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PREFACE 
 

Interest in food quality and production has increased in recent decades, mainly due to 

changes in consumer habits and behaviour, and the development and increase in the 

industrialisation of food chains. The growing demand for quality and safety in food 

production obviously calls for high standards for quality and process control, which in 

turn requires appropriate analytical tools for the analysis of food.  

In particular, many unit operations in industrial food processes are related to microbial 

fermentation, namely milk coagulation in dairy, dough in bakery, as well as must 

fermentation in wine and beer productions. 

Fermentation is one of the earliest methods adopted to obtain value-added food 

products with an extended shelf life. Humans applied fermentation to make products 

such as wine, mead, cheese and beer long before the biochemical process behind was 

understood.  Even now the biochemistry of fermentations commonly applied in food 

processes has many aspects which have not been fully investigated yet. 

Briefly, fermentation is any metabolic process in which an organism converts a 

carbohydrate, such as starch or sugar, into an alcohol and/or organic acids entailing 

modifications in the final product.  

The transition to industrial productions entailed a standardisation of the fermentation 

processes and the obtained products. Currently, the main objective is to develop 

instruments able to be implemented in the process in order to closely monitor the 

products of interest and to detect in real time the smallest changes bringing to a more 

effective process control and management. 

In this contest, spectroscopy revealed to be an interesting analytical method to monitor 

food fermentations processes. Spectroscopy is a secondary analytical method which 

consists in recording the absorption changes due to the interaction of electromagnetic 

radiation with the matter. The basic principle is that every chemical compound absorbs, 

transmits or reflects light (electromagnetic radiation) over a certain range of 

wavelengths. The information recorded can, thus, be used to measure the amount of a 

known chemical substance if correlated to a reference analysis. Spectroscopy reveals to 

be one of the most useful methods for quantitative analysis in various fields such as 

chemistry, physics, biochemistry, material and chemical engineering and clinical 

applications. Indeed, any application that deals with chemical substances or materials 

can use this technique. Moreover, the improved instrumentation for performing in-line 

and on-line analyses at industrial level has rose in the last decades giving the 

opportunity to obtained real-time information about the progression of any process and 

allowed its implementation as strategy to monitor complex systems as food production. 
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The food monitoring with spectroscopic devices has become possible thanks to 

Chemometrics (i.e. multivariate data analysis). Chemometrics has widely demonstrated 

to be the perfect partner to spectroscopy to deal with the complex chemical/physical 

systems that food matrix conforms. Chemometrics is able to extract relevant 

information from redundant and noisy spectra. In the last years the combination of 

spectroscopic analysis and Chemometrics was applied crosswise in food processes for 

qualitative and quantitative modelling in industrial applications. In particular, for the 

determination of compositional parameters affecting quality and safety of fermented 

food products such as wine, beer, yoghurt, vinegar and bakery products. Nevertheless, 

concerning complex biotransformations spectroscopy and Chemometrics are emerging 

techniques in food fermentation monitoring.  

The purpose of this PhD Thesis is the demonstration of the feasibility in the 

combination of spectroscopy and Chemometrics as an innovative working procedure 

for real time monitoring of food fermentation processes.  

The thesis consists of three main chapters integrated with eight papers, which are 

published or submitted in scientific journals. 

Chapter 1 Chapters 2 and 3 present an introduction to the main fermentations and their 

control from an historical prospective, the employed analytical techniques (Near 

infrared and Mid Infrared spectroscopy) and to Chemometrics, respectively. Chapter 4 

presents the experiments carried out on various fermentation food processes. In this 

section seven papers represent examples of applications of different spectroscopic 

methods in strong combination with Chemometrics to food fermentation processes as 

yogurt fermentation (Paper I, II and Paper III), wine malolactic transformation (Paper 

IV and V) and beer (Paper VI and VII). In addition to the mentioned papers a brief 

state of the art and some preliminary results are reported regarding sourdough leaving 

process monitoring. 

The two basic Chemometrics tools, principal component analysis (PCA) and partial 

least squares (PLS) regression were mainly applied to the spectroscopic data collected 

from the fermentation processes in order to evaluate the results and focus on the 

relevant information and to correlate the spectral features with different relevant 

physical and/or chemical parameters such as the concentration of the main chemical 

species involved in the biotransformation. In particular, the principal components 

(PCs) scores obtained by monitoring wine and yoghurt fermentations were modelled as 

function of time to find out kinetic parameters, as maximum acceleration and 

deceleration of the transformation, important for the process control (PAPER I and V). 

The spectroscopic data obtained during yoghurt and beer fermentation monitoring were 

also investigated with multivariate curve resolution- alternating least squares (MCR-

ALS), proving to be able to resolve multi-component mixtures into a simpler model 

(PAPER II and VII). 
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The main conclusive remarks on the presented studies are given in Chapter 5 

(CONCLUSIONS AND PERSPECTIVE), including a discussion of challenges and 

future perspectives for further application of spectral monitoring and chemometrics in 

fermented food processes. 
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RIASSUNTO 

 

L'interesse per la qualità del cibo e la produzione è aumentata negli ultimi decenni, 

soprattutto a causa dei cambiamenti delle abitudini dei comportamenti dei consumatori, 

nonché lo sviluppo e il progresso dato dalla industrializzazione della catena alimentare. 

La crescente domanda di qualità e sicurezza nella produzione alimentare richiede 

ovviamente elevati standard di qualità e di processo, che a loro volta necessitano di 

adeguati strumenti analitici per l'analisi delle materie prime, dei prodotti finiti e degli 

intermedi di processo. 

In particolare, molte operazioni unitarie dei processi alimentari industriali sono legati 

alla fermentazione microbica , ad esempio la coagulazione del latte nella produzione di 

prodotti lattiero-caseari, impasti acidi per pani e dolci tradizionali, così come mosto in 

fermentazione per la produzione di vino e birra. 

La fermentazione è uno dei primi metodi adottati dagli essere umani per ottenere 

prodotti alimentari a valore aggiunto con una shelf-life prolungata. I processi di 

fermentazione sono stati utilizzati dagli esseri umani fin dall’antichità per 

l’ottenimento di prodotti come il vino, l’idromiele, i formaggi e la birra. Tutto questo 

molto prima che il processo biochimico fosse noto. Tuttoggi la biochimica delle 

fermentazioni comunemente applicate in processi alimentari ha molti aspetti che non 

sono stati ancora completamente indagati. 

Brevemente, quando parliamo di fermentazione intendiamo qualunque processo 

metabolico in cui un organismo converte un carboidrato, quale amido o zucchero, in un 

alcool e/o in acidi organici che comportano modifiche nel prodotto finale. 

Il passaggio alla produzione industriale ha comportato una standardizzazione dei 

processi di fermentazione e dei relativi prodotti ottenuti. Attualmente, l'obiettivo 

principale è quello di sviluppare strumenti in grado di  essere implementati nel 

processo produttivo al fine di monitorare attentamente i prodotti di interesse e di 

rilevare in tempo reale i più piccoli cambiamenti. Cio’ comporta l’ottenimento di 

gestione e controllo di processo più efficaci. 

In questo contesto, la spettroscopia ad infrarosso si è rivelata essere un metodo 

analitico interessante per monitorare i processi di fermentazione degli alimenti. La 

spettroscopia è un metodo analitico secondario che consiste nel registrare variazioni di 

assorbimento dovuti all'interazione della radiazione elettromagnetica con la materia. Il 

principio di base è che ogni composto chimico assorbe, trasmette o riflette la luce 

(radiazione elettromagnetica) in un determinato intervallo di lunghezze d'onda. Le 

informazioni registrate possono, pertanto, essere utilizzate per misurare la quantità di 

una sostanza chimica nota se correlata ad una analisi di riferimento. Negli anni passati i 

metodi spettroscopici si sono dimostrati  uno dei metodi più utili per l'analisi 

quantitativa in vari campi come la chimica, la fisica, la biochimica, la scienza dei 
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materiali e l’ingegneria chimica, nonché le applicazioni cliniche. Infatti, qualsiasi 

applicazione che si occupa di sostanze chimiche o materiali può avvalersi di questa 

tecnica. Inoltre, la strumentazione e la gestione dei dati ottenuti è notevolmente 

migliorata negli ultimi decenni permettendo l’implementazione in line e on-line delle 

analisi in campo industriale, dando la possibilità di ottenere informazioni in tempo 

reale circa l’avanzamento dei processi e ha permesso la sua attuazione come strategia 

per monitorare sistemi complessi come quelli relativi alla produzione alimentare. 

Inoltre, un efficace  monitoraggio dei prodotti alimentari con dispositivi spettroscopici 

è diventato possibile grazie all’utilizzo della chemiometria (cioè l'analisi multivariata 

dei dati) . Le tecniche chemiometriche hanno dimostrato di poter estrarre informazioni 

rilevanti da spettri ridondanti e rumorosi, quali derivanti dall’analisi di processi 

alimentari. Negli ultimi anni la combinazione dell’ analisi spettroscopica e della 

chemiometria è stata applicata trasversalmente in processi alimentari per la 

modellazione qualitativa e quantitativnti da sistemi complessi come gli alimenti 

monitorati a livello industriale. In particolare, per la determinazione dei parametri 

compositivi che influenzano la qualità e la sicurezza dei prodotti alimentari fermentati 

come vino, birra, yogurt, aceto e prodotti da forno. Tuttavia, per quanto riguarda 

l’utilizzo della spettroscopia e della chemometria per il monitoraggio del processo di 

biotrasforamazione esse sono ancora poco investigate e per questo risultano tecniche 

emergenti nel monitoraggio della fermentazione degli alimenti. 

Lo scopo di questa tesi di dottorato  è quello di dimostrare la fattibilità 

dell’applicazione di diverse techinche spettroscopiche, in combinazione con techniche 

chemometriche, per il monitoraggio in tempo reale dei processi fermentativi in 

produzioni alimentari. 

La tesi si compone di tre capitoli principali integrati con otto documenti, che sono stati 

pubblicati e presentati in riviste scientifiche. 

I capitoli 1, 2 e 3 presentano un'introduzione alle principali fermentazioni ed il loro 

controllo da una prospettiva storica, le tecniche analitiche impiegate (vicino e medio 

infrarosso) e le tecniche chemiometriche applicate, rispettivamente . Il capitolo 4 

presenta le sperimentazioni svolte in vari processi di fermentazione alimentare. In 

questa sezione sette articoli  presentano esempi di applicazioni di diversi metodi 

spettroscopici in forte combinazione con tecniche chemiometriche a processi di 

fermentazione.  In particolare per la fermentazione di yogurt (PAPER I, II e III), della 

trasformazione malolattica in vino (PAPER IV e V ) e fermentazione del mosto a birra 

(PAPER VI e VII) . Oltre aagli articoli scientifici riportati, un breve stato dell'arte e 

alcuni risultati preliminari sono riportati per quanto riguarda il monitoraggio del 

processo di impasti acidi. 

I due strumenti chemiometrici principlamete utilizzati sono stati l’ analisi delle 

componenti principali (PCA) e la regressione con il metodo partial least squares (PLS). 

Essi  sono stati applicati ai dati spettroscopici raccolti dai processi di fermentazione al 
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fine di valutare preliminarmente i risultati ed estrarrne le informazioni rilevanti e per 

correlare le caratteristiche spettrali con i differenti parametri fisici e/o chimici raccolti 

come la concentrazione delle principali specie chimiche coinvolte nella 

biotrasformazione. In particolare, gli score delle compoenneti principali (PC)  ottenuti 

monitorando vino e yogurt sono stati modellati in funzione del tempo di fermentazione 

per determinarne i parametri cinetici, vale a dire la massima accelerazione e 

decelerazione della trasformazione,  fondamentali per il controllo di processo  (PAPER 

I e V). I dati spettroscopici ottenuti durante il monitoraggio della fermentazione di 

yogurt e birra sono stati studiati con il metodo multivariate curve resolution.alternating 

least square (MCR-ALS), che si è dimostrato di essere in grado di risolvere miscele a 

più componenti in un modello più semplice (PAPER II e VII). 

Le principali osservazioni conclusive sugli studi presentati sono riportati  nel capitolo 5 

(CONCLUSIONS and PERSPECTIVES), compresa una discussione sulle prospettive 

future.  

 



 

 

 

1. Food fermentation and 

process analytical technology  
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1.1. Historical background  

Anthropologists hypothesize that the outliving and evolution of human being is closely 

related with fermented food. 

The main advantages of food fermentations are (1) development of a diversity of 

flavours, aromas, and textures in food substrates; (2) preservation of substantial 

amounts of food through lactic acid, alcohol, acetic acid, and alkaline fermentations; 

(3) biological enrichment of food substrates with protein, essential amino acids, and 

vitamins; (4) elimination of antinutrients; (5) a decrease in cooking time and fuel 

requirement (Steinkraus, 1996). 

In simplistic words, fermentation is any metabolic process in which an organism 

converts a carbohydrate, such as starch or a sugar, into an alcohol or acids entailing 

modifications in the final product. 

A wide number of food products have been fermented in the history and are nowadays 

implemented in food industries. Manufacturing processes are really different from one 

to the other due to the high variety of food groups, ingredients added and starter 

cultures inoculated.  

In this chapter a brief historical background of representative fermented food group is 

presented. 

 

Alcoholic beverages  

Alcoholic fermentations are among the most ancient fermentation documented. 

Wine and beer produced in ancient time were completely different from those we use 

to consume today. They were particularly nutritive and rich in energy due to the 

presence of the yeast in the final product and high amount of vitamins B (Steinkraus, 

2004). Among them, the kefir beer from prehistoric times (Steinkraus, 1996), the 

Chicha produced in Inca times (Escobar et al., 1977), the ancient version of rice sake in 

Japan (Yoshizawa and Ishikawa, 1979), the Bouza-beer from ancient Egypt (Teramoto 

et al., 2001) and Pulque produced by fermenting Agave in ancient Mexico (Steinkraus, 

1996) are the most know fermentations. The biotransformations characterising the final 

products were driven by yeast as Saccharomyces cerevisiae, Endomycopsis fibuliger, 

bacteria as Zymomonas mobilis and molds as Aspergillus sp. and Rhizopus sp. 

 

http://en.wikipedia.org/wiki/Lactic_acid
http://en.wikipedia.org/wiki/Alcohol
http://en.wikipedia.org/wiki/Acetic_acid
http://en.wikipedia.org/wiki/Alkaline
http://en.wikipedia.org/wiki/Essential_amino_acids
http://en.wikipedia.org/wiki/Antinutrients
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Figure 1. Detail of a painting showing the wine making process in the ancient Egypt, walls of 

Nakhte’s tomb, Thebes, ca. 1400 BC 

 

Acetic acid product: vinegar  

Vinegar is a by-product of alcoholic beverages and its discovery was almost certainly 

accidental. An old document from Babylon (5,000 BC) documente the production of 

vinegar by fermenting the fruit of date palms.  

Romans made  vinegar also from grape and figs. Actually, the origin of the word 

comes from the Latinterm  vinum meaning wine and acer meaning sour. The use of 

vinegar as ancient condiment and pickling agent comes from the fermentation of 

alcoholic beverage in presence of oxygen (Cabezudo et al., 1981) by Acetobacter sp., 

the main responsible of the conversion of ethanol into acetic acid. 

In 1864 Pasteur discovered that vinegar was produced by the action of microorganisms 

‘Mycoderma aceti’ on the wine and from that discover the production became a 

controlled large scale process (Cabezudo et al., 1981).  

 

Milk lactic acid fermentation  

The exact origin of fermented milk is difficult to establish. There are evidences of its 

production in Mesopotamia by Sumerians and Babylonians, in Egypt and in Asia 

(Tamine, 2007). Probably fermented milk products were consumed since humans 

started milking cows, sheep and goats. In case of the milk was not immediately 

consumed and, therefore, it was stored in containers made of stomachs of animals 

(Steinkraus, 1996) where the milk became sour due to its natural content of lactic acid 

bacteria (LAB). From this accidental discover, it comes the origin of fermented milk, 

among which yoghurt is the most spread in the world. The homeland of yoghurt has 

been accepted as Balkan Peninsula and before the ‘50s its commercialisation out of the 

Middle East region was limited. The increase in yoghurt acceptability was mainly 

related to product innovation especially the enrichment with fruits and sweeteners 

(Tamine, 2007). 
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Another class of products deriving from the accidental fermentation of milk in animal 

stomachs and intestines is the cheese. Indeed, the storage in such container for longer 

times allowed the whey separation from the curded milk and became a primitive 

cheese due to the activity of lactic microorganism and the rennet present in the bowel.  

Nowadays the number of species involved in milk lactic acid fermentation is huge and 

from this a lot of varieties of final products produced. Mainly they are named as LAB 

and can be grouped in mesophilic and thermophilic. Among the mesophilic LAB 

coming from north and east Europe Lactococcus lactis, Leuconostoc mesentheroides, 

Lactobacillus casei and paracasei. Representative of the thermophilic bacteria (south 

and east Europe) is worth to mention the mixed starter culture use for yoghurt 

production, i.e. Streptococcus thermophilus and Lactobacillus bulgaricus. 

 

Fermented meat products 

Meat products have been fermented worldwide for centuries. The first proof of sausage 

and ham production in Europe date to Roman Empire, in Diocletian time (Lücke & 

Hechelmann, 1987). At that time there was already the distinction among highly cured, 

smoked, lightly salted and dried hams. Sausages were invented as a means for using 

leftovers of meat and entrails, they were prepared with blood, fat and meat scrap from 

pork and beef.  

Chinese raw cured hams are claimed to be the first ones. Famous traditional Chinese 

hams are Jingha and Yunan (Zeuthen, 2007). 

There are also famous Chinese type of sausages made from goat and lamb meat with 

onion, bean sauce, ginger and pepper (Leistner, 1995).  

Despite the different origin the final products obtained, such as ham and sausages, are 

very similar. Most of the fermented sausages are smoked, whereas in the 

Mediterranean area they are air dried. Other type of fermented sausages developed as a 

consequence of advanced meat processing techniques (Lücke & Hechelmann, 1987). 

The natural fermentation of sausages is a complex microbial process, LAB and  

coagulase-negative cocci are the main representatives. LAB are usually present in high 

hygienic quality raw meat at low numbers but they rapidly dominate causing a pH 

reduction, and production of acetic acid, ethanol, acetoin, pyruvic acid and carbon 

dioxide contributing to the typical flavour (Rantsiou and Cocolin, 2008). The cocci 

participate in the development and stability of red colour through nitrate reductase 

activity and different aromatic substances.  

 

Fermented vegetables 

Vegetable were mainly fermented to consume products also out of their season, 

especially to have a vegetable source during the winter. Korean traditional kimchi is 

one of the most famous fermented vegetable groups in the East. Actually is not defying 
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a single product but different formulation composed of Chinese cabbage, radish and 

other vegetables. The common practice is a first step of salting (brining) to direct the 

fermentation process. 

Nowadays, in the global market only cabbage (sauerkraut and Korean kimchi), 

cucumbers (pickles), olives and peppers are of real economic importance. LAB 

responsible for the fermentation of vegetables belongs to the genera Streptococcus, 

Leuconostoc, Pediococcus and Lactobacillus (Fleming and McFeeters, 1981).  

 

Fermented cereal foods: dough 

Cereals are a good media for microbial fermentations due to their high content of 

carbohydrates, minerals, vitamins and sterols needed by microorganisms. Beer is one 

of the most famous cereal fermented product. Its historical origins have been discussed 

previously in the alcoholic beverage section. Some details of dough and sourdough 

obtained from cereal fermentation are presented herein. 

Bread fermentation is a 5000-year-old process. It is characterised by the renewal of 

previously risen dough, also called the starter dough. The manufacture of beer and 

bread has been really close since the beginning of their handcraft production. In ancient 

Egypt the starter dough was activated by collecting the foam that rose to the surface of 

brewing mash tubs. The mentioned method was taken up again in the seventeenth 

century (Poitrenaud et al., 2004). The awareness of the role of yeast in the leaving 

process was discovered only between 1857 and 1863 by Louis Pasteur; whereas right 

now baker’s yeast (Saccharomices cerevisiae) is the most microorganisms produced.  

In particular the starter dough used by Egyptian was probably a sourdough (Wood, 

1996). It means that the “mother” was composed of LAB and yeast naturally present in 

the flour. The mutualistic combination of them is the main responsible of the leavening 

capacity due to their production of CO2. Yeast from beer or wine production could also 

be added to the dough to increase the leavening capacity as described before (Solvejg 

Hansen, 2004). Nowadays different typical bread and traditional cakes are made by 

using sourdough, as it contributes to better flavor and texture and an extended the 

shelf-life. 

 

 

1.2. Fermentation process control  

The main drawback of traditional production of fermented food is the inconsistency of 

the final products. This inconsistency usually leads to high production costs and a final 

quality which relies only on the experience of manufacturers.  

Industrial fermentations during 20th century started to use selected starter cultures in 

wine, dairy, bread and meat production leading to a significant improvement in the 
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quality and safety of final products. In the past decades the starter characteristics 

(strains composition, vitality and technological properties, among others) have been 

one of the main parameters through which a food fermentation process has been 

controlled. Another important initial parameters to assess a correct start of the 

fermentation are the characteristics of the raw materials. Despite the precise assessment 

of the starting point the food industry still has to face different variation in the cycle of 

the fermentation time that might influence the quality of the final product. Therefore, 

large scale productions need quality assurance systems to guarantee the fulfilment of 

the required quality consistency of the final product. Indeed failures in the processes 

bring to huge economic losses. At present food companies are moving from this feed 

forward set up of the process to a statistical process control. Traditionally, the control 

is synonymous of  monitoring product quality variables or some key process variables 

in a univariate way (Kourti, 2005). It means that a generic fermentation process is 

controlled by the fulfilment of each single variable (i.e. pH, CO2 content, oxigen 

pressure, alcohol content and so on) into the specifications defined. It is important to 

consider that the variables to be monitored are huge number and highly correlated. This 

brings to a difficult management of a single control chart for each parameter.  

Moreover most of the analytical techniques used for evaluating parameters such as 

sugars, organic acids, and alcohol content are not applicable in the process but they 

required instrumentations of a laboratory leading to a time consuming and expensive 

control. 

Process analytical technology (PAT) is being implemented in order to move the 

analytical instrumentations from the laboratory to the production site and, thereby, 

obtain rapid on-line and in-line analyses (Workman et al., 2005). 

Historically, the term PAT, as stated by Workman et al. (2005), “has continued to 

evolve as a more appropriate term than process analytical chemistry (PAC) to describe 

the field of process analysis, as measurement technologies expanding to include many 

physical characterization tools. This term has existed since the turn of the century (ca. 

1911) but is only now found in common usage.”  

The main aim of PAT perfectly matches with the requirements of food fermentation 

industries. It was perfectly stated by Callis et al. (1987): “The goal of process 

analytical chemistry is to supply quantitative and qualitative information about a 

chemical process. Such information can be used not only to monitor and control a 

process, but also to optimize its efficient use of energy, time, and raw materials”.  

The technological development has made PAT a multidisciplinary approach combining 

analytical chemistry, engineering and biology with multivariate data analysis. In 

particular, it allows model-predictive control. It means that it is possible to acquire 

real-time information from a sensor or combination of them and to continuously 

compare it with the optimal process trend. With such approach control actions can be 
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taken to correct the non-controlled conditions especially in batch processes, as 

fermentations, highly dependent on the process with time. 

Among all the promising techniques that have been investigated for this purpose, the 

implementation of infrared spectroscopy has been used since 1930 in refining 

processes (e.g. Dow Chemical implemented Near Infrared probes in petrochemical 

PAT in 1970) (Bakeev, 2010). From its first application in the chemical industries 

infrared spectroscopy has been proved to offer detailed information in real-time on the 

on-going of several food processes (Woodcock et al., 2008; Karoui et al., 2010) and 

batch fermentations (Landgrebe et al., 2010). The use of infrared spectroscopy is 

presented in this thesis to perform the monitoring of different fermentation processes in 

order to answer the needs of food companies for the assessment of final product quality 

and production efficiency.   
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2.1  Spectroscopy: theory  

(Wilson et al., 1980; Miller, 2001; Stuart, 2004; Sandorfy et al., 2007) 

Spectroscopy studies the interaction between electromagnetic radiation and matter. The 

electromagnetic radiation is the combination of electric and magnetic fields. 

Depending on the energy of the electromagnetic radiation, transition between different 

kinds of energy states are induced at atomic and/or molecular level.  

In particular, it is used to indicate the separation, detection and recording of changes in 

energy (resonance peaks) affecting nuclei, atoms or whole molecules. These variations 

are due to the energy interaction between radiation and matter, specifically absorption 

or diffusion of electromagnetic radiation or particles. 

The theoretical basis of the interaction between matter and radiation is the quantum 

nature of the transfer of energy from the radiation field to the material and vice versa. 

In fact, both matter and the electromagnetic field have a "dual nature", i.e. the ability to 

behave both as a wave and as a particle. 

Electromagnetic radiation, among which the best known is the light, is nothing more 

than a form of energy transport of electromagnetic origin in space. According to the 

studies by James Clerk Maxwell, the first to postulate a set of equations that describe 

fully the electromagnetic phenomena, the movement of electric charges is capable of 

generating radiant energy waves in space. They are the result of the superposition of an 

electric field and a magnetic field orthogonal mutually coupled: each one is the source 

of the other and propagates with sinusoidal both in space and in time. 

 

2.1.1 The electromagnetic radiation 

The directions of oscillation in the space of the electric field and magnetic field, called 

polarization, are perpendicular to the propagation direction. In the space propagation, 

the electromagnetic wave follows common laws to all waves (electromagnetic, 

acoustic, physical) and has a wave nature. 

The electromagnetic radiation is characterised by two properties: amplitude and 

periodicity.  The periodicity can be described in term of its wavelength () or 

frequency (). Wavelength is the spatial period of the wave, the distance over which 

the wave's shape repeats, as reported in Figure 2. 

The wavelength and the frequency of the electromagnetic radiation are related through 

the equation:  

              (1) 
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Where c is the velocity of the electromagnetic radiation in vacuum,  is the frequency 

which has reciprocal second (s-1) as unit, which is now referred as Hertz (Hertz= s-1). 

Maxwell discovered that this propagation speed was constant for all the 

electromagnetic waves and in vacuum was approximately 2.998 × 1010 cm s-1, or the 

speed of light. Therefore, being c a constant, knowing the wavelength is possible to 

calculate the frequency and vice versa.  

 
Figure 2. Electromagnetic radiation 

 

The wavenumber, expressed in cm-1, is another variable characterizing the radiation 

and is defined as the reciprocal of the wavelength. The unit of measurement, cm-1, 

while not being given by the System International, is widely used in infrared (IR) and 

near infrared (NIR) spectroscopy. 

The radiation, in addition to having a wave nature, reveals his corpuscular nature when 

it interacts with matter. That does not transmit to it a continuous quantity of energy, as 

is the case in classical physics, but sends "packets" of energy quantized. It can then be 

seen as a stream of particles called photons. 

The theoretical basis of the interaction between radiation and energy states of matter is 

precisely this quantum nature with which the energy transfer occurs between the 

electromagnetic wave and the energy states of matter and vice versa. If we consider 

that the radiation is formed from many discrete energy called photons, and that the 

energy transmitted by a photon is proportional to the frequency of the electromagnetic 

wave, it can be traced back to the amount of energy that a photon of a certain wave 

transmits the matter by the Planck-Einstein relation: 

 

        (2) 

 

where E is the energy in Joules, h is the constant of Planck (6.62 × 10-34 J s-1) and  is 

the radiation frequency in Hertz. A radiation beam may have a 'intensity more or less 

strong depending on the amount of photons per unit time and unit area, but the 

quantum energy (E) will always be the same for a given frequency of radiation. 
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Based on these parameters the whole electromagnetic spectrum is usually classified in 

regions by wavelength into electronic energy, radio, microwave, infrared, the visible 

region, ultraviolet, X-ray and gamma rays (Figure 3).  

 

 
Figure 3. Chart of the electromagnetic spectrum illustrated with radiation sources and 

applications (reproduced from SURA, 2007). 

 

The boundaries between regions are approximate and mainly based on the interaction 

between the radiation and the matter, as described in Table 1. 

 

Table 1. List of different regions in the electromagnetic spectrum, the type of spectroscopy and 

the induced energy changes.  

Region Spectroscopy Induced quantum change 

Radiofrequency 
Nuclear magnetic resonance 

and electron spin resonance 

Changes of electronic spin 

Changes of nuclear spin  

Microwave  Rotational Molecular rotations 

Infrared Vibrational 
Transition between the 

vibrational levels of molecules 

Visible -  

Ultraviolet 
Electronic Outer electronic transitions 

X-ray X-ray Inner electronic transitions 

Gamma- ray - ray Atomic nuclei excitation 
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The infrared region of the spectrum includes radiation with wavenumbers ranging from 

about 12,500 to 10 cm-1 which correspond to wavelengths from 0.78 to 1000 m. It can 

be sub-divided into near infrared (12,500 to 4,000 cm-1), mid infrared (4,000 to 400 

cm-1) and far infrared (400 to 10 cm-1).  

2.1.2 Molecular energy 

Bohr (Bohr, 1914) based on the following postulates for the correct interpretation of 

the spectra of atoms and molecules: 

1. The atomic systems exist in stable states without emitting electromagnetic energy, 

2. The absorption or emission of electromagnetic energy takes place when an atomic 

system moves from one energy state to another, 

3. The process of absorption or emission corresponds to a photon of radiant energy hv 

= E'-E'', where E'-E'' is the energy difference between two states of an atomic system.  

Thus, according to quantum physics, a molecule cannot rotate or vibrate freely with 

any value of energy, it is subject to what are called quantum-mate restrictions. 

Therefore, when the energy of a radiation matches a vibrating molecule, there is a net 

and measurable transfer of energy. It can be graphically represented as the energy 

change in the ordinate and wavelength in abscissa, i.e. one spectrum.  

According to the third postulate of Bohr, the passage of energy from a photon in a 

molecule can take place only if the photon has a frequency, and therefore energy, equal 

to the one required from the molecule to pass from the equilibrium state to the excited.  

A molecule in space could have various form of energy, due to different kind of motion 

and intermolecular interaction. For instance, the molecule possesses translation energy 

due to the displacement of molecules in space as function of normal thermal motion of 

matter. When a photon of energy equal to the difference between the two 

configurations considered hits the molecule, an electron that is in the basic state has a 

certain probability to move to the upper level. The photon is absorbed by the molecule 

as well. After a certain time, few seconds, the electron returns to the ground state with 

the emission of the photon of energy equal to the energy jump between the two levels 

(Figure 4). Higher energy photons can bring the electron to a second level of excitation 

or next levels. It should be emphasized that not all transitions between the various 

levels are possible, but that, according to quantum mechanics, the possible transitions 

are only those that obey the selection rules, imposed essentially by the Exclusion 

Principle of Pauli which forbids the coexistence of more than two electrons on the 

same orbit. Photons at high energies in the ultraviolet can also rip the electron to the 

atom that is positively charged (ionized). In the area of the infrared, characterised by 

low energy, however, the photons are not able to excite the molecule, but may induce 

vibrational motions of the electrons. Even in this case, the energies associated with the 

various modes of vibration are quantized. 
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Figure 4. Jablonsky diagram  (reproduced from http://chemwiki.ucdavis.edu) 

 

Energy of the ground state and excited states are accompanied by the vibrational states. 

Electromagnetic radiations in the microwave area (even less energetic than the infrared 

area) are not able to induce vibrations but only the rotations of the molecule.  

So the effects of radiation on matter vary depending on the frequency of the radiation 

(and therefore the energy conveyed by it) and are represented in Figure 5. 

 

Figure 5. Molecular changes according to the different energy of the electromagnetic radiation. 

Examples with UV, visible, infrared and microwave. 

The total energy of a molecule can be considered as the sum of the contributions of 

transitional, electronic, rotational and vibrational energies as reported in equation 3: 

 

E total = E trans + E rot + E vib+ Eelec           (3) 

 

In the atomic spectra the possible interactions are those relating to electrons in the 

valence shell. In the molecular spectra, though, for each electronic state, several 

http://chemwiki.ucdavis.edu/
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vibrational and rotational states are normally possible, and, as in the case of near 

infrared (NIR), also combinations of these and the presence of overtones. In NIR the 

energies involved are adapted to determine a change in the vibrational motion of the 

molecules and in particular of the links present in them. 

Models to explain the vibrations are based on the concept of "harmonic oscillator" 

(Figure 6), a system in which two balls (the atoms) are attached by a bond (spring), and 

can be mathematically described by Hooke’s Low (equation 4):  

 

      (4) 

 

Where k is the force constant of the bond between two atoms (two balls) and µ is the 

reduced mass according to equation 5: 

          (5) 

 

In which m1 and m2 are the masses of the two atoms.  

In the harmonic oscillator model (Figure 6) the potential energy of a vibrating system 

(V) at any given time is assumed to be a quadratic function of the displacement of the 

atoms involved: 

    (6) 

 

where x is the displacement from the equilibrium position of the atoms and k the 

restoring force constant (5∙105 dyne∙cm-1). 

 

 
Figure 6. Scheme of the harmonic oscillator model, potential energy form vs. atomic 

displacement for diatomic molecule (m1 and m2) 
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To determine the possible energy levels for a particular vibration a quantum theory 

model is needed, finding out that the vibrational levels are a set of discrete (quantized) 

energy levels, defined by the equation 7: 

 

               (7) 

 

where Eν is the energy of the quantum level of the particular vibration, v is the 

vibrational quantum number, υ is the fundamental frequency of the vibration. 

This model represents a good approximation of only the symmetrical diatomic 

molecules. Although the harmonic model is often used to explain the vibrational 

spectroscopy, it does have limitations as it fails to describe the possible energy 

transitions that can occur in a molecule that has a large number of atoms, and 

especially not arranged symmetrically, i.e. in most of the organic molecules present in 

food. 

Not all the vibrations of a particular molecular structure necessarily absorb infrared 

radiation, but only those vibrations that make vary the dipolar electric motion of the 

molecule (e.g. H2O). Indeed, the energy of a light photon (equation 2) must be equal to 

the energy of a vibrational transition, i.e. the energy difference between two vibrational 

states. In the case of a harmonic vibration (following equation 6 and 7) the energy 

difference is defined as in equation 8: 

 

     (8) 

 

Where ∆v is the change in the vibrational quantum number for the vibrational 

transition. 

Due to the selective nature of light-molecule interaction imposed by quantum theory is 

possible to obtain relevant information in analytical spectroscopy. 

 

2.1.3 Principles of infrared spectroscopy (Miller, 2001) 

As said before, for a molecule to absorb infrared radiation it is necessary that the 

radiation has sufficient energy to induce vibrational transitions on the same molecule. 

The exact matching of radiation frequency with bond vibrational frequency is called 

resonance. Polyatomic molecules containing N atoms will have 3N degrees of 

freedom. In linear molecules (3N-5 degrees of freedom), 2 degrees are rotational and 3 

are transitional. In non-linear molecule (3N-6 degrees of freedom), 3 of these degrees 

are rotational and 3 are translation; the remaining correspond to fundamental vibration. 

In the simple case of water molecule, a diatomic molecule, there are three degrees of 
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translation freedom, two degrees of rotational freedom and one degree of vibrational 

freedom.  

The main types of bond vibrations are stretching and bending. An example of 

stretching and bending vibration of a molecule of water are shown in Figure 7. 

 

 
Figure 7. Stretching and bending vibration of a water molecule. 

 

The stretching is the vibration of the bond along the plane, in consequence of which 

varies rhythmically the interatomic distance and it can be symmetrical (in-phase) or 

asymmetric (out-of-phase); bending vibrations are characterized by a variation of the 

angle between two atoms in the plane (scissoring and rocking) and out of plane 

(wagging and twisting). 

The vibrational frequencies can be roughly related to the molecular properties through 

Hooke's Law, as described in the previous paragraph (2.1.2 Molecular energy). This 

approximation works well for diatomic molecules. Moreover, the resulting values do 

not differ much from the average values relating also to the stretching vibrations and 

bending for two atoms in a polyatomic molecule. 

Since the values of the reduced mass of the groups -OH, -CH and -NH are rather 

similar, the spectral information is determined mainly by the value of k, which depends 

not only on the length and strength of the bond, but also from the surrounding 

environment, thus creating differences in energy absorption for each link that make 

specific and are used in the interpretation of a spectrum. 

In reality, however, we analyze asymmetric diatomic molecules: this modifies their 

responses excitement caused by the incident radiation. The phenomena of mechanical 

anharmonicity, i.e. the loss of the equidistance between the different energy levels, and 

anharmonicity of electricity, i.e. the change of the equation of moment dipolar electric, 

leads the system far from ideal conditions (Figure 8). In particular, the anharmonicity 

leads to overtone bands, or anharmonic bands, whose frequency is not an integer 

multiple of the fundamental frequency with which oscillates the bond dipole of the 

molecule.  
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Figure 8. Vibrational bond anharmonicity and overtones 

These phenomena are even more influential in a polyatomic molecule in which the 

reciprocal influences between atoms increase exponentially. The lack of harmonicity is 

even more evident in bonds involving hydrogen molecules, which have a very small 

mass. The results are vibrations with a greater amplitude and more intense absorption 

bands. These phenomena mainly influence the near-infrared spectrum. 

In this prospective, infrared spectroscopy is applied for quantitative and qualitative 

analysis of materials regarding their tendency to absorb light in a certain area of the 

electromagnetic radiation. Near Infrared spectroscopy (NIR) is based on the absorption 

of radiation in the 12,500 – 4,000 cm-1 region, Mid Infrared (MIR) spectroscopy in the 

4,000-400 cm-1 region. 

The infrared spectrum of an organic compound provides a unique fingerprint that is 

easily distinguishable from the absorptions of all other compounds. Moreover, the high 

selectivity of the method often allows the quantitative determination of an analyte in a 

complex mixture without the need for preliminary separations. 

 

2.2 Near Infrared (NIR) Spectroscopy  

2.2.1 Spectra interpretation (Workman & Weyer, 2008) 

The near infrared (NIR) spectrum is characterized by overtones and combinations of 

fundamental vibrations of molecules containing -CH, -OH, -NH groups; all groups 

present in food as constituent of fat, protein, sugar, and moisture.  

A brief overview is given in this paragraph and summarized in Figure 9.  

 



2. Spectroscopy 

34 
 

 
Figure 9. Schematic representation of overtone and combination bands absorptions in the NIR 

region. 

 

Overtone and combination bands of the C -H 

The C-H bond is definitely the most important heteroatomic bond in organic molecules 

present in food and its fundamental overtone and combination bands can be found in 

the following spectral regions according to the kind of bond: 

- Alkanes and Cycloalkans: 5,882-5,555 cm-1 (first overtone), 8,696-8,264 cm-1 

(second overtone), 11,390–10,929 cm-1 (third overtone); 6,666-7,690 and 4,545-

4,500 cm-1 (combination regions).   

- Alkenes and alkynes: 6,100-6,200 cm-1 (first overtone), 8,897-9,200 cm-1 (second 

overtone), 12,500–10,776 cm-1 (third overtone); 4,600-4,482 and 4,780-4,670 cm-1 

(combination regions).   

- Aromatic compounds (benzene): around 6,000 cm-1 (first overtone), 8,834 cm-1 

(second overtone), 11,442 cm-1 (third overtone); 8,770 cm-1 (combination of twice 

C-H stretch).   

Overtone combination bands of the O- H 

The location of the bands due to the O-H bond, as all those that characterize a 

hydroxyl, dependent on the temperature and condition of the hydrogen bond. 

According to the compound containing the hydroxyl group is possible to assign the 

overtone and combination bands as follow: 
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- Alcohols: 6,240-6,850 cm-1 (first overtone), 10,400 cm-1 (second overtone of 

nonbonded O-H stretch), 13,500 cm-1 (third overtone); 5,550-4,500 cm-1 

(combination of O-H stretching and bending).   

- Phenols: 6,940-7,140 cm-1 (first overtone), 10,000 cm-1 (second overtone), 13,250 

cm-1 (third overtone); 4,760-5,210 cm-1 (combination region).   

- Carboxylic acids: around 6,920 cm-1 (first overtone), 10,000 cm-1 (second overtone 

of nonbonded carboxylic acid hydroxyl), 12,500 cm-1 (third overtone); the main 

combination peak (O-H stretch combined with C=O stretch) is at 5,290 cm-1.  

- Water (liquid): the main combination bands are present at 10,300 and 6,900 cm-1 

involving the symmetric and asymmetric stretch modes, although these two bands 

are generally referred to first and second overtones.  

Overtone and combination bands of the N- H 

Regarding the primary amines would expect a double band at about 6,553 and 6,730 

cm-1 due to a first overtone of stretching of the NH group and a band at about 9,700  

cm-1  for the second overtone, the third is a doublet at 12,400 and 12,840 cm-1. Primary 

amines show a combination region around 5,000 cm-1. Secondary amines have a single-

band- first overtone around 6,530 cm-1. Second ammines show a second set of 

combination bands around 12,380-12,000 cm-1. The aromatic amines show absorptions 

around 6,890 and 6,690 cm-1.  

Other important overtones and combination bands 

There are few other bands, apart from those that affect the bonds C-H, O-H or N-H, 

that may be considered important for the NIR spectra interpretation in food 

fermentation application.  

The carbonyl group has an intense band at about 5,880 cm-1 and therefore one should 

expect that also possesses one to five overtone at about 3,450, 5,130, 6,900, 8,620 and 

10,300 cm-1. In addition to overtones, combination bands involving C=O stretching are 

present in the region 4,760-4,445 cm-1 for aldehydes. 

The first overtone of P-H stretching is appreciable at 5,288 cm-1 and the POH group 

has a peak at 5,241 cm-1. 

The thiol first overtone is present at 5,050 cm-1 and its phosphorus group (PSH) shows 

a doublet at 5,080-5,000 cm-1. 

The carbohydrates, consisting mostly of aliphatic cyclic groups with O-H residuals, 

have peculiar absorption related to these constitutional groups in the NIR region. The 

bands normally associated with starch and sugars as C-H and O-H bands are at 4,000 

cm-1 (C-H stretch and the combination of  C-C and C-O-C stretch), 4,283-4,386 cm-1  

(combination of C-H stretch and CH2 deformation), 4,762 cm-1(O-H bending and C-O 

stretch combination), 6,897 cm-1 (2  of O-H) and a doublet at 9,911 and 10,288 cm-1 

(3 of O-H of saccharides). 
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The proteins instead show three main absorption bands, in the region of the 

combination of the NH group, in the region 10,277-9,800 cm-1 (N-H first overtone), 

6,667-6,536 cm-1 (N-H second overtone), 4,878.4,853 cm-1 (N-H stretching 

combination). Moreover in there region 4,613-4,587 is possible to distinguish N-H 

bend overtone and the combination of C=O stretch, N-H bending and C-N stretching.  

 

Physical effects  

In addition to the information due to chemical constituents, it is possible to extract 

information concerning the physical properties of the sample analysed from the NIR 

spectra. Physical characteristic, such as particle size and shape or sample surface are 

reflected in scattering variation. Mainly what is observed in the spectra is a change in 

the baseline, and in co-linearity phenomena among the wavenumbers. For example, a 

multiplicative scattering effect (systematic baseline slope change between different 

spectra) can be observed when changing cuvette path while measuring a transparent 

solution in transmittance; or when measuring powders in diffusive reflectance. In other 

cases scattering effect can be additive light scattering (constant baseline drift between 

different spectra), i.e. for turbid aqueous solutions measured in visible transflection 

spectroscopy. The scattering effect is generally corrected from the spectra by applying 

different approaches, from very simple ones, like correction according to Beer-Lambert 

law or Kubelka-Munk theory or with multivariate techniques as multiplicative scatter 

correction (MSC) or standard normal variate (SNV) (Martens, Nielsen &  Engelsen, 

2003), which will be further introduced in Chapter 3. 

In other cases the spectral information about physical changes can be useful for 

studying the system. This is the case presented in PAPERS I and II where changes in 

number and size of casein micelles during acid milk coagulation were modelled. 

An example of a series of spectra collected during lactic acid fermentation monitoring 

(PAPER I, II and III) is reported in Figure 10. Is clear from Figure 10 how NIR spectra 

collected from a matrix in fermentation, in this case milk, are mainly characterized by 

water absorption at 6,900 and 5,555 cm-1, scattering effect, baseline drift. 

From such kind of results is difficult to observe relevant information, is therefore 

necessary to pre-treat the data and to adopt multivariate data analysis strategies in order 

to highlight differences due to fermentation progress. 

 

http://scholar.google.it/citations?user=fvsjbzYAAAAJ&hl=it&oi=sra
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Figure 10. Series of spectra collected during a lactic acid fermentation trials from the 

experiments reported in PAPER I, II and III. 

 

 

2.2.2 Instrumentation (McClure, 2001) 

A generic spectrometer that emits in the infrared region is constituted by a group of 

basic elements: a radiation source, a wavelength selector, a system for the exposure of 

the sample to the radiation and a detector, according to the scheme shown in Figure 11 

(McClure, 2001). 

 

Figure 11. Schematic overview of basic components in spectroscopic instruments. 

The radiation sources are mainly incandescent bulbs or light emitting diodes (LEDs). 

In many cases, normal tungsten lamps are used, being considered as a economic and 

helpful source of NIR radiation. Each source obviously has a specific range of 

emission wavelengths. For example, incandescent sources are effective for visible 

radiation and the NIR, the LEDs are limited to specific wavelengths according to the 

material used in their manufacture. Tungsten-halogen lamps with quartz envelopes are, 

by far, the most popular source of NIR energy. 

Wavelength selectors are different in technology: diodes or filters, as photodiode arrays 

(PDA), diode array detector (DAD), laser diode (LD), fixed filters (FF), wedge 

interference filters (WIF), tilting filters (TF), liquid tuneable filters (LCTF), prism, 

grating, Fourier-transform NIR (FT-NIR). 
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Also among the detectors there are different ones to choose according to the kind of 

analysis to be performed. The most popular are: Silicon (photovoltaic) sensors, they 

range from 360 to 1000 nm, and PbS (lead sulphite) detectors are used for the 900-

2600 nm region and indium gallium arsenide (InGaAs) detectors.  

 

FT-NIR Instrument design 

This section presents in detail the Fourier-transform NIR spectrometer as in all the 

application presented the data have been collecting by this class of instruments. A 

diagram of such an instrument is shown in Figure 12. 

 

Figure 12. Instrumental setup of an FT-NIR instrument. 

The core of a FT-NIR is the interferometer (square in Figure 12). The interferometer 

consist of a beam splitter, a fixed mirror and another mirror, which forms an angle of 

90° with the first, moving back and forth precisely. In a standard Michelson 

interferometer (Figure 13 left), light from the source, after entering, is divided into two 

equal beams by a beamsplitter. One beam exceeds the splitter and one that is reflected. 

Both the radiation is then reflected by the mirrors to the splitter and pass through it. By 

changing the distance of the mirror from the splitter is caused a continuous change in 

the optical path difference between the two beams, thus create interference in the 

radiation. The intensity as a function of mirror displacement is called interferogram. 

The spectral information contained in an interferogram is then retrieved using a Fourier 

transformation. 

Bruker and ABB instruments are not built with a Michelson configuration, but with 

double-pendulum interferometer (Figure 13 right). The advantage of an interferometer 

with cube corner mirrors (so called Rock Solid™ interferometer in Bruker instrument) 

is to minimise the problems due to mirror misalignment and thus to be more robust 

towards mechanical distortion. Moreover the position of mirrors in these systems is 

controlled using a Helium-Neon laser, which permit the performance of the internal 

calibration. The wavelength stability of the HeNe laser results in a high performance in 

term of wavelength accuracy and precision. 
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Figure 13. Schematic representation of interferometers. Left: a classical Michelson 

interferometer, right: Rock Solid™ interferometer contained in Bruker Optics instruments. 

2.2.3 Sample interface and measurements modes  

 

With the high throughput of FT spectrophotometers, it is possible to have different 

measurement channels and modules in one instrument. The multipurpose permits the 

analysis of different kind of samples (liquid, semi-solid, solid).There are three main 

types of optical measuring modes. 

Sample interface 

The standard approach is to measure the sample using transmission spectroscopy. The 

light from the source is directed to the sample with a focused or parallel beam. Some 

light is absorbed and the remaining energy is transmitted to the detector (Figure 14, 

left). Gasses and liquids are often sampled in transmission, but also reflecting and 

scattering samples could be measured.  

 

Figure 14. Principal of transmission, reflection and transflection. 

The main sampling tools to be used in transmission spectroscopy are: 
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- Quart cuvette with path length between 1 mm and 10 mm (used in Paper IV, 

VI, VII and VIII), 

- Fiber optic probe for liquids in which the path length is defined by a fixed 

length at the probe head; according to the analysis different probe geometries 

could be used, 

- Petri dishes use for samples with a consistency between solid and liquids form 

a point of view if their optical properties. 

Reflection is used for solid surfaces, particles in powders, pallets or granulates. 

Reflection is generally referred to as diffusive reflection. In diffusive reflection 

spectroscopy, the incident light hits the sample surface and then is reflected with a 

different angle than the incident one. The light is generally collected at an angle 

between 5 and 85 degrees to the incident light (Figure 11, middle).  There are different 

kinds of accessories to measure in diffusive reflection: integrating sphere, multiple 

fiber optic probes, rotating cups, etc. In situation in which the path of the container is 

too long or the kind of matrix does not allowed a simple measure in transmission, 

transflection measurement is an option. Transflection measures a combination of 

transmission and reflection. A mirror is placed in the light path, the light transmitted 

through the sample is reflected by the mirror at the same or almost the same angle as 

the incident beam and goes back to the detector (Figure 14, right). The detector can be 

a diffusive reflectance probe or an integrating sphere. This technique is useful for 

emulsions, gels and turbid liquids. In the applications presented transflection has been 

used for lactic acid fermentation monitoring (PAPER I, II and III). Paper V presents 

the use of diffusive transflection through the use of a fiber optic probe. Similar to 

regular transflection in diffusive transflection the light passes the sample twice but the 

diffusion of the light reflected, scattered or transmitted will pass through part of the 

sample. Numbers of probes are available in the market to apply this kind of measure 

directly on-line.  

 

Sampling modes 

The timing of process measurement is fundamental for its control. Analysers can be 

referred to be off-line, at-line, on-line, in-line (Figure 15). 
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Figure 15. Places on the process line where spectroscopic instruments can be implemented. 

- Off-line or laboratory analysis: samples are collected from the line and analysed in 

the laboratory, e.g. a Quality Control laboratory. 

- At-line analysis: the instrument is placed close to the process line area but the 

sampling is done manually by an operator. 

- On-line analysis: no operator is required as the analysis is made by automatic 

sampling in the process line: the product is deviated from the main line, analysed 

and reintroduced in the line. This could be necessary if the sample should be 

conditioned before analysis (removing bubbles, adjust in temperature).  

- In-line analysis: in this case sensors are integrated into the production line.  
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2.3 Mid Infrared Spectroscopy (IR) 

2.3.1 Spectra interpretation 

Mid IR spectroscopy is based on the absorption in the range 4,000 – 400 cm-1 due to 

fundamental rotational molecular vibrations (banding and stretching). Contrary to NIR 

spectroscopy bands are less overlapped and the region 1,500 – 1,000 cm-1 defines a 

fingerprint characteristic of the sample understudy. In general IR spectroscopy is often 

used to identify structures because functional groups give rise to characteristic bands 

both in terms of intensity and frequency (Figure 16).  

 

Figure 16. Schematic representation of vibration bands absorptions in the mid IR region. 

The vibrational energy is directly related to the strength of bonds and the mass, thus 

permitting the identification of specific chemical entities. Table 2 reports examples of 

attribution of peaks to type of bonds.  

The complexity of the matrix foodstuff and the combination of all the biochemical 

reactions occurring during fermentation enhances displacements of peaks due to the 

various compounds present in the matrix, which influence the absorbance of a bond. 

For this reason is more common to find the characterisation of typical peaks also 

according to the matrix under study. Therefore, there will often be a comprehensive 

study of the characteristic peaks founded for each different foodstuff in each 

paperwork reported in Chapter 4.  

 

 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Functional_group
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Table 2.  Examples of absorption frequencies of functional groups in mid IR region. 

Bond Type of bond Absorption peak 

at cm-1 

C-H 

Methyl and methylene 1470-1260  

2870-2960 

C═CH2 900 

 3080-3020 

C═CH 990-900 

 3020 

Aromatic 900-690 

 3070 

C-C 
 1660-1600 

Aromatic 1580-1450 

C=O  1775-1685 

O-H 

Alcohols, phenols 3670-3200 

Carboxylis acids 3560-3000 

Water 3700-3050 

N-H 

Primary Amines 1640-1560 

 3500-3400 

Secondary Amines >3000  

C-O 

Primary Alcohols 1060-1040 

SecondaryAlcohols ~1100  

Tertiary Alcohols 1200-1150 

Carboxylic acids 1300-1250 

C-N 

Aliphatic amines 1220-1020 

R-N-C 2110-2165 

R-N=C=S 1990-2140 

N-O  1540-1380 

 

By way of example Figure 17 reports the fingerprint region of spectra collected from 

different kind of sugars and ethanol typically present in wort fermenting to beer. This 

data are extracted from the results obtained in PAPERVII.  
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Figure 17. Example of spectral information in the IR fingerprint region (1,200-950 cm-1) of 

sugars (maltose, fructose, dextrin, maltotriose and sucrose) and ethanol present in beer in 

fermentation. 

Is possible to notice that this region brings lot of information, leading to a 

differentiation among some of the sugars, like fructose, sucrose and dextrin, and the 

ethanol. Anyway the absorption peaks are overlapped, especially for maltose and 

maltotriose. Even in this region, characterised by specific absorption bands, the use of 

multivariate data analysis is necessary to have a more clear information from the 

spectral results.  

2.3.2 Instrumentation 

In the experiments monitored by mid IR spectroscopy (papers III, IV, V and VII) the 

instrument used was a FT-IR spectrometer. The details concerning the built in 

technology has been already exposed in chapter 2.2. Briefly, the advantage of a FT-IR 

in respect with a FT-NIR is the higher sensitivity and speed in acquiring spectra. 

Moreover, progress has been done in the field of mid infrared region application in 

fitting a purge system to eliminate instability caused by the presence of air, i.e. 

interference of water (absorbing at 3,657 cm−1 and 1,595 cm−1) and carbon dioxide 

(absorbing at 2,380 cm-1). 
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2.3.3 Sample interface and measurement modes 

Sample presentation could be considered the most critical factor in the use of mid IR 

spectroscopy in food fermentation processes. Indeed it gives more detailed spectral 

information but its use is more limited if compare to the FT-NIR. 

However in recent years advances in sample presentation technique have been done 

and different holders are on the market, especially for solid samples. 

 

Transmission windows and cells 

Transmission-based sample presentation techniques have been used for different kind 

of samples: from gases to liquids, from pastes to powders. As said before, measuring in 

transmission means that the IR beam of the spectrometer is passing through the sample 

and the transmitted IR intensity is measured. Owing to the high IR absorptivity of 

water, samples have to be very thin, usually only a few micrometres of optical path 

length. For analysing paste or viscous samples is, therefore, necessary to form smear or 

capillary films. Nowadays, transmission is mostly used for gas samples where is 

possible to use even cells with path from 1 to 20 cm. 

Potassium bromide (KBr) pellets are used for the measurement of powders or granules. 

These preparations will not be reported in detailed as all the problems related to 

transmission windows have been solved by the implementation of attenuated total 

reflectance (ATR) cells. 

  

Attenuated total reflectance 

In this technique, the IR beam is guided in an IR transparent crystal by total reflection. 

Due to quantum mechanical properties of the IR light, the electromagnetic field may 

extend beyond the crystal surface for about one micron as a so-called evanescent field.  

 

 
Figure 18. Scheme of an ATR cell. 

 

As shown in Figure 18, the light from the source enters the ATR crystal and is 

reflected at the sample-element interface. Multiple reflections are generated due to the 
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angle of incidence of the accessory. At each point where reflection occurs, radiation 

penetrates the sample for a short distance and it decays logarithmically as a wave into 

the sample medium. Along the path the reflected energy is reduced by the part 

absorbed by the sample.  

The material used to manufacture the internal reflectance element should have high 

refractive index, generally zinc selenide (ZnSe) or germanium (Ge) are the most 

employed. 

An ATR cell has been used for yoghurt (PAPER III), wine (PAPER IV and V) and 

beer (PAPER VII) fermentation analysis. ATR revealed to be easy to use for liquid and 

viscous samples, with the only shrewdness of avoiding bubbles between the sample 

and the crystal. 

 

Diffusive reflectance 

Diffusive reflectance modes can be adapted also for mid IR spectroscopy. It is 

generally used for products with textured surfaces which cannot be analysed by ATR 

and powders. In this case sample preparation is required and often means grinding to a 

fine powder and mixing with KBr.  
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In the previous chapter it has been reported that the NIR e mid IR information is often 

characterized by overlapped bands, scattering effect, baseline drift and, as the others 

analytical techniques, is affected by the instrumental noise. Chemometrics is, therefore, 

the proper approach to explore and extract relevant information from spectral data, 

remove/correct/minimize the spectral artefact due to the experimental conditions and 

correlate the relevant information with the proper parameter to be controlled/measured. 

The general definition of Chemometrics is the science of relating measurements made 

on chemical system or process to the state of the system via application of 

mathematical or statistical methods (ICS, International Chemometrics Society). 

Chemometrics clusters several topics such as design of experiment, information 

extraction methods (modelling, classification and test of assumption) and techniques 

for studying and understanding chemical mechanisms. 

In this chapter a general overview of the most common methods adopted in spectral 

data analysis are reported, with a particular detail to the less ordinary techniques which 

have been applied in this thesis.  

 

3.1 Spectral pre-treatments  

After the spectral data collection the first, and most important, step is to pre-process the 

data. The aim is to enhance the relevant information needed, and decrease the influence 

of unwanted side information contained in the spectra. 

The most common pre-processing techniques used in infrared spectroscopy can be 

divided into two groups: scatter correction methods and spectral derivatives. The most 

representative for each category are presented below. 

 

Smoothing (Gorry, 1990) 

The purpose of smoothing correction is to minimise the noise present in the spectra. 

The smoothing method applied in the papers reported in this thesis is the one proposed 

by Savitzky and Golay (Savizky & Golay, 1964), which is a moving window averaging 

method. An odd window size is selected, the data in the window are fitted by a 

polynomial (of different degree, generally second degree), and the central point of the 

window is replaced by the value of the polynomial. The choice of the size of the 

window is fundamental: large windows may eliminate important spectral information; 

while too small windows may not correct the noise present in the data. 

 

Scattering correction methods (Rinnan et al., 2009)   

Scatter-corrective methods include Multiplicative Scatter Correction (MSC), Inverse 

MSC, Extended MSC, Extended Inverse MSC, de-trending, Standard Normal Variate 

(SNV) and normalisation. All the mentioned methods aim to reduce the spectral 
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variability related to the sample physical properties (scattering) and to adjust the 

baseline drift between samples. 

The most commonly used techniques applied in this thesis are presented.  

 

MSC 

Multiplicative Scatter correction is used as pre-processing method in NIR spectral data 

in order to remove artifacts and imperfections before data modeling. 

MSC consists of two steps: 

 

- The estimation of the correction coefficient (additive and multiplicative 

contribution): 

     (9) 

 

- The correction of the recorded spectrum: 

 

   (10) 

Where Xorg is the spectra measured by the IR instrument, xref is the reference spectrum 

used for pre-processing the entire dataset, generally the average spectrum of the 

calibration set, and e is the un-modelled part of Xorg. b0 and bref,1 are scalar parameters, 

calculated after a least square linear regression performed on the absorbance values of 

the sample spectrum versus those at the corresponding wavelength in the mean 

spectrum. b0 and bref,1 represent the intercept and the slope of the linear equation, 

respectively. 

MSC separates multiplicative and additive effects of the scatter in the spectra, 

minimizing spectral variation not related to the chemical composition of the sample. 

 

SNV 

The basis of SNV is the same as for MSC, except that reference signal is not required. 

Thus the corrected spectrum (Xcorr) is defined as: 

 

         (11) 

Where a0 is the average value of the sample spectrum to be corrected and a1 the 

standard deviation from the sample-spectrum. As no Xref is used the SNV normalisation 

is more effected by noisy spectra. 

Dhanoa et al. (1994) have demonstrated that MSC and SNV are similar up to a simple 

rotation and offset correction. Nevertheless, an important consideration must be said. 
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While SNV does not change the shape of the spectra, MSC might slightly change the 

shape of the spectra being corrected. This is especially relevant when the spectrum 

chosen as reference is very different from the bulk of the spectra. This is the case of 

highly noisy spectra.  

 

Spectral derivation 

Derivatives have the capability to remove additive and multiplicative effect and to 

enhance small spectral differences. In particular, the first derivative removes only 

additive effects (e.g. constant baseline drifts); whereas the second derivative removes 

also the presence of linear trends (multiplicative effects). Apart from this, both 

derivatives lead to an increased spectral resolution at the expense of a decrease of 

signal-to-noise ratio. 

In the works presented in this thesis, Savizky-Golay derivation was used. This method 

also includes a smoothing step. The method requires the optimization of three 

parameters:  

1) The definition of a polynomial degree. Usually a second order polynomial degree is 

appropriate. 

2) A window, i.e. the number of points used to calculate the polynomial. The 

optimization of this parameter is crucial, since large windows may eliminate important 

spectral information; while small windows may increase the noise of the data. 

3) The derivative degree, depending which derivative wants to be performed. 

 

In details to find the derivative at a centre point i: a polynomial is fitted in a symmetric 

window on the raw data, the parameters of the function fitted are calculated and the 

derivative is analytically found for that point.  

 

3.2 Principal Component Analysis  

Principal component analysis, PCA, (Jackson, 1981) is a multivariate projection 

method which is used for general exploratory data analysis. It forms the basis of 

multivariate data analysis. It is applied for data compression, outliers’ detection, 

pattern recognition and it is a powerful tool for data visualisation (Jolliffe, 1986). In 

addition, PCA provides an understanding of the relationships between all the variables 

(i.e. variables which contribute similar information to the model) and among variables 

and samples/observations.  

Given a matrix of data (X) composed of m rows, representing observations, and n 

columns, standing for variables, PCA decomposes X as sum of  r ti and pi: 

 

  (12) 
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Where T stands for object scores and contains information about how the samples 

relate to each other, P stands for variable loadings and unravel the magnitude (large or 

small correlation) and the manner (positive or negative correlation) in which the 

measured variables contribute to the scores, and E for residuals, i.e. the unmodelled 

variation (Figure 19).  

 

 
Figure 19. PCA decomposition of data matrix 

 

Mathematically, PCA relies upon an eigenvector decomposition of the covariance or 

the correlation matrix of the process variables. For a given data matrix X (M x N), 

where M are the observations/object and N the variables the covariance matrix is 

expressed as: 

    (13) 

The pi vectors are eigenvectors of the covariance matrix; for each pi:   

 

   (14) 

Where λi is the eigenvalue associated with the eigenvector pi. The pi are orthonormal 

columns. Whereas ti form an orthogonal set. Another way to look at it is that ti are the 

projections of X onto the pi. 

From a geometrical point of view the first principal component (PC1) is calculated as 

the line in the the K-dimensional space that best approximate the data in the least 

square sense, and represent the maximum variation of the data set. Usually the one 

component is not sufficient, thus a second component (PC2) is calculated orthogonally 

to the first line (PC1). PC1 and PC2 define a plane (Figure 20), and the 

observations/samples are projected in this new defined space. The scores are now 

defined as the co-ordinate values of each observation on this plane.   
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Figure 20. Geometric interpretation of PCA 

 

Q and D are two figures of merit important for PCA models evaluation. The Q-statistic 

for one object its distance from the model; T2-statistic its distance from the centre of 

the model. In Figure 20 are reported two extremes observations: a sample with high Q 

value and a sample with high T2 value in order to understand graphically the meaning 

of the two figures of merit. This is a good demonstration of the possible use of PCA as 

a screening for outliers’ presence in the dataset.  

 

3.3 Multivariate Curve Resolution  

Multivariate curve resolution, MCR, is a technique commonly used in complex kinetic 

systems. Indeed it aims to resolve multi-component mixtures into a simple model 

consisting of the weighted sum of the signal of the pure components involved (Tauler 

& Barcelò, 1993; Tauler et al. 2005). In detail a given D data matrix is resolved in into 

the product of column wise matrix C (M x F) associated with concentration profiles 

and a row-wise matrix S (F x N) describing spectra profile. The residuals are in the E 

matrix. A schematic overview is reported in Figure 21. 

 
Figure 21. Schematic overview of dataset decomposition performed by MCR 
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As described previously M is a scalar of the total number of observation or time points 

in the dataset, whereas N represents the variables, i.e. the wavenumbers. For what 

concern F it is the number of components in the system to be resolved. 

Decomposition of D is achieved by iterative least-squares minimization of ∥E∥ under 

suitable constraining conditions (i.e. non-negativity in spectral profiles, unimodality 

and non-negativity in concentration profiles), and also closure relations between 

reagents and products of a given reaction.  

A powerful extension of MCR used in the technique use in the PAPER II and VII is 

multi- experiment MCR. When more than one experiment is considered is possible to 

augment in a column-wise manner the D data matrix. The main advantage will be that 

ST is still a single matrix with the shape of the pure species, describing all the 

experiments present in the D augmented matrix. Whereas the C profile will be 

composed by submatrices, Ci, of the individual experiments. In this way the 

concentration profiles of the chemical species are free to change in independent 

manner from one experiment to the other. 

 

3.3.1 MCR-ALS 

The optimization of MCR with ALS was presented by Tauler, Smilde and Kowalski 

(1995), and has been used in numerous papers, especially in kinetic processes (Amigo 

et al. 2006a; Amigo et al. 2006b; de Juan et al. 2006; Rodriguez-Rodriguez et al. 2007; 

Garrido et al. 2008; Pindstrup et al. 2013).  The main steps are presented in Figure 22. 

Before applying MCR method, the number of component should be selected through 

PCA, in our case with Single Value Decomposition (SVD) method. Then is necessary 

to select initial estimates in the concentration and/or spectral profiles. There are 

different way for choosing initial estimates in spectral profiles. 

 
Figure 22. Steps characterizing the MCR-ALS optimisation 
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In the PAPER II the initial estimates were chosen in the most straightforward way, i.e. 

within a representative batch three spectra recorded at the beginning, in the middle and 

at the end of the fermentation. In PAPER VII the estimates used were spectra of pure 

components (ethanol and dextrins) present in the fermenting wort. In that case another 

commonly strategy was used: in the column-wise augmentation of the D matrix were 

added also the spectra of other pure compounds present in the wort (maltose, 

maltotriose, sucrose and fructose). This is an additional way to initialize the system 

parameters and improve the MCR-ALS model results. At this point the ALS 

optimization stars the interactions. To achieve the final results a stopping criterion 

must be imposed. The one presented in this thesis is percentage of Lack of Fit (%LOF) 

and it is generally set to 0.1%, that means that the algorithm stops when the relative 

difference between two consecutive interactions is below 0.1% LOF. The Equation of 

%LOF is: 

2
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% 
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i j
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i j

e

 LOF =100  

d

  (15) 

where emn is each mnth element of the residual matrix E, and dmn is each mnth element 

of the D matrix.  

As said earlier is necessary to impose some constraints to the MCR-ALS solutions, 

because the product CST is subjected to rotational and intensity ambiguities. The 

constraints used are chosen according to the available information about the target 

system. The most commonly used are non-negativity, unimodality and closure, and can 

be applied both on spectral and concentration profiles. 

The effect of non-negativity and unimodality are here presented in Figure 23 and 24 as 

they were applied in PAPER II and VII. Non negativity is applied on spectral profile 

when is known that the technique used does not allowed negative values, is the case of 

IR spectroscopy, and as well in concentration profile in case we are talking about 

concentration that inherently cannot have negative value.  
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Figure 23. Comparison of spectral profile non optimised and with non-negativity constraint 

 

Unimodality constraint was applied in the concentration profiles because it impose the 

presence of only one maximum in each profile, as it is expected to be in a 

biotransformation process.  

 
Figure 24. Comparison of spectral profile non optimised and with unimodality constraint 

 

As seen the choice of the constraints always depends on previous knowledge of the 

system and the measure technique employed. Constrains could strongly influence the 

models obtained so is important to used them as less as possible and, when necessary, 

to use them properly. 
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3.4 Multivariate regression  

This section is not an exhaustive discussion of all the regression techniques applied in 

Chemometrics, it want just to go in detail into the two techniques applied in this PhD 

project: Partial Least Square (PLS) regression and Locally weighted regression 

(LWR).  

The multivariate regression methods are regression instruments coming from the 

necessity of overcome the problems related to OLS Regression (Ordinary Least 

Squares) in treating with predicting variables highly correlated, like spectroscopy data, 

and influence by noise. 

 

3.4.1 Partial Least Square (Wold et al., 1983; Geladi & Kowalski, 1986) 

PLS is one of the chemometric strategy more used with PCA, actually both methods 

are based on latent variables concept. 

PLS is a regression method which constructs a linear regression equation between the 

scores of the predictor variables and the scores of the dependent variables. Similarly to 

the PCA method, the PLS decomposes both the X matrix of the predictor variables and 

simultaneously the Y matrix of the dependent variables, creating principal directions 

that describe the maximum variability of X and, at the same time, taking into account 

the maximum covariance between the scores of X and Y. 

The PLS model can be considered as consisting of outer relations between X and Y 

according to the two equations: 

X=TPT+E   (16) 

 

Y=UQT+F   (17) 

 

By using the score of X as predictive variables e Y scores as new dependent 

variables, is possible to obtain their inner relation: 

 

  (18) 

 

Where  is the regression coefficients vector of the latent variables, is the 

inner relation residual matrix, and  is the Y scores matrix.  is calculated 

with least square regression between the single scores of X and Y. 

The loading weight, W, can be calculated from the estimation of the scores, T, 

in the X matrix: 

    (19) 
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In addition to the PCA model, in PLS there is also a relation linking X and Y 

matrices (Eq.20): 

 

        (20) 

 

The properties of scores and loadings are the same as described for PCA, in 

addition is important to say that the weights are orthonormal. 

The regression conducted with PLS method is linear. The choice of a linear 

model often require a data pre-treatment (mean centring, normalisation and so 

on) in order to get rid of dynamic character of the trajectories. 

 

3.4.2 Locally weighted regression  

Locally weighted regression (LWR) is a method applied when the correlation between 

the spectral signal and the reference measure has a non-linear nature. Cleveland and 

Devlin (1988) LWR as methodology to fulfil this goal and Næs and Isaksson (1992) 

and Naes, Isaksson and Kowalski (1990) applied the strategy to infrared spectroscopy.  

In most of the cases the non-linear nature of the correlation between spectra and 

reference measure is approached correcting the spectral signal with pre-processing 

methods to eliminate or reduce unwanted contribution to the signal, such as light 

scatting. Mainly the idea of spectra correction is to make the signal of IR analysis more 

similar to Beer’s law spectroscopy. 

In some cases is not enough correcting the spectra to get rid of non-linearities. Is the 

examples of dataset characterised by high influence of the experimental design or the 

time trajectory.  

The main principal of LWR is to select a set of samples (local points) close to the 

prediction spectrum to construct a calibration dataset and base the regression surface 

on these samples. Thus, for each new predicted sample a weighted regression 

calibration is made. From the first approach investigated until now different closeness 

techniques have been investigated (Aastveit & Marum, 1993; Wang, Isaksson & 

Kowalski, 1994; Shenk, Berzaghi & Westerhaus, 1997). In the experiments presented 

in paper VI, as previously reported by  Dahlbacka and  Lillhonga (2013), the Euclidean 

distance was applied to determine the closeness to the dependent variable, the auto-

scaled distance in PC space to determine the closeness to the spectrum, and enables 

model regression on PLS. 

To summarize the main steps characterizing the analysis are reported (Bevilacqua et 

al., 2013) as they were applied in the paper VI:    
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1. Definition of the number of nearest neighbours (local points) close to the 

prediction spectrum to be used to build local calibration models;  

2. Find for every new object the samples closest to it in the local calibration 

model (nearest neighbours);  

3. Build a local calibration model using the nearest neighbours only; assign the 

weights () of the neighbours in the local model according to their Euclidean 

distance to determine the closeness to the dependent variable and the auto-

scaled distance in the principal components space;  

4.  Prediction (by PLS regression) of the new sample by applying the local 

calibration model developed. 

 

 As demonstrated in the works mentioned from the literature and in Paper VI, LWR is 

a good method to be used to correct nonlinearities in IR relationships.  LWR is only 

one of the possible nonlinear regression approach, other example is nonlinear PLS.   

However is important to preliminary investigate the data and to try also if the 

nonlinearities could just be solved by pre-treatment for then performing a linear 

regression analysis. 
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In this chapter the experimental part of the PhD research is reported as scientific papers 

overview about the four matrices investigated: yoghurt, wine, beer and sourdough. 

In the introduction of each paper a comprehensive idea of the state-of-the-art of the 

traditional techniques used for monitoring each fermentation process is given, together 

with the recent progresses in infrared spectroscopy implementation for the different 

kind of fermentation monitoring.    

Here a summary, in table format (Table 3), is reported as general overview of FT-NIR 

and FT-IR implementation for quantitative and qualitative analyses of food 

fermentation processes and the final products obtained.   

 

Table 3. Some applications of FT-IR and FT-NIR for fermented food analysis 

Food category 

Food 

product References 

Alcoholic 

beverage 

Wine 
Cozzolino & Curtin, 2012; Buratti et al., 2011; 

Pizarro et al., 2011; Fernández-Novales et al., 2008 

Beer 
Engel et al., 2012; McLeod et al., 2009; Inon et al., 

2005; Duarte et al., 2004 

Others Lachenmeier, 2007 

Acetic acid 

product 
Vinegar 

Bao et al., 2013; Duran et al., 2010; Garrido-Vidal 

et al., 2004; Sáiz-Abajo et al., 2006 

Dairy products 

Fermented 

milks 

Ntsame Affane et al, 2011; Navratil et al., 2004; 

Cimander et al., 2002 

Cheese 
González-Martín et al., 2014; Kraggerud et al., 

2014; Holroyd, 2013 

Fermented meat 

products 

Sausages Collell et al., 2012 

Ham Prevolnik et al., 2014; García-Rey et al., 2005 

Fermented cereal 

food 
Dough 

Li Vigni & Cocchi, 2013; Sinelli et al., 2008; AiT 

Kaddour et al., 2007 
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The references reported are not an exhaustive revision of all the bibliography in the 

literature but the most relevant and recent papers for giving a general idea of infrared 

application in each of the food category presented. 

In all the cited works (Table 1) is well explored how FT-NIR and FT-IR, combined 

with chemometric techniques, in recent years have proven to be a successful tool for 

quantitative and qualitative modelling of a wide variety of fermented food products and 

their production processes. Clearly emerge the advantages of infrared spectroscopy 

implementation due to its non-destructive nature, no sample preparations and quite low 

running costs.  
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Abstract 

The aim of this paper was to evaluate the suitability of Fourier Transform-Near 

Infrared (FT-NIR) spectroscopy, combined with multivariate data analysis, to monitor 

milk lactic acid fermentation as an indication of possible deviations in quality 

parameters. Fermentation trials performed with different inocula (Streptococcus 

thermophilus and Lactobacillus delbrueckii subsp. bulgaricus as single or in mixed 

cultures) at three incubation temperatures (37, 41, and 45 °C) were monitored by FT-

NIR spectroscopy. Rheology and conventional quality parameters (microbial counts, 

pH, titratable acidity, lactose, galactose and lactic acid concentrations) were used as 

reference values to assess the findings with FT-NIR spectroscopy. Principal component 

analysis was applied to spectra to uncover molecular modifications. PC1 scores, 

rheological data, and conventional quality parameter values were modelled as a 

function of fermentation time to designate critical points all along the process. Results 

showed that FT-NIR spectroscopy is a useful tool for real-time assessment of curd 

development during fermentation, offering crucial information in agreement with 

rheology and conventional quality parameters. 

 

Keywords: FT-NIR; lactic acid fermentation; modelling; rheology. 

 



4.1. Overview on milk lactic acid fermentation 
 

71 
 

Introduction 

Fermentation is one of the earliest methods adopted to obtain value-added milk 

products with an extended shelf life. Although about 400 different names have been 

found all over the world for traditional and industrial fermented milks, these products 

are quite similar, including only a few variations.1 Three broad categories of fermented 

milk products have been identified (i.e., lactic fermented, yeast-lactic fermented and 

mould-lactic fermented milks) depending on the kind of milk used in the production 

process, the predominant microbial species in the inoculum and their metabolic 

products.2 Fermentations carried out by lactic acid bacteria are the most widespread in 

the dairy industry for milk acidification and flavour development,3 of which yoghurt is 

the most common. The Codex Alimentarius Commission defines yoghurt as a 

symbiotic culture of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. 

bulgaricus which should be viable, active and abundant in the product to the date of 

minimum durability.4 The sour taste characterising lactic acid fermented dairy products 

originated from the conversion of lactose into lactic acid and the consequent milk pH 

reduction from around 6.7 to values lower than 4.5. 

An at-line control of the fermentation processes usually involves pH measurement and 

titratable acidity determination. Other key indicators of fermentation progress are lactic 

acid, carbohydrates (i.e. lactose and galactose), and bacterial concentrations, but they 

are not routinely measured, being expensive and time-consuming. The final quality of 

fermented milk products is strictly related to the exact determination of the optimal 

incubation time. Milk composition variations, an anomalous behaviour of starter 

microorganisms, an incorrect control of the incubation temperature, as well as a 

number of other process variables, can yield end products with low overall quality. The 

risk of product failure can be reduced only by a complete understanding and an 

accurate monitoring of the process.5 An effective control at all stages of the 

fermentation process requires fast methods, providing real-time information. An easy, 

fairly innovative, cheap and non-destructive technique is near-infrared (NIR) 

spectroscopy, which has been proposed as an alternative to conventional analyses for 

in-time monitoring of various products and processes. Absorptions in the spectral range 

between 14,000 and 4,000 cm-1 are associated to the main chemical components of 

foodstuff, such as water, proteins, carbohydrates, and fats. In particular, NIR vibration 

and combination overtones of the fundamental C–H, N–H, O–H and C=O bonds are 

the main recordable phenomena.6 The use of NIR spectroscopy for dairy product 

analysis is well documented.7-10 In particular, during the last years the interest in dairy 

fermentation monitoring by means of NIR spectroscopy had increased. Navratil et al. 

described how the fusion of NIR spectroscopy and electronic nose data can be applied 

to the on-line monitoring of industrial fermented milk production.11 Moreover, Ntsame 

Affane et al. developed models to predict acidity parameters in Kefir by using NIR 
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reflectance spectroscopy, demonstrating its adequacy for screening purposes.10 One of 

the main features of NIR radiation is that it is composed of broad and mostly 

overlapped bands, which hinder the direct extraction of information from the raw 

spectra, making necessary the use of multivariate data analysis.10,12-13 One of the most 

widespread chemometric tools for qualitative data analysis is principal component 

analysis (PCA). It employs an orthogonal transformation to convert the original dataset 

into a subset of linearly uncorrelated highest-variance components (principal 

component - PC). The PCs are linear combinations of the original variables and each 

component explains a part of the total variance of data; in particular, the first 

significant component accounts for the largest source of total variance, while the 

further PCs explain the residual variation.9,14 The aim of this paper was the evaluation 

of the suitability of NIR spectroscopy, joined with multivariate data analysis (i.e. 

PCA), for the monitoring of lactic acid fermentation in milk. In particular, the 

possibility to develop an easy and fast protocol able to promptly detect possible defects 

in product quality parameters (e.g. acidity and texture) due to deviations from the 

regular processing trend was investigated. The availability of this protocol could be 

useful in the assessment of the best strategy for the management of nonconformities. In 

order to identify the main changes occurring during fermentation, conventional quality 

parameters and rheological characteristics were analysed and modelled as a function of 

fermentation time for the identification of the kinetic critical points. 

Materials and methods 

Materials 

Skim milk powder (Merck, Darmstadt, Germany) was reconstituted to 10% w/v with 

distilled water, distributed in 1 L bottles, and subjected to heat treatment at 112 °C for 

15 min and then stored at 4 °C until use. Bacterial strains were isolated from the 

commercial yoghurt culture YO-MIX™ 305 (Danisco A/S, Copenhagen, Denmark) 

and identified, by sequencing the amplified 16S rDNA region, as Streptococcus 

salivarius spp. thermophilus and Lactobacillus delbrueckii spp. bulgaricus. Pure 

cultures of the two strains were stored at -20 °C in appropriate media (see below) with 

added glycerol (20% v/v).  

Fermentation trials 

Frozen stocks of S. thermophilus and L. bulgaricus were activated by incubation at 37 

°C overnight in M17 broth (Merck, Darmstadt, Germany) and de Man, Rogosa, Sharpe 

(MRS) broth (BD, Franklin Lakes, NJ, USA) respectively, both modified by adding 

10% w/v lactose. After centrifugation for 15 min at 3,000 g, cells were harvested and 

resuspended in sterilized skim milk. For each fermentation trial, 800 mL of skim milk 

was inoculated with a single culture or with a mixed culture containing both 
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microorganisms (1:1). A calibration curve obtained through the correlation between 

cell number and optical density measured at 600 nm with a spectrophotometer (Jasco 

V650, Jasco Europe, Cremella, Italy) was used to set the inoculum size at 

approximately 106 CFU mL-1. Aliquots of about 60 mL of the inoculated skim milk 

were then aseptically distributed into sterile glass bottles and placed in a circulating 

water bath at the specific fermentation temperature (37 °C, 41 °C or 45 °C), for 7.5 h. 

Every 45 min, a bottle was taken to analyse the fermented milk, while spectroscopic 

and rheological evaluations were carried out continuously. A total of 9 different 

fermentation trials, twice replicated, were performed (18 experimental trials). 

Analytical results are reported as the average of the two technological replicates for 

each fermentation condition. 

Microbiological analysis 

From the incubated bottles, aliquots of about 10 g of sample were aseptically collected 

and resuspended in a 2% sodium citrate solution to obtain the first decimal dilution. 

After homogenization, appropriated serial dilutions (1:10) were made in duplicate, 

plated on modified (0.5% sucrose, 0.5% lactose) HHD agar (Biolife, Milano, Italy) and 

incubated at 37 °C for 48 h. The modified medium is able to differentiate the two 

strains on the basis of their acidifying abilities. Results are expressed as number of 

colony forming unit per gram of fermented milk (CFU g-1). 

pH and titratable acidity 

pH values were potentiometrically measured using a pH meter 3510 (Jenway, 

Dunmow, UK) equipped with a glass electrode. Titratable acidity was determined 

according to the IDF/ISO Standard n° 150 and expressed as percentage of lactic acid.15 

Both the analyses were performed in duplicate. 

Sugars and organic acids 

Lactose, galactose and lactic acid were determined by high-performance liquid 

chromatography (HPLC), using an equipment (ThermoFinnigan, Milano, Italy) fitted 

with a Carbo H4 pre-column (3.0 mm ID, Phenomenex, Castel Maggiore, Italy) 

followed by an Aminex HPX-87H cation exclusion column (300 x 7.8 mm, BioRad 

Laboratories, Richmond, CA, USA). Elution was performed isocratically at 65 °C with 

5 mM H2SO4 (Merck, Darmstadt, Germany) as mobile phase, at a flow rate of 0.8 mL 

min-1. Peaks were detected using a refractive index detector RI-71 (Showa Denko 

Europe GmbH, Munich, Germany) and registered by the Empower 2™ 

chromatography data software (Waters Corporation, Milford, MA, USA). For peak 

identification and quantification, calibration curves of each component were calculated 

by analyzing standard solutions in mobile phase as follows: lactose monohydrate 

(Merck, Darmstadt, Germany), ranging from 0.1 to 10 g L-1; galactose (Sigma-Aldrich, 
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St. Louis, MO, USA), ranging from 0.02 to 10 g L-1; L(+)-lactic acid (Merck, 

Darmstadt, Germany), ranging from 0.02 to 3 g L-1.  

Five grams of sample was added to 10 mL of acetonitrile (Merck, Darmstadt, 

Germany) and centrifuged at 5,000 g for 12 min at 4 °C (Rotina 380R, Hettich 

Zentrifugen, Andreas Hettich GmbH & Co. KG, Tuttlingen, Germany). The 

supernatant was filtered through a 0.45 μm PDVF-filter (Alltech, Milan, Italy) and 

injected in the 20 μL loop of the HPLC system. Sample preparation and injection were 

performed in duplicate. 

Rheological measurements 

Curd development was monitored at regular intervals on the same sample using a 

Physica MCR 300 rheometer (Anton Paar GmbH, Graz, Austria), supported by the 

software Rheoplus/32 (v. 3.00, Physica Messtechnik GmbH, Ostfildern, Germany). A 

dynamic oscillatory test was performed, using concentric cylinders (CC27) and 

applying a constant 1% strain at a fixed 1 Hz frequency. The inoculated skim milk (19 

mL) was inserted in the measurement element pre-heated at the desired fermentation 

temperature. Sample evaporation during the test was prevented mounting the proper 

solvent trap filled with deionised water. Storage (G’) and loss (G’’) moduli were 

measured in 2 min intervals throughout the whole fermentation process. 

FT-NIR spectroscopy 

Near infrared spectra of the inoculated skim milk during the fermentation process were 

collected at regular intervals from the same sample in transflectance mode, using a 

Fourier Transform (FT)-NIR spectrometer equipped with a fibre-optic probe with a 1 

mm pathlength (MPA, Bruker Optics, Milan, Italy). The probe was inserted directly 

into the inoculated skim milk contained in a glass bottle placed in a water bath to 

maintain the defined fermentation temperature. Spectral data were collected every 15 

min over the 12,500-4,000 cm-1 range, with a resolution of 16 cm-1, 64 scans for both 

background and samples, and a scanner velocity of 10 kHz. Instrument control and 

data acquisition were performed by the OPUS software (v. 6.5 Bruker Optics, Milan, 

Italy). 

Data processing 

After smoothing (moving average method, segment size = 11 data points), FT-NIR 

data were transformed into first derivative (Savitzky–Golay method, polynomial order 

= 2, gap size = 11 data points) to minimize the effect of baseline shifts, and reduced in 

the range 8,900-5,555 cm-1 in order to eliminate useless or saturated variables from 

spectra. PCA was applied to the averaged spectral data obtained by the two 

technological replicates of each fermentation condition, by using The Unscrambler 



4.1. Overview on milk lactic acid fermentation 
 

75 
 

v9.8 software (Camo Software AS, Oslo, Norway). All spectral data sets were mean-

centred before performing PCA calculations. 

The scores of PC1 were modelled as a function of fermentation time, using the sigmoid 

Eq. (1) implemented in Table Curve software (v. 4.0, Jandel Scientific, San Rafael, 

CA, USA):  
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Also the average data obtained by conventional analyses and rheological evaluations 

were modelled as a function of fermentation time, applying the same sigmoid function, 

in agreement with the microbial nature of the transformation studied.16-17 

In order to identify kinetic critical points during fermentation – i.e. time related to the 

maximum rate and acceleration (or deceleration) of the phenomena - the first and 

second derivatives of the sigmoid functions were calculated. 

 

Results and discussion 

Microbiological analysis 

The use of modified HHD, which provides a morphological differentiation of colonies 

and recovery close to those obtained by separated specific media (MRS pH 5.4 and 

M17), permitted the enumeration of the single species on an unique plate.18  

The change in viable counts of S. thermophilus and L. bulgaricus during fermentation 

trials are presented in Figure 1. 

The initial mean counts of L. bulgaricus for the three different fermentation trials 

(Figure 1a) ranged from 1.33 to 2.97 x 106 CFU g-1, increasing then to 2.00-3.07 x 108 

CFU g-1 after 5 h of fermentation without significant changes till the end of the 

experiment (2.52-2.98 x 108 CFU g-1). As regard to S. thermophilus (Figure 1b), the 

initial concentrations ranged from 2.67 to 4.23 x 106 CFU g-1, reaching a plateau at 

about 2.81-3.00 x 108 CFU g-1 after 5 h. In the trials performed with mixed cultures 

(Figure 1c), L. bulgaricus grew faster than S. thermophilus, but after 5 h both 

microorganisms reached their plateau, at about 2.17-4.43 x 108 CFU g-1. 
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Figure 1. Growth of L. bulgaricus (a), S. thermophilus (b), and the mixed culture (c) during 

lactic acid fermentations carried out at different temperatures. L. bulgaricus, 37 °C (□),  41 °C 

(○), 45 °C (); S. thermophilus, 37 °C (■),  41 °C (●), 45 °C (▲). 
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pH and titratable acidity measurements 

Results concerning pH values of fermented milks produced by single and mixed 

cultures are shown in Figure 2. The mixed culture was the most efficient in lowering 

pH values, followed by single cultures of L. bulgaricus and then S. thermophilus.  

The mixed culture (Fig. 2c) lowered the pH from 6.5 to 3.8, within 7.5 h at 41 °C, 

which is the common temperature used for milk lactic acid fermentation; whereas the 

single cultures of L. bulgaricus (Fig. 2a) and S.thermophilus (Fig. 2b) lowered the pH 

value to 3.9 and 4.9, respectively, due to the higher acidification activity of 

lactobacilli.19 

The change in titratable acidity, expressed as percentage lactic acid, are illustrated in 

Table 1. The titratable acidity of reconstituted skim milk (0.13-0.16%) increased till a 

maximum of 1.18% in milk fermented at 45 °C with the mixed culture. The lowest 

value was reached when inoculating S. thermophilus at 37 °C (0.38%). Our results are 

in accordance with those reported by Rasic and Kurmann,19 showing that S. 

thermophilus produces a maximum lactic acid concentration of 0.7-0.8%, while L. 

bulgaricus is a homo-fermenting lactic bacteria producing up to 1.7% of lactic acid. 

The titratable acidity developed by S. thermophilus and L. bulgaricus increased with 

the rise of incubation temperature, as reported by Tamime and Robinson.5 
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Figure 2. Evolution of pH values during lactic acid fermentations carried out at different 

temperatures with L. bulgaricus (a), S. thermophilus (b), and the mixed culture (c). □ 

Lactobacillus bulgaricus, 37 °C; ○ Lactobacillus bulgaricus, 41 °C;  Lactobacillus 

bulgaricus, 45 °C; ■ Streptococcus thermophilus, 37 °C; ● Streptococcus thermophilus, 41 °C; 

▲ Streptococcus thermophilus, 45 °C; × Mixed culture, 37 °C; ♦ Mixed culture, 41 °C; ◊ 

Mixed culture, 45 °C. 
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Table 1 Changes in titratable acidity (TA), lactose, galactose, and lactic acid concentrations 

during lactic acid fermentations carried out under different processing conditions. 

Inoculuma 
Temperature 

(°C) 

TA increase 

(% lactic 

acid) 

Lactose 

consumption 

(g 100g-1) 

Galactose 

increase 

(g 100g-1) 

Lactic acid 

production 

(g 100g-1) 

I1 37 0.62 1.22 0.33 0.30 

 41 0.81 0.71 0.51 0.50 

 45 0.87 1.25 0.50 0.60 

I2 37 0.24 0.66 0.15 0.19 

 41 0.34 0.60 0.15 0.20 

 45 0.40 0.40 0.16 0.28 

I3 37 0.81 1.38 0.34 0.48 

 41 0.88 1.51 0.40 0.50 

 45 1.02 0.90 0.47 0.65 

a I1, L. bulgaricus; I2, S. thermophilus; I3, S. thermophilus and L. bulgaricus (1:1) 

Sugars and organic acids 

Table 1 shows, for each fermentation trial, the changes in the main chemical 

constituents involved in lactic fermentation (lactose, galactose and lactic acid). Both L. 

bulgaricus and S. thermophilus ferment lactose: during the homolactic fermentation the 

disaccharide is transported into the bacterial cell and transformed by a lactase into 

glucose and galactose. Glucose is then catabolised to lactic acid, while galactose is 

thrown out the cell. For this reason a galactose accumulation in the medium is 

expected, as observed in this work. 

Within the 7.5 h of fermentation with L. bulgaricus, lactose consumption ranged from 

0.71 to 1.25 g 100 g-1, while with S. thermophilus the decrease was only 0.40-0.66 g 

100 g-1, due to its lower acidification capacity. As regards the mixed culture, a 

maximum lactose concentration reduction of 1.51 g 100 g-1 was registered. At the end 

of the fermentation process the highest increase of galactose content was observed with 

the L. bulgaricus inoculum, whereas the highest lactic acid production was noticed 

when the mixed culture was tested. Similar results of lactic acid production were 
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reported also by Dave and Shah for yoghurt made from commercial starter cultures.20 

The lowest values of lactic acid in the final product were obtained inoculating single 

culture of S. thermophilus, being this species less acid tolerant than the other one.  

Rheological behaviour 

Rheological behaviour was studied to monitor the curd development during 

fermentation as the textural characteristics of fermented milk gel are of paramount 

importance for the quality of the final product. A small amplitude oscillatory test was 

used in this research, in order to follow the development of the curd structure without 

system perturbation. Average storage modulus (G’) and loss modulus (G’’) values over 

fermentation time in the different trials are illustrated in Figure 3.  

The G’ value defines the degree of solid-like character of the gel, whereas the G’’ 

value indicates the degree of the liquid-like behaviour. Thus, at the beginning of 

fermentation, when milk was still liquid, G’’ values were always higher than G’ values. 

When the gel began to form, G’ and G’’ values rapidly increased, with a higher rate for 

G’. Usually, the time required for G’ to cross-over G’’ is considered as the onset of 

gelation.21,22 

As it can be noticed from Figure 3, when the mixed culture (Fig. 3c) or the L. 

bulgaricus (Fig. 3a) inoculum were used, time needed for curd development was 

shorter than in trials carried out with S. thermophilus (Fig. 3b). At the optimum 

temperature of 41 °C, the onset of gelation occurred after 2, 2.5, and 5.3 h of 

fermentation for the associative, L. bulgaricus and S. thermophilus inoculum, 

respectively. 
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Figure 3. Evolution of storage (G’) and loss (G’’) modulus during the lactic acid fermentations 

carried out at different temperatures with L. bulgaricus (a), S. thermophilus (b), and the mixed 

culture (c).  G’, 37 °C;  G’’, 37 °C;  G’, 41 °C;  G’’, 41 °C; - - - G’, 45 °C; - - - 

G’’, 45 °C. 
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 Moreover, trials carried out with S. thermophilus resulted in a gel weaker than those 

developed in the other runs, as can be noticed by the lower final values of G’ and G’’. 

These results are in agreement with those reported for pH, titratable acidity, and lactic 

acid development, which showed a better performance of the mixed and the L. 

bulgaricus cultures in comparison with the S. thermophilus inoculum. 

FT-NIR spectroscopy 

In this study spectra were acquired in transflectance mode, which combines 

transmission and reflectance principles, because during milk fermentation the physical 

and chemical properties of the matrix evolve. The use of transmitted light is necessary 

at the beginning of the fermentation when the viscosity of milk is low, whereas a 

reflectance measurement is required with the progress of the bioprocess leading to a 

weak gel behaviour of the system.12 

Figure 4 shows an example of the reduced (8,900-5,555 cm-1) FT-NIR spectra 

collected during the fermentation process carried out with the mixed culture, at 45 °C, 

and the corresponding signals transformed into first derivative.  

 

 

Figure 4. Reduced FT-NIR 

spectra collected during the 

lactic acid fermentation carried 

out at 45 °C with the mixed 

culture of L. bulgaricus and S. 

thermophilus: a) raw spectra (t = 

fermentation time); b) spectra 

after transformation with first 

derivative. 
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Figure 5. Plots obtained from PCA applied to FT-NIR spectra collected during the lactic acid 

fermentation carried out at 41°C with the mixed culture of L. bulgaricus and S. thermophilus: a) 

PC1 vs PC2 score plot; b) loading line plot for PC1. In the score plot, point label numbers 

increase with fermentation time. 

Similar results were obtained for all the fermentation trials (results not shown). The 

dominant peak at about 6,900 cm-1 in the FT-NIR spectra is related to the O-H first 

overtone. Qualitative evaluation of the spectra showed a remarkable trend in the FT-

NIR spectra during the fermentation time: spectra collected from milk at the beginning 

of the bioprocess were characterised by absorbance values lower than those of the 

spectra acquired at the end of fermentation from coagulated milk. This change could be 

due to physical effects, such as casein micelle size, which heavily influences NIR 

spectrum.23 Although the absorption increased with fermentation time, it was difficult 

to extract information regardless of scattering effects causing the baseline drift. For this 

reason, a first derivative transformation was applied to the spectral signals. 



4.1. Overview on milk lactic acid fermentation 
 

84 
 

In order to uncover changes related to the time occurring during milk fermentation, 

reduced and pre-treated FT-NIR data were processed by PCA. Figure 5 shows the 

score plot and loading line plot obtained for the fermentation trial performed at 41 °C 

with the mixed culture.  

 Similar results were obtained for the other fermentation trials (results not shown). In 

the score plot, a suited distribution of the samples in the area defined by the first two 

principal components according to the fermentation time was noticed. The intensity of 

loadings highlighted that the main wavenumbers responsible for the sample separation 

were mainly associated with the O-H bands of water.24  

Kinetic models 

In order to evaluate the ability of NIR spectroscopy to follow the milk fermentation 

process kinetic, PC1 scores obtained from spectra elaboration by PCA, as well as 

chemical and rheological data, were modelled as a function of the fermentation time, 

fitting the sigmoid function shown in Eq. (1). PC1 scores were previously normalized 

from 0 to 1, in order to compare the results obtained in different trials. Figure 6 shows 

an example of the PC1 scores fitted by Eq. (1) and the first and second derivatives of 

the curve.  

 

Figure 6. Example of PC1 scores modelling as a function of fermentation time. 

Derivatives were used to calculate the critical points related to the maximum rate 

(maximum value of first derivative), acceleration (maximum value of second 

derivative), and deceleration (minimum value of second derivative) of the phenomena. 

Scores obtained in all the fermentation trials were well fitted by Eq. (1), giving r2 

values always higher than 0.99. The sigmoid model was reliable also for G’, pH, 

titratable acidity and lactic acid data (r2 > 0.94).  
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The curves obtained by NIR-PCA and rheological data showed a very similar trend, 

meaning that both techniques detected the evolution of parameters strictly related to the 

curd development. The phenomenon described could be related to the casein micelles 

becoming bigger as a consequence of their aggregation, occurring at pH values of 5.5 - 

5.2.25 In fact, also the times corresponding to the critical points of the fermentation 

were practically the same for these two analytical techniques (Table 2) and 

corresponded to the development of pH values ranging from 5.5 to 5.2 (Figure 2). A 

good agreement was also observed with the critical points calculated considering the 

other analytical parameters. Only the times related to the maximum acceleration of the 

process, i.e. to the beginning of the fermentation, were lower if calculated on the basis 

of pH, titratable acidity (Table 2), and lactic acid values (data not shown). These 

results could be ascribed to the different phenomena associated with the evaluated 

parameters: pH, acidity and lactic acid concentration are related to the acidification 

operated by the microorganisms, which generally precedes the curd development 

described by rheological and spectral data.



4.1. Overview on milk lactic acid fermentation 
 

86 
 

Table 2 Times corresponding to maximum acceleration (max d2x/dt2 or min d2x/dt2), maximum rate (max dx/dt) and maximum 

deceleration (min d2x/dt2 or max d2x/dt2) of the lactic acid fermentation processes. 

   

FT-NIR 

(PC1) 

 

Rheometer 

(log G') 

 pH  

Titratable Acidity 

(% lactic acid) 

 

FT-NIR 

(ABS at 7,100 cm-1) 

Inocu

luma 

Temper

ature 
 

Max 

d2x/dt2 

Max 

dx/dt 

Min 

d2x/dt2 
 

Max 

d2x/dt2 

Max 

dx/dt 

Min 

d2x/dt2 
 

Min 

d2x/dt2 

Max 

dx/dt 

Max 

d2x/dt2 
 

Max 

d2x/dt2 

Max 

dx/dt 

Min 

d2x/dt2 
 

Max 

d2x/dt2 

Max 

dx/dt 

Min 

d2x/dt2 

 (°C)  (min) (min) (min)  (min) (min) (min)  (min) (min) (min)  (min) (min) (min)  (min) (min) (min) 

I1 37  184 202 225  251 269 287  0 132 277  105 423 450  175 202 225 

 41  135 148 157  147 160 174  18 114 209  36 186 314  121 130 144 

 45  108 108 117  120 133 142  23 100 186  82 173 264  94 103 112 

I2 37  306 337 364  341 359 373  95 263 427  168 314 450  292 328 360 

 41  283 306 328  314 337 355  64 209 350  150 255 368  265 297 324 

 45  233 265 296  241 260 278  50 155 255  105 223 345  234 279 324 

I3 37  184 198 207  206 219 233  59 168 282  118 227 341  180 193 202 

 41  130 144 153  124 128 151  50 123 241  114 209 309  112 126 144 

 45  103 112 121  111 120 133  23 100 186  64 155 245  90 99 108 

a I1, L. bulgaricus; I2, S. thermophilus; I3, S. thermophilus and L. bulgaricus (1:1). 
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Times related to the critical points confirmed that a lactic fermentation carried out by 

L. bulgaricus alone or in association with S. thermophilus is more efficient than the 

process performed only by S. thermophilus, showing earlier starting point and 

maximum rate points. As expected, maximum deceleration times, corresponding to the 

end of the fermentation, showed a wide range, depending on the inoculum and 

incubation temperature considered. 

In order to verify the possibility to simplify the NIR instrumentation, the evolution of 

the processes at a fixed wavenumber was also tested. In particular, absorbance values 

of the spectra at 7,100 cm-1, corresponding to the OH combination band, were plotted 

against fermentation time and modelled applying Eq. (1). Also in this case, r2 values 

higher than 0.99 were obtained for all the fermentation conditions considered and the 

times corresponding to the critical points were practically the same obtained from the 

PC1 score modelling (Table 2). 

 

Conclusion 

The obtained results demonstrated that FT-NIR spectroscopy combined with PCA is a 

valid, simple, cheap and robust tool for the on-line monitoring of milk lactic acid 

fermentation. FT-NIR spectroscopy gave crucial real-time information in agreement 

with rheology and conventional quality parameters. In particular, spectroscopic kinetic 

models were able to describe the curd development during lactic acid fermentation, 

giving thus the opportunity to easily follow in-line an important quality parameter of 

fermented milks such as texture. 

These models may be used to effectively monitor and control lactic acid fermentation, 

in order to detect if the process is moving out of control and to establish the best 

strategy for its management, before operating costs and quality deterioration of the 

product make the process unprofitable.  

Moreover, the good results obtained using only spectral data at a fixed wavenumber 

(7,100 cm-1) suggest that a simplified and cheaper NIR device could be developed for 

the industrial monitoring of the lactic acid fermentation process. 
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Abstract 

The purpose of the current work was to investigate the capability of multivariate curve 

resolution-alternating least squares (MCR-ALS) to extract relevant information from 

Fourier-Transform Near-Infrared (FT-NIR) spectra acquired on-line with a fiber probe 

during milk lactic acid fermentation. The fermentation trials were conducted 

replicating twice a factorial design with three different starter cultures (Streptococcus 

thermophilus and Lactobacillus bulgaricus alone or as 1:1 mixed culture) and three 

different incubation temperatures (37 °C, 41 °C and 45 °C), for a total of 18 

experiments. The runs were monitored for 7.5 h through pH measurement, dynamic 

oscillatory test for rheological properties evaluation and FT-NIR spectra acquisition. 

The obtained MCR-ALS models successfully described the experimental FT-NIR 

spectra recorded (99.9% of explained variance, 0.63665% lack of fit, and standard 

deviation of the residuals lower than 0.0072). The three spectral profiles obtained by 

MCR-ALS pointed to the characteristic coagulation phases of milk lactic acid 

fermentation. The concentration profiles defined as a function of time for each run 

were strongly dependent on starter and temperature tested, in agreement with pH and 

rheological results. MCR-ALS applied to FT-NIR spectroscopy provides to the dairy 

industry a control system which could be implemented in-line as reliable management 

method for monitoring fermentation processes and to define the coagulation profile no 

matter the operative conditions adopted for the process. 

 

Keywords: FT-NIR, multivariate curve resolution-alternating least squares, milk 

fermentation, lactic acid bacteria, rheological properties. 

 



4.1. Overview on milk lactic acid fermentation 
 

93 
 

Introduction 

Fermentation processes are complex systems where several and closely related 

reactions driven by microorganisms take place simultaneously. Due to this complexity, 

high uniformity and reproducibility standards are hard to be accomplished. In fact, 

modest changes in different process variables can alter the batch-to-batch 

reproducibility and, therefore, promote unwanted variations and loss in the final 

product quality. This is one of the main problems for the food industries working with 

fermentation processes, because they aim at a reduction of manufacturing costs and, at 

the same time, consumers require a high standardized final product (Navràtil et al. 

2004; Soukoulis et al. 2007).  

As a matter of fact, prediction of the most suitable incubation time for every batch is 

difficult, leading to a forced empirical control of the process (Soukoulis et al. 2007). 

However, in order to identify possible non-standard behaviour (deviation from the 

normal operating conditions) and to rapidly assess the end point, the biotransformation 

progress must be throughout monitored and controlled. Nowadays, only few fast and 

robust monitoring techniques are applicable in-line under industrial conditions. For 

instance, lactic acid fermentation is commonly monitored by pH measurements 

(Chandan & O’Rell 2006), which give just a rough outline of the phenomena. Further 

information about the process trend could be obtained by means of separate laboratory 

measurements of different parameters, such as lactic acid and sugar concentration, 

microbial count, titratable acidity and viscoelastic properties. Nevertheless, they are 

not routinely measured, because elaborate and time-consuming analyses are required. 

In order to overcome all these drawbacks, companies look for methods providing in-

time information in order to assure an effective control at all stages of the process. 

Among the most promising techniques, near-infrared (NIR) spectroscopy represents a 

fast and non-destructive alternative, able to simultaneously detect, after calibration, the 

main compounds involved in the fermentation process and to describe the trend of the 

process (Bock & Connelly 2008). The development of NIR optic probes, which can be 

directly inserted in the fermenter, increased the interest in the use of in-line monitoring 

(Huang et al. 2008), in particular for dairy fermentations (Navràtil et al. 2004; Ntsame 

Affane et al. 2011). They offer detailed information of the on-going of the process in 

real time, allowing the assurance of the quality parameters of the final product.  

NIR spectra can be mathematically modelled by using hard-modelling or soft-

modelling methods (de Juan et al. 2000). Hard-modelling methodologies usually 

provide reliable description for systems where a defined kinetic model can be 

postulated (Garrido et al. 2008), assuming that no species other than those involved in 

the process contribute to the measured spectroscopic signal (Amigo et al. 2006b). 

Applying hard-modelling methodologies in a complex system, such as lactic acid 

fermentation of milk, could be extremely challenging due to the high amount of closely 
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related reactions taking place at the same time, being the establishment of an empirical 

model which controls all the reactions in the system a cumbersome task. Some of the 

problems of the hard-modelling analysis can be overcome by using soft-modelling 

methods (de Juan  & Tauler 2006), such as the multivariate curve resolution optimized 

by alternating least squares (MCR-ALS). This is one of the most powerful methods to 

describe the phenomena occurring in any kinetic reaction (Amigo et al. 2006a; Amigo 

et al. 2006b; de Juan  & Tauler 2006; Rodriguez-Rodriguez et al. 2007; Garrido et al. 

2008; Pindstrup et al. 2013). MCR-ALS is a method able to decompose data matrices 

characterized by overlapped spectral bands recorded from complex systems into the 

contributions of each single component involved in the system studied. The main 

advantage is that little information about the nature of the food system and the 

transformation occurring is necessary. This makes MCR-ALS a perfect tool to fully 

understand the behaviour of processes in every moment and, therefore, to establish 

decision parameters that help to monitor and control the final quality of the 

fermentation product. MCR-ALS has been successfully applied in enzymatic process 

analysis as reported in the review by Garrido et al. (2008). However, only Gonzàlez-

Sàiz et al. (2008) applied the soft-modelling technique to NIR spectra for monitoring 

alcoholic fermentation, where chemical transformations were related to microorganism 

growth.  

The purpose of the current work is to investigate the capability of MCR-ALS applied 

to FT-NIR spectra to extract in-line relevant information about milk lactic acid 

fermentation dynamics. This approach will provide the dairy industry with a suitable 

methodology for monitoring in real time the kinetic of the whole process, maximizing 

and standardizing the productivity of the fermenter, while detecting failure in the 

biotransformation caused by any uncontrolled variable. 

 

Materials and Methods  

Fermentation Trials  

For each fermentation trial, sterilized skim milk (10% w/v in distilled water) was 

inoculated with single or mixed cultures (1:1) of S. thermophilus and L. bulgaricus, 

isolated from the commercial yoghurt culture YO-MIX™ 305 (Danisco A/S, 

Copenhagen, Denmark) and identified by sequencing the amplified 16S rDNA region. 

The inoculum size was set to approximately 106 CFU mL-1, using a calibration curve 

obtained by correlating cell number and optical density measured at 600 nm. The 

inoculated skim milk was then placed in a circulating water bath at the specific 

fermentation temperature (37 °C, 41 °C or 45 °C) for 7.5 h. Every 45 min, pH analysis 

was performed, while spectroscopic and rheological evaluations were carried out at 

regular intervals (every 15 and 2 minutes, respectively) without changing the sample. 

A total of 9 different fermentation trials were performed, all replicated twice.  
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pH  

pH was measured using a pH-meter 3510 (Jenway, Dunmow, England) equipped with 

a glass electrode. 

 

Rheological Measurements 

The rheological behaviour of the inoculated skim milk was monitored on the same 

sample at regular intervals using a Physica MCR 300 rheometer (Anton Paar GmbH, 

Graz, Austria), supported by the software Rheoplus/32 (v. 3.00, Physica Messtechnik 

GmbH, Ostfildern, Germany). The inoculated skim milk (19 mL) was inserted in the 

concentric cylinders (CC27) pre-heated at the desired fermentation temperature (37 °C, 

41 °C, or 45 °C). A dynamic oscillatory test was performed, applying a constant 1% 

strain at a fixed 1 Hz frequency. The solvent trap filled with deionized water was used 

to prevent sample evaporation during the test. Storage (G’) and loss (G’’) moduli were 

measured in 2 min intervals throughout the whole fermentation process (7.5 h). 

 

FT-NIR Spectroscopy 

The inoculated skim milk, placed in a water bath at the desired temperature (37 °C, 41 

°C, or 45 °C) was monitored at regular intervals by means of FT-NIR spectroscopy. 

Spectra were collected in transflectance mode, inserting the fiber optic probe (1 mm 

pathlength) of a MPA spectrometer (Bruker Optics, Milan, Italy) directly in the 

sample. Spectral data were collected every 15 min over the 12,500-4,000 cm-1 range, 

with a resolution of 16 cm-1 and 64 scans for both background and samples. Instrument 

control and data acquisition were performed by the OPUS software (v. 6.5 Bruker 

Optics, Milan, Italy). 

 

Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS)  

Spectral dataset were arranged in a matrix D (M × N) where the M rows corresponded 

to the spectra obtained at different fermentation times and the N columns retailed to the 

nth different wavenumbers monitored (Fig. 1a).  

MCR-ALS aims at describing the evolution of the obtained profiles through their pure 

components contributions individually, without the assumption of any previous 

empirical model. The FT-NIR spectra collected on-line during the process, as 

spectroscopic data, follow the Beer–Lambert’s law bilinear model. MCR-ALS 

decomposes the D matrix into two sub-matrices, C (M × F) and ST (F × N), named 

concentration and spectra profiles respectively. C describes the modification of the F 

chemical components affecting the signal in the M different observations during time; 

whereas ST contains the variation of the response with respect to the different 

wavenumbers. E (M × N) is the residual matrix (Eq. 1): 

D = CST + E  (1) 
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Fig. 1a) Graphical and mathematical depiction of MCR-ALS decomposition of a FT-NIR 

spectra dataset (D1) to obtain the pure concentration (C1) and spectral profiles (ST). E denotes 

the residual matrix. b) Column-wise augmentation strategy of the experiments [D1;D2;…;DI] to 

obtain individual concentration profiles [C1;C2;…;CI] and a common spectral profile matrix 

(ST). The residual matrices are denoted as [E1;E2;…;EI]. 

Before applying MCR method, the number of components of the target system (F) 

should be defined. Then, the ALS optimization will start the iterations by using a 

previously stated initial estimation of the concentration or spectral profiles (Rodriguez-

Rodriguez et al. 2007). The general steps of MCR-ALS are the following: 

1. Determination of the number of components in D. 

2. Generation of non-random initial estimates of either the C or the ST. 

3. Given D and ST, least-squares calculation of C under constraints. 

4. Given D and C, least-squares calculation of ST under constraints. 

5. Reproduction of D as CST. 

Go to 3 till the quality in the data reproduction is satisfactory and convergence in the 

iterative optimisation is achieved (Amigo et al. 2006b). 
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To achieve the proper final concentration and spectral profiles, a stopping criterion has 

to be imposed. The most common is the percentage of Lack of Fit (%LOF) that 

indicates the difference between the input data D and the data reproduced from the CST 

product (Eq. 2). The algorithm stops when the relative difference in %LOF values 

between two consecutive iterations is below a threshold value (commonly 0.1%; 

Jaumot et al. 2005).  

2
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 LOF =100  
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      (2) 

In this equation, emn is each mnth element of the residual matrix E, and dmn is each 

mnth element of the D matrix.  

The main drawback of MCR-ALS is that there are not unique solutions as the product 

CST is subjected to ambiguities: rotational and scale (intensity). The ambiguities 

associated to the resolved profiles can drastically affect the quality of the derived 

information. Nevertheless, they can be highly minimized by adding soft-modelling 

constraints. The constraints used are chosen according to the available information 

about the target system, being non-negativity, unimodality and closure the most 

commonly used (Tauler 1995).  One of the most appreciated benefits of MCR-ALS is 

the possibility of applying it simultaneously to an individual experiment or to a series 

of them (Tauler & Barceló 1993; Amigo et al. 2006b), thus minimizing the above 

mentioned ambiguities. When more than one experiment is considered, the model in 

Eq. (1) extends to the model shown in Fig. 1b, where now D and C are column-wise 

augmented data matrices, with the submatrices of the individual experiments, Di and 

Ci, one on top of the other (column-wise augmentation). The main advantage of this 

working strategy is that ST is a single data matrix with the shape of the pure spectra of 

the chemical species, common and valid for all experiments (de Juan & Tauler 2006). 

The data arrangement in Fig. 1b implies that the shape of the concentration profile of a 

particular species can change in a completely free manner from experiment to 

experiment. 

Data Processing 

The whole wavenumber range (12,500-4,000 cm-1) was reduced to 12,500-5,555 cm-1 

in order to eliminate useless or saturated variables from spectra. Chemometrics 

analysis was performed by means of MCR-ALS (Jaumot et al. 2005) software 

implemented in MatLab v. 7.4 (MathWorks, Natick, MA). The D dataset was 

http://apps.webofknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=Q131MeGdA5c9a4OCkhH&author_name=de%20Juan,%20A&dais_id=8315738
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composed of 18 independent sub-matrices, referring to the replicates of the 9 trials 

different for fermentation conditions. Principal component analysis (PCA) was 

performed on MCR-ALS concentration profiles obtained for each batch to fully 

understand the complex mechanisms involved in the fermentation processes. PCA 

models were developed by using the PLS-Toolbox (Eigenvector Research Inc., 

Wenatchee, WA) implemented in MatLab. 

Results and Discussion 

pH 

Fig. 2 shows the changes in pH values of milk during the different fermentation 

processes carried out; results are expressed as the average of the two replicates. All the 

fermentation trials started with a milk pH value of 6.46±0.44; during the 7.5 h of 

fermentation this value varied in a different way according to the inoculum and the 

temperature tested, as already reported also in the scientific literature (Beal et al. 1999; 

Kristo et al. 2003; Soukoulis et al. 2007). The decreasing of pH was first of all 

influenced by the microorganisms used as starter.  

When only S. thermophilus was inoculated, the pH decreased slowly and when 

incubated at 41 °C after 7.5 h the final pH was still 4.84±0.04 (Fig. 2b). This can be 

explained by the low acidification capability of the cocci. Indeed, they normally 

produce less than 1% of lactic acid (Tamime & Robinson 2007). In the same 

conditions, the fermented milk inoculated with L. bulgaricus reached pH values of 

3.92±0.01. The mixed culture was the most efficient in lowering pH values, above all 

at the lowest temperature (Fig. 2a). As the temperature increased, pH values decreased 

faster, no matter which inoculum was used.  

Generally, dairy industries producing yoghurt consider a pH value of 4.4 - 4.6 as the 

end point of the fermentation (Chandan & O’Rell 2006). This value was never reached 

inoculating S.thermophilus alone, at any of the temperature tested. When the milk was 

inoculated with L. bulgaricus, it reached a pH value of approximately 4.6 after 360, 

225 and 180 min for 37, 41 and 45 °C incubation temperatures, respectively. As 

mentioned before, the inocula with mixed culture showed a faster decrement of pH for 

the three temperatures tested (37, 41 and 45 °C) and values lower than 4.6 were 

reached after 315, 225 and 180 min of fermentation. 
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Fig. 2 pH values for the nine fermentation trials carried out with L. bulgaricus (■); S. 

thermophilus (▲) and  the mixture culture (●). Trials conducted at a) 37 °C, b) 41 °C and 

c) 45 °C. The error bars represent the standard deviation of the two technological 

replicates. 

Rheological measurements 

During fermentation, pH decrease causes the coagulation of milk caseins that can be 

studied by means of rheological measurements. In particular, applying a small 

amplitude test, it is possible to register the storage (G’) and the loss (G’’) moduli of the 

media and to observe when G’ crosses over G’’. The cross point is usually considered 

as the gel point (Kristo et al. 2003; Ngarize et al. 2004).  

Fig. 3 shows the typical changes in viscoelastic moduli G’ and G’’ of coagulating 

milks, obtained by the on-line rheological measurements. As already reported in the 

literature (Trachoo 2002), it is possible to notice that the gel point depends on the 

temperature and inoculum tested, in agreement with the pH results. When the mixed 

culture or the L. bulgaricus inocula were used, the time needed for curd development 

was shorter than in trials carried out with S. thermophilus. At the optimum temperature 

of 41 °C, the onset of gelation occurred after 120, 150, and 318 min of fermentation for 

the associative, the L. bulgaricus and the S. thermophilus inoculum, respectively. 

It is also remarkable the G’ maximum that the gel reached in its plateau: the higher the 

value, the firmer the gel. Fermentation processes with S. thermophilus resulted in a 
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weaker gel than those developed in the other runs: the highest G’ value for S. 

thermophilus inoculum was 67.1 Pa, one order lower than the values obtained with L. 

bulgaricus and the mixture culture (186 and 244 Pa, respectively).  

 

 

Fig. 3 Rheological behaviours for one representative fermentation trial for each 

combination temperature-inoculum (Lb: L. bulgaricus; St: S. thermophilus; Lb-St: the 

mixture culture). Dash thin lines (--) represent the G’ modulus and solid thick lines (▬) the 

G’’ modulus. 

It should be taken into account that the development of the elastic gel structure with a 

solid-like behaviour starts at pH around 5.6, causing changes in the micelle structure 

due to solubilisation of colloidal calcium phosphate (Lee & Lucey 2004). Further pH 

decrease causes a more complex and extensive interconnection of casein particles, 

leading to the formation of a continuous protein 3D-network and thus governing the 

structure of yoghurt. In particular, the casein micelles become larger when pH values 

range between 5.5 and 5.3, indicating the beginning of the aggregation (Andersen et al. 

1993). Comparing the rheological curves with the pH results it can be noticed that the 

gel point in each experiment was close to 5.2 pH value. This behaviour could be 

considered against the normal value of casein aggregation expected at their isoelectric 

point (4.6). However, the higher value of the pH at the gel point could be ascribed to 

the heat treatment of the milk used (Donato et al. 2007). In fact, the isoelectric point of 
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denatured beta-lactoglobulin associated to the casein micelles is equal to 5.2 (Tamine 

& Robinson 2007).    

 

FT-NIR Spectra 

The FT-NIR spectra recorded during the fermentation trials showed a clear trend: the 

absorbance increased with the fermentation time, due to a baseline drift caused by 

scattering effects (Fig. 4a). To minimize these effects the spectra were pre-treated 

using the Standard Normal Variate (SNV) algorithm (Fig. 4b). 

After applying SNV to the raw spectra, three main regions were identified: 5,000-7,000 

cm-1 and 10,000-12,500 cm-1 where the spectral absorbance decreased during the 

biotransformation; 7,000-10,000 cm-1 that showed an increase in absorbance. 

Characteristic peaks at 6,900, 8,600 and 10,800 cm-1 could be ascribed to the O-H 

combination band of symmetric and asymmetric stretching of water, the C=O fourth 

overtone of fundamental stretching band, and the C-H third overtone of fundamental 

stretching band, respectively (Workman & Weyer 2007). These peaks changed during 

the bio-transformation due to the conversion of simple carbohydrates into lactic acid 

and to the modification in the protein structure (casein aggregation to form a 3D 

network). 

In order to uncover spectral time-related changes occurring during milk fermentation, 

the absorbance values at fixed wavenumbers (11,500, 9,500, 7,500 and 5,500 cm-1) 

were plotted against fermentation time (Fig. 4c). In all cases, it is straightforward to 

recognize a sigmoidal-like behaviour, typical of a system in which the main changes 

are due to microorganism growth (Benedetti et al. 2005, Sinelli et al. 2010). 
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Fig. 4 a) FT-NIR spectra (12,500-5,555 cm-1) collected during one of the fermentation 

trials performed at 41°C with the mixed starter culture (1:1); b) pre-treated spectra (SNV); 

c) absorption of single wavenumbers plotted vs. fermentation time: dash line (--), 11,500 

cm-1; dash-dot line (-∙-), 9,500 cm-1; solid line (––), 7,500 cm-1; dot line (∙∙∙), 5,500 cm-1. 

MCR-ALS Results 

MCR-ALS was applied to reduced and pre-treated FT-NIR spectra in order to 

investigate if there was a general trend describing the development of the 

biotransformation, taking into account the variability of the production factors 

affecting the fermentation progress. As the dataset was composed of 18 experiments, 

MCR-ALS models were built in series with the same constraints, but considering them 

as individual experiments (Amigo et al. 2006a; Amigo et al. 2006b). 

 

Number of Significant Components, Initial Estimates and ALS Constraints 

The number of significant components of the target system was investigated by 

inspecting the scores, loadings and variance obtained by a PCA model of the reduced 
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and pre-treated FT-NIR spectra. The first three principal components explained a total 

of 99.97% of variance and described the kinetic changes occurring in the process.  

After determining the number of significant components, it was necessary to choose 

the initial estimates for starting the MCR-ALS analysis. These values were selected in 

the most straightforward way, within a representative fermentation batch (mixed 

culture incubated at 41°C, i.e. the conventional condition for yogurt production), 

choosing the three spectra recorded at the beginning, in the middle and at the end of the 

fermentation process.  

The MCR algorithm was applied to the D spectral matrix under the same constraints to 

all the column-wise sub-matrices: non-negativity to spectral and concentration profiles 

and unimodality to concentration profiles. The convergence criterion was set at 0.1.  

 

Resolution Results 

The application of ALS procedure to the milk fermentation runs permitted the 

resolution of both pure spectra (Fig. 5) and concentration profiles (Fig. 6). MCR-ALS 

models obtained successfully described experimental FT-NIR spectra recorded. The 

product CST explained 99.9% of the variance of the data, the percentage of LOF was 

0.63665% and the standard deviation of the residuals was lower than 0.0072.  

 

Fig. 5 MCR-ALS pure component spectra: solid-line profile (––) describes the liquid-like 

behaviour of milk, dotted profile (∙∙∙) reflects the solid-like behaviour of coagulated milk and 

the dashed profile (--) represents the middle passage in the biotransformation. 

The three pure spectra profiles obtained (Fig. 5) can be ascribed to the coagulation 

phases. The solid-line profile represents the typical spectrum recorded at the beginning 

of the fermentation runs, i.e. when the milk still had a liquid-like behaviour; it shows a 

visible slope in the base line at slower wavenumbers and a higher peak at 6,900 cm-1 
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due to O-H combination band of symmetric and asymmetric stretching of water. The 

characteristic spectrum of coagulated milk, influenced by the continuous protein 3D-

network of the matrix, is the dotted profile. The last profile stands for the transition 

phase, during which the first changes in the casein micelle structure due to 

solubilisation of colloidal calcium phosphate took place. 

 

Fig. 6 MCR-ALS concentration profiles of one representative fermentation trial for each 

combination temperature-inoculum (Lb: L. bulgaricus; St: S. thermophilus; Lb-St: the mixture 

culture). Solid-line profile (––) describes the liquid-like behaviour of milk, dotted profile (∙∙∙) 

reflects the solid-like behaviour of coagulated milk and the dashed profile (--) represents the 

transition phase of the biotransformation. A.U., arbitrary unit. 

Fig. 6 reports an example of concentration profile for each experimental condition. The 

obtained profiles contained information about the main changes occurring in the food 

matrix. The first MCR-ALS concentration profile (solid line) has an inverse sigmoid 

shape in all the runs performed: it describes the first stage of the acid coagulation of 

milk, where rheological data showed low and constant G’ and G’’ values (Fig. 3). This 

profile reaches its minimum when the first aggregation caused a steep increase in 

visco-elasticity, corresponding to the fast rise of both G’ and G’’(Fig. 3). The 

concentration profile describing the milk solid-like behaviour (dotted line) has a 

sigmoid shape which confirms the evolution of the lactic acid fermentation from milk 

to a more strength visco-elastic structure. As the liquid- and solid-like behaviours were 

inversely correlated, the maximum rate of decrease of the first profile corresponded to 

the maximum rate of increase of the latter profile. All the MCR-ALS profiles reached a 

plateau at the time in which G’ crossed G’’ (gelation point), due to the formation of a 
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continuous protein structure in the fermented milks. The difference in time required to 

reach the plateau was strictly related to the starter and the temperature tested, in 

agreement with the rheological results already discussed (Fig. 3) and previous 

considerations reported in literature (Kristo et al. 2003; Lee & Lucey 2004). Observing 

the batches inoculated with the same culture but incubated at different temperature, it 

was possible to notice how increasing the temperature the concentration profiles 

moved up, pointing out that the coagulation occurred in shorter time. From the profiles 

referring to milk incubated at the same temperature, it was possible to see that with L. 

bulgaricus and mixed inoculum the kinetics observed had very similar behaviours, 

while all the trials conducted with S. thermophilus showed the same profile shape but 

always delayed in comparison with the other tested starters. The relationship between 

casein coagulation and MCR-ALS profiles obtained by FT-NIR spectra analysis could 

be mainly ascribed to the spectra difference in baseline slope, caused by physical 

effects (Frake et al. 1998) such as the changes in number and size of casein micelles 

during acid milk coagulation (Horne & Davidson 1993). Furthermore, during 

fermentation time, the significant reduction in absorbance at 6,900 cm-1, due to O-H of 

water, revealed the syneresis effect characteristic of the acid coagulation process. 

PCA of MCR Profiles 

Since the gel firmness at the end of the fermentation process is extremely relevant for 

the final product quality and customers’ acceptance, a PCA model of MCR-ALS 

profiles was developed in order to investigate if it was possible to visualize the 

different characteristics of the final gel obtained with different inoculum-incubation 

temperature conditions. The concentration profiles of the eighteen experiments 

obtained by MCR-ALS were normalised and mean centred and a data matrix was 

constructed as shown in Fig. 7.  

The PCA model with four components explained 98.15% of the total variance. Fig. 8 

shows the score plot and the loading plot obtained. In the score plot PC1 vs. PC2 (Fig. 

8a), a satisfactory distribution of the batches in the area defined by the first two 

principal components according to the temperature and the inoculum can be observed. 

The first principal component (PC1) (69.43% of variance) divided batches according to 

the inoculum: the trials performed with S. thermophilus inoculated alone (negative PC1 

values) were well distinguished from the fermented milks obtained with L. bulgaricus 

and mixed cultures (positive PC1 values).  

PC2 (16.92% of variance) separated batches of the same inoculum according to the 

different fermentation temperatures. Moreover, it was possible to observe a trend of 

batches distribution (---) which can be ascribed to the coagulum strength, increasing 

from the left to the right and from the low to the high part of the space defined by the 

two components. The distribution agreed with the final coagulum strength data 
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obtained from rheological analysis, thus demonstrating the ability of the MCR-ALS 

technique to separate the curd obtained as a function of their strength. 

 

Fig. 7 Structure of the MCR-profiles dataset for the PCA. 

Within the space defined by the first and fourth PCs (Fig. 8b) it was possible to 

observe a sample distribution according to the fermentation temperature (37, 41, 45 

°C) along the PC4. The only two samples not well separated referred to batches 

inoculated with S. thermophilus at 45°C. This distribution could be explained by the 

fact that even increasing the incubation temperature the curd obtained by S. 

thermophilus was weaker than the others, and thus wrongly grouped.  

The three loading plots associated with PC1, PC2 and PC4 gave the whole picture of 

the final visco-elastic properties of each fermentation condition tested. The comparison 

of the loadings and the concentration profile shapes makes possible to identify which 

loadings mainly describe each profile. PC1 loadings were mainly related to the 

coagulated milk profile; PC2 loadings to the liquid profile and PC4 loadings to the 

transition profile.  

The interaction between all of them are unavoidable because the steps that they are 

describing are interrelated phases of the same phenomenon, i.e. the lactic acid 

coagulation in milk. The PCA thus confirmed that the MCR-ALS analysis is a valid 

investigation technique for physical properties of milk fermented products. 
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Fig. 8 PCA of MCR-ALS concentration profiles: a) PC1 vs. PC2 score plot; b) PC1 vs. PC4 

score plot; c) loading plot for PC1(––), PC2 (--) and PC4 (∙∙∙). L. bulgaricus (■), S. 

thermophilus (▲) and the mixture culture (●). Numbers in the score plots refer to 

fermentation temperatures. 

Conclusions  

In this paper we demonstrated that MCR-ALS applied to FT-NIR spectra for 

monitoring milk fermentation provided a comprehensive description of the curd 

formation. Real-time information on the pH and the different rheological modifications 

(regardless the original characteristics of the milk and the heat treatment before starter 

inoculation) have been obtained. As a consequence, the definition of the end point of 

the fermentation was assessed in a robust and reliable manner. 

The results obtained herein can lead to think of the implementation of non-invasive 

FT-NIR and MCR-ALS in industrial productions for milk coagulation monitoring and 

controlling. This will give much richer information about the ongoing of the process 

than the one obtained by only measuring the pH of the process, and avoiding problems 

of, for instance, the drifting of pH measures due to protein deposits on the electrode.  

PCA applied to the profiles obtained by MCR-ALS confirmed that this technique is a 

valid tool to investigate the viscoelastic properties of curds obtained with different 

operative conditions. Actually gel formation is the main physical change characterizing 
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the biotransformation and its control is extremely relevant for final product quality and 

customers’ acceptance.  
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Riassunto  

I latti fermentati sono prodotti diffusi ed apprezzati in tutto il mondo grazie alle loro 

caratteristiche sensoriali e salutistiche. Una delle maggiori esigenze dell’industria 

alimentare è quella di avere a disposizione un metodo rapido e non distruttivo che 

permetta il controllo on-line della fermentazione. L’obiettivo di questo lavoro è stato 

quindi quello di indagare la possibilità di utilizzo della spettroscopia IR per 

determinare con un’unica e rapida misura numerosi indici di fermentazione. Allo scopo 

sono state allestite in doppio prove di fermentazione lattica protratte per 7.5 h e 

condotte a 37°C, 41°C e 45°C utilizzando S. thermophilus e L. delbrueckii subsp. 

bulgaricus sia in associazione (1:1) che singolarmente. Le fermentazioni sono state 

monitorate in continuo mediante acquisizione degli spettri FT-NIR (12500-4500 cm-1; 

risoluzione 16 cm-1) in transflettanza diffusa, utilizzando uno spettrometro MPA 

(Bruker Optics) dotato di fibra ottica. Ogni 45 minuti sono stati raccolti gli spettri FT-

IR (4000-700 cm-1; risoluzione 4 cm-1) mediante uno spettrometro Vertex 70 (Bruker 

Optics) dotato di cella a multipla riflessione ATR in cristallo di germanio e sono stati 

inoltre valutati il pH, l’acidità titolabile, le conte microbiche e la concentrazione dei 

metaboliti (galattosio, acido lattico e lattosio). Gli spettri FT-NIR e FT-IR, trasformati 

in derivata prima, sono stati utilizzati per la costruzione di modelli di regressione PLS 

(Partial Least Square), validati mediante cross-validation. Tutti i modelli PLS 

calcolati hanno mostrato coefficienti di correlazione elevati in calibrazione (R2≥0.83), 

associati a bassi errori standard. Anche in validazione si sono ottenuti risultati 

soddisfacenti, con l’esclusione di alcune variabili che hanno mostrato problematiche di 

overfitting soprattutto nel medio infrarosso. Il lavoro ha quindi permesso di dimostrare 

che la spettroscopia IR potrebbe essere utile per il monitoraggio on-line della 

fermentazione lattica, previa costruzione di modelli più robusti e calibrati sulle 

produzioni industriali.  
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Introduzione  

Tra i prodotti fermentati, lo yogurt è il latte fermentato tradizionalmente più diffuso ed 

apprezzato nel mondo. Questo prodotto si ottiene mediante fermentazione del latte, 

senza successiva sottrazione di siero, operata da due microrganismi specifici in 

associazione: Streptococcus thermophilus e Lactobacillus delbrueckii subsp. 

bulgaricus.  

Il monitoraggio della fermentazione avviene comunemente mediante la determinazione 

del pH e dell’acidità titolabile. In aggiunta possono essere valutati anche la carica 

batterica e la concentrazione di metaboliti tipici del bioprocesso, come lattosio, acido 

lattico e galattosio. Il controllo di questi paramenti avviene mediante metodiche 

analitiche convenzionali, come ad esempio conta su piastra, kit enzimatici e HPLC, 

che, nella maggior parte dei casi, richiedono lunghi tempi di analisi e preparazione del 

campione, rendendo così difficoltose eventuali azioni correttive sul processo. Per 

questa ragione sarebbe utile sviluppare metodiche analitiche rapide, poco costose, 

attendibili ed integrabili nel processo produttivo. In questo contesto, la spettroscopia 

NIR e MIR, grazie anche allo sviluppo di tecniche chemiometriche avanzate, si sta 

dimostrando uno strumento valido, in quanto consente di ottenere in pochi minuti e 

contemporaneamente molte informazioni qualitative e quantitative del prodotto in 

analisi. Negli anni le applicazioni della spettroscopia IR sono notevolmente aumentate, 

coprendo una vasta categoria di alimenti (Takuo, 2007) e diffondendosi in studi di 

monitoraggio di processi alimentari in-line ed on-line (Huang et al., 2008).  

Lo scopo di questo lavoro è stato quindi quello di indagare la possibilità di utilizzo 

della spettroscopia IR, unitamente all’analisi chemiometrica dei dati, per la 

determinazione di numerosi indici di fermentazione con un’unica e rapida misura.  

 

Materiali e Metodi  

Le prove di fermentazione sono state condotte utilizzando latte scremato in polvere 

(Merck, Darmstadt, Germania) ricostituito al 10% p/v in acqua distillata e trattato 

termicamente a 112°C per 15 min. L’inoculo è stato preparato a partire da ceppi 

batterici isolati da una coltura commerciale, YO-MIX™ 305 (Danisco A/S, 

Copenhagen, Danimarca), e identificati, attraverso sequenziamento dell’amplificazione 

della regione 16S rDNA, come Streptococcus salivarius subsp. thermophilus and 

Lactobacillus delbrueckii subsp. bulgaricus.  

Sono state effettuate in doppio 9 prove di fermentazione lattica a 37°C, 41°C e 45°C, 

inoculando il latte con S. thermophilus e L. bulgaricus sia in associazione (1:1) che 

singolarmente (ca. 106 UFC/g). Le fermentazioni sono state protratte per 7.5 h, 

effettuando un prelievo ogni 45 min per determinare, in doppio, la conta batterica, il 



4.1. Overview on milk lactic acid fermentation 
 

114 
 

pH, l’acidità titolabile, la concentrazione di zuccheri e acido lattico e per acquisire gli 

spettri FT-IR. Gli spettri FT-NIR sono stati invece acquisiti in continuo.  

La concentrazione microbica è stata determinata per conta in piastra su terreno HHD 

modificato (Biolife, Milano, Italia), dopo omogeneizzazione e opportune diluizioni 

decimali del campione. L’incubazione è avvenuta a 37 °C per 48 h. I valori di pH sono 

stati misurati potenziometricamente mediante pHmetro 3510 (Jenway, Dunmow, UK). 

L’acidità titolabile è stata determinata secondo lo standard IDF/ISO n° 150 (IDF/ISO, 

1991) ed espressa in percentuale di acido lattico. Le concentrazioni di lattosio, 

galattosio e acido lattico sono state determinate mediante HPLC, utilizzando una 

colonna Aminex HPX-87H (BioRad Laboratories, Richmond, CA, USA) e un detector 

a indice di rifrazione (RI-71, Showa Denko Europe GmbH, Monaco, Germania). Dopo 

allontanamento delle proteine dal campione mediante precipitazione con acetonitrile e 

successiva centrifugazione, il surnatante filtrato è stato eluito isocraticamente a 65°C 

con una soluzione 5 mM di H2SO4, ad un flusso operativo di 0.8 mL/min. 

L’identificazione dei picchi e le curve di calibrazione sono state ottenute analizzando 

soluzioni standard di ciascun composto.  

Gli spettri FT-IR sono stati acquisiti ogni 45 min in un range spettrale di 4000-700 cm-

1 (risoluzione 4 cm-1, 16 scan), mediante uno spettrometro Vertex 70 (Bruker Optics, 

Milano, Italia) dotato di cella a multipla riflessione attenuta (ATR) in cristallo di 

germanio. Gli spettri FT-NIR sono stati raccolti in continuo utilizzando una fibra ottica 

a transflettanza (passo ottico 1 mm) collegata ad uno spettrometro MPA (Bruker 

Optics) ed inserita direttamente nel campione durante la fermentazione. I dati spettrali 

sono stati acquisiti ogni 5 min in un range spettrale di 12500-4000 cm-1 (risoluzione 

16 cm-1, 64 scan). Il controllo degli strumenti IR e l’acquisizione dei dati sono stati 

effettuati con il software OPUS (v. 6.5, Bruker Optics).  

L’elaborazione degli spettri è stata condotta tramite il software The Unscrambler (v 

9.8, Camo Software AS, Oslo, Norvegia), previa selezione delle zone spettrali più 

informative: 8900-5555 cm-1 per i dati FT-NIR e la zona del fingerprint (1800-970 

cm-1) per i dati FT-IR. Per minimizzare l’effetto dello slittamento della linea di base 

dovuto a fenomeni di scattering, gli spettri sono stati trasformati in derivata prima 

(metodo Savitzky-Golay). I modelli di regressione sono stati calcolati mediante 

l’applicazione dell’algoritmo PLS (Partial Least Square) e sono stati validati 

internamente utilizzando 10 gruppi di cancellazione (cross-validation).  

 

Risultati e Discussione  

Il monitoraggio mediante metodiche tradizionali (conte in piastra, pH, acidità titolabile 

e concentrazione di metaboliti) delle diverse prove fermentative allestite ha prodotto i 
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risultati attesi, evidenziando l’influenza della temperatura e del tipo di inoculo 

sull’andamento cinetico e sulle concentrazioni dei diversi parametri investigati.  

Le Figure 1 e 2 mostrano, a titolo di esempio, gli spettri IR ottenuti da una delle prove 

fermentative monitorate, dopo riduzione del range spettrale e trasformazione in 

derivata prima. Gli spettri FT-NIR (Fig. 1) sono caratterizzati da due picchi di 

assorbimento intorno a 7150 e 6800 cm-1, associati, rispettivamente, alla banda di 

combinazione del legame O-H dell’acqua e al primo overtone dell’O-H dell’acqua 

(Williams e Norris, 2001).  

 

 

Figura 1. Spettri FT-NIR dopo riduzione del range spettrale e trasformazione in derivata prima. 

 



4.1. Overview on milk lactic acid fermentation 
 

116 
 

 

Figura 2. Spettri FT-IR dopo riduzione del range spettrale e trasformazione in derivata prima. 

La regione fingerprint degli spettri FT-IR (1800-970 cm-1; Fig. 2) presenta due picchi 

caratteristici, associati all’acqua (1680 cm-1) (De Marchi et al., 2009) e al legame N-H 

delle proteine (1616 cm-1) (Sivakesava et al., 2001).  

Tramite algoritmo PLS sono stati calcolati modelli di regressione tra i dati spettrali 

(FT-NIR e FT-IR) e i valori ottenuti dalle analisi di riferimento (conta in piastra, pH, 

acidità titolabile e metaboliti), validati internamente applicando un metodo di cross-

validazione a blocchi random. Le Tabelle 1 e 2 mostrano i parametri statistici relativi 

ai modelli calcolati. In alcuni casi i modelli sono stati costruiti utilizzando insieme tutti 

i dati provenienti dalle prove di fermentazione effettuate; in altri casi si sono ottenuti 

risultati migliori utilizzando dataset parziali, relativi ai differenti inoculi testati.  
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Tabella 1. Parametri statistici dei modelli PLS costruiti con i dati FT-NIR per la predizione 

durante la fermentazione lattica di pH, acidità titolabile, metaboliti (lattosio, galattosio, acido 

lattico) e conta batterica. 

 Calibrazione Cross-validation 

Parametri VL Min – Max R2 RMSE R2 RMSE 

pH 13 6.51 - 3.67 0.9639 0.1701 0.9327 0.2345 

Ac. titolabile Lb 

(% ac. lattico) 
9 0.13 - 1.18 0.9485 0.0203 0.8358 0.0364 

Ac. titolabile St 

(% ac. lattico) 
7 0.13 - 1.18 0.9451 0.0014 0.9100 0.0180 

Lattosio St+Lb 

(g/100g) 
16 3.02 - 8.05 0.9671 0.7263 0.8221 1.7155 

Galattosio 

(g/100g) 
13 0.02 - 3.45 0.8525 0.6435 0.8243 0.7601 

Acido Lattico 

(g/100g) 
15 n.r. - 2.48 0.9307 0.5444 0.8556 0.7887 

Conte Lb  

(log UFC/g) 

15 6 - 8.65 0.9457 0.2024 0.8566 0.3315 

Conte St  

(log UFC/g) 

13 6.35 - 8.65    0.8342    0.2886    0.6755    0.4067 
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Le regressioni ottenute modellando i dati FT-NIR risultano affidabili soprattutto per i 

principali indici valutati industrialmente (pH, acidità titolabile) e per la concentrazione 

di acido lattico, avendo valori di R2 superiori a 0.93 in calibrazione e 0.85 in cross-

validazione, associati ad errori standard contenuti. 

Tabella 2. Parametri statistici dei modelli PLS costruiti con i dati FT-IR per la predizione 

durante la fermentazione lattica di pH, acidità titolabile, metaboliti (lattosio, galattosio, acido 

lattico) e conta batterica. 

 

Nel caso delle regressioni costruite con i dati spettrali FT-IR, i risultati ottenuti in 

calibrazione sono buoni per tutti i modelli riportati, mostrando valori di R2 superiori a 

0.89 e valori contenuti di RMSE; è da sottolineare, però, che alcune variabili (lattosio e 

galattosio in particolare) hanno mostrato problematiche di overfitting, ottenendo elevati 

valori di R2 in calibrazione, non confermati poi in validazione. Anche in questo caso i 

modelli costruiti per pH, acidità titolabile e acido lattico correlano in modo più che 

soddisfacente i dati spettrali con i valori ottenuti dalle analisi di riferimento.  

Sono da considerarsi molto promettenti i risultati ottenuti per la determinazione della 

conta di L. bulgaricus e S. thermophilus (R2 in calibrazione pari a 0.9247 e 0.9613, 

   Calibrazione Cross-validation 

Parametri VL Min – Max R2 RMSE R2 RMSE 

pH 11 6.51 - 3.67 0.9762 0.1374 0.9542 0.1901 

Ac. Titolabile Lb (% 

ac. lattico) 
9 0.13 - 1.18 0.9915 0.0081 0.9514 0.0020 

Ac. Titolabile St (% ac. 

lattico) 
10 0.13 - 1.18 0.9743 0.0095 0.8548 0.0032 

Lattosio St+Lb (g/L) 20 3.02 - 8.05 0.9969 0.2240 0.7006 2.2269 

Galattosio (g/L) 13 0.02 - 3.45 0.8936 0.5401 0.7755 0.7879 

Acido Lattico (g/L) 11 n.r. - 2.48 0.9632 0.3885 0.9233 0.5635 

Conte Lb (log 

UFC/mL) 
11 6 - 8.65 0.9247 0.2378 0.8204 0.3662 

Conte St (log UFC/mL) 9 6.35 - 8.65 0.9613 0.1385 0.7914 0.3296 
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rispettivamente), che potrebbero incoraggiare l’utilizzo della spettroscopia IR al posto 

della conta in piastra, tecnica che richiede lunghi tempi di preparazione del campione e 

di analisi. 

 

Conclusioni  

In conclusione, il lavoro ha permesso di dimostrare che la spettroscopia IR, in 

combinazione con appropriate tecniche chemiometriche, può considerarsi utile nel 

monitoraggio delle fermentazioni lattiche, permettendo di predire simultaneamente 

diversi parametri chiave della fermentazione. Tuttavia, i modelli ottenuti in questo 

lavoro devono essere considerati preliminari in quanto il numero di campioni utilizzati 

per la loro costruzione non è sempre molto elevato (min 66; max 198) e non fa 

riferimento a dati provenienti da produzioni industriali. 
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Introduction 

There are two main fermentations associated with the winemaking process. Alcoholic 

fermentation conducted by yeast followed by a secondary fermentation, called 

malolactic fermentation (MLF) performed by lactic acid bacteria (LAB) specifically 

from the genera Oenococcus, Lactobacillus and Pediococcus.1 

MLF is a complex biotransformation, usually defined as the conversion of malic acid 

to lactic acid and CO2, that contributes to deacidification, microbial stability and 

modification of the aroma profile.  

Winemakers usually trust to spontaneous MLF conducted by indigenous LAB 

occurring on grape surfaces, grape must, cellar environment, including barrels and 

winery equipment. For this reason spontaneous MLF is often unpredictable. 

Commonly it occurs after completion of alcoholic fermentation, when the wine 

conditions are favourable for the growth of lactic acid bacteria, but it may start after 

long delays.1 Even with the use of commercial starter cultures, complete and successful 

MLF is not always guaranteed, especially under difficult wine conditions (i.e. low pH, 

high ethanol and SO2 concentrations).1 

Nowadays winemakers don’t carry out a real monitoring of the bioprocess, instead they 

rely upon oenologists’ experience who assess the beginning and the end of the MLF 

according to sensory evaluations. 

Thus, it is desirable to supply winemakers with new simple and rapid analytical 

systems to monitor MLF and to establish the best strategy for its management. 

Attempts have been made by other authors to use either near (NIR) or mid infrared 

(MIR) spectroscopy to predict chemical compounds or fermentation products2-4 during 

wine fermentation, however, no references are available in literature concerning MLF 

monitoring. 

In this work we use IR analysis to develop specific calibrations models for malic, lactic 

acids and total acidity in order to provide a useful tool for MLF monitoring during 

large scale wine fermentations. 

 

Materials and methods 

Sampling and reference analyses 

Samples were collected from different large scale fermentation tanks of Nebbiolo 

grapes in wineries located in Northern Italy. The samples used in this study were of the 

same vintage and had not been blended with any other variety or wine from other 

regions. Each one was characterized by different pH values, SO2 and alcoholic degree, 

in order to create an extensive case study. A total of 112 samples were collected taking 

care to ensure that the set covered the compositional range generally expected in wine. 

Because FT-NIR and FT-MIR spectroscopy are a secondary analytical method, it was 
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first necessary to calibrate the instruments against the chemical reference methods for 

the different components.  

Each sample was centrifuged to remove the lactic acid bacteria, and assayed for the 

consumption of L-malic acid and the production of L-lactic acids by 

spectrophotometric analysis with enzymatic kits (SCIL diagnostics, GMBH).  

Total acidity (expressed as g L-1 of tartaric acid, endpoint pH 7.0) was carried out by 

automatic titrator (Titromatic, 2S Crison, Spain). 

 

FT-NIR and FT-IR spectroscopy 

Acquisition of the samples spectra was performed in transmission mode using a glass 

cuvettes with an optical path of 0.2 mm path length with a Fourier transform (FT-NIR 

spectrometer, MPA, Bruker Optics, Milano) at different times during the fermentation 

process. The spectral data were collected over the range 12,500–3,800 cm-1 (resolution, 

16 cm-1; background, 32 scans; sample, 32 scans) at controlled temperature (23 ± 1 

°C). In addition FT-IR measurements were performed with a spectrometer (Vertex70, 

Bruker Optics, Milano) equipped with a deuterated triglycine sulphate (DTGS) 

detector. The spectral data were collected over the range 4,000–700 cm-1 (resolution, 8 

cm-1; background, 16 scans; sample, 16 scans) at controlled temperature (23 ± 1 °C). 

The samples were positioned on a germanium crystal ATR (Attenuated Total 

Reflectance) with multiple reflection. Instrument control and initial data processing 

were performed using OPUS software (v. 6.5, Bruker Optics, Ettlingen, Germany). 

 

NIR and MIR data processing 

The Unscrambler software (v. 9.7, Camo, Inondhcim, Norway) was used for spectral 

data elaboration.  

The spectral data collected during the process, row or pre-treated with first derivative 

transformation, were correlated with chemical parameters by partial least squares 

(PLS) regression algorithm. The PLS calibration was preferred because it compensates 

the interferences from uninteresting compounds. This method has been successfully 

applied in many bioprocesses monitoring with this intent and has shown strong 

predictive capacity for unknown samples.5 

Internal cross validation (leave-one-out) was used to assess the predictive ability of 

calibration model; the coefficients of determination (R2), the root mean square error in 

calibration (RMSEC) and in cross-validation (RMSECV) were computed. The R2 gives 

the percentage of variance present in the component values, which is reproduce in the 

prediction; the higher the coefficient, the better the correlation between the 

concentration data and spectral data. The RMSECV is the prediction error of a 

calibration model and it is defined as the standard deviation of differences between 

spectral data and reference values in the cross-validation sample set.6 
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Results and discussion 

Chemical analysis 

Table 1 shows changes of chemical parameters involved in the biotransformation 

(malic acid, lactic acid  and total acidity) for the 112 samples collected. Average values 

and the corresponding standard deviation for these parameters, are reported.  

During the MLF, L-malic acid is converted into L-lactic acid and CO2; the 

transformation from a diacid (malic acid) to a monoacid (lactic acid) causes a slight 

decrease of total acidity. The concentration of malic acid ranged from a maximum of 

4.01 g L-1 to a minimum of 0.01 g L-1, on the other hand, lactic acid content ranged 

from 0.05 g L-1 to 2.63 g L-1 (Table 1). Samples characterized by malic acid values 

close to zero and high concentration of lactic acid could been considered as wine at the 

end of the MLF. Concerning total acidity, collected samples ranged from 8.52 to 5.28 g 

L-1 (Table 1). Samples having high total acidity values are referring to wine where the 

L-malic acid is still present, while lower values are characteristic of wine which have 

already undergone to the biotransformation. The precise monitoring of total acidity 

during MLF provides relevant information for global control and optimization of the 

process.16 

 

Table 1. Minimum, maximum and mean values for malic acid, lactic acid and total acidity 

measured for the 112 samples collected at different fermentation stages and from different 

winery. 

Parameter N Mean Minimum Maximum S.D. 

  

Malic acid (g L-1) 112 2.41 0.01 4.0 1.26 

Lactic acid (g L-1) 112 0.68 0.05 2.63 0.77 

Total acidity (g L-1) 112 7.25 5.28 8.52 1.01 

S.D.= standard deviation 

 

FT-NIR and FT-IR spectroscopy 

NIR row spectra of the samples collected are characterized by some peaks at 6,873, 

5,176 and 3,950 cm-1 (Figure 1). Small peaks are also evident at the region between 

4,550 and 4,300 cm-1.  
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Figure 1. Example of aFT- NIR row spectra of a wine sample. 

Three peaks are the more significant and correspond to the absorption of C–H and 

C=O stretching combination band (4,520 cm-1), the absorption of C–H stretching and 

bending combination band (4,412 cm-1) and O–H and C–O from glucose (4,335 cm-1) 6. 

The most commonly used chemometric techniques in the bioprocessing context is 

partial least squares (PLS)3,4, in particular is widely applied to complex fluids such as 

wine.  

 

Figure 2. Example of PLS models. FT- NIR-predicted data versus reference data for the 

calibration and cross-validation sets for malic acid content in must samples. 
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NIR spectral data collected from the 112 samples and transformed in first derivative 

were correlated with the main MLF compounds (L-malic acid and of L-lactic acids) 

and total acidity values using partial least squares (PLS) regression algorithm.  

The results obtained show the ability of FT-NIR spectroscopy in quantifying the main 

changes in chemical composition occurring during the biotransformation. In Figure 2 is 

reported an example of regression model for malic acid. 

The models developed in the NIR region performed well in the prediction of malic and 

lactic acids, indeed they are characterized by R2 in calibration above 0.95, while in 

validation it reach values of 0.92 for malic acid prediction (Table 2). The models 

constructed are also characterized by low prediction error for both the chemical 

indexes (RMSECV = 0.37 g L-1 for malic acid and RMSECV = 0.27 g L-1 for lactic 

acid) (Table 2).  

Table 2. Statistical parameters for the prediction of malic acid, lactic acid and total acidity in 

samples collected at different stages of fermentation using FT-NIR spectroscopy 

D1= first derivative, LV= number of latent variables, R2= coefficient of determination, RMSEC= root 

mean square error of calibration, RMSECV=root mean square error of cross-validation. 

Good predictive model was also achieved for total acidity; in the NIR region 

correlation coefficient in calibration were 0.96 and RMSEC values were 0.21 g L-1 

(Table 2).  

As described for NIR spectroscopy, also FT-IR spectra, evaluated on the same 

samples, were elaborated using PLS algorithm to build regression models for the main 

chemical indexes of wine.  

An example of FT-IR spectrum collected is shown in Figure 3; the main peaks 

observable are at 3,363 cm-1 and 1,643 cm-1, related to O–H group stretching in water 

and the C=O bond stretching of carboxylic acids. It is possible to notice the 

characteristic bands associated with sugars in the MIR region (C–O stretch for fructose 

at 1,080 cm−1 and glucose at 1,041cm−1)4.  

Dependent 

Variable 

Data  

pre- processing 

LV 

Calibration Cross-validation 

R2 RMSEC R2 RMSECV 

Malic acid (g L-1) d1 10 0.962 0.249 0.918 0.374 

Lactic acid (g  L-1) d1 11 0.958 0.159 0.884 0.269 

Total acidity (g  L-1) d1 10 0.956 0.208 0.879 0.348 



4.2. Wine malolactic biotransformation monitoring 

128 
 

Regression models were developed from spectral ranges between 3,826 cm-1 to 2,870 

cm-1 and 1,905 cm-1 to 694 cm-1, associated with the absorption of O-H group, C-O and 

C-C bonds of principal molecules present in wine 6,7. 

 

Figure 3. Example of aFT- IR row spectra of a wine sample. 

An example of model developed in the MIR region for malic acid prediction is shown 

in Figure 4. 

 

Figure 4. Example of PLS models. FT- IR-predicted data versus reference data for the 

calibration and cross-validation sets for malic acid content in must samples. 

Fagan and O’Donnell6 suggest that an R2 value greater than 0.9 indicates excellent 

quantitative information. The MIR models obtained were characterized by R2 values in 
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cross-validation ≥ 0.94, thus indicating that the correlation equations will provide 

excellent quantitative information.  

Table 3. Statistical parameters for the prediction of malic acid, lactic acid and total acidity in 

samples collected at different stages of fermentation using FT-IR spectroscopy 

Abs= row data with any pre-processing, LV= number of latent variables, R2= coefficient of determination, 

RMSEC= root mean square error of calibration, RMSECV= root mean square error of cross-validation. 

Al the models developed are characterized by low prediction error, indeed  RMSECV 

are 0.31, 0.03, and 0.24 g L-1 for malic acid, lactic acid and total acidity, respectively 

(Table 3). Although for many years FT-IR spectroscopy has found generally a more 

limited application than FT-NIR these results demonstrate great potential for rapid 

determination of multiple wine components. The regression models in MIR region 

obtained in this study, if compared with PLS models in NIR region, used a limited 

number of latent variables, are characterized by greater R2 values and lower values of 

root mean square error (both in calibration and cross-validation).  

Conclusions 

This results suggest the succeeding in the challenge of meeting the winery's need. The 

developed calibration models in both NIR and MIR regions provided good estimations 

for malic acid, lactic acid and total acidity in samples collected from Nebbiolo musts. 

Within a short time, much of the relevant information can be simultaneously procured. 

Additionally, a good overview of the sample can be obtained. The FT-MIR method is 

very user friendly and fast method. 

The small estimation errors achieved for the components in this study allowed 

distinction between samples before MLF and after malic acid transformation. The 

sampling design, planned using samples from Nebbiolo must fermented in different 

wineries, performed according different wine-making procedures and wine cellars 

temperatures, allow to construct global calibration models with a better robustness.  

Dependent 

Variable 

Data pre-

processing 
LV 

Calibration Cross-validation 

R2 RMSEC R2 RMSECV 

Malic acid  

(g  L-1) 
Abs 9 0.979 0.186 0.943 0.307 

Lactic acid (g  L-1) Abs 9 0.970 0.020 0.944 0.026 

Total acidity (g  L-1) Abs 6 0.973 0.166 0.946 0.237 
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Abstract 

The aim of this work was to verify the potential of Infrared (IR) spectroscopy in near 

and mid regions to detect the beginning of the malolactic fermentation (MLF) 

occurring in a model-wine. MLF in wine is a secondary biotransformation due to 

Lactic Acid Bacteria that usually occurs spontaneously or after starter inoculation at 

the end of alcoholic fermentation. Nowadays, it is desirable to supply winemakers with 

a new rapid and non-destructive approach to monitor MLF progress and IR 

spectroscopy technology appears to be suitable for this purpose. The transformation of 

L-malic acid into L-lactic acid was carried out by inoculating a synthetic wine with an 

Oenococcus oeni culture and it was monitored through microbiological and chemical 

methods. At the same time FT-NIR spectral data, in diffusive transflection mode using 

an optic probe, and FT-IR spectra, using a ATR cell, were collected. Principal 

Component Analysis of the spectra was able to identify absorption bands related to the 

key molecular modifications that took place during the L-malic acid transformation. 

Thus, to discriminate samples according to the fermentation phase. Although this study 

is a preliminary approach, results confirm that NIR and MIR spectroscopy could be 

successfully applied to detect the start of MLF.   

 

 

Keywords malolactic fermentation, wine, FT-IR, FT-NIR, Oenococcus oeni 
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Introduction 

In some wines characterised by a high total acidity the L-malic acid conversion into L-

lactic acid is advisable to increase the quality of the end product. This 

biotransformation, called malolactic fermentation (MLF), is carried out by lactic acid 

bacteria (LAB) belonging to Lactobacillus, Oenococcus and Pediococcus genera; 

among them a key role is played by Oenococcus oeni, recognized as the species most 

tolerant to the wine environment, which is characterised by low pH, high SO2 and 

alcohol content [1]. From a technological point of view, the MLF influences quality 

and taste of the end product as result of the transformation of a diacid (malic acid) into 

a monoacid (lactic acid), resulting in wine deacidification, flavour complexity 

enhancement and microbiological stability [2,1]. Small and medium enterprises usually 

rely on a spontaneous MLF, conducted by indigenous LAB occurring on grape, must 

and cellar environment, including barrels and winery equipment [3-5]. In particular, the 

clime can differently trigger MLF; in cold areas spontaneous MLF may take place 

many months after alcoholic fermentation conclusion [6, 7], whereas warm climes can 

favour the bacterial growth which activate the MLF throughout or afterwards the 

alcoholic fermentation. Depending on the wine type and on its required sensorial 

profile, the biotransformations should be either avoided, controlled or even 

encouraged, especially in aged Italian red wines, such as Amarone, Barbaresco, Barolo, 

Brunello di Montalcino, Valtellina Superiore and Sforzato. For this reason both 

substrate and product concentrations (e.g. sugars, ethanol, L-malic and/or L-lactic 

acids) must be assayed during the whole process. The monitoring of MLF is usually 

carried out by traditional methods such as measuring of total and volatile acidity of 

wine, microbial counts, determination of malic and lactic acids by chromatography 

techniques or enzymatic assays. These protocols require sample preparation, specific 

analytical equipment and are time-consuming. The modern oenology needs instead fast 

and reliable quality control methods that provide real time information. Near (NIR) and 

mid infrared (MIR) spectroscopy represent fast and non-destructive methods, 

alternative to conventional analyses. The absorption in these spectral ranges can be 

related to the main chemical components of food, such as carbohydrates, fats, proteins 

and water. In particular, in the NIR region (between 750 and 2,500 nm), vibration and 

combination overtones of the fundamental O–H, C–H and N–H bounds are the main 

recordable phenomena [8]; while the MIR measurements provide information on 

fundamental frequencies of chemical bonds in functional groups such as C–C, C–H, 

O–H, C- O and N–H [9]. 

IR spectroscopy has already been used in wine composition studies [10-13] and to 

control microbial fermentations [14-18]; however, as far as concern wine fermentation 

control, few references are available in literature on the application of NIR and MIR 

techniques [19-21], and the interest in MLF as proof the works by Cozzolino et al. [22] 
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and Grassi et al. [23]. However these approaches are mainly for screening differences 

of malolactic bacterial strains for metabolic activity in red and 

white wines and for metabolites quantification. Another interesting approach is to 

evaluate the kinetics of the biotransformation to describe the dynamics of the process. 

For this purpose in this work Principal Component Analysis (PCA) and kinetic 

modelling were applied to spectral data to test out the potential of IR spectroscopy in 

monitoring time related changes in a malolactic biotransformation in a wine-model. 

 

Materials and methods  

Biotransformation medium and conditions 

Tests were performed using a synthetic medium, similar in composition to a wine, 

prepared modifying Verduyn broth [24] by adding fructose (7.0 g L-1), L- malic acid 

(2.5 g L-1), casaminoacids (0.5%), KH2PO4 (3.0 g L-1), MgSO4 (0.5 g L-1), ethanol 

(10% v/v)  and adjusting to pH 5.5. The biocatalysis of L-malic acid into L-lactic acid 

was triggered inoculating 16Z05 O. oeni strain [25] which was isolated from an Italian 

red wine (Valtellina district, SO, Lombardy). To carry on the process, 500 mL of 

modified Verduyn broth (mVB) was transferred to flasks and inoculated at 

approximately 107 CFU mL−1. Cells were incubated at 30°C. To obtain the best 

survival condition for O. oeni, an anaerobic environment was obtained adding 25 mL 

of sterile liquid paraffin on the surface. The experimental design consisted in two 

replicates per trial.  

Microbiological and chemical analyses 

Fifty millilitres of cell culture were collected at 0, 3 and 7 days from the inoculum. 

Afterwards a regular sampling was performed every 7 days up to 24 days period. A 

sample aliquot was immediately submitted to the microbiological analysis; after the 

serial dilution in sterile water plus peptone 10% w/v, 100 μL of cell suspension was 

plated on MRS (Merck, Darmstadt, Germany), agar 1.5% (w/v) supplemented with 

20% v/v apple juice and incubated in anaerobiosis (Anaerocult A; Merck, Darmstadt, 

Germany) at 30°C for 7 days to obtain the viable cell count. The rest of the sample was 

filtered 0.22 μm and conserved at -20°C for the following chemical assays.. Fructose, 

L-malic and L-lactic acids and acetic acid production were measured by 

spectrophotometric analyses (DU 650, Beckman, Fullerton, CA) using enzymatic kits 

according to the supplier’s recommendations (SCIL diagnostics GMBH). The pH 

determination was carried out by a pH-meter (3510, JENWAY).  

FT-NIR and FT-IR spectroscopy 

NIR spectral data were collected using a Fourier transform (FT)-NIR spectrometer 

(MPA, Bruker Optics, Milano) equipped with an optic probe working in diffusive 
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transflection mode (path length =1 mm). The data were collected over the 12,500 – 

3,800 cm-1 range (resolution, 64 cm-1; background, 128 scans; sample, 128 scans) at 

controlled temperature (23 ± 1°C).  

In addition, the same samples were also analysed by a FT-IR spectrometer (Vertex70, 

Bruker Optics, Milano) equipped with a deuterated triglycine sulphate (DTGS) 

detector. Spectral data were collected over the 4,000 – 700 cm-1 range (resolution, 8 

cm-1; background, 16 scans; sample, 16 scans) at controlled temperature (23 ± 1 °C) 

placing the samples on a germanium crystal ATR (Attenuated Total Reflectance) with 

multiple reflection (Pike Technologies, Inc., Madison, USA). Instrument control and 

initial data processing were performed using OPUS v. 6.5 software (Bruker Optics, 

Ettlingen, Germany). 

The NIR and MIR spectra were acquired up to 24 days of fermentation. In particular, 

the spectra were collected daily for the firsts eight days, twice a day between 9th and 

17th day, and then again daily up to the 24th day.  

NIR and MIR data processing 

Both NIR and MIR spectral datasets were analysed using “The Unscrambler v. 9.7” 

software (Camo, Trondheim, Norway). Before performing the PCA analysis, the NIR 

and MIR spectral data were pre-treated using a second derivative transform calculation 

(Savitzky-Golay method, gap size = 15 data points) and mean-centred. To uncover 

spectral trends occurring during the biotransformation PCA was applied to data. This 

analysis permits to highlight the similarities among samples and the relationships 

among variables. 

For NIR and MIR data, PCA was performed over the 5,600 – 4,160 cm−1 and 1,535 – 

868 cm−1 ranges, respectively. These spectral ranges are characterized by the principal 

absorption bands of the compounds involved in the biotransformation.  

The values of the PC1 scores were modelled as a function of time, using a sigmoid 

function (1) implemented in Table Curve software (v. 4.0, Jandel Scientific, San 

Rafael, CA, USA): 
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   





























 


d

cdx
bay

2lnln
expexp  

 

with the aim of better describing the spectral changes undergone during process [26-

28]. In order to identify critical points during fermentation and therefore to determine 

the time related to the maximum acceleration and deceleration of the phenomenon, the 

second derivatives of sigmoid functions were calculated. 
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Results and discussion  

ML biotransformation: microbiological and chemical analyses 

All the results discussed in this section refer to the average values of the data collected 

by two replicates of the experimental trial. The initial microbial concentration of the 

inoculum (day 0) was confirmed to be approximately 107 CFU mL-1; after three days, 

the population was at the same level as expected [29]. After the tenth day, no viable 

count was detected anymore (data not shown). The fructose evolution shows that the 

cellular metabolism has been active up to 6-8 days and the higher fructose 

consumption has occurred in the three days after the inoculum, changing from a start 

value of 7.0 g L-1 to 6.6 g L-1 (Fig. 1a). From the eighth day on the fructose 

concentration detected remains stable (6.5 g L-1). O. oeni has numerous nutritional 

requirements for growth [30]; Terrade & Mira de Orduña [31] underlined that LAB 

nutritional requirements are genus, species and strain specific. On the other hand, our 

synthetic medium, prepared to be similar in composition to a wine, may have a limited 

content of nutrients despite the implementation in casaminoacids, leading to a 

microbial starvation.  

Fig. 1 shows changes of chemical parameters involved in MLF (fructose, L-malic, L-

lactic acids and pH): average values and the corresponding standard deviations for 

these parameters, measured at defined time intervals are reported. No acetic acid 

production was detected at any time, although it is a potential metabolite of O. oeni 

metabolism [32].  

During the first days after the inoculum, L-malic acid was converted into L-lactic acid; 

in particular, L-malic acid was quickly consumed, decreasing from 2.53 g L-1 to 1.34 g 

L-1 at the eighth day; afterwards, the concentration hold steady. As a consequence, L-

lactic acid amount increased from 0 g L-1 to 0.87 g L-1 (Fig. 1a).  

However, The pH values fast increased during the first three days, growing from 5.50 

to 6.02; from the sixth day, all along the trial the pH was stable at 6.10 (Fig. 1b).  

The lack in viable counts and the static behaviour of chemical compounds investigated 

could be ascribable to cell lysis phenomenon, which can occur at the end of MLF in 

wine production. 
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Figure 1. Evolution of malolactic transformation parameters (a): fructose (●), L- malic acid (■) 

and L-lactic (x) and pH (b). The results are reported as average values of two replicates and 

standard deviation. 

FT-NIR and FT-IR spectroscopy 

NIR raw spectra of the samples collected at different times during the fermentation 

process (from initial time to the twenty-fourth day) are characterized by two absorption 

bands at 6,896 cm-1 and 5,183 cm-1 (spectra not shown). These wavenumbers are 

associated with the first overtone and the combination band of O-H in water, 

respectively. In order to minimize the background noise and to highlight the main 

dominant features, data are converted into the 2nd derivative (Fig. 2).  
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Figure 2. Second derivative of NIR spectra of the samples collected at different time during the 

biotransformation process in mVB (from initial time to the twenty-fourth day). 

The main dominant features observed in the transformed spectra are absorption in the 

range of 7,235 – 7,081 cm-1 and 5,338 – 5,199 cm-1 which are related to the first 

overtone of the O-H of water and to the combination of stretching and deformation of 

the O-H group in water, respectively [15]. The second derivative of spectra shows a 

peak at 4,983 cm-1 related to -NH combination band of amino acidic fraction; small 

peaks are also evident in the region between 4,505 - 4,242 cm-1, which correspond to 

O–H bending and C–O stretching combination and the absorption of C–H stretching 

and CH2 deformation combination band of carbohydrates, respectively [33]. 

A preliminary examination of the spectra was performed by PCA applied to the second 

derivative of the spectra in the range 5,600 - 4,170 cm-1. The results are reported in Fig. 

3 and 4. 

Through the analysis of the score plot (Fig. 3), obtained by applying PCA to FT-NIR, a 

samples distribution in the area defined by the first two principal components was 

obtained according to the fermentation stages. On the score plot the number beside 

each point represents the fermentation time in days. The samples are distributed along 

PC1, which accounts for 55% of the variance in the spectral collection, from right to 

left mainly on the basis of increasing fermentation time. This distribution is clear up to 

8 days of fermentation but becomes less distinct thereafter. This sample separation is in 

good accordance with the time indicated by the microbiological and chemical analyses. 

In fact, the main biotransformation, according to chemical analyses, were observed up 

to the ninth day, time at which the MLF has interrupted. At this point the 

biotransformation occurs no longer in accordance with the microbiological data.  
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Figure 3. Score plot, obtained by applying PCA to FT-NIR data, in the area defined by the first 

two principal components. 

 

Figure 4. Loading plot PC1(a), PC2 (b), PC3 (c) and PC4 (d); NIR spectra. 
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In attempt to uncover the causes of these score patterns, the loading plots of the first 

four principal components, which accounts for the 100% of the variance in the spectral 

collection, were studied (Fig. 4).  

The main wavenumbers of the loadings plot on PC1 (Fig. 4a) and PC2 (Fig. 4b) 

responsible for sample separation during the fermentation process are related to O-H 

band associated with the water absorption (5,353 - 5,122 cm-1: stretching and 

deformation of the O-H). The loadings plot on PC2 (Fig. 4b) show also small peaks in 

the range of 4,500 – 4,200 cm-1. These peaks become more evident on PC3 loadings 

plot (Fig. 4c), and are related to the absorption of C–H stretching and C=O 

combination band of carbohydrates and O–H and C–O associated with ethanol, sugars 

and other organic compounds produced during the biotransformation. On PC4 loadings 

plot (Fig. 4d) the main wavenumbers are related to -NH combination band of peptides 

(5,415 cm-1) which are in the broth or are released after lysis of the cell membrane.  

The same multivariate approach was used to analyse the FT-IR spectra collected during 

the MLF.  

The main dominant features observed in the second derivative spectra are in the range 

1,477 – 1,326 cm-1, which is associated with compounds characterized by -CH2 and -

CH3 bonds (such as organic acids) and in the range 1,110 – 1,045 cm-1, which is related 

to C-O and C-C stretching, corresponding to fructose, ethanol and organic acids [34] 

(Fig. 5). 

 

 

Figure 5. Second derivative of FT-IR spectra of samples collected at different time during the 

biotransformation process in mVB (from initial time to the twenty-fourth day). 
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The PCA was performed using the second derivative spectra in the spectral range 1,535 

- 868 cm-1.  

As in NIR spectroscopy, the PCs score plot (Fig. 6) shows a samples distribution on 

the basis of the fermentation stage, distinguishing samples collected before the ninth 

day from the one collected afterwards. This time is in good accordance with those 

obtained with NIR spectroscopy and with microbiological and chemical analyses. 

 

 

Figure 6. Score plot, obtained by applying PCA to FT-IR data, in the area defined by the first 

two principal components. 

The loading intensity on the first four principal components (Fig. 7), which account for 

the 95% of the total variance, shows that samples distribution could be associated with 

C-C and C-O bonds vibrations due to proteins and amino acids, and to P=O symmetric 

stretching mode characteristic of the ribose or deoxyribose nucleic acid (approximately 

1,080 cm−1) which can be found in the cultural broth following bacterial lysis, as 

reported for yeast cultures by Filip and Hermann [35], Al-Quadiri et al. [36] and 

Cavagna et al. [37]. The main wavenumbers of loadings plot on PC1 (Fig. 7a) and PC2 

(Fig. 7b) responsible for sample separation during the fermentation process are related 

to C-H stretch of -CH2 and -CH3 groups (1,485 - 1,350 cm-1).  
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Figure 7. Loading plot PC1(a), PC2 (b), PC3 (c) and PC4 (d); MIR spectra. 

The loadings plot on PC2 (Fig. 7b) displays also peaks in the range 1,100 - 1,080 cm-1, 

due to the absorption band of C-C and C-O. These absorption are also present on the 

PC3 and PC4 loadings plots (Fig. 7c and 7d).  

In order to study the molecular transformations and to better describe the spectral 

changes during MLF process, the values of PC1 scores obtained by PCA applied to 

NIR and MIR data, were modelled as a function of time, using a sigmoid function 

(Table Curve V.4.0, Jandel Scientific, San Rafael, CA, USA). The use of this sigmoid 

function is related to the nature (enzymatic or microbial-induced) of the 

biotransformation. In Fig. 8 the modelling of PC1 scores of NIR spectral data is 

presented: the minimum (6.6 days) and the maximum (14 days) of the second 

derivative represents the time of the maximum acceleration and deceleration of the 

bioprocess, respectively. 

As for NIR spectroscopy, the PC1 sample scores obtained by MIR spectroscopy, were 

plotted against time (Fig. 9), and the maximum acceleration and deceleration of the 

process were calculated in order to define the critical points of MLF revealed by MIR 

spectroscopy. These times were 7.7 and 13.6 days respectively and they were in good 

accordance with those obtained by NIR spectroscopy. 
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Figure 8. PC1 scores versus time for FT-NIR spectral data (●), model obtained fitting the PC1 

scores with the sigmoid function (-), second derivative of the model obtained (--). 

 

 

Figure 9. PC1 scores versus time for FT-IR spectral data(●), model obtained fitting the PC1 

scores with the sigmoid function (-), second derivative of the model obtained (--). 
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The times, associated with the maximum acceleration of the MLF and revealed by 

spectroscopic techniques are very similar with those achieved with the chemical 

analysis: the main biotransformation occurred in the eight day after the inoculum. In 

particular it agrees in principle with microbiological data: as a consequence of 

starvation cells stopped growing and they started lysis process after the tenth day. 

Therefore we can assess that spectroscopic methods, in both near and medium region, 

are able to monitor the molecular changes that occur during the transformation of L-

malic acid into L-lactic acid. Moreover the kinetic approach would permit an 

evaluation of the performance of the strain rather than just the quantification of the 

main metabolites. This strategy also allowed to detect the lysis process which could 

occur in a complex and variable matrix as wine. 

Conclusion 

Results obtained in this work revealed that non-destructive methods, such as NIR and 

MIR spectroscopy, could be employed in studying the evolution of the malolactic 

transformation, supporting data obtained by conventional techniques (chemical and 

microbiological analyses).  

The modelling of PC scores obtained by NIR and MIR spectroscopy can be used to 

follow the biotransformation steps giving crucial information on the process. In fact the 

critical points identified by these techniques during fermentation are in agreement with 

the times revealed by chemical and microbiological analyses. Therefore, these 

spectroscopic techniques can be regarded as valid and simple tools able to provide real 

time information throughout the biotransformation. Although in this study the 

measurements were carried out during a biotransformation in a model-wine in off-line 

mode, sensors or probes could be implemented.  Future works could be performed 

during a MLF in wine throughout an on-line monitoring, giving real time signals 

related to the development of the process. 
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ABSTRACT  

This work investigates the capability of Fourier-Transform near infrared (FT-NIR) 

spectroscopy to monitor and assess process parameters in beer fermentation at different 

operative conditions. For this purpose, the fermentation of wort with two different 

yeast strains and at different temperatures was monitored for nine days by FT-NIR. To 

correlate the collected spectra with °Brix, pH and biomass, different multivariate data 

methodologies were applied. Principal component analysis (PCA), partial least squares 

(PLS) and locally weighted regression (LWR) were used to assess the relationship 

between FT-NIR spectra and the abovementioned process parameters that define the 

beer fermentation. The accuracy and robustness of the obtained results clearly show the 

suitability of FT-NIR spectroscopy, combined with multivariate data analysis, to be 

used as a quality control tool in the beer fermentation process. FT-NIR spectroscopy, 

when combined with LWR, demonstrates to be a perfectly suitable quantitative method 

to be implemented in the production of beer. 

 

Keywords: Beer fermentation; quality control; NIR; FT-NIR; PCA; PLS; LWR 
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1. Introduction 

Beer is, arguably, the most widespread alcoholic beverage in the world and its success 

is related, among other factors, to its suitability for large scale production. Beer 

production was originally handcrafted and the control of the fermentation was exerted 

by skilled brew masters able to evaluate the progress of the process with empirical 

sensory evaluations (Bolton & Quain, 2006). In the past decades, thanks to the rise of 

industrial beer production, the subjective evaluation of the process has been outdated 

by initial control parameters, being the regulation of wort composition and yeast strain 

the main ones (Bamforth, 2006). Despite the precise assessment of the previous 

mentioned parameters the brewing industry still has to face different variation in the 

cycle of the fermentation that might hamper the quality of the final product. Therefore, 

large scale production of beer leads to the necessity of quality assurance systems to 

guarantee the fulfilment of the required quality consistency of the final product, forcing 

the breweries to define and control one or several parameters during the process to 

meet the proper standards. Although each company defines its own specifications, 

some are required by law. In particular, for what regards the final product, alcohol 

content or Plato degree per hectolitre are the legal parameters upon which beer is taxed 

(Directive 92/84/EEC, 1992). For this motive, an unavoidable parameter to be 

controlled during the first fermentation of beer is specific gravity (SG), correlated with 

sugar concentration in the wort and, therefore, alcohol content in the final product. The 

industrial trend is to monitor the fulfilment of SG to the defined specification through 

the use of Quality Control Charts, which allow a fast visual check of the trend of the 

system being controlled through mean and control limits statistically defined. 

However, with this univariate quality assurance strategy is difficult to date back to the 

source of the no standard behaviour leading to the abnormality in the batch (Kourti, 

2005). The main problem is that a failure in a parameter evaluated might be originated 

from several correlated variables, often non-measured, governing such a complex 

bioprocess as it is beer first fermentation (Kourti, 2006).  

Recently, companies started to look for methods providing comprehensive information 

of the on-going process in order to assure an effective control at all stages. The 

implementation of Fourier-Transform near-infrared (FT-NIR) probes has been proved 

to offer detailed information in real-time in several food processes, allowing the 

assurance of meeting the quality parameters to the defined specifications (Huang, Yu, 

Xu & Ying, 2008). Despite being a promising technique, FT-NIR has several 

drawbacks to be considered as well. For instance, the spectral signal generally obtained 

in the fermentation of beer is strongly characterized by the overlapping of the bands 

due to the heterogeneous and complex composition of the medium. In fact, the wort is 
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mainly composed by fermentable sugars (i.e. maltose, maltotriose, glucose, sucrose, 

and fructose), non-fermentable sugars (i.e. dextrins) and nitrogen sources in the form 

of proteins, peptides and aminoacids (Lewis & Young, 2002). All the mentioned 

compounds absorb in the NIR region (12,000-4,000 cm-1), as they contain C–H, N–H, 

O–H and C=O bonds, giving an overlapped signal. Moreover, water is the major 

constituent of the wort (ca. 92% ) and it strongly characterises NIR spectral 

information with its peaks around 6,900 cm-1 (O-H first overtone) and around 5,300 

cm-1 (combination of the asymmetric stretch and bending of the water molecule) 

(Workman & Weyer, 2008).  

Chemometrics has been applied in the last 30 years to overcome the mentioned 

drawbacks and to extract relevant information from FT-NIR data (Bock & Connelly, 

2008). Principal component analysis (PCA) and Partial Least Square (PLS) regression 

became of interest, as they are able to take advantage of the structures in highly 

overlapping and co-linear data (Martens & Næs, 1989). Both methods are linear. 

Nevertheless, in some cases, the correlation between the spectral signal and the 

reference measure has a non-linear nature. In these cases, methods for linear modelling 

of nonlinear surfaces are needed. Cleveland and Devlin (1988) proposed locally 

weighted regression (LWR) as methodology to fulfil this goal and Næs and Isaksson 

(1992) and Naes, Isaksson and Kowalski (1990) applied the strategy to infrared 

spectroscopy.  

To what brewing monitoring concerns, FT-NIR spectroscopy combined with 

Chemometrics has been applied to simultaneous determination of compounds in 

brewing final product (Duarte, Barros, Almeida, Spraul & Gil, 2004; Inon, Llario, 

Garrigues, de la Guardia, 2005; Lachenmeier, 2007; Ghasemi-Varnamkhastia 

Rodriguez-Mendeza, Gomes, Ugulino Araújo and Galvão, 2012) and for beer 

authentication (Di Egidio, Olivieri, Woodcock, Downey, 2011; Engel, Blanchet, 

Buydens, Downey, 2012). Nevertheless, little research exists on the use of FT-NIR for 

monitoring and assessment of changes in relevant physico-chemical parameters in the 

beer fermentation process (McLeod et al. 2009).  

Therefore, much more intensive work is needed to really assess the usefulness and 

power of FT-NIR and Chemometrics in modelling, controlling the beer fermentation 

process. This work investigates the capability of FT-NIR spectroscopy to monitor wort 

fermentation conducted at different operative conditions (temperature and yeast type), 

deepening into the robust correlation between NIR spectra collected during 

fermentation and different key factors in beer manufacturing. For this purpose, PCA 

was applied to the FT-NIR spectra of a set of six different beer fermentation 

conditions, to ascertain whether beer spectral changes may be correlated with the 

biotransformation progress, both biomass increase and chemical modifications. 

Furthermore, PLS and LWR models were calculated to correlate sugar content (°Brix), 

http://www.sciencedirect.com/science/article/pii/S0039914011010988
http://www.sciencedirect.com/science/article/pii/S0039914011010988


4.3 Beer fermentation monitoring 

153 
 

pH and biomass to the spectral information in order to develop a rapid method to detect 

the changes of these parameters in real-time during the fermentation process.  

 

2. Materials and methods 

2.1. Materials 

Standard commercial wort “Highland heavy Ale wort” was purchased (Muntons plc©, 

Suffolk, UK) and reconstituted according to instructions of the manufacturers in 2 L of 

heat treated water for each trial, agitated at 200 rpm for 2 h to saturated level. Two 

different Saccharomyces cerevisiae strains, one for British Ale (WLP005) and the 

other for Belgian Ale (WLP570) (WhiteLab Inc., San Diego, CA, USA), were 

separately inoculated into the wort, reaching approximately the concentration of 7 x 

106 CFU mL-1.  The preparation of the inoculum was performed as follow: one fresh 

colony for each strain was aerobically propagated in 10 mL YEPD broth (Yeast Extract 

10 g L-1 , Peptone 20 g L-1, Dextrose 20 g L-1, pH 6.4) at 20°C for 24 h; afterwards, the 

suspension was transferred in 100 mL of fresh broth with a magnetic stirrer (200 rpm) 

for 24 h at 20°C, then transferred in 400 mL YEPD and incubated for 24 h at 20°C. 

The harvested cells were pitched in the wort and gently agitated to create a 

homogeneous distribution before sharing out about 300 mL into sterile glass bottles, 

one for each sampling point, closed with airlock caps. The cell concentration for each 

strain was determined using a calibration curve obtained by correlating plate counts on 

YEPD agar and optical density values measured at 620 nm. 

 

2.2. Fermentation trials 

The experiments were performed according to a factorial design with the two different 

S. cerevisiae strains (WLP005 and WLP570) and three different fermentation 

temperatures (19, 21 and 24°C), all replicated twice, giving a total amount of 6 

different experiments for each beer type.  

Samples were collected in triplicate right after pitching (0 hour, starting time) and then 

every 22 hours until the 9th day of fermentation, using two different sampling methods: 

directly from supernatant and after centrifugation for 15 min at 3,000 g.  

 

2.4. pH ,°Brix and biomass determination 

pH was measured at each sampling point by a Portamess® 911 pH-meter (Knick 

Elektronische Messgeräte GmbH & Co. KG, Berlin, Germany). 

Total sugar content was measured by a refractometer (Bellingham and Stanley RMF 

340, Kent, UK). 
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The changes in biomass were determined by optical density measured at 620 nm with a 

UV-visible spectrometer (Hemlett Packard 8453, Agilet Technologies, Waldbronn, 

Germany). 

 

2.7. FT-NIR spectroscopy 

FT-NIR spectra were collected in transmission mode, with a Bomen QFA Flex FT-NIR 

spectrometer (Q-Interline A/S, Roskilde, Denmark) equipped with a 1 mm path length 

cuvette. The data were collected in the range 12,000–4,000 cm−1, with a resolution of 

16 cm-1 and 128 scans for both background and samples.  

 

2.8. Data processing 

The whole wavenumber range (12,000-4,000 cm-1) was reduced in order to eliminate 

useless or saturated variables from spectra. For PCA and regressions of chemical 

indexes the final two spectral ranges selected were from 7,500 to 5,500 cm-1 and from 

4,700 to 4,350 cm-1. They are characterized by the principal absorption bands of the 

compounds involved in the biotransformation. Only for the regression models for 

biomass prediction the spectra range used was 10,500 to 5,500 cm-1 and from 4,700 to 

4,350 cm-1, in order to keep the information about baseline changes which are 

correlated to the yeast growth in the media. 

Except for biomass regression, the spectra were pre-processed to minimize the effect of 

baseline shifts and noise and to highlight modifications due to the chemical 

composition. Thus, Standard Normal Variate (SNV), first derivative Savitzky – Golay 

(7 wavelengths gap size and 2nd order polynomial) was performed. Before data analysis 

with PCA, the final pre-processed spectra were mean centred. In the same way, before 

regression models, the pre-processed spectra were mean centred and the variable to 

predict auto-scaled. 

All models were developed by the PLS_Toolbox (Eigenvector Research Inc., 

Wenatchee, WA) working under MatLab v. 7.4 (The MathWorks, Natick, MA).  

PCA and PLS models are quite common in literature, and further information can be 

found elsewhere (Kramer, 1998; Kramer, Workman & Reeves, 2004).  

Briefly, PCA is a suitable tool for simplification, data reduction, outlier detection and 

pattern recognition (Jolliffe, 1986), highlighting the variance of the spectra. PLS, on 

the contrary, is a standard method to solve multivariate regression problems, 

maximizing the correlation between the NIR spectra and the parameters to quantify 

(Naes, Isaksson, Fearn & Davies, 2002).  

LWR, though, is not frequently presented as regression techniques applied to 

spectroscopy.  

Therefore, the main steps characterizing the analysis are reported (Bevilacqua, Bucci, 

Materazzi, Marini, 2013) as they were applied in this work: 
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1. cDefinition of the number of nearest neighbours (local points) close to the 

prediction spectrum to be used to build local calibration models;  

2. Find for every new object the samples closest to it in the local calibration model 

(nearest neighbours);  

3. Build a local calibration model using the nearest neighbours only; assign the 

weights () of the neighbours in the local model according to their Euclidean distance 

to determine the closeness to the dependent variable and the auto-scaled distance in the 

principal components space;  

4.  Prediction (by PLS regression) of the new sample by applying the local calibration 

model developed. 

 

3. Results and discussion 

3.1.pH and Brix degree 

pH values obtained at the inoculation time (t=0) were very similar for all the samples, 

having an average value of  5.64±0.07. This confirms the reproducibility of the wort 

reconstitution protocol (Figure 1a and 1b). Just after the fermentation started, a fast 

drop in pH values was observed for all the trials performed within 22 h of 

fermentation. This decay in the pH, though, was different (as observed in Figure 1a and 

1b) depending of the yeast strain inoculated. The trials performed with WLP005 strain 

showed a minimum pH value at 24°C after 72 h (4.45±0.02) (Figure 1a), followed by a 

modest rise up to 4.52±0.03 at the end of the monitoring (t=216h). This behaviour of 

the pH after the fermentation “mid-point” was previously reported by Berner & 

Arneborg (2011).  

Concerning the trials inoculated with WLP570 strain, the pH decay continued until the 

last sampling point (t=216 h) (Figure 1b). More precisely, it is possible to observe the 

temperature effect for the trials incubated at 19°C (the slope of the pH curve is lower 

than for the trials performed at higher temperatures in Figure 1a and 1b).  Nevertheless, 

the final pH values were comparable at all the temperature tested (4.41±.0.13).  

Figure 1 (c and d) shows as well the °Brix changes for all the trials performed. As 

observed for pH, the °Brix at starting time were the same for all the trials (9.37±0.07 

°Bx) corresponding to a sugar content of approx. 97.50g/L. The total sugar content 

showed a fast decrease in all the trials performed within three days of fermentation. 

The sugar consumption was faster when WLP005 strain was used, reaching 6.55±0.05 

°Bx after 46 h at 24°C (Figure 1c) and remaining constant after 142 h of fermentation, 

due to the characteristic high flocculation of the yeast cells and the consequent low 

sugar consumption. The main difference was observed when wort inoculated with 

WLP005 was incubated at 19°C; in this case the sugar content decreased with a lower 

speed but reaching at the fermentation end-point the same level of the other trials 

performed (5.19±0.04 °Bx). The sugar depletion in the fermentations conducted with 
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WLP570 strain showed a lower and more constant slope than those inoculated with 

WLP005 (Figure 1d). 

 

 
Figure 1. pH and °Brix profiles for the three tested temperatures: blue squares for trails 

performed at 19°C, green circles for the one at 21°C and red triangles for the one at 24°C. pH 

evolution of trials conducted with WLP005 strain (a), and WLP570 (b). Soluble Solid Content 

of trials conducted with WLP005 strain (c), and WLP570 (d). 

This is probably due to the ability of WLP570 yeast cells to remain in suspension in the 

wort during the fermentation time. To assess if the end points of the trials performed 

were significally different according to the temperature and yeast used the mean of  

°Brix and pH values at the final points were subjected to a two way analysis of 

variance (ANOVA). Table 1 reports the results obtained. At 95% of confidence level 

there were found no significant differences in the end points.  
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Table 1. Two way analysis of variance for °Brix and pH value at the end-points to assess the 

influence of the three temperatures and the two yeast strains tested (=0.05). 

 Source of variation SS DF MS Effect of Factor 

°Brix 

Temperature 0.016 2 0.008 0.043 n.s. 

Yeast strain 0.112 1 0.112 0.60 n.s. 

pH 

Temperature 0.008 2 0.004 0.101 n.s. 

Yeast strain 0.015 1 0.015 0.366 n.s. 

SS= Sum of Square; DF= Degree of Freedom; MS=Mean Square 

As described beforehand, the trends of the pH and °Brix could be different according 

to the yeast used, but evaluating their values at end point is not possible to find out 

differences due to the strain inoculated or the operating temperature. In this regard pH 

and °Brix measurement alone could not be an exhaustive tool to monitor the overall 

fermentation performance as is not possible to find out differences in the processes due 

to failure of temperature control or due to the yeast strain governing the fermentation. 

 

3.2 FT-NIR spectroscopy 

Figure 2a shows an example of the spectra collected directly from the supernatant for 

the fermentation conducted at 19°C with WLP570. Here it is possible to observe an 

increase in absorption and baseline drift due to the scattering effect caused by the yeast 

growth in the media. The main peak around 6,900 cm-1 is related to O-H first overtone 

of water (Workman & Weyer, 2008), which is the main compound present in the 

fermenting wort (around 90%). Other small features are present in the 4,700-4,350 cm-1 

region, being related to the sugars consumption and ethanol production (McLoad et al., 

2009). Figure 2b shows in detail the second spectral area, being able to observe the 

characteristic peak of ethanol around 4,420 cm-1 and its evolution with time. 

The pre-processed spectra obtained at 19°C with WLP570 are shown in Figure 2c. 

Main changes are highlighted in the region 7,500-5,500 cm-1.  In particular changes are 

associated with water O-H absorption (7,000-6,500) and with C-H methyl associated 

with O-H as R-OHCH3 (5,925 cm-1) (Workman & Weyer, 2008). Moreover in the 

region 4,700-4,350 cm-1 ethanol and sugars modifications (C–H combination bands, 

and O–H stretch overtone) are evident.  
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Figure 2. FT-NIR spectra collected directly from the supernatant for the fermentation 

conducted at 19°C with WLP570. Raw spectra in the region 7,500-5,500 and 4,700-4,350 cm-1 

a), detail of the region 4,700-4,350 cm-1 (b). Spectra transformed with SNV and first derivative 

(7 pt, 2nd polynomial order) (c), detail of the region 4,700-4,350 cm-1 after pre-treatments (d). 

The increase of ethanol content according to fermentation time is well highlighted in 

Figure 2d. The highlighted wavelength range (4,700-4,350 cm-1) recorded at the 

beginning of the fermentation (light gray colour) does not have the characteristic 

ethanol peaks due to the O-H stretching combined with O-H bending (Workman & 

Weyer, 2008); whereas it is possible to observe the appearance of the peaks and their 

increment with time.  

 

3.3 Principal component analysis  

Figure 3a shows the score plot of the first and the second principal components, PC1 

and PC2, respectively, with samples coloured according to the fermentation time. PC1 

explains 63.21% of the total variance and clearly describes the evolution of the spectra 

according to the fermentation time. It is noteworthy that this clear definition of the 
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evolution of fermentation by PC1 is repeated for all the fermentations, no matter the 

sampling method used, the yeast or the temperature tested, denoting the precision and 

robustness of FT-NIR spectra in reporting fermentation evolution under different 

conditions. Samples collected at time = 0 (red triangles) have positive PC1 values and 

are grouped together, in agreement with the results obtained by pH and °Brix 

measurements. With the progress of the fermentation time samples have lower PC1 

scores, with a good separation between each sampling time.  

The main peaks responsible of samples distribution along the PC1 (Fig. 3d) are due to 

the influence of ethanol (peaks around 6,000-5,500 cm-1 and 4,400 cm-1), sugars (first 

combination region C-H around 4,500 cm-1) and the consequently change in water (O-

H first overtone at 6,900 cm-1). 

On the other hand, PC2 clearly separates the samples according to the sampling 

method used (Figure 3b).  All the samples collected after wort centrifugation have 

negative PC2 values; while most of the samples collected directly from the supernatant 

have positive values, which generally increase with the time progress.  

This outcome can be associated with the physical effect of increasing of the 

concentration of suspended cells in the medium (Beauvoit, Liu,Kang, Kaplan, Miwa & 

Chance, 1993). However, there are some of the samples collected from the supernatant 

which are characterised by low PC2 values. Looking at Figure 3c is possible to find an 

explanation about the supernatant samples having low PC2 values with the progress of 

time. The samples collected directly from the supernatant of the wort fermented with 

WLP005 () have PC2 values increasing until t=70h, thereafter the values decrease up 

to reaching the same value of the samples collected just after the starting time.  

This phenomenon can be ascribed to the flocculating nature of this strain. Indeed, the 

loading profile of PC2 (Figure 3d, (--))  is highly influenced by scattering effect in the 

regions 6,500-5,500 cm-1 and 5,000-4,500 cm-1 which was not completely corrected by 

SNV pre-treatment. To better understand the different behaviours observed according 

to the yeast strains inoculated, PCA models on the single strain were performed. Figure 

4a reports the scores plot of the PC1 vs PC3 performed by selecting from the dataset 

only the experiments performed with WLP005.  
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Figure 3. Principal component analysis of all the FT-NIR spectra collected. Score plots: (a) 

PC1 vs PC2 with samples coloured according to fermentation time (red =0h, orange =22h, 

purple =46h, blue =70h, light blue =142h, green=216h), (b) samples coloured according 

the sampling method used (blue =centrifuged and green *=not centrifuged), (c) samples 

coloured according to the strain inoculated ( for WLP005 and * for WLP570). Loadings plot: 

(d) represents the PC1 loading (gray line) and PC2 loading (black-dashed line). 

 

As observed in the global PCA (Fig. 3) this strain is characterised by flocculation 

behaviour, which causes the precipitation of the cells on the bottom of the flask after 

70 hours. In this case the scatter effect and changes in the water peak (6,900 cm-1) is 

described mainly by the PC3. High values of PC3 correspond to a high number of yeast 

cells in the media, i.e. high scattering effect. Moreover the third component is 

influenced by changes in the O-H first overtone (6,900 cm-1), as observed in the 

corresponding loadings plot (Fig.4c).  
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Figure 4. Principal component analysis of the FT-NIR spectra collected from the trials 

performed with WLP005 strain (a and c) and with WLP570 (b and d). (a) PC1 vs PC3 of 

WLP005 with samples coloured according the sampling method used (blue =centrifuged or 

green *=not centrifuged). (b) PC1 vs PC2 of WLP570 with samples coloured according the 

sampling method used (blue =centrifuged or green *=not centrifuged). (c) PC1 (solid line) and 

PC3 (dashed line) loadings plot of WLP005 samples. (d) PC1 (solid line) and PC2 (dashed line) 

loadings plot of WLP570 samples. 

 

Figure 4b shows the scores plot referred to the PCA performed by selecting just the 

WLP570 strain. In this case the scattering effect is described by the PC2 and two 

groups are well defined according to the sampling method used (Fig.4b). All the 

spectra collected from centrifuged samples have negative PC2 values whereas samples 

collected directly from the supernatant are characterised by positive PC2 values 

increasing during fermentation time due to the higher concentration of yeast in the 

media causing scattering effect. In both individual PCA (Fig. 4a and 4b) the PC1 

described the time progress related to the main modification occurring during the 

biotransformation progress no matter the sampling method used. In particular the 

regions effecting the samples distribution are related to sugars (4,500-4,300 cm-1) and 

ethanol (6,000-5,500 cm-1 and 4,200 cm-1) (Fig. 4c and 4d).   
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3.4 Quantitative determination of Solid Content, pH and biomass 

PLS analysis was employed as initial method to estimate °Brix , pH and biomass for all 

the spectra collected. PLS calibration models were constructed using the whole dataset 

comprising 6 experiments run at different temperatures (19, 21, 24 °C) and with 

different inoculated strains  (WLP005 and WLP570), replicated twice and collected 

with two different sampling methods (centrifuge and from the supernatant) with a total 

of 497 spectra. Before regression analyses different spectral regions were selected 

following the suggestions made by McLeod et al. (McLeod et al. 2009). From 7,500 to 

5,500 cm-1 and from 4,700 to 4,350 cm-1 for °Brix and pH and from 10,500 to 5,500 

and from 4,700 to 4,000 cm-1  for biomass. Different pre-treatments were tested (SNV 

and first derivative) always followed by mean centering. a double cross-validation in 

both PLS and LWR models. A double cross-validation procedure was performed 

following these steps:  

1) Select one of the batches (whole fermentation) as external test set. 

2) The remaining batches conformed the training/calibration set. 

3) Perform the calibration model using leave – one batch out – cross validation 

methodology. 

4) Predict the test set batch with the calibration model.  

5) Select another batch to be considered as external test set and come back to step 2. 

This flow-chart was repeated as many times as batches comprise the full dataset. In our 

case, twelve times. The figures of merit reported are the mean value of the figures of 

merit calculated in every iteration. In this way, more robust and reliable models can be 

constructed compared to a single cross-validation procedure, especially in the cases 

where there are not many samples available. The figures of merit of the PLS models 

are reported in Table 2.  
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Table 2. Figures of merit of the PLS and LWR models obtained for total solid content (°Brix), pH and biomass.  

 

                      Calibration Cross-validation Prediction 

Model Parameter Range pre-treat variable selection LV Global PC Local points 
Local 

LV 
α Iteration R2 RMSEC R2 RMSECV R2 RMSEP 

P
L

S
 

°Brix 4.9-9.4 

SNV none 4 - - - - - 0.969 0.255 0.964 0.275 0.964 0.249 

SNV 4500-4000 cm-1 4 - - - - - 0.975 0.227 0.971 0.250 0.970 0.230 

SNV+d1 none 5 - - - - - 0.977 0.220 0.970 0.253 0.970 0.237 

SNV+d1 4500-4000 cm-1 3 - - - - - 0.968 0.256 0.964 0.272 0.964 0.253 

pH 5.71-4.27 

SNV none 4 - - - - - 0.773 0.201 0.752 0.208 0.743 0.205 

SNV 4500-4000 cm-1 4 - - - - - 0.872 0.105 0.839 0.168 0.827 0.166 

SNV+d1 none 5 - - - - - 0.865 0.153 0.818 0.179 0.811 0.175 

SNV+d1 4500-4000 cm-1 4 - - - - - 0.796 0.190 0.756 0.207 0.746 0.203 

Biomass* 0.14-3.19 

none none 5 - - - - - 0.911 0.267 0.894 0.291 0.829 0.262 

none 10,500-5,500 cm-1 5 - - - - - 0.922 0.249 0.908 0.271 0.848 0.240 
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L
W

R
 

°Brix 4.9-9.4 SNV+d1 

- - 3 50 4 0.00 5 0.987 0.128 0.960 0.291 0.962 0.266 

- - 3 50 4 0.50 5 0.987 0.126 0.960 0.294 0.960 0.269 

- - 3 50 4 0.75 5 0.988 0.141 0.906 0.289 0.961 0.259 

pH 5.71-4.27 SNV+d1 

- - 3 50 4 0.00 5 0.987 0.055 0.917 0.122 0.913 0.117 

- - 3 50 4 0.50 5 0.987 0.046 0.923 0.116 0.921 0.112 

- - 3 50 4 0.75 5 0.974 0.063 0.915 0.123 0.910 0.119 

  

0.14-3.19 

none - - 3 50 3 0.00 5 0.956 0.184 0.910 0.271 0.851 0.216 

Biomass* none - - 3 50 3 0.50 5 0.951 0.166 0.910 0.270 0.852 0.211 

 

none - - 3 50 3 0.75 5 0.953 0.170 0.905 0.273 0.852 0.212 

 

SNV= standard normal variate, d1= first derivative (window size 7, second polynomial order), Global PC= number of principal components in 

the global model, local LV= number of latent variables in the local model,   = weighting of y-distances in selection of local points, iteration= 

iterations in determining local points, R2= coefficient of determination, RMSEC= root mean square error of calibration, RMSECV=root mean 

square error of cross-validation, RMSEP=root mean square error of prediction. 

*O.D. (optical density) for biomass at 620 nm. 
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The number of latent variables (LVs) was selected by inspecting root mean square 

error of calibration (RMSEC) and cross-validation (RMSECV), selecting the number 

of LVs that led to a minimum of both RMSEC and RMSECV and, most important, 

containing information about the chemical features of the samples. Moreover, the root 

mean square error of prediction (RMSEP) and the coefficient of determination (R2) 

were also reported for all the models.  

Inspecting the regression vectors of the models for °Brix and pH it was noticed that the 

variables in the region 4,500 to 4,000 cm-1 were the one explaining most of the 

variance of the model, no matter the pre-treatment used. This founding confirmed what 

have been stated by McLoad et al. (2009). This region, related to sugar and ethanol 

content, was selected for further PLS analysis (Table 2). For what concern the model 

for biomass no pre-treatment was used because the main idea was to describe the 

dispersion of the cells in the fermenting beer. The region from 10,500 to 5,500 cm-1 

was the one remarkable in the corresponding regression vectors, mainly describing the 

slope changes in this region, i.e. the scattering effect of the yeast in the media. With 

regard to the Total Solid content (°Brix) excellent models were obtained for all the pre-

treatments and the variable selected tested. In particular, the PLS model obtained with 

the spectra pre-treated with SNV and using the selected spectral region presented 

coefficient of determination (R2) in calibration, cross-validation and prediction of  

0.975, 0.971 and 0.970, respectively and a small error (RMSE) in calibration,  cross 

validation and prediction (0.227, 0.250 and 0.230, respectively). This highlights the 

extreme importance that data exploration step has when dealing with FT-NIR, showing 

that the small spectral area between 4,500-4,000 cm-1 is, indeed, the most informative 

one. The use of first derivative in addition to the SNV caused a general slight reduction 

of the figures of merit, assessing that the best models were those with minimum pre-

processing.  

For what concerns the models obtained for pH, the results were of lower quality. The 

best performance was obtained by calculating the model with spectra transformed with 

SNV, with variable selection, using 5 LVs. This lack of good performance for pH and 

its logarithmic behaviour suggested that there might be a nonlinear relationship 

between the spectra and the pH.  

With reference to biomass the models obtained were good, especially when the region 

10,500-5,500 cm-1 was selected (in prediction the R2 was 0.848 and the  RMSEP= 

0.240). However, the samples grouping in the score of LV1 against LV2 revealed the 

influence of the different experimental conditions (strain inoculated) which can effect 

in the models results in the same extent as a nonlinear relationship.  

LWR-PLS regression results are summarised in Table 2. For all the models reported 

the number of local point (neighbours) was set to 50; the number of global component 

set to 3; the number of local latent variables set to 3 or 4; and the interactions set to 5. 

The alpha parameter, the relative weight of the Euclidian distance to prediction in the 
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selection of the subset of calibration spectra, was tested at different level (0, 0.5 and 

0.75). For pH and biomass, the best models were achieved with =0.50, indeed the 

coefficients of determination were higher than 0.95 in calibration, 0.91 in cross-

validation and 0.85 in prediction. For what concern Total Solid Content (°Brix) the 

best model was obtained with =0.75 with R2 in prediction of 0.961. The LWR root 

mean errors in prediction were lower than 0.054 in the case of pH and 0.029 for 

biomass if compared with the ones obtained with PLS methodology. For what concern 

°Brix the LWR did not improved the quality of the figure of merit obtained with PLS 

modelling. 

4. Conclusions 

In this study the application of FT-NIR spectroscopy as a method to monitor beer 

manufacturing parameters, i.e. soluble solid content (°Brix), pH and biomass, with a 

simple centrifugation and without any sample preparation was investigated.  

Different multivariate data techniques were applied on the spectroscopic data. PCA 

results demonstrated that is possible to follow biomass evolution, i.e. concentration of 

suspended cells in the medium, and the evolution of fermentation from a chemical 

point of view, no matter the sampling method adopted.  

The use of PLS provided acceptable models for °Brix, pH and biomass determination, 

even though the results suggested a possible nonlinear relationship between the spectra 

and the parameter investigated. The better results obtained with LWR-PLS technique 

instead of the linear PLS confirmed the nonlinearity relationship and permitted to 

achieve precision and robustness models to determine °Brix, pH and biomass, no 

matter the sampling method used. 

The results obtained in this research suggest the robust and reliable possibility that the 

implementation of NIR instruments, with the proper configuration, provides for on-line 

industrial brewing systems to monitor °Brix, pH and biomass evolution during the beer 

fermentation.  Supplying industries with a system giving information in real-time 

would allow the assurance of meeting the main parameters to the defined specifications 

and the action in case of non standard trends detection. 
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Abstract: 

The progress of the fermentation process is a key point in defining the conformance of 

the final beer to its defined specification. In this work six beer fermentation trails were 

performed according to a factorial design with the two different S. cerevisiae strains 

(WLP005 and WLP570) and three different fermentation temperatures (19, 21 and 

24°C), all replicated twice. Samples were collected directly from the supernatant every 

22 h until day nine and analyzed through a Fourier-transform infrared attenuated total 

reflectance (FT-IR ATR) spectroscopy and a refractometer. Multivariate curve 

resolution – alternating least square (MCR-ALS) models were successfully developed 

to follow the fermentation progress (99.9% of explained variance, 0.63665% lack of 

fit, and standard deviation of the residuals lower than 0.0072). The spectral changes 

occurring during the fermentation of beer were described with six components 

correlated to the spectra of the main components of wort (maltose, maltotriose, 

fructose, sucrose, dextrins and ethanol) attributing the main changes governing the 

processes to maltose, maltotriose and ethanol evolutions.  

 

Highlights  

- MCR-ALS decomposed the overlapped FT-IR signal into single constituents of 

beer 

- MCR models describe the fermentation progress of maltose conversion to 

ethanol 

- The results show a suitable methodology for monitoring and understanding the 

kinetics of the whole process 

- FT-IR fingerprint region revealed the evolution of sugars and ethanol 

Keywords: Fermentable sugars; Ethanol; Beer fermentation; Modelling; MCR-ALS; 

FT-IR; 
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Introduction 

Beer fermentation is characterized by a large number of biochemical transformations 

leading to a final product highly different from the raw materials in the context of 

sugar, alcohol and aroma profile. 

The main changes produced in beer fermentation are related to the activity of the yeast. 

In presence of oxygen, sugars and free amino nitrogen are consumed to obtain energy 

and lead to the production of ethanol, CO2 and secondary metabolites contributing to 

the final flavors (Ingledew, 1999). The progress and the outcome of the fermentation 

relied mainly on wort composition and yeast physiological state, two composite 

variables. The wort composition depends on the malting and mashing processes. Both 

processes influence protein composition and the sugars content. Proteins are degraded 

into low-molecular weight nitrogenous compounds by proteases and peptidases; 

whereas sugars derivate from the breakdown of the starch from barley due to amylases 

activities (Kunze, 2004). Not all the starch present in the malt is attacked by wort 

amylases. Therefore, a non-fermentable sugar fraction (at least 20% of the total extract) 

is present and is mainly represented by dextrins. The main part of wort carbohydrates 

(75-78%) is represented by fermentable sugars: maltose, maltotriose, glucose, fructose 

and sucrose (Stewart, 2009). Due to the complexity of the raw materials, it is clear that 

the setup of the initial parameters for the beer fermentation is essential, but not enough 

for the process control. Measurements of changes in chemical composition, especially 

different sugars and ethanol, are thus needed to monitor the development of the whole 

process and to maintain the consistency of the final product under control in order to 

keep the process economics and to meet the expectations of the consumers. 

A number of scientific organizations (e.g. American Society of Brewing Chemistry and 

European Brewery Convention) published their own series of reference brewing 

analytical methods. Few analytical measurements can be carried out directly in the 

fermenting tanks; they are mainly physical and physicochemical measurements 

(specific gravity, refractive index, turbidity and viscosity) and pH measure among the 

chemical ones. The official methods, defined by the Analysis Committee of the 

European Brewery Convention (Hagen & Schwarz, 2000), for the determination of 

fermentable sugars in wort are based on high performance liquid chromatography 

(HPLC) analysis; the ones for ethanol in beer are based on Gas Chromatography, 

pycnometry or enzymatic reaction. The application of traditional analytical techniques 

becomes problematic when following the progress of a whole fermentation; mainly 

because they require sampling from the tanks, sample preparation, specific 

instruments, highly qualified person and they are time consuming.   

The application of the gravity sensing devices has been proposed and it could be 

implemented in small-scale productions for determination of extract and alcohol 

content approximation. The advantage is that is not necessary the sampling from the 
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fermenter, but this approach does not allow the differentiation between sugars and 

must be fitted in to each single fermenter (Boulton, 2006). 

The implementation of Fourier-Transformed mid-infrared (FT-IR) probes has been 

proved to offer detailed information in real-time in several food processes (van de 

Voort, 1992), allowing the assurance of meeting the quality parameters to the defined 

specifications (Karoui et al., 2010). To what brewing monitoring concerns, FT-IR 

spectroscopy has been applied to simultaneous determination of compounds in brewing 

final product and for brand identity (Duarte et al., 2004; Llario et al., 2006; Inon et al., 

2006; Lachenmeier, 2007; Castrius et al., 2012; Engel et al., 2012).  

Despite being a promising technique, FT-IR has drawbacks to be considered and 

handled as well. For instance, the spectral signals of the different sugars generally 

obtained in the fermentation of beer are characterized by the strong overlap of the 

bands due to the high similarity of their structure. Moreover, some sugars do not 

change during the fermentation, or evolve between them making the direct monitoring 

with FT-IR more difficult, since the changes related to the signal cannot be directly 

associated to any sugar. The beer being fermented also contains other compounds 

absorbing in IR region. Above all, the absorption of ethanol and water (Inon et al., 

2006) are crucial and highly overlapped with the signal of the sugars. Therefore, if fast 

monitoring of sugar development and behavior wants to be performed in a fast, easy 

and non-destructive manner, a powerful data analysis methodology is definitively 

required in combination with FT-IR spectroscopy.   

It is many years now that multivariate curve resolution (MCR) methods are 

demonstrating their usefulness in modeling and monitoring different biochemical 

systems that evolve with time by using different spectroscopic data (Amigo et al., 

2006a; Amigo et al., 2006b; de Juan & Tauler, 2006; Rodriguez-Rodriguez et al., 2007; 

Garrido et al., 2008; Pindstrup et al., 2013). The ability of unravel the real physico-

chemical behavior of the evolving species makes MCR a perfect method to obtain 

useful qualitative and quantitative information from the spectra collected during any 

process. MCR is especially useful in complex systems where the evolving species are 

highly overlapped or in presence of interferences that hamper the perfect elucidation of 

the analytes being transformed (Amigo et al., 2006a; Pindstrup et al., 2013).   

The purpose of the current work is, therefore, to investigate the capability of MCR 

applied to FT-IR spectra to extract relevant information about beer fermentation 

dynamics in six different experimental conditions. This approach showed the 

possibility of following the changes in ethanol and different sugars, thanks to the 

ability of MCR to resolve the highly overlapped signal of the sugars. The results 

provide the brewing industry with a suitable methodology for monitoring and 

understanding the kinetics of the whole process, maximizing and standardizing the 

productivity of the batches.  
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2. Material and Methods 

2.1. Materials 

Standard commercial wort “Highland heavy Ale wort” was purchased (Muntons plc©, 

Suffolk, UK) and reconstituted according to instructions of the manufacturers in 2 L of 

heat treated water for each trial, agitated at 200 rpm for 2 h to saturated level. Two 

different Saccharomyces cerevisiae strains, one for British Ale (WLP005) and the 

other for Belgian Ale (WLP570) (WhiteLab Inc., San Diego, CA, USA), were 

separately inoculated into the wort, reaching approximately the concentration of 7 x 

106 CFU mL-1.  The preparation of the inoculum was performed as follow: one fresh 

colony for each strain was aerobically propagated in 10 mL YEPD broth (Yeast Extract 

10 g L-1 , Peptone 20 g L-1, Dextrose 20 g L-1, pH 6.4) at 20°C for 24 h; afterwards, the 

suspension was transferred in 100 mL of fresh broth with a magnetic stirrer (200 rpm) 

for 24 h at 20°C, then transferred in 400 mL YEPD and incubated for 24 h at 20°C. 

The harvested cells were pitched in the wort and gently agitated to create a 

homogeneous distribution before sharing out about 300 mL into sterile glass bottles, 

one for each sampling point, closed with airlock caps. The cell concentration for each 

strain was determined using a calibration curve obtained by correlating plate counts on 

YEPD agar and optical density values measured at 620 nm. 

Fermentable sugars (maltose, maltotriose, maltose, maltotriose, glucose, fructose and 

sucrose) and dextrin were purchased from Sigma-Aldrich Co. and diluted in distilled 

water to a final concentration of 50gL-1. Ethanol (Sigma-Aldrich Co.) solution at 5% 

(v/v) was also prepared as reference for ethanol.  

 

2.2. Fermentation trials 

The experiments were performed according to a factorial design with the two different 

S. cerevisiae strains (WLP005 and WLP570) and three different fermentation 

temperatures (19, 21 and 24°C), all replicated twice, giving a total amount of 6 

different experiments for each beer type.  

Samples were collected in triplicate right after pitching (0 hour, starting time) and then 

every 22 hours until the 9th day of fermentation directly from supernatant.  

2.3.°Brix determination 

Total sugar content was measured by a refractometer (Bellingham and Stanley RMF 

340, Kent, UK). 

2.4. FT-NIR spectroscopy 

FT-NIR spectra of fermenting beer were collected in transmission mode, with a Bomen 

MB-series FT-IR spectrometer equipped with an ATR cell. The spectra were collected 
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in the range 6,000–600 cm−1, with a resolution of 8 cm-1 and 16 scans for both 

background and samples. The same approach was followed for pure compounds 

spectra acquisitions. 

2.5. Data processing 

The whole wavenumber range (6,000-600 cm-1) was reduced to the fingerprint region 

(1,200-950 cm-1).   

Standard Normal Variate (SNV) was performed in order to correct scattering effects. 

All models were developed by using the PLS_Toolbox (Eigenvector Research Inc., 

Wenatchee, WA) working under MatLab v. 7.4 (The MathWorks, Natick, MA).  

As mentioned before, MCR has been used for several years now. Therefore, a brief 

summary of the main theoretical background and specific features to the analysis 

performed will be exposed herein. More detailed information can be found elsewhere 

(Tauler, 1995; Rodriguez-Rodriguez et al., 2007). 

The IR spectra collected for one fermentation process can be arranged in a data matrix 

D (M x N) where M is the number of spectra recorded for each time and N is the 

number of wavelengths for each spectrum. The aim of MCR is then to decompose D 

into the product of two sub-matrices (Eq. 1): 

D = CST + E   (Eq. 1) 

 

The main feature of MCR is that C (M x P) and ST (P x N) matrices correspond to the 

concentration evolution and the spectral profiles, respectively, of the P pure 

components that are evolving in the fermentation process D; being E (M x N) the 

residuals of the model (see Figure 1).  
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Figure 1. a) Graphical representation of MCR decomposition of a FT-NIR spectra dataset (D1) 

to obtain the pure concentration (C1) and spectral profiles (ST). E denotes the residual matrix. b) 

Column-wise augmentation strategy of the experiments [D1;D2;…;DI] to obtain individual 

concentration profiles [C1;C2;…;CI] and a common spectral profile matrix (ST). The residual 

matrices are denoted as [E1;E2;…;Eexp]. 

 

This decomposition can be done by using alternating least squares (ALS) algorithm. 

ALS decomposes D by performing the following four steps in an iterative manner 

(Rodriguez-Rodriguez et al., 2007): 

1. Generation of initial estimates of either C or ST. In our case, the initial estimations 

used were the pure spectra of the sugars and ethanol (more detail below).  

2. Given D and ST, least-squares calculation of C under the suitable constraints. 
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3. Given D and the new calculated C, least-squares calculation of ST under the suitable 

constraints. 

4. Calculation of  as the product of the new calculated CST. If the convergence 

criterion is fulfilled (that is, the difference between the residuals in consecutive 

iterations is below a certain threshold) the process is finished. Otherwise, go back to 

step 2 by using the ST calculated in step 3. 

MCR-ALS works under two important assumptions. The first one is that the exact 

number of compounds evolving in the fermentation (i.e. the chemical rank) must be 

perfectly known. For this purpose, methods like principal component analysis (PCA) 

or evolving factor analysis (EFA) (Keller & Massart, 1992) might be used, together 

with the previous knowledge of the chemical composition of the fermentation. The 

second important assumption is that the spectra collected with time follow a linear 

model analogous to the Lambert Beer’s Law.  

As said before, the main advantages of MCR-ALS is the ability of recovering 

analytical responses (concentration and pure spectral profiles) which are chemically 

interpretable without the assumption of any previous empirical model. Nevertheless, 

the mathematical resolution of the product of two unknown variables (C and ST) has 

not a unique solution. This is translated into plausible ambiguities in the final solution 

(Tauler, 1995). Nevertheless, these ambiguities can be minimized by using two 

strategies. 

The first strategy is to apply several constraints in the iteration of the algorithm. The 

most common constraints are non-negativity (the concentration and/or spectral profiles 

can be constrained to have only positive values), unimodality (the shape of the profiles 

only have one maximum), closure (the total concentration of the components is 

constant throughout the fermentation), or selectivity (applied if a pure spectrum of one 

compound is known or in a certain area of the experiment where it known that the 

change in the signal is due only to one specific component).  

The second strategy for minimizing ambiguities and also handle rank deficiency 

problems is that MCR-ALS can be applied to an individual experiment or to a series of 

experiments simultaneously (Figure 1b). This is what is called matrix augmentation, 

being possible to augment a matrix in a column-wise (same spectral information, 

different fermentation trials), row-wise (same fermentation measured with different 

spectroscopic techniques), or column-row-wise (different fermentation processes 

measured with different spectroscopic techniques). In our case, the column-wise 

augmentation manner was performed, since different fermentation trials were measured 

with the same spectroscopic technique. Equation 2 shows the performance of MCR-

ALS in a column-wise augmented matrix:  
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        (Eq. 2) 

 

where D and C are column-wise augmented data matrices that contain the sub-matrices 

of the individual experiments and the individual concentration profiles, respectively, 

one on top of each other; ST is a single data matrix containing the pure spectra of the 

chemical species, common and valid for all experiments. The main advantage of this 

configuration is that specific spectral information that can be hidden in one 

fermentation process can be taken into account by another fermentation process with 

different experimental conditions.  

The ALS optimization stops when the difference between the differences between the 

residuals of consecutive iterations (a.k.a. percentage of lack of fit %LOF) is below a 

certain threshold. %LOF is defined as in equation 3: 

 

  (Eq. 3) 

 

where e is each mnth element of the residual matrix E, and d is each mnth element of 

the D matrix. The threshold value of LOF should be selected according to the noise in 

the spectra. A very used criterion is to stop the iterations when the difference between 

two consecutive LOF values is below 0.1% (Jaumot et al., 2005).  

 

3. Results and discussion 

3.1 Total Solid Content determination 

Figure 2a and 2b shows the Total solid content changes (expressed in °Brix ) for all the 

trials performed.  The °Brix at starting time were the same for all the trials (9.37±0.07 

°Bx) corresponding to a sugar content of approx. 97.50g/L and confirming the 

reproducibility of the wort reconstitution protocol. The total sugar content showed a 

fast decrease in all the trials performed within three days of fermentation.  

The sugars consumption was faster when WLP005 strain was used, reaching 6.55±0.05 

°Bx after 46 h at 24°C (Figure 2a) and remaining constant after 142 h of fermentation, 

due to the characteristic high flocculation of the yeast cells and the consequent low 

sugar consumption. The main difference was observed when wort inoculated with 

WLP005 was incubated at 19°C; in this case, the sugar content decreased with a lower 

speed but reaching at the fermentation end-point the same level of the other trials 
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performed (5.19±0.04 °Bx). The sugar depletion in the fermentations conducted with 

WLP570 strain showed a lower and more constant slope than those inoculated with 

WLP005 (Figure 2b). This is probably due to the ability of WLP570 yeast cells to 

remain in suspension in the wort during the fermentation time.  

 
Figure 2. °Brix profiles for the yeast tested (WLP005 strain (a), and WLP570 (b)) at three 

different temperatures: squares for trails performed at 19°C, circles for the one at 21°C and 

triangles for the one at 24°C. 

 

4.2. Raw FT-IR data observation 

The FT-IR spectra recorded during the fermentation trials showed a clear trend: the 

absorbance increased with the fermentation time, due to a baseline drift due to the 

yeast present in the sampled beer. Fig. 3a shows an example of the spectra recorded 

during one fermentation process conducted at 21°C with WLP005. Herein, the spectra 

are colored according to the fermentation time: black at the beginning to light dotted 

gray at 216 h.  

 

 
Figure 3. Spectra collected during a fermentation trial conducted at 21°C with WLP005 strain, 

cut in the fingerprint area (1,200-950 cm-1). a) Raw spectra colored according to fermentation 

time in gray scale; b) spectra after SNV pre-treatment colored in gray scale according to the 

fermentation time. 
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To minimize this effect the spectra were pre-treated using Standard Normal Variate 

(SNV) algorithm (Fig. 3b). After applying SNV to the raw spectra, the main peaks 

characterizing the spectra are clearer and it is possible to distinguish a clear change in 

the profile during time. Spectra collected at the beginning of the fermentation are 

characterized by typical maltose peaks: 1,151, 1,111, and 1,078 cm-1 (Duarte, 2004). 

This is justified as maltose is the main sugar present in wort: 50-60% of the 

fermentable sugars (Stewart, 2009). Moreover, all the sugars present in beer are 

characterized by similar absorption bands in the finger print region and is almost 

impossible to distinguish by visual observation the contribution of each of them. For 

instance, the broad peak around 1,040-1,020 cm-1 is probably due to the overlapping of 

a maltotriose-maltose band (1,041 cm-1) with the dextrin band (1,024 cm-1). Also the 

small shoulder visible at 1,055 cm-1  could be due to presence of fructose, which as a 

characteristic peak at 1,060 cm-1 (Schndler et al., 1999).  

With the evolution of the fermentation, the absorption at those peaks decreases. In 

particular, the peak at 1,111 cm-1 almost disappears; the peak at 1,078 cm-1 shifts to 

1,085 cm-1; the blunt peak at 1,041 cm-1 changes shape and decreases whereas a peak at 

1,045 cm-1 grows. The peaks rising at 1,085, 1,045 cm-1 and clearly defined at the end 

of the fermentation trails are related to ethanol absorption (Duarte, 2004). 

 

4.3. MCR-ALS results 

With the obtained spectral evolutions in the fermentation processes, it is not possible to 

find out how the different wort fermentable sugars contribute individually to the 

changes in the signal, as their signals are highly overlapped. Moreover, there are 

compounds present in the beer not evolving with time, i.e. dextrins, which anyway 

contributes to the recorded spectral signal. To face these problems MCR-ALS was 

applied to the reduced and pre-treated FT-IR dataset, taking into account the variability 

of the production factors affecting the fermentation progress, i.e. different yeast and 

temperatures. As the dataset was composed of 12 experiments, MCR-ALS models 

were built in series with the same constraints, but considering them as individual 

experiments (Amigo et al. 2006a; Amigo et al. 2006b). The D data matrix of the 

fermentation trials was augmented with the spectra recorded for the pure components.   

The initial estimates for starting the MCR-ALS analysis were defined by choosing the 

spectra of pure dextrins and ethanol among the pure compounds spectra recorded.  

MCR-ALS was applied to the different D spectral matrix under the same constraints to 

all the column-wise sub-matrices: non-negativity to concentration profiles. It was 

necessary to fix dextrin and ethanol as initial guesses due to the high spectral 

overlapping. The convergence criterion was set at 0.1.  

The results obtained for the spectral and the concentration profiles obtained can be 

seen in Figure 4 and Figure 6, respectively. MCR-ALS models obtained described 
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successfully the experimental FT-IR spectra recorded. The model explained 99.87% of 

the total variance and standard deviation of the residuals lower than 0.0230; and a 

%LOF of 3.5%. 

In Figure 4 the obtained spectral profiles are compared with the pure spectra for all the 

compounds. Here, it is possible to see a high similarity between the six spectral profiles 

obtained by MCR-ALS analysis and the pure components spectra. 

 

 
Figure 4. Comparison of the MCR-ALS spectral profiles (a) and the pure spectra components 

(b) measured for each compound expected in wort and final beer. Blue profile corresponds to 

maltose (MAL), green to fructose (FRU), red to dextrins (DXT), cyan to maltotriose (MTI), 

purple to sucrose (SUC) and yellow to ethanol (EtOH). 

The first profile obtained (Fig. 4a in blue) has two peaks at 1,150 and 1,110 cm-1 which 

perfectly match with the ones belonging to maltose; the other peaks of the first profile 

shift a little from the pure ones and are at 1,070, 1,040 - 1,020  cm-1 and a small peak 

(995 cm-1) in the shoulder of the previous one. The second profile (green) matches with 

the pure spectra of fructose: it has a main peak at 1,060 cm-1 with in its shoulder small 

peaks at 1,105, 1,085 and 1,035 cm-1. The other profiles (red and cyan) are similar to 

pure spectra obtained from dextrins and maltotriose pure compounds, respectively. The 

cyan profile, attributed to maltotriose absorption, has the same peaks as the maltose; 

this is expected as maltotriose is a trisaccharide containing three glucoses and maltose 

is a disaccharide (glucose-glucose). The profile obtained for dextrins differs from the 

maltose profile just for a broad peak at 1,050-980 cm-1. The purple profile matches 

with the pure sucrose profile as a broad band at 1,040-1,000 cm-1 characterizes it. The 

yellow profile corresponds to the ethanol spectra as it has two main peaks at 1,085, 

1,045 cm-1.  
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In order to verify the goodness of the obtained profiles a cross-correlation between 

them and the pure components was estimated and the results are reported in Figure 5. 

The results reported in Figure 5 confirm what have been discussed previously by 

preliminary comparison of the peaks of the MCR-ALS profiles and the pure 

components. Complete correspondence (R=1) was observed for the profiles associated 

with ethanol, sucrose and maltotriose, and for dextrins and fructose (R>0.99).  The 

correspondence between the profile associated with maltose and the pure spectra was 

also high, R of 0.91, and its lower value is mainly due to the small shift of the peak at 

1,040 - 1,020 cm-1. The only case of missed-correspondence is observable for the 

attribution of maltose and maltotriose. In that case the cross-correlations failed to 

assign the MCR-ALS profile to the two pure sugars because the correlation coefficients 

found between MCR-ALS profile attributed to maltose has high R value also with the 

spectra obtained for the pure maltotriose. The reason is related to the chemical 

composition of the two sugars, which are both composed only by glucose 

monosaccharaides. Is remarkable the fact that all the other cross-correlation 

coefficients were below 0.75.  

 
Figure 5. Visual representation of the cross-correlation coefficients calculated between the 

MCR-ALS profiles and the pure components spectra. The representation in grey scale 

represents the values of R: dark grey cells stands for low correlations up to white cells were R 

values are higher than 0.90. 
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The other main information obtained with MCR-ALS analysis concerns the evolution 

of each single spectral profile during the fermentation processes. Figure 6 reports the 

concentration profiles against time for each experimental condition, for each 

combination yeast-temperature, both technological replicates are reported with the 

same color and different marker (circle or star).  

The concentration profiles resolved by MCR-ALS method are not true concentration 

but rather profile changes in their concentrations. As the idea is to evaluate the changes 

occurring in the fermenting wort, the concentrations are expressed as relative changes. 

The concentration profiles related with the content of dextrins, fructose and sucrose 

appear to be zero. The meaning of that is arguable with the fact that the concentration 

of fructose and sucrose in the wort are generally 1-2% of the total sugar content in wort 

and the relative change is too small to be seen in a so complex matrix (Stewart, 2009). 

For what concern dextrins, as they are not fermentable saccharides no change in their 

concentration is expended during fermentation time. The main remarkable evolutions 

are the ones of maltose (blue in Figure 6) and ethanol (yellow in Figure 6). The starting 

points of the profile associated with maltose were similar for all the trials with the 

exception of one replicate of the experiment conducted with WLP 570 at 19°C (Figure 

6, bottom left). In that case, the high similarity of the maltose and maltotriose profiles 

seems to affect the results obtained. Indeed, the initial relative concentration of 

maltotriose is higher than the levels observed in the other trials to the detriment of the 

maltose concentration at time 0.  

As general trend is possible to see how the higher consumption of maltose occurred in 

the first 70 hours (Figure 6).  

This situation is particularly characteristic for the trial conducted with WLP005: at 19 

and 21°C the relative concentration of maltose (blue profile) decreases of the 37% in 

the first 70 hours, whereas the total maltose consumption estimated from the model 

after 216 hours of fermentation is around 47%. In the trials conducted with WLP 050 at 

24°C the maltose consumption was estimated to be faster in the first hours if compare 

with the lower temperatures trials, but after 70 hours the content remained constant. 

These results are in accordance with the °Brix values obtained at the end of the 

fermentations conducted with WLP005. Indeed the °Brix value at the end of the 

fermentation register a total sugars consumption up to 46% (Figure 2), no matter the 

incubation temperature tested. 
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Figure 6. Concentration profiles obtained by MSC-ALS analysis. The results are expressed as 

relative concentrations against time (h). For each strain tested (WLP 005 and WLP 570) and 

each temperature (19, 21 and 24°C) the technological replicates are reported in the same subplot 

with different marker (circle or star). Blue profile corresponds to maltose (MAL), green to 

fructose (FRU), red to dextrins (DXT), cyan to maltotriose (MTI), purple to sucrose (SUC) and 

yellow to ethanol (EtOH). 

 

Regarding WLP570 trials (Figure 6 bottom), the maltose profiles describe a slower but 

more constant consumption of the sugar by the yeast, which is characterised by low 

flocculation capability. The MCR-ALS models find at the end of the trials a reduction 

of the initial maltose up to the 53%.  

The other major compound involved in the fermentation is the ethanol. The profile 

associated with ethanol (yellow profile) started in all trials with a value of zero, which 

is reasonable, as it is not expected to have ethanol in wort before the fermentation 

starts. After 216 hours of fermentation, the relative concentration rises over 0.6 in the 

trial conducted with WLP570 at 24°C. 

Small changes can be notice in the cyan profile, which was associated with maltotriose. 

Mainly the initial relative concentration is 0.1-0.2 and the depletion of the trisaccharide 

occurs in the first 70 hours as has been previously reported by other authors (Stewart, 

2009). 

5. Conclusions  

This research work showed the potential effectiveness of FT-IR spectroscopy, joint 

with MCR-ALS, for beer fermentation monitoring and fully understanding of the 

evolution of sugars during the fermentation. 
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The FT-IR fingerprint region (1,200-950 cm-1) revealed the main changes occurring 

throughout the fermentation at expense of wort sugars and leading to ethanol rising. 

With MCR-ALS was possible to decompose the influence of each single constituent 

involved in the biotransformation. The proposed MCR-ALS model was applied to 

fermentation runs conducted under different conditions (yeast inoculated and 

temperature) and the results were found to well describe the bioprocess no matter the 

environmental condition. 

The six spectral profiles obtained were validated by comparison with the spectra 

recorded for the pure compounds (i.e. maltose, maltotriose, fructose, sucrose, dextrins 

and ethanol), obtaining high cross-correlation coefficients. The concentration profiles 

resolved by MCR-ALS method expressed relative changes of each of the six 

components. The main evolutions ware related to maltose and maltotriose depletion 

and ethanol production by the yeast activity.  

This approach will give much richer information about the ongoing of the process than 

the one obtained by only measuring total sugar content by refractometer. As shown in 

this work, the combined use of FT-IR spectroscopy and MCR-ALS technique 

facilitates the study of a complex beverage bioprocesses, as it is the beer brewing. 
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Near Infrared Spectroscopy to monitor sourdough 

fermentation 

 
4.4.1 State-of-the-art 

 

Sourdough technology is widespread in Europe. It is traditionally used for a variety of 

baked products, such as rye and wheat bread, crackers, brioches, Italian panettone and 

similar cakes (De Vuyst & Neysens, 2005).  

The Panettone is one of the most well-known leavened product in Italy and also in the 

European market. It is characterized by a light texture with irregular elongated alveoli 

and the typical aroma conferred by the micorbiota. The production process is long and 

complex, and is characterized by three kneading followed by as many risings. 

In particular, the first fermentation of the dough (first dough), produced by mixing 

sourdough, flour, sugar, butter and water, is the most important phase of the interior 

process. To avoid non-compliance, it is therefore important to have a rapid method of 

monitoring of the fermentation, which allows a timely corrective action when 

necessary. 

A specific need of baking industry is the controlled management of the process in order 

to obtain an optimization of production (Li Vigni & Cocchi, 2013). Nowadays 

leavening process is monitored by physico-chemical parameters like pH and 

temperature, and by personal valuation of the operator that “taste” the dough structure 

on the basis of subjective criteria. The traditional methods performed for sourdough 

analyses are metabolites dosage through HPLC (Lefebvre et al., 2002), rheological 

profiles (Clarke et al., 2004) and microorganisms count (Picozzi et al., 2005). The 

performance of these analysis could improve knowledge and control of the 

fermentative process, but they need long timing (samples preparation, analysis 

execution and data elaboration) and are very expensive, so that their application is not 

practicable and they are not useful for corrective actions on the process. 

So there is a need to have available analytical methods that are rapid, inexpensive, and 

reliable and integrated within the production process. The near-infrared spectroscopy, 

supported by chemometric techniques, is proving to be a valuable tool, as it allows you 

to get in a few minutes, and at the same time a lot of information on the progress of 

fermentation processes. In last years few stadies have been performed concerning near-

infrared spectrospy use for dough monitoring (Aït Kaddour et al., 2008; Sinelli et al., 

2008; Li Vigni & Cocchi, 2013). All the mentions studies are about dough fermented 
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with the unique usage of beer yeast; however there are no investigation about 

sourdough fermentation.  

The purpose of this work was to experimentally verify the potential of NIR 

spectroscopy for monitoring in -line of the changes that occur during the fermentation 

of the first mixture for the production of panettone.  

 

 

4.4.2 Materials and methods 

2 Kg of first dough were sampled from a large-scale production and incubated in a 

thermostat at constant temperature (26°C). Five technological replicates were 

performed from six different productions. The preparation of the sourdough was 

performed according the production protocol and they main ingredients were: 

sourdough, drawn butter, sugar and different kind of flour.  

 

Chemical analyses 

 

Every 45 minutes a sample of about 50 g was withdrawn from the sourdough in 

fermentation to be analysed for the pH and titratable acidity.  

 

pH 

About 10g of sample were weighed (Scale "ALC-3100.2," Acculab), carried to 100g 

with distilled water in a stomacher bag and homogenized for 5 minutes ("Stomacher 

400", Colworth).  The pH was measured with a pH meter "3510 Meter" (Jenaway) 

previously calibrated, with the sample maintained under stirring with stirrer "MR Hei-

Standard" (Heidolph).  

 

Titratable acidity 

The same sample homogenized was titrated with 0.1 N sodium hydroxide (Sigma-

Aldrich, USA) until reaching pH 8.4 (IDF method 50:1991). The titratable acidity was 

expressed in Sauer grade (° S) that correspond to the milliliters of 0.1 N NaOH used 

for titration. The acidity in ° S is expressed by the formula (Equation 1):  

 

Acidity = (A * N * 100) / P  (Eq. 1) 

 

where A are hte mL of 0.1 N NaOH used for titration, N the normality of the NaOH 

solution and P the weight in grams of the product. 
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FT-NIR spectroscopy 

NIR spectral data were collected using a Fourier transform (FT)-NIR spectrometer 

(MPA, Bruker Optics, Milano) equipped with an optic probe directly inserted in the 

sourdough. The data were collected over the 12,500 – 3,800 cm-1 range (resolution, 16 

cm-1; background, 128 scans; sample, 128 scans)   

The NIR spectra were acquired starting from 1 h after the mixing up to 7 h 30 min of 

fermentation every 15 min.  

 

NIR data processing 

NIR spectral datasets were analysed using Matlab version R2007a, The MathWorks, 

Inc, Cambridge, UK. Before performing the PCA analysis, spectra were transformed 

(Savitzky – Golay first derivative, 11 data points) and mean centred.   

The spectral data were also correlated with the chemical results through the PLS 

regression method (PLS Toolbox, Eigenvector Research, Inc., Wenatchee, WA).  

Before performing the regression different pre-treatments and a variable selection 

method were tested (Interval PLS) in order to improve the models obtained.  

 

4.4.3 Preliminary results 

In this section are presented only preliminary results, since the experimental part has 

been finished during the PhD research period but the complexity of the matrix under 

study requires more detailed investigation in order to extract all the main information 

to fully describe the sourdough leaving process. 

 

Chemical analysis 

The initial pH values are in agreement with the values obtained with this type of dough 

by other authors (4.70 to 5.40) (Collar et al., 1994). All the results of the 

determinations of pH, titratable acidity and temperature detection for the six trial are 

reported in Table 1. The trials have shown trends of pH during the leavening similar, 

with a starting pH between 5.30 and 5.39 and a final value between 5.23 and 4.91. Two 

exceptions were observed for trial Y and Z, in this case the final pH decrease up to 

4.38.  These values indicate acidification is not very high but still within the acceptable 

range and the company also found in other studies of similar mixtures (Lefebvre et al., 

2002).  
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Table 1. Avarage values of pH and titratable acidity (TTA, °S) for the six trials performed. 

Also the temperature values are reported as an averege of every hour. 

Trial Time(h) pH TTA (°S) Temperature 

(°C) 

average S.D. average S.D. average 

A 1 5,34 0,04 2,5 0,2 26,8 

2 5,28 0,05 2,8 0,3 26,8 

3 5,22 0,10 3,0 0,1 26,8 

4 5,24 0,01 2,9 0,1 27,0 

5 5,18 0,02 2,8 0,1 27,2 

6 5,09 0,08 2,9 0,1 27,2 

7 4,98 0,02 3,3 0,1 27,0 

7,5 4,97 0,02 3,4 0,0 26,8 

B 1 5,30 0,03 2,8 0,0 26,3 

2 5,16 0,06 2,8 0,0 26,3 

3 5,21 0,02 2,9 0,2 26,5 

4 5,17 0,02 2,9 0,1 26,7 

5 5,09 0,01 3,0 0,1 26,5 

6 5,03 0,00 3,3 0,1 26,5 

7 4,99 0,04 3,6 0,1 26,5 

7,5 4,96 0,10 3,9 0,4 26,7 

C 1 5,39 0,02 2,6 0,1 25,7 

2 5,42 0,00 2,5 0,1 26,2 

3 5,29 0,08 3,0 0,3 26,5 

4 5,36 0,01 2,8 0,1 26,7 

5 5,30 0,03 2,7 0,2 26,8 

6 5,30 0,00 2,9 0,1 27,2 

7 5,26 0,08 3,2 0,1 27,2 

7,5 5,23 0,14 3,2 0,4 27,2 

X 1 5,39 0,00 2,8 0,1 26,5 

2 5,39 0,13 3,1 0,2 26 

3 5,32 0,06 3,4 0,1 26 

4 5,22 0,02 3,2 0,3 26 

5 5,21 0,02 3,2 0,1 26 

6 5,00 0,03 3,5 0,0 26 

7 5,04 0,00 3,8 0,1 26 
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Trial Time(h) pH TTA (°S) Temperature 

(°C) 

average S.D. average S.D. average 

7,5 4,91 0,03 3,8 0,1 26 

Y 1 5,31 0,04 2,5 0,1 26,5 

2 5,24 0,09 2,8 0,1 26 

3 5,14 0,01 3,3 0,0 26 

4 4,99 0,02 3,5 0,0 26 

5 4,93 0,02 3,7 0,1 26,5 

6 4,91 0,06 3,8 0,1 26,5 

7 4,84 0,00 4,3 0,2 26 

7,5 4,63 0,03 4,5 0,1 26 

Z 1 5,39 0,06 2,9 0,0 26 

2 5,15 0,01 3,3 0,2 26 

3 5,03 nd 3,1 nd 26,5 

4 5,02 0,04 3,7 0,2 26 

5 4,86 0,00 4,0 0,5 27 

6 4,83 0,04 3,6 nd 27 

7 4,64 0,05 4,5 0,5 26,5 

7,5 4,38 0,06 4,8 0,2 25 

 

The results abotained from titrable acidity analysis revealed the same trends. All the 

trials were characterised by a similar starting point (2.5-2.8°S), the final values were 

similar (3.2-3.9°S), with exeption of trials Y and X, in which the acidification reached 

4.8 °S. 

 

FT-NIR spectroscopy 

The FT-NIR spectra were acquired continuously every 15 minutes after one hour from 

the mixing process for a total of 7.5 hours of fermentation. In Figure 1 are shown the 

FT-NIR spectra collected during the trial B as an example (12,500-3,800 cm-1). 

As can be observed in Fig 1 we highlight two main absorption peaks around about 

6,900 and 5,200 cm-1, associated respectively to the first overtone and combination 

band of the-OH group of the water (Williams & Norris, 2001). Other characteristic 

peaks can be observed at 8,840 cm-1, which seems to be linked to the stretch of the 

bond C = 0 (Siriex & Downey, 1993) and 5,600-5,650 cm-1, probably due to the 

absorption of the peptide bond, in particular to gluten (Osborne, 1996). 
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Figure 1. Spectra collected in one fermentation trial (A). 

 

In correspondence with the region situated around 4,700 cm-1 could be associated 

absorptions related to the structures amylaceous (Pram Nielsen et al., 2001).  

The whole spectral region was reduced in the range between 9,700 and 4,500 cm-1 in 

order to eliminate not informative regions.  

 

Principal component analysis 

Before performing PCA the whole spectral dataset was pretreated by Standard normal 

variate (SNV) in order to remove scattering effect and mean centered.  

Figure 2 shows the three principal components plotted against time progress and 

coloured according to the trial. 
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Figure 2. Scores of PC1 (a), PC2 (b) and PC3(c) for the five trials performed. 
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Figure 3. Loadings of PC1 (continued line), PC2 (dashed line), PC3 (dotted line). In red the 

mean spectra (continued line) and the standard deviation (dashed lines) among all the dataset. 

 

The loadings of the PC1 are related to the absorbtion at 5,777 and 5,654 cm-1, 5,168 

cm-1, and the region of 4,500-4,200 cm-1. The loadings of PC2 are also related to the 

absorbances at 5,777 and 5,654 cm-1, 5,168 cm-1 and strongly influenced by changes in 

the region of water absorbtion (7,000-6,800 cm-1) and the region of 4,500-4,200 cm-1. 

Another peak characterizing the loadings of PC2 is at 4,700 cm-1. Mainly the same 

peaks characterised the PC3 loadings. 

Osborne (1996) associated the changes in the region 7,000 – 6,800 cm-1 to modification 

of hydrogen bonds due to the interaction of water and flour constituents. This was also 

confirmed bystudied by Wesley et al (1998), thwy said that the water first overtone is 

influence also by the combination of NH first overtone with CH first overtone. 

Is clear how this spectral region influences the loadings of the three PCs; in particular 

the shift of the peak in the third component could be ascribed to the influence of flour 

constituents on water absorbtion. Moreover Osborne (1996) related the region 4,500-

4,200 cm-1 to absorbtion bands associated with proteins. 

Workman and Meyer (2007) refered to the area 3,950-4,400 cm-1 as the one 

characteristic for C-H stretching combined with CH deformation for peptide groups. 
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Partial least square regression  

It was investigated the possibility of using NIR spectroscopy to predict with a single 

and rapid measurement values of pH and titratable acidity. For this purpose regression 

models using the PLS algorithm (Partial Least Square regression) have been 

developed.   

Table 2 reports the figure of merit for the models developped using different pre-

processing methods and different spectral range according to the variable selected 

throught the iPLS method. 

 

Table 2. Figure of merits of the PLS models calculated for pH and total titratable acidity (TTA) 

 

Preprocessing LV 
Variable 

range selected 

CALIBRATION CV 

R2 RMSE R2 
RMS

E 

pH 

Absorbance 5 

100-200; 250-300; 

400-500; 550-600; 

750-800 

0.972 0.022 0.941 0.032 

SNV 5 
0-200; 250-300; 350-

500 
0.969 0.023 0.924 0.033 

First derivative 6 
150-250; 300-350; 

400-500; 700-750 
0.996 0.113 0.927 0.158 

TTA 

(°S) 

Absorbance 6 
75-125; 150-200; 250-

300; 400-500 
0.964 0.06 0.861 0.125 

SNV 5 0-250; 300-450 0.880 0.113 0.768 0.158 

First derivative 5 
0-50; 150-250; 275-

350; 400-475 
0.983 0.042 0.848 0.128 

 

As is possible to observe in Table 2 high correlation coefficients were obtained for the 

models calculated for pH prediction. In particular, the model obtained without any 

specral pre-treatment is characterized by high R2 in both calibration and in cross-

validation (R2Cal = 0.9722, = 0.9417 R2CV), by very low errors (RMSEC and 

RMSECV), the absence of overfitting and, finally, a small number of latent variables 

(LV 5).  

Also for the results obtained for TTA correlation the model calculated with the raw 

spectra seems to have the best performance (R2
Cal=0,9642; R2

CV=0,8610). However the 

models calculated for the prediction of total acidity are characterised by overfitting 

phenomenon, which can be notice from the high difference beteween the correlation 

coefficients in calibration and cross-validation. As future prospective non-linear 

regression models could be investigated to improve the results obtained. 
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This behaviour, partially true also for for the pH regression models, could be ascribed 

to a non-linear behaviour of the spectral data.   

One of the main problems in studing sourdough with infrared spectroscopy is related to 

the solid nature of the matrix it self.  

In the future, this approach at an industrial scale would allow the monitoring of the first 

dough in fermentation in quick and non-destructive approach, allowing fast corrective 

action to be taken in case of non-conformity. 
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The research presented in this PhD thesis gives an overview of the application of FT-

IR and FT-NIR spectroscopy in the monitoring and controlling different food 

fermentation processes. The two spectroscopic techniques, combined with different 

chemometric strategies, have proven to be a successful working methodology for 

quantative, qualitative and kinetic modelling of different food matrices being 

fermentated, from liquid ones (wine and beer) to semi-solid ones (sourdough) passing 

by yoghurt with its viscoelastic behaviour.  

For what concern the experiments conducted to invastigate yoghurt fermentation, it 

was possible to assess the real-time e development of the curd during fermentation, no 

matter the operative conditions adopted for the process, and to predict the main quality 

parameters in the milk fermentation (pH, titratable acidity, lactose, galactose and lactic 

acid). This was possible thanks to the combination of FT-IR spectroscopy with MCR-

ALS, and FT-IR with PLS regression technique, respectively. These findings are 

interesting as they provided not only regression models to predict process parameters, 

but also real-time strategies for monitoring the rheological modifications occurring in 

the fermenting milk. As a consequence, the definition of the end point of the 

fermentation could be assessed in a robust and reliable manner. 

The use of FT-NIR and FT-IR spectroscopy combined with PLS technique provided 

good estimations of malic acid, lactic acid and total acidity content in samples 

collected from Nebbiolo musts coming from large-scale fermentations. The small 

errors achieved in the estimation of the parameters under study allow the distinction 

between samples before MLF and after malic acid transformation. These results 

suggest the success in facing the need of the winery in understanding and controlling 

the biotransformation.  

Furthermore, the combination of FT-NIR and FT-IR spectroscopy with PCA fitted 

with a sigmoidal function provided real-time information of the evolution of the 

biotransformation. In particular, critical points identified by spectroscopic techniques 

during the fermentation were in agreement with the time points revealed by chemical 

and microbiological analyses. 

The experiments conducted with beer fermentation aim to monitor and assess different 

process parameters in beer fermentation at different operative conditions. The FT-NIR 

data provided good results describing the general trend of the fermentation (through 

PCA) and estimating ethanol, °Brix and biomass content (regression models). The 

fingerprint region (1,200-950 cm-1) extracted from the FT-IR data revealed the main 

changes occurring throughout the fermentation at expense of wort sugars and leading 

to ethanol rising. In particular, the results obtained with MCR-ALS accurately describe 

the bioprocess in term of relative concentration variations of the main sugars presented 

in wort (maltose, maltotriose, fructose, sucrose and dextrins) and ethanol.  
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The preliminar results reported about sourdough fermentation confirmed that it is 

possible to follow the main modifications characterizing dough in fermentation. PCA 

revealed that the main changes in the samples were due to the effect of flour 

constituents on water absorbtion and modifications of the proteins in the gluten 

fraction. Good models were obtained for pH and titratable acidity correlation. As future 

prospective non-linear regression models will be investigated to improve the results 

obtained. 

 

Nowadays, more and more sensors have been implemented in food productions and a 

huge amount of data needs to be hadled in PAT prospective. In perspective, as 

response to the need of improved undertanding of the process and the quality, the 

implementation of infrared spectroscopy in food industries will be of higher interest. In 

particular, the use of specific chemometric strategies will be crucial in this approach. 

As discussed in this PhD thesis the combination of spectroscopy and chemometrics 

allowes the identification of critical process parameters not just one by one but in a 

multivariate approach. Thus, it provides a better management of the process in an 

immediate perspective with real-time process control possibilities.  
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They are ill discoverers that think there is no land, when they can see nothing but sea. 

Francis Bacon 


