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1. 1. 1. The Gut 

The gut is traditionally considered as an organ that mediates nutrient digestion, 

absorption.  Besides the gut host the largest collection of microbes and the ability of the 

immune system to coevolve with the microbiota during postnatal life allow the host and 

microbiota to coexist in a mutually beneficial relationship 
(1)

.  As show in Fig 1, the 

intestinal epithelial cell layers form villi and crypt structures and are composed of 

different cell lineages.  In the intestine there are two cells which have secretory 

functions, one is goblet cells which secrete mucus, other is paneth cells which is the 

main secretors of antimicrobial peptides.  On the other hand the colon has much higher 

bacterial load and a markedly different immune cell composition.  The colon contains 

only crypts, no villi.  Also, there are no paneth cells, which mean that enterocytes have a 

much more important contribution to antimicrobial peptide production.  However, there 

is a high prevalence of goblet cells 
(2)

. 

 

Fig 1 The gut Landscape 
(1)
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Furthermore, recent research has been suggesting that gut tract has more roles and 

contribution on our health.  For instance, the duodenum owing to the ability to sense 

nutrient influx and trigger negative feedback loops to inhibit glucose production and 

food intake to maintain metabolic homeostasis 
(3)

.  Additionally from pathological point 

of view,  Henao-Mejia et al. reported the association of the gut microbiota and 

exacerbation of hepatic steatosis and inflammation through influx of toll-like receptor 4 

(TLR4) and toll-like receptor 9 (TLR9) agonists into the portal circulation, which leads 

the enhancement of  hepatic tumour-necrosis factor α (TNF-α) expression and drives 

progression of  nonalcoholic steatohepatitis (NASH) 
(4)

.  As just described one of the 

example, the intestinal microbiota has been implicated in the pathogenesis of several 

autoimmune and chronic inflammatory diseases (Fig 2).  

 

Fig 2 Autoimmune and chronic inflammatory diseases in which the intestinal 

microbiota has been implicated 
(5)
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1. 1. 2.  Inflammation in intestine  

As mentioned at 1.1.1. section, the human gut harbors a large collection of 

commensal bacteria, such as 100 different species of bacteria and around 100 trillion of 

enterobacteria, the intestines (especially colonic) lumen serves as a reservoir of 

lipopolysaccharide (LPS: ∼50 μg/ml in the colon) 
(6; 7)

, which is constantly produced by 

gram-negative bacteria.  But regardless of the huge number of enterobacteria and of the 

presence of LPS from gram-negative bacteria, intestine usually does not develop 

inflammation.  This is due to the state of immune tolerance to resident intestinal 

microbes.  On the other hand, intestinal inflammation can be also considered as natural 

and protective process, which is crucial to maintain gut integrity and functioning 
(8)

 in 

the case of food intoxication, stress and infection.  Intestinal epithelial cells also respond 

to various inflammatory mediators secreted by the immune cells, by modulating the 

epithelial monolayer permeability and secretion.  Then, further amplifying the 

inflammatory process 
(9)

.  
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Fig 3 Inflammation on intestine  

As shown in Fig 3, one of the initial steps of the inflammatory response could be 

started from bacterial LPS.  The LPS is the major constituents of the outer membrane of 

gram-negative bacteria and a specific ligand of TLR4.  The LPS is contributing to the 

inflammatory reaction through two processes.  First, LPS directly binds to the intestinal 

epithelial cell surface TLR4 and recruitment of nuclear factor-kappa B (NF-κB) from 

the cytosol to the nucleus. Then, once NF-κB translocation occurs, transcription of 

genes encoding pro-inflammatory cytokines, such as interleukin-1beta (IL-1β), and 

other genes related to inflammation, such as cyclooxygenase 2 (COX2) and inducible 

nitric oxide synthase (iNOS), would be committed.  In the other way, LPS induces the 

activation of monocytes and macrophages involving the TLR4 and results in the 

production of  key pro-inflammatory cytokines,  IL-1, IL-6, IL-8, and TNF-α, which 

mediate further inflammatory reactions 
(10; 11)

.   

 The cytokine IL-1β is a multifunctional cytokine playing a major role both in the 

initiation and the amplification of many inflammatory conditions 
(12)

 and it has been 
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found that the inflammatory bowel disease (IBD) patients retain high concentrations of 

the cytokines in intestine 
(13)

.  As mention above, IL-1β is released by various cell types 

including monocytes–macrophages, neutrophils and endothelial cells and mediates 

important features of IBD, such as the generation of fever, the reduction of appetite, the 

release of mediators and the recruitment of leukocytes 
(8)

 .  The in vitro study 

demonstrated that the effects of IL-1β, TNF-α, interferon- γ (IFN-γ) and LPS effects on 

intestinal epithelial cells consist of activation of intracellular cascades, leading to an 

increased transcriptional activity and the secretion of interleukin IL-8 
(14)

.  

 In addition to its direct immune-activating effects, both LPS and IL-1β could 

cause an increase in the paracellular permeability through defects in tight junction 

function or assembly 
(15; 16)

   

 

1. 2.  Concept of Mediterranean diet and influence on human health 

Mediterranean diet is characterized by high consumption of fresh vegetable (fruit, 

vegetables, breads, other forms of cereals, potatoes, beans, nuts, and seeds), fresh fruit 

as the typical daily dessert, olive oil as the principal source of fat, dairy products 

(principally cheese and yogurt), and fish and poultry are consumed with low to 

moderate amounts, zero to four eggs are consumed weekly, red meat consumed in low 

amounts, and wine consumed in low to moderate amounts, normally with meals (Fig 4). 

This diet is low in saturated fat, with total fat ranging from 25% to 35% of energy 

throughout the region
(17)

.  This dietary pattern has been typically recognized around 

Mediterranean area, it was originally represented as the food habits of southern Italy and 

Greece around the 1970s. Then, Keys et al reported the study which indicated the 
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association between a Mediterranean diet and a reduction in all-cause mortality, 

especially a reduction in cardiovascular mortality in the Seven Countries Study 
(18)

.  

Studies to date, many papers reported the benefit of “Mediterranean diet” on the human 

health subjects. Recently, Estruch et al also demonstrated  in the paper which shows the 

idea and the impact of the Mediterranean diet for human health 
(19)

.  This may also be 

related to the high  consumption characteristic of  the Mediterranean diet which is rich 

in olive oil supplies 10–20 mg of phenols per day 
(20)

.   
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Fig 4 The Mediterranean diet pyramid  

Japan is one of the country with long living people.  Japanese diets are also 

characterized by high consumption of rice, fresh fish, beans, fiber- rich foods and 

fermented foods such as “miso” and “natto”.  Recently, Pallauf et al mentioned in his 

review that the similarity of  food consumption habits in Asian and the Mediterranean 

diets (Fig 5) and the contribution of low incidence of cardiovascular disorders 
(21)

.  This 
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fact indicates that the contribution of quality of foods and the contents of nutrients in 

what we are consuming during our life time really impact on our future prevalence rate 

of diseases. 

 

Fig 5 Important food items and their corresponding constituents in the 

Mediterranean, Asian, and so-called MediterrAsian diets 
(21)

 

 

 

1. 3. Olive oil  

As we already know olive oil is the principal fat source of the traditional 

Mediterranean diet, the range between 25-50ml per day 
(22)

, a regimen that has been 

associated with different beneficial effects on human health.  Furthermore, the phenolic 

content and profiles of the considered Italian cultivars greatly depended on place of 

growing and olive maturity index. 

 

 1. 3. 1.  Components and composition  

Olive oil contains very high level of monounsaturated fatty acids (MUFA) more 

notably oleic acid, and more than 300 minor components are present.  The health 
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benefits of olive oil, however, may be affected by both the quality and the culinary use 

of olive oil.  The MUFA content does not vary significantly between different qualities 

of olive oil, but olive oil also contains a “nonsaponifiable” fraction comprising various 

triterpenes (mostly squalene), phytosterols (mostly b-sitosterol), tocopherols (mostly 

vitamin E), and phenolic compounds.  Among olive oils, extra-virgin olive oil is 

particularly rich in phenolic compounds.  In the Mediterranean area, people put 

importance on the quality of Olive oil, because in extra virgin olive oil at least 30 

phenolic compounds are presents 
(23)

 but the ordinary refined variety olive oil poorly 

contains such beneficial compounds.  The phenolic composition of extra extra-virgin 

olive oil may vary in quantity (50 to 1000 mg/kg) and quality, depending on the olive 

variety, degree of ripeness, soil composition, climate, processing techniques, and 

storage 
(24; 25)

.  As shown in Fig 6, the major phenolic compounds in olive oil are 

oleuropein-aglycon, Ligstroside-aglycon, hydroxytyrosol (2-(3,4-

dihydroxyphenyl)ethanol) and tyrosol (2-(4-hydroxyphenyl)ethanol).   

In vivo, approximately 55–66 mol/100 mol of olive oil phenols were absorbed in 

the small intestine.  Then after, less than 4 mol/100 mol of ingested tyrosol and 

hydroxytyrosol will reach the colon.  However, the amount of ingested oleuropein 

aglycon and ligstroside aglycon reaching the colon remains to be elucidated 
(26)

. 

In the present study, we made a characterization of olive oil phenols composition 

with the above-mentioned 4 major phenolic compounds together with apigenin and 

luteolin.   
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Fig 6 Structures of phenols present in olives and olive oil, their degradation into 

aglycon during ripening, and hydrolysis of aglycon into tyrosol and 

hydroxytyrosol
(27)

 

 

 1. 3. 2.  Biological activities 

In-vitro and in vivo studies suggested that the phenolic compounds present in 

olive oil act as an effective antioxidants and radical scavenger properties.  Typically, 

hydroxytyrosol is a superior antioxidant and radical scavenger than oleuropein and 

tyrosol 
(28)

.  As shown in Fig 7, olive oil phenols have biological activities which may 

be important in the reduction in risk and severity of certain chronic diseases.  So far, 

many papers have demonstrated the beneficial effects of olive oil for human health and 

diseases prevention such as, cardiovascular diseases, hypertension, cancer prevention, 

e.g. colon cancer and breast cancer, and immune response.  To see the potential 

importance of individual phenolic compounds in virgin olive oil include lignans, which 

are associated with reduced breast cancer risk, 
(29; 30)

 hydroxytyrosol, which has the 

cardio protective and anticancer activity and the anti-inflammatory potential  in 
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experimental systems 
(31; 32)

.  Furthermore, recent studies demonstrated that, apigenin 

has a biological activity as anti-diabetic, anti-Alzheimer’s disease and anti-

inflammatory properties 
(33)

 and luteolin is demonstrated to have the anti-inflammatory 

properties in gestational tissues by interacting with NF-𝜅B, AP-1 and their downstream 

targets 
(34)

. 

 

Fig 7 Biological activities of olive oil phenol compounds 
(35)
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1. 3. 2. a.  In-vitro studies  

Gill et al. demonstrated that a phenol mixture extracted from virgin olive oil is 

capable of inhibiting, at least in vitro, multiple key stages in the colon carcinogenesis 

pathway including initiation, promotion and metastasis
(36)

.  Moreover, several in-vitro 

experiments have demonstrated the potent antioxidant activity of olive oil phenols on 

different cellular systems 
(37; 38; 39; 40; 41)

.  These data suggest that a significant part of the 

chemopreventive ability of olive oil on the malignancy could be derived from  the 

minor phenolic compounds that possess these antioxidant properties.  

Scoditti et al demonstrated on that how olive oil and red wine polyphenols reduce 

inflammatory angiogenesis in cultured endothelial cells. They claimed that it is through 

metalloproteinase-9 (MMP-9) and COX-2 inhibition
(42)

.  The impact of olive oil on the 

immune system has also been investigated in the isolated oleuropein fraction of the oil.  

In the isolated mouse macrophages, oleuropein enhanced nitrite production following an 

LPS challenge concentration-dependently and during endotoxin challenge, oleuropein 

potentiates the macrophage-mediated response, resulting in higher nitrous oxide 

production
(43)

  In the freshly isolated human monocytes, hydroxytyrosol increased  

TNF-α production and considerably reduced the expression of COX2 at both the mRNA 

and protein level and the reduction of prostaglandin E2 (PGE2) released into the culture 

medium
(44)

.  

 

1. 3. 2. b.  In-vivo studies  

In rat models, dietary olive oil prevented the development of aberrant crypt 

foci and colon carcinomas suggesting that olive oil may have chemo preventive activity 

in colon carcinogenesis
(45)

.  Sanchez-Fidalgo reported that extra virgin olive oil diet has 
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protective/preventive effects in the ulcerative colitis-associated colorectal cancer. The 

mice which DSS administrated and fed an extra virgin olive oil diet presented a lower 

immunoreactivity of β-catenin, a reduction of pro-inflammatory cytokines levels 

together with no modification of p53 expression and, a reduction of COX-2 and iNOS 

protein expression in the colonic tissue, when compared with the sunflower oil diet fed 

mice
(46)

.  

Hydroxytyrosol has been reported to exhibit significant anti-inflammatory 

actions and attenuate TNF-α and IL-1β expression  in an animal model of inflammation, 

which are pro-inflammatory cytokines often observed  in inflammatory disease
(47)

.  

However, we have to be aware of the previous paper where the authors demonstrated 

the administration of hydroxytyrosol after being extracted from its original matrix could 

be not only non-beneficial but indeed harmful for health
(48)

 

 

 

1. 3. 2. c.  In clinical studies   

In-vivo studies demonstrated that olive oil phenols are well absorbed in human. 

The analysis of olive oil phenols absorption has demonstrated that both free tyrosol and 

hydroxytyrosol levels are correlated with their intake
(49)

 and consequently homovanillyl 

alcohol levels 
(50)

 in urine. Heretofore, there are many studies that olive oil  has the 

ability to decrease cardiovascular risk factors. The therapeutic properties of olive oil are 

often attributed to its high levels of MUFA. Diets rich in olive oil have been shown to 

be more effective in lowering total cholesterol and low density lipoprotein (LDL) 

cholesterol than conventional dietary treatments not containing high levels of MUFA
(51; 

52; 53)
.   Moreover, there are some evidences that olive oils have abilities to modify gene 

expression coding for proteins participating in cellular mechanisms involved in 
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oxidative stress resistance 
(54)

,  lipid metabolism
(55)

,  other atherosclerosis-related 

traits/pathways 
(56; 57)

, and inflammation. Camargo et al. also showed that intake of virgin 

olive oil based breakfast, which is rich in phenol compounds, is able to repress in vivo 

expression of several pro-inflammatory genes, thereby switching activity of peripheral 

blood mononuclear cells to a less deleterious inflammatory profile
(58)

. On other study, 

Bonani et al. showed that extra virgin olive oil consumption reduces inflammatory 

markers and increase serum antioxidant capacity at postprandial state 
(59)

. Furthermore, 

Blanco-Colio et al has showed that a virgin olive oil-rich Mediterranean diet, during 

postprandial state, reduces inflammatory response of peripheral blood mononuclear 

cells mediated by transcription factor NF-κB 
(60; 61)

.  Also, Lucas et al. mentioned that 

several clinical trials disclosed that the consumption of olive oil can influence different 

inflammatory markers such as, IL-7, COX1 and COX2
(62)

 in humans.    

 

 

1. 3. 3 Our laboratory observation and course   

In our laboratory, we have previously reported the protective role of olive oil on 

early atherogenesis, by down-regulation of the expression of adhesion molecules in 

endothelial cells and inhibition of proteolytic activity of circulating cells 
(63)

.  From the 

mechanistic point of view, we demonstrated that olive oil polyphenols interfere with 

NF-𝜅B signalling in monocytes, hence exhibiting anti-inflammatory action 
(64)

. 

As shown in Fig 8, olive oil phenolic components are mainly absorbed at the 

intestinal level 
(27)

.  Therefore, gastric and intestinal epithelial cells may be exposed to 

these compounds at high concentrations.   
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Fig 8 Schematic presentation of the possible metabolism of olive oil phenols 
(27)

 

 

Thus, we investigated whether phenolic extracts from extra virgin olive oils exert 

anti-inflammatory effects on gastric adenocarcinoma cells (AGS).  We found that both 

the phenolic extracts and the individual substances (such as oleuropein aglycon, 

ligstroside aglycon, hydroxytyrosol and tyrosol) showed inhibitory effects on the NF-

κB-driven transcription and its translocation on AGS cells.  Therefore, we hypothesized 

that olive oil could be also effective as a natural anti-inflammatory food to prevent the 

inflammation in the intestine as already demonstrated in monocytes 
(64)

 and gastric 

epithelial cells 
(65)

.  To clarify whether the olive oil phenolic extracts can display anti-
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inflammatory effects to the intestine, we used the human epithelial colorectal 

adenocarcinoma  cell line (Caco-2) as an in vitro model.   

 

1. 3. 3. a. Caco-2 cells as a model of intestinal epithelial cells  

The Caco-2 cells are widely used as in vitro model of intestine to study intestinal 

absorption and metabolism of various compounds and on the transport of these 

substances 
(66; 67)

.  One of the reasons for this is due to the difficulty of isolation of 

primary intestinal cells. Other reason is that differentiated Caco-2 cells can be used for 

the examination of the transport, biotransformation, and barrier function of small 

intestinal enterocytes 
(68)

.  These include how to develop brush border microvilli, 

measure the enzymatic activity of  hydrolase (ex, sucrase-isomaltase, intestinal alkaline 

phosphatase) and the development of the tight junctions for a polarization of cell 

monolayer 
(69)

.  

The Caco-2 cells are originally isolated from 72 years old male, the patient with 

colorectal adenocarcinoma and were established as a human colonic adenocarcinoma 

cell line.  These cells have the outstanding features such as spontaneous differentiation. 

The differentiation process was conducted in order to mimic the existing conditions in 

the intestine in vivo.  The Caco-2 cells can express the morphological, biochemical 

characteristic of colonocytes in undifferentiated state, but after reaching the confluence, 

cells begin the differentiation process and show the transport, biotransformation and 

barrier function such as those we can see on small intestinal enterocytes 
(68; 70)

.  Turck et 

al. demonstrated that 60 different protein profiles were observed between 
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undifferentiated and differentiated Caco-2 cells by the proteomic analysis. 
(71)

.  Engle et 

al. demonstrated that from day 3 to day 18 after the confluence, the Caco-2 cells express 

increased enterocytes markers (e.c. α1-antitrypsin, and alkaline phosphatase activity) 

and supressed the colonocyte marker (e.c. surfactant protein A and surfactant-like 

particle)  on plastic growing Caco-2 cells 
(72)

.  Hence, we used the Caco-2 cells for the 

experiments, 24 hours after seeding as undifferentiated Caco-2 cells which represent 

features of colonocytes, and 18 days after seeding as differentiated Caco-2 cells which 

represent features of enterocyte.  

 

1. 4. Regulation of molecular mechanism in Inflammation  

1. 4. 1.  NF-𝜅B and inflammation  

The Nuclear transcription factor κB (NF-κB) was discovered by David Baltimore 

in 1986, and is a ubiquitous factor that resides in the cytoplasm.  Activation of the NF-

κB/Rel transcription family, by nuclear translocation of cytoplasmic complexes, plays a 

central role in inflammation through its ability to induce transcription of pro-

inflammatory genes 
(73)

.  NF-κB is activated by free radicals, inflammatory stimuli, 

carcinogens, tumor promoters, endotoxins, γ-radiation, ultraviolet (UV) light, and X-ray 

exposures.  Upon activation, NF-κB induces the expression of more than 200 genes that 

have been shown to suppress apoptosis and induce cellular transformation, proliferation, 

invasion, metastasis, chemo-resistance, radio-resistance, and inflammation.  Hence, it is 

not surprising that NF-κB has been linked to the wide variety of diseases, because most 

diseases are caused by poorly regulated inflammation processes 
(74)

.  As mentioned 

above, NF-κB is clearly one of the most important regulators of pro-inflammatory gene 
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expression.  Synthesis of cytokines, such as TNF-α, IL-1β, IL-6, and IL-8, is mediated 

by NF-κB, as is the expression of cyclooxygenase 2 (Cox-2).  Therefore, agents that can 

suppress NF-κB activation, in principle, have the potential to prevent, delay the onset of, 

or treat inflammatory diseases.   

As shown in Fig 9, activation of NF-κB occurs by releasing from the IκB 

molecules or by cleaving of the inhibitory ankyrin repeat domains of p100 and p105. 

These events are achieved by proteasomal degradation of the inhibitors or by partial 

degradation of the precursors 
(75)

. 

Fig 9 The canonical NF-κB signalling pathway 
(75)
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1. 4. 2.  MAPK and inflammation  

Mitogen-activated protein kinases (MAPKs) are the group of serine/threonine 

protein kinases that regulate the transcription of inflammatory cytokines, including 

interleukin IL-8, in response to various extracellular stimuli through a cascade of 

protein phosphorylation, leading to the activation of transcription factors 
(76)

.  Some 

other studies have shown that olive oil phenol interacts with p38 and is involved in 

cAMP response element binding protein (CREB)  phosphorylation and exert a strong 

inhibitory effects on cancer cell proliferation 
(77)

 Furthermore, there have been many 

reports that IL-8 production and secretion are regulated by the activity of MAPKs 
(78; 79)

.  

The signalling pathways of MAPKs can be mainly divided into 3 pathways, 

extracellular signal-regulated  kinase 1/2  (ERK1/2), p38 MAPK, and c-Jun N-terminal 

kinase (JNK).  Heretofore, most studies have discussed the activation of the MAPKs in 

relation to cell growth and stress response.  In vertebrates, the three major MAPK 

pathways are represented by kinase cascades leading to activation of ERK,  JNK and 

p38 MAPKs 
(80)

.  In normal condition, ERK modulates the responses to cellular 

differentiation, whereas JNK and p38MAPK are activated by stress-associated stimuli, 

such as heat shock, inflammation, ultraviolet light and irradiation. 

 

1. 4. 3.  IL-8 regulation 

The Interleukin-8 (IL-8), which is rapidly induced in response to pro-

inflammatory cytokines, bacterial and cellular stresses, and is involved in the acute 

phase of gastrointestinal inflammation by attracting and activating neutrophils 
(79)

.  The 

synthesis of IL-8 is controlled by the cooperation of at least three different signalling 
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pathways.  As show in Fig 10, in the first, derepression of the gene promoter; in the 

second, transcriptional activation of the genes by NF-𝜅B, JNK and ERK pathways; and 

in the third, stabilization of the mRNA by p38 MAPK  pathway 
(78)

.  

 

Fig 10 Quantitative control of IL-8 synthesis by cooperation of at least three 

signalling pathways. 
(79)

 

 

 

Additionally, Zhang et al. reported that the up-regulation of the nuclear factor 

(erythroid-derived 2)-like 2 (Nrf2) expression significantly increased IL-8 mRNA levels 

and protein secretion.  Nrf2 caused only a weak induction of IL-8 transcription, but 

significantly increased the half-life of IL-8 mRNA.  Considering the evidence that Nrf2 

activation is mainly cytoprotective, these observations raise the possibility that under 
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certain circumstances, IL-8 may serve as an anti-inflammatory role and thereby 

contribute to the resolution of tissue injury 
(81)

.  
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Olive oil is the principal fat source of the traditional Mediterranean diet, a 

regimen that has been associated with different beneficial effects on human health.  In 

vitro and in-vivo studies have suggested that olive oil phenols (OPs), main components 

of the unsaponified fraction of olive oil, act as effective antioxidants.  In our laboratory, 

we have reported that OPs down-regulate the expression of adhesion molecules in 

endothelial cells 
(63)

 and inhibition of expression and activity of metalloproteinase-9 

(MMP-9) in human monocytic cells (THP1) 
(64)

.  Furthermore, from the mechanistic 

point of view, we demonstrated that OPs interfere with nuclear factor-kappa B (NF-𝜅B) 

signalling pathway in monocytes, hence exhibiting immunomodulatory effect on these 

cells.  

Regarding the in vivo situation, however, we should consider that olive oil 

components, before reaching other compartments, are absorbed through the 

gastrointestinal tract.  Therefore, gastric and intestinal epithelial cells may be exposed to 

OPs at high concentrations.  In previous studies, we demonstrated that phenolic extracts 

inhibited NF-κB-driven transcription and its nuclear translocation in human gastric 

adenocarcinoma cells (AGS), as in vitro model 
(65)

.  This study clearly demonstrated 

that OPs may have beneficial effects on gastrointestinal inflammatory states, although 

little is known about the biological activity of OPs on inflamed intestine.  Therefore, the 

present research was aimed to investigate the potential immunomodulatory activities of 

phenolic extracts on the intestinal epithelial cells.  

In general, intestinal epithelial cells are exposed to numerous bacteria and 

enterobacteria.  In spite of the exposure to these bacteria and even the presence of 

lipopolysaccharide (LPS) from gram-negative bacteria, the intestine does not usually 



30 
 

develop an inflammatory state.  This is though to be due to the immune tolerance to 

resident intestinal microbes.  However, when this immune tolerance is perturbed for 

several reasons, intestinal epithelial cells become responsive to various inflammatory 

mediators such as interleukin-1 beta (IL-1β) and TNF-α secreted by the immune cells 

residing in the intestine.  In such inflammatory state, intestinal epithelial cell modulates 

the epithelial monolayer permeability and secretion, then further inflammatory 

responses will occur 
(82)

.  In particular, NF-𝜅B is one of nuclear transcription factors 

which are involved in transcription of many cytokines and chemokines.  In the presence 

of cytokines such as IL-1β or TNF-α and of the endotoxin LPS, NF-κB is recruited from 

the cytosol to the nucleus.  Once NF-κB translocates into the nucleus, transcription of 

genes encoding pro-inflammatory cytokines, such as IL-1β, interleukin-6 (IL-6), TNF-α, 

and chemokine interleukin-8 (IL-8) occurs.  Herein, we focused our attention on IL-8, 

because it is rapidly induced in response to pro-inflammatory cytokines, bacterial and 

cellular stresses, and is involved in the acute phase of inflammatory events of 

gastrointestinal cells by attracting and activating neutrophils 
(79)

.  Furthermore, IL-8 is 

deeply involved in several inflammatory diseases, such as inflammatory bowel 

disease (IBD); for this reason IL-8 could be considered one of the important markers of 

intestinal homeostasis and inflammation 
(83; 84; 85)

.  Previous studies have shown that the 

synthesis of IL-8 is controlled by the cooperation of at least three signalling pathways;  

in the first, derepression of the gene promoter; secondly, transcriptional activation of the 

gene by NF-𝜅B, JNK and ERK pathways; and in the third, stabilization of the mRNA 

by p38 MAPK pathway 
(78)

.  

In this study, we first confirmed the effects of olive oil phenolic extracts on 

gastric epithelial AGS cells as reported before.  In the published paper, we used 
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commercially available extra-virgin olive oil to extract OPs, while in these experiments 

we decide to use an extra-virgin olive oil, produced at a low scale following artisanal 

procedures, thus it is characterized by better organoleptic quality, compared to olive oils 

from industrial sources.   Based on these considerations, we decided to repeat the 

experiments on AGS cells to assess the biological activity of this particular olive oil.    

We further investigated the effects of OPs on the inflamed intestinal epithelial 

Caco-2 cells.  In order to induce the first step of inflammation state, we used bacterial 

LPS, then to mimic the next step of inflammation state we used cytokine  IL-1β, which 

is secreted by activated macrophages.  We examined NF-𝜅B promoter activity, its 

nuclear translocation and IL-8 native promoter activity in Caco-2 cell line, continuous 

cells of heterogeneous human epithelial colorectal adenocarcinoma cells.  To study the 

molecular mechanisms by which the olive oil phenolic extracts affect the gut 

inflammation  states,  we performed the experiments in  two different phases of 

differentiation process; undifferentiated (features of colonocytes) and differentiated 

(features of enterocytes) Caco-2 cells; in particular, we examined IL-8 mRNA 

expression and its secretion into the medium.  Furthermore, we tried to get the insight of 

molecular mechanism of how OPs interact on IL-8 expressions.  By integrating the 

approaches mentioned above, we expected to gain further insights on the molecular 

mechanisms by which OPs modulate the inflammatory response in intestinal cells. 
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3.1 Reagents  

DMEM-F12 medium, L-glutamine 200mM, 0.25% trypsin-EDTA, penicillin and 

streptomycin were purchased from Life Technologies (Milan, Italy).  DMEM medium, 

nonessential amino acid, protease inhibitor cocktail, actinomycin D (A94159), the 

pharmacological inhibitors of MAPK pathways, U0126 (ERK inhibitor), SB203580 

(p38 inhibitor), SP600125 (JNK inhibitor), lipopolysaccharide, tumor necrosis factor-α  

phloretin,  tyrosol were purchased from Sigma Aldrich (Milan, Italy), and fetal bovine 

serum was purchased from Euro clone (Milan, Italy).  IL-1β was purchased from 

Immunotools (Friesoythe, Germany).  The apigenin and luteolin were purchased from 

Extrasynthese (Lyon, France).  The oleuropein aglycone and ligstroside aglycone were 

obtained from their corresponding glucoside (Extrasynthese, Lyon, France) by 

enzymatic digestion with β-glucosidase; their purity of 99% was confirmed by TLC and 

electrospray ionization-mass spectrometry (ESI-MS) analysis.  The hydroxytyrosol was 

from Cayman Chemical Co. (Tallinn, Estonia).  All compounds used for the analytical 

determinations and for the biological assays were of HPLC purity grade. The plasmid 

NF-𝜅B-LUC containing the luciferase gene under the control of 3 𝜅B sites was a gift 

from Dr. N. Marx (Department of Internal medicineⅡ- Cardiology, University of Ulm, 

Germany).  Native IL-8-LUC promoter was kindly provided from Dr. T. Shimohata and 

Prof. A. Takahashi (Departments of Preventive Environment and Nutrition, University 

of Tokushima Graduate School, Japan).  AGS cells were obtained from  LGC Standard 

S.r.l., (Milano, Italy) and Caco-2 cells (at 105 passages) were kindly donated by Dr. Y. 

Sambuy (INRAN - National Research Institute on Food and Nutrition, Italy).  
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3.2 Cell cultures  

The human adenocarcinoma cells (AGS) were grown in Dulbecco’s Modified 

Eagle’s Medium (DMEM) / F12 medium  supplemented with 100 units penicillin/ml, 

100 mg streptomycin/ml, and 10% heat-inactivated fetal calf serum.  The human 

epithelial colorectal adenocarcinoma cells (Caco-2) were cultured in DMEM containing 

10% fetal bovine serum, 4mM L-glutamine, 1mM sodium pyruvate, 1% non-essential 

amino acid and 1% of penicillin streptomycin.  Both cell lines were incubated at 37℃ in 

a humidified atmosphere containing 5% CO2 and medium was changed 3 times a week.   

 

3.3 Phenolic extractions from extra virgin olive oil  

Phenolic extracts were obtained from Extra virgin olive oil “PLANETA” by the 

method according to Montedoro et al. with minor modifications 
(86)

.  Briefly, extra 

virgin olive oil (100g) was delipidated with 110ml of hexane and extracted with a 

mixture of methanol and water (methanol / water = 80 / 20; v/v; 110ml) three times by 

shaking the funnel gently.  Collected methanol phase was evaporated under nitrogen 

stream, and remaining water phased was frozen and lyophilized. Obtained phenolic 

extracts were stored at -20℃ and re-suspended by ethanol before characterization.  
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3.4 Characterization of phenolic extracts  

       3.4.1 Total phenol contents 

Total phenol concentrations were measured by the Folin-CIOCALTEAU assay 
(87)

. 

Briefly, phenolic extracts were diluted with ethanol to the appropriate concentration, 

then water and Folin-CIOCALTEAU reagents were added, respectively.  After adding 

Folin-CIOCALTEAU reagent, reaction was neutralized with sodium carbonate, and 

resulting blue color absorbance was measured by spectrophotometry at 750 nm by 

JASCO model V-530.  Gallic acid was used to obtain calibration curve.  

 

         3.4.2 Individual phenolic compound characterization  

Then individual phenolic compound was characterized with gas chromatography-

mass spectrometry (GC-MS/MS) and liquid chromatography (LC-MS).  The operating 

parameters were previously described 
(88)

.   Concentrations of Ligstroside aglycon, 

Oleuropein aglycon, apigenin and luteolin were measured by LC-MS.  The calibration 

curve was measured with phloretin (Oleuropein aglycon; 10 μg/sample, others 

1μg/sample) as an internal standard and increasing amounts of the authentic phenols (0-

20 μg for Ligstroside aglycon, 0-100 μg for Oleuropein aglycon, 0-5μg for apigenin and 

0-15μg for luteolin).  Concentrations of tyrosol and hydroxytyrosol were quantified by 

GC-MS/MS with 50 ng/sample of deuterium-labeled hydroxytyrosol as an internal 

standard, and calibration curve was obtained with pure 0-50ng of tyrosol and 

hydroxytyrosol.  
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3.5 Cytotoxicity  

The cytotoxicity of phenolic extracts to the cells was assessed by the 3,4,5-

dimethylthiazol-2-yl-2-5-diphenyltetrazolium bromide (MTT) assay.  MTT assay is 

based on the reduction of MTT by the mitochondrial dehydrogenase of intact cells to a 

purple formazan product.  Before  experiments, each condition was tested by MTT 

assay to assess whether treatment with inflammatory stimuli and phenolic extracts 

caused cytotoxicity.  After each treatment, culture media were carefully removed by 

aspiration and 200 ml of 0.1 mg/ml MTT in PBS were added to each well and incubated 

for 30min. Then, 100 ml of 10% isopropanol + DMSO (dimethyl sulfoxide) solution 

was added to each well to dissolve the formazan crystals formed.  The amount of 

formazan was determined by measuring the absorbance at 550nm using a microplate 

reader iMark
tm

, Bio-rad.  

 

3.6 Transfections 

The AGS cells were seeded 1×10
4
 cell per well on 24-wells plates, then after 3 

days, NF-𝜅B-luc plasmid was transfected by using calcium phosphate method.  The 

Caco-2 cells were plated at the density of  4×10
4 

on 24-wells plates when cells reached 

approximately 70-80% confluency, 500 ng of NF-𝜅B-LUC, native IL-8-LUC plasmids 

were individually transfected to the cells.  To transfect the plasmids into the Caco-2 

cells we used Lipofectamine 2000 with 1 : 2 (μl reagent : μg plasmid DNA) ratio 

according to the  mamanufacturer's instructions.  The native IL-8-LUC plasmid used in 

these experiments contains sequences responsive to other transcription factors such as 

activator protein 1 (AP-1), CCAAT-enhancer-binding protein-β (C/EBPβ), and NF-𝜅B 

binding elements.   
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After 18 hours of transfection, cells were pre-treated for 1 hour with OPs at 

increasing concentrations (AGS; 0.1-2.5μg/ml, Caco-2; 2.5-10μg/ml) then treated cells 

with individual stimulus (AGS;10ng/ml of TNF-α, Caco-2; 50μg/ml of LPS or 5ng/ml 

of IL-1β) together with olive oil phenols (OPs) for the next 6 hours.   

 

3.7 NF-𝜅B nuclear translocation  

To assess the effects of phenolic extracts on NF-𝜅B (p65) nuclear translocation in 

inflamed Caco-2 cells, the cells were plated at a density of 1.5×10
6
 cells  in 10-mm 

plates.  After 48 hours, cells were treated for 1 hour with the inflammatory mediators 

and the OPs.  Nuclear extracts were prepared using Nuclear Extraction Kit from 

Cayman Chemical Company (Michigan, USA) and stored at -80℃ until assayed.  The 

concentration of nuclear proteins was assessed by Bradford method and the same 

amount of nuclear extract (10μg/well) was loaded for the analysis. Then, NF-𝜅B nuclear 

translocation was assessed by using the NF-𝜅B (p65) transcription factor assay kit 

(Cayman) followed by spectroscopy (signal read 450 nm, 0.1 s). 

 

3.8 RNA extraction and quantitative RT-PCR analysis  

Caco-2 cells were seeded on 24-wells plate at high density (6×10
5
 cells/ well). 

The undifferentiated Caco-2 cells were treated 1 day after seeding while the 

differentiated Caco-2 cells were obtained after growth for 18 days.  Both cells were pre-

treated for 1 hour by following concentrations of phenolic extracts before inducing 

inflammation reaction with 50μg/ml LPS or 5ng/ml IL-1β, respectively.  After 1 hour of 

pre-treatment with phenolic extracts, medium were replaced with medium containg 
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stimulus alone or together with phenolic extracts and cells were incubated for the next 6 

hours.  After these treatments, total RNA was extracted using the Nucleospin RNA II 

kit (Macherey–Nagel, Duren, Germany) and the purity and concentration were checked 

by nano drop (Thermo Fisher Scientific ND-1000).  RNA was analysed by TaqMan 

CFX384 RT-qPCR using the iScript
TM 

one-step RT-PCR kit for probes (Bio-Rad; 

Milano, Italy).  Samples were run in 384 well formats in triplicate as multiplex reactions 

with a normalized internal control (GAPDH).  IL-8 and GAPDH probe and primers 

were purchased from Eurofins MWG-Operon (Milano, Italy) The sequences are 

reported blow. 

Gene 

Symbol 
RefSeq ID Sequences (5’ to 3’)  

hIL-8  NM_000584 Forward ATACTCCAAACCTTTCCACCC 

Reverse TCTGCACCCAGTTTTCCTTG 

Probe            CCACACTGCGCCAACACAGAAA 

hGADPDH NM_001256799 

 

Forward CGGGGCTCTCCAGAACATC 

Reverse ATGACCTTGCCCACAGCCT 

Probe            CCCTGCCTCTACTGGCGCTGCC 

 

3.9 Intracellular IL-8 contents and secreted IL-8 protein concentration 

After treatments, the medium was removed and stored at -20℃ till the assay of 

IL-8 secretion.  To obtain cell lysate, cells were washed twice with cold PBS then lysed 

with lysis buffer (100 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1mM EDTA, 1% Triton X 

- 100, 0.5% sodium deoxycholate, and protease Inhibitor Cocktail).  Cell lysates were 

homogenized and then centrifuged at 13,000 rpm for 10 minutes at 4℃.  Total protein 
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concentration was determined by the Bradford method and the lysated were stored at -

20℃ till measured.  The levels of IL-8 protein released into the culture medium and 

intracellular contents were assessed by an enzyme-linked immunosorbent assay 

(ELISA) kit (peprotech, Rocky Hill, NJ, USA), in accordance with the manufacturer’s 

instructions.  

 

3.10  IL-8 mRNA stability  

Undifferentiated and differentiated Caco-2 cells were pre-treated with phenolic 

extracts for 1 hour and then stimulated with 5ng/ml IL-1β for 6 hours as described. 

After 6 hours of incubation, the medium was replaced with new medium which contains 

10 μg/ml actinomycin D to block further transcription.  Total RNA was extracted at 0, 

30 and 120 minutes after Actinomycin D addition.  IL-8 mRNA stability was assessed 

by real time PCR method as described above.  GAPDH was used as a housekeeping 

gene to normalize the data.  

 

3.11 MAPKs inhibitor experiments  

Caco-2 cells were pre-treated with phenolic extracts and/or inhibitors of  

individual MAPK pathways by following concentrations10μM U0126 (ERK inhibitor), 

30μM SB203580 (p38 inhibitor), and10μM SP600125 (JNK inhibitor). After pre-

treatment, the cells were exposed to 5ng/ml IL-1β for the next 6 hours. After 6 hours of 

treatment, cells were collected and IL-8 mRNA expression was analysed as described 

above.  
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3.12  Statistical analysis 

All data are expressed as mean ± SEM. Data were analyzed by unpaired t test, 

one-way analysis of variance (ANOVA), or two-way analysis of variance (ANOVA) 

followed by Bonferroni as post-hoc test. Statistical analysis was done using GraphPad 

Prism 5.02 software (GraphPad Software Inc., San Diego, CA, USA). p<0.05 was 

considered to be statistically significant.  IC50 was calculated using GraphPad Prism 

5.02. 
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4. 1. Determination of total phenolic content by Folin-CIOCALTEU method 

Total phenolic contents in olive oil phenol extracts were assessed by the Folin – 

CIOCALTEU method as reported in the Materials and Methods section 3.4.1.  The total 

phenolic amount and composition of olive oils are variables which are from 50 to 1000 

mg/kg 
(25)

.  The OPs from “PLANETA” contained 394mg/kg of total phenols, this value 

was similar to that found previously in other extra-virgin olive oils of our laboratory 
(64)

  

 

4. 2.  Analytical quantification of individual phenolic compounds  

 We only measured major individual phenolic compounds which are already 

known as having biological activity in in vivo and in vitro studies, in the OPs used in the 

present experiments.  Quantification of secoiridoids and flavonoids content was 

performed by LC-MS/MS, and phenolic alcohol was measured by GC-MS.  As reported 

in table 1, secoiridoids such as oleuropein aglicone (OleA) and ligstroside aglicone 

(LigA) were the most abundant compounds and both of them  accounted for about 44% 

of the total phenols.  The  phenolic alcohols tyrosol (TY) and hydroxytyrosol (HY) were 

present in the range of 9-10%, and the concentration of flavonoids apigenin (AP) and 

luteolin (LU) was below 1%.  

Secoiridoids 

 

[OleA]  Oleuropein aglycone  28.3% 

[LigA]   Ligstroside aglycone  15.6% 

Phenolic alcohols 

 

 [TY]     Tyrosol        4.8% 

 [HY]     Hydroxytyrosol  4.8% 

Flavonoids 

 
 

 [AP]     Apigenin  0.5% 

 [LU]     Luteolin  0.2% 

 Other 45% 

Table 1 Content of individual OPs measured by GC-MS and LC-MS 
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4. 3.  Cytotoxicity  

To decide the concentration range of OPs to be used for the biological assays, we 

evaluated the cxytotoxicity by performing the MTT assay on AGS cells, and in 

undifferentiated and differentiated Caco-2 cells.  Furthermore, MTT assays were 

performed in all experimental settings (i.e. different cell density, cotreatment, and 

agents to be completed), as mentioned in the Materials and Methods section 3.5.    

 

4. 4.  The effects of phenolic extracts on NF-𝜅B driven transcription in AGS cells 

stimulated with TNF-α 

As thoroughly discussed in the introduction, NF-𝜅B nuclear transcription factor is 

deeply involved in the transcription of pro-inflammatory genes such as IL-8, IL-6, IL-

1β and TNF-α.  Previously, our laboratory demonstrated that OPs from other 

commercial olive oils can interfere with NF-𝜅B promoter activity 
(65)

.  To confirm this 

biological activity of the new phenolic extracts from “PLANETA” olive oil, we 

assessed its effect on NF-𝜅B promoter activity in AGS cells treated with TNF-α.  NF-

𝜅B promoter activity was assessed in AGS cells transiently transfected with the NF-𝜅B-

LUC reporter system, in which the luciferase gene is under control of 3 B-sites.  Ten 

ng/ml of TNF-α induced 4-fold increase in the promoter activity compared with that 

obtained from the cells without stimulation (Fig. 1).  To assess the activity of the OPs, 

transfected cells were pre-treated with olive oil extract at concentrations ranging from 

0.1-2.5μg/ml withTNF-α stimulus.  In cells treated together with TNF-α and OPs, the 

NF-𝜅B promoter activity was reduced in a concentration-dependent manner.   The 

calculated half maximal inhibitory concentration (IC50) was 1.38μg/ml.  Therefore, the 
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present results demonstrated that the ability of OPs to inhibit activation of NF-𝜅B 

pathway induced by TNF-α in AGS cells is independent on the origin and 

manufacturing procedure of the olive oil.   

 

Fig 1 OPs inhibit the NF-𝜅B promoter activity in a concentration-dependent 

manner in the AGS cells.  The AGS cells were transfected with NF-𝜅B-luciferase gene 

by calcium phosphate methods; after 18 hours of transfection, cells were pre-treated for 

1 hour with OPs at different concentrations (0.1-2.5μg/ml).  Then, we induced the 

inflammation states by treating with10ng/ml of TNF-α for next 6 hours. Data are 

expressed as percentages with respect to luciferase activity measured in cells treated 

with TNF-α alone.  The graph shows the means ± SEM of one representative 

experiment that was repeated 3 times yielding similar results, n=4 per conditions, 

***p<0.0001 vs stimulus alone.  Data were analyzed by one-way analysis of variance 

(ANOVA), followed by Bonferroni as post-hoc test. 
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4.5. The influence of OPs on NF-𝜅B driven transcription in Caco-2 cells stimulated 

with LPS 

We moved our attention to human epithelial colorectal adenocarcinoma (Caco-2) 

cells, because most OPs are absorbed in the intestine 
(26)

.  As described in introduction 

part 1. 3. 3. a., Caco-2 cells have two states, an undifferentiated state which is 

characterized by features typical of colonocytes, and differentiated Caco-2 cells, which 

more closely resemble enterocytes.  All transfection experiments were performed in 

undifferentiated Caco-2 cells, since differentiated cells are less efficiently transfectable 

by common commercially available transfection reagents.  To induce the acute phase of 

the inflammation state, we decided  to use high concentration of bacterial LPS.  To 

check the involvement of NF-𝜅B promoter activity, we transfected NF-𝜅B-LUC 

reporter system into undifferentiated Caco-2 cells.  LPS did not induce NF-𝜅B promoter 

activity when compared with the cells without stimulation (Fig 2).  As discussed in the 

Introduction, LPS may activate not only NF-𝜅B but also other signalling pathways, 

depending on the repertoire of receptors and intracellular effector molecules expressed 

in target cells.  Our results suggest that in undifferentiated Caco-2 cells LPS acts 

through mechanisms independent of  NF-𝜅B. However, treatment with 7.5 μg /ml of 

OPs reduced the basal activity by about 50%.   
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Fig 2 Lipopolysaccharide (LPS) did not induce NF-𝜅B promoter activity. But OPs 

still suppressed the NF-𝜅B promoter activity in a concentration-dependent manner. 

The undifferentiated Caco-2 cells were transfected with Lipofectamine 2000, after 18 

hours of transfection cells were pre-treated for 1 hour with increasing concentration of 

OPs (2.5-10μg/ml). Then, we treated cells with 50μg/ml of LPS together with OPs for 

the next 6 hours. Data are expressed as percentages with respect to luciferase activity 

measured in cells treated with LPS alone.  Data ere expressed as means ± SEM, the 

graph show a representative experiment that was repeated 3 times yielding similar 

results, n=4 per conditions, *p<0.05, ***p<0.0001 vs stimuli alone. Data were analyzed 

by one-way analysis of variance (ANOVA), followed by Bonferroni as post-hoc test. 
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4.6. Effects of OPs on native IL-8 promoter activity in Caco-2 cells stimulated with 

LPS 

The results shown in fig.2 were obtained using an artificial promoter that contains 

3 NF-𝜅B binding sites deriving from the E-selectin gene.  To assess the effect of OPs on 

NF-𝜅B-transcriptional activity in the context of a native promoter, we transfected Caco-

2 cells with a plasmid carrying the luciferase gene downstream the interleukin-8 (IL-8) 

proximal promoter (Fig. 3).  Among the numerous genes whose promoters contain NF-

𝜅B binding sites and other sequences responsive to inflammatory cues, we selected IL-8 

because this chemokine is known to play a key role in the acute phase of intestinal 

inflammation and immune response as described in introduction  1. 4. 3.  

 

 

Skematic diagram of the IL-8 proximal promoter (Shimohata, et al., 2011)  

 

As shown in Fig. 3, LPS increased the wild-type IL-8 promoter activity by 3-fold 

compared to that of unstimulated cells, and phenolic extracts suppressed this induction 

in a concentration-dependent manner.  Treatment with 5 μg/ml of OPs reduced the 

induction of IL-8 promoter activity to the basal level (Fig 3).  By using the native 

promoter of IL-8, which contains several responsive sequences,  we demonstrated that, 

LPS stimulates the transcription of genes related to inflammation regulation.  Moreover, 

the inhibition observed in cells treated with the OPs suggests that these compounds may 

modulate the transcription of inflammatory genes by multiple mechanisms, in addition 

to inhibition of NF-𝜅B signalling.  
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Fig 3 OPs inhibit the IL-8 native promoter activity at in cells treated with LPS. The 

undifferentiated Caco-2 cells were transfected with the plasmids by use of 

Lipofectamine 2000, after 18 hours of transfection cells were pre-treated for 1 hour with 

phenolic extracts at increasing concentrations (2.5-10μg/ml).  Then we treated cells with 

50μg/ml of LPS together with OPs for the next 6 hours. Data are expressed as 

percentages with respect to luciferase activity measured in cells treated with LPS alone.  

The graph shows the means ± SEM of the representative experiment that was repeated 3 

times yielding similar results, n=4 per conditions, ***p<0.0001 vs stimuli alone. Data 

were analyzed by one-way analysis of variance (ANOVA), followed by Bonferroni as 

post-hoc test. 

 

 

4.7. The influence of OPs on NF-𝜅B driven transcription in Caco-2 cells stimulated 

with IL-1β 

IL-1β is one of the cytokines more deeply involved in the acute phase of 

inflammation; it is secreted by macrophages, after activation with stimuli such as LPS 

and, by targeting other cells, such as intestinal epithelial cells, it contributes to further 

amplify the inflammatory/immune response.  Treatement with 5 ng/ml of IL-1β induced 

a 5-fold increase in the promoter activity of the NF-𝜅B reporter system, compared with 
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that obtained from the cells without stimulation.  This finding indicates that, in contrast 

to LPS, undifferentiated Caco-2 cells are fully responsive to IL-1β.  The olive oil phenol 

suppressed this activity in a concentration-dependent manner.  Treatment with 10 μg/ml 

of olive oil extract suppressed the induction of NF-𝜅B promoter activity to the basal 

level (Fig 4).  These results demonstrate that the phenolic extract inhibits NF-𝜅B 

activity in undifferentiated Caco-2 cells, similarly to the effects reported in other cell 

types 
(64; 65)

. 

 

Fig 4 OPs inhibits the NF-𝜅B promoter activity in a concentration-dependent 

manner in cells treated with IL-1β. The undifferentiated Caco-2 cells were transfected 

with the plasmids by use of Lipofectamine 2000, after 18 hours of transfection cells 

were pre-incubated for 1 hour with increasing concentrations (2.5-10μg/ml) of OPs. 

Then we treated cells with 5ng/ml of IL-1β together with OPs for the next 6 hours. Data 

are expressed as percentages with respect to luciferase activity measured in cells treated 

with IL-1β alone.  The graph shows the means ± SEM of one representative experiment 

that was repeated 3 times yielding similar results, n=4 per conditions, ***p<0.0001 vs 

stimuli alone. Data were analyzed by one-way analysis of variance (ANOVA), followed 

by Bonferroni as post-hoc test. 
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4.8. The contribution of OPs on NF-𝜅B nuclear translocation in undifferentiated 

Caco-2 cells stimulated with IL-1β 

To further investigate the effect of phenolic extracts on NF- 𝜅B signalling, we 

performed NF-𝜅B nuclear translocation experiment.  Treatment of undifferentiated 

Caco-2 cells with 5 ng/ml of IL-1β induced 4-folds increase of nuclear translocation of 

p65, the transcriptional active subunit of NF-B, compared with those obtained from 

unstimulated cells. The OPs suppressed the IL-β-induced nuclear translocation of NF-

𝜅B in a concentration-dependent manner (Fig 5), but the effect was less pronounced 

compared with those observed on NF- 𝜅B-driven transcription (Fig 4).  At  the 

concentration of 10 μg/ml at which we observed the highest inhibition of the 

transcriptional activation, it correcponds only 30% inhibition of nuclear translocation 

(Fig 5).  These results suggest that probably the OPs affect NF-𝜅B signalling at distinct 

levels, such as translocation and transcriptional activity. 
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Fig 5 OPs inhibit the NF-𝜅B nuclear translocation in a concentration-dependent 

manner in cells treated with IL-1β. The Caco-2 cells were seeded on 10cm petri 

dishes, after 2-3days, when cells reached approximately 80% confluence, they were pre-

treated for 1 hour with OPs at increasing concentrations (2.5-10μg/ml).  Then,we 

induced the inflamed state by adding 5ng/ml IL-1β together with the reported 

concentrations of the OPs for 1 hour.  The nuclear content of p65 was measured by 

ELISA and normalized by protein content.  Data are expressed as percentages with 

respect to cells treated with IL-1β alone.  The graph shows the means ± SEM of the 

representative experiment that was repeated 3 times yielding similar results,**p<0.01 

***p<0.0001 vs stimulus alone.  Data were analyzed by one-way analysis of variance 

(ANOVA), followed by Bonferroni as post-hoc test. 

 

 

4.9. Effect of OPs on IL-8 promoter activity, in Caco-2 cells stimulated with IL-1β 

We then evaluated the ability of the OPs to modulate the  native IL-8 promoter 

activity in cells treated with IL-1β.  Wild-type IL-8 promoter activity was induced 10-

folds by IL-1β and OPs suppressed this induction in a concentration-dependent manner 

(Fig 6).  Ten μg/ml of OPs was able to suppressed the IL-8 promoter activity to the 
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basal level. The regulation of the native IL-8 promoter activity in cells treated with IL-

1β closely resembles the effects observed with the NF-𝜅B reporter system, thus 

suggesting that this cytokine regulates gene transcription mainly acting through NF-𝜅B. 

Also, the effect of the phenolic extract on IL-8 promoter activity mirrors the effect 

observed on the NF-𝜅B-luc construct. It is worth mentioning that these findings in 

Caco-2 cells are consistent with the results obtained in AGS cells treated with TNF-α 

(Fig 1). 

 

 

Fig 6 OPs inhibits the IL-8 native promoter activity in cells treated with IL-1β.  
The undifferentiated Caco-2 cells were transfected with the plasmids by use of 

Lipofectamine 2000, after 18 hours of transfection cells were pre-treated for 1 hour with 

OPs at increasing concentrations (2.5-10μg/ml). Then we treated cells with 5ng/ml of 

IL-1β together with OPs for the next 6 hours. Data are expressed as percentages with 

respect to luciferase activity measured in cells treated with IL-1β alone.  The graph 

shows the means±SEM of one representative experiment that was repeated 3 times 

yielding similar results, n=4 per conditions, ***p<0.0001 vs stimuli alone. Data were 

analyzed by one-way analysis of variance (ANOVA), followed by Bonferroni as post-

hoc test. 
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4.10. Time course of IL-8 mRNA expression  

To assess whether the effects of OPs on promoter activity translate into the 

modulation of IL-8 expression, we first examined the time course of IL-8 mRNA 

expression in both undifferentiated and differentiated Caco-2 cells treated with 

inflammatory stimuli.  As we expected, IL-1β rapidly induced IL-8 transcription in both 

differentiated and undifferentiated conditions that reached a maximum at 1 h. 

Undifferentiated Caco-2 cells showed strong sensitivity to IL-1β stimulation compared 

with differentiated Caco-2 cells (Fig 7).  We also measured IL-8 secretion into the 

medium.  Upto 2 hours we did not detect any IL-8 protein in the medium by ELISA, but 

at 4-6 hours IL-8 protein reached a plateau in both undifferentiated and differentiated 

Caco-2 cells (Data not shown). Based on these results, we decided to treat cells for 6 h 

with stimuli to assess IL-8 mRNA and protein expression.  
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Fig 7  The time course IL-8 mRNA expressions induced by IL-1β The Caco-2 cells 

were seeded 6×10
5
 cells/well on 24 wells plates, after 24 hours (undifferentiated state) 

or 18 days (differentiated state) cells were treated with 5ng/ml IL-1β for following 

hours till maximum10 hours. The mRNA levels of IL-8 were measured by RT real time 

qPCR. IL-8 mRNA levels results were expressed as fold induction, with respect to the 

control time 0 (without stimulus) set as 1(a, b).  Data were expressed as means ± SEM, 

n=3 per conditions, ***p<0.0001 vs Control. Data were analyzed by two-way analysis 

of variance (ANOVA), followed by Bonferroni as post-hoc test. 

 

 

 

 

 

 

 

 

a) b) Undifferentiated Caco-2 Differentiated Caco-2 
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4.11. Effect of OPs on IL-8 mRNA expression and protein secretion in 

undifferentiated and differentiated Caco-2 cells at basal conditions 

We assessed whether the OPs modulate the expression of IL-8 at the  basal 

conditions.  We also examined the effects of the OPs on NF-𝜅B-LUC and IL-8 native 

promoter activity at the basal condition in undifferentiated Caco-2 cells.  Both 

transfection assays suggest that OPs significantly suppressed the basal NF-𝜅B-LUC and 

IL-8 native promoter activities, respectively (data not shown).  Either in undifferentiated 

or differentiated Caco-2 cells, IL-8 mRNA levels significantly respond to OPs at a naive 

condition (Fig 8 a and c).  On the other hand, we did not observe any change of IL-8 

secretion level in response to phenolic extract treatment in both cells (Fig 8 b and d).  

Thus, either in undifferentiated or differentiated cells, OPs induced the IL-8 mRNA 

expression by about 3 fold but did not affect IL-8 protein secretion.  These results were 

quite unexpected, because the effects on mRNA are not always translated into the 

protein secretion.  
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Fig 8 Effect of OPs on basal condition, assessed by   IL-8 mRNA expression and 

IL-8 secretion in both undifferentiated and differentiated Caco-2 cells.  The Caco-2 

cells were seeded 6×10
5
 cells/well on 24 wells plates, after 24 hours (undifferentiated 

state) or 18 days (differentiated state) cells were pre-treated for 1 hour with 10μg/ml of 

phenolic extract. IL-8 mRNA levels of IL-8 were measured by RT real time qPCR and 

are expressed as fold induction, setting at 1 each control (without stimuli) (a, c).  Data 

were expressed by means of 4 times repeated experiments as means ± SEM, n=3 per 

condition, **p<0.01 vs Control. Data were analyzed by Student’s t test. 
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4.12. The effect of OPs on IL-8 mRNA expression and protein secretion in LPS-

stimulated undifferentiated and differentiated Caco-2 cells  

To evaluate the effects of OPs in a condition mimicking the intiation of the acute 

phase inflammation, we treated Caco-2 cells together with bacterial LPS and OPs.  As 

shown in figure 9, LPS induced IL-8 mRNA (a and c) and IL-8 secretion (b and d)  

significantly compared to control cells. Furthermore, we clearly observed the significant 

suppression of IL-8 mRNA levels compared with those found in both undifferentiated 

and differentiated Caco-2 cells treated with LPS alone (Fig 9 a and c). The same 

tendency was observed on IL-8 secretion (Fig 9 b and d).  
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Fig 9 Effect of OPs on LPS-induced IL-8 mRNA expression and IL-8 secretion in 

both undifferentiated and differentiated Caco-2 cells. The Caco-2 cells were seeded 

6×10
5
 cells/well on 24 wells plates, after 24  hours (undifferentiated state) or 18 days 

(differentiated state) cells were pre-treated for 1 hour with 10μg/ml of  OPs. Then we 

induced the inflamed state with 50μg/ml of LPS for the next 6 hours together with OPs.  

IL-8 mRNA levels were expressed as fold induction, with respect to each control 

(without stimulus) set as 1(a, c).  IL-8 secretion was measured by ELISA as described in 

material and methods (b, d) Data were expressed as means ± SEM of and shown one 

representative results from 4 different experiments, n=3 per conditions, *p<0.05, 

**p<0.01, ***p<0.0001 vs Control, §p<0.05, §§p<0.01, §§§p<0.0001 vs stimulus. Data 

were analyzed by one-way analysis of variance (ANOVA), followed by Bonferroni as 

post-hoc test.  
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4.13. Effect of OPs on IL-8 mRNA expression in IL-1β stimulated undifferentiated 

and differentiated Caco-2 cells  

Then, we also treated Caco-2 cells with cytokine IL-1β.  As we expected, IL-1β 

induced IL-8 mRNA and IL-8 protein secretion strongly compared with bacterial LPS. 

Moreover, when we treated Caco-2 cells with IL-1β together with OPs, we observed a 

strong induction of IL-8 mRNA in both undifferentiated Caco-2 cells (6.5 fold increase 

compared with IL-1β treatment alone; Fig 10 a) and differentiated Caco-2 cells (2.3 fold 

increase compared with IL-1β treatment alone; Fig 10b).  These results seem to be   

consistent with what we found in transfection assay: OPs inhibit IL-1β- induced NF-𝜅B 

signalling, but not the mRNA levels of IL-8, a NF-𝜅B regulated gene.  Moreover we 

observed a stronger induction of IL-8 mRNA in the presence of phenolic extract.  
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Fig 10 Effect of OPs on IL-1β-induced IL-8 mRNA expression in both 

undifferentiated and differentiated Caco-2 cells. The Caco-2 cells were seeded 6×10
5
 

cells/well on 24 wells plates, after 24 hours (undifferentiated state) or 18 days 

(differentiated state) cells were pre-treated for 1 hour with 10μg/ml of phenolic extracts. 

Then, we induced the inflamed state by 5ng/ml of IL-1β for the next 6 hours together 

with OPs.  IL-8 mRNA level results were expressed as fold induction, which respected 

each control (without stimulus) set as 1 (a, c).  Data were expressed as means ± SEM of 

and shown one representative results from 4 different experiments, n=3 per conditions, 

**p<0.01, ***p<0.0001 vs Control, §§§p<0.0001 vs stimulus. Data were analyzed by 

one-way analysis of variance (ANOVA), followed by Bonferroni as post-hoc test. 
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4.14. Effect of OPs on the intracellular IL-8 protein contents and secreted IL-8 

protein in IL-1β stimulated undifferentiated and differentiated Caco-2 cells  

Under most circumstances, the effects observed on secretion of IL-8 reflect the 

modulation of its transcription and translation. The results described in the previous 

section, however, indicate that in the presence of IL-1β the OPs modulates IL-8 

transcription and expression in an unexpected way in cells treated with IL-1β,  addition 

of the OPs further induced IL-8 mRNA levels, in contrast to the inhibitory effects 

observed on promoter activity.  To get the better insight of how OPs affect IL-8 protein 

expressions, we first measured intracellular IL-8 protein contents by ELISA.  In both 

undifferentiated and differentiated Caco-2 cells, intracellular contents of IL-8 protein 

significantly increased in the presence of both IL-1β and OPs compared with the 

treatment with IL-1β alone (Fig. 11 a and c).  Notably, these results were consistent 

with  the mRNA expression in both undifferentiated and differentiated Caco-2 cells (Fig. 

10 a and c).  To our surpise,  when we focused our attention on secreted IL-8 protein 

level (Fig 11 b and d), the amount of IL-8 protein released into the medium did not 

exactly follow the profile of IL-8 mRNA expression (Fig 10 a an b) and intracellular IL-

8 contents (Fig 11 a, c).  Especially in differentiated Caco-2 cells (fig 11 d), we 

observed a significant reduction of IL-8 protein secreted  into the culture medium, 

indicating that the observed effects also depend on the differentiation state of Caco-2 

cells. Thus, these data suggest that the OPs potentiate the effect of IL-1β on both IL-8 

mRNA and protein levels. 
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Fig11 Intracellular IL-8 protein accumulation and IL-8 secretion in both 

undifferentiated and differentiated Caco-2 cells stimulated with IL-1β  The Caco-2 

cells were seeded 6×10
5
 cells/well on 24 wells plates, after 24  hours (undifferentiated 

state) or 18 days (differentiated state) cells were pre-treated for 1 hour with 10μg/ml of 

OPs.  Then, we treated cells with 5ng/ml of IL-1β together with OPs for the next 6 

hours.  Then intracellular IL-8 protein contents were extracted with lysis buffer. 

Intracellular IL-8 protein contents and IL-8 secretion were measured by ELISA as 

described in material and methods.  Data were expressed as mean ± SEM of and shown 

one representative result from 3 different experiments, n=4 per conditions, **p<0.05, 

***p<0.0001 vs control, §§p<0.0001 vs stimulus. Data were analyzed by one-way 

analysis of variance (ANOVA), followed by Bonferroni as post-hoc test. 

a) 

b) 

Undifferentiated Caco-2 Differentiated Caco-2 

§§ 

d) 

c) 
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4.15. The OPs affect IL-8 mRNA stability  

To gain further insight on the effect of OPs on IL-8 expression in the presence of 

IL-1β, we evaluated IL-8 mRNA stability.  To this end, we measured the mRNA levels 

of IL-8, whose reported half-life is about 2 hours, in the presence of actinomycin D, a 

known inhibitor of gene transcription.  In these conditions, the mRNA levels of a highly 

regulated gene should decay due to degradation while the mRNA level of a 

housekeeping gene such as GAPDH remain fairly constant.  In the cells treated only 

with IL-1β and actinomcin D, IL-8 mRNA level was significantly decreased in both 

undifferentiated and differentiated Caco-2 cells.  As shown in Fig 12 a and b (blue line) 

at 2 hours, IL-8 mRNA decreased by about 50% with respect to time 0, as a 

consequence of the inhibition of gene transcription.  On the other hand, in the cells 

treated with both IL-1β and phenolic extracts, IL-8 mRNA levels at 2 hours were 

significantly higher than IL-1β alone.  These results clearly indicate that the phenolic 

extract affects the stability of IL-8 mRNA.  Importantly, these results could explain, at 

least in part, the discrepancy between the effects observed on IL-8 promoter activity and 

on mRNA levels in cells treated with both IL-1β and OPs (Fig. 12 a and b).  
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Fig 12 The IL-8 mRNA stabilization with OPs  The Caco-2 cells were seeded 6×10
5
 

cells/well on 24 wells plates, after 24  hours (undifferentiated state) or 18 days 

(differentiated state) cells were pre-treated for 1 hour with 10μg/ml of  OPs. Then, we 

treated cells with 5ng/ml of IL-1β together with OPs. After 6 hours the medium was 

replaced with 10μg/ml of actinomycin D till maximum 2 hours. The time 0 IL-8 mRNA 

levels were set at 100% by the following conditions. Data were expressed as mean ± 

SEM and shown representative results from one experiment repeated two-three times 

and yielding similar results, n=4 per conditions,**p<0.01 vs stimuli alone. Data were 

analyzed by two-way analysis of variance (ANOVA), followed by Bonferroni as post-

hoc test.  
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4.16. Modulation of MAPK signalling by Phenolic extracts 

As discussed in the introduction, different MAPKs cascades have been shown to 

be involved in the stabilization of IL-8 mRNA. More specifically, activation of these 

MAPKs is associated to increase stability of IL-8 transcripts 
(79)

.  To assess whether OPs 

increase IL-8 mRNA stability by means of these MAPKs, we used specific inhibitors of 

p38MAPK (SB203580), ERK (U-0126) and JNK (SP600125).  We obtained that the 

inhibition of both p38MAPK and ERK signaling pathways prevents, at least in part, the 

induction of IL-8 mRNA expression by OPs, and this tendency was observed in both 

undifferentiated and differentiate Caco-2 cells (Fig 13 a and b).  These results strongly 

suggest that activation of p38 and/or ERK contributes to the biological activity of OPs 

on IL-8 expression, probably at the level of mRNA stability.   
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Fig13 Involvement of p38 MAPK and ERK pathway in the induction of IL-8 

mRNA expression by OPs The undifferentiated (a) and differentiated (b) Caco-2 cells 

were pre-treated for 1 hour with 10 μg/ml of OPs together with individual MAPKs 

inhibitors; 30μM SB203580 (SB: p38 inhibitor), 10μM SP600125 (SP: JNK inhibitor), 

10μM U0126 (U: ERK inhibitor) or as vehicle (DMSO).  Then 1hour later inflammation 

states were induced by 5ng/ml of IL-1β together with OPs and individual inhibitors for 

the next 6 hours. The cells treated with IL-1β+ 10μg/ml of OPs were set at 100%. Data 

were expressed as mean ± SEM of and shown one representative result, n=3 per 

conditions, **p<0.01, ***p<0.0001 vs stimuli alone. Data were analyzed by one-way 

analysis of variance (ANOVA), followed by Bonferroni as post-hoc test. 
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Olive oil has been recognized as an important component of a healthy diet, also 

because of its phenolic content
(89)

.  In fact, previous studies have identified many 

properties of olive oil, including anti-inflammatory 
(43)

, anti-atherogenic 
(90)

, anti-cancer 

(91)
 and anti-microbial 

(92)
 activities.  Heretofore, however, there are only few studies 

where the effects of olive oil phenols (OPs) have been examined in vitro on intestinal 

cells or in vivo in the gut 
(46; 93; 94)

.  

The present study was aimed to elucidate how OPs interact with intestinal 

epithelial cells in the normal and inflamed conditions.  Van De Wall et al previously 

demonstrated that the differentiation stage may significantly influence the inflammatory 

response in intestinal epithelial cells 
(95)

.  Therefore, we examined the effects of OPs on 

the inflammatory process in both undifferentiated and differentiated Caco-2 cells, a well 

established cellular model of intestinal epithelial cells.  Interleukin-8 (IL-8) is rapidly 

induced in response to pro-inflammatory cytokines, bacterial and cellular stresses, and 

is involved in the acute phase of gastrointestinal inflammation.  The synthesis of IL-8 is 

controlled by different signalling pathways including NF-𝜅B and MAPKs.  The present 

results strongly suggest that although OPs actually inhibited NF-𝜅B-driven transcription 

and nuclear translocation, they increased IL-8 mRNA expression in both 

undifferentiated and differentiated cells stimulated with IL-1β.   We next examined the 

molecular mechanisms whereby they affect expression of IL-8 mRNA and protein 

secretion in the medium by assessing the mRNA stability, intracellular protein 

translation and the effects of OPs on the MAPK signalling pathway.  
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5.1. Biological activity of OPs  

So far, many studies demonstrated the anti-inflammatory effects of OPs as a 

mixture of pure compounds, often at concentrarions much higher than the dietary intake. 

Therefore, in the present study we investigated the effects of OPs isolated from olive oil 

as a mixture at concentrations close to those that could be found in the intestine of 

subjects consuming the Mediterranean diet.  

We have already shown the effects of OPs on NF-𝜅B driven transcription and  its 

nuclear translocation in gastric adenocarcinoma cells (AGS) 
(65)

.   In the above study, 

we examined the biological activity of OPs obtained from different commercially 

available extra-virgin olive oils.  In the present study, we used D.O.P. (Denominazione 

di Origine Protetta) olive oil from “PLANETA®”, a small company which strictly 

controls the growing environment, origin of olive fruits and follows low scale producing 

procedures.  As we mentioned in results 4.1. section, “PLANETA” olive oil exhibited  

high organoleptic quality,  but total phenolic content and composition was similar to 

those found in large-scale produces olive oils.  In the present study “PLANETA” olive 

oil suppressed NF-𝜅B-driven transcription in AGS cells with an IC50 of 1.38μg/ml 

similar to the  IC50s (0.86-1.28μg/ml) obtained previously with phenolic extracts 

derived from other olive oils produeced at a large scale 
(65)

.  

As shown in Table 1, amoung phenols secoiridois (oleuropein-aglycon, 

ligstroside-aglycon) were the most abundant compounds present in the extract.  In deed 

we previously demonstrated on the AGS cells, that secoiridoids significantly 

contributed to the biological activity of OPs and that the metabolite homovanillic 
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alcohol was also active, indicating that metabolic transformation does not impair the 

biological activity
(65)

.   

 

5.2. OPs suppressed the IL-8 expressions induced by bacterial LPS  

Although intestine is usually highly tolerant to bacterial LPS, under certain 

conditions LPS derived from pathobiont microbiota could contribute to inflammatory 

diseases.  As shown in Fig 2, LPS did not induce NF-𝜅B-driven transcription but it 

induced IL-8 native promoter activity (Fig 3), mRNA expression and protein level (Fig 

9). This indicated that LPS induced IL-8 expression not through NF-𝜅B but through 

other pathways, most likely MAPK, AP-1, phosphatidylinositol 3-kinase (PI3K) and 

Akt 
(96)

.  Furthermore, OPs suppressed LPS-induced IL-8 native promoter  activity (Fig 

3), IL-8 mRNA and its protein expressions in both undifferentiated and differentiated 

Caco-2 (Fig 9).  These data suggest that the phenolic extract modulates the IL-8 

expression through an NF-𝜅B-independent pathway.  Therefore, when the inflammation 

state is caused by LPS, olive oil phenols may act as anti-inflammatory agents, thus 

suggesting that consumption of extra-virgin olive oil may attenuate the inflammatory 

response in the gut in a state of microbial imbalance 

 

5. 3. OPs enhance the IL-8 mRNA expression induced by IL-1β 

The gastrointestinal tract is composed of a single layer of intestinal epithelial cells, 

and this physical barrier separates subepithelial mucosal immune cells such as 

lymphocytes, macrophages, and dendritic cells from bacteria and food antigens 
(97)

.  

However, in the cases of infection, stress, and food intoxication, this barrier becomes 
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weakened and bacterial LPS could pass through the barrier and activate macrophages.  

Then, the activated macrophages could amplify the signals generated by immune cells 

(neutrophils, dendritic cells, etc) by secreting many chemokines and cytokines such as, 

IL-6, TNF-α and IL-1β 
(98)

.  IL-1β is a prototypical proinflammatory cytokine that plays 

a central role in the inflammatory responses of the intestine 
(99)

.  Recently, Sanchez et al. 

reported that, supplementation of extra-virgin olive oil phenol extracts in an 

experimental model of colitis in mice, suppressed the inflammatory cascade through up-

regulation of peroxisome proliferator-activated receptor gamma (PPAR𝜸) and inhibition 

of NF-𝜅B and MAPK signaling pathways
(100)

.  Furthermore,  Handa et al. demonstrated 

that the main polyphenol occurring in green tea, epigallocatechin-3-gallate (EGCG), 

inhibit IL-1β-induced IL-8 production and expression of cell surface adhesion molecule 

in a cell model of gastric inflammation
(101)

.  On these premises we hypothesized that 

also OPs could suppress IL-8 expression under IL-1β-induced inflammatory state.   

Neverthethless even though the phenolic extract suppressed NF-𝜅B-driven transcription 

(Fig 4), nuclear translocations (Fig 5) and IL-8 native promoter activity (Fig 6) in cells 

treated with IL-1β, it stimulated IL-8 mRNA levels (Fig 10 a and b) and intracellular 

IL-8 protein content (Fig 11 b) in both undifferentiated and differentiated Caco-2 cells.   

These data suggest that phenolic compounds might affect multiple signalling pathways 

contributing toIL-8 expression.  Moreover, in differentiated Caco-2 cells, we found no 

correlation between IL-8 secretion (Fig 10 d) and mRNA expression (Fig 10 c), 

implaying a blockade in the secretion process in the presence of OPs.  These 

observations strongly suggest that  phenolic extract does not only affect transcription of 

IL-8 gene but it may also influence the secretion process.  
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5. 4. OPs increase IL-8 mRNA stability  

As already discussed, we found a discrepancy between the effect of OPs on IL-8 

promoter activity and mRNA levels in cells treated with IL-1β.  To gain further insight 

on these contradictory results, we evaluated the effects of OPs on the stability of IL-8 

mRNA and we did find that they delay the decay of IL-8 mRNA.  So far, there is no 

information reporting the effect of OPs on mRNA stability.  

Previous studies have suggested the involvement of  MAPK and p38 pathways in 

IL-8 mRNA stabilization 
(102; 103)

. Therefore, we examined the potential contribution of 

these pathways in OPs-induced IL-8 mRNA stability by using specific MAPK inhibitors 

in both undifferentiated and differentiated Caco-2 cells.  As shown in Fig 13 a and b, 

inhibition of both p38 and ERK  MAPKs significantly prevented the IL-8 mRNA 

expression induced by OPs. These results indicate that both p38 and ERK are involved 

in IL-8 mRNA stability and that the phenolic extract exhibits a profound effect on these 

pathways.  A relevant role of p38 pathway in  IL-8 mRNA expression and stability was 

put forward by Hoffmann et al.
(79)

.  Moreover, other authors also demonstrated the 

involvement of ERK in IL-8 expression in addition to p38.  Intriguingly, Corona et al 

recently demonstrated that olive oil phenol extract exerted their chemopreventive effects 

by the inhibition of phosphorylation of p38 kinase in human colon adenocarcinoma 

cells, which suggests that protein phosphorylation cascades of p38 could also be 

involved in the molecular actions of the phenolic extract 
(77)

.   At present, we do not 

know the effects on the phosphorylation states of p38 in the present experimental 

conditions and it may require further investigations.  
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Our results also suggest that JNK does not seem to be responsible for the 

increased IL-8 mRNA stability induced by OPs (Fig 13 a and b); however we observed 

that JNK inhibitors significantly suppressed IL-8 secretion induced by OPs (Data not 

shown).  These data imply that JNK pathway is not contributing to the stabilization of 

IL-8 mRNA , but it most likely influence the IL-8 secretion process.   

 

5. 5. Limitations of NF-𝜅B-based biological assays 

NF-𝜅B has been recognized as a target of several antiinflammatory 

pharmacological interventions. Inhibition of the NF-𝜅B activity suppresses the 

expression of various inflammatory mediators.  Many previous studies have used 

biological assays based on NF-𝜅B-driven transcription and nuclear translocation to 

assess the anti-inflammatory profile of drugs and natural products.   The results 

obtained in the present study suggest that, additional pathways should be considered to 

test the anti-inflammatory properties of a given treatment, also in consideration of the 

inflammatory stimulus used in the assay.   

 

5. 6. Conclusion  

All data reported in the present thesis can be summarized in the schemes shown 

on the next page.  OPs act through different molecular pathways on the inflammatory 

processes induced by different stimuli.  
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Abbreviations:  

AGS human gastric adenocarcinoma cells 

AP apigenin  

  AP-1 activator protein 1  

 Caco-2 human epithelial colorectal adenocarcinoma  

C/EBPβ CCAAT-enhancer-binding protein-β  

COX2 cyclooxygenase 2  

 CREB cAMP response element binding protein  

EGCG epigallocatechin-3-gallate 

ERK1/2 extracellular signal-regulated  kinase 1/2  

HY hydroxytyrosol  

 IBD inflammatory bowel disease  

IC50 half maximal inhibitory concentration  

iNOS inducible nitric oxide synthase  

IL-1β interleukin-1beta  

 IL-6 interleukin-6  

 IL-8 Interleukin-8  

 JNK c-Jun N-terminal kinase  

LDL low density lipoprotein  

LigA  ligstroside aglicone  

 LU luteolin  

  MAPKs Mitogen-activated protein kinases  

MMP-9 metalloproteinase-9  

 MUFA monounsaturated fatty acids  

NASH nonalcoholic steatohepatitis  

NF-𝜅B nuclear factor-kappa B  

Nrf2 nuclear factor (erythroid-derived 2)-like 2  

OleA  oleuropein aglicone  

 Ops olive oil phenols  

 PGE2 prostaglandin E2  

 PI3K  phosphatidylinositol 3-kinase  
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PPAR𝜸 peroxisome proliferator-activated receptor gamma  

THP1 human monocytic cells  

TLR4 toll-like receptor 4  

 TLR9 toll-like receptor 9  

 TNF-𝜶 tumour-necrosis factor α  

TY  tyrosol  

   

  



77 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



78 
 

1. Garrett WS, Gordon JI, Glimcher LH (2010) Homeostasis and inflammation in the 

intestine. Cell 140, 859-870. 

2. Cader MZ, Kaser A (2013) Recent advances in inflammatory bowel disease: mucosal 

immune cells in intestinal inflammation. Gut 62, 1653-1664. 

3. Breen DM, Rasmussen BA, Cote CD et al. (2013) Nutrient-sensing mechanisms in 

the gut as therapeutic targets for diabetes. Diabetes 62, 3005-3013. 

4. Henao-Mejia J, Elinav E, Jin C et al. (2012) Inflammasome-mediated dysbiosis 

regulates progression of NAFLD and obesity. Nature 482, 179-185. 

5. Koboziev I, Reinoso Webb C, Furr KL et al. (2013) Role of the enteric microbiota in 

intestinal homeostasis and inflammation. Free radical biology & medicine 68c, 122-

133. 

6. Leaphart CL, Cavallo J, Gribar SC et al. (2007) A critical role for TLR4 in the 

pathogenesis of necrotizing enterocolitis by modulating intestinal injury and repair. 

Journal of immunology 179, 4808-4820. 

7. Sodhi CP, Shi XH, Richardson WM et al. (2010) Toll-like receptor-4 inhibits 

enterocyte proliferation via impaired beta-catenin signaling in necrotizing 

enterocolitis. Gastroenterology 138, 185-196. 

8. Martin GR, Wallace JL (2006) Gastrointestinal inflammation: a central component of 

mucosal defense and repair. Experimental biology and medicine (Maywood, NJ) 231, 

130-137. 

9. Bruewer M, Utech M, Ivanov AI et al. (2005) Interferon-gamma induces 

internalization of epithelial tight junction proteins via a macropinocytosis-like 

process. FASEB journal : official publication of the Federation of American 

Societies for Experimental Biology 19, 923-933. 

10. Beutler B, Rietschel ET (2003) Innate immune sensing and its roots: the story of 

endotoxin. Nature reviews Immunology 3, 169-176. 

11. Medzhitov R, Janeway C, Jr. (2000) Innate immune recognition: mechanisms and 

pathways. Immunological reviews 173, 89-97. 

12. Bocker U, Damiao A, Holt L et al. (1998) Differential expression of interleukin 1 

receptor antagonist isoforms in human intestinal epithelial cells. Gastroenterology 

115, 1426-1438. 



79 
 

13. Reimund JM, Wittersheim C, Dumont S et al. (1996) Increased production of 

tumour necrosis factor-alpha interleukin-1 beta, and interleukin-6 by 

morphologically normal intestinal biopsies from patients with Crohn's disease. Gut 

39, 684-689. 

14. Schuerer-Maly CC, Eckmann L, Kagnoff MF et al. (1994) Colonic epithelial cell 

lines as a source of interleukin-8: stimulation by inflammatory cytokines and 

bacterial lipopolysaccharide. Immunology 81, 85-91. 

15. Forsythe RM, Xu DZ, Lu Q et al. (2002) Lipopolysaccharide-induced enterocyte-

derived nitric oxide induces intestinal monolayer permeability in an autocrine 

fashion. Shock (Augusta, Ga) 17, 180-184. 

16. Al-Sadi RM, Ma TY (2007) IL-1beta causes an increase in intestinal epithelial tight 

junction permeability. Journal of immunology 178, 4641-4649. 

17. Willett WC, Sacks F, Trichopoulou A et al. (1995) Mediterranean diet pyramid: a 

cultural model for healthy eating. The American journal of clinical nutrition 61, 

1402s-1406s. 

18. Keys A, Menotti A, Karvonen MJ et al. (1986) The diet and 15-year death rate in 

the seven countries study. Am J Epidemiol 124, 903-915. 

19. Estruch R, Ros E, Salas-Salvadó J et al. (2013) Primary Prevention of 

Cardiovascular Disease with a Mediterranean Diet. New England Journal of 

Medicine 368, 1279-1290. 

20. Visioli F, Bellomo G, Montedoro G et al. (1995) Low density lipoprotein oxidation 

is inhibited in vitro by olive oil constituents. Atherosclerosis 117, 25-32. 

21. Pallauf K, Giller K, Huebbe P et al. (2013) Nutrition and healthy ageing: calorie 

restriction or polyphenol-rich "MediterrAsian" diet? Oxidative medicine and cellular 

longevity 2013, 707421. 

22. Corona G, Spencer JP, Dessi MA (2009) Extra virgin olive oil phenolics: absorption, 

metabolism, and biological activities in the GI tract. Toxicology and industrial health 

25, 285-293. 

23. Bendini A, Cerretani L, Carrasco-Pancorbo A et al. (2007) Phenolic molecules in 

virgin olive oils: a survey of their sensory properties, health effects, antioxidant 

activity and analytical methods. An overview of the last decade. Molecules (Basel, 

Switzerland) 12, 1679-1719. 



80 
 

24. Esti M, Cinquanta L, La Notte E (1998) Phenolic Compounds in Different Olive 

Varieties. Journal of agricultural and food chemistry 46, 32-35. 

25. Montedoro G, Servili M, Baldioli M et al. (1992) Simple and hydrolyzable phenolic 

compounds in virgin olive oil. 1. Their extraction, separation, and quantitative and 

semiquantitative evaluation by HPLC. Journal of agricultural and food chemistry 40, 

1571-1576. 

26. Vissers MN, Zock PL, Roodenburg AJ et al. (2002) Olive oil phenols are absorbed 

in humans. The Journal of nutrition 132, 409-417. 

27. Vissers MN, Zock PL, Roodenburg AJC et al. (2002) Olive Oil Phenols Are 

Absorbed in Humans. The Journal of nutrition 132, 409-417. 

28. Tuck KL, Hayball PJ (2002) Major phenolic compounds in olive oil: metabolism 

and health effects. The Journal of nutritional biochemistry 13, 636-644. 

29. Buck K, Zaineddin AK, Vrieling A et al. (2010) Meta-analyses of lignans and 

enterolignans in relation to breast cancer risk. The American journal of clinical 

nutrition 92, 141-153. 

30. Hoffman R, Gerber M (2012) Virgin olive oil as a source of phytoestrogens. 

European journal of clinical nutrition 66, 1180. 

31. Granados-Principal S, Quiles JL, Ramirez-Tortosa CL et al. (2010) Hydroxytyrosol: 

from laboratory investigations to future clinical trials. Nutrition reviews 68, 191-206. 

32. Richard N, Arnold S, Hoeller U et al. (2011) Hydroxytyrosol is the major anti-

inflammatory compound in aqueous olive extracts and impairs cytokine and 

chemokine production in macrophages. Planta medica 77, 1890-1897. 

33. Choi JS, Nurul Islam M, Yousof Ali M et al. (2013) Effects of C-glycosylation on 

anti-diabetic, anti-Alzheimer's disease and anti-inflammatory potential of apigenin. 

Food and chemical toxicology : an international journal published for the British 

Industrial Biological Research Association 64c, 27-33. 

34. Wall C, Lim R, Poljak M et al. (2013) Dietary flavonoids as therapeutics for 

preterm birth: luteolin and kaempferol suppress inflammation in human gestational 

tissues in vitro. Oxidative medicine and cellular longevity 2013, 485201. 

35. Cicerale S, Conlan XA, Sinclair AJ et al. (2009) Chemistry and health of olive oil 

phenolics. Critical reviews in food science and nutrition 49, 218-236. 



81 
 

36. Gill CI, Boyd A, McDermott E et al. (2005) Potential anti-cancer effects of virgin 

olive oil phenols on colorectal carcinogenesis models in vitro. International journal 

of cancer Journal international du cancer 117, 1-7. 

37. Goya L, Mateos R, Bravo L (2007) Effect of the olive oil phenol hydroxytyrosol on 

human hepatoma HepG2 cells. Protection against oxidative stress induced by tert-

butylhydroperoxide. European journal of nutrition 46, 70-78. 

38. Di Benedetto R, Vari R, Scazzocchio B et al. (2007) Tyrosol, the major extra virgin 

olive oil compound, restored intracellular antioxidant defences in spite of its weak 

antioxidative effectiveness. Nutrition, metabolism, and cardiovascular diseases : 

NMCD 17, 535-545. 

39. Manna C, Galletti P, Cucciolla V et al. (1997) The protective effect of the olive oil 

polyphenol (3,4-dihydroxyphenyl)-ethanol counteracts reactive oxygen metabolite-

induced cytotoxicity in Caco-2 cells. The Journal of nutrition 127, 286-292. 

40. Manna C, Galletti P, Cucciolla V et al. (1999) Olive oil hydroxytyrosol protects 

human erythrocytes against oxidative damages. The Journal of nutritional 

biochemistry 10, 159-165. 

41. Hashimoto T, Ibi M, Matsuno K et al. (2004) An endogenous metabolite of 

dopamine, 3,4-dihydroxyphenylethanol, acts as a unique cytoprotective agent against 

oxidative stress-induced injury. Free radical biology & medicine 36, 555-564. 

42. Scoditti E, Calabriso N, Massaro M et al. (2012) Mediterranean diet polyphenols 

reduce inflammatory angiogenesis through MMP-9 and COX-2 inhibition in human 

vascular endothelial cells: a potentially protective mechanism in atherosclerotic 

vascular disease and cancer. Archives of biochemistry and biophysics 527, 81-89. 

43. Visioli F, Bellosta S, Galli C (1998) Oleuropein, the bitter principle of olives, 

enhances nitric oxide production by mouse macrophages. Life sciences 62, 541-546. 

44. Rosignoli P, Fuccelli R, Fabiani R et al. (2013) Effect of olive oil phenols on the 

production of inflammatory mediators in freshly isolated human monocytes. The 

Journal of nutritional biochemistry 24, 1513-1519. 

45. Bartoli R, Fernandez-Banares F, Navarro E et al. (2000) Effect of olive oil on early 

and late events of colon carcinogenesis in rats: modulation of arachidonic acid 

metabolism and local prostaglandin E(2) synthesis. Gut 46, 191-199. 



82 
 

46. Sanchez-Fidalgo S, Villegas I, Cardeno A et al. (2010) Extra-virgin olive oil-

enriched diet modulates DSS-colitis-associated colon carcinogenesis in mice. 

Clinical nutrition 29, 663-673. 

47. Gong D, Geng C, Jiang L et al. (2009) Effects of hydroxytyrosol-20 on 

carrageenan-induced acute inflammation and hyperalgesia in rats. Phytotherapy 

research : PTR 23, 646-650. 

48. Acin S, Navarro MA, Arbones-Mainar JM et al. (2006) Hydroxytyrosol 

administration enhances atherosclerotic lesion development in apo E deficient mice. 

Journal of biochemistry 140, 383-391. 

49. Visioli F, Galli C, Bornet F et al. (2000) Olive oil phenolics are dose-dependently 

absorbed in humans. FEBS letters 468, 159-160. 

50. Caruso D, Visioli F, Patelli R et al. (2001) Urinary excretion of olive oil phenols 

and their metabolites in humans. Metabolism: clinical and experimental 50, 1426-

1428. 

51. Sirtori CR, Gatti E, Tremoli E et al. (1992) Olive oil, corn oil, and n-3 fatty acids 

differently affect lipids, lipoproteins, platelets, and superoxide formation in type II 

hypercholesterolemia. The American journal of clinical nutrition 56, 113-122. 

52. Roche HM, Zampelas A, Knapper JM et al. (1998) Effect of long-term olive oil 

dietary intervention on postprandial triacylglycerol and factor VII metabolism. The 

American journal of clinical nutrition 68, 552-560. 

53. Kris-Etherton PM, Pearson TA, Wan Y et al. (1999) High-monounsaturated fatty 

acid diets lower both plasma cholesterol and triacylglycerol concentrations. The 

American journal of clinical nutrition 70, 1009-1015. 

54. Oliveras-Lopez MJ, Berna G, Carneiro EM et al. (2008) An extra-virgin olive oil 

rich in polyphenolic compounds has antioxidant effects in OF1 mice. The Journal of 

nutrition 138, 1074-1078. 

55. Eletto D, Leone A, Bifulco M et al. (2005) Effect of unsaturated fat intake from 

Mediterranean diet on rat liver mRNA expression profile: selective modulation of 

genes involved in lipid metabolism. Nutrition, metabolism, and cardiovascular 

diseases : NMCD 15, 13-23. 



83 
 

56. Deng X, Elam MB, Wilcox HG et al. (2004) Dietary olive oil and menhaden oil 

mitigate induction of lipogenesis in hyperinsulinemic corpulent JCR:LA-cp rats: 

microarray analysis of lipid-related gene expression. Endocrinology 145, 5847-5861. 

57. Acin S, Navarro MA, Perona JS et al. (2007) Microarray analysis of hepatic genes 

differentially expressed in the presence of the unsaponifiable fraction of olive oil in 

apolipoprotein E-deficient mice. The British journal of nutrition 97, 628-638. 

58. Camargo A, Ruano J, Fernandez JM et al. (2010) Gene expression changes in 

mononuclear cells in patients with metabolic syndrome after acute intake of phenol-

rich virgin olive oil. BMC genomics 11, 253. 

59. Bogani P, Galli C, Villa M et al. (2007) Postprandial anti-inflammatory and 

antioxidant effects of extra virgin olive oil. Atherosclerosis 190, 181-186. 

60. Perez-Martinez P, Lopez-Miranda J, Blanco-Colio L et al. (2007) The chronic 

intake of a Mediterranean diet enriched in virgin olive oil, decreases nuclear 

transcription factor kappaB activation in peripheral blood mononuclear cells from 

healthy men. Atherosclerosis 194, e141-146. 

61. Bellido C, Lopez-Miranda J, Blanco-Colio LM et al. (2004) Butter and walnuts, but 

not olive oil, elicit postprandial activation of nuclear transcription factor kappaB in 

peripheral blood mononuclear cells from healthy men. The American journal of 

clinical nutrition 80, 1487-1491. 

62. Lucas L, Russell A, Keast R (2011) Molecular mechanisms of inflammation. Anti-

inflammatory benefits of virgin olive oil and the phenolic compound oleocanthal. 

Current pharmaceutical design 17, 754-768. 

63. Dell'Agli M, Fagnani R, Mitro N et al. (2006) Minor components of olive oil 

modulate proatherogenic adhesion molecules involved in endothelial activation. 

Journal of agricultural and food chemistry 54, 3259-3264. 

64. Dell'Agli M, Fagnani R, Galli GV et al. (2010) Olive oil phenols modulate the 

expression of metalloproteinase 9 in THP-1 cells by acting on nuclear factor-kappaB 

signaling. Journal of agricultural and food chemistry 58, 2246-2252. 

65. Sangiovanni E, Colombo E, Fumagalli M et al. (2012) Inhibition of NF- kappaB 

activity by minor polar components of extra-virgin olive oil at gastric level. 

Phytotherapy research : PTR 26, 1569-1571. 



84 
 

66. Baltes S, Nau H, Lampen A (2004) All-trans retinoic acid enhances differentiation 

and influences permeability of intestinal Caco-2 cells under serum-free conditions. 

Development, growth & differentiation 46, 503-514. 

67. Ebert B, Seidel A, Lampen A (2007) Phytochemicals induce breast cancer resistance 

protein in Caco-2 cells and enhance the transport of benzo[a]pyrene-3-sulfate. 

Toxicological sciences : an official journal of the Society of Toxicology 96, 227-236. 

68. Sambuy Y, De Angelis I, Ranaldi G et al. (2005) The Caco-2 cell line as a model of 

the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell 

functional characteristics. Cell biology and toxicology 21, 1-26. 

69. Buhrke T, Lengler I, Lampen A (2011) Analysis of proteomic changes induced 

upon cellular differentiation of the human intestinal cell line Caco-2. Development, 

growth & differentiation 53, 411-426. 

70. Pinto M, Robine-Leon, S., Appay, M. D., Kedinger, M., Triadou, N., Dussaulx, I'.. 

Lacroix, B., Simon-Assmann, P.. Haffen, K., Fogh, J., and, Zweibaum A (1983) 

Enterocyte-like differentiation and polarization of the human colon carcinoma cell 

line Caco-2 in culture. . Biol Cell 47, 323-330. 

71. Turck N, Richert S, Gendry P et al. (2004) Proteomic analysis of nuclear proteins 

from proliferative and differentiated human colonic intestinal epithelial cells. 

Proteomics 4, 93-105. 

72. Engle MJ, Goetz GS, Alpers DH (1998) Caco-2 cells express a combination of 

colonocyte and enterocyte phenotypes. Journal of cellular physiology 174, 362-369. 

73. Baldwin AS, Jr. (1996) The NF-kappa B and I kappa B proteins: new discoveries 

and insights. Annual review of immunology 14, 649-683. 

74. Hayward R, Lefer AM (1998) Time course of endothelial-neutrophil interaction in 

splanchnic artery ischemia-reperfusion. American Journal of Physiology - Heart and 

Circulatory Physiology 275, H2080-H2086. 

75. Hoesel B, Schmid JA (2013) The complexity of NF-kappaB signaling in 

inflammation and cancer. Molecular cancer 12, 86. 

76. Garrington TP, Johnson GL (1999) Organization and regulation of mitogen-

activated protein kinase signaling pathways. Current opinion in cell biology 11, 211-

218. 



85 
 

77. Corona G, Deiana M, Incani A et al. (2007) Inhibition of p38/CREB 

phosphorylation and COX-2 expression by olive oil polyphenols underlies their anti-

proliferative effects. Biochemical and biophysical research communications 362, 

606-611. 

78. Holtmann H, Winzen R, Holland P et al. (1999) Induction of interleukin-8 synthesis 

integrates effects on transcription and mRNA degradation from at least three 

different cytokine- or stress-activated signal transduction pathways. Molecular and 

cellular biology 19, 6742-6753. 

79. Hoffmann E, Dittrich-Breiholz O, Holtmann H et al. (2002) Multiple control of 

interleukin-8 gene expression. Journal of leukocyte biology 72, 847-855. 

80. Obata T, Brown GE, Yaffe MB (2000) MAP kinase pathways activated by stress: 

the p38 MAPK pathway. Critical care medicine 28, N67-77. 

81. Zhang X, Chen X, Song H et al. (2005) Activation of the Nrf2/antioxidant response 

pathway increases IL-8 expression. European journal of immunology 35, 3258-3267. 

82. Aupperle KR, Bennett BL, Boyle DL et al. (1999) NF-kappa B regulation by I 

kappa B kinase in primary fibroblast-like synoviocytes. Journal of immunology 163, 

427-433. 

83. Tamura Y, Ohta H, Torisu S et al. (2013) Markedly increased expression of 

interleukin-8 in the colorectal mucosa of inflammatory colorectal polyps in miniature 

dachshunds. Veterinary immunology and immunopathology 156, 32-42. 

84. Nahidi L, Leach ST, Mitchell HM et al. (2013) Inflammatory bowel disease 

therapies and gut function in a colitis mouse model. BioMed research international 

2013, 909613. 

85. Nishitani Y, Zhang L, Yoshida M et al. (2013) Intestinal anti-inflammatory activity 

of lentinan: influence on IL-8 and TNFR1 expression in intestinal epithelial cells. 

PloS one 8, e62441. 

86. Montedoro G, Servili M, Baldioli M et al. (1992) Simple and hydrolyzable phenolic 

compounds in virgin olive oil. 2. Initial characterization of the hydrolyzable fraction. 

Journal of agricultural and food chemistry 40, 1577-1580. 

87. Folin O, Ciocalteu V (1927) ON TYROSINE AND TRYPTOPHANE 

DETERMINATIONS IN PROTEINS. Journal of Biological Chemistry 73, 627-650. 



86 
 

88. Dell'Agli M, Maschi O, Galli GV et al. (2008) Inhibition of platelet aggregation by 

olive oil phenols via cAMP-phosphodiesterase. The British journal of nutrition 99, 

945-951. 

89. Visioli F, Poli A, Gall C (2002) Antioxidant and other biological activities of 

phenols from olives and olive oil. Medicinal research reviews 22, 65-75. 

90. Carluccio MA, Siculella L, Ancora MA et al. (2003) Olive oil and red wine 

antioxidant polyphenols inhibit endothelial activation: antiatherogenic properties of 

Mediterranean diet phytochemicals. Arteriosclerosis, thrombosis, and vascular 

biology 23, 622-629. 

91. Owen RW, Giacosa A, Hull WE et al. (2000) Olive-oil consumption and health: the 

possible role of antioxidants. The lancet oncology 1, 107-112. 

92. Tripoli E, Giammanco M, Tabacchi G et al. (2005) The phenolic compounds of 

olive oil: structure, biological activity and beneficial effects on human health. 

Nutrition research reviews 18, 98-112. 

93. Campolo M, Di Paola R, Impellizzeri D et al. (2013) Effects of a polyphenol present 

in olive oil, oleuropein aglycone, in a murine model of intestinal 

ischemia/reperfusion injury. Journal of leukocyte biology 93, 277-287. 

94. Sanchez-Fidalgo S, Sanchez de Ibarguen L, Cardeno A et al. (2012) Influence of 

extra virgin olive oil diet enriched with hydroxytyrosol in a chronic DSS colitis 

model. European journal of nutrition 51, 497-506. 

95. Van De Walle J, Hendrickx A, Romier B et al. (2010) Inflammatory parameters in 

Caco-2 cells: effect of stimuli nature, concentration, combination and cell 

differentiation. Toxicology in vitro : an international journal published in 

association with BIBRA 24, 1441-1449. 

96. Liu HT, Huang P, Ma P et al. (2011) Chitosan oligosaccharides suppress LPS-

induced IL-8 expression in human umbilical vein endothelial cells through blockade 

of p38 and Akt protein kinases. Acta pharmacologica Sinica 32, 478-486. 

97. Haller D, Jobin C (2004) Interaction between resident luminal bacteria and the host: 

can a healthy relationship turn sour? Journal of pediatric gastroenterology and 

nutrition 38, 123-136. 



87 
 

98. Meng F, Lowell CA (1997) Lipopolysaccharide (LPS)-induced macrophage 

activation and signal transduction in the absence of Src-family kinases Hck, Fgr, and 

Lyn. The Journal of experimental medicine 185, 1661-1670. 

99. Dinarello CA (1994) Interleukin-1 in disease. The Keio journal of medicine 43, 131-

136. 

100. Sanchez-Fidalgo S, Cardeno A, Sanchez-Hidalgo M et al. (2013) Dietary extra 

virgin olive oil polyphenols supplementation modulates DSS-induced chronic colitis 

in mice. The Journal of nutritional biochemistry 24, 1401-1413. 

101. Gutierrez-Orozco F, Stephens BR, Neilson AP et al. (2010) Green and black tea 

inhibit cytokine-induced IL-8 production and secretion in AGS gastric cancer cells 

via inhibition of NF-kappaB activity. Planta medica 76, 1659-1665. 

102. Bhattacharyya S, Gutti U, Mercado J et al. (2011) MAPK signaling pathways 

regulate IL-8 mRNA stability and IL-8 protein expression in cystic fibrosis lung 

epithelial cell lines. American journal of physiology Lung cellular and molecular 

physiology 300, L81-87. 

103. Dauletbaev N, Eklove D, Mawji N et al. (2011) Down-regulation of cytokine-

induced interleukin-8 requires inhibition of p38 mitogen-activated protein kinase 

(MAPK) via MAPK phosphatase 1-dependent and -independent mechanisms. The 

Journal of biological chemistry 286, 15998-16007. 

 


