn)lls_20 20
n=1 n

N
1-2s 2s
<C(s) (Z/l | Au — f”2s—1;Q i — SO(tn—l)‘Lz;Q I — Sp(tn—l)Ho,Q;Q
n=1 n

N
+ Z T HAU’ - f“2sfl;Q ng - @(tnl)‘|0’2;g> : (771)
n=1 n

In order to bound the first sum on the right-hand side, we apply twice the

Holder inequality for three functions with %+ % +% =1,beingp=2,q=
and r = 1

N
Z/j ||AU - fHZs—l;Q ‘90 - QD(tnfl)H’_Q?é ng - So(tnfl)”gfz,&)
n=1 n

N
1-2
< ZT{; HuIHLQ(In,HQS—l) lo — @(tnfl)”B(ISn,Hg) )
n=1

_ 2s
7 |l — 90<tn—1)||L2(1n,L2)

N 2 N
s 2 2
S (Z Tg ||u,||L2(In,H28_1)> (Z ||90 - Sp(tn—l)HLz(ImH&))
n=1 n

=1

N S
_ 2
: <Z ol — @(tn—l)Hm(ImL?)) -

n=1

1-2s
2

We exploit (7.68) to get

N
1-2s 2s
Z |Au — f“2sfl;Q lp — @(tn—l)llz;ﬂ I — @(tn—l)Ho,z;Q

n=1

2

2
1-2s

N
s 2 2
N (Zﬂ% HUIHLQ(IH,H%l)) HSD“2,7>- (7.72)
n=1

Concerning the second sum on the right-hand side of (7.71), as in (7.70), we
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get

N
Z i || Au — f||25_1;Q lle — W(tn—1>||0,2;ﬂ

2

N
2 2
S (Z n HUIHLQ(In,HQS—l)) HSOH2,7>- (7.73)
n=1

Since sup,, 7, < 1, we have 7, < 72% for every n = 1,..., N, and this term
can be bounded by (7.72). The assertion then follows for s € (0,1/2).

For s € (1/2,1), we write, for every ¢ € {¢ € SY(P,H}), ¢(T) = 0},
and every n =1,..., N,

[ 1= due—pltn) = [ o ltan)

In In

= <U(t;),¢(tn)—<ﬁ(tn_1)>+/ — (¢, u)

In

= (ulty) — 1", o(ta) — @(ta-1)) + / (e — T

S Hu(trr_l) - Hnqul;Q ’W(%) - Sp(tn—l)’LQ;Q
+ ||§0/||L2(I,L,H*1) Ju — Hn“”m(fn,ﬂg) . (7.74)

Summing over n = 1,..., N, we get

S [ 5= Aup = ettar)
N 2 , N
< (Z o utt) - nnuuim) (z (i) = w(tn_oﬁm)

N 1/2
n 2
+ <Z||U/_H UHL2(In,H(%)> ||SO/HL2(H—1).
n=1

We bound the second contribution by means of (4.11) and (7.45). Concerning
the first contribution, we exploit Property (iii) of Remark 4.1 and (7.45) to
obtain

1/2

~ Hs (I, H-1) *

_ _ 2 . 2
T, Hu(tn> - H”uH_l;Q S Celgf,l lu’ — C“L?(In,H*l) S|l

Combining this with (7.68b) completes the proof for s € (1/2,1). O
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7.8.3 Full discretization with the backward-Euler Gal-
erkin method

Assume sup,, 7,, < 1 and let U € S®71(P,V) be as in Section 7.4.4. Thanks
to the H'-stability of the L2-projection, proceeding as in (4.30) gives, for
every p € S0 (P, V),

N

ZTn|90(tr_L) th—1 ‘129 ZTR|P71<P ( n—l)lf,Q;QS ||90||§777'
n=1
(7.75)
Theorem 7.33. Assume s € (0,1) and 0 € (1,0 + 1), with 8 = m + 3,
m €N, 5 € (0,1). Assume that, for everyn =1,..., N, u|;, € C°(I,, H’) N

H*(IL,,H}), and, if s € (0,1/2], «|;, € L*(I,, H*™ "), otherwise u'|;, €
H*(I,,H™'). Then

2
Ju— UHLQ(HI
H (I, HY) +Z diam(wi) 29 2/ |u |92wK

< 2725 Julf
KeTn
+ Z Z diam(WK)Qe |u(t;)‘z,2;w1{

n=1 Ke&T,

N |2 | e if s € (0,1/2)

n L
2 .
Hs(I,H-1) ZfS S (1/2, 1)

The hidden constants depend on the mazimum of the H'-norms of the L?-
projection on 55’0(7;), the coercivity and continuity constants of the parabolic
problem, the parameters s and S, the dimension d, the polynomial degree £,
the shape parameters o, .

Proof. We exploit Theorem 6.10, which states that

n=

Ju— U||L2(H01) < inf ”U_U“LZ’(Hg)

veSH—1(P,V)
N
Z/ <Au - f7 " (p(tnfl»
— J1,
+ sup n=1

(,0681’07 (P,V) H@HQ,'P
©(T)=0

N-1 1/2
+<Z H<I—Pn>PJu<tn>Hi,2;g> . (176)
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We insert v € S~ }(P,V) such that, forn=1,..., N,

n
vy, = §— U
Tn In

in the infimum on the right-hand side. Proceeding as in (7.34), we obtain
with the help of (7.45) and (7.49):

2

1
u—1I{— [ w
T J1,

2
Hs(In,H}) -

< / S diam(wi) 2 ul2p,,, +72 [l
LQ(I’MH(%) In KeTy,

The terms ||(I — Pn)PJu(t;)Hg,Q;Q can be bounded as in (7.27). Concerning
the supremum on the right-hand side of (7.76), we proceed as in the proof of
Theorem 7.32. If s € (0,1/2), we recall that (7.68a)—(7.68b) are still valid,
so that we obtain

Z/ (Au— f,0 = p(ta1))
sup n=t *1n

LpGSLO? (’P,V) ||(10||2,'P
@(T)=0

N 1/2
2
S (Z T ||u,||L2(In,H251)> :
n=1

In case s € (1/2,1), as in (7.74), we get, for every n =1,..., N,

/ (f = Au, o = o(ta1)) < |ulty) - Hnqul;Q [p(t) = gp(t”’l)llﬂ;ﬂ

In

+ HSO/HLQ(IH,H—l) Ju — HnuHLQ(Hg) ;

By means of (7.75) we can conclude

Z/ (Au— f,0 = @(tn1))
sup 2= I

90631’07 ('p7v) ||SO||2,'P

@(T)=0
N
< (z 2
n=1

1/2
2 2
He (I, H-1) T 72 ||ul Hs(fn,Hg)> : [
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