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1.1	
  Metabolism	
  

Metabolism is the set of life-sustaining chemical transformations within the cells of 

living organisms. These enzyme-catalyzed reactions allow organisms to grow and 

reproduce, maintain their structures, and respond to their environments. Metabolism is 

usually divided into two categories; anabolism and catabolism. Anabolism is the set 

of constructive metabolic processes where the energy released by catabolism is used 

to synthesize complex molecules. Anabolism involves three basic stages. Firstly, the 

production of precursors such as amino acids, monosaccharaides, isoprenoids and 

nucleotides; secondly, their activation into reactive forms using energy from 

adenosine triphosphate (ATP); and thirdly, the assembly of these precursors into 

complex molecules such as proteins, polysaccharides, lipids and nucleic acids. 

Catabolism is the set of metabolic processes that break down large molecules. These 

include breaking down and oxidizing food molecules. The most common set of 

catabolic reactions in animals can be separated into three main stages. In the first, 

large organic molecules such as proteins, polysaccharides or lipids are digested into 

their smaller components outside cells. Next, these smaller molecules are taken up by 

cells and converted to yet smaller molecules, usually acetyl coenzyme A (acetyl-

CoA), which releases some energy. Finally, the acetyl group on the CoA enters in the 

citric acid cycle producing water, carbon dioxide and reducing the coenzyme 

nicotinamide adenine dinucleotide (NAD+) and flavin adenine dinucleotide (FAD) 

into NADH and FADH2. These coenzymes transfer their electrons to the electron 

transport chain, which coupled with the oxidative phosphorylation produce water and 

ATP.  
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1.2	
  Energetic	
  metabolism	
  

Glycolysis is the metabolic pathway that converts glucose into pyruvate; it occurs in 

the cytosol of the cell. The free energy released in this process is used to form the 

high-energy compounds ATP and NADH. The net yield of the glycolysis for one 

glucose molecule is two pyruvate molecules, two ATP, two NADH, two H2O and two 

H+. Glycolysis is a determined sequence of ten enzyme-catalyzed reactions. The 

intermediates provide entry points to glycolysis. For example, most 

monosaccharaides, such as fructose and galactose, can be converted to one of these 

intermediates. Glycolysis occurs, with variations, in nearly all organisms, both 

aerobic and anaerobic. The wide occurrence of glycolysis indicates that it is one of the 

most ancient known metabolic pathways [1]. 

In the aerobic metabolisms during the fasted state, the main destiny of the pyruvate 

molecules produced in the glycolysis is to entry into the tricarboxylix acid (TCA) 

cycle. In eukaryotic cells, the TCA cycle occurs in the matrix of the mitochondrion 

(Fig. 1.2.1). The TCA cycle is a series of eight chemical reactions used by all aerobic 

organisms to generate energy through the oxidation of acetate derived from 

carbohydrates, fats and proteins into carbon dioxide (CO2) and chemical energy in the 

form of ATP. The net yield for each molecule of glucose oxidized is two GTP 

(guanosine triphosphate), six NADH, two FADH2 (flavin adenine dinucleotide), six 

H+ e four CO2. In addition, the cycle provides precursors of certain amino acids as 

well as the reducing agent NADH that is used in numerous other biochemical 

reactions. Its central importance to many biochemical pathways suggests that it was 

one of the earliest established components of cellular metabolism. 

The acetyl-CoA, necessary for the TCA cycle is obtained not only by the glycolysis 

but also by the β-oxidation of the fatty acids. Fatty acids are transported across the 
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outer mitochondrial membrane by carnitine acyl transferases, and then couriered 

across the inner mitochondrial membrane by carnitine. Once inside the mitochondrial 

matrix, the fatty acyl-carnitine reacts with CoA to release the fatty acid and produce 

acetyl-CoA. Once inside the mitochondrial matrix, fatty acids undergo β-oxidation 

(Fig. 1.2.1). During this process, two-carbon molecules acetyl-CoA are repeatedly 

cleaved from the fatty acid. Acetyl-CoA can then enter the TCA, which produces 

NADH and FADH2. Since β-oxidation cleaves two-carbon molecules repeatedly, it 

works well for even carbon chain length saturated fatty acids. For odd-carbon chain 

length fatty acids and unsaturated fatty acids, a slightly different pathway is taken. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2.1: Mitochondria are involved in many pathways belonged to energetic metabolism. 
 

All the oxidative degradation pathways described converge in the final step of the 

cellular respiration. During this process, all the energy produced is used to generate 

ATP. The oxidative phosphorylation (OXPHOS) represents the top of the energetic 
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metabolism for aerobic organisms. During OXPHOS, electrons are transferred from 

electron donors to electron acceptors such as oxygen, in redox reactions. These redox 

reactions release energy, which is used to form ATP. In eukaryotes, these redox 

reactions are carried out by a series of protein complexes within the cell's 

intermembrane wall mitochondria. The energy released by electrons flowing through 

this electron transport chain is used to transport protons across the inner 

mitochondrial membrane, in a process called electron transport. This generates 

potential energy in the form of a pH gradient and an electrical potential across this 

membrane. This store of energy is tapped by allowing protons to flow back across the 

membrane and down this gradient, through a large enzyme called ATP synthase 

(ATPase). This enzyme uses this energy to generate ATP from adenosine diphosphate 

(ADP), in a phosphorylation reaction. This reaction is driven by the proton flow, 

which forces the rotation of a part of the enzyme; the ATPase is a rotary mechanical 

motor. 

 

1.3	
  Mitochondria	
  

Mitochondria are ubiquitous membrane-bound organelles that are characteristic of the 

eukaryotic cell. Their functions are mediated by thousands of mitochondrial-specific 

proteins encoded by both the nuclear (nDNA) and mitochondrial (mtDNA) genome 

[2, 3]. The organelle is formed by a soluble matrix surrounded by a double membrane, 

an ion impermeable inner membrane, and a permeable outer membrane (Fig. 1.3.1) 

[4].  

Early biochemists documented the significance of mitochondria for aerobic oxidation 

of metabolic fuels, as they are the location of the electron transport chain (ETC) and 

OXPHOS that provides the majority of cellular energy in the form of ATP [5, 6]. 
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Figure 1.3.1: The basic structure of mitochondria. They are composed of an innemr 
membrane, an outer membrane and among them the intermembrane space. They have own 
circular molecule of DNA and ribosomes. The inner membrane is organized in cristae in 
order to increase the surface. 
 

It is now well established that they contribute to many other important functions 

including oxidative catabolism of amino acids, ketogenesis, ornithine cycle activity 

(“urea cycle”), the generation of reactive oxygen species (ROS) with important 

signaling functions [7, 8], the control of cytoplasmic calcium [9, 10], and the 

synthesis of all cellular Fe/S clusters, protein cofactors fundamental for cellular 

functions such as protein translation and DNA repair [11]. The rate-limiting first step 

in steroidogenesis is also located in mitochondria, associating mitochondrial function 

to endocrine homeostasis [12-15]. This collection of organelle functions justifies the 

variability in pathophysiology, severity, and age of onset of the increasing number of 

disorders associated to alterations in specific mitochondrial pathways [11, 16-18]. 

	
  

1.3.1	
  Evolution	
  of	
  mitochondria	
  

To comprehend nuclear–mitochondrial connections, we must take into consideration 

the early steps in the endosymbiontic event that generated the eukaryotic cell about 2 
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billion years ago [19]. In the beginning, the proto-nucleus–cytosol was restricted by 

energy. This limitation was relieved by its symbiosis with an oxidative α-

protobacterion, the proto-mitochondrion [20]. Consequently, growth and replication 

of the nucleus turn out to be regulated by mitochondrial energy production and thus 

calorie availability. This required the regulation of nuclear replication and gene 

expression by mitochondrial energetics. This was accomplished by joining alteration 

of nDNA chromatin structure and function by modification via high-energy 

intermediates: phosphorylation by ATP, acetylation by acetyl-CoA, deacetylation by 

NAD+ and methylation by S-adenosyl-methionine. Equally, the nucleus had to 

acquire mechanisms for modulating mitochondrial growth and replication. This was 

made complex by the successive transfer of genes from the proto-mtDNA to the 

nDNA, with the cytosolic translation products being directionally imported back into 

the mitochondrion [19]. This process continued over a billion years with the result 

that the nDNA-encoded genes of the mitochondrial genome are now disseminated 

throughout the chromosomes [19]. Hence, new mechanisms had to develop to 

coordinate the expression of the mitochondrial genes based on nuclear necessities for 

energy for growth and reproduction. As a result, this evolved in the development of 

inter-chromosomal coordinate transcriptional regulation. Over the subsequent 1.2 

billion years, the nucleus–cytosol became increasingly specialized in specifying 

structure while the mitochondrion became entirely dedicated to energy production 

[20]. 

	
  

1.3.2	
  The	
  dynamic	
  morphology	
  of	
  mitochondria	
  

Mitochondria are organized in a reticulum that is in continuous communication 

through dynamic fusion and fission events, moving actively throughout the cell 
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thanks to interactions with the cytoskeleton. The mitochondrial reticulum is 

constituted of an outer and an inner membrane, between which is the intermembrane 

space, and a matrix limited by the inner membrane (Fig. 1.3.1). The area of the inner 

membrane is greater than that of the outer membrane due to the presence of cristae, 

inner membrane invaginations that include all the transmembrane proteins of the ETC 

as well as the mitochondrial ATPase [21-23]. The mitochondrial matrix contains also 

the components of the TCA cycle and of the β-oxidation pathway. Mitochondrial 

fusion and fission not only merges the mitochondrial inner and outer membranes but 

also mixes mitochondria matrices and redistributes the mtDNAs [20].  

 

 

 

 

 

 

 

 

 

 

Figure 1.3.2: Overview of mitochondrial fusion and fission. A: A schematic showing 
mitochondrial fusion and fission. During fusion, there is merging of the mitochondrial outer 
membrane and inner membrane, resulting in mixing of the mitochondrial matrices. B: Live 
imaging illustrating that mitochondrial fusion results in content mixing. The mitochondria are 
labeled with DsRed and photoactivatable GFP. A mitochondrion is photoactivated (green) in 
the first frame and undergoes fission (arrow, second and third frames) followed by fusion 
(arrow, last frame)[24]. 
 

The mammalian mitochondrial fusion machinery includes three major proteins: 

mitofusin 1 (Mfn1), 2 (Mfn2), and the Optic Atrophy-1 Protein (Opa1) [25-27], while 
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the mitochondrial fission machinery engages dynamic-related protein 1 (Drp1), 

fission 1 (Fis1), and mitochondrial fission factor (Mff) [28-31]. Mitochondrial fission 

and fusion activities are both mediated by large guanosine triphosphatases (GTPases) 

in the dynamin family [32]. Their mutual actions divide and fuse the two lipid 

bilayers that surround mitochondria (Fig. 1.3.2). Fission is driven by the Mff-

mediated recruitment of Drp1 from cytosol to mitochondria in mammals [33], often at 

sites where mitochondria make contact with the endoplasmic reticulum [34]. Fusion 

between mitochondrial outer membranes is mediated by membrane-anchored 

dynamin family members named Mfn1 and Mfn2 in mammals, whereas fusion 

between mitochondrial inner membranes is mediated by a single dynamin family 

member called Opa1 in mammals [35]. Mitochondrial fission and fusion machineries 

are controlled by proteolysis and posttranslational modifications [32]. Frequencies of 

mitochondrial fission and fusion depend on variations in metabolism. Mitochondria 

are more fused when they have to rely on oxidative phosphorylation by withdrawing 

glucose as a carbon source [36]. Amplified fusion may be essential to increase the 

fidelity for oxidative phosphorylation by encouraging complementation among 

mitochondria. Starvation-induced autophagy may boost fusion by increasing the 

dependence on oxidative phosphorylation through the metabolism of lipids and 

proteins [36]. Otherwise, starvation may induce a specific stress response called 

stress-induced mitochondrial hyperfusion [37], or it may prevent fission in order to 

protect mitochondria from autophagic catabolism [38, 39]. Each of these outcomes is 

coherent with a model in which mitochondrial dynamics support the maximization of 

the oxidative phosphorylation under stressful conditions. 

	
  

	
  



	
   14	
  

1.3.3	
  mtDNA	
  

Contrary to the nuclear genome, characterized of repetitive sequence families, introns, 

and vast intergenic regions, the mtDNA of mammals and other vertebrates shows 

remarkable economy of sequence organization [4]. The vertebrate mitochondrial 

genome is a closed circular molecule of ∼16.5 kb whose entire protein coding 

capacity is dedicated to the synthesis of 13 proteins that are essential subunits of 

respiratory complexes I, III, IV, and V [4]. The genes encoding complex II are 

entirely nuclear. The mtDNA also encodes the 22 tRNAs and 2 ribosomal RNAs 

essential for the translation of these respiratory subunits within the mitochondrial 

matrix. Mitochondrial genes miss introns and are arranged end on end with little or no 

intergenic regions [4]. Some respiratory protein genes overlay, and the adenine 

nucleotides of UAA termination codons are not encoded in the mtDNA but rather are 

delivered by polyadenylation following RNA processing [40]. Protein coding and 

rRNA genes are interspersed with tRNA genes that are assumed to determine the 

cleavage sites of RNA processing. The only substantial noncoding region is the D-

loop, named after the triple-stranded structure or displacement loop that is formed by 

association of the nascent heavy (H)-strand in this region (Fig. 1.3.3) [4]. The D-loop 

comprises the origin of heavy (H)-strand DNA replication and is also the site of 

bidirectional transcription from opposing heavy (HSP) and light (LSP) strand 

promoters [41]. Since mtDNA is a compartmentalized extra-chromosomal 

component, its inheritance model diverges from that of nuclear genes. Somatic 

mammalian cells generally have 103-104 copies of mtDNA with ∼2–10 genomes per 

organelle [42]. These genomes replicate in a relaxed fashion that is independent of the 

cell cycle that is defined by nuclear DNA replication [43, 44]. Some mtDNA 

molecules experience multiple rounds of replication while others do not replicate. 
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This, along with random sampling during cell division, permits the separation of 

sequence variants during mitosis [45]. Transcription of mtDNA is completely 

dependent on nucleus-encoded gene products. The transcription initiation complexes 

are comprised of a mitochondrial RNA polymerase (POLRMT), Transcription factor 

A (Tfam) and one of the two TFB isoforms (TFB1M and TFB2M) that function as 

dissociable specificity factors that contact both the polymerase and Tfam. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.3.3: Schematic representation of the human mitochondrial genome. Genomic 
organization and structural features of human mtDNA are depicted in a circular genomic map 
showing heavy (blue) and light (black) strands assigned as such based on their buoyant 
densities. Protein coding and rRNA genes are interspersed with 22 tRNA genes (red bars 
denoted by the single-letter amino acid code). Duplicate tRNA genes for leucine (L) and 
serine (S) are distinguished by their codon recognition (parentheses). The D-loop regulatory 
region contains the L- and H-strand promoters (LSP, HSP1, and HSP2), with arrows showing 
the direction of transcription. The origin of H-strand replication (OH) is within the D-loop, 
whereas the origin of L-strand replication (OL) is displaced by approximately two-thirds of 
the genome within a cluster of five tRNA genes (W, A, N, C, Y). Protein coding genes 
include the following: cytochrome oxidase (COX) subunits 1, 2, and 3; NADH 
dehydrogenase (ND) subunits 1, 2, 3, 4, 4L, 5, and 6; ATP synthase (ATPS) subunits 6 and 8; 
cytochrome b (Cyt b). ND6 and the 8 tRNA genes transcribed from the L-strand as template 
are labeled on the inside of the genomic map, whereas the remaining protein coding and RNA 
genes transcribed from the H-strand as template are labeled on the outside [4]. 
 

In mammals, mtDNA is maternally inherited [45, 46]. Usually, paternal mtDNA is 

lost during the first few embryonic cell dissections and does not give mtDNA to the 
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progeny, although there are reports of the occurrence of the paternal heredity in 

somatic tissues [47]. Once, recombination between maternal and paternal genomes 

has been recognized [48]. Furthermore, because mtDNA is a multicopy genome, an 

individual may show more than a single sequence, a condition named heteroplasmy. 

A harmful sequence variant may be tolerated in low copy because the defective gene 

product(s) it encodes do not reach the threshold for disrupting cellular function. 

Conversely, sequence variants are recognized to separate rapidly from heteroplasmy 

to homoplasmy in passing from one generation to the next [49]. This could end with 

offspring in which the detrimental variant prevails, running to a defective 

mitochondrial phenotype. 

	
  

1.3.4	
  Oxidative	
  phosphorylation	
  	
  

The ETC is constituted of four large multisubunit complexes (complexes I to IV) with 

more than 85 individual gene products and ATPase (complex V). The proteins that 

compose the different complexes are both nuclear and mitochondrial encoded except 

the complex II that is completely nuclear. In Table 1 the number of subunits for each 

complex that are nucleus or mitochondria encoded are reported [50]. 

Table 1: Number of nuclear- and mitochondrial-encoded electron transport chain proteins. 
 

The ETC transfers electrons from donors (NADH at complex I, FADH2 at complex 

II) to a final acceptor, molecular oxygen, forming H2O at complex IV [51]. Two 

electrons (reducing equivalents from hydrogen) are transferred from NADH + H+ to 

 Complex I Complex II Complex III Complex IV Complex V 

mtDNA 7 0 1 3 2 

nDNA 39 4 10 10 14 
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the OXPHOS complex NADH dehydrogenase (complex I) or from FADH2 to the 

succinate dehydrogenase (SDH, complex II) to reduce ubiquinone (coenzyme Q10, 

CoQ) to ubiquinol CoQH2 [20]. The electrons from CoQH2 are transferred 

successively to complex III (bc1 complex), cytochrome c, complex IV (cytochrome c 

oxidase, COX), and finally to oxygen (1⁄2O2) to give H2O [20]. The energy that is 

liberated during the electrons’ flow is used to pump protons out across the 

mitochondrial inner membrane through complexes I, III, and IV creating a proton 

electrochemical gradient; the remainder is dissipated as heat (Fig. 1.3.4). The energy 

contained in the proton electrochemical gradient generated by the ETC is then 

coupled to ATP production as protons flow back into the matrix through the 

mitochondrial ATPase (Complex V). Matrix ATP is then exchanged for cytosolic 

ADP by the inner membrane adenine nucleotide translocators [20]. 

 

 

 

 

 

Figure 1.3.4: The mammalian oxidative phosphorylation (OXPHOS) system. Depicted are the 
four respiratory complexes (I–IV), electron carriers coenzyme Q and cytochrome c, the ATP 
synthase complex, the ADP/ATP carrier and the phosphate carrier (PiC). Arrows at 
complexes I, III, and IV illustrate the proton pumping to the intermembrane space.  
 

Thus, OXPHOS results from electron transport, the generation of a proton gradient, 

and subsequent proton flux coupled to the mitochondrial ATPase [51]. Each of these 

steps can vary in efficiency; for example, the exact stoichiometry between electron 

flow and proton pumping, or between proton pumping and ATP synthesis varies 

depending on the probability of loss of electrons from the ETC before reaching 
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complex IV and on non-ATPase-coupled proton leak through the inner mitochondrial 

membrane (e.g., via uncoupling proteins (UCPs)) [51]. The high electronegative 

potential produced by the proton gradient also forces the rapid entry of Ca++ into the 

mitochondrial matrix, protecting its concentration in the cytoplasm. In the 

mitochondrial matrix, Ca++ can stimulate flux through the TCA cycle by rising 

dehydrogenase activities [10]. The exit of Ca++ from the matrix is driven by 

electroneutral exchange with Na+ or H+. 

The efficiency by which dietary reducing equivalents are converted to ATP by 

OXPHOS is known as the coupling efficiency [20]. This is determined by the 

efficiency by which protons are pumped out of the matrix by complexes I, III, and IV 

and the efficiency by which proton flux through complex V is converted to ATP [20]. 

The uncoupler compounds like 2,4-dinitrophenol (DNP) or carbonyl cyanide rn-

chlorophenylhydrazone (CCCP) and the nDNA-encoded UCP1 and 2 render the 

mitochondrial inner membrane leaky for protons, by-passing complex V and 

dissipating the energy as heat [19]. 

 

1.3.5	
  ROS	
  and	
  mitochondria	
  

The ETC is a strong font of ROS. ROS production is more expected to happen when 

the proton gradient is large and electron carriers are highly reduced, e.g., when ADP 

is rate limiting for ATP generation or when availability of O2 is restrictive. 

Uncoupling proteins are pondered to be natural regulators of this process, replying to 

and governing ROS production by alleviating the establishment of a large proton 

gradient. Under normal physiological conditions, ROS production is highly 

structured, at least in part controlled by complex I [52-54]. Though, when the ETC 

turns out to be highly reduced, the excess electrons can be delivered directly to O2 to 
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produce superoxide anion (O2
-). The O2

- generated by complex I is discharged into the 

mitochondrial matrix where it is transformed to hydrogen peroxide (H2O2) by the 

matrix manganese superoxide dismutase, MnSOD (Sod2 gene). Superoxide produced 

from complex III is liberated into the mitochondrial intermembrane space where it is 

converted to H2O2 by Cu/ZnSOD (Sod1) which is located in the mitochondrial 

intermembrane space and cytosol [20]. Mitochondrial H2O2 can diffuse into the 

nucleus–cytosol. If H2O2 faces a reduced transition metal or is mixed with O2
-, the 

H2O2 can be further reduced to hydroxyl radical, the most potent oxidizing agent of 

the ROS. ROS can impair cellular proteins, lipids, and nucleic acids. Hereafter, 

excessive mitochondrial ROS generation can exceed the antioxidant protections of the 

cell, and the cumulative injury can ultimately lead to cell death [20]. 

	
  

1.3.6	
  Apoptosis	
  and	
  mitochondria	
  

 Apoptosis mediates catabolism of eukaryotic cells and it is a process crucial for the 

development and the turnover of tissues, for the mechanisms of cellular defense and 

protection from cancer. All apoptotic pathways converge to the activation of caspases, 

proteases that orchestrate the efficient cell elimination without causing inflammation. 

Two pathways have been characterized by which caspases are activated: the extrinsic 

pathway that is mediated by some membrane receptors, which directly activate 

caspase 8, and the intrinsic pathway that originates from the mitochondria. 

Mitochondria control an apoptotic phase, which precedes the activation of caspases 

and which is regulated by proteins belonging to the family of B-cell lymphoma 2 

(Bcl-2). It is well documented, that the role of mitochondria in the activation of 

caspases is accomplished through the release of these proteins from the 

intermembrane space to the cytosol. When cytochrome c is released from 
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mitochondria binds to the apoptotic protease activating factor 1 (APAF1), initiating 

the assembly of the apoptosome, which is responsible for the activation of caspase 9 

[55]. In literature it is well established, that during the apoptotic phenomenon 

mitochondria fragment into many small units, although it is not yet fully clear 

whether this occurs before or simultaneously with activation of caspases. It has been 

demonstrated that the blocking of this unregulated fission inhibits the release of 

cytochrome c and delays cell death, connecting the morphogenic machinery of these 

organelles to the programmed cell death [56]. Excessive mitochondrial fission appears 

to be a necessary requirement in intrinsic apoptotic pathway, at least for the release of 

cytochrome c and the caspase activation. On the other hand, apoptosis can be 

inhibited, by the mitochondrial fusion. Some proteins involved in mitochondrial 

fusion machinery are in some way linked to apoptosis. The silencing of Mfn1 and 

Mnf2 results in excessive mitochondrial fragmentation and increased sensitivity to 

proapoptotic stimuli [57].  

An early mark of apoptosis is the mitochondrial membrane potential decrease [58]. It 

activates, the mitochondrial permeability transition pore (mtPTP), the mitochondrial 

self-destruct system [59]. mtPTP is also stimulated when the biochemical condition of 

the mitochondria and cell regress, specifically when mitochondrial energy production 

declines, ROS generation increases, and excessive Ca++ is discharged into the cytosol 

and taken up by the mitochondrion [20]. When the mtPTP is activated, it unlocks a 

channel in the mitochondrial inner membrane, short circuits proton electrochemical 

gradient, and initiates programmed cell death (apoptosis) [60].  
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1.4	
  Transcriptional	
  control	
  mechanisms	
  of	
  mitochondria	
  

Although we know very little about specific mechanisms that control different 

modalities of mitochondrial biogenesis, it is clear that these mechanisms require 

coordination between the nuclear and mitochondrial genomes. Transcription of the 

mitochondrial genome is under the control of a single transcription factor, Tfam, 

which is encoded by the nuclear genome [51]. In turn, Tfam expression is controlled 

by the nuclear transcription factors 1 (NRF-1) and 2 (NRF-2), which specifically 

activate abundant nuclear-encoded genes implicated in mitochondrial respiration [61, 

62] (Fig. 1.4.1). Thus, through NRF-stimulated expression of Tfam, the transcription 

of the mitochondrial genome is stimulated in coordination with that of nuclear-

encoded mitochondrial genes [51]. The expression of many other mitochondrial genes 

is coordinated by additional nuclear transcription factors, like peroxisome 

proliferator-activated receptor α (PPARα), PPARδ, estrogen-related receptor (ERR) α 

/γ, and Sp1 (Fig. 1.4.1), which can stimulate the mitochondrial genes’ expression in a 

tissue-dependent and physiological context-dependent manner [50]. A high level of 

transcriptional coordination is required to ensure coupling of mitochondrial activity to 

other metabolic activities within the cell and to mediate appropriate parallel changes 

in all components of multiprotein complexes [51]. This coordination is achieved 

through the action of transcriptional coactivators and corepressors. The most-known 

coactivators of mitochondrial gene transcription are members of the PPARγ 

coactivator (PGC) family, including PGC-1α, PGC-1β [63, 64], and PPRC, a related 

serum-responsive coactivator [65] (Fig. 1.4.1). These act in response to cellular 

energy-requiring states such as cell growth, hypoxia, glucose deprivation, and 

exercise [50] to promote transcription factors involved in mitochondrial remodeling 

and/or biogenesis, thus restoring cellular energetics. For instance, PCG-1α is highly 
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expressed in muscle, liver, and brown fat, and its expression is further increased in 

these tissues in response to exercise, fasting, and cold exposure, respectively [51]. 

Although PGC-1α and β do not seem to be essential for mitochondrial biogenesis 

during development [66], they are required for the expression of the entire set of 

proteins necessary for mitochondrial OXPHOS and fatty acid β-oxidation pathways in 

muscle and brown adipose tissue [67-76]. Additionally, PGC-1α and PGC-1β are 

critical for the rapid bursts in mitochondrial proliferation that is associated with 

perinatal heart and brown adipose tissue development [66]. These considerations 

sustain the idea that mitochondrial adjustment to specific energy needs is regulated by 

PGC-1α and PGC-1β. Conversely, mitochondrial development during cell 

proliferation is more likely to rely on serum-responsive coactivators such as PPRC 

[77]. The role of corepressors in the transcriptional control of energy metabolism 

genes is less extensively studied [51]. Nevertheless, evidence in cultured cells and in 

mouse models supports the critical role of the corepressor RIP140 in controlling 

mitochondrial energy metabolism in both adipose tissue and muscle [78-82]. RIP140 

inhibits UCP1 through interaction with specific enhancer elements and also avoids 

expression of genes associated with β-oxidation and respiratory chain assembly. 

RIP140 also interacts directly with many of the transcription factors coactivated by 

PGC-1α [83]. The mechanisms that control the balance between PGC-1 coactivators 

and RIP140 and other corepressors are not clear but are likely to represent key 

regulatory mechanisms of energetic adaptation [51]. 
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Figure 1.4.1: Basic structural and functional features of the mitochondrial reticulum. The 
mitochondrial reticulum is composed of an inner and outer membrane, between which lies the 
intermembrane space, and a matrix contained within the inner membrane. The surface of the 
inner membrane is folded into cristae. The organization and distribution of the mitochondrial 
reticulum is controlled by interactions with cytoskeletal elements such as microtubules. The 
matrix contains the enzymatic machinery for fatty acid β-oxidation, which generates acetyl-
CoA from acyl chains, and reducing equivalents in the form of NADH and FADH2 in the 
process. Acetyl-CoA fuels the TCA cycle, which also produces NADH and FADH2. These 
donate electrons to the ETC, leading to the generation of a proton gradient across the inner 
mitochondrial membrane. Dissipation of this gradient through the mitochondrial ATPase 
generates ATP. Delay of electron transport by the ETC results in the production of ROS, 
which can activate UCPs that dissipate the proton gradient without producing ATP. The 
electrochemical gradient also causes cytoplasmic Ca++to enter the matrix, buffering 
cytoplasmic Ca++ levels and promoting TCA cycle flux. Mitochondria are also crucial in the 
generation of iron-sulfur clusters that form the prosthetic group of numerous proteins 
involved in multiple cellular pathways. The mitochondrial reticulum undergoes continuous 
fusion and fission reactions that involve both the inner and outer mitochondrial membranes, 
allowing redistribution of matrix content, such as mtDNA, within the reticulum. Both 
mitochondrial and nuclear DNA encoded the proteins composing all mitochondrial 
machineries. The master transcription factor operating on mtDNA is Tfam, which is encoded 
in the nuclear genome. The expression of mitochondrial genes in the nucleus is driven by 
numerous transcription factors, which are in turn controlled by specific coactivators and 
corepressors that respond to cellular energy demands [51]. 
 

1.4.1	
  Tfam	
  

Tfam was first recognized as a high mobility group (HMG)-box protein that promote 

transcription through specific binding to recognition sites upstream from both light 

(LSP) and heavy (HSP) strand promoter [84]. Structurally, it consists of two tandemly 

arranged HMG motifs and a COOH-terminal tail [4]. Tfam looks like other HMG 
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proteins, as it can bend and unwind DNA, properties potentially connected to its 

ability to promote transcription upon binding DNA [85, 86]. Tetrameric binding of 

Tfam to its recognition site is known to stimulate bidirectional transcription by 

facilitating symmetrical interactions with other transcriptional components [87]. In 

addition to specific promoter recognition, Tfam binds nonspecifically to apparently 

random sites on mtDNA [85, 88]. This property, along with its abundance in 

mitochondria, suggests that it plays a role in the stabilization and maintenance of the 

mitochondrial chromosome [4]. The transcriptional activation function of Tfam 

belongs to a COOH-terminal activation domain that is necessary both for 

transcriptional ability and for specific binding to promoter recognition sites [89]. 

Tfam knockout mice show embryonic lethality and a reduction of mtDNA 

corroborating a crucial role for the protein in mtDNA maintenance in mammals [90]. 

Intriguingly, Tfam levels associate well with increased mtDNA in ragged-red muscle 

fibers, fibers showing an excessive proliferation of abnormal mitochondria, and 

decreased mtDNA levels in mtDNA-depleted cells [91]. This evidence correlates with 

the observation that transgenic mice overexpressing human Tfam show increased 

mtDNA copy number [92]. The mtDNA amount determined in somatic tissues and in 

embryos is relative to those of Tfam expressed in each, advocating that Tfam could be 

a limiting factor of mtDNA copy number. Thus its properties implicate Tfam as an 

ideal target for regulatory pathways that control both mtDNA maintenance and 

transcriptional expression [4]. 

In addition to its role in transcription initiation, Tfam binds abundantly and non-

specifically around the entire mitochondrial genome [93]. In vivo, mtDNA exists as 

discrete, punctate protein–DNA structures named nucleoids. Tfam is a major 

component of the nucleoid [94-96], where it   an architectural [97] or scaffolding [92] 
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role, apparently through its strong affinity for non-specific DNA sequences [88]. 

Several models have been stated to clarify how Tfam regulates genome compaction 

and promoter activity [97-102]. Fig. 1.4.2 provides a series of illustrations of Tfam 

dimer-mediated genome compaction with increasing Tfam loading by a non-specific, 

cooperative mechanism as Tfam abundance increases [93]. Because the abundance of 

Tfam in nucleoids can vary considerably without affecting nucleoid volume [103-

105], the loops formed at low Tfam occupancy were considered to be the primary 

mechanism for the maintenance of mtDNA contour length [93]. As Tfam 

concentration increases, cooperatively drives Tfam loading at proximal sites, 

increasing the rigidity and density of the structure [93].  

 

 

 

 

 

 
Figure 1.4.2: Tfam binding: dimerization, formation of loop structures, and genome 
compaction. Tfam concentration increases from the left to the right of the illustration 
(indicated by blue triangle). All binding events are considered non-specific and are not to 
scale. Because this model assumes dimeric Tfam bound to DNA, the subunit bound to DNA 
is shown in dark blue and the unbound subunit is in light blue. At low concentrations Tfam 
dimers bind to form loop structures that reduce DNA contour length (both subunits are shown 
in dark blue, indicating DNA binding by both subunits in the dimer to form a loop). 
Cooperative binding stimulates preferential Tfam loading at sites proximal to previously 
bound Tfam molecules (sites shown in green), until maximal compaction is achieved at 
highest Tfam concentrations. Limited genome access at these maximally compacted 
molecules could minimize transcription or replication activity [93]. 
 

 

The additional structural rigidity is likely imparted by topological changes in the 

genome, with some contour length reduction occurring through bending and 

supercoiling [85, 93, 106, 107]. Based on the evidences that high Tfam:mtDNA ratios 
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decline mtDNA copy number [108, 109] in vivo, true saturation of Tfam would likely 

drive to biologically inactive (quiescent) genomes [98]. The large number of genomes 

within the cell would allow for some molecules to exist in this “off” state; tissues 

with lower relative oxidative metabolism, or those in which primary cells are not 

dividing, might be able to maintain a greater percentage of quiescent mtDNA without 

ending in some sort of illnesses [93]. The mtDNA:Tfam ratio is controlled by the 

mitochondrial Lon protease that regulates the mtDNA copy number and transcription 

by selective degradation of Tfam [109]. 

	
  

1.4.2	
  NRF-­‐1/	
  NRF-­‐2	
  

NRF-1 is a nuclear encoded transcription factor linked to the expression of many 

genes involved in mitochondrial respiratory function as the vast majority of nuclear 

genes that encode subunits of the five respiratory complexes [110-112]. Moreover, 

considerable data sustains a potential integrative role of NRF-1 in coordinating 

respiratory subunit expression with that of the mitochondrial transcriptional 

machinery [4]. As illustrated in Figure 1.4.3, NRF-1 activates the Tfam promoter 

[61], a major regulator of mitochondrial transcription. NRF-1 is also related to the 

expression of key enzymes of the heme biosynthetic pathway [113, 114]. Moreover, 

NRF-1 acts on genes whose functions are not restricted to the bigenomic expression 

of the respiratory apparatus (Fig. 1.4.3) [4]. For example, NRF-1 regulates key 

constituents of the protein import and assembly machinery in mitochondria. This 

proposes a broader function for the factor in coordinating mitochondrial biogenesis 

beyond the transcriptional expression of the respiratory chain. This hypothesis is 

strengthened by reports that relate rises in NRF-1 mRNA or DNA binding activity 

with generalized effects on mitochondrial biogenesis [4]. It is worth to notice that 
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NRF-1 targets are not limited to genes involved in mitochondrial function. Among 

these are genes encoding metabolic enzymes, components of signaling pathways, and 

gene products necessary for chromosome maintenance and nucleic acid metabolism 

among others. 

 

 

 

 

 

 

 

 

 

 

Figure 1.4.3:Diagrammatic summary of the nuclear control of mitochondrial functions by 
NRF-1 and NRF-2 (GABP). NRFs contribute both directly and indirectly to the expression of 
many genes required for the maintenance and function of the mitochondrial respiratory 
apparatus. NRFs act on genes encoding cytochrome c, the majority of nuclear subunits of 
respiratory complexes I–V, and the rate-limiting heme biosynthetic enzyme 5-
aminolevulinate synthase. In addition, NRFs promote the expression of key components of 
the mitochondrial transcription and translation machinery that are necessary for the 
production of respiratory subunits encoded by mtDNA. These include Tfam, TFB1M, and 
TFB2M as well as a number of mitochondrial ribosomal proteins and tRNA synthetases. 
Recent findings suggest that NRFs are also involved in the expression of key components of 
the protein import and assembly machinery [50]. 
	
  

A second nuclear factor designated as NRF-2 or GABP was recognized based on its 

specific binding in the cytochrome oxidase subunit IV (COXIV) promoter [62]. In 

addition to the COX promoters, functional NRF-2 sites have been identified in a 

number of other genes connected to respiratory chain expression [110, 111]. Hence, 

like NRF-1, NRF-2 contributes in the coordination of the expression profile of 
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essential respiratory chain proteins with key components of the mitochondrial 

transcription machinery [4]. Such a mechanism may serve to ensure the coordinate 

bigenomic expression of respiratory subunits.	
  

	
  

1.4.3	
  PGC-­‐1α	
  

PGC-1α, the best-studied member of a family of transcriptional coactivators, was 

identified in a differentiated brown fat cell line on the basis of its interaction with 

PPARγ, an important regulator of adipocyte differentiation [115]. The remarkable 

induction of PGC-1α mRNA in brown fat upon cold exposure sustains its role in 

thermogenic regulation [116, 117]. A relevant aspect of the thermogenic program is 

the stimulation of mitochondrial biogenesis, and PGC-1α is a great inducer of this 

process [4]. Ectopic overexpression of the coactivator in cultured myoblasts and other 

cells stimulates respiratory subunit mRNAs and increases COXIV and cytochrome c 

protein levels as well as the steady-state level of mtDNA [63]. As illustrated in Figure 

1.4.4, NRF-1 has been identified as an important target for the induction of 

mitochondrial biogenesis by PGC-1α. The coactivator binds NRF-1 and can trans-

activate NRF-1 target genes involved in mitochondrial respiration [4]. In addiction, a 

dominant negative allele of NRF-1 inhibits the effects of PGC-1α on mitochondrial 

biogenesis providing in vivo evidence for a NRF-1-dependent pathway [63]. PGC-1α 

may connect nuclear regulatory events to the mitochondrial transcriptional machinery 

through its transcriptional activation of Tfam. As with respiratory subunit genes, the 

coactivator targets the NRF-1 and NRF-2 recognition sites within Tfam promoter 

leading to increased mRNA expression [118]. Estrogen related receptor α (ERRα) and 

NRF-2α recognition sites are conserved in the promoters of a number of oxidative 

phosphorylation genes, including cytochrome c and β-ATP synthase, and PGC-1α can 
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drive expression through these sites [119, 120] (Fig. 1.4.4). In addition to its role on 

the respiratory chain and mitochondrial transcription, PGC-1α stimulates 

mitochondrial oxidative functions by promoting the expression of genes of the 

mitochondrial fatty acid oxidation and heme biosynthetic pathways [4] (Fig. 1.4.4).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.4.4: Illustration summarizing PGC-1α-mediated pathways governing mitochondrial 
biogenesis and function. Depicted in the nucleus (shaded sphere) are the key transcription 
factors (NRF-1, NRF-2, ERRα, PPARα, and MEF-2) that are PGC-1α targets and act on 
nuclear genes governing the indicated mitochondrial functions. Some of the physiological 
effector pathways mediating changes in the transcriptional expression or function of PGC-1α 
are also shown. The CREB activation of PGC-1α gene transcription in response to cold 
(thermogenesis), fasting (gluconeogenesis), and exercise has been well documented. The 
physiological mechanisms of PGC-1α induction by nitric oxide are not established but may 
involve the production of endogenous nitric oxide by eNOS. A potential pathway of 
retrograde signaling through calcium is also included [50]. 
 
 
Physiological expression of PGC-1α at the transcriptional level can be modulated 

through cAMP-dependent signaling [4]. The PGC-1α promoter has a potent cAMP 

response element (CRE) that works as a target for CREB-mediated transcriptional 

activation [121]. PGC-1α along with Tfam and NRF-1 are induced via cGMP-

dependent signaling resulting from elevated levels of nitric oxide (NO) [122] (Fig. 
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1.4.4). The NO induction of PGC-1α is correlated with increased mitochondrial bio- 

genesis in several cell lines [4]. The induced mitochondrial mass is complemented by 

increased oxidative phosphorylation-coupled respiration consistent with an induced in 

functional mitochondria [123]. A number of reports associate the expression of PGC-

1α to exercise-induced mitochondrial biogenesis in skeletal muscle [124-128]. In each 

case, PGC-1α mRNA and/or protein increase as an adaptive response to endurance 

exercise of varying intensity and duration.	
  

	
  
	
  

1.5	
  Patophysiology	
  

In the last 20 years, mitochondrial dysfunction has been recognized as an important 

promoter of human pathologies. Mitochondrial defects play a direct role in certain 

well-defined neuromuscular diseases and are also thought to contribute indirectly to 

many degenerative diseases [4]. Mutations in mitochondrial genes for respiratory 

proteins and translational RNAs, particularly tRNAs, show themselves in a wide 

range of clinical conditions, most of which affect the neuromuscular system [60, 129]. 

These mtDNA mutations are often maternally inherited, and in some cases, patients 

with certain mitochondrial myopathies display excessive proliferation of abnormal 

mitochondria in muscle fibers, the so-called ragged red fiber [130]. In addition, a 

subset of mitochondrial diseases exhibits a Mendelian inheritance pattern typical of 

nuclear gene defects [4]. These can impair respiratory protein subunits, assembly 

factors, and gene products necessary for mtDNA maintenance and stability [131, 

132]. In addition to single gene defects, dispersed lesions in mtDNA that accumulate 

over time may be involved in human pathologies including neurodegenerative 

diseases [133], diabetes [134], and ageing [135].  
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1.5.1	
  Neurodegenerative	
  diseases	
  

It has been widely speculated that free radical production by the mitochondrial 

respiratory chain contributes to the neuropathology observed in dementia and other 

degenerative diseases [4]. Although there is positive evidence for oxidative stress 

associated with neuropathology, it has been difficult to prove whether this is a cause 

or a consequence of neuronal death [136]. Parkinson's disease (PD) is the most 

common movement disorder and is characterized primarily by the loss of 

dopaminergic neurons in the substantia nigra pars compacta leading to a dopamine 

deficit in the striatum (). The consequent dysregulation of basal ganglia circuitries 

explains the most prominent motor symptoms, including rigidity, resting tremor and 

postural instability. A pathological hallmark of sporadic PD is the occurrence of 

proteinaceous deposits within neuronal perykarya (Lewy bodies) and processes (Lewy 

neurites), mainly constituted of α-synuclein, ubiquitin, neurofilaments and molecular 

chaperones [137]. Little is known about the etiopathogenesis of PD. Accumulating 

evidence suggests that PD-associated genes directly or indirectly impinge on 

mitochondrial integrity, for example the MTPT compound (1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine), an ETC complex I inhibitor, was found to induce 

Parkinson in humans [138, 139]. Moreover, oxidative stress is found to have a role in 

neuronal degeneration of the dopaminergic neurons [140]. The most common 

sporadic form of PD looks like a complex multifactorial disorder with variable 

influences of environmental factors and genetic susceptibility. A major breakthrough 

in PD research was the identification of genes that are responsible for monogenic 

familial forms. Mutations in the genes encoding α-synuclein and LRRK2 (leucine-

rich repeat kinase 2) are accountable for autosomal dominant forms of PD, apparently 

by a gain-of-function process. Increased α-synuclein expression as well as α-
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synuclein deficiency may be associated with mitochondrial irregularities like 

ultrastructural abnormalities, impaired COX and complex IV activity, reduced 

complex I/III activity, a decline in the mitochondrial membrane potential, oxidation of 

mitochondria-associated metabolic proteins, and an amplified sensitivity to 

mitochondrial toxins [141-146]. LRRK2 can bind to the outer mitochondrial 

membrane in mammalian brain and about 10% of overexpressed LRKK2 was found 

in association with the outer mitochondrial membrane. Nevertheless, it remains to be 

investigated whether LRRK2 has an influence on mitochondrial integrity [140]. 

Loss-of-function mutations in the genes encoding parkin and PINK1 mediate 

autosomal recessive PD. Sporadic and monogenic forms share important clinical, 

pathological and biochemical characters, notably the progressive demise of 

dopaminergic neurons in the substantia nigra [140]. Several studies examined 

mitochondrial features in tissues from parkin-mutant patients. An important reduction 

(by about 60%) in complex I activity was discovered both in patients with parkin 

mutations and sporadic PD patients, whereas complex IV activity was only impaired 

in sporadic PD patients. Cultured fibroblasts from parkin mutant patients presented 

morphological and functional mitochondrial deficiencies, for instance a reduction in 

the membrane potential (by 30%), complex I activity (by 45%), ATP production (by 

58%) and a rise in rotenone-induced mitochondrial fragmentation [147]. In another 

report parkin mutant fibroblasts were characterized by a 22% decrease in the mtDNA 

copy number and an increased vulnerability to oxidative stress-induced mtDNA 

impairment [148]. The consequences of PINK1 deficiency on mitochondrial function 

and morphology are multidimensional, including decreases in mitochondrial 

membrane potential, complexes I and IV activities, ATP production, mitochondrial 
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import and mtDNA levels, increases in ROS production and abnormal ultrastructural 

mitochondrial morphology [18, 149-151]. 

	
  

1.5.2	
  Aging	
  

The accumulation of mutations in mtDNA is also thought to contribute to human 

aging [4]. Alterations in mtDNA, comprising increased occurrence of point mutations 

and deletions, have been documented in aged individuals [152] and mice [153]. The 

declining in the somatic mtDNA mutations rate by introducing catalase into the 

mitochondrial matrix lengthens mouse life span [154]. These observations along with 

the known age-related reduction in oxidative energy metabolism has suggested that 

mtDNA mutations impair the respiratory chain driving to a decreased oxidative 

phosphorylation [135]. 

 

1.5.3	
  Type	
  2	
  diabetes	
  

There has also been considerable interest in mitochondrial dysfunction as a 

contributing factor in the onset of type 2 diabetes (T2D)[155]. Although the primary 

cause of this disease is unknown, it is clear that insulin resistance plays an early role 

in its pathogenesis and that defects in insulin secretion by pancreatic β cells are 

instrumental in the subsequent progression to hyperglycemia. Indeed, several lines of 

evidence indicate that insulin resistance is an early feature of T2D. Petersen et al. 

found that in comparison with matched young controls, healthy lean elderly subjects 

had severe insulin resistance in muscle, as well as significantly higher levels of 

triglycerides in both muscle and liver [156]. These changes were accompanied by 

decreases in both mitochondrial oxidative activity and mitochondrial adenosine 
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triphosphate (ATP) synthesis. These data support the hypothesis that insulin 

resistance in humans’ skeletal muscle arises from defects in mitochondrial fatty acid 

oxidation, which in turn lead to increases in intracellular fatty acid metabolites (fatty 

acyl CoA and diacylglyerol) that disrupt insulin signaling (Fig. 1.5.1) [134].  

 

 

 

 

 

 

 

 

 

 

Figure 1.5.1: Potential mechanism by which mitochondrial dysfunction induces insulin 
resistance in skeletal muscle. In the depicted model, a decrease in mitochondrial fatty acid 
oxidation, caused by mitochondrial dysfunction and/or reduced mitochondrial content, 
produces increased levels of intracellular fatty acyl CoA and diacylglycerol. These molecules 
activate novel protein kinase C, which in turn activates a serine kinase cascade possibly 
involving inhibitor of nuclear factor kB kinase (IKK) and c-Jun N-terminal kinase 1, leading 
to increased serine phosphorylation (pS) of insulin receptor substrate–1 (IRS-1). Increased 
serine phosphorylation of IRS-1 on critical sites (e.g., IRS-1 Ser307) blocks IRS-1 tyrosine 
(Y) phosphorylation by the insulin receptor, which in turn inhibits the activity of phosphatidyl 
inositol 3-kinase (PI 3-kinase). This inhibition results in suppression of insulin-stimulated 
glucose transport, the process by which glucose is removed from the blood. PIP3 indicates 
phosphatidylinositol 3,4,5-trisphosphate; PTB, phosphotyrosine binding domain; PH, 
pleckstrin homology domain; SH2, src homology domain [134]. 
 

Insulin resistance in healthy aged individuals with no family history has been 

correlated with a decline in mitochondrial oxidative phosphorylation [156]. The 

expression of a number of genes involved in oxidative metabolism is reduced in 

diabetic subjects as well as in those predisposed to diabetes because of family history 
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[157, 158]. In addition, in comparison with insulin-sensitive controls, the insulin-

resistant subjects were found to have a lower ratio of type I to type II muscle fibers. 

Type I fibers are mostly oxidative and contain more mitochondria than type II muscle 

fibers, which are more glycolytic. Conceivably, these individuals may have fewer 

muscle mitochondria, possibly because of decreased expression of nuclear-encoded 

genes that regulate mitochondrial biogenesis, such as PGC-1α [63] and PGC-1β 

[159]. Microarray studies support this hypothesis since PGC-1α–responsive genes are 

down-regulated in the skeletal muscle of obese Caucasians with impaired glucose 

tolerance and T2D [158], and PGC-1α and PGC-1β are themselves down-regulated in 

the skeletal muscle of both obese diabetic and overweight non diabetic Mexican-

Americans [157]. Alternatively, the reduction in mitochondrial oxidative 

phosphorylation activity in insulin-resistant individuals could be due not to 

mitochondrial loss but rather to a defect in mitochondrial function. This hypothesis is 

supported by muscle biopsy studies. In one study, the activity of mitochondrial 

oxidative enzymes was found to be lower in T2D subjects [160], and in another, the 

activity of mitochondrial rotenone-sensitive nicotinamide adenine dinucleotide 

oxidoreductase was found to be lower [161]. Because obese individuals have also 

been shown to have smaller mitochondria with reduced bioenergetic capacity 

compared with lean controls [161], the mitochondrial abnormalities in these subjects 

might be related to obesity rather than to insulin resistance. 

Although insulin secretion is also modulated by a number of stimuli that operate 

outside this pathway, it is clear that oxidative mitochondrial metabolism is central to 

glucose-stimulated insulin secretion [162]. The critical role of mitochondria is evident 

from the rare hereditary disorders in which diabetes with β cell dysfunction has been 

traced to specific mutations in the mitochondrial genome [162, 163]. Given the 
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central role of mitochondria in glucose sensing, it is possible that decreased 

mitochondrial function in β cells, might predispose individuals to develop β cell 

dysfunction and T2D.  

These associations of mitochondrial dysfunction with human degenerative disease 

raise the basic question of how mammalian cells control mitochondrial biogenesis. It 

has become increasingly apparent that transcriptional mechanisms contribute to the 

biogenesis of mitochondria including the expression of the respiratory apparatus. 

Unfortunately, little is known about the link between mitochondria and many 

diseases, about the mitochondrial regulation and about the cross-talk between the 

nucleus and the mitochondria.  

  



	
   37	
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

	
  

2.	
  Aim:	
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As sites of the main oxidative reactions and of the electron transport chain, 

mitochondria are the organelle committed to metabolic energy production required for 

all cellular functions. Mitochondria possess an own genome, whose replication and 

transcription is nuclear-mediated through the Tfam. Most of the mitochondrial 

proteins are nuclear-encoded, too. Consequently the nuclear-mitochondrial crosstalk 

is at the base for mitochondrial biogenesis and function. The mitochondrial biogenesis 

is the process through which new mitochondria are created and a hallmark of this 

event is the increase in the mtDNA content. For the mitochondrial function or activity 

instead, we intend all the processes mitochondria have to deal with, and the most 

important one is the ATP production. Because of the ubiquitous presence of 

mitochondria in all tissues, their density and function have a significant impact on 

whole-body metabolism. Deficiency in energy metabolism has emerged as a possible 

explanation for the etiology of complex diseases over the past 20 years [20]. The 

primary limiting factor for growth and reproduction of all biological systems is 

energy and the first report that mtDNA mutations can cause disease [164-169] have 

been followed by reports that a broad spectrum of metabolic and degenerative 

diseases can have a mitochondrial etiology. In fact, a mitochondrial dysfunction is 

associated to many disorders such as insulin resistance, diabetes and Parkinson’s 

diseases. The contribution of mitochondria to the pathogenic mechanisms underlying 

these pathologies is not completely characterized. Finding new mitochondrial 

regulators is a major challenge, both for basic science and for translational medicine. 

The goal of this project is to find new regulators that control mitochondrial biogenesis 

and function and validate them in C2C12, a skeletal muscle cell line, with the final 

aim to gain further insights on the mechanisms by which mitochondria are involved in 
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pathophysiology. 

Since most of the pathologies associated with mitochondrial dysfunction are 

characterized by reduced density and function of these organelles, we decided to 

focus our attention on the isolation of new “positive” mitochondrial regulators; in 

other words factors capable of inducing mitochondrial function.  

In all the experiments reported in this thesis we decided to use a gain of function 

approach instead of a loss of function strategy. Based on current knowledge, it might 

be expected that reduced expression of a given “potential” regulator does not 

necessarily lead to a marked phenotype. In this regard, the muscle-specific 

overexpression of the co-activator PGC-1α (a well characterized mitochondrial 

regulators) in mice induces an impressive switch toward oxidative-type muscle fibers 

containing large amounts of mitochondria [170, 171]. On the other hand PGC-1α-/- 

null mice displayed normal numbers of these fibers, and although mitochondrial gene 

expression and activity were blunted, mitochondrial fractional volume was unchanged 

in one study and only slightly decreased in another [71, 72]. 	
  	
  

To define potential mitochondrial regulators we performed a preliminary high 

throughput screening in HEK 293 cells, a cell line that allow high transfection 

efficiency. Afterwards, we characterized the new mitochondrial factors in the mouse 

skeletal muscle cell line C2C12, that are enriched in mitochondria. A mitochondrial 

regulator should increase both the mitochondrial biogenesis and function; thus we 

developed some biochemical-functional assays to evaluate these effects. We analyzed 

the mitochondrial DNA content as a hallmark of mitochondrial biogenesis and the 

oxygen consumption rate, the expression level of OXPHOS proteins and the ATP 

amount as a hallmark of mitochondrial function.  
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3.	
  Materials	
  and	
  Methods:	
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3.1	
  Cell	
  Culture	
  

3.1.1	
  Cell	
  Lines	
  

We used the human epithelial kidney HEK293 cells (ATCC) and the murine skeletal 

muscle myoblasts C2C12 cells (ATCC). 

3.1.2	
  Medium	
  

Maintenance Medium: Both cell lines were grown using the Dulbecco's Modified 

Eagle's Medium from Sigma (DMEM, D5671) added of 10% Fetal Bovine Serum 

(Euroclone), 2mM L-Glutamine (Life Technology) and 100U/ml Penicillin and 

100ug/ml Streptomycin (both Life Technology).  

Transfection Medium: We used for both cell lines the Dulbecco's Modified Eagle's 

Medium from Sigma (DMEM, D5671) without any addition. 

	
  

3.2	
  Expression	
  Vectors	
  

3.2.1	
  pCDNA3	
  

pCDNA3 empty vector (Open Biosystem) was used as negative control. A plasmid 

bearing the sequence encoding PGC-1α in the pCDNA3 vector (Open Biosystem) was 

used as positive control.  

3.2.2	
  pCMV	
  

This is the vector in which is cloned the cDNA coding for the green fluorescent 

protein (GFP), source Open Biosystem. We used this plasmid as a control of 

transfection degree.  



	
   42	
  

3.2.3	
  pCMV	
  Sport	
  6.1	
  

This is the vector in which are cloned all the cDNAs coding for the 22 potential 

mitochondrial regulators. We bought all these plasmids already assembled with the 

different genes from Open Biosystem. All the genes coding for the different 

candidates are murine except for genes 2 and 22 that are human. 

 

3.3	
  Reporter	
  System	
  

3.3.1	
  Wild	
  Type	
  TFAM	
  Reporter	
  System	
  (WT	
  TFAM)	
  

This reporter system has the luciferase expression under the control of the Tfam 

promoter. The promoter is composed of the region for the binding of NRF-1, Sp1 and 

NRF-2. We used this reporter system in the HTS experiment, but also to evaluate the 

Tfam activation by Zc3h10.  

3.3.2	
  Mutated	
  TFAM	
  Reporter	
  System	
  (MUT	
  TFAM)	
  

This reporter system has the luciferase expression under the control of a mutated form 

of the Tfam promoter. The promoter is deleted of the NRF-1 binding site. We used 

this reporter system to evaluate the Tfam activation by Zc3h10. 

3.3.3	
  pTKLUC	
  Reporter	
  System 

This reporter system has the luciferase expression under the control of the TK 

(thymidine kinase) promoter. We used this reporter system to sustain the hypothesis 

that exist a specific interaction between the Zc3h10 protein and the Tfam promoter 

and not with Zc3h10 protein and the backbone of the plasmid.	
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3.3.4	
  Zc3h10	
  Reporter	
  System	
  

This reporter system was purchased by SwitchGear Genomics and has the luciferase 

expression under the control of the Zc3h10 promoter. The promoter region cloned 

comprehends 907 bases. We used this reporter system to evaluate some possible 

inducer of the Zc3h10 promoter activity. 

	
  

3.4	
  Bioinformatic	
  Analysis	
  

3.4.1	
  Biological	
  process	
  and	
  molecular	
  function	
  classification	
  

This classification was performed using the free Panther Software 

(www.pantherdb.org). The genes were inserted as Enter IDs and the software 

provided the classification according to GeneOntology. 

3.4.2	
  BioGPS	
  analysis	
  

All the genes were inserted in BioGPS dataset (biogps.org) and their expression levels 

in the C2C12 cells and in the murine gastrocnemius were checked. 

3.4.3	
  PubMed	
  Analysis	
  

All the proteins encoded by the different genes were checked using PubMed 

(www.ncbi.nlm.nih.gov), in order to understand which function they have and if they 

are already known as mitochondrial regulators.  
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3.5	
  Transient	
  Transfections	
  

3.5.1	
  HEK	
  293	
  Cotransfection	
  in	
  96	
  well	
  plates,	
  “in-­‐plate	
  transfection”	
  

Materials: 

• 96 multi-well plate black (PerkinElmer) 

• C2C12 myoblasts (5000cell/well) 

• cDNA 80ng/well (pCDNA3, PGC-1α, candidates 1-22, and GFP) 

• reporter gene (WT Tfam-LUC) 20 ng/well 

• Fugene6 Transfection Reagent (Promega) 

• Transfection medium: DMEM Serum free, Sigma  

• Maintenance medium: DMEM Sigma + 1% pen-strep + 1% L-Gln + 10% fbs 

 

 

 

 

Protocol: 

• Add in each well with a matrix pipette 2ul of reporter gene from a solution 

concentrated 10ng/ul 

• Add in each well with a matrix pipette 4ul of each cDNAs from a solution 

concentrated 20ng/ul 

• Add in each well with a matrix pipette 3.5ul of DMEM serum free 

• Add in each well with a matrix pipette 0.5ul of Fugene 

• Centrifuge the plates for 2	
  min	
  a	
  750	
  rpm 

• Wait 20 minutes (the cDNA and Fugene have to form a complex) 

Quantities per well: 

- 100ul plated/well 

- cDNA: 80ng/well 

- reporter gene: 20ng/well 

- Fugene 1:5 

- cells: 5000 cells/well 
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• Add 90ul of cells concentrated 56000cell/ml.  

• Wait 40 minutes (the transfection has to happen) 

• Check the transfection efficiency 24h after transfection going to the 

fluorescent microscope and measuring how many green fluorescent cells you 

can see. (only for cells transcfected with GFP) 

3.5.2	
  C2C12	
  Myoblasts	
  Transfection	
  in	
  96	
  well	
  plates	
  

Materials: 

• 96 multi-well plate black (PerkinElmer) 

• C2C12 myoblasts (10000cell/well) 

• cDNA 125 ng/well (pCDNA3, PGC-1α, Zc3h10, and GFP) 

• Fugene6 Transfection Reagent (Promega) 

• Transfection medium: DMEM Serum free, Sigma  

• Maintenance medium: DMEM Sigma + 1% pen-strep + 1% L-Gln + 10% fbs 

	
  

	
  

	
  

 

 

Protocol: 

• Add 189.5ul of DMEM serum free into a 2ml tubes 

• Add 4.25ul of each cDNAs from a solution concentrated 300ng/ul 

• Add 6.25ul of Fugene 

• Wait 20 minutes (the cDNA and Fugene have to form a complex) 

• Add 75ul of cells concentrated 1300000cell/ml.  

Quantities per well: 

- 100ul plated/well 

- cDNA: 125ng/well 

- Fugene 1:5 

- cells: 10000 cells/well 

Quantities per mix:(1 mix = 10 wells)  

- Final Volume: 1ml /mix  

- Transfection Volume: 275µl/mix 

- cDNA: 1250ng/mix 

- Fugene 1:5: 6.25ul 

- Cells: 100000 cells/mix 

- cell volume: 75ul 

- cell concentration: 1300000cell/ml 
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• Wait 40 minutes (the transfection has to happen) 

• Add 725ul of DMEM Sigma + 1% pen-strep + 1% L-Gln + 10% fbs 

• Plate 100ul each well. 

• Check the transfection efficiency 24h after transfection going to the 

fluorescent microscope and measuring how many green fluorescent cells you 

can see. (only for cells transcfected with GFP) 

3.5.3	
  C2C12	
  Myoblasts	
  Transfection	
  in	
  24	
  well	
  plates	
  

Materials: 

• 24 multi-well plate  

• C2C12 myoblasts (20000cell/well) 

• cDNA 700 ng/well (pCDNA3, PGC-1α, candidates 1-22, and GFP) 

• Fugene6 Transfection Reagent (Promega) 

• Transfection medium: DMEM Serum free, Sigma  

• Maintenance medium: DMEM Sigma + 1% pen-strep + 1% L-Gln + 10% fbs 

 

 

 

 

 

 

Protocol: 

• Add 482 ul of DMEM serum free into a 2ml tubes 

• Add 7.5 ul of each cDNAs from a solution concentrated 300ng/ul 

• Add 11.2 ul of Fugene 

Quantities per well: 

- 500 ulplated/well 

- cDNA: 700 ng/well 

- Fugene 1:5 

- cells: 20000 cells/well 

Quantities per mix:(1 mix = 3.25  wells)  

- Final Volume: 1,625 ml /mix  

- Transfection Volume: 679 µl/mix 

- cDNA: 2240 ng/mix 

- Fugene 1:5: 11.2 ul 

- Cells: 100000 cells/mix 

- cell volume: 178 ul 
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• Wait 20 minutes (the cDNA and Fugene have to form a complex) 

• Add 178 ul of cells concentrated 560000 cell/ml.  

• Wait 40 minutes (the transfection has to happen) 

• Take the mix to the final volume with DMEM Sigma + 1% pen-strep + 1% L-

Gln + 10% fbs 

• Plate 500 ul in each well. 

• Check out the transfection efficiency 24h after transfection going to the 

fluorescent microscope and measuring how many green fluorescent cells you 

can see. (only for cells transcfected with GFP) 

3.5.4	
  C2C12	
  Myoblasts	
  Transfection	
  in	
  6	
  well	
  plates	
  

Materials: 

• 6 multi-wells plate  

• C2C12 myoblasts (500.000 cell/well) 

• cDNAs3.36 ug/well (pCDNA3, PGC-1α, Zc3h10, and GFP) 

• Fugene6 Transfection Reagent (Promega) 

• Transfection medium: DMEM Serum free, Sigma  

• Maintenance medium: DMEM Sigma + 1% pen-strep + 1% L-Gln + 10% fbs 

 

 

 

 

 

 

 

Quantities per well: 

- 2 ml plated/well 

- cDNA: 3.36 ug/well 

- Fugene 1:5 

- cells: 500000 cells/well 

Quantities per mix:(1 mix = 6.5wells)  

- Final Volume: 13 ml /mix  

- Transfection Volume: 1 ml/mix 

- cDNA: 21.84 ug/mix 

- Fugene 1:5: 109.2ul 

- Cells: 3500000 cells/mix 

- cell volume: 928ul 

- cell concentration: 3500000 cell/ml 
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Protocol: 

• Add 2.418 ml of DMEM serum free into a 50ml tubes 

• Add 73ul of each cDNAs from a solution concentrated 300ng/ul 

• Add 109.2ul of Fugene 

• Wait 20 minutes (the cDNA and Fugene have to form a complex) 

• Add 928 ul of cells concentrated 3500000 cell/ml.  

• Wait 40 minutes (the transfection has to happen) 

• Take the mix to the final volume with DMEM Sigma + 1% pen-strep + 1% L-

Gln + 10% fbs 

• Plate 2 ml in each well. 

• Check out the transfection efficiency 24h after transfection going to the 

fluorescent microscope and measuring how many green fluorescent cells you 

can see. (only for cells transcfected with GFP) 

3.5.5	
  C2C12	
  Myoblasts	
  Cotransfection	
  in	
  96	
  well	
  plates	
  

Materials: 

• 96 multi-well plate black (PerkinElmer) 

• C2C12 myoblasts (3000cell/well) 

• cDNA 132ng/well (pCDNA3, PGC-1α, Zc3h10, and GFP) 

• report system 66ng/well (WT Tfam-LUC, MUT Tfam-LUC, pTK-LUC or 

Zc3h10-LUC) 

• Lipofectamine 2000, Sigma 

• Transfection medium: DMEM Serum free, Sigma  

• Maintenance medium: DMEM Sigma + 1% pen-strep + 1% L-Gln + 10% fbs 
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Protocol: 

• Add 29.6ul of DMEM serum free into a 2ml tubes 

• Add 8.8ul of each cDNAsfrom a solution concentrated 150ng/ul 

• Add 6.6ul of the reporter system from a solution concentrated 100 ng/ul 

• Add 4ul of Lipofectamine 

• Wait 20 minutes (the DNA and Fugene have to form a complex) 

• Add 50ul of cells concentrated 600000cell/ml.  

• Wait 40 minutes (the transfection has to happen) 

• Add 900ul of DMEM Sigma + 1% pen-strep + 1% L-Gln + 10% fbs 

• Plate 100ul each well. 

• Check the transfection efficiency 24h after transfection going to the 

fluorescent microscope and measuring how many green fluorescent cells you 

can see. (only for cells transcfected with GFP) 

	
  

3.6	
  Mitochondrial	
  activity	
  evaluation	
  (HTS	
  validation)	
  	
  

The mitochondrial activity was analyzed 60 hours after cotransfection of 

HEK293cells in 96 multi-well plates. 

Materials: 

Quantities per well: 

- 100ul plated/well 

- cDNA: 132ng/well 

- reportersystem:66ng/well 

- Lipo: 5ul 

- cells: 3000 cells/well 

Quantities per mix:(1 mix = 10 wells)  

- Final Volume: 1ml /mix  

- Transfection Volume: 100µl/mix 

- cDNA: 1320ng/mix 

- reportersystem: 660 ng/mix 

- Lipo5ul 

- Cells: 100000 cells/mix 

- cell volume: 50ul 

- cell concentration: 600000cell/ml 
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• MitoTracker Red CM-H2Xros 

• PBS 1X 

• Hoechst 33258 

• H2O 

• EnVision (Perkin Elmer, Waltham, MA) 

Protocol: 

• Remove media from wells 

• Wash once cells with PBS 1X 

• Stained cell with 50 ul of a solution of MitoTracker Red CM-H2Xros 400nM 

in PBS 1X for 30 minutes at 37°C. 

• Remove the staining and wash once cells with PBS 1X 

• Read the fluorescence without any solution in the wells (dry cells) 

(EnVision protocol: Bottom Mirror: FITC Bottom 

Excitation filter: FITC 580nm 

Emission filter: FITC 620nm) 

• Stained cell with 50 ul of a solution of Hoechst 3325 diluited1:1000 in H2O 

for 3 minutes at RT. 

• Remove the staining and wash once cells with PBS 1X 

• Read the fluorescence without any solution in the wells (dry cells) 

(EnVision protocol: Bottom Mirror: DAPI Bottom 

Excitation filter: FITC 320nm 

Emission filter: FITC 460nm) 

The mitochondrial activity values obtained by MitoTracker Red CM-H2Xros staining 

were than divided for the number of cells measured by Hoechst 3325 staining. 
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3.7	
  quantitative	
  Real	
  Time	
  PCR	
  (qRT-­‐PCR)	
  

3.7.1	
  mtDNA	
  

Total DNA from C2C12 myoblasts was extracted 60 hours after transfection and 

purified with NucleoSpin® Tissue extraction kit (Macherey-Nagel, Milano, Italia) 

and quantitated with Nanodrop (Thermo Scientific, Wilmington, DE). Each sample 

was diluted at 5 ng/ul. Specific DNA sequences were amplified and quantitated by 

real time PCR, using iScriptTM One Step RT-PCR for Probes (Bio-Rad, Milano, 

Italia), following the manufacturer’s instructions. Experiments were performed in 

triplicate and repeated at least twice with different cell preparations. Calculate the 

mtDNA levels comparing the target gene (Mitochondrial) values with the 

houskeeping gene (Nuclear) values. The qRT-PCR protocol is composed of 40 cycles 

of amplifications each consisting of a denaturation step at 95° C for 15 seconds and 

an annealing/extension step at 60° C for 60 seconds. The oligonucleotides used for 

real-time PCR were synthesized by Eurofin MWG Operon (Ebersberg, Germany) and 

were: 

 

 

 

 

3.7.2	
  mRNA	
  

Total RNA from murine skeletal muscle was extracted with TRIzol Reagent® 

(Invitrogen) and purified with commercial kit (Macherey-Nagel, Milano, Italia) and 

quantitated with Nanodrop (Thermo Scientific, Wilmington, DE). Specific mRNA 

fwd AGATGCAGCAGATCCGCAT
m36B4 rev GTTCTTGCCCATCAGCACC

probe CGCTCCGAGGGAAGGCCG
fwd TGGTGAACTACGACTGCT

m mtCOX II rev CTGGGATGGCATCAGTTT
probe TGGCAGAACGACTCGGTTATCAACT
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was amplified and quantitated by real time PCR, using One Step for probes kit (Bio-

Rad, Milano, Italia) following the manufacturer’s instructions. Data were normalized 

to 36B4 mRNA and quantitated setting up a standard curve. 

Experiments were performed in triplicate. Primers for real-time PCRs were designed 

with IDT software available on line. The qRT-PCR protocol is composed of 10 min at 

50°C for reverse transcription, 40 cycles of amplifications each consisting of a 

denaturation step at 95° C for 10 seconds and an annealing/extension step at 60° C for 

30 seconds. The oligonucleotides used for qRT-PCR were synthesized by 

EurofinMWG Operon (Ebersberg, Germany) and were: 

 

	
  

	
  

	
  

3.8	
  Oxygen	
  Consumption	
  Evaluation 

Materials: 

• Trypsin 

• Oxygen Consumption Buffer, 50 ml total PBS with: 

- 25 mM D-Glucose 

- 1 mM Na pyruvate 

- Fatty acid free BSA 2% w/v (g/100ml) 

• Oligomycin 2.5 mM 

• CCCP 10 mM 

Protocol: 

• Remove media from wells 

fwd AGATGCAGCAGATCCGCAT
rev GTTCTTGCCCATCAGCACC
fwd TGGTGAACTACGACTGCT
rev CTGGGATGGCATCAGTTT
fwd CATTTGATGCACTGACAGATGGA(
rev GTCAGGCATGGAGGAAGGAC(
fwd CACCCAGATGCAAAACTTTCAG
rev CTGCTCTTTATACTTGCTCACAG
fwd CCTACGAATGTAACTTGGCTCC
rev CTGCTCCAGAAGTACCTCATTG

m36B4

m mtCOX II

mPgc-1α

mTfam 

mZc3h10

fwd AGATGCAGCAGATCCGCAT
rev GTTCTTGCCCATCAGCACC
fwd TGGTGAACTACGACTGCT
rev CTGGGATGGCATCAGTTT
fwd CATTTGATGCACTGACAGATGGA(
rev GTCAGGCATGGAGGAAGGAC(
fwd CACCCAGATGCAAAACTTTCAG
rev CTGCTCTTTATACTTGCTCACAG
fwd CCTACGAATGTAACTTGGCTCC
rev CTGCTCCAGAAGTACCTCATTG

m36B4

m mtCOX II

mPgc-1α

mTfam 

mZc3h10
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• Detach cells with Trypsin 

• Centrifuge cells at 2000 rpm for 3 min 

• Discard supernatant 

• Resuspend cells in 1 ml of oxygen consumption buffer 

• Evaluate the basal level of oxygen consumption 

• To measure the uncoupled respiration, treat cells with oligomycin 2.5 uM 

• To measure the maximal respiration, treat cells with CCCP 3.75 uM 

• Remove the sample from the chamber and use 200 ul for normalizing values 

with the proteins quantification 

Centrifuge remaining cells for WB analysis 

 

3.9	
  Measurement	
  of	
  promoter	
  activity	
  

3.9.1	
  Measurement	
  of	
  Tfam	
  promoter	
  activity	
  and	
  pTK-­‐LUC	
  

The Tfam promoter activity or the pTK-LUC was analyzed 24 hours after transfection 

of C2C12 myoblasts in 96 multi-well plates. 

Materials: 

• Britelite	
  (Perkin	
  Elmer) 

• EnVision (Perkin Elmer, Waltham, MA) 

Protocol: 

• Remove the medium from each well 

• Add 50ul of fresh Britelite prepared according the company’s instruction 

• Wait 2 minutes and read the luminescence with the EnVision device 
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3.9.2Measurement	
  of	
  Zc3h10	
  promoter	
  activity	
  

Materials: 

• Renilla	
  (Promega) 

• EnVision (Perkin Elmer, Waltham, MA) 

Protocol: 

• Remove the medium from each well 

• Wash cells with 50 ul of PBS 

• Add 20ul of Renilla Luciferase assay Lysis buffer prepared according to 

manufacturer’s instruction 

• Wait 15 minutes and read the luminescence with the EnVision device 

	
  

3.10	
  Protein	
  Extraction	
  and	
  Dosage	
  	
  

Material:  

• C2C12 myoblasts 

• 96 multi-well plates  

• RIPA buffer 

• BSA 2 mg/ml 

• KIT BCA Kit (Pierce)  

RIPA Buffer preparation: 

 TrisHCl pH 7,4 50mM 

 NP-40 1% 

 Na-desossicolate 0,25% 

 NaCl 150 mM 
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 EDTA 1mM 

 Protease Inhibitors, 10ul/ml (Sigma) 

 H2O to reach the desired volume 

Proctocol: 

• Prepare in a 96 wells plate a standard curve in duplicate following the table: 

curvepoints Pointsconcentration 
mg/ml 

ulfrom 2mg/ml 
BSA stock  

ul H2O ulLysis 
Buffer 

A 1 5 ul x 5 ul 

B 0,75 3,75 1,25 5 ul 

C 0,5 2,5 2,5 5 ul 

D 0,25 1,25 3,75 5 ul 

E 0,125 0,62 4,38 5 ul 

F 0 x 5 ul 5 ul 
 

    

• Centrifuge cells and remove the supernatant 

• Add 200ul RIPA buffer to lysate cells 

• If some gelatinous conglomerate is present, centrifuge for 3 min at 14000 rpm 

and keep the supernatant  

• Aliquote5 ul of the supernatant of each samples in the wells 

• Prepare the BCA reagent: 50 Reagent A : 1 Reagent B 

• Add 200ul of BCA Reagent in each well 

• Incubate 30 min a 37°C 

• Read the absorbance at 550 nm  

• Calculate the total mg of protein for each sample 
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3.11	
  Western	
  Blot	
  

The proteins used for this analyses were collected from the same sample used for the 

Oxygen consumption, after this measurement 

3.11.1	
  OXPHOS	
  WB	
  

Solutions preparation: 

1. SDS-sample buffer 2X: 

 20% Glycerol 

 4% SDS 

 100 mMTris pH 6.8 

 0.002% BBF 

2. Running buffer 10X: 

 144g Glycine 

 30g Tris 

 Bring to 8.4 pH 

 10g of SDS 

 Add water to reach 1L 

3. Running Buffer 1X: 

 100ml of Running Buffer 10X 

 900 ml of H2O 

4. CAPS buffer: 

 4.52g CAPS (Sigma) 

 Add 1.6L of H2O 

 Bring to pH 11 

 Add H2O to reach 2L volume 
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5. PBS: 

 8g NaCl 

 0.2g KCl 

 1.44g Na2HPO4 

 0.24g KH2PO4 

 Add H2O to reach 1L volume 

Material: 

• SDS – sample buffer 2X 

• Running Bffer 1X 

• CAPS Buffer 

• MitoProfile® Total OXPHOS Rodent WB Antibody Cocktail (ab110413) 

• mouse anti beta actin Antibody (Sigma) 

• Secondary anti-mouse Ab conjugated with horseradish peroxidase 

• PBS 1X 

• Tween-20 

• Milk powder 

• ECL western blot substrate (Pierce) 

Protocol: 

• Load 10 ug of samples proteins (previously resuspended 1ug/ul in SDS – 

sample buffer 2X, in order to lysate cells) in each well 

• Separate proteins on a 10 wells Tris-Glycine 12.5 % PAA gel at 110 V in the 

Running Buffer 1X 

• Soak gel and a PVDF membrane in CAPS buffer for 30 min 

• Transfer to the PVDF membrane in CAPS buffer for 2 hours 
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• Overnight block in 5% milk/PBS 4° C 

• Incubate blot with MitoScienceAb cocktail diluted 1:250 in 1% milk/PBS for 

2 hours or with the anti beta actin antibody diluted 1:1000 in 1% milk/PBS for 

1 hour 

•  Wash 3 times in PBS/0.05% tween-20 for 5 min 

• Incubate blot with secondary anti-mouse Ab diluted 1:5000 in 1% milk/PBS 

for 2 hours 

• Wash 3 times in PBS/0.05% tween-20 for 5 min 

• Develop with ECL western blot substrate	
  

3.11.2	
  Zc3h10	
  WB	
  

Solutions preparation: 

1. SDS-sample buffer 2X: 

 20% Glycerol 

 4% SDS 

 100 mMTris pH 6.8 

 0.002% BBF 

2. Running buffer 10X: 

 144g Glycine 

 30g Tris 

 Bring to 8.4 pH 

 10g of SDS 

 Add water to reach 1L 

3. Running Buffer 1X: 

 100ml of Running Buffer 10X 

 900 ml of H2O 
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4. Transfer buffer 10X: 

 288g Glycine  

 60.4 Tris Base 

 Add H2O to reach 1L volume 

5. Transfer Buffer 1X: 

 100ml of Transfer Buffer 10X 

 200ml of Methanol 

 Add H20 to reach 1L volume 

6. PBS: 

 8g NaCl 

 0.2g KCl 

 1.44g Na2HPO4 

 0.24g KH2PO4 

 Add H2O to reach 1L volume 

7. TBS-T (1L): 

 50mM Tris 

 150mM NaCl 

 Adjust pH with HCl to pH 7.6 

 1ml of Tween 20 

Material: 

• SDS – sample buffer 2X 

• ZC3H10 primary antibodie (AVIVA) 

• mouse anti beta actin Antibody (Sigma) 

• Secondary anti-mouse Ab conjugated with horseradish peroxidase (Sigma) 

• Secondary anti-rabbit Ab conjugated with horseradish peroxidase (Sigma) 
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• PBS 1X 

• PBS-T 0,05 % 

• BSA 

• TBS-T 0,1 % 

• ECL western blot substrate (Pierce) 

Protocol: 

• Load 25 ug of samples proteins (previously resuspended 1ug/ul in SDS – 

sample buffer 2X) in each well 

• Separate proteins on a 10 wells Tris-Glycine 12.5 % PAA gel at 110 V in the 

Running Buffer 1X 

• Transfer to the NitroCellulose membrane in transfer buffer for 1 hour and half 

at 350 mA 

• Block in 5% BSA/PBS-T at RT for 2 hs 

• Incubate blot with ZC3H10 antibody diluted 1:1000 in 3% BSA/TBS-T for 

O/N 

• Wash 3 times in TBS-T 0,1% for 5 min 3 times 

• Incubate blot with secondary anti-rabbit Ab diluted 1:50000 in 3% BSA/TBS-

T for 1 hour 

• Wash 3 times in TBS-T 0,1% for 5 min 3 times 

Develop with ECL western blot substrate 
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3.12	
  Evaluation	
  of	
  ATP	
  Production	
  

The ATP production was analyzed 60 hours after transfection of C2C12 myoblasts in 

96 multi-well plates. 

Solutions preparation: 

1. Oligomycin 5 uM in serum free DMEM media 

2. DMSO 5 uM in serum free DMEM media 

3. Standard curve solutions: ATP 50, 5, 0.5, 0.05, 0.005, 0.0005 uM in PBS 

4. ATP buffer solution 

Protocol: 

• Treat samples with the solutions 1 or 2 at 37° C for 24 hours (100 uL/well) 

After 24 hours: 

• Keep the PBS 1X at RT 

• Remove the medium from each well 

• Aliquote 50 uL of standard curve solutions in the respective wells 

• Aliquote 50 uL of PBS in samples wells 

• Aliquote 50 uL of solution 4 in each well 

• Shake the 96 well plate for 2 minutes using an orbital shaker 

• Measure the luminescence (EnVision, PerkinElmer) 

 

To calculate the cytosol ATP production, subtract the luminescence signal obtained 

from the oligomycin treated samples to the signal obtained from the respective 

vehicle treated samples. 
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3.13	
  Evaluation	
  of	
  ROS	
  production	
  

The ROS production was analyzed 60 hours after transfection of C2C12 myoblasts in 

96 multi-well plates. 

Solutions preparation: 

1. Solution H2O2 10mM in PBS 

. 2ul H2O20.9M (H2O2 3% bought in pharmacy) 

. 178ul PBS 1X at 37°C 

2. Solution H2DCFDA 10mM 

Add 8.6ul of DMSO to the lyophilized probe (Invitrogen cod. c6827) 

3. Solution H2O2 25uM and H2DCFDA 5uM in PBS: 

. 3ul H2DCFDA 10mM 

. 15ul H2O2 10mM 

. 5982ul PBS 1X at 37°C 

4. Solution H2DCFDA 5uM in PBS: 

. 3ul H2DCFDA 10mM 

. 5997 PBS 1X at 37°C 

5. Blank solution DMSO 0.05%: 

. 3ul DMSO 

. 5997ul PBS 1X at 37°C 

6. Blank with H2O2solution (H2O2 25uM in PBS without probe) 

. 1.25ul H2O2 10mM 

. 499ul PBS 1X at 37°C 

Protocol: 

• Warm the PBS 1X at 37°C 

• Prepared all the solution 



	
   63	
  

• Remove the medium from each well 

• Treat each well with the appropriate solution 3-6 

• Leave for 30 minutes at 37°C 

• Remove the treatment solutions from each well 

• Wash once with pre-warmed PBS 1X 

• Read the fluorescence without any solution in the wells (dry cells) 

(EnVision protocol: Bottom Mirror: FITC Bottom 

Excitation filter: FITC 485nm 

Emission filter: FITC 535nm) 

• Add 30ul of Ripa Buffer in each well 

• Vortex the wells  

• Protein Dosage using the BCA kit (cod. 23227 Pierce BCA Protein Assay Kit) 

We decided to normalize the Ros detection data dividing them by the number 

of proteins. 

 

3.14	
  Evaluation	
  of	
  membrane	
  potential	
  	
  

The mitochondrial membrane potential was analyzed 60 hours after transfection of 

C2C12 myoblasts in 96 multi-well plates. 

Solutions preparation: 

1. Solution JC-1 3uM in PBS 

. 2.34ul JC-1 7.7mM  

. 5998ul PBS 1X at 37°C 

2. Solution JC-1 3uM and CCCP 10uM 

. 1ul CCCP 10mM in DMSO 
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. 999ul solution 1 

3. Blank solution (for JC-1): 

. 2.34ul DMSO 

. 5998ul PBS 1X at 37°C 

4. Blanksolution (for CCCP): 

. 1ul DMSO 

. 999ul solution3 

Protocol: 

• Warm the PBS 1X at 37°C 

• Prepared all the solution 

• Remove the medium from each well 

• Treat each well with the appropriate solution 1-4 

• Leave for 30 minutes at 37°C 

• Remove the treatment solutions from each well 

• Wash once with pre-warmed PBS 1X 

• Read the fluorescence without any solution in the wells (dry cells) 

EnVision protocols:  

GREEN MONOMERS 

Bottom Mirror: FITC Bottom 

Excitation filter: FITC 485nm 

Emission filter: FITC 535nm 

RED J-AGGREGATE 

Bottom Mirror: FITC Bottom     

Excitation filter: FITC 485nm                                       

Emission filter: FITC 600nm
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• Add 30ul of Ripa Buffer in each well 

• Vortex the wells  

• Protein Dosage using the BCA kit (cod. 23227 Pierce BCA Protein Assay Kit) 

To calculate the mitochondrial membrane depolarization you have to calculate the JC-

1 ratio, you have to divide the red J-Aggregates value for the green monomer value.  

We decided to normalize the depolarization data dividing the JC-1 ratio values by the 

number of proteins. 

 

3.15	
  Zc3h10	
  expression	
  levels	
  in	
  different	
  mice	
  organs	
  	
  

C57Bl/6J mice were purchased from Charles River Laboratories, Calco, Italy. Four 

male mice at 10 weeks of age were sacrificed and the different organs were collected. 

All animal studies were approved by the local ethical committee and followed the 

Italian and European Community legislation. 

The tissues were kept in nitrogen tillthe mRNA was extracted as explained before. 

	
  

3.16	
  Statistical	
  analysis	
  

Statistical analyses were performed with Student’s t test or one-way ANOVA 

followed by Dunnett’s Post Test when needed using GraphPadPrism version 5.0 for 

Macintosh (GraphPad, San Diego, California). 
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4.	
  Preliminary	
  Results:	
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4.1	
  High	
  Throughput	
  Screening	
  

Since all factors known to influence mitochondrial number or OXPHOS appear to 

modulate the expression of Tfam, evaluation of its promoter activity can be used as a 

screening system to identify genes and genetic pathways that regulate mitochondrial 

biogenesis. To aid functional annotation of the genome, the Genomics Institute of the 

Novartis Research Foundation (GNF) has developed technology to assess the role of 

genes in a high-throughput manner in cell-based phenotypic assays. Specifically, 

GNF has assembled genome-wide cDNA and siRNA collections, arrayed them in 

384-well format (1 gene/well), developed robotics/automation and procedures to 

manipulate, transfect cells, and evaluate gene activity in transfected cells in a high-

throughput screen (HTS) fashion (Fig. 4.1.1). This technology has been used to 

discover new oncogenes, transcriptional co-activators that regulate metabolism, 

modulators of apoptosis, p53, Wnt signaling, etc.[172-177]. 

 

 

 

 

 

 

 

 

Figure 4.1.1: Scheme of the Tfam-Luc transfection used in the screen. 
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In collaboration with the GNF we applied this technology was to identify genes that 

modulate mitochondrial number and function. To this end two cDNA libraries, which 

account for 70% of known genes, were overexpressed in mammalian expression 

vectors by transient transfection in HEK 293 cells. One of these libraries contains 

16,000 fully sequenced cDNAs (MGCv2, mouse and human), while the other one 

includes 11,000 5’ and 3’ sequenced cDNAs (Origene, mouse and human). These 

collections have been arrayed onto 384-well plates for functional screening, with a 

single cDNA spotted per well to facilitate deconvolution of results. Individual cDNAs 

were co-transfected with a luciferase reporter to measure the activity of mitochondrial 

transcription factor A (Tfam; Fig. 4.1.2).  

 

 

 

Figure 4.1.2: Scheme of the Tfam-Luc reporter system. 

 

Since all factors known to influence mitochondrial number or oxidative 

phosphorylation such as PGC-1α, NAD+-dependent histone/protein deacetylases such 

as sirtuins and in particular SIRT1, NRF1 and p160 myb binding protein appear to 

modulate Tfam expression levels, evaluation of Tfam promoter activity can serve as a 

marker to identify genetic pathways that regulate mitochondrial biogenesis. Pilot 

experiments with this reporter performed in screening mode (384-well, robotic 

manipulations) indicate that the signal to noise ratio is robust and appropriate for HTS 

(Fig. 4.1.3).  
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Figure 4.1.3: validation of Tfam promoter in HEK 293 cells. PGC-1α and SIRT1 were used 
as positive control and p160 myb binding protein as negative. Data are presented as relative 
light unit (RLU). Statistical analysis was performed using one way ANOVA followed by 
Tukey post test, **P<0.001. 
 

Libraries were screened in duplicate and data statistically evaluated to select hits. 

cDNA was considered a hit if it regulated Tfam expression as much as positive 

known regulators of mitochondrial functions such as PGC-1α (positive, [63]) and 

p160 myb binding protein (negative, [178]). All hits were checked against GNF’s 

genomic screening database to exclude genes that induce Tfam activity in a not 

specific manner. The genomic HTS yielded 441 clones able to induce and 300 clones 

able to reduce Tfam promoter activity (Fig. 4.1.4 A and B).  
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Figure 4.1.4: graphical representation of the mitochondrial screen data analysis. A) Data plot 
in a Log2 based scale. The distribution of the data shows the positive and the negative hits 
(blue circle) at the upper and the lower bound of the X axis. B) This graph shows the score 
ofpositive (PGC-1α) and negative (p160 myb) controls in the screen determining the cut off 
to choose the hits. 
	
  

	
  

4.2	
  FACS	
  Analysis	
  

As already mentioned, we focused our attention only on the 441 positive candidates, 

as our final aim is to discover new positive mitochondrial regulators. All hits from the 

cDNA screen were confirmed in HEK 293 cells by flow cytometry analyses of cells 

transfected with a single cDNA and stained with Mitotracker® Green and 

Mitotracker® CM-H2X-ROS as markers for mitochondrial density and function, 

respectively. Notably, by applying these screening assays, we were able to identify 

factors already known to promote mitochondrial biogenesis like CREB (cAMP 

response element binding protein [179]) among the positive hits.  

Starting from 441 genes, 131 positive candidates were confirmed to modulate 

mitochondrial density and activity in HEK293 cells. 	
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5.	
  Results:	
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5.1	
  Bioinformatic	
  Analysis	
  

In order to better investigate 131 genes, we classified them according to their 

biological and molecular function (GeneOntology classification). By using	
  Panther	
  

software (www.pantherbd.org) we	
   were	
   able	
   to classify 126 candidates, so we 

decided to exclude the five missing genes from the analysis, as either they did not 

have aliases or they were not recognized by the software.  

	
  

5.1.1	
  Biological	
  process	
  classification	
  

By classifying the 126 candidates according to their biological function, we found that 

the 40% of the encoded proteins are involved in cellular and metabolic processes (Fig. 

5.1.1 and Table 5.1). Hence, we decided to classify these two components in more 

depth. The genes classified	
  as	
  belonging	
  to metabolic processes are mainly involved 

in nucleic acid metabolic processes or in protein metabolic processes (Fig.5.1.1 B and 

Table 5.2). On the other hand, the genes that	
  according	
  to	
  GO	
  classification	
  belong	
  

to cellular processes are mainly involved in cell cycle or in cell communication (Fig. 

5.1.1 C and Table 5.3). 
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Figure 5.1.1: The 126 genes were classified according to GeneOntology biological processes 
(A), metabolic processes (B) and Cellular processes (C) using www.pantherdb.org. 
 

Table 5.1: Biological process classification. 

 

Table 5.2: Metabolic process classification. 

 

 

BIOLOGICAL PROCESSES NR. OF GENES % 
cell communication (GO:0007154) 30 9.9% 

cellular process (GO:0009987) 47 15.5% 
localization (GO:0051179) 2 0.7% 

transport (GO:0006810) 20 6.6% 
cellular component organization (GO:0016043) 8 2.6% 

apoptosis (GO:0006915) 9 3.0% 
system process (GO:0003008) 18 5.9% 
reproduction (GO:0000003) 6 2.0% 

response to stimulus (GO:0050896) 14 4.6% 
developmental process (GO:0032502) 29 9.5% 

generation of precursor metabolites and energy (GO:0006091) 3 1.0% 
metabolic process (GO:0008152) 73 24.0% 

cell cycle (GO:0007049) 23 7.6% 
immune system process (GO:0002376) 18 5.9% 

cell adhesion (GO:0007155) 4 1.3% 

METABOLIC PROCESSES NR. OF GENES % 
nucleobase, nucleoside, nucleotide and nucleic acid metabolic 

process (GO:0006139) 40 45.5% 

lipid metabolic process (GO:0006629) 9 10.2% 
cellular amino acid and derivative metabolic process 

(GO:0006519) 6 6.8% 

protein metabolic process (GO:0019538) 26 29.5% 
carbohydrate metabolic process (GO:0005975) 7 8.0% 
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CELLULAR PROCESSES NR. OF GENES % 
cell motion (GO:0006928) 6 8.2% 
cell cycle (GO:0007049) 23 31.5% 

chromosome segregation (GO:0007059) 2 2.7% 
cell adhesion (GO:0007155) 4 5.5% 

cell communication (GO:0007154) 30 41.1% 
cellular component organization (GO:0016043) 8 11.0% 
Table 5.3: Cellular classification. 

	
  

5.1.2	
  Molecular	
  function	
  classification	
  

Analysis of the 126 genes by their molecular function revealed that the	
  classes	
  that	
  

describe	
  a	
  large	
  fraction	
  of	
  the	
  genes	
  under	
  investigations	
  are binding (35%) and 

catalytic activity (33%) (Fig.5.1.2 A and Table 5.4). In addition, genes involved in 

binding are mainly nucleic acid binding proteins (74%) (Fig.5.1.2 B and Table 5.5), 

while those involved in catalytic activity are mainly involved either in hydrolase 

activity (31%) or in transferase activity (23%) (Fig. 5.1.2 C and Table 5.6). 
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Figure 5.1.2: The 126 genes were classified according to GeneOntologymolecular functions 
(A), Binding type (B) and Catalitic activity (C) using the panther software 
(www.pantherdb.org). 
 

MOLECULAR FUNCTIONS NR. OF GENES % 
ion channel activity (GO:0005216) 2 1.3% 
transporter activity (GO:0005215) 5 3.3% 

translation regulator activity (GO:0045182) 1 0.7% 
transcription regulator activity (GO:0030528) 18 11.8% 

enzyme regulator activity (GO:0030234) 9 5.9% 
catalytic activity (GO:0003824) 49 32.2% 
motor activity (GO:0003774) 1 0.7% 

receptor activity (GO:0004872) 7 4.6% 
antioxidant activity (GO:0016209) 1 0.7% 

structural molecule activity (GO:0005198) 5 3.3% 
binding (GO:0005488) 54 35.5% 

Table 5.4: Molecular function classification. 

 

Table 5.5: Binding classification. 

	
  

	
  

	
  

	
  

	
  

BINDING NR. OF GENES % 
nucleic acid binding (GO:0003676) 37 58.7% 
calcium ion binding (GO:0005509) 1 1.6% 
chromatin binding (GO:0003682) 4 6.3% 

protein binding (GO:0005515) 21 33.3% 
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Table 5.6: Catalytic classification. 

	
  

5.1.3	
  BioGPS	
  and	
  PubMed	
  analysis	
  

To further narrow down the number of positive hits to be included in future 

experiments we established some selection criteria. We chose hits that are involved in 

one or more key cell function according to the bioinformatic classification reported 

above. Moreover, we verified the expression profile of the candidate genes in 

HEK293 cells, in C2C12 cells and in the mouse gastrocnemius, by interrogating the 

BioGPS database. Then we assigned priority to those genes for which no links with 

mitochondria are known yet, by performing a research in literature through PubMed. 

By applying these selection criteria we chose 22 candidates; 3 belonging to the 

category  “catalytic activity”, 4 to the category “signal transduction”, 11 to the 

category “transcription processes”, 4 genes encoding for structural proteins and 1 

whose function has not been annotated yet. 

 

 

	
  

	
  

CATALYTIC ACTIVITY NR. OF GENES % 
transferase activity (GO:0016740) 12 21.8% 

ligase activity (GO:0016874) 2 3.6% 
deaminase activity (GO:0019239) 2 3.6% 
helicase activity (GO:0004386) 1 1.8% 

hydrolase activity (GO:0016787) 18 32.7% 
RNA splicing factor activity, transesterification 

mechanism (GO:0031202) 6 10.9% 

lyase activity (GO:0016829) 4 7.3% 
oxidoreductase activity (GO:0016491) 8 14.5% 

isomerase activity (GO:0016853) 2 3.6% 



	
  

	
   77	
  

5.2	
   HTS	
   validation:	
   evaluation	
   of	
   mitochondrial	
   activity	
   in	
  

HEK	
  293	
  cell	
  

In order to validate the HTS for the selected candidates, the 22 cDNAs were 

transiently transfected in HEK293 cells and their ability to increase the mitochondrial 

activity was assessed 60 h after transfection using the MitoTracker® CM-H2X-ROS 

dye. We selected this time point to allow transcription and translation of the 

transfected cDNAs and activation of the mitochondrial machinery. This was an “in-

plate” staining instead of flow cytometry-based assay; however this method displays 

advantages compared with flow cytometry, used in the first screen. The fluorescence 

relative to mitochondrial activity is detected in live cells directly in the wells with no 

need of trypsin to allow cells to detach from the well. The latter is a step required in 

flow cytometry that can alter cell morphology and activities. To evaluate the 

transfection efficiency we transfected the Green Fluorescent Protein (GFP) and the 

fluorescence was checked by microscope before performing the experiment. The cell-

permeant MitoTracker®CM-H2X-ROS probe contains a mildly thiol-reactive 

chloromethyl moiety for labeling mitochondria, the probe passively diffuse across the 

plasma membrane and accumulate in active mitochondria thus the fluorescence is a 

quantitative measure of the mitochondrial activity. As shown in Fig. 5.2.1, all the 

candidates were able to induce the mitochondrial activity with a higher or equal 

power compared to that of PGC-1α, confirming the data obtained with the previous 

screening performed in a high throughput format. 
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Figure 5.2.1: mitochondrial activity. HEK 293 cells transfected with the empty vector were 
used as control (CTRL), PGC-1α was used as positive control. Data were normalized against 
cell number and expressed setting at 1 the signal measured in CTRL samples. Statistical 
analysis was performed using t-test, ***P<0.0001, *vs CTRL. 
 

 

5.3	
  Validation	
  of	
  the	
  22	
  genes	
  in	
  C2C12	
  myoblasts	
  

Skeletal muscle is one of the tissues with the strongest levels of dependence on 

mitochondrial function in regulating the oxidative metabolism, as shown by the 

severe impacts of mitochondrial diseases on muscle performance in patients [180]. 

Thus, skeletal muscle is an attractive tissue for analyzing in depth the regulation of 

mitochondrial biogenesis and function. By this means, we decided to characterize the 

22 candidates identified in C2C12 cell line, a mouse skeletal muscle cell line.  We 

used C2C12 myoblasts, since they are very well characterized and easily to manage 

and to transfect. In addition, in literature they are commonly used for studies dealing 

with the energetic metabolism. To evaluate the transfection efficiency we transfected 

the GFP and the fluorescence was detected by microscope before performing each 

single experiment.  
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5.3.1	
  Evaluation	
  of	
  the	
  mitochondrial	
  biogenesis	
  

Taking into consideration the previous results and what is reported in literature, we 

decided to investigate if the overexpression of the 22 candidates in C2C12 cells could 

lead to an increase in the mitochondrial DNA copy number [4, 93, 110, 181]. In fact, 

one of the hallmarks of mitochondrial biogenesis is the increase of mitochondrial 

DNA content. The 22 hits were individually transfected in C2C12 and after 60 hours 

total DNA (nuclear and mitochondrial) was extracted. We selected this time point to 

allow transcription and translation of the transfected cDNAs and to give them enough 

time to regulate the mitochondrial machinery. The mitochondrial DNA content was 

evaluated as the ratio between the amount of a mitochondrial encoded gene 

(cytochrome c oxidase subunit II, COXII) and the amount of a nuclear encoded gene 

(ribosomal protein large P0, Rplp0 or 36B4). The data were obtained using 

quantitative real-time polymerase chain reaction (qRT-PCR). As shown in Fig. 5.3.1, 

all the candidates increased the mitochondrial DNA content at the same or higher 

levels of those found in cells overexpressing PGC-1α, a very well known 

mitochondrial regulator [63].  

 

 

 

 

 

 

Figure 5.3.1: mtDNA quantification. C2C12 myoblasts were transfected with the empty 
vector (CTRL), with PGC-1α and all the22 cDNAs. Sixty hours after transfection total DNA 
was extracted from cells. The mtDNA was measured by qRT-PCR and expressed as the ratio 
between the amount of a mitochondrial gene (COXII) and a nuclear gene (36B4). The data 
were expressed setting at 1 the ratio found in cells transfected with the empty vector. 
Statistical analysis was performed using t-test, *P<0.05, **P<0.01, ***P<0.0001, *vs CTRL. 

CTRL 

PGC-1α
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0

1

2

3

4

** * *
***

*
*

*
** *

*
**

*

*

** *
**

* *

****
**

** *

fo
ld

 in
d

u
ct

io
n



	
  

	
   80	
  

5.3.2	
  Evaluation	
  of	
  the	
  oxygen	
  consumption	
  rate	
  

A potential mitochondrial regulator should increase not only the mtDNA copy 

number, but also the mitochondrial function. A functional approach to estimate the 

mitochondrial activity is the evaluation of the respiration, measured as nanomoles of 

oxygen consumed per minute. Whole C2C12 myoblasts individually transfected with 

the 22 genes, 60 hours after transfection, were measured for the basal oxygen 

consumption rate by using a Clark electrode-based oxygraph. As shown in Fig. 5.3.2, 

the overexpression of 13 out of the 22 candidates enhanced the basal respiration rate. 

In particular, overexpression of candidate 9, 10, 19 and 22 induced the respiration by 

1.7 times compared to the control. It is worth to notice that PGC-1α, our positive 

control, increased the respiration of 1.5 times, as already reported by other groups 

[63]. 

 

 

 

 

 

 

Figure 5.3.2: Oxygen Consumption. C2C12 myoblasts were transfected with the empty vector 
(CTRL), with PGC-1α and all the22 cDNAs. At 60 hours after transfection the cells were 
detached from the plates and transferred to a chamber for measurement of oxygen 
consumption. All data were normalized by protein content and were expressed setting at 1 the 
respiration rate measured in cells transfected with empty vector. Statistical analysis was 
performed using t-test, *P<0.05, **P<0.01, ***P<0.0001, *vs CTRL. 
 
	
  

In	
  the	
  experimental	
  conditions	
  used,	
  we	
  observed	
  that	
  the	
  overexpression	
  of	
  all	
  

22	
   candidates	
   induced	
   a	
   significant	
   increase	
   of	
   mtDNA,	
   suggesting	
   a	
   positive	
  

effect	
   on	
   mitochondrial	
   biogenesis.	
   Nonetheless	
   only	
   4	
   of	
   them	
   were	
   able	
   to	
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increase	
   the	
   basal	
   respiration	
   rate,	
   index	
   of	
   enhanced	
   oxidative	
   function.	
   All	
  

together	
   these	
   data	
   indicate	
   that	
   not	
   always	
   an	
   increase	
   mitochondrial	
   DNA	
  

couples	
  with	
  higher	
  oxidative	
  capacity	
  in	
  basal	
  conditions.	
  	
  

	
  

At this point, we decided to focus our attention on only one candidate gene to deeply 

characterize its involvement in mitochondrial function. As shown in Fig. 5.3.3, the 

scatter plot revealed a cluster of four hits able to induce either mitochondrial DNA 

content and the oxygen consumption at level similar or higher than the known 

mitochondrial regulator PGC-1α. Among these four new potential mitochondrial 

regulators the gene number 9 (Zc3h10) was preferred primarily because its function is 

not yet annotated. This gene is zinc finger CCCH type containing 10 (Zc3h10), and it 

belongs to a nucleic acid binding protein family. 

 

 

 

 

 

 
 
 
 
 
 
Figure 5.3.3: Scatter plot. This graph correlates the dataset of the mtDNA quantification 
reported in fig. 9 and the dataset of the Oxygen consumption reported in fig. 10. 
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5.4	
  Characterization	
  of	
  Zc3h10	
  in	
  myoblasts	
  

After choosing our best candidate, we decided to characterize the mitochondrial 

function of Zc3h10 protein in C2C12 myoblasts. To evaluate the transfection 

efficiency we transfected the GFP and the fluorescence was detected by microscope 

before performing each single experiment.	
  

	
  

5.4.1	
  Evaluation	
  of	
  Zc3h10	
  expression	
  level	
  

C2C12	
  myoblast	
   either	
   transfected	
   with	
   the	
   empty	
   vector	
   (CTRL)	
   or	
   with	
   the	
  

expression	
   vector	
   for	
   Zc3h10	
   were	
   lysed	
   and	
   a	
   western	
   blot	
   analysis	
   was	
  

conducted	
   to	
   evaluate	
   the	
   endogenous	
   expression	
   levels	
   of	
   Zc3h10	
   and	
   the	
  

amount	
   of	
   its	
   overexpression.	
   As	
   shown	
   in	
   Fig.	
   5.4.1	
   we	
   were	
   able	
   to	
   detect	
  

endogenous	
   Zc3h10	
   and	
   an	
   increase	
   of	
   two	
   folds	
   the	
   expression	
   level	
   of	
   the	
  

overexpressed	
  protein. 

 

 

 

 

 
Figure 5.4.1: Western blot of the Zc3h10 protein. (A) Myoblasts transiently transfected with 
the empty vector (CTRL) and Zc3h10 were collected and the expression level of the Zc3h10 
protein was evaluated. (B) Quantification of the Zc3h10 expression level performed using 
Imagej. Statistical analysis was performed using t-test, **P<0.01, *vs CTRL. 
 

	
  

5.4.2	
  Evaluation	
  of	
  Tfam	
  activation	
  by	
  Zc3h10	
  

As we analyzed the Tfam promoter activity in HEK293 cell during the HT screening, 
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we decided to confirm the data in C2C12 myoblasts. We co-transfected the reporter 

system (Fig. 5.4.2.1 A), where the luciferase gene is under the control of the Tfam 

promoter, together with the cDNA encoding PGC-1α, as positive control, or the 

cDNA encoding Zc3h10. 24 hours after transfection, the promoter activity was 

evaluated. As shown in Fig. 5.4.2 C the overexpression of PGC-1α stimulated the 

Tfam promoter activity but also the overexpression of Zc3h10 produced the same 

effect. Therefore, we can conclude that also in C2C12 myoblasts Zc3h10 stimulated 

the Tfam transcription, even though at present the molecular mechanism is still 

unclear. 

Wu et al. demonstrated that PGC-1α trans-activates Tfam transcription by co-

activating the transcription factor NRF1[63]. In fact, they showed that when deleting 

the NRF1 binding site in the Tfam promoter, the PGC-1α was no longer able to 

induce the promoter activity. We used the same mutated Tfam reporter system (Tfam 

MUT, Fig. 5.4.2.1 B), deleted in the NRF1 binding site, to assess if the mechanism of 

action of Zc3h10 could be similar to that of PGC-1α. We co-transfected the mutated 

form of the reporter system with the empty vector (CTRL), the cDNA encoding PGC-

1α and the cDNA encoding Zc3h10 in myoblasts. As result, the overexpression of 

PGC-1α did not affect the promoter activity of the mutated reporter system, as 

expected. While the overexpression of the selected hit induced the promoter activity 

in both wild type and mutated reporter systems, suggesting a mechanism of action 

different from that of PGC-1α. It is worth to notice that, if the NRF-1 binding site is 

deleted (Tfam MUT), the activity of the promoter stimulated by the overexpression of 

Zc3h10 is lower than that showed when the wild type Tfam promoter  (Tfam WT) is 

transfected (Fig. 5.4.2.1 C). This suggests that Zc3h10 could promote the 

transactivation of the Tfam promoter through both the NRFs. 
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Figure 5.4.2.1:Tfam promoter activity. (A) The scheme of the wild type (WT) Tfam reporter 
system is shown. (B) The scheme reports the mutated (MUT) Tfam reporter system. (C) 
Myoblasts were transiently co-transfected with the empty vector (CTRL), PGC-1α cDNA 
and Zc3h10 cDNA and the wild type and mutated Tfam reporter systems. Twentyfour hours 
after transfection the luciferase activity was evaluated. Data are expressed as means ± sd, 
setting at 1 the luciferase activity measured in cells transfected with the empty vector 
(CTRL). Statistical analysis was performed using t-test,*P<0.05, **P<0.01, ***P<0.001;*vs 
CTRL WT, §vs CTRL MUT, #vs Zc3h10 WT. 
 

To confirm that the results obtained in Fig. 5.4.2.1 was not an aspecific effect 

mediated by the interaction of the PGC-1α or Zc3h10 with the backbone of the 

reporter system (pTK-LUC), we performed the same experiment also with the pTK-

LUC vector. Fig.5.4.2.2 showed that PGC-1α and Zc3h10 did not induce pTK-LUC 

transcriptional activity while these effects are seen when the reporter system contains 

the Tfam promoter as also previously observed.  
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Figure 5.4.2.2: pTK LUC and Tfam promoter activity. Myoblasts were transiently co-
transfected with the empty vector (CTRL), PGC-1α cDNA and Zc3h10 cDNA and the WT 
Tfam reporter system or the pTK LUC vector. 24 hours after transfection the promoter 
activity was evaluated. All data were expressed setting at 1 the luciferase activity measured in 
cells transfected with empty vector. Statistical analysis was performed using t-test, *P<0.05, 
**P<0.01, ***P<0.001;*vs CTRL pTK LUC, #vs CTRL Tfam LUC. 
	
  
	
  

5.4.3	
  Evaluation	
  of	
  Oxygen	
  Consumption	
  Rate	
  

We decided to deeply characterize the effects produced by overexpression of Zc3h10 

analyzing the oxygen consumption rate in uncoupling condition and in maximal 

respiration. The uncoupled respiration was evaluated adding oligomycin, an ATP 

synthase inhibitor, which, by blocking the ATP synthase proton channel, uncouples 

ATP phosphorylation from electron transport chain. In this condition, mitochondria 

do not produce ATP and the ATPse proton channel does not work, the only way the 

protons have to enter into the mitochondrial matrix is through the proton leak 

mediated by UCPs yielding heat (Fig. 5.4.3.1 B). Consequently, the ETC slows down 

and the cell consumes less oxygen. On the other hand, the maximal respiration was 

reached adding the carbonyl cyanide m-chlorophenylhydrazone (CCCP), a lipophilic 

compound that transports the protons through the inner mitochondrial membrane, 

dissipating the electrochemical gradient and maximizing the mitochondrial respiration 
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(Fig. 5.4.3.1 C). The CCCP-stimulated oxygen consumption therefore reflects the 

number of mitochondria and/or the electron transport activity.  

 

 

 

 

 

 

 

 

 
Figure 5.4.3.1: Model illustrating the (A) Basal respiration, (B) Uncoupled respiration and (C) 
maximal respiration. The figure is adapted from Wu Z. et al., Cell, 1999, Vol 98, 115-
124[63]. 
 

C2C12 myoblasts were transiently transfected with the different vectors (empty 

vector, PGC-1α and Zc3h10 cDNAs), and analyzed 60 hours after transfection. The 

basal, uncoupled and maximal respiration was evaluated in the conditions 

summarized in. Fig.5.4.3.1 shows that the addition of oligomycin decreased the 

oxygen consumption as expected, while the addition of CCCP led to a maximal level 

of respiration in all myoblasts transfected with the different cDNAs. As previously 

shown (Fig. 5.4.3.2), the overexpression of both PGC-1α and Zc3h10 increased the 

basal oxygen consumption rate. In addition, we found that the overexpression of 

PGC-1α increased the uncoupled respiration by 2 folds compared to cells transfected 

with the empty vector, confirming data already present in literature [63]. In addition, 

also the overexpression of our selected hit had the same effect (a 2 folds increase), 

indicating that Zc3h10 stimulates the uncoupling of mitochondria in these cells. 
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Considering the maximal respiration, the overexpression of our positive control 

induced the CCCP-stimulated oxygen consumption by around 2 folds [63] while 

Zc3h10 by 1.5 folds compared to cells transfected with the empty vector. This result 

indicated that these cells had a higher content and/or electron transport activity of 

mitochondria. 

 

 

 

 

 

 

 

 
 
Figure 5.4.3.2: Oxygen Consumption. C2C12 myoblasts transfected with the empty vector 
(CTRL), with PGC-1α and Zc3h10 cDNAs. At 60 hours after transfection the cells were 
detached from the plates and transferred to a chamber for measurement of oxygen 
consumption. The concentration of oligomycin was 1.25 µM and the concentration of the 
CCCP was 3.75µM. All data were normalized by the protein content. Statistical analysis was 
performed using t-test,*P<0.05, **P<0.01, ***P<0.001;*vs CTRL Basal,#vs PGC-1α Basal 
§vs Zc3h10 Basal, *vs CTRL Oligo, *vs CTRL CCCP. 
	
  

	
  

5.4.4	
  Evaluation	
  of	
  OXPHOS	
  proteins’	
  expression	
  levels	
  

To corroborate the underlying cause of this increased function, we decided to evaluate 

the expression of the OXPHOS proteins by western blot analyses. As shown in Fig. 

5.4.4, the overexpression of Zc3h10 increased the protein level of all the subunits of 

the OXPHOS complexes to the same extent of the positive control PGC-1α, thus	
  

indicating	
   that	
   the	
   increased	
  mitochondrial	
   function	
   is	
   associated	
   with	
   higher	
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expression	
  of	
  the	
  OXPHOS	
  genes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 5.4.4: Western blot of the OXPHOS proteins. (A) Myoblasts transiently transfected 
with the empty vector (CTRL), PGC-1α and Zc3h10 cDNAswere collected and the 
expression level of the OXPHOS proteins was evaluated. (B) Quantification of the expression 
levels of the indicated OXPHOS complexes was performed using Imagej. Statistical analysis 
was performed using One way ANOVA followed by Dunnett’s multiple comparison 
test,*P<0.05, **P<0.01, ***P<0.001;  *vs CTRL. 
	
  

5.4.5	
  Evaluation	
  of	
  ATP	
  Production	
  

ATP production is coupled	
   to	
   mitochondrial	
   respiration, therefore, an increased 

ATP production should be observed in conditions of induced mitochondrial activity. 

Consequently, we evaluated the total amount of ATP (both mitochondrial and 

cytosolic) in myoblasts overexpressing our selected hit and the positive control. The 
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overexpression of both PGC-1α and Zc3h10 increased the total content of ATP (Fig. 

5.4.5, sum of the white and black bars). We decided to evaluate if the observed  

increase was due to the cytosolic or to the mitochondrial fraction. To evaluate the 

cytosolic ATP, we treated cells with oligomycin (an ATP synthase inhibitor) and we 

observed no difference in ATP levels (Fig. 5.4.5, white bars). The mitochondrial ATP 

amount was evaluated as the difference between the total level and the cytosolic 

fraction. We found increased mitochondrial ATP content both in myoblasts 

overexpressing PGC-1α and Zc3h10 (Fig.5.4.5, black bars). Once again, these results 

confirm that the overexpression of both the positive control (PGC-1α) and Zc3h10 

stimulate the mitochondrial function.  

 

 

 

 

 

 
Figure 5.4.5: ATP production. C2C12 myoblasts were transfected with the empty vector 
(CTRL), with PGC-1α and Zc3h10 cDNAs. At 60 hours after transfection the amount of ATP 
was evaluated using the ATPlite kit (Perkin Elmer). The concentration of cytosolic ATP was 
measured treating cells with 10 µM oligomycin for 24 hours. The amount of mitochondrial 
ATP was calculated as the difference between the total amount of ATP and the cytosolic 
fraction. Statistical analysis was performed using One way ANOVA followed by Dunnett’s 
multiple comparison test,*P<0.05, **P<0.01, ***P<0.001;  *vs CTRL total ATP amount; §vs 
CTRL mitochondrial ATP amount. 
 
	
  

5.4.6	
  Evaluation	
  of	
  Reactive	
  Oxygen	
  Species	
  Production	
  

Mitochondrial metabolism is responsible for the majority of the reactive oxygen 

species (ROS) production in the cell [182]. The formation of ROS occurs when 

unpaired electrons escape the electron transport chain and react with molecular 
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oxygen, generating superoxide [183]. Superoxide can react with DNA, proteins, lipids 

and plays an important role in many physiological and pathophysiological conditions. 

The maintenance of low ROS levels is critical to normal cell functions, therefore, an 

increase in mitochondrial activity carry an inherent risk of increasing ROS levels. 

Consequently, we measured this parameter by a fluorescence-based assay using the 

2',7'-dichlorodihydrofluorescein diacetate (CM-H2DCFDA) probe. The cell-permeant 

H2DCFDA is a chemically reduced form of fluorescein used as an indicator of 

reactive oxygen species in cells. Upon cleavage of the acetate groups by intracellular 

esterases and oxidation, the non fluorescent H2DCFDA is converted to the highly 

fluorescent 2',7'-dichlorofluorescein (DCF). Myoblasts, 60 hours after transfection 

with the empty vector (CTRL), or the plasmid expressing PGC-1α and Zc3h10 were 

incubated with the probe. As positive control, we used myoblasts transfected with the 

empty vector and then treated with H2O2, a powerful type of ROS.  

 

 

 

 

 

Fig.5.4.6: Reactive Oxygen Species measurement. C2C12 myoblasts were transfected with 
the empty vector (CTRL), with PGC-1α and ZC3H10 cDNAs. At 60 hours after transfection 
the cells were treated with CM-H2DCFDA 5µM. As positive control we used myoblasts 
transfected with the empty vector and treated with 25 µM H2O2 for 30 minutes. All data were 
normalized by the protein content and were expressed setting at 1 the signal measured in cells 
transfected with empty vector. Statistical analysis was performed using One way ANOVA 
followed by Dunnett’s multiple comparison test,*P<0.05, **P<0.01, ***P<0.001;  *vs 
CTRL. 
 
	
  

As shown in Fig. 5.4.6 the overexpression of PGC-1α did not enhance the ROS 

production, because as reported in literature PGC-1α is able to counterbalance the 
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ROS production inducing the expression of two enzymes (catalase and superoxide 

dismutase 2) involved in the catabolism of ROS [184]. The overexpression of Zc3h10 

did not increase the ROS level, as well. Despite the increased oxygen consumption 

rate measured in cells overexpressing either PGC-1α or Zc3h10, we did not observed 

abnormal level of ROS. This could be due to the activation/induction of antioxidant 

enzymes, as reported in systems overexpressing PGC-1α. 

	
  

5.4.7	
  Measurement	
  of	
  the	
  mitochondrial	
  membrane	
  potential	
  

Apoptosis is a normal process of organismal development. Induction of this process 

can arise from a variety of stimuli. The intrinsic pathway, also referred to as 

mitochondrial-mediated apoptosis, is initiated via intracellular signals, such as DNA 

damage and oxidative stress. Mitochondria own a mitochondrial transition pore that 

when activated opens a channel in the mitochondrial inner membrane, short circuits 

proton electrochemical gradient, and initiates programmed cell death (apoptosis). One 

of the early markers of the mitochondrial-mediated apoptosis is a decrease in the 

mitochondrial membrane potential. Indeed, we decided to measure this parameter 

using the JC-1 probe. JC-1 is a cationic dye that exhibits potential-dependent 

accumulation in mitochondria, indicated by a fluorescence emission shift from green 

(~525 nm) to red (~590 nm). Consequently, mitochondrial depolarization is indicated 

by a decrease in the red/green fluorescence intensity ratio. The potential-sensitive 

color shift is due to concentration-dependent formation of red fluorescent J-

aggregates. At 60 hours after transfection the myoblasts transfected with the empty 

vector (CTRL), or the vectors encoding PGC-1α and Zc3h10 were treated with the 

JC-1 probe. As positive control, we use myoblasts transfected with the empty vector 

and then treated with CCCP, which	
   causes	
   quick	
   mitochondrial	
   membrane	
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depolarization. Fig. 5.4.7 shows that neither the overexpression of PGC-1α nor the 

overexpression of Zc3h10 affected the membrane potential. 

 

 

 

 

 
 
 
Figure 5.4.7: Inner mitochondrial membrane potential measurement. C2C12 myoblasts were 
transfected with the empty vector (CTRL), with PGC-1α and ZC3H10 cDNAs. At 60 hours 
after transfection the cells were treated with 3µM JC-1 probe. As positive control we used 
myoblasts transfected with the empty vector and treated with 10 µM CCCP for 30 minutes. 
All data were normalized by the protein amount and were expressed setting at 1 the 
fluorescence ratio measured in cells transfected with the empty vector. Statistical analysis was 
performed using One way ANOVA followed by Dunnett’s multiple comparison test,*P<0.05, 
**P<0.01, ***P<0.001; *vs CTRL. 
 
	
  

5.4.8	
  Analysis	
  of	
  the	
  Zc3h10	
  promoter	
  

Since the function of Zc3h10 is completely unknown till now, no data are present in 

the literature describing its mechanisms of action or the way it is activated or 

regulated. Analyzing the Zc3h10 promoter (907 bases) on TFSearch 

(http://www.cbrc.jp) we found a putative highly conserved binding site for NRF-2 on 

its sequence (Fig. 5.4.8.1).  
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Figure 5.4.8.2: NRF-2 binding site. We searched the sequence of the Zc3h10 promoter 
purchased from SwitchGear into the Genome Browser (http://genome-euro.ucsc.edu). We 
found that the Zc3h10 is on the chromosome 12. Underlined in blue there are the NRF-2 
putative binding site, that is highly conserved between different species. 
 

We decided to investigate also if some other very well known mitochondrial 

regulators could in some way also regulate Zc3h10. We co-transfected the reporter 

system where luciferase was under the Zc3h10 promoter (Zc3h10-LUC), and the 

empty vector as control or the cDNAs of NRF2, PGC-1α, SIRT1, NRF1 and Zc3h10. 

24 hours after the transfection, the promoter activity was evaluated.  

 

 

 

 

 

 
Figure 5.4.8: Zc3h10 promoter activity. Myoblasts were transiently co-transfected with the 
Zc3h10 reporter system and the empty vector (CTRL), NRF2, PGC-1α, SIRT1, NRF1 or 
Zc3h10 cDNAs. 24 hours after transfection the promoter activity was evaluated. Statistical 
analysis was performed using One way ANOVA followed by Dunnett’s multiple comparison 
test,*P<0.05, **P<0.01, ***P<0.001; *vs CTRL. 
As shown in Fig. 5.4.8.2, NRF2 induced the Zc3h10 promoter activity about 3 folds, 
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PGC-1α and SIRT1 increased the promoter activity of 2 folds, Zc3h10 about 1.8 folds 

suggesting a possible auto-regulation and surprisingly NRF1 seemed to inhibit the 

activity. These data are very promising, but more experiments should be performed in 

order to better understand these relationships between Zc3h10 activation and other 

mitochondrial regulators. 

	
  

5.4.9	
  Zc3h10	
  expression	
  levels	
  in	
  different	
  mice	
  organs	
  

Since Zc3h10 characterization completely lacks, we decided to measure the 

expression level of this gene by qRT-PCR in different organs of C57BL6/J mice. We 

chose the organs that are rich in mitochondria mainly correlated in metabolism.  

 

 

 

 

 

 
Figure 5.4.9: Zc3h10 gene expression in different tissues. Four 10 weeks old C57 Black 6 
mice were sacrificed and the gene expression was measured by qRT-PCR.  
 
 

As shown in Fig. 5.4.9, the main tissues in which the Zc3h10 is expressed are the 

liver, the soleus and the central nervous system.  
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6.	
  Discussion:	
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Mitochondria are the powerhouse of the cells, since they produce the energy (ATP) 

necessary for all cellular functions. Apart from this main function, mitochondria are 

involved in many other metabolic processes like the oxidative catabolism of amino 

acids, ketogenesis, the urea cycle, the generation of ROS, the control of cytoplasmic 

calcium and the synthesis of all cellular Fe/S clusters. Consequently,	
  the	
  molecular	
  

mechanisms	
   underlying	
   their	
   regulation	
   and	
   functions	
   represent	
   a	
   highly	
  

relevant	
  aspect	
  of	
  cell	
  homeostasis.  

Mitochondria are organelles possessing their own genome, which	
  codes	
  for	
  some	
  of	
  

the	
  subunits	
  of	
  the	
  ETC/OXPHOS	
  complexes. Mitochondrial activities are mediated 

by thousands of mitochondrial-specific proteins encoded by both the nuclear (nDNA) 

and the mitochondrial (mtDNA) genome [2, 3]. Hence, the nuclear-mitochondrial 

crosstalk is at the basis of energy metabolism thus	
   playing	
   a	
   key	
   role	
   in	
   many	
  

cellular	
   functions. The mtDNA replication and transcription are regulated by a 

nuclear-encoded transcription factor, called Tfam. In turn, the Tfam transcription is 

regulated by other nuclear-encoded factors. For example, PGC-1α, one of the best 

known among these factors, transactivates Tfam by the coactivation of another 

nuclear encoded transcription factor such as NRF-1. In fact, as reported in literature 

the overexpression of PGC-1α increases the basal respiration, a functional parameter 

to evaluate the mitochondria activity. PGC-1α overexpression increases also the 

mtDNA content, suggesting an increased mitochondrial biogenesis and also the 

expression level of the ETC proteins [63]. Many aspects at the basis of mitochondrial 

biology have	
  not	
  been	
  fully	
  deciphered, like the mechanisms controlling i) mtDNA 

replication and transcription, ii) the dynamics of mitochondrial fusion and fission and 

iii) the nuclear-mitochondrial crosstalk.  
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As mitochondria are so important for whole body metabolism, mitochondrial 

dysfunction is associated to many diseases such as diabetes, neurodegenerative 

disorders and aging. Nevertheless, the contribution of mitochondria to the pathogenic 

mechanisms underlying these pathologies is not completely characterized. Therefore, 

the aim of this project was to identify new mitochondrial regulators in order to gain 

knowledge in mitochondrial biology and to get new insights on the role of 

mitochondria in pathophysiology.  

One possible approach for the screening of new regulators could be the yeast two-

hybrid system, the same used by Puigserver et al. in 1998 for the identification of 

PGC-1α [115]. They cloned murine PPARγ in-frame into the GAL4 DNA-binding 

domain (BD) plasmid pAS2. In addition, a HIB 1B (murine brown adipocyte cell line) 

cDNA expression library was constructed in the GAL4 activation domain (AD) 

plasmid pACT II. This screening approach is based on the fact that if the PPARγ and 

one library-encoded protein interact (i.e., bind), then the AD and BD are indirectly 

connected, bringing the AD in proximity to the transcription start site and 

transcription GAL4 can occur. If the two proteins do not interact, there is no 

transcription of the reporter gene. In this way, a successful interaction between the 

fused proteins is linked to a change in the cell phenotype. Another possible screening 

methods could be the same used by Puigserver et al. to discover if PGC-1α 

specifically interacts with members of the nuclear hormone receptor superfamily 

[115]. They used GST-purified fusion proteins of PGC-1α immobilized on 

glutathione beads and incubated them with PPARγ and other nuclear receptors. The 

beads were then washed and the sample was processed by electrophoresis. After 

fixation and enhancement the radiolabeled proteins were visualized by 

autoradiography. The two screening methods just described, allow isolating proteins 
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that interact physically, but they are very time consuming and complicated. The 

sequencing of the human genome in 2003 holds benefits for many fields, from 

molecular medicine to human evolution. In fact, the Human Genome Project, through 

its sequencing of the DNA, helped to understand diseases but also allowed the 

commercial development of genomics research related to DNA based products, like 

cDNA libraries. These libraries, now commercially available, accounts for all the 

genes with and without an annotated function present in many organisms, like Homo 

sapiens, Mus musculus, Drosophila melanogaster and Escherichia coli. These libraries 

drastically affected all the screening approaches allowing high-tech type of 

experiments and high throughput screenings.  

One of the major challenging nowadays is the identification of the molecular 

functions and the biological processes in which the proteins encoded by the genome 

are involved. This project exactly aims at the same objective, even if just related to 

mitochondria. In fact, we want to identify new mitochondrial regulators whose 

mitochondrial function was not yet reported. We found three proteins (nr. 10, 13, 19) 

to be active in mitochondria that are also involved in other pathways. More 

surprisingly, we discovered the mitochondrial involvement of Zc3h10, a protein 

whose function where previously completely uncharacterized.  

In order to accomplish the aim of finding new mitochondrial factors, we should select 

a functional assay that could be applied to such a large number of potential regulators, 

the whole genome. In addition the approach should be relatively fast, allowing an 

easy deconvolution of results, easy to perform in robotic fashion and robust (i.e., few 

false negatives/positives). The most suitable approach that fulfills all these 

requirements is a HTS. The one we set up was also reproducible, as the positive 

clones identified counted also some very well known mitochondrial regulators as 
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CREB. We set up a genome-wide HTS, where we arrayed onto 384 wells plate a 

single cDNA spotted per well (in total 27000 genes were screened); individual 

cDNAs were co-transfected with a luciferase reporter to measure the activity of Tfam. 

The HEK 293 was used as cell line. There are many examples in literature of different 

HTS; nowadays they are widely used for screenings. Nevertheless, they have some 

limitations. It is not atypical, particularly for initial genome-wide screens in an 

organism, for the primary screen to be the only experimental data in the study. Apart 

from the value of the list of genes that are implicated in the process of interest, several 

systems-wide conclusions can be drawn by looking at the data as a whole rather than 

focusing on individual genes [185]. In addition, we were aware of the fact that the 

activation of the Tfam promoter does not automatically imply the discovery of a 

mitochondrial regulator. Hence, we chose a further assay to get an idea of the effects 

of these mitochondrial candidate genes. Considering the large number of cDNAs, we 

used fluorescent probes with a reported mitochondrial selectivity, to evaluate the 

density (Mitotracker® Green) and the oxidative capacity (Mitotracker® CM-H2X-

ROS). We were aware that the use of these probes is not a method certified and 

widely accepted, but allowed us to narrow down the number of the positive 

candidates to 131. To complete the screenings, we got some insights about the 131 

positive candidates identified, using bioinformatics tools. We classified the genes for 

their molecular function and biological process, for their expression level in murine 

skeletal muscle and C2C12 and assessing they were not yet related with mitochondria. 

In this project we decided to study a limited number of candidate genes, but sufficient 

to guarantee to find out a new mitochondrial regulator in a reasonable time. Our 

choice was to further characterize 22 genes in C2C12 cell lines; 3 involved in the 

catalytic activity, 4 in signal transduction, 11 in transcription processes, 4 structural 
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proteins and 1 whose function is not yet annotated. The most abundant class is 

composed of proteins involved in transcriptional processes, as transcription factors 

have e regulatory function by definition. Additionally, we chose a gene with a not 

annotated function, as its identification could be a major finding, too. The use of 

HEK293 for high throughput screening is very common, in fact these cell are easy to 

manage and to transfect and in addition, their physiology and metabolism are very 

well characterized. Nevertheless, the use of skeletal muscle cells is one of the most 

common used for the study of other mitochondrial regulators, as shown in literature. 

Skeletal muscle is one of the tissues most highly dependent on mitochondrial 

function, as shown by the severe impacts of mitochondrial diseases on muscle 

performance in patients [180]. In addition, mitochondrial dysregulation was 

demonstrated in muscle of patients suffering from type II diabetes [134]. For this 

reason we decided to validate the 22 candidates in C2C12, a murine skeletal muscle 

cell line. In principle we expect that a regulator should affect the mitochondrial 

biogenesis and/or activity, especially the oxidative activity. In fact, PGC-1α (our 

positive control) acts on both aspects. One of the most reliable methods for assessing 

the biogenesis is the measurement of mtDNA. It is a direct measurement, based on the 

extraction of the DNA, so it has more advantages than the use of the fluorescent 

probes utilized in the previous screening. Surely, mtDNA measurement is a quite long 

and complicated procedure, not suitable for high numbers of samples. Regarding the 

oxidative activity, the biochemical method of excellence is the measure of the 

respiration. We evaluated the oxygen consumption with a Clark electrode, which is a 

very complicated and long analysis. We analyzed the respiration of the whole cells. 

We did not extract mitochondria, as it is a very invasive method that can affect the 

analysis. Using this approach for hundreds of samples is a very time consuming and 
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biases-rich methodology. As reported in our results, not always an increased 

mitochondrial biogenesis reflects an induced mitochondrial activity. This means that 

an increased mitochondrial biogenesis is necessary but not sufficient to ensure an 

increased mitochondrial function. We measured the mtDNA content as hallmark of 

mitochondrial biogenesis, but it could be possible that an increased number of copies 

of mtDNA do not correlate with an increased in the number of mitochondria; the 

mtDNA is just more replicated. On the other hand, the increased copies of mtDNA 

correlate with an increased mitochondrial biogenesis, but the mtDNA is just neither 

transcribed nor translated. As the mitochondrial genes transcription is under the 

strictly control of the nucleus [181], a possible explanation may be due to the nucleus 

that blocks the mtDNA transcription because the cell at that moment does not require 

an increased mitochondrial function or some other unknown mechanisms controlling 

the nucleus-mitochondrial crosstalk intervenes. We must not forget that the mtDNA 

encodes only 13 proteins that are not enough to exploit all the mitochondrial 

activities; so the transcription and translation of the mitochondrial genome must be 

coordinated to the expression of nuclear-encoded mitochondrial proteins. For these 

reasons, we considered as positive mitochondrial regulators only those candidates 

whose overexpression stimulated both the mitochondrial biogenesis and function as 

performed by our positive control PGC-1α. Applying these assays, we identified four 

genes (nr. 9, 10, 13 and 19) that if overexpressed in C2C12 showed a mitochondrial 

function better than or equal to our positive control PGC-1α.  

We decided to prioritize the characterization of the candidate nr. 9, zinc finger CCCH 

type containing 10 (Zc3h10), because it was a protein with a not yet annotated 

function. Zc3h10 is very well conserved in all the Eutheria organisms (source 

http://string90.embl.de) but in literature, were reported only modest amount of articles 
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that mention this protein. One suggests a possible tumor suppressor function of 

Zc3h10 as it inhibits anchorage independent growth in soft agar [186], but it is a HTS 

that do not provide any information about the mechanism. In one other article, a yeast 

two-hybrid system screening shows that Zc3h10 binds the ataxin-1 (ATXN-1)[187]. 

The normal function of ATXN-1 is not yet known, but the mutated form of the 

protein is associated to the Spinocerebellar ataxia type 1, a neurodegenerative 

disorder [188]. Hence, the major finding of this project was to assess a mitochondrial 

function to Zc3h10. As shown in our detailed biochemical characterization, Zc3h10 

overexpression increased the expression profile of OXPHOS proteins, increased the 

content and/or electron transport activity of mitochondria (measured by uncoupling 

and maximal respiration) and increased the mitochondrial ATP production. In 

addition, the Zc3h10 overexpression was not associated with toxic effects related to 

the activity of mitochondrial ROS production and induction of apoptosis. It is worth 

noting that, although ubiquitously expressed, Zc3h10 mRNA levels were high in 

metabolically active tissues like liver, soleus and brown adipose tissue. These tissues 

are rich in mitochondria as one of their functions is fuel oxidation, thus this data 

confirm the mitochondrial function of Zc3h10.  

According to our bioinformatics classification, Zc3h10 is a nucleic acid binding 

protein; even if we do not know if it binds DNA or RNA. This classification is 

confirmed by some other members of Zc3 protein family; for example Zc3h12a is an 

essential RNase that prevents immune disorders by directly controlling the stability of 

a set of inflammatory genes [189]. As a consequence, we could hypothesize that 

Zc3h10 could act as a transcription factor (like NRF-1/2) or as a factor that regulates 

in some way the expression of mitochondrial genes (like PGC-1α), but ad hoc 

experiments should be performed to answer this question. In these regards, we 
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discovered that Zc3h10 explicates its mitochondrial function activating the promoter 

of Tfam, as shown in two different cell lines (HEK293 and C2C12) as our positive 

control PGC-1α. The portion of Tfam used for the analysis contained the binding sites 

for SP1, NRF-1 and NRF-2. From literature we know that PGC-1α transactivates 

Tfam by coactivating NRF-1 [63]. Regarding Zc3h10 we found that, mutation of the 

NRF-1 binding site slightly reduced but did not abolished the Tfam activation by our 

best candidate, suggesting that the rest of the promoter, including the NRF-2 and SP-1 

binding sites, could mediate the effect of Zc3h10. This mode of action is different 

from that one of PGC-1α, but further experiments should be performed to understand 

the mechanism of action of Zc3h10.  

Complex	
   transcriptional	
   circuitries	
   have	
   been	
   demonstrated	
   to	
   regulate	
  

mitochondrial	
   DNA	
   replication	
   and	
   transcription.	
   For	
   example,	
   most	
   of	
   the	
  

mitochondrial-­‐	
   or	
   nuclear-­‐encoded	
   OXPHOS	
   subunits	
   have	
   a	
   binding	
   site	
   for	
  

NRF-­‐1	
  or	
  NRF-­‐2	
  on	
  their	
  promoter;	
  SIRT-­‐1	
   is	
  a	
  histone	
  deacetylase	
   that	
  affects	
  

PGC-1α	
  expression	
  [190].	
  With	
  this	
  in	
  mind	
  we	
  analyzed	
  the	
  sequence	
  of	
  Zc3h10	
  

promoter	
   in	
  silico	
   and	
  we	
   found	
   that	
   it	
   could	
  have	
  a	
  NRF-­‐2	
  binding	
   site	
   that	
   is	
  

highly	
  conserved	
  between	
  organisms.	
  Screening	
  different	
  master	
  mitochondrial	
  

regulators	
   for	
   their	
   ability	
   to	
   activate	
   the	
   Zc3h10	
   promoter	
   activity,	
  we	
   found	
  

that	
   NRF-­‐2,	
   PGC-­‐1α and SIRT-1 positively regulates its transcription, while 

surprisingly NRF-1 seems to have an inhibitory effect. In addition, Zc3h10 seems to 

have a kind of auto activation, but further experiment should be performed to 

characterize and explain all these effects and to describe how Zc3h10 is regulated.  

As	
  well	
  established	
  in	
  literature,	
  a	
  mitochondrial	
  dysfunction	
  is	
  associated	
  to	
  many	
  

diseases;	
   one	
   of	
   the	
   most	
   studied	
   is	
   the	
   T2D.	
   In	
   literature,	
   it	
   is	
   known	
   that	
   the	
  

skeletal	
   muscle	
   mitochondria	
   of	
   T2D	
   patients	
   show	
   a	
   reduction	
   in	
   their	
   activity	
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that	
  reflects	
  a	
  decrease	
  expression	
  profile	
  of	
  many	
  mitochondrial	
  genes	
  [51,	
  157].	
  

For	
   example,	
   the	
   expression	
   profile	
   of	
   PGC-­‐1α	
   is	
   decreased	
   by	
   nearly	
   50%	
   in	
  

muscle	
   from	
   individual	
   with	
   diabetes	
   [157].	
   Preliminary	
   results	
   performed	
   in	
  

our	
   laboratory,	
   showed	
   that	
   the	
   expression	
   profile	
   of	
   Zc3h10,	
   as	
  well	
   as other 

mitochondrial-related factors like PGC-1α, Tfam and mtCOXII, is reduced in skeletal 

muscle of mice with high fat diet-induced diabetes (data not shown). Even if we don’t 

know the molecular mechanisms causing this effect and this result should be 

supported by other experiments, we can conclude that the expression profile of 

Zc3h10 follows the same trend of reduction observed in other mitochondrial factors in 

the skeletal muscle of a mitochondrial dysfunction animal model. This once again 

sustains the evidence that Zc3h10 has a mitochondrial function. 
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7.	
  Highlights:	
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• Integrating different approaches like the high throughput screening, staining 

assays, bioinformatics tools and functional/biochemical approaches, we were able 

starting from 27000 cDNAs to identify one gene that is a mitochondrial 

regulators.   

• We assessed the mitochondrial function of Zc3h10. In fact, we demonstrated that 

its overexpression affected the Tfam promoter activity, increased the mtDNA 

content (a hallmark of mitochondrial biogenesis) and induced the oxygen 

consumption rate, the expression of the OXPHOS proteins and the mitochondrial 

ATP levels (a hallmark of mitochondrial function), without affecting the ROS 

production or apoptosis. 

• We discovered one of the functions of Zc3h10, whose activity was previously 

completely unknown. Further experiments should be performed in order to 

understand its mechanism of action, but we were able to frame it in a particular 

biological context, the mitochondrial regulation. 
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