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Among modified-release oral dosage forms, increasing interest has currently 

been addressed to delayed/pulsatile delivery systems [Maroni A. et al., 2013b; 

Maroni A. et al., 2005]. They are intended for the liberation of the conveyed 

active ingredient after a programmed time period (lag phase) that starts with the 

administration of the dosage form. Such a strategy meets the principles of 

chronopharmacology, which is based on the knowledge that both the 

symptomathology of a large number of pathologies and the pharmacokinetics 

and pharmacodynamics of a variety of drugs are influenced by biological 

circadian rhythms. The possibility for oral pulsatile delivery systems of finding 

application in chronotherapy is interesting for those diseases whose symptoms 

occur mainly during the night or in the early morning, such as bronchial asthma, 

angina pectoris, rheumatoid arthritis. Indeed, the administration of the drug 

delivery system (DDS) at bedtime increases patient compliance, since it may 

circumvent the need for waking up for drug intake; furthermore, the drug 

liberation in conjunction with the onset of symptoms allows to decrease the 

dose and/or avoid the useless and potentially dangerous exposition of the 

patient to the drug in the early hours of sleep, when it wouldn’t be necessary 

[Youan B-B.C., 2004].  

Delayed/pulsatile orally-administered systems may also be exploited to achieve 

site-specific delivery of drugs in the colonic region, based on a time-dependent 

approach [Maroni A. et al., 2013a; Gazzaniga A. et al., 2006]: a device ensuring a 

lag time prior to release could target specific regions of the gastrointestinal tract 
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on the basis of experimental data indicating that the transit time through the 

small intestine is relatively constant (3 h ± 1 standard error) and independent of 

the type of dosage form. Indeed, by the application of a gastroresistant (GR) 

outer film, which allows to overcome gastric emptying variability, the first 

contact with biological fluids is shifted soon after the dosage form is emptied 

from the stomach; then, by imparting a lag phase that matches the small 

intestine transit time (SITT), the drug liberation can occur in the target region. 

Great interest is focused on colon-specific release for the local treatment of 

inflammatory bowel disease (IBD), such as Crohn’s desease and ulcerative 

colites, and infective, tumoral as well as neurovegetative colonic pathologies. 

Moreover, this strategy can also find application in the improvement of the oral 

bioavailability of peptides and proteins. Although the colon is not considered as 

an advantageous site for absorption because of its anatomic and physiological 

characteristics, the long residence time and the lower concentration of local 

peptidases were proven to partially offset its unfavourable characteristics. 

Several strategies for achieving delayed/pulsatile release following oral 

administration were proposed, generally leading to capsular, osmotic or 

reservoir systems [Maroni A. et al., 2013b; Gazzaniga A. et al., 2008; Bussemer T. 

et al., 2001]. Capsular systems have been designed having an insoluble body 

filled with a drug preparation. The shell body is sealed with a swellable, erodible 

or lipophilic matrix plug, which is removed upon swelling and/or erosion, both 

promoted by the contact with water, or as a consequence of a pressure rise 
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created inside the capsule by water uptake. Osmotic devices are formed by the 

drug formulation core including an osmotic and, in some cases, a semi-

permeable membrane. Such membrane is provided with a calibrated orifice, 

from which the drug is pumped out at a constant rate; drug release starts after a 

silent phase, coinciding with the time required for water penetration into the 

core of the osmotic pump. Lastly, reservoir systems are also available: they 

consist of a drug-containing core, which could be either a single- or multiple-unit 

one, covered by at least one coating layer. On the basis of the composition of 

such layer, these systems can be distinguished in erodible, rupturable or 

diffusive. In particular, erodible devices show the ability to impart a lag phase 

before release, following the dissolution/erosion of a polymeric barrier 

separating the drug-containing core and the aqueous environment. The lag 

phase can be modulated by the characteristics of the polymer and the thickness 

of the coating. Hyroxypropyl methylcellulose (HPMC), hydroxyethylcellulose 

(HEC) and hydroxypropylcellulose (HPC) are the most commonly employed 

polymers.  

The research group where I carried out my PhD project had already developed an 

oral DDS for delayed and site-specific release of drugs in the form of an erodible 

reservoir system, named Chronotopic™ [Cerea M. et al., 2008; Zema L. et al., 

2007; Sangalli M.E. et al., 2004; Sangalli M.E. et al., 2001; Gazzaniga A. et al., 

1995; Gazzaniga A. et al., 1994a; Gazzaniga A. et al., 1994b ; Maffione G. et al., 

1993]. It is based on a functional coating composed of a hydrophilic polymer 
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(generally HPMC) applied by different techniques (press-coating, spray-coating 

and powder-layering) onto several types of cores (tablets, capsules, pellets). This 

layer of few hundreds microns of thickness delays the contact of the biological 

fluids with the drug-containing core through hydration, swelling and 

dissolution/erosion phenomena, as outlined in Figure 1. The effectiveness of the 

Chronotopic™ system, its flexibility in terms of duration of the lag phase, both in 

vitro and in vivo, as well as the possibility of scaling up the manufacturing 

process have been demonstrated. 

 

 

Figure 1: Scheme of the interaction and release performance of a Chronotopic™ 

system with aqueous fluids. 
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On the basis of the encouraging results obtained, the possibility of exploiting 

hydrophilic polymers for the development of a functional container with the 

same ability of delaying drug release was investigated [Gazzaniga A. et al., 2011a; 

Gazzaniga A. et al., 2011b]. Such a device was conceived in the form of a capsular 

shell conveying a variety of drug formulations (solid, semisolid, liquid) filled by 

means of conventional equipment already available on the market. Notably, such 

a device would reduce the technical and regulatory burden associated with 

development and, thus, the relevant costs with respect to coated systems. In an 

early phase, the use of the hot melt extrusion (HME) technique to prepare the 

container was explored: it requires that raw materials have a thermoplastic 

behavior, which is the property of undergoing a transition to a viscous state upon 

heating [Foppoli A. et al., 2009]. HPMC, however, exhibited the desired plastic 

behavior only when worked at temperatures at which its thermal degradation 

occurs, even in the presence of plasticizers. Hence, another hydrophilic 

derivative of cellulose, HPC, was considered for the preparation of functional 

containers, since it shows thermoplastic properties and the same behavior of 

HPMC when in contact with aqueous fluids. Moreover, HPC is available on the 

market in several viscosity grades, suggesting the possibility of achieving a high 

flexibility in the performance of the delivery platform. The plasticized polymer 

was extruded into films, which were then press-molded into semi-spherical 

halves of shells, filled with a drug tracer, paired and sealed to form two-piece 

spherical capsules. Preliminary data from such devices demonstrated their ability 
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to delay the release of the contents as a function of the composition. However, 

the manufacturing technique involved a number of limitations especially with 

regard to the industrial scalability.  

In view of these premises, a different approach was preferred based on the 

application of the injection molding (IM) technique that gives several 

advantages, such as the possibility of an easy scale-up, versatility and prospects 

of patentability. Indeed, although IM has been widely exploited in the plastic 

field, only few pharmaceutical applications have been reported [Zema L. et al., 

2012; Vilivalam V.D. et al., 2000; Rothen-Weinhold A. et al., 1999; Stepto R.F.T. 

and Tomka I., 1987]. IM can be defined as the forced injection of heated 

thermoplastic polymers into a 3D mold to be shaped while cooling and 

hardening. The IM equipment employed for the manufacturing of capsular 

devices was a bench-top press, particularly indicated for the production of small 

items with high precision (micromolding press). Raw materials, loaded in a 

hopper, are conveyed by means of a piston into a heated-controlled plastication 

block, where they undergo softening and mixing; then, the molten mass is 

forcedly injected through a nozzle into the mold. This consists of two units, one 

mobile and the other mounted on a fixed platen: once the two halves are 

combined, the cavity image of the item to be molded is formed. When injected 

into the mold in the closed configuration, the molten material spreads into the 

cavity and assumes the desired shape, which can be maintained thanks to the 

solidification promoted by cooling. Finally, the molded product is ejected. Figure 
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2 shows an outline of a general IM cycle, which combines two synchronized 

phases: one comprises filling/opening/closing steps of the mold, while the other 

refers to the movement of the injection tool (generally a screw) moving forward 

to the injection position and being pushed back to the pre-injection one. After 

the automatic ejection of the molded product, a new IM cycle can start, allowing 

a continuous manufacturing process to take place. 

 

 

 

Figure 2: IM cycle in screw-type machine [adapted from Zema L. et al., 2012].  

 

With respect to the mold used for preparing capsular devices, given the need for 

carrying out early formulation studies, a highly versatile prototype mold that 

could also be exploited for improving skills in such new technique was designed: 
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indeed, it could guarantee high flexibility with respect to ongoing adjustments of 

both the formulation and the thickness of shells. Moreover, the mold was 

designed able to fulfill a number of requirements for the final device: i) the 

capsular system needed to have a size suitable for oral administration and to 

consist of matching body and cap items; ii) the shape and mechanical 

characteristics of the device were expected to be suitable for established filling 

procedures; iii) once assembled, the device was expected not to allow for leaks 

and to preferably have a plane external surface. The prototype mold was 

provided with a two-cavity set filled simultaneously for the production of cap 

and body within a single manufacturing cycle; moreover, it bore three couples of 

cavities to be selected prior to assembling (preselection of the differing 

thicknesses) (Figure 3). 

 

a)   b)  

Figure 3: Prototype mold for the preparation of cap and body items with 

differing thicknesses (a); detail of the injection orifice and adaptable 

pouring gate (b) [adapted from Gazzaniga A. et al., 2011a]. 
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A locking mechanism based on the mutual pressure of the contact areas of 

matching caps and bodies was studied, not entailing any junction gap and less 

complicated than that of regular gelatin and HPMC capsules (Figure 4). On the 

basis of previous studies on hydrophilic cellulose ethers used as delaying agents, 

nominal thicknesses of 300, 600 and 900 µm were hypothesized for capsules, in 

order to provide lag times of different duration. Because of the shape of the 

device, such values applied to the thinner wall areas, i.e. those where cap and 

body are not overlapped because of the locking system. Moreover, capsules 

were designed having the same external dimensions but decreasing inner 

volume, because of the increase in the wall thickness. 

     

Figure 4: Lengthwise representation of prototype capsules of 300 (a), 600 (b) and 

900 (c) µm thickness; areas colored in red are those which nominal 

thickness refers to. 

 

By the adjustment of process parameters, capsules of the selected shell 

thicknesses made of Klucel® LF with the addition of 10 w/w of polyethylenglycol 

(PEG) 1500 as the plasticizer could be obtained (Chronocap™) (Figure 5). 

a) b) c) 
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a)             b)  

 

Figure 5: Assembled capsule (a) and capsule bodies of 300, 600 and 900 µm shell 

thickness (b). 

 

Capsular devices with shell thickness of 300, 600 and 900 µm  based on Klucel® LF 

exhibited satisfactory technological characteristics as well as release 

performance (Table 1): reproducible in vitro lag phases (calculated as the time to 

10% release, t10%), increasing as a function of the wall thickness, were obtained. 

A prompt and complete release of the drug, promoted by the breakage and rapid 

dissolution/erosion of capsule shells, was observed both under static and 

hydrodynamic conditions (Figure 6). 

 

Table 1: Characteristics of Chronocap™ devices with differing shell thicknesses. 

 

nominal thickness thickness elastic modulus t10% in vitro 

µm µm (CV) N/mm
2
 (CV) min (CV) 

300 346 (12.30) 2.672 (15.04) 29.3 (22.2) 

600 645 (13.20) 5.342 (15.72) 53.5 (10.6) 

900 880 (4.64) 8.451 (3.44) 91.7 (3.16) 
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a)       b)  

 

Figure 6: Photographs at successive time points showing the opening of a 600 

µm thick Chronocap™ capsule immersed in deionized water under 

static conditions (a); mean release profiles of Chronocap™ capsules 

with differing shell thicknesses (b) [adapted from Gazzaniga A. et al., 

2011a]. 

 

The in vivo release performance of Klucel® LF devices was preliminarily evaluated 

on healthy volunteers [Zema L. et al., 2013; Gazzaniga A. et al., 2011c]. The 

appearance of drug in saliva samples was delayed with respect to the time of 

intake as a function of the shell thickness of capsular devices. After the lag phase, 

the drug concentration showed a fast increase in all cases (Figure 7; Table 2). 



  
Background and aim of the work 

 

13 
 

 

Figure 7: Average acetaminophen saliva concentration vs time profiles after oral 

administration of capsular devices with differing shell thicknesses 

[adapted from Gazzaniga A. et al., 2011c]. 

 

Table 2: Pharmacokinetics parameters after oral administration of capsular 

devices with differing shell thicknesses (standard deviation in brackets) 

[adapted from Gazzaniga A. et al., 2011c]. 

 

nominal shell thickness  tlag  Cmax  tmax  AUC0-24 

(µm) (h) (µg/ml) (h) (µg*h/ml) 

300 1.25 (0.17) 1.70 (0.46) 1.17 (0.29) 7.43 (3.25) 

600 2.34 (0.38) 5.07 (0.97) 2.50 (0.50) 16.06 (4.55) 

900 3.53 (0.71) 4.60 (0.97) 3.33 (0.58) 12.62 (0.28) 

 

Based on these premises, the aim of the present work was the further 

development of the Chronocap™ platform in order to improve its robustness and 

versatility, as well as to enhance the industrial scalability of the relevant 
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manufacturing process. In particular, the PhD project focused on: i) the 

development of a dedicated mold for the preparation of HPC-based capsules 

[Results - Chapter 1]; ii) the use of HPC molded capsules as substrates for coating 

processes in view of the development of a colonic delivery system based on a 

time-dependent approach [Results - Chapter 2]*; iii) the modulation of the lag 

phase of capsules through formulation changes [Results - Chapter 3]. 

Most of the results obtained from this research activity have been 

published/submitted for publication, in the form of experimental articles or 

poster communications: 

 

E. Macchi, L. Zema, A. Maroni, A. Gazzaniga, L.A. Felton. 2014. Enteric-Coating of 

Pulsatile-Release Capsules Prepared by Injection Molding, submitted for 

pubblication. 

L. Zema, G. Loreti, E. Macchi, A. Foppoli, A. Maroni, A. Gazzaniga. 2013. Injection-

Molded Capsular Device for Oral Pulsatile Release: Development of a Novel 

Mold, J Pharm Sci 102, 489-499. 

L. Zema, G. Loreti, A. Melocchi, F. Casati, E. Macchi, A. Gazzaniga, Oral delivery 

platforms in the form of “functional containers” prepared by injection molding. 

Thematic workshop of CRS Italian Chapter on "Design and industrial 

development of advanced drug delivery systems", Pavia, Italy, November, 2013. 
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E. Macchi, L. Zema, A. Gazzaniga, L.A. Felton, Enteric-coating of pulsatile-release 

capsules prepared by Injection Molding, AAPS Annual Meeting & Exposition, San 

Antonio, TX, November, 2013. 

E. Macchi, L. Zema, A. Gazzaniga, L.A. Felton, Enteric-coating of HPC capsules 

prepared by Injection-Molding, ACCP Annual Meeting, Albuquerque, NM, 

October, 2013. 

E. Macchi, L. Zema, A. Gazzaniga, L.A. Felton, Gastroresistant coating of HPC 

capsules prepared by Injection-Molding, 40th CRS Annual Meeting & Exposition, 

Honolulu, HI, July, 2013. 

E. Macchi, L. Zema, A. Gazzaniga, L.A. Felton, Release performance of Injection-

Molded HPC-based capsules filled with different formulations of a model drug, 

AAPS Annual Meeting & Exposition, Chicago, IL, October, 2012. 

L. Zema, E. Macchi, G. Loreti, A. Foppoli, A. Gazzaniga, Development of an IM 

mold purposely devised for an oral pulsatile-release capsular device. XXII 

Simposio ADRITELF, Firenze, Italy, September, 2012. 

L. Zema, G. Loreti, E. Macchi, M. Cerea, A. Foppoli, A. Gazzaniga, Development of 

Injection-Molded swellable/erodible capsules for oral pulsatile release, 39th CRS 

Annual Meeting & Exposition, Quèbec City, Canada, July, 2012. 

P. Tosoncin, L. Zema, G. Loreti, E. Macchi, A. Gazzaniga, A. Foppoli, Valutazione 

delle proprietà reologiche a caldo di HPC mediante miniestrusore bivite minilab 

II. 52° Simposio AFI, Rimini, Italy, May, 2012. 

L. Zema, G. Loreti, E. Macchi, A. Melocchi, A. Gazzaniga, Development of a mold 

for capsule-shaped oral pulsatile delivery devices, 8th World Meeting on 

Pharmaceutics, Biopharmaceutics and Pharmaceutical Technology, Istanbul, 

Turkey, March, 2012. 
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Chapter 1 

 

Injection-Molded Capsular Device for Oral Pulsatile Release: 

Development of a Novel Mold 

 

 

The content of this chapter has already been published in: 

 

L. Zema, G. Loreti, E. Macchi, A. Foppoli, A. Maroni, A. Gazzaniga. 2013. J Pharm 

Sci 102, 489-499. 
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Abstract 

The development of a purposely-devised mold and a newly set up injection 

molding (IM) manufacturing process was undertaken in order to prepare 

swellable/erodible hydroxypropyl cellulose (HPC)-based capsular containers. 

When orally administered, such devices would be intended to achieve pulsatile 

and/or colonic time-dependent delivery of drugs. An in-depth evaluation of 

thermal, rheological and mechanical characteristics of melt formulations/molded 

items made of the selected polymer (Klucel® LF) with increasing amounts of 

plasticizer (PEG 1500, 5-15 % by weight) was preliminarily carried out. On the 

basis of the results obtained, a new mold was designed that allowed, through an 

automatic manufacturing cycle of 5 s duration, matching cap and body items to 

be prepared. These were subsequently filled and coupled to give a closed device 

of constant 600 µm thickness. As compared with previous IM systems having the 

same composition, such capsules showed improved closure mechanism, 

technological properties, especially in terms of reproducibility of the shell 

thickness, and release performance. Moreover, the ability of the capsular 

container to impart a constant lag phase before the liberation of the contents 

was demonstrated irrespective of the conveyed formulation. 

 

Keywords: Injection molding (IM); capsular device; microcompounder; pulsatile 

release; colon delivery; hydroxypropyl cellulose (HPC). 
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1. Introduction 

Injection Molding (IM) was recently explored as a manufacturing technique for 

the preparation of pharmaceutical dosage forms because of the several 

advantages it may offer with respect to production costs and 

technological/biopharmaceutical characteristics of the molded items [Zema L. et 

al., 2012]. In particular, molded capsular shells with different shape, design and 

composition were prepared, potentially suitable for a variety of filling 

formulations (e.g. powders, granules/pellets, semi-solid or liquid preparations). 

IM capsules made of starch or gelatin may represent an alternative to dip-

molded commercially-available ones for the formulation of immediate-release 

oral dosage forms, the administration of pellets or the production of coated 

modified-release dosage forms [Eith L. et al., 1986; Vilivalam V.D. et al., 2000; 

Watts P. et al., 2005]. However, innovative devices intended as a viable approach 

to new Drug Delivery Systems (DDSs) were also proposed. In this respect, the 

feasibility of capsular containers based on functional polymers (i.e. polymers 

with pH-dependent solubility such as hydroxypropyl methylcellulose acetate 

succinate, or matrix-forming agents) was demonstrated, and gastroresistant as 

well as pulsatile delivery systems were so far obtained [Gazzaniga A. et al., 

2011a; Gazzaniga A. et al., 2011b; Zema L. et al., 2013]. 

Swellable hydrophilic cellulose derivatives were successfully employed as release 

delaying barriers or coating agents in the development of an oral erodible 

delivery platform (Chronotopic™) intended for pulsatile and/or colonic delivery 
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[Conte U. et al., 1989; Gazzaniga A. et al., 1994; Gazzaniga A. et al., 2008; Zema L. 

et al., 2007; Maroni A. et al., 2010]. A lag phase prior to drug release was indeed 

achieved that could be exploited to obtain a site-selective release to the ileo-

colonic region based on a time-dependent strategy [Sangalli M.E. et al., 2001; Del 

Curto M.D. et al., 2009; Maroni A. et al., 2009]. By the use of hydroxypropyl 

cellulose (HPC), which offered a good balance between release-controlling 

performance and IM processability, capsular devices (Chronocap™) having good 

technological and stability characteristics were subsequently prepared. Such 

DDSs showed the pursued in vitro and in vivo release patterns, with lag times 

increasing as a function of the wall thickness and HPC viscosity grade [Gazzaniga 

A. et al., 2011c]. With respect to coated formulations for pulsatile delivery, the 

peculiar advantage of Chronocap™ would consist in the possibility of undergoing 

an independent pharmaceutical development irrespective of its final contents 

and manufacturing process, which could bring about important repercussions in 

terms of patentability and industrial scale-up. 

The mold prototype employed was highly versatile, as convenient for early 

formulation studies. Indeed, it allowed the preparation of matching caps and 

bodies within a single manufacturing cycle as well as the selection of differing 

nominal shell thicknesses in the 300-900 µm range. However, some practical 

limitations were entailed by the particular joint mechanism of the capsules, in 

which the contact areas of bodies and caps overlapped inside the shell cavity 

thus also leading to a thicker wall region. Moreover, the variability in the shell 
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thickness and its poor consistency with the nominal value needed to be 

overcome. In the prospect of an industrial scale-up, the production rate and 

extent of automation of the manufacturing process also required to be 

improved. 

Based on the dimensional characteristics (i.e. length in the order of 10 mm vs. 

thickness of few hundreds of micrometers that is reduced in the proximity of 

certain details) and tolerances involved, the proposed capsule shell would fall 

within the definition of micromolded products [Heckele M. and Schomburg W.K., 

2004; Giboz J. et al., 2007; Koç M. and Özel T., 2011]. Microinjection molding 

(μIM) is not only a simple scale-down of classical IM because it entails 

introducing radical changes into the equipment, the mold construction and the 

raw materials to be used. In particular, the mold design, formulation 

development and setup of process parameters (e.g. mold temperature, injection 

speed and pressure, holding time and pressure) should be carried out 

concomitantly. The aim of the present work was therefore the design of a special 

mold, dedicated to the production of HPC capsules, and the subsequent 

development of a manufacturing process able to enhance the industrial 

scalability of the Chronocap™ pulsatile delivery device. 
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2. Materials and methods 

2.1. Materials 

Hydroxypropyl cellulose (HPC, Klucel® LF; Eigenmann & Veronelli, I); polyethylene 

glycol 1500 and 6000 (Clariant Masterbatches, I); colloidal grade Avicel® CL611 

microcrystalline cellulose (IMCD S.p.A, I); acetaminophen (AAP) fine powder 

(Atabay, TR) and granules (Compap™ Coarse L; Mallinckrodt, US); hard-gelatin 

capsules (DBcaps®, type B; Capsugel, US). 

 

2.2 Methods 

2.2.1. Rheological measurements 

The apparent viscosity of polymeric melts was measured using a Haake MiniLab II 

capillary rheometer (Thermo Scientific Haake, D). The microcompounder was 

equipped with conical co-rotating twin screws (diameter 5/14, length 109.5 mm) 

and a backflow channel (capillary: width 10 mm, height 1.5 mm, length 75 mm) 

with integrated pressure transducers. 5 g samples were manually fed into the 

extruder. At each extrusion temperature a 10 to 300 rpm screw speed ramp was 

used. All screw speeds were held for 60 s, and the pressure build-up of the 

material in the capillary was measured. For each formulation the extrusion 

temperature was varied from the minimum value that allowed torque ≤ 3.5 N·m 

to be registered up to 190 °C. 

Apparent viscosity data were fitted according to the power equation η=K·γn-1 

where η is the shear viscosity, γ is the shear rate, K and n are the consistency and 
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power-law index, respectively [Kontopoulou M., 2012]. The latter describes the 

thinning nature of the melt. 

A rotational plate (diameter 25 mm) rheometer (ARES, TA instruments, US) was 

also used to collect data under isothermal conditions (190 °C); time: from 0 to 

1400 s; frequency: 10 rad/s; strain: 0.2 %; gap 1 mm. 

 

2.2.2. Manufacturing of molded items 

Mixtures of HPC and polyethylene glycol 1500 were prepared in Turbula® (Type 

T2C, WAB, CH) and then transferred into a bench-top micromolding machine 

(BabyPlast 6/10P, Cronoplast S.L.; Rambaldi S.r.l., I). Before use, HPC was dried in 

a ventilated oven for 24 h at 40 °C. 

Molded items were prepared by means of two different molds: i) a disk-shaped 

mold (diameter: 30 mm; height: 1 mm) provided with a central gate and ii) a 

capsular mold with two interchangeable inserts for the manufacturing of 

matching cap and body items of 600 μm nominal thickness. The IM process 

conditions are reported in Table R1.1. 
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Table R1.1: IM process conditions. 

 Disk capsule 

 

 
 

compression zone temperature; °C 120-150 100 

metering zone temperature; °C 130-160 130 

nozzle temperature; °C 140-170 140 

hot runner temperature; °C - 160 

charge; mm 15-16 4 

1
st 

injection 

pressure; bar 50 30 

time; s 0.6 0.5 

rate; % 50 30 

2
nd 

injection 

pressure; bar 40 10 

time; s 2 0.3 

rate; % 40 10 

cooling temperature; °C 15 15 

cooling time; s 2.5 2.5 

closing pressure; bar 80 120 

opening rate; % 90 90 

 

2.2.3. Characterization of molded items 

Molded items, i.e. disks and assembled capsule shells, were checked for weight 

(analytical balance BP211, Sartorius, D; n = 10) and thickness (digimatic indicator 

ID-C112X, Mitutoyo, J; n = 10). Moreover, the height and diameter of assembled 

capsules were determined (analogical micrometer CD15D, Mitutoyo, J; n = 10). 

Digital photographs (Nikon D70, Nikon, J) of molded items were acquired. The 

mechanical properties of assembled capsule shells were evaluated by means of a 

TA.HD.plus Texture Analyzer (Stable Micro Systems, UK; n = 3) as previously 

described [Gazzaniga A. et al., 2011a]. Elastic modulus (Newton per square 

millimeter) was calculated from the initial linear portion of stress vs. strain 

curves. Percentage moisture content (MC %) of molded disks was calculated as 
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[(Ww-Wd)/Ww]·100, where Ww is the wet weight of the sample and Wd is its 

weight after drying (thermal-scale, Gibertini, I). 

The characterization of molded items was generally carried out immediately 

after ejection and after 1, 3 as well as 7 days storage at ambient conditions (24 ± 

2 °C / 55 ± 5 % RH). The mechanical properties and release performance of 

assembled capsule shells were evaluated after 7 days storage at ambient 

conditions. 

 

Evaluation of the release performance 

Capsule bodies were manually filled with differing formulations each containing 

50 mg of acetaminophen (AAP) as a tracer drug and closed with matching caps. 

For the release test (n = 6), an adapted six-position USP34 disintegration 

apparatus was used [Gazzaniga A. et al., 1995]. Each unit was inserted in a sinker 

and positioned in one of the six available tubes of the basket-rack assembly. The 

basket-rack assemblies moved at 31 cycles/min rate in separate vessels 

containing 900 mL water at 37 ± 0.5 °C. Fluid samples were withdrawn at fixed 

time points and assayed spectrophotometrically (248 nm). Lag time (t10%), i.e. the 

time to 10 % release, and pulse time (t90-10%), i.e. the time elapsed between 10 

and 90 % release, were calculated from the release curves. Sealing of the 

assembled capsules was avoided after verifying consistency in the performance 

of unsealed capsules and capsules sealed as previously reported [Gazzaniga A. et 

al., 2011a]. 
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Tracer drug formulations and relevant preparation: 

i) AAP fine powder (d10 = 14 μm; d50 = 29 μm; d90 = 58 μm) as such; 

ii) commercially available AAP granules with 90 % drug content (d10 = 230 μm; d50 

= 480 μm; d90 = 900 μm); 

iii) pellets in the 710-1000 µm dimensional range prepared by extrusion-

speronisation. AAP fine powder (50 % w/w) and microcrystalline cellulose, 

Avicel® CL611 (50 % w/w), were dry blended and granulated with water (45 % 

w/w with respect to dry powders) in a planetary mixer (KM 010, Kenwood, UK) 

fitted with a K-shaped mixing arm. Granulation was performed by slowly pouring 

water at a constant agitation speed of 250 rpm for 10 min. 350 mg of the wet 

mass was extruded by a radial basket apparatus (Nica® E140, GEA Pharma 

Systems, B) equipped with a multi-holed screen (internal hole diameter, 1 mm; 

screen thickness, 1.25 mm) and the resulting extrudates were spheronised in a 

Nica® S320 spheroniser with a 64 cm radial-hatched friction plate. Operative 

conditions were as follows: feeder speed, 90 rpm; extrusion speed, 70 rpm; 

spheronizer speed, 700 rpm; spheronization time, 1 minute. Pellets were dried in 

a vacuum oven at 40 °C for 24 h. 

iv) AAP solid dispersion in polyethylene glycol 6000 prepared by manually 

dispersing AAP fine powder (30% w/w) in the molten carrier at 60 °C. 

Capsular systems in which approximately 3 mg of a powder dye (methylene blue) 

was added to the filling formulations were analogously tested. The opening time 

of capsules was determined by visual inspection. It was defined as the time of 



Injection-molded capsular device for oral pulsatile release: 
Development of a novel mold   Results - Chapter 1 

30 
 

first rupture of the hydrated capsule shells highlighted by the very rapid 

dissolution of the dye inside the capsule. The morphological changes undergone 

by the capsular devices when exposed to aqueous fluids and the dissolution 

behavior of the dye were evaluated on units immersed in unstirred deionized 

water at the temperature of 37 ± 0.5 °C. Digital photographs were taken at 

successive time points. 

 

3. Results and discussion 

With the aim of developing a special mold, dedicated to the production of 

hydroxypropyl cellulose (HPC)-based capsules, and a robust injection molding 

(IM) manufacturing process, it was deemed necessary to focus on a single 

formulation and evaluate its thermal, rheological and mechanical characteristics. 

A previous promising composition based on Klucel® LF (KLF), plasticized with 

polyethylene glycol 1500 (PEG) to improve the mechanical properties of molded 

capsules, was thus selected as the starting formula [Gazzaniga A. et al., 2011a]. 

At first, the amount of plasticizer and the method of its incorporation (mixing 

process) appeared worthy of an in-depth investigation on account of their 

expected impact on the melt processability and the physical stability of molded 

items. The rheological properties of KLF melts with increasing amounts of PEG 

were thus evaluated by a twin-screw extruder integrated with pressure 

transducers in the backflow channel (capillary rheometer). Because of the 

relevant mixing ability, the use of co- or counter-rotating screws is well 
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established in the manufacturing of solid dispersions and of wet- or hot-melt 

extruded preparations [Repka M.A. et al., 2012; Fukuda M. et al., 2008]. 

Particularly lab-scale models, which allow to work with few grams of material 

(microcompounders), were also proposed as tools for rheological measurements 

since they may provide shear and extensional viscosity parameters at rates 

experienced during processing, especially when extrusion steps are involved (e.g. 

the plasticating phase of IM) [Cheng B. et al., 2001; Chen Z. et al., 2006; Chen Z. 

et al., 2008; Ralston B.E. and Osswald T.A., 2008]. Indeed, it is well known that 

the viscosity characteristics may affect the processability of polymeric melts. 

Formulations with viscosity values ranging between 103 and 104 Pa·s at 

operating temperatures are generally used for extrusion processes, whereas 

lower viscosities (from 101 to 5x102 Pa·s) are needed to face the small cross-

sections and/or long flow path entailed by IM [Klemens Kohlgrüber H., 2008]. 

Polymeric melts are usually characterized by a shear-thinning (or pseudoplastic) 

behavior that is evident from shear stress vs. shear rate profiles. By employing 

screw-driven capillary rheometers (such as the microcompounder used), shear 

stress profiles can be obtained as a function of the screw rotation speed thus 

allowing apparent viscosity values to be calculated [Bialleck S. and Rein H., 2011]. 

In Figure R1.1, rheograms relevant to KLF as such or in admixture with 5, 10 and 

15 % by weight (wt %) of PEG (with respect to the amount of polymer) at 

different temperatures are reported. Different ranges of processing 

temperatures were taken into account. The lower limit was that defined by the 
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resistance of the screw to rotation (torque values ≤ 3.5 N·m). On the other hand, 

even though the higher limit was set at 190 °C, only data relevant to 

temperatures ≤ 170 °C were considered because of a browning tendency of the 

polymer that was highlighted beyond such a value [Gazzaniga A. et al., 2011a]. 

 

 

 

Figure R1.1: Apparent viscosity profiles of Klucel® LF melts at different 

temperatures: polymer as such (a) and plasticized with 5 (b), 10 

(c) or 15 % (d) of PEG. 
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As expected, the apparent viscosity of KLF-based melts was largely influenced by 

temperature, especially at the low share rates. Rheograms of the plasticizer-

containing mixtures showed an analogous trend as the polymer as such, 

although apparent viscosity was generally reduced. Moreover, the addition of 

increasing amounts of PEG was demonstrated to improve the flow behavior of 

the melts thus allowing the latter to be extruded at progressively lower 

temperatures (up to 110 °C in the case of 15 % PEG formulation). 

In the range of shear rates considered, the shear flow is known to be well 

described by the power-law equation. Hence, it was thereby possible to calculate 

the relevant parameters, n and K [Kontopoulou M. et al., 2012; Paradkara A. et 

al., 2009]. The power-law index n describes the thinning nature of the melt (i.e. 

the smaller the value of n, the more shear-thinning the melt), whereas K is a 

consistency index representing the hypothetical shear viscosity extrapolated to 

zero wall shear rate. The fitting parameters of the above-discussed viscosity 

profiles are reported in Table R1.2. 
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Table R1.2: Calculated power-law parameters (n, K and regression coefficient R2) 

relevant to Klucel® LF-based melts at different temperatures. 

 

 amount of plasticizer, wt % 

 0 5 10 15 

°C n K R2 n K R2 n K R2 n K R2 

110 nd Nd nd nd nd nd nd nd nd 0.13 41037 0.968 

120 nd Nd nd nd nd nd 0.14 35406 0.977 0.20 22124 0.989 

130 nd Nd nd 0.21 16650 0.991 0.30 7332 0.989 0.30 7113 0.996 

140 0.26 11026 0.969 0.35 3659 0.992 0.37 2657 0.996 0.37 2510 0.998 

150 0.34 4322 0.993 0.38 1644 0.997 0.37 1766 0.999 0.34 2136 0.999 

160 0.40 1706 0.998 0.40 1099 0.999 0.43 1043 0.997 0.35 1500 0.999 

170 0.41 1026 0.999 0.42 747 0.999 0.40 820 0.999 0.32 1721 0.999 

 

Good correlation coefficients were always obtained, and n values were in 

agreement with those reported in the literature for the same type of polymer 

[Paradkara A. et al., 2009]. The rheological parameters were determined under 

temperature conditions analogous to those expected during IM processes 

though necessarily at lower shear rates. Data should therefore be considered 

descriptive of the melt behavior from a merely qualitative point of view. In this 

respect, interesting remarks were drawn from the comparative evaluation of the 

results obtained. Firstly, the shear-thinning nature of the molten polymer was 

confirmed to progressively decrease in the temperature range from 140 °C (n 

value 0.26) to 170 °C (n value 0.41). Analogously, it was reduced by addition of 5 

% of plasticizer at any temperature. However, increasing the amount of this 

excipient, in particular from the 10 to 15 % PEG-containing formulation, an 

opposite tendency was observed, especially at the higher temperatures. As far as 
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the consistency index K is concerned, it is known to depend on the degree of 

polymeric chain mobility and was accordingly supposed to also vary with the 

temperature and extent of plasticization. K values decreasing from the lower to 

the higher processing temperature were generally obtained for all the 

formulations except the one containing 15 % of PEG at 170 °C. Moreover, at all 

the operating temperatures, K was higher for the polymer as such than for the 

PEG 5% formulation. However, by rising the amount of PEG, an opposite and 

unexpected tendency to increase was noticed for K at temperatures > 140 °C, 

which could be ascribed to a chain rearrangement or a mechanically- and/or 

thermally-induced degradation of the polymer [Yan D. et al., 1999]. Indeed, the 

molten KLF and the 5 as well as 10 % PEG formulations also showed a similar 

behavior, i.e. an increase in K, though only above 170 °C (data not shown). These 

results were confirmed by complex viscosity data obtained under isothermal 

conditions at 190 °C that, for all the formulations, exhibited an increasing trend 

over time. By way of example, patterns relevant to the 10 % PEG formulation are 

reported in Figure R1.2. 
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Figure R1.2: Absolute viscosity (red diamonds), G’ storage modulus (blue 

triangles), G’’ loss modulus (green squares) and G’’/G’ tan-delta 

(black diamonds) profiles of KLF melt with 10% of PEG. 

 

The overall results of rheological studies demonstrated the need for dealing with 

a plasticized KLF formula in order to improve not only the mechanical properties 

of molded items but also the processability of the melt. Moreover, they indicated 

that not only operating temperatures would be a critical issue, but also the time 

over which the material is maintained at a relatively high temperature that is 

related to the IM process cycle time. In order to avoid overheating, special 

changes were introduced into the press configuration, such as a reduction in the 
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diameter of the piston and nozzle so that the amount of material heated at each 

molding cycle, i.e. the mean residence time of the material under heating, was 

minimized. 

The influence of the operating temperatures and amount of plasticizer on the 

actual IM processability and on the characteristics of molded products was then 

investigated. In particular, the dimensional changes (contraction or expansion) 

undergone by the item inside the mold, immediately after demolding or in the 

successive hours/days, needed to be considered because they may impair the 

relevant quality and performance, and might also have an impact on the design 

of the mold cavity [Fischer J.M., 2003]. Disk-shaped items (1 mm thickness and 

30 mm diameter) especially suitable for the evaluation of dimensional changes 

(shrinkage test) were therefore prepared [Zema L. et al., 2013], providing the 

modified press with a centrally-gated circular mold. A 120-170 °C range of 

temperatures was investigated setting a 10 °C-based ramp. Different 

combinations of compression, metering and nozzle temperatures were thus 

considered, namely from 120/130/140 °C to 150/160/170 °C. The change in the 

operating temperatures only involved a minimal adjustment of all the other 

process parameters. Moreover, the effect of the amount of plasticizer on 

processability was limited to a slight sticking tendency observed with the 15 % 

PEG formulation. With regard to the physico-mechanical characteristics of 

molded items, while no significant influence of the manufacturing temperature 

was noticed, the degree of plasticization was confirmed as a critical aspect. In 



Injection-molded capsular device for oral pulsatile release: 
Development of a novel mold   Results - Chapter 1 

38 
 

particular, the molded items containing only 5 % of PEG turned out glassy and 

brittle but maintained their shape after demolding, whereas in the presence of 

higher amounts of plasticizer deformation of the disks occurred. By way of 

example, data relevant to molded disks obtained under a mid-range combination 

of temperatures (i.e. 140/150/160 °C) are shown in Table R1.3. 

 

Table R1.3: Characteristics of molded disks (standard deviation in brackets); scale 

bar of photographs =           5 mm. 

 

% of PEG  weight 
mg 

thickness 
µm 

 moisture content 
%  

t = 0 t = 0 
t = 72 

h 
t = 72 h t = 0 

t = 72 
h 

t = 7 
days 

5 
937.57 
(1.24) 

1080 
(5) 

1121 
(12) 

 

1.7 
(0.12) 

4.5 
(0.42) 

5.5 
(0.48) 

10 
931.86 
(2.57) 

1078 
(8) 

1118 
(10) 

 

1.5 
(0.21) 

4.2 
(0.45) 

4.5 
(0.53) 

15 
927.88 
(3.61) 

1087 
(13) 

1117 
(15) 

 

1.1 
(0.15) 

2.9 
(0.32) 

3.7 
(0.58) 

 

KLF-based molded disks generally showed an increment of thickness, with 

respect to the mold nominal dimension, of about 8 %, increasing up to 12 % over 

72 hours. The degree of plasticization was demonstrated not to have a significant 

influence on the final disk thickness (p < 0.1). On the contrary, the molded disks 
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exhibited a warping tendency that could be related to the amount of plasticizer 

in the formulation. Indeed, only with the items containing PEG at 5 %, bending 

was observed neither after demolding nor storage. According to previous 

findings relevant to HPC-based capsular devices prepared by IM [Gazzaniga A. et 

al., 2011a], the molded disks reached a re-equilibrium in terms of moisture 

content within 7 days of storage at ambient conditions from preparation, 

whereas no dimensional changes were highlighted after 72 h. 

Taking the overall results obtained into account, a novel mold for the production 

of capsular devices with 600 μm thickness was specially designed for use with 

the 10 % PEG formulation, improved in that: i) a centered position of the 

injection orifice would enable a consistent flow length in all directions, ii) a hot 

runner keeping the melt heated up to the mold cavity would prevent 

overheating of the material thanks to the possibility of maintaining the desired 

temperature while this is moving throughout the mold, iii) a halved thickness in 

the body/cap contact areas would lead to a constant thickness of the closed 

device also in the overlap region, iv) a length/diameter ratio lowered to 1.5 

would reduce the flow path of the melt inside the unheated mold cavity, and v) a 

duct for injection of compressed air into the mold would facilitate the ejection of 

the molded item thus allowing the use of lubricants to be avoided. The amount 

of plasticizer selected was the minimum able to improve the KLF melt 

processability and the molded item brittlness. The process parameters required 

to be defined by means of preliminary trials. By the selected operating 
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conditions, a fully automated process was finally achieved with a cycle time per 

cap or body item reduced to about 5 s and no need for adding either internal or 

external lubricants (Table R1.1 in the Material and methods section). The highest 

temperature of 160 °C was set in the final step only, i.e. in the hot runner, 

whereas the plasticating/injecting phases of the process could be carried out at 

lower temperatures. An outline and some pictures of the capsule shells obtained 

are shown in Figure R1.3. 

 

 

 

Figure R1.3: Technical drawing and photographs of the capsular device. 

 

The capsules manufactured by using the novel mold were evaluated in terms of 

technological properties and release performance. When comparing such units 

with those prepared by the former mold, the average shell thickness turned out 

closer to the nominal 600 μm value and, importantly, the extent of thickness 

variability was considerably restrained (Table R1.4). This result was also reflected 
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in a higher reproducibility of the mechanical properties of the shells as expressed 

by elastic modulus (EM). Probably because of their modified shape, the novel 

capsules exhibited a lower EM. However, this was still comparable with that of 

immediate-release gelatin capsules thus supporting the possible utilization of the 

filling equipment employed for the latter [Gazzaniga A. et al., 2011a]. 

 

Table R1.4: Physico-technological characteristics of capsule shells prepared by 

the novel and the former mold (CV in brackets); data for the former 

devices are adapted from [Gazzaniga A. et al., 2011a]. 

 

 Capsule shells prepared by the 

 novel mold former mold 

Weight, mg 228 (0.51) 336 (0.70) 

Height, mm 13.11 (0.13) 16.08 (0.12) 

Diameter, mm 8.05 (0.02) 8.19 (0.37) 

Thickness, µm 610 (3.30) 645 (13.20) 

Elastic modulus, N/mm
2
 3.509 (2.01) 5.342 (15.72) 

 

Furthermore, the ability of the HPC capsule-based devices to impart a lag phase 

to the release of their content was investigated, and the relevant release profiles 

were comparatively evaluated vs. the dissolution curves of gelatin capsule 

dosage forms with an analogous filling. In particular, acetaminophen (AAP) was 

selected as a tracer drug, and formulations with a possibly different dissolution 

behavior were considered, namely fine powder, commercially available granules, 
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microcrystalline cellulose-based pellets prepared by extrusion-spheronization 

and a solid dispersion of the fine powder in polyethylene glycol 6000. Moreover, 

particular HPC capsule devices that also contained a dye were tested under 

analogous hydrodynamic conditions and in an unstirred medium in order to 

assess the rupture mode (time and position) of the shell. 

Important information was drawn from the evaluation of the morphological 

changes undergone by the HPC capsule-based devices when exposed to aqueous 

unstirred fluids and of the dissolution behavior highlighted by the dye-containing 

fillings. The capsule shells remained intact during the hydration and 

dissolution/erosion of the external polymeric layers, independent of the 

contents. The first rupture of the device took place in the cap item at the 

cap/body overlap region, where the body wall ends. A very rapid dissolution of 

the dye inside the capsule, before its contents were quantitatively delivered, 

demonstrated that aqueous fluids initially diffuse into the shell cavity through 

this cleft. An opening time was thus defined. By way of example, photographs of 

the device containing the fine powder formulation are reported in Figure R1.4. 

Such a behavior of HPC-based systems was confirmed under the conditions used 

for the release test and opening times were determined. 
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Figure R1.4: Photographs of a capsular device, containing AAP fine powder along 

with methylene blue, taken at successive time points (< 1 min 

intervals) during immersion in unstirred deionized water.  
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The dissolution and release profiles from gelatin and KLF capsule-based systems, 

respectively, are reported in Figure R1.5. The obtained data of opening time, 

along with those of lag time before drug release (expressed as t10%, time for 10 % 

of drug to be released) and pulse time, i.e. the time elapsed between onset and 

completion of the release process (expressed as t90-10%), relevant to the profiles 

of Figure R1.5 are collected in Table R1.5. For comparison purposes, t10% and t90-

10% values were analogously calculated from the dissolution profiles of gelatin 

capsule-based dosage forms. 
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b)  

 

Figure R1.5: Dissolution/release profiles of gelatin (a) or HPC (b) capsule-based 

systems containing different AAP formulations. 

 

Table R1.5: Release parameters of gelatin and HPC capsule-based systems 

containing different AAP formulations (standard deviation in 

brackets). 

filling formulation 

gelatin capsule-based systems HPC capsule-based systems 

lag time 

min  

pulse time 

min  

opening time
*
 

min  

lag time 

min  

pulse time 

min  

fine powder 3.5 (0.1) 3.8 (1.1) 33 (1) 36.0 (1.3) 5.0 (1.0) 

granules 3.5 (0.1) 4.3 (0.9) 35 (2) 32.6 (3.1) 5.1 (0.5) 

Pellets 6.6 (0.5) 8.7 (1.7) 35 (1) 45.0 (2.9) 13.9 (5.6) 

solid dispersion 4.9 (1.2) 5.1 (1.1) 34 (2) 41.7 (3.1) 13.9 (0.9) 

* 
determined by visual inspection from HPC capsule-based devices that contained a dye added to 

the filling 
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The HPC capsular containers developed proved able to achieve a lag phase prior 

to drug release. Moreover, the opening time was independent of the filling. On 

the other hand, some minor differences were found in the release parameters, 

such as in particular extended lag and pulse times of capsules filled with pellets 

or with the solid dispersion, which could be attributed to the dissolution 

behavior of these particular formulations. Indeed, while from the fine powder 

and the granules, containing disintegrant and wetting agents, the drug tracer 

was promptly available for dissolution, its contact with the aqueous fluid was 

somewhat delayed because of the reduced surface area exposed by highly dense 

matrix pellets made of microcrystalline cellulose and coarse fragments of the 

solid dispersion [Zema L. et al., 2008]. An analogous trend was observed with 

gelatin-based dosage forms with the same contents. With respect to the capsular 

devices prepared by the former mold, the duration of release (pulse time) was 

reduced probably due to the relatively lower amount of polymer that has to 

erode/dissolve to enable the breakup of the capsule. 

In order to explore whether the method of preparation of KLF blends with 10 % 

of plasticizer would impact on the IM process, capsule shells were prepared 

starting from pre-extruded KLF/PEG blends obtained under different 

temperatures; no influence on the manufacturing (process conditions, cycle 

time) nor on the physico-technological characteristics of the capsules was 

thereby highlighted (data not shown). 
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4. Conclusions 

An oral capsular device (Chronocap™) intended for pulsatile and/or time-based 

colonic delivery was recently prepared by injection molding (IM). The prototype 

capsule shells obtained from a swellable/erodible thermoplastic polymer (HPC) 

were able to delay, both in vitro and in vivo, the release of a model drug. The lag 

phase duration was found dependent on the shell composition and wall 

thickness. In the prospect of a scale-up of this technology, the development of a 

novel mold and manufacturing process was pursued in order to improve the 

technological characteristics of capsules on the one hand (e.g. shell thickness 

variable and poorly consistent with the nominal value), and the production rate 

as well as extent of automation on the other. The capsular devices prepared by 

this mold through an automatic manufacturing cycle (duration 5 s) were 

demonstrated to possess good technological properties and, as compared with 

the previous systems, higher reproducibility of shell thickness, mechanical 

properties, opening mechanism and release performance. In particular, although 

filled with different drug formulations, they showed a reproducible time to 

breakup (opening time) that was followed by release patterns dependent on the 

dissolution behavior of their contents. 
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Abstract  

Erodible capsular devices based on hydroxypropyl cellulose (Klucel® LF) intended 

for pulsatile release were prepared by injection molding (IM). In the present 

work, the possibility of exploiting such capsules for the development of colonic 

delivery systems based on a time-dependent approach was evaluated. For this 

purpose, it was necessary to demonstrate on the one hand the ability of molded 

cores to undergo a coating process and, on the other, that of coated systems to 

yield the desired performance (gastric resistance). Although no information was 

available on the coating of IM substrates, some issues relevant to that of 

commercially-available capsules are known. Thus, preliminary studies were 

conducted on molded disks for screening purposes prior to facing the spray-

coating of HPC capsular cores with Eudragit® L 30 D 55. The ability of the 

polymeric suspension to wet the molded substrate, spread above it, start 

penetrating and bring about hydration/swelling phenomena, as well as to 

provide a gastroresistant barrier was demonstrated. The coating of prototype 

HPC capsules was carried out successfully, leading to coated systems with good 

technological properties and able to withstand the acidic medium with no need 

for a sealing. Such systems maintained the original pulsatile release performance 

after failure of the enteric film in pH 6.8 fluid. Therefore, they appeared 

potentially suitable for the development of a colon delivery platform based on a 

time dependent approach. 
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Keywords: injection molding; capsular device; enteric coating; oral pulsatile 

release; oral colon delivery; swellable/erodible polymers. 

 

1. Introduction 

In the field of oral delivery, besides a widespread use of prolonged-release 

dosage forms [Grassi et al., 2004; Sangalli et al., 2001b], increasing interest has 

been focused on the development of formulations able to release active 

pharmaceutical ingredients after programmed lag times [Conte et al., 1989; 

Maroni et al., 2013b, 2010] or to specific regions of the gastrointestinal (GI) tract 

[Pinto, 2010]. In particular, the possibility of exploiting the colon as a site for the 

release of drugs for the treatment of both local and systemic pathologies has 

been investigated: while several applications for the management of local 

symptoms/pathologies (e.g. inflammatory bowel disease, IBD) can be already 

found in the literature, colon delivery is currently considered an interesting 

approach for increasing the bioavailability of peptides and proteins [Maroni et 

al., 2013a, 2012]. The colon has long been considered an unsuitable site for the 

absorption of molecules because of the reduced surface area; moreover, the lack 

of free fluids, the viscous contents and the presence of gas produced by bacterial 

fermentation processes may impair the disintegration of oral dosage forms and 

dissolution of drug particles. However, the unfavorable anatomical and 

physiological characteristics of the colon are offset by its low concentration of 

local peptidases and the long residence time of drug delivery systems.  
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Over the years, several strategies have been attempted for targeting the colonic 

region. The exploitation of enzymatic reactions by unique bacteria at the site is 

one (chemical/microbiological approach): among substrates undergoing 

enzymatic activation reactions (i.e. reduction and hydrolysis of azo and glycoside 

bonds, respectively), both prodrugs and polymeric materials have been 

investigated [Patel and Amin, 2011]. The high variability in the composition of 

the microflora, influenced by everyday events (e.g. stress, modification of the 

diet and concurrent therapies), regulatory burden involved by the use of 

prodrugs and synthetic materials as well as poorly reliable performance of 

natural polysaccharide carriers represent the main critical aspects of this delivery 

strategy. The technological/physiological approach, on the other side, makes use 

of the difference in some parameters along the GI tract, namely pressure, pH or 

transit time. With the pressure-controlled delivery strategy, the disintegration of 

the drug delivery system is enhanced by the combination between intense 

muscle contractions and the higher viscosity of luminal contents [Takaya et al., 

1995]. The pH-based approach relies on the hypothesis of a progressive increase 

in the pH values along the GI tract. Relevant systems are composed of a drug-

containing core coated with polymers which dissolve in media with neutral to 

weakly alkaline pH. However, the possibility that this pH threshold is exceeded in 

the small intestine or a weakly acidic pH is found in the caecum and in the right 

colon segments may lead to an inconsistent performance of devices [Gazzaniga 

et al., 2006]. Finally, the time-dependent approach to colon delivery is based on 
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the relatively constant small intestinal transit time (SITT; 3 h ± 1 standard error) 

of dosage forms [Davis, 1985]. On the contrary, the duration of gastric residence 

of solid dosage forms, which depends on their size and density as well as fasted 

or fed conditions of subjects, is unpredictable; hence, by the application of an 

outer gastroresistant layer, which dissolves after the dosage form is emptied 

from the stomach, the variability in gastric emptying can be overcome. 

Subsequently, a lag phase imparted to the drug-containing core allows the 

system to reach a delay duration comparable to SITT, thus targeting the colonic 

region of the GI tract [Gazzaniga et al., 2006]. 

Among time-based devices for colonic release, a platform for delayed and site-

specific release of drugs in the form of a reservoir system, named Chronotopic™, 

has already been developed [Del Curto et al., 2011, 2009; Sangalli et al., 2004, 

2001a; Zema et al., 2007]. Such device is based on single- or multiple-unit drug 

cores (tablets, capsules, pellets) coated with a functional layer composed of 

swellable/erodible polymers (namely, hydroxypropyl methylcellulose, HPMC) of 

few hundreds microns of thickness applied by different techniques (press-

coating, spray-coating and powder layering). When intended for time-based 

colon delivery, an outer enteric film is subsequently applied. Once the device is 

emptied from the stomach, the enteric coating dissolves and the HPMC-based 

layer delays the contact of the biological fluids with the core, allowing the 

release of the drug only after a programmed period of time. The effectiveness of 

the Chronotopic™ system, its flexibility in terms of duration of the lag phase, 
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both in vitro and in vivo, as well as the possibility of scaling up the manufacturing 

process has been widely demonstrated. A step forward in the development of 

the Chronotopic™ system was represented by a capsular device (Chronocap™) 

that combined the release functionality of the polymeric coating with the ability 

to convey a variety of drug preparations (solid, semi-solid, liquid), thus bringing 

about both technical and regulatory advantages. The feasibility of the injection 

molding (IM) technique to prepare capsules from a thermoplastic swellable ether 

of cellulose, hydroxypropylcellulose (HPC), as an alternative to the HPMC-based 

coating of the Chronotopic™ delivery platform, has previously been 

demonstrated [Gazzaniga et al., 2011; Zema et al., 2012].  

Preliminarily, shells of different thickness (300, 600, and 900 µm) were prepared 

and showed good technological characteristics. Moreover, pulsatile release 

patterns were obtained from drug-containing capsules, both in vitro and in vivo, 

with a lag time that was dependent on the shell composition and thickness 

[Zema et al., 2013a]. In the prospect of an industrial scale up, a purposely 

devised mold with a nominal thickness of 600 µm was designed on the basis of 

thermal, rheological and mechanical characteristics of the polymeric formulation 

selected [Zema et al., 2013b]. The new mold allowed a fully automated 

manufacturing to be developed with cycle times of few seconds. However, no 

information is available on the application of pharma-grade polymer coatings 

onto the molded HPC capsule shell devices. 
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Based on these premises, the aim of the present work was to evaluate 

Chronocap™ capsules as cores for the application of a gastroresistant film, in 

order to make them possibly suitable for the development of a time-dependent 

colonic release system. The feasibility of coating IM capsules with an aqueous-

based enteric dispersion (Eudragit® L 30 D-55) was preliminarily studied using a 

prototype shell of 600 µm thickness composed of Klucel® LF plasticized with 

polyethylene glycol (PEG 1500, 10 % by weight) and filled with a tracer drug. 

 

2. Materials and methods 

2.1. Materials 

Hydroxypropyl cellulose (HPC): Klucel® LF, Eigenmann & Veronelli, Italy; 

hydroxypropyl methylcellulose (HPMC): Methocel™ E50 Premium LV, Dow, Italy; 

polyethylene glycol (PEG) 1500, Clariant Masterbatches, Italy; low-density 

polyethylene (LDPE), Polimeri Europa, Italy; acetaminophen (AAP) fine powder, 

Atabay, Turkey; Eudragit® L 30 D-55, Evonik, Germany; triethyl citrate (TEC), 

Vertellus Specialties Inc., IN, USA; fluorescein sodium salt, Sigma-Aldrich Corp., 

MO, USA; size 2 hard-gelatin and HPMC capsules, Capsugel, SC, USA. 

 

2.2. Methods 

2.2.1. IM processes 

A mixture of HPC, previously dried in a ventilated oven for 24 h at 40 °C, and PEG 

1500 (90 % and 10 % w/w, respectively) was prepared in Turbula® (Type T2C; 
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WAB, Switzerland) and then transferred into a bench-top micromolding machine 

(BabyPlast 6/10P; Cronoplast S.L., Spain; Rambaldi S.r.l., Italy). Molded items 

were prepared by means of two different molds: (1) a disk-shaped mold 

(diameter: 30 mm; height: 1 mm) provided with a central gate and (2) a capsular 

mold with two interchangeable inserts for the manufacturing of matching caps 

and bodies of 600 µm nominal thickness. Process conditions were applied as 

reported in [Zema et al., 2013b]. Disks made of LDPE were also prepared. 

The physical characteristics, mechanical properties and release performance of 

capsule shells were evaluated after 7 days of storage at ambient conditions (24 ± 

2 °C / 55 ± 5 % relative humidity). 

 

2.2.2. Capsules filling 

Gelatin, HPMC and HPC-based capsule shells were manually filled with 80 mg of 

AAP. Banded samples of each type of system were prepared: gelatin capsules 

were manually sealed with a 20 % w/v gelatin aqueous solution, HPMC with a 

20% w/v Methocel™ E50 aqueous solution and HPC-based capsules with a 3 % 

w/v Klucel® LF aqueous solution. 

 

2.2.3. Coating processes 

2.2.3.1. Preparation of the coating suspension and fluorescein solution  

The coating suspension was prepared by dissolving TEC (20 % w/w, based on the 

dry polymer weight) into the commercially available Eudragit® L 30 D-55 
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dispersion, previously diluted to decrease the solid contents to 20 %; when 

required, fluorescein (0.01 % w/w, based on the dry polymer weight) was added. 

The suspension was stirred for at least 30 min, filtered through a 0.3 mm sieve 

and maintained under stirring during the coating process. 

A solution of fluorescein alone for comparison purposes was prepared by 

dissolving the fluorescent marker in pure water at the same concentration used 

in the coating suspension. 

 

2.2.3.2. Coating of molded disks and glass slides 

The coating suspension containing fluorescein was sprayed by a two-fluid nozzle 

(Series 970, Düsen-Schlick, Germany) with 1.2 mm port size onto a rotating 

drum, carrying disks and glass slides, covered by a siliconized liner under a 

constant heating air flow in order to maintain the film surface at approximately 

30 °C [Felton, 2007]. Each sample was sprayed with the amount of suspension 

needed to reach theoretical 10 mg/cm2 of polymer applied. Molded HPC-based 

disks were sprayed under the same conditions with the fluorescein solution for 5 

s. 

 

2.2.3.3. Coating of capsules 

Batches of 500 capsules, both banded and unbanded, were coated in a Hi-coater 

(Vector corporation LDCS-3, Vector Corp., IA, USA) equipped with a 1.3 L 

perforated pan. Process conditions were: inlet air temperature, 30 °C; air 
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pressure, 12 psi; pan speed, 15 rpm; spraying rate, 1 g/min. For HPC capsules 

only, the spraying rate was also increased up to 2 g/min. During the process, 

samples with different coating levels were withdrawn and replaced with placebo 

capsules to maintain the batch size.  

 

2.2.3.4.Curing 

After the coating process, all samples (glass slides, disks and capsules) were 

cured in a ventilated oven at 40 °C for 2 h. In order to allow re-equilibrium with 

ambient humidity, all measurements were performed after 7 days of storage at 

ambient conditions (24 ± 2 °C/55 ± 5 % RH) from preparation. 

 

2.2.4. Characterization of substrates and coated systems 

2.2.4.1. Contact angle  

A Tantac CAM-Micro Contact Angle Meter (Chemsultants International, Inc., OH, 

USA) was used to determine contact angles between the Eudragit® L 30 D-55 

suspension and different substrates: HPC-based molded disks, LDPE molded disks 

and glass slides. A 10 µl droplet of the polymeric suspension was delivered onto 

the surface of each substrate and contact angles were measured after 1 s and 15 

s (n = 3). 
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2.2.4.2. Gastroresistance and release performance 

Uncoated substrates (molded disks and capsules) were tested in phosphate 

buffer pH 6.8 according to the Dissolution Test for Immediate-Release Dosage 

Forms (USP 34); coated systems (glass slides, molded disks and capsules) were 

tested according to the Dissolution Test for Delayed-Release Dosage Forms, 

Method A for HPC-based capsules and Method B in all other cases; n = 3. 

Molded disks were fixed to an inert support in order to avoid floating during the 

test: pre-weighed samples were dried in a ventilated oven at 40 °C for 2 h and 

then transferred into a USP 34 Apparatus 2; test conditions: 900 mL of 

dissolution medium (HCl 0.1 N, pH 1.2 or phosphate buffer, pH 6.8), 37 ± 0.5 °C, 

50 rpm. At fixed time intervals, samples were withdrawn from the medium and 

dried in a ventilated oven at 40 °C for 24 h. The residual dry mass was calculated 

from the dried (mdried) to starting (m0) mass ratio according to Eq. (1): 

 

Residual dry mass % = 100 - [(mdried/m0) * 100]                                   Eq. (1) 

 

Conventional capsules (gelatin and HPMC) were tested in Apparatus 2, at 50 

rpm, in 900 ml of medium at 37 °C with wire sinkers. IM capsules were tested in 

a six-position USP 34 disintegration apparatus in order to avoid sticking of the 

swollen shells to the vessels [Gazzaniga et al., 2011, 1995]: each unit was 

inserted in one of the six available tubes of the basket-rack assembly, moving at 

31 cycles/min rate in separate vessels that contained 675 mL of dissolution 
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medium (HCl 0.1 N, pH 1.2 or 800 mL phosphate buffer, pH 6.8), 37 ± 0.5 °C (n = 

3). Fluid samples were spectrophotometrically assayed at 248 nm. 10 % drug 

dissolved/released (t10%) was calculated from the relevant curves, that was 

defined as the lag time in the case of HPC capsules. Moreover, the time elapsed 

between 10 % and 90 % release was calculated from the profiles of HPC-based 

systems that was defined as pulse time (t90%–10%). 

 

2.2.4.3. Dimensions 

The diameter of uncoated capsules and coated systems was determined by 

micrometer (Craftsman Micrometer, Mechanical Digital, 0-1 in. range, n = 10). 

The coating layer thickness was calculated from the difference between 

diameters of coated (dc) vs. uncoated (duc) capsules according to Eq. (2):  

 

Coating thickness = (dc - duc)/2                                                                    Eq. (2) 

 

2.2.4.4. Mechanical resistance 

The mechanical properties of uncoated and coated HPC-based capsules were 

evaluated (n = 3) using a Chatillon universal tension/compression tester (model 

TCD-200 MS, Wagner Instruments, CT, USA) equipped with a DFGS digital force 

gauge and a flat-ended probe with 13 mm diameter. Capsular samples were 

placed on the lower stationary platform, centrally positioned under the probe 

[Missaghi et al., 2006]; the upper platen was then lowered and compressed the 



Enteric-coating of pulsatile-release capsules   
prepared by injection molding                                                                      Results -  Chapter 2 

64 
 

capsule at a rate of 10 mm/min. Capsule failure under crushing was determined 

and the inherent load strength (N) was measured. 

 

2.2.4.5. Moisture sorption 

Uncoated disks and disks coated with up to 10 mg/cm2 of dry polymer were 

analyzed by means of a dynamic vapor sorption apparatus (DVS Advantage-1, 

Surface Measurement Systems Ltd., UK). Pre-weighed samples of about 50 mg 

cut from disks were added to 10 mm video quartz pans, which were placed in the 

sample chamber. Experiments were conducted isothermically (either 25 or 40 °C) 

under N2 purge of 200 sccm. Samples, initially dried at 0 % RH until a dm/dt of 

0.002 %/min was reached, were then exposed to a ramping experiment from 0 % 

to 98 % RH in 600 min. Finally, each sample was equilibrated at 98 % RH, 

determined by a dm/dt of 0.002 %/min. 

 

2.2.4.6. Photographs 

Digital photographs of molded disks uncoated and coated up to 10 mg/cm2 of 

dry polymer were acquired by a Nikon D70 camera (Nikon, Japan). 

Samples of glass slides and molded disks treated with the fluorescein-containing 

solution or suspension and tested for gastroresistance were analyzed by confocal 

laser scanning microscopy (CLSM). Images were taken with a Zeiss LSM 510 

camera (ZEISS, Germany) coupled with a microscope (AxioPlan 2 MOT, ZEISS, 

Germany); a ×20 objective lens (Numerical Aperture 0.5) was used and laser 
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excitation wavelength was set to 488 nm. Single plane images of the surface of 

samples and optical cross sections were acquired. 

Photomicrographs of gelatin, HPMC and HPC-based capsules, uncoated and 

coated up to 10 mg/cm2 of dry polymer were taken by a Jeol Model 35 scanning 

electron microscope (Jeol, MA, USA); details of the surface and of the cap and 

body closing area were acquired. 

Photomicrographs of HPC-based capsules were taken by an optical microscope 

(Inverted Olympus 1x70, Olympus, PA, USA) coupled with a camera (Olympus 

DP2-BSW, Olympus, PA, USA); details of the cross section of capsule cleaved by 

means of a scalpel were acquired. 

 

3. Results 

With the aim of demonstrating the feasibility of a colonic delivery system based 

on the Chronocap™ platform, the coating of a molded prototype with a gastro-

resistant polymer (Eudragit® L 30 D-55) was investigated. Data relevant to the 

characterization of HPC-based capsules as a substrate for coating processes, the 

development of the coating process itself and the evaluation of coated capsules 

compared with conventional gelatin or HPMC ones are reported. 

 

3.1. Characteristics of core units 

In order to develop a coating process for molded HPC capsules, some critical 

issues related to other types of capsule cores needed to be considered. For 
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example, the smooth surface of the shell of hard gelatin capsules may lead to 

poor adhesion of the coating film [Nagata, 2002]; moreover, during the initial 

phase of wetting, partial solubilization of gelatin may result in sticky shells 

[Thoma and Bechtold, 1992], whereas shell brittleness was noticed after 

exposure to low humidity conditions [Osterwald, 1982]. In addition, the 

irregularity of the closing area could prevent the formation of a continuous layer 

[Felton et al., 2002; Plaizier-Vercammen et al., 1992]. Some of these drawbacks 

were partly overcome by using a subcoat that, however, involves a further 

process step, potentially problematic and time consuming. More recently, 

HPMC-based capsules were launched on the market as an alternative to gelatin-

made ones for meeting vegetarian needs and incompatibility problems [Ogura et 

al., 1998]. As these capsules are composed of a non-ionic polymer, they 

demonstrated less reactivity toward many chemical entities (e.g. aldehydes, 

reducing sugars and metal ions) and a higher compatibility with some filling 

vehicles (including liquids) in comparison with hard gelatin capsules. 

Furthermore, the mechanical strength of the HPMC shells was shown to be less 

influenced by storage humidity conditions [Sherry Ku et al., 2010]. Finally, such 

capsules showed a rougher surface with respect to gelatin shells, suggesting a 

potential for better film adhesion, although the need for a sealing step was 

demonstrated [Cole et al., 2002; Felton et al., 2002; Sherry Ku et al., 2010]. 

As mentioned, little information is available about the impact of the IM process -

i.e. of high temperatures and pressures applied to the polymeric formulation in 
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order to have it melt and flow through a relatively long narrow mold section- on 

the properties of the material (e.g. surface characteristics, porosity, hydration 

rate and swelling ability). Therefore, the ability of a Eudragit® L 30 D-55 coating 

suspension to adhere to molded substrates and the possible influence of the 

enteric film on the physical properties as well as dissolution/erosion behavior of 

molded HPC needed to be verified. For this purpose, 1 mm thick disk-shaped 

specimens, also prepared by IM and with the same composition as capsules, 

were used as a simple model for physico-mechanical and release 

characterization studies [Zema et al., 2013b, 2013c]. Preliminary data relevant to 

the wettability of HPC disks were acquired. Glass-slides and molded disks made 

of low-density polyethylene (LDPE) were used for comparison, as these inert 

materials were expected to display little/no interaction when in contact with 

aqueous fluids. The wettability of the different surfaces (i.e. molded HPC, molded 

LDPE and glass) by the coating suspension was investigated by means of contact 

angle analysis. During the test, droplets showed a certain tendency to spread on 

the contact surface over 30 s approximately. Therefore, contact angles were 

determined after 1 and 15 s and the difference between values at the two time 

points was used to estimate the spreading ability of the coating suspension 

(Table 1). 
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Table 1: Contact angles of Eudragit® L 30 D-55 coating suspension with different 

substrates after 1 and 15 s contact-time (s.d. in brackets) and their 

percentage difference (∆ %). 

 

 
Contact time, s 

Contact angle, ° 
(s.d.) 

∆ % 
 

HPC-based molded disk 
1 33.3 (1.26) 

26.4 
15 24.5 (4.43) 

LDPE-based molded disk 
1 57.5 (3.70) 

27.3 
15 41.8 (1.26) 

glass slide 
1 23.7 (1.53) 

25.3 
15 17.7 (0.58) 

 

 

Similar contact angles were observed for HPC-based molded disks and glass 

slides; much higher contact-angle values were obtained for LDPE disks, likely due 

to the hydrophobicity of the material. The spreading ability of the aqueous 

polymeric dispersion, as indicated by the ∆ % values, seemed to be less 

influenced by the characteristics of the surfaces. Based on these results, glass 

slides were selected as reference inert controls for subsequent experiments. 

In order to gain qualitative information about the adhesion of the acrylic film to 

the molded substrates and the surface phenomena arising from HPC interaction 

with aqueous fluids, molded disks and controls were coated with a polymeric 

suspension (equivalent to 10 mg/cm2 of polymer) containing a fluorescent 

marker, namely fluorescein, that could be detected by confocal laser scanning 

microscopy (CLSM). Some disks were also sprayed for a few seconds with an 

aqueous solution of fluorescein alone at the same concentration as in the 
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coating suspension to gain insight into the interaction between HPC and the 

polymeric suspension early in the coating process. The ability of the coated disks 

to withstand acidic media and dissolve in buffer pH 6.8, i.e. their gastroresistance 

performance, was thus investigated. In Table 2, CLSM images of the surface of 

disks and glass slides coated with the marker-containing polymeric suspension or 

maintained 2 h in acidic medium and then transferred in phosphate buffer pH 6.8 

are reported. CLSM images of the coated disks withdrawn from the pH 6.8 

medium after 15-40 min were also compared with those of molded disks sprayed 

with the fluorescein solution and immersed into pH 6.8 buffer for an equal time 

period. In this case, images of the optical cross section of the disks are reported 

(Table 3) where the coating layer thickness or the position of the solvent 

penetration front through the thickness of uncoated disks could be appreciated. 
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Table 2: CLSM images of the surface of molded HPC-based disks and glass slides 

coated with a fluorescein-containing Eudragit® L 30 D-55 suspension 

following immersion in either HCl 0.1N or phosphate buffer pH 6.8 for 

differing time periods.   

 

Medium 
Exposure time 

(min) 

Molded disks Glass slides 

sprayed with fluorescein-containing 
enteric polymer suspension  

- - 

  

HCl 0.1N 10 

  

HCl 0.1N 120 
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Phosphate buffer 

pH 6.8 

(after 2h in HCl 0.1N) 

5 

  

10 

  

20 

  

25 

  

30 
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Table 3: CLSM images of the optical cross section of molded disks coated with a 

fluorescein-containing Eudragit® L 30 D-55 suspension or sprayed with a 

fluorescein solution following immersion in phosphate buffer pH 6.8 for 

differing time periods. 

 

Medium 

Exposure 

time 

(min) 

Molded disks 

sprayed with fluorescein-
containing enteric polymer 

suspension 

sprayed with fluorescein 
solution 

Phosphate 

buffer pH 6.8 

15 
  

25 
  

40 
  

 

In CLSM images the fluorescent marker appears green and helps identify the 

polymeric coating layer. Gradual shading or discontinuous coloring of the green 

surface (Table 2), as well as decrease of the thickness of the green layer in the 

cross section images (Table 3), were related to the dissolution of the coating. 

Both coated disks and glass slides showed a homogeneously colored surface 

before and after being exposed to the acidic medium up to 120 min. On the 

other hand, 25-30 min were necessary for the green color to almost disappear 

from samples once they were transferred into the buffer solution at pH 6.8 

(Table 2). In the optical cross section images of coated disks, a green layer that 

becomes thinner after 25-30 min is evident, which was confirmed to be 

consistent with the time required for the dissolution of the polymeric coating 
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(Table 3). Notably, the coloring of coated disks was generally very similar to that 

of glass controls, which might have suggested an analogous dissolution time 

course for the coating. However, a faded green coloration could still be detected 

after 40 min in pH 6.8 buffer on the molded HPC disks only. Similarly, a green 

shadow was also present at each time point (15-40 min) on disks that were 

sprayed with an aqueous solution of the fluorescent marker. It was thus 

hypothesized that the fluorescein solution could rapidly penetrate through the 

pore network of the glassy matrix, leading to the appearance of the green 

coloration. On the contrary, the diffusion of the marker through the swollen HPC 

molecular chains, both inward and outward, might be relatively slower thus 

making the color leaching out negligible. The faded coloration could therefore 

disappear following dissolution/erosion of the gel layer only. In order to verify 

this hypothesis, the HPC mass loss profile of disks in buffer medium pH 6.8 was 

evaluated (Figure 1): data from coated disks were collected after the dissolution 

of the Eudragit® L film only. 

 

 

Figure 1:  HPC mass loss profiles in phosphate buffer pH 6.8 of molded disks. 
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The mass loss of uncoated disks under the conditions employed was very slow 

(about 45 % within 6 h); in particular, a < 5% decrease in weight was noticed 

during the first hour. The profile of HPC mass loss relevant to coated disks after 

the dissolution of the Eudragit® L film was almost superimposed. Assuming that a 

gel layer could form on the surface of disks on wetting after a few seconds (with 

both the fluorescein solution and the coating suspension) and as no 

dissolution/erosion phenomena had occurred to change the disk surface, the 

faded coloration observed on the disks was confirmed to coincide with the front 

of the initial solvent penetration through the glassy matrix pore network. Mass 

loss profiles also pointed out that the dissolution behavior of molded HPC disks 

was not affected either by the application of an enteric coating (coating process) 

or by the test conditions (2 h in pH 1.2). This was considered a promising result in 

the prospect of achieving coated HPC capsules able to ensure the same pulsatile-

release performance after the dissolution of the enteric coating. 

Considering HPMC capsules, it is known that the glassy-rubbery transition of the 

polymer promoted by the first contact with the coating suspension can bring 

about a sticking tendency of cores, and thus potential issues related to the 

process yield that were also encountered for gelatin cores [McGinity and Felton, 

2008; Thoma and Bechtold, 1992]. As HPC involved the same issue, when 

finalizing the coating process of molded capsules, it will be necessary to identify 

conditions to prevent sticking (i.e. problems related to the tumbling of cores 

within the rotating coating pan or to an incomplete exposure of the shell surface 
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to the sprayed polymeric suspension) and enabling a balance between wetting 

and drying efficiency.  

Finally, as a certain tendency of HPC to water uptake, which could impact the 

mechanical characteristics of shells and stability profile of the filled capsules, was 

already highlighted [Gazzaniga et al., 2011], the potential of the coating layer as 

a barrier for gas diffusion was evaluated by means of Dynamic Vapor Sorption 

(DVS), both at 25 and 40 °C. Evidences that water can act as a plasticizer lowering 

the glass transition temperature of polymers, which leads to a decrease in 

mechanical resistance and adhesive strength, is widely reported in the literature 

[Aulton et al., 1984; Felton and McGinity, 1997; Hancock and Zografi, 1997; 

Okhamafe and York, 1985; Stanley et al., 1981]. Uncoated and coated disks 

maintained under the same storage conditions (24 ± 2 °C/55 ± 5 % RH) showed 

differences in water content (higher for the uncoated) that were also reflected in 

a different duration of the desorption phase (longer for uncoated disks). 

Accordingly, the moisture sorption profiles of uncoated and coated disks turned 

out to be different in terms of both the actual amount of water sorbed and rate 

of sorption. By way of example, results obtained at 25 °C are shown in Figure 2. 

 



Enteric-coating of pulsatile-release capsules   
prepared by injection molding                                                                      Results -  Chapter 2 

76 
 

a)  

 

  

b)  

Figure 2: Moisture sorption profiles of uncoated (a) and coated (b) disks at 25 °C.  

 

Coated samples reached a final water content of 32.41 % vs. 40.70 % of uncoated 

ones. Analogous results were obtained under 40 °C, but in this case a higher rate 
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of water sorption was observed with both types of samples. Lower equilibrium 

moisture contents (≤ 20 %) are reported in the literature for HPC, both untreated 

and processed by hot melt extrusion [Alvarez-Lorenzo et al., 2000; Harwood, 

2003; Prodduturi et al., 2004]. However, the ability of PEG 1500 to promote the 

moisture sorption of plasticized HPC-based blends was already demonstrated for 

IM capsules [Gazzaniga et al., 2011]. The overall results demonstrated the 

potential of the enteric film for limiting water exchange of the molded substrate. 

In the case of coated HPC capsules, this could be advantageous in terms of 

product stability. 

Proof of the ability of the Eudragit® L film to protect molded disks from the 

environment could also be appreciated in the reduction of the warping tendency. 

The coating layer prevented molded items from undergoing a previously 

described deformation, occurring within 72 h from demolding and attributed to 

the presence of the plasticizer in the shell composition [Zema et al, 2013b]. In 

fact, coated disks, stored at the same conditions as uncoated ones, maintained 

their morphology over time (Figure 3). 

 

a)    b)  

 

Figure 3: Photographs of uncoated (a) and coated (b) disks stored at ambient 

conditions after 15 days. 

 

0.5 cm 0.5 cm 
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3.2. Coating process and characteristics of coated capsules 

As the closing system of a capsule may become a critical issue during the coating 

process, both banded and unbanded units of HPC on the one hand, and gelatin 

or HPMC on the other, were considered. During the Eudragit® L 30 D-55 coating 

process, samples with increasing weight gains, i.e. 4, 6, 8, and 10 mg/cm2, were 

withdrawn. The process yield can be calculated from the actual vs. theoretical 

amount of dry polymer applied; in the case of optimal polymer deposition, a 

linear relationship with slope approaching 1 is expected. The rate of polymer 

deposition under the same process conditions was found analogous for the three 

types of cores, and showed the desired slope (Figure 4). Moreover, with the aim 

of reducing the duration of the HPC capsule coating process, the spraying rate 

was doubled still avoiding the sticking of cores and without impacting the 

physico-technological characteristics of the coated units. 

 

 

a)   

0 

2 

4 

6 

8 

10 

2 4 6 8 10 

N
o

m
in

al
 w

g 
(m

g/
cm

2
) 

 

Theoretical wg (mg/cm2) 



Enteric-coating of pulsatile-release capsules   
prepared by injection molding                                                                      Results -  Chapter 2 

79 
 

b)  

 

Figure 4: Profiles of nominal vs actual weight gain (wg) of gelatin (●), HPMC (   ) 

and HPC (▲)capsules, unbanded (a) and banded (b). 

 

In Table 4 the physico-technological characteristics of coated systems are 

compared with those of uncoated IM capsules: by way of example, data relevant 

to unbanded cores as such or coated with increasing amounts of Eudragit® L are 

reported. 

 

Table 4: Characteristics of HPC-based capsules uncoated and coated with 

increasing amounts of Eudragit® L (CV in brackets). 

 

Uncoated 
capsules 

Capsules coated with increasing 
nominal amounts of polymer 

(mg/cm
2
):  

 4 6 8 10 

Weight, mg 
229.2 
(0.26) 

323.6 
(0.64) 

329.4 
(0.47) 

336.2 
(0.63) 

344.3 
(0.47) 

Actual amount of polymer, mg/cm
2 

- 3.58 5.65 7.73 10.16 

Coating thickness, µm - 63.40  88.25  107.20  132.15  

Mechanical resistance, N 
71.02 
(5.02) 

84.56 
(2.99) 

92.23 
(1.09) 

95.54 
(3.06) 

97.01 
(4.62) 
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The actual amount of pure polymer applied onto IM capsules turned out close to 

the theoretical, confirming the ability to maintain an almost constant deposition 

rate even under the more stressful process condition of increased spraying rate. 

Moreover, the increase in the coating thickness appeared nearly linear within the 

range of weight gain considered (data not shown). When applied onto IM 

capsules, the enteric coating demonstrated to improve the mechanical resistance 

of the system. In the presence of a coating film, the maximum force borne by 

capsules before breaking was higher with respect to uncoated ones, but the 

increase in the mechanical resistance was not directly proportional to the 

amount of Eudragit® L applied. The coating film would not only impact on the 

hardness of capsules directly, but also by affecting the relevant humidity content 

[Bley et al., 2009; Cerea et al., 2004]. Indeed, the potential ability of the 

Eudragit® L film to reduce the final water content of HPC-based substrates was 

shown earlier with the molded disks. 

The quality of the enteric coating applied to molded capsules was finally 

investigated by means of optical microscope and SEM analysis. When considering 

capsular cores, the application of the coating film onto the closing system, i.e. 

the overlapping area between the cap and body, may be a critical issue. In Figure 

5 technical drawings of capsules and SEM images of uncoated and coated (10 

mg/cm2) systems are reported: in particular, details of closing systems of both 

banded and unbanded cores are shown. 
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HPC capsules were produced with a locking mechanism based on the mutual 

pressure exerted by the contact areas of matching items so that the body and 

cap components, once assembled, would not entail any junction gap [Zema et 

al., 2013b]. This was confirmed by SEM images of the overlapping areas: in 

particular, the very tight adherence of HPC cap and body items with respect to 

gelatin and HPMC ones was pointed out. The plane external surface of the 

closing area that was devised for HPC capsules in order to ensure a constant shell 

thickness also turned out advantageous to the application of coatings. In fact, no 

discontinuities of the film applied to the overlapping area were observed, 

independent of whether the cores were banded or unbanded, thus suggesting 

that a sealing step could be avoided. Conversely, a continuous coating layer 

covering the closure of gelatin and HPMC capsules was only obtained with band-

sealed cores. These findings were then confirmed by the release performance of 

the coated systems, as described in the subsequent section of the paper. Finally, 

the effective adhesion of the coating to HPC capsules, as demonstrated by a 

smooth and homogeneous surface with a lack of observable cracks or pores, 

could be attributed not only to the improved locking system but also to the 

rough surface of the molded devices, similar to that previously reported with 

HPMC capsule shells [Felton et al., 2002].  



Enteric-coating of pulsatile-release capsules   
prepared by injection molding                                                                      Results -  Chapter 2 

82 
 

 

 

Figure 5: Technical drawings and SEM images of gelatin, HPMC and HPC capsules, 

unbanded and banded, uncoated and coated (10 mg/cm2). 

 

Optical microscope images of the cross section of HPC capsules, uncoated, 

withdrawn from the coating pan after 1 min of processing or coated up to 10 

mg/cm2 are reported in Figure 6.  
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a) b)  

c)  

 

Figure 6: Optical microscope images of the cross section of cleaved capsules 

uncoated (a), withdrawn from the coating pan after 1 min (b) and 

coated with 10 mg/cm2 of polymer (c). 

 

The wall thickness measured from the uncoated capsule image (around 630 µm) 

was in agreement with data previously reported [Zema et al., 2013b]. On the 

other hand, the wall thickness of the sample withdrawn after 1 min of coating 

was increased slightly. This was probably due to a slight swelling of the HPC 

capsule surface promoted by contact with the aqueous Eudragit® suspension, as 

previously observed with the molded disks. Looking at the coated capsules, a 

~130 µm thick homogeneous layer, relevant to the enteric film, can be seen on 

631.95 µm 

131.70 µm 

642.09 µm 

639.09 µm 
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the external side. Such a layer perfectly matches the curved surface of the 

capsular core. Also in this image, the shell thickness is of ~640 µm as after 1 min 

of coating. Indeed, the measured thickness of the enteric coating is in agreement 

with the calculated mean value that is reported in Table 4.  

Finally, the release performance of the coated devices was studied: banded and 

unbanded capsules, coated with increasing amounts of polymer, were evaluated 

and compared with conventional gelatin and HPMC ones. In table 5, t10%, i.e. the 

time to 10 % dissolution/release, and t90-10%, i.e. the time elapsed between 10 % 

and 90 % release, are listed; in the case of HPC capsules, these parameters were 

used as an index of the duration of the lag phase and of the release process, 

respectively. 

 

Table 5: Dissolution/release data of uncoated and coated systems: (a) t10% of 

gelatin and HPMC capsules; (b) t10% and t90-10% of HPC capsules. 

   Gelatin capsules HPMC capsules 

 wg 
(mg/cm

2
) 

t10%, min (CV) t10%, min (CV) 

 Banded Unbanded Banded Unbanded 

Uncoated - 
0.50 

(32.90) 
0.32 

(2.93) 
8.01 

(17.47) 
6.09 

(34.20) 

Coated 

4 
121.46 
(0.01) 

48.37 
(97.83) 

121.32 
(0.51) 

100.42 
(21.62) 

6 
120.98 
(0.54) 

89.96 
(60.30) 

122.05 
(0.79) 

102.70 
(31.45) 

8 
121.50 
(0.00) 

121.35 
(0.11) 

122.91 
(7.07) 

121.66 
(0.07) 

10 
123.25 
(0.45) 

121.60 
(0.57) 

129.51 
(5.62) 

121.91 
(0.40) 

a) 
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  HPC capsules 

 wg 
(mg/cm

2
) 

t10%, min (CV) t90-10%, min (CV) 

 Banded Unbanded Banded Unbanded 

Uncoated - 
44.98 

(11.88) 
36.31 
(2.37) 

8.54 
(12.56) 

10.08 
(8.47) 

Coated 

4 
146.99 
(5.22) 

144.66 
(4.67) 

11.60 
(1.29) 

12.61 
(3.83) 

6 
149.51 
(2.47) 

150.88 
(0.31) 

10.34 
(4.59) 

11.89 
(5.46) 

8 
159.52 
(1.67) 

159.51 
(1.90) 

9.88 
(4.38) 

9.51 
(7.65) 

10 
171.98 
(2.95) 

168.64 
(5.82) 

11.57 
(1.99) 

10.14 
(0.35) 

b) 

 

The good quality of the enteric-coated HPC capsules was confirmed by the 

relevant release behavior. Uncoated IM capsules provided a pulsatile release 

performance characterized by a lag time (t10%), due to the dissolution/erosion of 

the shell, and a pulse time, i.e. the time elapsed between onset and completion 

of release (t90-10%): the obtained t10% and t90-10% values from this study are in 

agreement with previously reported values [Zema et al., 2013b]. The lag time of 

enteric coated capsules was longer with respect to that of uncoated ones, as 

expected, and increased as a function of the amount of polymer applied. In the 

case of the coated systems, in fact, both the ability of the film to withstand acidic 

media and the time needed for the opening of pulsatile delivery capsules would 

contribute to the overall lag time. Although it was not possible to discriminate, 

the lag phase seemed to be consistent with effective gastric resistance (2 h in 

acidic media) and opening time of the uncoated shells, at least for systems with 

10 mg/cm2 coating level. Moreover, no impact of the coating layer on the release 

performance after capsule opening was highlighted: indeed, pulse times of 
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coated systems were analogous to those of uncoated capsules. The tightness of 

the shell closing system was further supported as no differences in drug release 

were observed between banded and unbanded capsules, thus confirming that 

the sealing of IM cores could be avoided. In contrast, in the case of gelatin and 

HPMC capsules, the minimum amount of polymer applied (4 mg/cm2) was 

sufficient to ensure gastric resistance of banded cores only, whereas this amount 

needed to be increased to 8 mg/cm2 with unbanded units. 

 

4. Conclusions 

The feasibility of coating HPC-based molded capsules intended for pulsatile 

release of drugs with Eudragit® L 30 D-55 was evaluated. When enteric coated, 

such capsules would come into contact with aqueous GI fluids only after stomach 

emptying thus being able to target the colonic region through lag phases 

matching the small intestinal transit time of dosage forms (time-dependent 

approach). 

Prototype capsules of 600 µm thickness that were already demonstrated to 

provide, both in vitro and in vivo, a lag phase prior to the onset of release were 

employed. However, in view of the peculiar substrate involved, the application of 

the Eudragit® L film and characterization of coated products were preliminarily 

carried out on molded disks intended for screening purposes. The polymeric 

films generally exhibited consistent behavior independent of whether they were 

applied to the molded disks or to reference glass slides: in both cases, they were 
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able to withstand the acidic medium and dissolve in 25-30 min after switching to 

phosphate buffer.  

Interestingly, the enteric coat showed a potential for improving the physical 

stability of molded products by reducing their moisture sorption and warpage 

tendency as well as increasing the overall mechanical resistance. IM capsules 

were successfully coated with increasing amounts of Eudragit® L leading to 

systems with good technological properties and the desired release 

performance, i.e. a lag time compatible with the maintenance of gastric 

resistance and same pulsatile profile in the pH 6.8 medium as the uncoated 

devices. The capsule closing system turned out effective with no need for a 

sealing to be applied before the coating process and suitable for the 

achievement of a homogeneously layered coating of constant thickness. 

The obtained results highlighted the potential of Chronocap™ capsules for being 

exploited as core units in the development of colon delivery systems based on a 

time-dependent approach. 
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Formulation Development of an Injection-Molded Capsular Device for Oral 

Pulsatile and/or Time-Based Colon Delivery 
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1. Objective 

Within a general research project aimed at the development of a capsule-shaped 

drug delivery system (DDS) prepared by injection molding (IM) and intended for 

pulsatile release and/or time-dependent colonic delivery of drugs (Chronocap™ 

platform), the modulation of the typical lag phase of such a device was in-depth 

investigated. The possibility of preparing containers for drug formulations, 

purposely designed for achieving pre-defined lag times prior to release, would be 

advantageous in chronotherapy. Moreover, the time-dependent approach to 

target the colonic region is based on the administration of gastroresistant 

pulsatile delivery systems able to impart a lag phase, starting after stomach 

emptying, of a defined duration, i.e. 3 h ± 1 standard error, consistent with the 

small intestinal transit time of dosage forms.  

A correlation between the duration of the lag phase and the thickness of IM 

capsule shells was previously demonstrated by means of a prototype mold that 

allowed capsules with 300, 600 and 900 µm thick walls [Gazzaniga A. et al., 2011] 

to be manufactured. In the present chapter, formulation strategies possibly 

suitable for the modulation of the opening time of the Chronocap™ shells were 

therefore evaluated. In particular, an extension of the lag phase was pursued. A 

first approach was based on slowing down the hydration/swelling phase of HPC, 

which is the basic component of the capsule shells. As a consequence, the break-

up of systems after the dissolution/erosion of the shell is expected to occur later 

and the liberation of capsule contents to be further delayed. For this purpose  
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the use of alternative swellable polymers and/or swelling adjuvants (HPC grades 

with higher molecular weight and disintegrants), as well as the addition of 

insoluble and inert adjuvants (ethylcellulose and talc) were evaluated. 

 

2. Materials and methods 

2.1. Materials 

Hydroxypropyl cellulose (HPC): Klucel® LF and GF, Eigenmann & Veronelli, I; 

sodium starch glycolate, Explotab CLV®, JRS Pharma, US; ethyl cellulose: Ethocel® 

100std, Colorcon, US; talc, Carlo Erba Reagenti, I; polyethylene glycol (PEG) 1500, 

Clariant Masterbatches, I; acetaminophen (AAP) fine powder, Atabay, TR. 

 

2.2. Methods 

2.2.1. IM process 

A mixture of formulation components, previously dried in a ventilated oven for 

24 h at 40 °C, and 10 % by weight of PEG 1500 was prepared in Turbula® (Type 

T2C; WAB, CH) and then transferred into a bench-top micromolding machine 

(BabyPlast 6/10P; Cronoplast S.L., ES; Rambaldi S.r.l., I). In Table R3.1 the 

composition (%, by weight) of the polymeric formulations processed by IM is 

reported. 
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Table R3.1: Codes and composition of molded formulations. 

Code Formulation composition (% by weight) 

KL  Klucel® LF (90%) + PEG 1500 (10%)  

KLKG 7/3  (Klucel® LF 70% + Klucel® GF 30%) (90%) + PEG 1500 (10%)  

KLKG 5/5  (Klucel® LF 50% + Klucel® GF 50%) (90%) + PEG 1500 (10%)  

KG  Klucel® GF (90%)  + PEG 1500 (10%)  

KLEX5  (Klucel® LF + PEG 1500 (10%)) (95%) + Explotab CLV® (5%)  

KLEX10  (Klucel® LF + PEG 1500 (10%)) (90%) + Explotab CLV® (10%)  

KLEX20  (Klucel® LF + PEG 1500 (10%)) (80%) + Explotab CLV® (20%) 

KLEX30  (Klucel® LF + PEG 1500 (10%)) (70%) + Ethocel® 100std (30%)  

KLEC20  (Klucel® LF + PEG 1500 (10%)) (80%) + Ethocel® 100std (20%)  

KLTA20  (Klucel® LF + PEG 1500 (10%)) (80%) + Talc (20%)  

 

The behavior of polymeric formulations upon heating or IM was evaluated as 

follows:  

Hot-plate experiment: samples of 2-3 g of the Klucel® LF as such or in admixture 

with the selected excipients, were placed in an aluminum pan on a hot plate. 

Samples, under continuous manually stirring, were gradually heated from 30 to 

200 °C in few minutes and the temperature was checked with a laser 

thermometer. Changes of color, aspect and mechanical characteristics of the 

materials upon heating were observed. 

Air shot test: 50 g of  Klucel® LF as such or in admixture with the selected 

excipients, loaded into the molding press through the hopper, were expelled 

from the injecting unit as operating a purge under different operating 

temperatures [Rosato D.V. et al., 2000]. Expelled samples were checked for 

overall aspect, color and mechanical characteristics immediately after ejection 

and when solidified. 
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Some of the polymeric formulation were processed by hot-melt extrusion in a 

microcompounder (Minilab II, HAAKE Rheomex CTW5, Thermo Scientific, D) 

equipped with conical twin screws (diameter 5/14, length 109.5 mm) which can 

either co- or counter-rotate. Operating temperatures were selected in the range 

of 130-160 °C; the rotation speed of the screws was set at 15 rpm. The extruded 

product was milled before being loaded in the IM press. 

IM items were prepared by means of either a capsular mold with two 

interchangeable inserts for the manufacturing of matching caps and bodies of 

600 µm nominal thickness, or a disk-shaped mold (diameter: 30 mm; height: 1 

mm) provided with a central gate. Process conditions were varied within 

different ranges of values depending on the item produced (disk or capsule) 

(Table R3.2). 

 

Table R3.2 : IM process parameters. 

 disk capsule 

 
  

compression zone temperature; °C 140-160 100-130 

metering zone temperature; °C 150-160 130-140 

nozzle temperature; °C 160-170 140-150 

hot runner temperature; °C - 160-170 

charge; mm 15-16 4 

1
st 

injection 

pressure; bar 50-60 30-60 

time; s 0.6 0.4 

rate; % 50-60 30-60 

2
nd 

injection 

pressure; bar 10-50 10-50 

time; s 2 0.3 

rate; % 10-40 10-50 

cooling temperature; °C 15 15 

cooling time; s 2.5 2.5-3 

closing pressure; bar 80 120 

opening rate; % 90 90 
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2.2.2. Characterization of molded items 

IM disks and capsules were checked for weight by an analytical balance 

(Sartorius BP211D, Sartorius AG, D; n=10) and for thickness by a digital 

micrometer (Mitutoyo IT-012U, Mitutoyo, J; n=10) immediately after ejection 

and after 24, 48, 72 h storage at ambient conditions (24 ± 2 °C/55 ± 5% relative 

humidity, RH). 

Digital photographs of molded capsules were acquired by a Nikon D70 camera 

(Nikon, J). 

 

Dissolution/erosion properties of molded disks upon contact with aqueous fluids 

were assessed by a mass loss test performed in the pharmacopoeial apparatus 2 

(Dissolution System 2100B, Distek, US) at 100 rpm. Each sample, weighed (pi) 

and inserted in a closed system prepared from a polyethylene net (2 mm mesh), 

was then weighed again in order to determine the tare (t) and placed in a vessel 

containing 600 mL water kept a 37 °C. Samples (n=3) were withdrawn every 30 

min, then placed in a ventilated oven at 40 °C for 24 h and weighed (pf). 

Percentage of residual mass was calculated according to Eq. (1): 

 

                                              
            

  
                                                 Eq. (1)                 

 

Both the release performance and the opening behavior under unstirred 

conditions of capsular systems were evaluated.  
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The in vitro release test of capsules (n=6) containing 150 mg of AAP powder was 

performed in a six-position USP 34 disintegration apparatus [Gazzaniga A. et al., 

1995]. Each capsule was inserted in one of the six available tubes of the basket-

rack assembly, which moved at 31 cycles/min rate in separate vessels; each of 

these contained 800 mL deionized water kept at 37 ± 0.5 °C. Fluid samples were 

withdrawn at fixed time points and assayed spectrophotometrically at 248 nm. 

10 and 90 % drug released were calculated for each sample from the relevant 

release pattern (n = 6); 10 % value (t10%) was defined as lag time (i.e. the time 

required for the opening of the system), while the time elapsed between 10 % 

and 90 % release (t90%–10%) was defined as pulse time (i.e. the time required for 

completion of the release process). 

The morphological changes of filled capsules exposed to deionized water at 

ambient temperature under unstirred conditions were evaluated over 6 h. Digital 

photographs were taken every 5 min. 

 

3. Results and discussion 

HPC is commercially available in several types (e.g. Klucel® products) based on 

the molecular weight (average 50000-1250000 Da) and the grade of substitution 

of hydroxyl groups. Such characteristics may influence the behavior of polymeric 

chains when in contact with aqueous fluids, i.e. the rate and extent of 

hydration/swelling, and the viscosity of the polymer aqueous solutions. 
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When employed as hydrophilic swellable barriers in the form of capsule shells, 

different HPC grades may lead to a diverse opening of the device and, thus, to a 

range of modified release profiles of the conveyed drug. With respect to the 

processability of HPC by IM, neither the glassy-rubbery transition (Tg) of the 

polymer nor the relevant hot-melt extrusion temperatures seem to be 

dependent on the molecular weight [Trey S.M., et al., 2007]. Hence, in order to 

improve the versatility of the Chronocap™ platform by increasing the lag phase 

prior to release, the feasibility of capsular containers prepared from different 

Klucel® grades or blends was considered. For this study, the previously 

established formulation based on Klucel® LF (KL: Klucel® LF + 10% by weight PEG 

1500) and the molded capsules obtained were considered as the reference for 

the evaluation of both the processability of the new materials and the release 

performance of resulting devices. The alternative to Klucel® LF (MWLF 95000) 

taken into account was Klucel® GF, which has a higher molecular weight (MWGF 

370000). The possibility of exploiting the same plasticizer was preliminarily 

explored: hot-plate experiments and air shot tests were performed on polymeric 

blends with increasing amount of PEG 1500. By heating the material under 

continuous manual mixing, while gradually increasing the temperature up to 

200°C, not only the range of working temperatures can be defined, but also 

possible issues of the heating process may be highlighted, such as a rapid 

transition of the molten mass to a liquid state, a lack of homogeneity or the 

occurrence of degradation phenomena at each stage. Moreover, the aspect and 
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mechanical characteristics of products after cooling can be checked. On the 

other hand, by expelling the material loaded in the IM press from the injection 

unit, the characteristics of the product can be related to the working parameters, 

which may be helpful for gathering information about the suitability of the 

material for IM processes. Also in this case, the material can be evaluated not 

only as soon as ejected from the nozzle, but also after its cooling/hardening. 

Such preliminary studies confirmed the processability of Klucel® grade GF by 

employing the same type and amount of plasticizer already used for the LF one 

(KG: Klucel® GF + 10 % w/w PEG 1500).  

Capsules could be prepared from formulations KL and KG and their blends (KLKG 

7/3: 70% KL + 30% KG and KLKG 5/5: 50% of both KL and KG). However, failures 

in the automatic ejection of molded half shells and minor imperfections of the 

surface were noticed in some cases. 

When dealing with polymeric blends, the poor mixing ability of the IM press used 

could turn out critical. In this respect, some attempts were made to improve the 

homogeneity of distribution by pre-extruding blends of raw materials. For this 

purpose, a lab-scale twin-screw extruder (microcompounder) equipped with 

conical co-rotating and counter-rotating screws was used. The extrusion 

temperature was defined within the range of temperatures already involved in 

the IM process: 160 °C was identified as the temperature leading to the 

complete glassy/rubbery transition of raw materials (no evidence of particles in 

the extrudate) and to the lowest value of torque (i.e. the strain/stress of the 
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rotating screw measured in N·m) registered. For the manufacturing of capsules 

based on pre-extruded formulations, minor changes of process parameters were 

needed with respect to those not treated. However, molded units were obtained 

with no imperfections and major issues related to the automatic ejection of 

molded products could be overcome. 

The characteristics of weight and thickness of capsules based on Klucel® LF, GF 

and their blends are reported in Table R3.1: product codes followed by “-e” 

refers to pre-extruded formulations. 

 

Table R3.1: Weight and thickness of capsules based on Klucel® LF, GF and their 

blends. 

 

formulation 
 

weight (mg) thickness (µm) 

mean CV mean CV 

KL 221 0.83 609 1.35 

KL co-e 228 0.05 613 1.02 

KL counter-e 228 0.04 616 2.38 

KLKG 7/3 226 1.59 614 1.78 

KLKG 5/5 225 0.68 614 1.86 

KLKG 5/5 co-e 226 0.23 611 1.59 

KLKG 5/5 counter-e 227 0.27 616 2.60 

KG 219 0.81 614 0.81 

 

The characteristics of capsules made of blends of Klucel® GF turned out not to be 

significantly different (p < 0.05) from those based on the LF formulation. 

Moreover, even the pre-extrusion treatment of raw materials demonstrated to 

impact on the weight and thickness of molded shells. 
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The in vitro release performance of capsules filled with a powder drug tracer was 

then assessed. Two parameters were used to describe release profiles (Table 

R3.2): the lag time (calculated as the time to 10% release, t10%) and the pulse 

time (t90-10%), i.e. the time elapsed between onset (t10%) and completion (t90%) of 

the release. 

 

Table R3.2: Release parameters of capsules based on Klucel® LF, GF and their 

blends. 

 

Formulation 
 

lag time (min) pulse time (min) 

mean CV Mean CV 

KL 25.22 10.47 6.24 16.05 

KL co-e 27.00 5.62 5.13 6.93 

KL counter-e 28.37 14.36 7.36 9.57 

KLKG 7/3 34.13 6.54 5.86 14.50 

KLKG 5/5 38.27 3.46 6.93 35.93 

KLKG 5/5 co-e 38.08 8.82 5.62 14.21 

KLKG 5/5 counter-e 42.25 5.28 8.54 14.29 

KG n.d. n.d. n.d. n.d. 

 

The lag time of capsules made of blends of formulations KL and KG turned out 

10-15 minutes longer (p < 0.05) with respect to the KL reference. The application 

of an extrusion pre-treatment generally demonstrated not to affect the 

performance of devices, neither in the case of the KL formulation as such nor in 

that of its blends with the KG. Only with the KLKG 5/5 formulation pre-treated by 

the counter-rotating twin-screw extruder, the device obtained showed a lag time 

few minutes longer (p < 0.05) than that of the same formulation not previously 
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extruded or pre-treated by co-rotating screws. The presence of different 

amounts of Klucel® GF in the shell formulation, 30 or 50 %, seemed to not affect 

the lag time of release. With respect to the time for the complete opening of the 

systems (pulse time) containing Klucel® LF, it turned out independent of the 

composition and manufacturing procedure of capsule shells and always < 9 min. 

On the contrary, the release performance of KG systems was definitely different 

from that of all the other and was characterized by a high variability (Figure 

R3.1). Lag times of hours and slow release profiles were observed, which could 

indicate a problematic opening mechanism: the drug tracer, in fact, had 

generally started to diffuse out through the gelled structure of the shell wall 

before it broke. Moreover, few capsules didn’t even start to release their 

contents by 6 hours (duration of the test). Release parameters for capsules made 

of the GL formulation could not be determined.  
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Figure R3.1: In vitro release profiles of capsules based on Klucel® LF, GF and their 

blends. 

 

Based on the results obtained, it was hypothesized that the contribution of 

Klucel® GF to the lag time duration of capsules made of blends of formulations KL 

and KG was that of slowing down the rate of hydration and dissolution/erosion 

of the external polymeric layers that leads to the formation of first aperture in 

the shell. Afterwards, the overall resistance of the remaining gel barrier seems 

not to be affected as similar pulse time were calculated for all the devices based 

on polymeric blends. However, such a result could be attributed to the 
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hydrodynamic conditions of the test promoting the dissolution/erosion rate of 

the swollen barrier. 

In order to confirm these hypothesis and evaluate the influence of the 

hydrodynamic conditions, release tests were carried out under unstirred 

conditions at ambient temperature. Photographs of capsules of the formulation 

KL, KG and their 1/1 mixture representing crucial steps of the release 

performance are reported in Figure R3.2: in particular, the first bubble coming 

out from the initial crack of the capsule shell (image framed in red) and the 

complete opening of the device that leads to the liberation of the powder tracer 

contained (image framed in blue) are depicted. 
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Figure R3.2: Photographs of capsules of Klucel® LF, GF and their 1/1 blend 

immersed in water under unstirred conditions at different time 

points. 
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The LF reference capsule properly underwent hydration with the formation of a 

gel layer that gradually dissolved/eroded until the formation of a first tear; the 

presence of the rupture was evidenced by the leakage of an air bubble that 

occurred after about 50 min of contact with the aqueous fluid. The complete loss 

of integrity of the capsule shell required 85 min more. As expected, the timing of 

capsule opening under unstirred conditions turned out to be noticeably longer 

with respect to both the lag phase and pulse time obtained under the release 

test conditions. Accordingly, the KG shell remained intact over 6 hours; at the 

end of this period, only a thin gel layer was present around the device. The 

capsule composed of the KL and KG formulation blend showed a behavior more 

similar to that of the KL device, but with longer latency before breakage. 

However, even the time to complete the opening of the device turned out 

longer, thus confirming that the resistance of the gel barrier after the formation 

of the first crack is largely affected by the unstirred conditions. 

The objective of improving the duration of the Chronocap™ lag phase by 

introducing a higher viscosity grade HPC in the reference formulation based on 

Klucel® LF was not completely fulfilled. This could be partially attributed to 

difficulties in promoting the intimate contact or the interpenetration of 

polymeric chains during the hot processing. In fact, capsules prepared from 

polymeric blends showed a behavior much more similar to that of one of the 

components (Klucel® LF), even if a ~40% increase of lag time was achieved. 
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However, a further moderate increase of capsule lag time was only obtained 

when the formulation was counter-extruded before being processed by IM.  

Other polymeric materials that could be introduced in the LF formulation of 

capsule shells in order to increase the lag phase were identified. Based on the 

previous experience with Klucel® GF, the most likely mechanism to be exploited 

should be that of hindering the hydration of HPC and its early transition to the 

rubbery state. Accordingly, two different types of excipients, having opposite 

properties upon contact with water, but expected to lead to the same outcome 

in extending the lag time of capsules, were considered: swellable polymers, 

which are intended to partially remove water by absorbing it (competitors), and 

insoluble/inert adjuvants, simply unable to draw water to the system. From the 

former category, L-HPC and sodium starch glycolate (Explotab® CLV) were 

selected. L-HPC is a low-substituted HPC, having about 15 times less 

hydroxypropyl groups than Klucel® LF (molar substitution L-HPC = 0.2 vs molar 

substitution Klucel® LF = 3). Moreover, while HPC is soluble in water, L-HPC is 

insoluble, although it strongly retains water molecules and swells [L-HPC 

ShinEtsu, technical data. 2011; Kibbe A.H, 2000]; on the basis of this 

characteristic, it is recommended as a disintegrant for the preparation of solid 

oral dosage forms. Also the second material considered, Explotab® CLV, is a 

widely employed and one of the most efficient disintegrants. On the other side, 

with respect to insoluble/inert excipients, some preliminary results were 

obtained with talc and ethylcellulose. 
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As far as the processability of swellable polymers is concerned, since little 

information about their characteristics upon heating is reported in the literature, 

both L-HPC and Explotab® CLV were tested on hot-plate: they didn’t undergo 

melting phenomena typical of thermoplastic materials upon glassy-rubbery 

transition, but showed signs of degradation around 200-250 °C, temperatures 

remarkably higher than those involved in the molding of Klucel® LF-based 

capsules. As no modifications could be observed at the operating temperatures, 

the selected disintegrants were expected to remain suspended in the HPC 

molten mass. For this reason, the processability by the IM press of the KL 

formulation containing L-HPC or Explotab® CLV was evaluated and disk-shaped 

screening items were prepared. In particular, formulations containing 10 and 30 

% by weight of the disintegrant (KLLH10 and KLLH30 with L-HPC; KLEX10 and 

KLEX30 with Explotab® CLV, respectively) were considered. While KL disks turned 

out clear after demolding, those based on the polymeric blends with powder 

disintegrants were opaque with white particles visible, more frequent in disks 

containing 30 % by weight of the excipient. 

All the disks were characterized in terms of thickness immediately after 

demolding and over time (up to 1 month) (Figure R3.3). 
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Figure R3.3: Variation over time of the thickness of molded disks based on 

Klucel® LF as such and blended with 10 and 30 % by weight of 

Explotab® CLV or L-HPC. 

 

As already observed while working with HPC [Zema L. et al., 2013], the thickness 

of KL disks turned out higher (around 10 %) with respect to nominal 1000 µm. 

This tendency, mainly related to inner tensions formed during the 

rearrangement of the polymeric chains inside the mold [Fisher J.M., 2003], 

seemed to be limited by the presence of suspended particles of the 

disintegrants: by way of example, the thickness of KLEX30 disks after demolding 

was around 2.5 % greater than the nominal. Moreover, thickness values tended 

to increase over time, at least for 48 hours. 
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In order to gain preliminary information about the dissolution/erosion 

performance of the molded items based on polymeric blends containing 

disintegrants, the mass loss trend over time was studied; tests were carried out 

on disks stored for a week (Figure R3.4). 

a)  

b)  

 

Figure R3.4: Dissolution/erosion profiles of molded disks containing 10 % (a) or 

30 % by weight (b) of disintegrants. 
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The 10% of an additional swelling agent seemed not to influence the erosion rate 

of molded disks except for Explotab® CLV that showed a slight tendency to slow it 

down during the first h of the test (Figure R3.4). The same trend was noticed 

with disks containing the highest amount (30% by weight) of L-HPC. This 

behavior was attributed to the different ability of disintegrants to compete 

against Klucel® LF for water. Accordingly, when increasing the amount of 

Explotab® CLV in the formulation, the effect of inhibiting the hydration rate of 

HPC was counterbalanced by the swelling of the disintegrant polymeric chains, 

and thus the result was that of promoting to some extent the erosion of molded 

disks. 

Capsular containers were prepared starting from formulations containing from 5 

to 30 % by weight of Explotab® CLV (KLEX5, KLEX10, KLEX20 and KLEX30) or 10 

and 30 % by weight of L-HPC (Table R3.4).  
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Table R3.4: Weight and thickness of capsules based on Klucel® LF and its blends 

with Explotab® CLV or L-HPC. 

 

formulation 
weight (mg) thickness (µm) 

mean CV mean CV 

KL 211.00 0.83 609 1.35 

KLEX5 233.08 0.13 621 1.61 

KLEX10 233.55 0.14 626 2.70 

KLEX20 239.29 0.09 633 1.89 

KLEX30 248.55 0.71 629 2.33 

KLLH10 243.08 0.85 631 1.45 

KLLH30 245.45 0.47 636 1.72 

 

When preparing capsules with blend formulations, IM parameters needed to be 

modified with respect to reference KL capsules, especially in terms of injection 

pressure and rate. This was probably the reason why the weight and thickness of 

molded shells turned out generally higher. 

As far as the release performance of capsules is concerned (Table R3.5 and 

Figure R3.5), the results obtained were in good agreement with premises: 

capsules with the lower amounts of disintegrants in the shell formulation 

showed an increase up to 20 min (~80%) of the lag time with respect to the 

reference. This increase was proportional to the disintegrant content. Only in the 

case of devices containing 20 and 30 % of Explotab® CLV, an opposite tendency 

towards a reduction of the lag time was observed, that was attributed to the 

early erosion of shell walls promoted by the disintegrant swelling. With respect 

to devices containing 30 % of L-HPC in the shell formulation, although their mean 
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lag phase was the longest achieved from the devices tested, it was however 

characterized by the higher variability clearly evidenced in Figure R3.5. As this 

could be attributed to a not homogeneous distribution of the disintegrant in the 

injected molten mass, a preliminary evaluation of the effect of pre-extruding the 

polymeric formulation according to procedures already tested with Klucel® 

LF/Klucel® GF blends was carried out. Unfortunately, the release behavior of 

capsules prepared from co-extruded or counter-extruded formulations turned 

out not significantly different from the untreated ones.  

All capsules, irrespective of the presence of a disintegrant in the formulation 

composition, demonstrated the desired pulsatile-release profile with a pulse 

time not different from that of the reference.  

 

Table R3.5: Release parameters of capsules based on Klucel® LF and its blends 

with Explotab® CLV or L-HPC. 

 

formulation 
 

lag time (min) pulse time (min) 

mean CV mean CV 

KL 25.22 10.47 6.24 16.05 

KLEX5 37.50 6.46 6.15 18.74 

KLEX10 46.70 8.46 6.34 10.05 

KLEX20 36.96 6.04 6.02 13.09 

KLEX30 36.49 6.04 5.79 7.60 

KLLH10 35.81 6.78 8.24 10.76 

KLLH30 49.50 15.99 6.10 11.07 
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Figure R3.5: In vitro release profiles of capsules based on Klucel® LF and its 

blends with Explotab® CLV (5, 10, 20 and 30 %) or L-HPC (10 and 

30%). 
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Afterwards, the research work went through a further investigation of the 

opening behavior of HPC capsules containing disintegrants in the shell walls by 

testing them under unstirred conditions. Devices with 10 or 30 % of Explotab® 

CLV, the release performance of which had suggested different hypotheses in 

regard to the opening mechanism, were considered and compared with 

reference capsules (Figure R3.6). 
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Figure R3.6: Photographs of capsules based on Klucel® LF and its blends with 5 or 

10 % of Explotab® CLV immersed in water under unstirred 

conditions at different time points. 
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The overall results obtained were useful to confirm the hypothesized working 

mechanism of disintegrants when present in the formulation of HPC capsules. 

The ability of the disintegrant to delay the appearance of the first break in the 

shell wall was evidenced: over 1 hour in the case of the capsule containing 10 % 

of Explotab® CLV. Indeed, the opening position of such a tear was different with 

respect to the reference product. Moreover, the highest amount of Explotab® 

CLV was confirmed to be sufficient to bring about a disintegrating force 

contributing to the complete break-up of the device. In fact, the KLEX30 capsule 

broke up leading to the complete release of its content about 2 hours before the 

one with only 10 % of disintegrant (KLEX10). 

With the same purpose of slowing down the hydration rate of the HPC barrier of 

capsules, the addition to the formulation of insoluble materials such as talc and 

ethyl cellulose was preliminarily evaluated; blends of Klucel® LF and 20 % by 

weight of the excipient (KLTA20 and KLEC20, respectively) were therefore 

considered. Talc was expected to remain dispersed in the molten polymeric mass 

and carried through the IM phases in the same way as previously used insoluble 

materials (disintegrants). Accordingly, opaque molded items were obtained with 

some particles visible on the surface. As far as the EC is concerned, it is a 

thermoplastic polymer but with a transition temperature around 130 °C, higher 

with respect to the operating temperatures needed for HPC capsules. However, 

when dispersed in the KL formulation, in the presence of a plasticizer, it was 

probably able to melt at lower temperatures giving rise to clear and 
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homogeneous molded items. With both the formulations the IM process was 

carried out with no need for changes of parameters, except for a 10 °C increase 

of the operating temperature. 

Weight and thickness of capsules are reported in Table R3.6 while release 

parameters and profiles are shown in Table R3.7 and Figure R3.7, respectively. 

 

Table R3.6: Weight and thickness of capsules based on Klucel® LF and its blends 

with 20 % of talc or EC. 

 

formulation weight (mg) thickness (µm) 

 Mean CV mean CV 

KL 211.00 0.83 609 1.35 

KLTA20 256.69 0.54 630 3.78 

KLEC20 225.97 0.44 626 1.40 

 

Table R3.7: Release parameters of capsules based on Klucel® LF and its blends 

with 20 % of talc or EC. 

 

formulation 
lag time (min) pulse time (min) 

Mean CV mean CV 

KL 25.22 10.47 6.24 16.05 

KLTA20 33.05 10.40 5.13 9.70 

KLEC20 46.81 3.15 6.54 16.67 
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Figure R3.7: In vitro release profiles of capsules based on Klucel® LF and its blends 

with 20 % of talc (KLTA20) or EC (KLEC20).  

 

Once again, the presence of insoluble excipients in the LF formulation resulted in 

a variation of the thickness of molded items that turned out higher with respect 

to the nominal value. This behavior will need consideration for the development 

of purposely devised molds. 

Dealing with the release performance, the ability of inert materials to delay the 

lag phase prior to the break-up of the HPC shell barrier in which they had been 

incorporated was confirmed. In particular, the lag time of capsules containing EC 

in the shell turned out to be the longest and about 20 min greater than that of 

reference ones. The pulse time of both the devices was close to that of the 

reference, possibly indicating that no important changes in the mechanism of 

capsule opening had occurred. The effect of talc and EC in the formulation of 

HPC-based capsule shells needs to be more in-depth investigated to assess 
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whether modifications in the qualitative or quantitative composition may lead to 

different lag phase durations or release mechanisms.  

 

The overall results obtained from the addition of both swellable/disintegrant and 

insoluble adjuvants to the formulation of the HPC-molded shell indicated that 

the decrease of the hydration rate of its main component, Klucel® LF, could be a 

promising strategy for improving the duration of the lag time of the device. 

However, some limitations, likely related to the poor ability of the IM press 

employed to apply mixing shear forces in the plasticating unit, were highlighted. 

The possibility of overcoming the problem by hot-compounding of polymeric 

formulations in a twin-screw extruder before their IM processing was evaluated: 

it was demonstrated a valuable approach to improve the distribution of solid 

particles within a molten polymeric mass and gave proof of being a pursuable 

strategy for promoting a more intimate contact/interaction between different 

types of polymeric chains. The possibility of achieving different performances 

with the new polymeric compounds eventually obtained still needs to be 

confirmed. 
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The research project was focused on the development of a pulsatile capsular-

shaped drug delivery system (DDS) named Chronocap™. It consists of a capsule 

shell, made of an hydrophylic swellable/erodible polymer (hydroxypropyl 

cellulose, HPC) and prepared by injection molding (IM), intended to be filled with 

different types of drug preparations and to delay their liberation after oral 

administration. The feasibility by IM of capsules based on Klucel® LF was already 

assessed by means of a prototype mold allowing shells of different thickness 

(300, 600 and 900 µm) to be obtained. Such devices were demonstrated able to 

convey drug preparations giving rise to the expected pulsatile release 

performance, confirmed by in vivo data. The lag phase was attributed to the slow 

interaction of HPC with aqueous fluids, leading to the formation of a gel-barrier 

the break-up of which takes place as a consequence of dissolution/erosion 

phenomena; accordingly, such lag phase turned out to increase as a function of 

the shell wall thickness. The PhD project was undertaken aiming at improving the 

robustness and versatility of the Chronocap™ device as well as enhancing the 

industrial scalability of its manufacturing process. For this purpose, two different 

tasks were pointed out: the improvement of the manufacturing process and of 

the technological characteristics of capsules on the one side, and the upgrade of 

applications of the device on the other. In this respect, the modulation of the lag 

phase of the capsular device and its possible exploitation in the design of a colon 

DDS were approached.  
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A new mold was designed based on the thermal, rheological and mechanical 

characteristics of the Klucel® LF formulation. It enabled the manufacturing of 

capsules improved in terms of reproducibility of the wall thickness and relevant 

consistency with the nominal value, efficiency of the body-cap joint mechanism 

and reliability of in vitro performance. Moreover, the production rate and extent 

of automation of the process were increased [Results – Chapter 1]. 

The possibility of exploiting these capsules for the development of colon delivery 

systems based on a time-dependent approach was initially faced by evaluating 

the Chronocap™ device as the substrate for film-coating with Eudragit® L. 

Screening disks were preliminary prepared by IM and employed for studying the 

interaction of the polymeric coating with the molded surface and the 

gastroresistant performance of the obtained product. Chronocap™ capsules 

could be successfully coated with increasing amounts of the enteric soluble 

polymer. Coated systems showed good technological properties and, at least 

those with the thickest Eudragit® layer, maintained their integrity for 2 h in acidic 

media and released their contents in pH 6.8 buffer after a lag time comparable 

with that of uncoated devices [Results - Chapter 2].  

Finally, the lengthening of the lag phase of molded capsules through formulation 

changes of the composition of the walls was successfully approached. The 

hydration rate of Klucel® LF was reduced by adding swellable and/or insoluble 

materials (e.g. Klucel® GF, L-HPC, Explotab® CLV EC and talc) to the formulation 

of the shell walls. As a consequence, the formation of the first break in capsule 
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walls by dissolution/erosion of the gel barrier was delayed. Pulsatile release 

profiles with longer lag times were obtained from the new systems based on 

polymeric blends. On the contrary, the time required for the complete opening 

of capsules remained < 8 min as for the reference Klucel® LF system. Results 

obtained by pre-extruding some of the polymeric blends prior to IM processing 

showed promising perspectives towards the achievement of longer lag phases 

[Results - Chapter 3]. 

The overall results obtained may lead to the manufacturing of pulsatile and colon 

specific drug delivery prototypes for in vivo testing. 

 

 


