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ABSTRACT 
	
  
	
  

In this thesis I report my investigations on the role of Numb, a known cell fate 

determinant in regulating Stem Cell homeostasis and in the pathogenesis of human 

and mouse breast cancer. I have investigated the characterization of the biological 

and molecular features of Numb KO murine breast model in comparison with Numb 

deficient human breast cells model. I exploited an in vitro system (the mammosphere 

assay) to propagate and enrich breast SCs, in combination with a cell membrane 

labeling system (PKH-assay) to purify SCs. 

The absence of Numb in both murine and human models helped to clarify the role of 

this “fate determinant” starting from the SC first mitotic division in vitro up to the in 

vivo tumorigenesis and related Numb reconstitution consequences. 

Through the comparison of the self-renewal properties of normal and cancer SCs, 

both in terms of proliferative cell fate and Numb partitioning, and the study of the 

molecular mechanisms underlying abnormal growth properties, functional 

attenuation and pharmacological restoration of signaling pathways in mammary 

CSCs, I have attempted to answer the open questions regarding the role of SCs in 

cancer development and maintenance, focusing the attention on a first possible 

direct evidence for cancer SC targeted therapy.  
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INTRODUCTION 
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Mammary gland structure and development 
The mammary gland has an apparently simple cytoarchitecture, a structure like that 

could be difficult to reconcile with the diversity of breast cancer phenotypes (Stingl 

and Caldas, 2007). This has led to the hypothesis that, despite its morphological 

simplicity, this structure is functionally complex and molecularly heterogeneous 

(Stingl and Caldas, 2007).  

The mammary gland is composed by two different cellular compartments: the 

epithelium which surrounded by an external layer of myoepithelial cells, and the 

stroma, also called the mammary fat pad, that is mainly composed of adipocytes, but 

also of other cell types, as well as fibroblasts, haematopoietic cells, blood vessel and 

neurons.  

The epithelium is a branched ductal system and a lobulo-alveolar compartment 

where rare resident multipotent mammary stem cells (MSCs) rule the development of 

the gland during embryogenesis, and its modifications in postnatal life (Williams and 

Daniel, 1983).  

The ducts branch into decreasingly smaller ductules that constitute the terminal 

ductal lobular units (TDLUs) also known as terminal end buds (TEBs, Fig. 1a,c black 

arrows, Fig. 2a), which are composed in turn of alveoli. Ducts and alveoli present a 

central lumen that opens to the body surface through the nipple. 
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Mammary epithelial cells represent the fundamental functional unit of the gland. The 

cellular epithelial architecture is composed of a bilayer of luminal cells surrounding 

the inner lumen and an external layer of myoepithelial and basal cells  (Daniel & 

Smith, 1999)  

The luminal epithelial cells of the alveoli undergo functional differentiation in 

pregnancy and produce milk. Basal and myoepithelial cells, whose contraction 

facilitates the milk release, surround both ducts and alveoli. The extensive system of 

ducts and alveoli is embedded by fibroblasts and adipocytes that compose the 

stroma of the mammary gland. (Hennighausen and Robinson, 2001, 2005; Smalley 

and Ashworth, 2003)  This “second” population grew its importance since the concept 

of “mammary fat pad” has been assumed. This structure has been no more 

considered as an inert supporting matrix. Indeed the mammary fat pad is a site of 

hormone action with stromal estrogen receptor (ER), a site of growth factor synthesis 

and a source of lipid as well (Hovey et al., 1999).  

The mammary gland develops in defined stages that are connected to sexual 

development and reproduction. These are embryonic, prepubertal, pubertal, 

pregnancy, lactation, and involution (Fig. 1). Epithelial and stroma cells derived 

embryologically from ectoderm and mesoderm, respectively. Embryonically, 

mammary gland development begins as an epithelial bud in the ventral surface of the 

fetus, that penetrates the mesenchyme and form a rudimental ductal system 
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connected to the body surface trough the nipple. The number and location of glands 

vary among different classes of mammals. 

In mice, five pairs of glands develop along a ventral line, whereas only one pair 

develops in the thoracic region in humans (see Materials and Methods Fig. 3 

“Diagram of Mammary Tissue”). During puberty the ducts grow and branch further so 

that, in the mature animal, the entire fat pad is filled with a complete ductal system. 

The alveolar compartment expands and matures during pregnancy, and then, during 

lactation, secretes milk. Lactation is followed by involution, a stage during which 

alveoli undergo apoptosis and remodeling to restore a simple ductal structure. 

Alveolar expansion and maturation, lactation and involution initiates with a new 

pregnancy (Hennighausen and Robinson et al., 2001, 2005; Smalley and Ashworth, 

2003). 
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Figure 1 
Stages of mouse mammary gland development 
Whole mount images of mouse mammary gland during its development. (A) Epithelial bud in 
the fetus (Arrows). (B-D) Ductal tree in newborn (B), 3 week-old (C) and adult (D) animal 
(arrow in C 
indicate a TEB). (E) Alveolar development during pregnancy. (F) Alveolar involution. 
Modified from Hennighausen and Robinson, 2001. 
 

SCs and breast development 
It has been proposed that the cells forming the epithelial compartment of the 

mammary gland are derived from mammary SCs, which have the capacity to self-

renew and give rise to progenitor cells, which are destined for either a basal or a 

luminal fate. The presence of SCs should be the basis of the profound capacity for 
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alveolar renewal in each subsequent pregnancy. It is generally thought that, in the 

mammary gland of pubertal mice, SCs reside in the TEBs, the structures at the end of 

the ducts that constitute their growing units. TEBs are composed of a mass of body 

cells surrounded by a layer of cap cells. Cap Cells are the putative SCs; they generate 

the outer side of the TEB and will differentiate in the myoepithelial, basal or luminal 

cells. The ductal lumen forms because of apoptosis occurring in the mass of 

developing body and luminal cells. TEBs disappear at the end of the puberty, when 

the mammary gland reached its full development (Smalley and Ashworth, 2003). 

 
 
Figure 2 
Structure of mammary epithelium on different stages of differentiation.  
(A) Prepubertal and pubertal mammary gland.  Ducts terminate with highly proliferative 
terminal end buds (TEBs).  
(B) Extensive ductal branching during pregnancy. Formation of alveolar structures required for 
milk production. 
(Gajewska et al., 2013) 
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Human breast cancer 
Breast cancer is one of the most common cancers and a major cause of death despite 

the significant advances in the comprehension of its pathogenesis, diagnosis and 

treatment over the last decades (Ferlay et al., 2010).  

The heterogeneity of breast cancer complicates the clinical management of patients 

and represents a major problem in the prediction of prognosis and response to 

therapy.  The molecular understanding of both inter- and intra-tumor heterogeneity 

has until recently been poor. Inter-tumor heterogeneity has long been recognized by 

histo-pathologists who, based on their microscopic observations, were able to 

identify and classify 17 different histological subtypes of breast cancer with different 

clinical behavior (Tavassoli et al., 1999). Beyond gross histological differences among 

tumors, pathologists have also been able to develop a grading system based on the 

level of differentiation, number of mitoses and nuclear pleomorphism, to classify 

tumors into different grades with different clinical behavior. For example, according 

to The Gleason System (Gleason, Mellinger 2002) tumors are classified on the base of 

their level of differentiation and grade of complexity, scoring from a G1 to a G3 class 

where a G1 represents a well differentiated, less aggressive type of tumor while a G3 

is a poorly differentiated kind, and more aggressive associated with a bad prognosis. 

Pece et al. recently demonstrated that G3 tumors differ from G1 class on the base of 

their SC content (Pece et al., 2010) arguing a possible critical involvement of SCs in 
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the determination of the molecular and pathological differences pathogenesis among 

breast tumors. According to these evidences, and to the “SC theory of cancer” (see 

later) SCs plays are the major interest of my research study.  

The Stem Cell Theory of Cancer 
SCs are a long-lived cell population responsible for tissue formation, homeostasis 

and repair. They are defined by their ability to perpetuate themselves through self-

renewal and to generate mature cells of a particular tissue through differentiation. 

Since SCs have been identified in several tissues like blood, breast, colon, lung, liver 

and brain, it seems reasonable to propose that every tissue is maintained by tissue-

specific SCs. An attractive hypothesis proposes that SCs or their direct progenies, due 

to their extended life span, are the ideal target of cell transformation, and that 

cancers are thus supported by transformed SCs, which retain the same self-renewing 

and differentiating properties of their normal counterparts (Reya et al., 2001; 

Shipitsin and Polyak, 2008). The first demonstration of the existence of a rare 

population of cancer-initiating cells came from studies performed in 1994, by the 

John Dick group in Toronto (Lapidot et al., 1994).  Their experiments led to the 

formal demonstration that, within a tumor, only specific cell subsets were able to 

generate a new tumor upon transplantation. Since the transplanted tumors showed 

the same cell heterogeneity of the original one and could be further transplanted to 

obtain tertiary tumors, these experiments also demonstrated that tumor-initiating 
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cells possess the ability to self-renew and differentiate. Thus, these rare cells share 

the same features of normal SCs and for this reason they are referred to as Cancer 

SCs (Campbell and Polyak, 2007; Visvader and Lindeman, 2008). The first report of 

cancer SCs in human breast cancer samples came in 2003 when Al-Hajj showed how 

cancer SCs highly enriched samples were able to generate breast carcinoma upon 

transplantation into the mammary tissue of NOD-SCID mice (Al-Hajj et al., 2003).  

Based on these findings, the Cancer Stem Cell Hypothesis implicates that a particular 

subset of tumorigenic cells with stem cell-like properties drives tumor initiation, 

progression and relapse.  

 

Figure 3 
Cancer stem cell hypothesis 
Cancer-causing mutations are likely to occur in normal adult stem or progenitor cells. 
These cells give rise to “Cancer Stem Cells” that can self-renew and differentiate to 
produce all the other cells of the tumor.  
Modified from Campbell and Polyak, 2007. 
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Cancer Stem Cells  
The concept of tumor has deeply changed throughout the years. At the beginning 

tumors were traditionally regarded as biologically homogenous populations of cells 

with high proliferating activity. Than with the assumption of  “Cancer Stem Cells” 

concept, the tumor has been approached as an aberrant organ initiated by a 

tumorigenic cancer cell that acquired the capacity for not-ended proliferation 

through accumulated mutations. One critical limitation to the validation of this 

concept is our poor understanding of the biological and molecular differences 

between SC and CSCs. It is still unknown whether CSCs, as compared to SCs, have 

different growth potential, life span, drug sensitivity and, more importantly, which 

are the relevant underlying molecular pathways. Well is known that this 

subpopulation of tumorigenic cells have SC properties and they are thought to drive 

and sustain growth and metastasis of spontaneously occurring tumors (Clarke and 

Fuller, 2006; Zhang and Rosen, 2006). 

CSCs have been defined on the basis of their ability to seed tumors in animal hosts, 

to self renew and to spawn differentiated offspring (Clarke et al., 2006). Accordingly, 

the representation of CSCs within a population of cancer cells can be measured by 

the number of cells that are required, at limiting dilutions, to seed new tumors. 

(Gupta et al., 2009) 
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SCs, CSCs and Non-CSCs 
There are several analogies between normal stem cells and tumorigenic cells, most 

notably as normal adult SCs, CSCs have the ability to generate more SCs (‘self-

renewal’) and to differentiate (Reya et al., 2001).  

Both of them have extensive proliferative potential and the ability to give rise 

respectively to new normal and abnormal outgrowth; both tumors and normal tissues 

are composed of heterogeneous combinations of cells, with different phenotypic 

characteristics and different proliferative potentials (Fidler et al., 1977 Nowell et al., 

1986). Since CSCs are endowed as SCs with proliferative potential, but lack in control 

on it, they can lead to the production of any cancer cell type, accounting for tumor 

heterogeneity.  

According to the cancer clonal origin concept (Fearon et al., 1987), CSCs give rise to 

phenotypically diverse progeny composed of cells with indefinite proliferative 

potential, but also non-CSCs, which are not able to self-renew and cannot 

differentiate to produce other tumor cell types. Non-CSCs are phenotypically 

heterogeneous cells that exhibit various degrees of differentiation, their presence in 

the tumor is an attempt of “process of organogenesis”, that is however aberrant and 

poorly regulated (Reya et al., 2001).  

CSCs are supposed to arise from normal stem or progenitor cells and are thought to 

persist as a small fraction of the total cells in the tumor; tumor progression is a result 
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of the expansion of these cells. According to this model, tumors can be considered 

as aberrant, hierarchically organized tissues, with cancer SCs responsible for their 

phenotypical and functional properties and their proliferation potential (Campbell and 

Polyak, 2007;Visvader and Lindeman, 2008). 

Weinberg underlines the possibility for CSCs to differentiate into non-CSCs, but also 

the reverse process must now also be considered. There is a possibility of a 

bidirectional interconvertibility, a dynamic equilibrium between CSCs and non-CSCs 

within tumors, this equilibrium may be shifted in one or another direction by 

contextual cues within the tumor microenvironment. Non-CSCs upon these 

conditions may become reprogrammed into CSCs via a process called Epithelial to 

Mesenchymal Transition (EMT), this shift could raise CSCs number up within the 

tumor (Santisteban et al., 2009). 

Several recent reports have suggested that some 25% of the cancer cells within 

certain tumors have the properties of CSCs (Kelly et al., 2007; Quintana et al., 2008) 

so CSCs are not a so rare subpopulation within tumors.  

The ratio between CSCs and non-CSCs is a critical issue in the tumor evolution. This 

proportion differs on the basis of the stage of malignant progression reached by a 

tumor (Harris et al., 2008; Chiou et al., 2008), it is no accident the tumor malignancy 

is evaluated on the degree of differentiation manifested by the cancer cells within a 

tumor (Gupta et al., 2009). 
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This assumption further charges CSCs responsibility in tumor development. A 

plausible corollary is that the selective ablation of CSCs should lead to the 

‘‘sterilization’’ of the tumor and to its cure (Cicalese et al., 2009). 

Alternatively CSCs can be eliminated by inducing their differentiation. Histone 

deacetylase (HDAC) inhibitors may have therapeutic value as “differentiation - 

inducing” agents driving the differentiation of mesenchymal-like cancer cells and 

CSCs, which could trigger apoptotic responses or chemosensitize (Singh et al., 2010). 

 

Molecular pathogenesis of breast cancer 
Breast carcinogenesis involves a series of progressive changes that accumulate in the 

stepwise acquisition, by breast epithelial cells, of the so-called “hallmarks of cancer”: 

i.e., genome instability, sustained proliferative signaling, evasion of growth 

suppressors, resistance to cell death, replicative immortality, induction of 

angiogenesis, activation of invasion and metastasis, reprogramming of energy 

metabolism, and evasion of immune destruction (Hanahan & Weinberg 2011). These 

acquired abilities, which drive and sustain cancer growth and metastasis, reflect the 

accumulation of genetic changes that are mainly categorized in two classes: 1) loss of 

function of tumor suppressor genes and 2) gain of function of oncogenes. The 

antagonistic mechanisms between oncogenes and oncosuppressors indeed finely 
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rules the multiple events controlling the entry in mitosis and the correct operation of 

this complex pathway is responsible for the cell homeostasis even when it is lost.   

An oncogene is a mutated and/or overexpressed gene (defined proto-oncogene in its 

wild-type form) that alone, or in collaboration with other changes, promotes cellular 

transformation, growth and invasion. In contrast, a tumor suppressor gene normally 

counteracts cell growth or other processes that may increase invasive and metastatic 

potential and whose loss of function promotes malignancy. In addition to protein-

coding genes, in the last decade the importance of non-coding RNAs and their 

involvement in tumorigenesis has been documented, together with their ability to 

work as oncogenes or tumor suppressor genes (Croce et al., 2008).  

 

The factors acting in tumorigenesis 
The most frequently activated and best characterized oncogenes in breast cancer 

include v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (ERBB2), 

phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PI3KCA), v-

myc avian myelocytomatosis viral oncogene homolog (MYC), and cyclin D1 (CCND1). 

In contrast, the tumor suppressor protein p53 gene (TP53), the breast cancer 

susceptibility genes 1 and 2 (BRCA1 and BRCA2), the phosphatase and tensin 

homolog gene (PTEN), the E-cadherin gene (CDH1), the retinoblastoma gene (RB1) 

and members of the cyclin-dependent kinase inhibitor (CKI) family represent the 
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most frequently altered tumor suppressor genes in breast cancer. Undoubtedly, many 

more oncogenes and tumor suppressor genes contribute to breast carcinogenesis. 

Given the heterogeneity of breast cancers, a better understanding of the genetic 

lesions that drive tumorigenesis in the mammary gland, will lead to improvements in 

the clinical management of breast cancer patients. 

  

The role of p53 Tumor Suppressor and the pathogenesis of cancer 
The gene TP53 is located on 17p13.1, it has been studied for the last 30 years. The 

encoded protein p53  is a tumor suppressor and is considered  as one of the most 

important molecules in human cancer since it is the most frequently mutated tumor 

suppressor in human tumors (Levine et al., 1997). More than 50% of all cancer cases 

carry TP53 mutations. This frequency is slightly lower in breast cancer with 15 – 34% 

of cases harboring TP53 mutations (Hartmann et al., 1997). 

p53 has been defined as the “guardian of the genome” (Lane et al., 1992). The 

protein p53 acts primarily as a transcription factor, inducing the expression of genes 

involved cell cycle checkpoint activation, DNA repair, cell migration, cell metabolism, 

cellular senescence, apoptosis and autophagy in response to cellular stresses 

displaying hence a potent anti-proliferative and pro-apoptotic functions (Vogelstein 

et al., 2000). 
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When normal cells are damaged by ionizing radiation or mutagens, p53 is activated 

by phosphorylation to maintain cellular homeostasis and accumulates in the nucleus 

where it binds as a tetramer to specific sequences to activate transcription of these 

genes. One of the target genes induced by p53 is p21, an inhibitor of cyclin-

dependent kinases (CDKs) that causes cell cycle arrest. GADD45, another p53 target 

gene, is in charge of repairing damaged DNA. When repair is successful p53 is 

degraded by the action of the ubiquitin-ligase MDM2 and the cell cycle restarts. 

When GADD45 cannot repair the genome because of excessive DNA damage, p53 

trans-activates the pro-apoptotic gene BAX, which induces apoptosis (Levine et al., 

1997).  

p53 dysfunction/inactivation allows cells to survive DNA damaging insults, which 

may result in the accumulation of activating mutations in proto-oncogenes or 

inactivating mutations in tumor suppressor genes and, consequently, to malignant 

transformation. 

 

The p53-MDM2 axis 
About 50% of all tumors analyzed display mutation or loss of p53, this data puts in 

evidence the key role of p53 in tumorigenesis as tumor suppressor (Levine et al., 

1994). 



	
   22	
  

When the cell undergoes a stress condition, p53 is activated and rule either a G1 

arrest in cell cycle or apoptosis. When the cell is in physiological condition, p53 is 

always synthetized but even rapidly degraded to maintain its basal activity controlled.  

Several mechanisms participate to both stabilize and activate p53. Its fate is decided 

by the direct competition between acetylation and ubiquitination for the same 

residues (Ito et al., 2002; Li et al., 2002). The major sites for p53 ubiquitination are 

located at its C terminus, and acetylation of these residues during times of cell stress 

serves to block protein degradation and stabilize p53 (Brooks et al., 2006) 

The MDM2 oncoprotein plays a central role in that regulatory process (Fakharzadeh 

et al., 1993). The p53-MDM2 interaction domain has been co-crystallized revealing 

that the N-terminal region of MDM2 forms a deep hydrophobic cleft in which three 

p53 amino-acid residues, Phe19, Trp23 and Leu26, deeply insert into (Kussie et al., 

1996). 

MDM2 protein level and its RNA as well fall after DNA damage, caused for example by 

UV irradiation. In these conditions Mdm2 itself can be acetylated (Wang X et al., 

2004) on residues within the RING domain. In this way Mdm2 becomes inactivated 

and leads to an increase in p53 transcriptional activity (Brooks et al., 2006; Lane et 

al., 1992). 

Vice versa, after DNA repair, to downsize p53 activity, MDM2 levels increase: as 

consequence MDM2 binds p53 in the nucleus and carries it in the cytoplasm where 
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p53 is degraded in the proteasome (Shirangi et al., 2002; Xirodimas et al., 2001; 

Bottger et al., 1997). These two proteins thus form an autoregulatory feedback loop 

in which p53 positively regulates MDM2 levels and MDM2 negatively regulates p53 

levels and activity, while in unstressed cells, both p53 and MDM2 are kept at very low 

levels (Wu et al., 1993). 

In several p53-mutated tumors, p53 is overexpressed, but MDM2 is not. That 

happens because these tumors loose this feedback and p53 is not regulated by 

MDM2 anymore (Brooks et al., 2006). 

Furthermore in some wild-type p53 tumors, the Mdm2 gene overexpression can 

block p53 function and promote the tumor growth independently of p53 (Chen et al., 

1996).  

MDM2 can be so considered as a p53 real controller mediating p53 degradation in 

unstressed cells and controlling p53 levels and activities during the stress response 

(Shirangi et al., 2002). Mediating p53 ubiquitination, MDM2 facilitates the termination 

of the stressed cellular state and thus maintains low steady-state levels of p53 in 

unstressed normal cells. (Brooks et al., 2006) 

The p53-binding site on MDM2 has a key role for the functional consequence of the 

interaction between the two proteins. The very same amino acids in p53 that contact 

MDM2 are required indeed for p53 to activate transcription (Lin et al., 1994) 
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MDM2 can so block p53 ability to act as a transcription factor, by competing with the 

transcriptional machinery for p53 interaction. In addition, there are several 

indications that MDM2 itself may play a role in cell cycle progression or 

tumorigenesis independent of its ability to inhibit the tumor suppressor functions of 

p53 (Ganguli et al., 2003). 

By the way MDM2 is not the only factor influencing p53 homeostasis, there is a third 

partner, Numb indeed, interacting with both of them. As recently demonstrated by 

Colaluca, Numb, the protein that I’m studing in my thesis, by binding the p53-MDM2 

complex can influence p53 homeostasis (Colaluca et al., 2008) since in presence of 

Numb, p53 is preserved by ubiquitination executed by MDM2; this condition is lost 

upon Numb deficiency bringing to an early decrease of p53 levels. These evidences 

support previous data edited by Pece, where G3 tumors, notably the most difficult to 

treat, resulted enriched in SC content (Pece et al., 2004) and nevertheless emerged to 

be Numb lacking in a conspicuous percentage of cases (Pece et al., 2004; Colaluca et 

al., 2008).  

This scenario strongly focuses the attention on Numb not only in relationship with 

the p53-MDM2 axis, but also with the cell fate itself. Intrigued by these evidences we 

decided to study the role of Numb in SC compartment homeostasis and its loss as 

possible crucial event in the tumorigenesis. 
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Contribution of the NUMB–HDM2–p53 axis to breast cancer 
Colaluca has recently shown how the cell-fate determinant Numb can influence the 

tumor suppressor protein p53 homeostasis. Loss of Numb in breast cancers would 

result, therefore, in both the activation of the potential oncogene Notch and the 

diminution of tumor suppression by p53 (Carter et al., 2008). 

The evidence of an axis between MDM2 and p53, but also between p53 and Numb 

suggests the existence in vivo of multiple binary complexes (NUMB–HDM2, NUMB–

p53 and HDM2–p53), or of a tricomplex NUMB–HDM2–p53 (Colaluca et al., 2008). In 

physiological conditions, Numb preserves p53 protein levels and its activity, and 

regulate p53-dependent phenotypes. 

The simultaneous presence of NUMB–HDM2–p53 together prevents the ubiquitination 

and degradation of p53. The real mechanism through which Numb preserves p53 is 

still unknown; Numb may simply intercalate between p53 and MDM2 or rather inhibit 

the conformational change that involve the p53-MDM2 complex after their 

interaction.  This last event in particular is indeed critical for ubiquitination of 

p53.(Momand et al., 1992; Haupt et al., 1997; Kubbutat et al., 1997; Carter et 

al.,2008). 

The recent identification of Numb as a protein controlling p53 levels and activity 

(Colaluca et al., 2008) leads obviously to the possibility that Numb can regulate 

cancer development. 
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Many evidences show how Numb is often loss in breast cancers, indeed one third of 

all breast tumors are Numb-deficient; the lack of Numb causes decreased p53 levels 

and both these events correlate with aggressive disease and poor prognosis 

chemoresistance (Westhoff et al., 2009). 

Colaluca demonstrated that Numb overexpression increases p53 stability and activity 

showing that Numb levels are relevant to the p53-mediated cellular responses, in 

particular in breast tumors where the loss of Numb expression is frequently detected.  

Thereby Numb might be relevant to SC homeostasis because of its influence on p53, 

than a p53/Numb signaling axis might function as a tumor suppressor pathway in 

mammary SCs: in support of that the reduction in p53 levels was caused by loss of 

Numb, throughout MDM2, while forced re-expression of Numb or silencing of MDM2 

restored normal p53. On the other hand the loss of Numb expression could 

contribute hence to malignant transformation by reducing p53 activity, Thereby 

p53/Numb axis has to be considered as an additional mechanism with possible 

involvement in tumorigenesis in breast cancer in which mutations of p53 are 

relatively infrequent if compared with the entire panel of tumors displaying p53 

mutations (Pharoah et al., 1999). Accordingly, restoring Numb expression or p53 

levels in Numb-deficient tumors should constitute an effective SC-targeted therapy.  
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The Numb-Notch axis 
The first evidences of Numb relevance in SC fate came from studies carried in 

Drosophila. In this model, Numb is membrane associated and during mitosis it 

symmetrically segregates influencing Notch repartition and function  (Cayouette & 

Raff 2002). The effects of Numb loss were previously studied indeed focusing the 

attentions on the Numb-Notch axis. (Pece et al., 2004) 

Notch is a plasma membrane receptor; it binds to a family of transmembrane ligands, 

resulting in cleavage of the receptor, translocation of the intracellular domain to the 

nucleus and activation of a number of target genes. Its function is involved in the 

control of cell fate specification and in the maintenance of the balance between 

proliferation and differentiation in development and homeostasis in many cell 

lineages (Artavanis-Tsakonas et al., 1999; Mumm and Kopan, 2000), and alterations 

in Notch signaling have been implicated in tumorigenesis (Robbins et al., 1992; 

Gallahan et al., 1996; Capobianco et al., 1997). 

Numb inhibits Notch through its N-terminal phosphotyrosine-binding domain (PTB) 

(Guo et al. 1996) in a sort of biological antagonism influencing cell development and 

homeostasis. Nevertheless Numb prevents the translocation of activated Notch to the 

nucleus inducing its ubiquitination and meanwhile controlling Notch intracellular 

domain degradation (McGill & McGlade 2003). 

Numb-mediated control on Notch is relevant to the normal mammary parenchyma 
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and its subversion contributes to human mammary carcinogenesis. This signaling is 

lost in some 50% of human mammary carcinomas, due to specific Numb 

ubiquitination and proteasomal degradation. When Numb is lost, in Numb-negative 

tumors, increased Notch signaling is observed, but it reverts to basal levels after 

enforced expression of Numb. The pharmacological inhibition of Notch has been 

proposed as possible approach to suppress Numb-negative tumors growth (Pece et 

al., 2004). 

 

Mode of division of normal SCs 
All SCs can generate identical copies of themselves but also give rise to more 

differentiated progeny by undergoing both symmetrical and asymmetrical divisions.  

An asymmetric cell division is defined as any division that gives two sister cells that 

have different fates, differences in size, morphology, gene expression pattern, or the 

number of subsequent cell divisions undergone by the two daughter cells (Horvitz 

and Herskowitz, 1992). On the other hand, a hallmark of symmetric SC division is the 

increase in the number of SCs.  

The two cells generated by asymmetric divisions differ markedly in their proliferative 

potential: the SC remains quiescent or slowly proliferates (‘‘self-renewal’’), whereas 

the progenitor cell undergoes multiple rounds of divisions before entering a 

postmitotic fully differentiated state. This mechanism ensures the production of large 
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numbers of differentiated progeny, while maintaining a relatively small pool of long-

lived SCs (Morrison and Kimble, 2006). Mammalian adult SCs, which are supposed to 

divide asymmetrically under steady-state conditions (Januschke and Gonzalez, 2008; 

Morrison and Kimble, 2006), retain the capacity to divide symmetrically expanding in 

number through rounds of symmetric self-renewing divisions, whereby each SC 

produces two new cells with identical SC fate and proliferation potential; in this way it 

is possible to refill the SC pools depleted by injury or disease (Morrison and Kimble, 

2006). 

 

Intrinsic mechanism vs extrinsic mechanism 
Cells undergoing asymmetric divisions use apical-basal or planar polarity of the 

surrounding tissue to set up an axis of polarity, this axis is used to orient the mitotic 

spindle and to polarize the distribution of specific protein determinants, responsible 

in the cell fate (intrinsic mechanism). Classic examples of asymmetric divisions that 

are controlled by an intrinsic mechanism are provided by the C.elegans zygote 

(Morrison and Kimble, 2006) and the Drosophila larval neural SCs (Neuroblasts) 

(Januschke and Gonzalez, 2008).  

Alternatively, according to the “stem niche” concept (extrinsic mechanism), the SC 

maintains the potential to self-renew because of the asymmetric placement of 

daughter cells in relation to stem cell niche external micro-environment. Only the 
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daughter cell that remains close to the niche has access to the extrinsic signals 

necessary for maintaining SC identity and the daughter cell placed away from the 

niche is exposed to signals that induce differentiation (Li and Xie, 2005). 

 

The intrinsic mechanism 
Asymmetric SC division can be obtained through regulated assembly of cell polarity 

which brings to asymmetric partitioning of cell components that determine cell fate; 

these “fate determinants” are inherited by only one of the two daughter cells 

throughout controlled segregation ruled by proteins like Par-3, Par-6, atypical PKC 

(aPKC) (Betschinger and Knoblich, 2004; Suzuki and Ohno, 2006; Goldstein and 

Macara, 2007). Asymmetric localization of PAR–aPKC complex at the apical cortex 

initiates the asymmetric partition of cell fate determinants while the regulated mitotic 

spindle orientation ensures their segregation through the cell polarity complex to one 

daughter; among the “fate determinants”, Numb plays a critical role. For example in 

undifferentiated neural progenitors, during the development of the mouse cortex, 

Numb asymmetrically accumulates to precursors destined for neurogenesis (Shen et 

al., 2002). Numb is also asymmetrically distributed to progeny of cultured satellite 

muscle cells, where it promotes myogenic differentiation of one daughter cell 

(Conboy and Rando, 2002; Shinin et al., 2006). Thus, asymmetric segregation of 

Numb may be a mechanism that control asymmetric division.  
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Interestingly, both mammalian basal epidermal progenitors (Lechler and Fuchs, 2005) 

and cortical ventricular zone neural progenitors (Chenn and McConnell, 1995) seem 

to exploit the “intrinsic mechanism” to regulate the orientation of mitotic spindles 

which relies on the cortical localization of the PAR–aPKC complex (Lechler and Fuchs, 

2005), a mechanism that also controls the asymmetric division of Drosophila and C. 

elegans SCs (Morrison and Kimble, 2006). 

Recent studies stress the importance of these “fate determinants” even for their 

influence on factors like p53 (Colaluca et al., 2008), all along considered among the 

major controllers in mitosis (Innocente et al., 1999) and in asymmetric divisions as 

well (Cicalese et al., 2009). 

 

Numb, polarity, SC division and cancer 
Polarity is defined as a structural and/or functional asymmetry (Casanova et al., 

2007). Cells like epithelial cells and neurons are intrinsically polarized in situ, 

whereas others become polarized transiently in response to external cues, for 

example, migrating cells, lymphocytes and phagocytes. Cell polarity is involved also 

in the cell fate determination throughout the asymmetric cell division, in which fate 

determinants become differentially distributed between daughter cells (reviewed by 

Suzuki & Ohno, 2006; Betschinger & Knoblich, 2004). Recently research groups 

focused their attention on Numb because of its involvement in SC asymmetric cell 
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division driven by evidences on Numb critical role emerged in Drosophila and 

vertebrates. 

 

Numb in Drosophila developmental model system  
The previous studies conducted in Drosophila put in evidence a complex pattern of 

functions played Numb. (Uemura et al., 1989). Numb is an evolutionary conserved 

membrane associated protein (Verdi et al., 1996). Its link with the membrane is 

guaranteed by the phosphotyrosine binding domain (PTB) (Li et al., 1998) and by 

several N-terminal positively charged amino acids that might interact with membrane 

phospholipids. During interphase, Numb is distributed uniformly around the plasma 

membrane. The membrane association before their asymmetric localization may be 

an example of “reduction of dimensionality”, through which a protein gets a two-

dimensional distribution in the plasma membrane rather than a three-dimensional 

diffusion in the cytoplasm. Through this mechanism the protein is quickly available 

to delocalize in the following mitotic phase (Jan et al., 1998).  

 

Role of Numb in SC division 
Since the firsts studies in Drosophila, results have put in evidence how Numb is 

involved in SC fate determination mechanisms such as the asymmetric mitotic 
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division with crucial consequences in the following daughter cells development. 

Indeed the asymmetrical partitioning of Numb during cell division of the sensory 

organ precursor (SOP) gives rise differentially to sensory neurons and other 

supporting cells of the external sense organ in the Drosophila peripheral nervous 

system (Rhyu et al., 1994). On the other hand, defects of Numb can affect the 

asymmetric division than increasing SC number; this evolves in tissue overgrowth 

bringing to brains growth to enormous size and eventually death. Loss of Numb 

function resulted in SCs offspring aberrant differentiating in the SOP, leading to the 

production of support cells without sensory neurons. Moreover Numb mutations 

typically lead to an overproliferation of neuroblasts during larval stages (Caussinus 

and Gonzalez 2005).  

These findings established in Drosophila a causal relationship among loss of polarity, 

loss of Numb, symmetric division in the neuroblast and tumorigenesis in the mutant 

neuronal tissue. Thus, asymmetric division might function as a mechanism of tumor 

suppression in the Drosophila neuroblast, and impaired fate specification during SC 

division might be one of the initial events that drive these cells into malignancy. 

Moreover impairment in asymmetric cell division and tumorigenesis occurring after 

Numb loss strongly argue a role of Numb as “fate determinant” but also as tumor 

suppressor (Pece et al., 2004; Caussinus and Gonzalez 2005; Bello et al., 2006; 
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Betschinger et al., 2006; Lee et al., 2006; Wang et al.,2009; Wang et al.,2007; 

Gonzalez et al., 2007; Castellanos et al., 2008)  

It is unclear whether there is also a direct causal relationship between loss of SC 

polarity and/or asymmetric divisions and tumor initiation even in mammals but the 

genes that control asymmetric cell divisions in Drosophila have an evolutionarily 

conserved role in the regulation of cell polarity and in tumor suppression, suggesting 

that polarity loss may contribute causally to cancer in mammals (Gonzalez et al., 

2007; Januschke and Gonzalez, 2008). 

During mitosis, Numb concentrates in the plasma membrane area overlying only one 

of the two spindle poles so acquiring a polarized distribution. Thereby Numb 

segregates into one of the two daughter cells during cytokinesis (Rhyu et al., 1994). 

Numb unequal segregation during the asymmetric cell divisions (intrinsic mechanism) 

is directed by the conserved Partition Defective Complex (Par) (Ohno et al., 2001; 

Suzuki and Ohno 2006) containing Par3, Par6 and by atypical protein kinase C (aPKC) 

(Henrique and Schweisguth, 2003; Macara et al., 2004). Three classes of Par proteins 

can be distinguished: the serine/ threonine kinase PAR-1 (Guo and Kemphues 1995) 

and the RING finger protein PAR-2 (Boyd et al. 1996) accumulate on the posterior cell 

cortex ruling the epithelial apical–basal polarity, whereas the anterior cell cortex is 

occupied by the PSD95/Dlg/ZO1 (PDZ) domain proteins PAR-3, PAR-6 and aPKC. 



	
   35	
  

In mammals Numb binds to membranes through its N terminus, this plasma 

membrane affinity is regulated by Numb phosphorylation status (Knoblich et al. 

1997) which is dynamically regulated by G protein coupled receptors and by direct 

activation of PKC. Both mammalian and Drosophila Numb interact with, and are 

substrates for aPKC throughout phosphorylation on specific serine residues. Numb 

indeed has a region containing at least 12 serines between amino acids 218 and 366. 

These residues are putative PKC phosphorylation sites. The phosphorylation on these 

residues neutralizes the charges and prevents membrane localization of Numb (Smith 

et al., 2007) (Dho et al., 2006). 

Through this mechanism, PKC regulates Numb movement between the cell cortex 

and the cytosol in mammalian cells (Dho et al., 2006). When this pathway is activated, 

Numb localizes to the basolateral membrane and is excluded from the apical domain, 

which accumulates aPKC. Numb phosphorylation by aPKC serves as a conserved 

mechanism to regulate its polarized distribution during asymmetric cell divisions 

(Smith et al., 2007 Wirtz-Peitz et al. 2008). 

 

Mode of division in CSCs 
As previously demonstrated (Reya et al., 2001), there are several analogies between 

SCs cells and CSCs, but the responsible for CSCs tumorigenic potential could be 

found reasonably among their differences. 
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WT mammary SCs undergo limited rounds of mitotic division rapidly losing self-

renewal potential in culture, before entering a post-mitotic fully differentiated state 

(progenitors cells) (Daniel et al., 1968). CSCs are nearly immortal and their potential 

be serially transplanted is virtually unlimited. CSCs by dividing asymmetrically, 

guarantee the self-renewal division; this strategy allows CSCs number retain and 

differentiation but leaving them unable to expand in number. Therefore, in order to 

expand their pool, CSCs must perform both asymmetric and symmetric divisions; the 

latter generates two new daughters with the same CSC fate (Morrison and Kimble, 

2006). 

By dividing symmetrically and asymmetrically they can increase their number 

producing only identical CSC daughters in some divisions and only identical 

differentiated daughters in others. This combined strategy brings to a differentiated 

progeny, hence CSCs maintain tumor cell heterogeneity and lead to the continuous 

expansion of the tumor mass. The mechanism responsible in this switch is still 

unclear but studies on p53null CSCs advanced a hypothesis on the role of p53 in CSC 

mitotic division (Gatza et al., 2008). 

 

CSCs and p53 
According to the first studies on the role of p53 in SC division, it has been reported 

that p53 imposes an asymmetric proliferative fate on daughter cells both in mouse 
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embryo fibroblasts and in one mammary epithelial cell line (Rambhatla et al., 2001) 

while the loss of p53 was found to increase self-renewal of neural SC in a sphere-

forming assay arguing a switch from an asymmetric to a symmetric phenotype 

(Meletis et al., 2006; Piltti et al., 2006). In support of this, p53 null CSCs are near 

immortal in culture due to not ended self-renewal and undergo symmetric self-

renewing divisions; in the p53null mammary gland, CSC number is increased and they 

expand progressively, thus indicating that p53null SCs divide symmetrically also in 

vivo. On the other hand an increased WT p53 activity (p53+/m mice) has decreased 

regenerative capabilities upon serial transplantation, suggesting early stem cell 

exhaustion (Gatza et al., 2008).  

 

p53 loss in CSCs: symmetric trend of division 
The loss of p53 in levels and activity, because of its overt reported role of “guardian 

of genome” (Lane et al., 1992), has plausibly consequences on SC proper 

mechanisms as the asymmetric division.   

Cicalese recently reported evidences of p53 involvement in the positive regulation of 

asymmetric vs. symmetric division in CSC murine model (Cicalese et al., 2009) 

proofing how the frequency of symmetric self-renewing divisions in CSCs is 

increased due to attenuated p53-signaling. Colaluca furthermore showed that the 

cell fate determinant Numb mediates the increase in p53 levels and activity, and the 
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regulation of p53-dependent phenotypes, through the formation of a Numb-p53-

HDM2 ternary complex (Colaluca et al., 2008). These observations imply that p53, 

together with other tumor suppressors like Numb, could play a pivotal role in the 

regulation of SC self-renewal in the mammary gland by imposing an asymmetric 

mode thus self-renewing divisions.  

 

p53 loss in CSCs: a possible solution 
All together the previous finding suggest the possibility that p53 carries out its tumor 

suppression function by regulating self-renewal division. The deregulation of the 

machinery that controls and ensures the correct balance between symmetric and 

asymmetric SC division may lead to alteration of tissue homeostasis, increase of the 

SC pool and, finally, cancer.  

According to that, since p53 is a potent suppressor of mammary transformation, an 

inhibition of SC symmetric divisions by p53 restoration could lead to tumor 

suppression in the mammary epithelium. The direct answer to this hypothesis comes 

from in vitro pharmacological approach where Nutlin, rescuing p53 activity, leads to 

rapid exhaustion of cultured mammospheres converting the prevailing mode of 

division of ErbB2 tumor SCs from symmetric to asymmetric and reduces tumor 

growth (Cicalese et al., 2009). 
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p53 targeted therapy: Nutlin 
Because of its involvement in p53 homeostasis and in SC fate determination, MDM2 

could be a target for cancer therapeutic intervention (Freeman et al., 2000). Indeed 

once freed from MDM2, p53 rapidly accumulates in the nuclei of cancer cells, 

activates p53 target genes and the p53 pathway, resulting in cell-cycle arrest and 

apoptosis. 

MDM2 can down-regulate p53 only if the p53-MDM2 complex takes place. 

Therefore, inhibition of MDM2–p53 binding is a possible strategy for p53 

stabilization and activation (Vassilev et al., 2007). 

This result can be obtained by the use of a small molecule inhibitor, for example 

Nutlin, a cis-imidazoline compound (Tovar et al., 2006). 

As other MDM2 inhibitors, Nutlin can block the p53-MDM2 complex formation. 

Crystal-structure studies demonstrated that Nutlin binds to a MDM2 hydrophobic 

cleft provided with crucial amino acid residues for p53-MDM2 coupling. Nutlin 

remarkably mimics their molecular interactions and by binding MDM2, it can dismiss 

p53 from this interaction, in that way, Nutlin preserves p53 levels and activity 

bringing to cell cycle arrest and suppresses tumor growth in vivo (Vassilev et al., 

2004) (Bottger et al., 1997b; Blaydes et al., 1997 Brown et al., 2009). 
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The “cancer stem cell-targeting therapy” 
The major issue in cancer therapy is the explanation of tumor relapse after 

chemotherapy or irradiation treatment. Current therapies, in fact, have been 

developed to target the bulk of the tumor mass, so far the only approach successful 

to reduce tumors. Unfortunately, it seems that both normal and CSCs are more 

resistant to chemotherapy than their differentiated progenies. This fact may be due 

to an increased expression of anti-apoptotic proteins, such as those of the BCL-2 

family (Al-Hajj et al., 2003; Reya et al., 2001), or of transporting proteins, such as 

MDR1 and ABC transporters (Jordan et al., 2006). Due to their ability to remain 

quiescent, SCs are relatively resistant to cytostatic drugs, which act mainly on 

dividing cells (Gil et al., 2008; Reya et al., 2001; Visvader and Lindeman, 2008), 

therefore, despite dramatic responses on the tumor mass, these therapies could 

affect only the differentiated progenies of CSCs since the rare CSCs are not targeted. 

In contrast, CSC-targeted therapies that foresee the selective ablation of the rare 

CSCs, may represent an attractive method to eradicate the whole tumor mass (Fig. 4). 

Despite several studies supporting this strategy, (Guzman et al., 2005; Yilmaz et al., 

2006; Piccirillo et al., 2006) there is only little experimental evidence that the 

selective ablation of CSCs would lead to the killing of the entire tumor mass without 

affecting normal SCs and their differentiated offspring (Jordan et al., 2006; Tan et al., 

2006; Visvader and Lindeman, 2008). 
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Figure 4 
Cancer SC-targeted therapy 
Conventional therapies may shrink tumors by killing mainly differentiated SC progenies. 
Cancer SCs, less sensitive to these therapies, could remain viable and re-establish the 
tumor. By contrast, therapies specifically targeting cancer SCs could arrest tumor 
maintenance or growth. 
Modified from Reya et al., 2001. 
 

In this thesis I report my investigations on the characterization of the biological and 

molecular features of Numb KO murine breast model in comparison with Numb 

deficient human breast cells model. I exploited an in vitro system (the mammosphere 

assay) to propagate and enrich breast SCs, in combination with a cell membrane 

labeling system (PKH-assay) to purify SCs. 
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The absence of Numb in both murine and human models helped to clarify the role of 

this “fate determinant” starting from the SC first mitotic division in vitro up to the in 

vivo tumorigenesis and related Numb reconstitution consequences. 

Through the comparison of the self-renewal properties of normal and cancer SCs, 

both in terms of proliferative cell fate and Numb partitioning, and the study of the 

molecular mechanisms underlying abnormal growth properties, functional 

attenuation and pharmacological restoration of signaling pathways in mammary 

CSCs, I have attempted answer the open questions regarding the role of SCs in cancer 

development and maintenance, focusing the attention on a first possible direct 

evidence for cancer SC targeted therapy.  

 



	
   43	
  

RESULTS 
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Numb is asymmetrically distributed at SC mitosis and 
partitions into the “stem” daughter cell. 

According to the first studies carried on Drosophila, focused on Numb partition 

dynamics during stem cells (SCs) mitosis, Numb acquires a polarized distribution, it 

concentrates in the plasma membrane area overlying only one of the two spindle 

poles, than segregates into one of the two daughter cells (Rhyu et al., 1994). This 

asymmetrical distribution in Drosophila triggered the interest on Numb and enhanced 

the study of several scientific groups.   

Recently our scientific group demonstrated that during mouse and human mammary 

SCs (MSCs) cytokinesis, Numb is partitioned unequally, segregating into one of the 

two daughter cells (Cicalese et al., 2009; Pece et al., 2010). In the current work, we 

exploited the PKH26 dye-based methodology (Cicalese et al., 2009; Pece et al., 2010) 

to verify whether Numb segregates into the daughter cell that retains the SC identity 

(the “stem” daughter cell) or into the one that assumes a progenitor fate (the 

“progenitor”).  

Five weeks old mice mammary glands were surgically explanted, reduced 

mechanically and digested as described in Materials and Methods (Tissue collection 

and digestion). Epithelial cells were purified from the bulk mammary cell population, 

seeded in SC selective medium (MESCM) and let grow in non-adherent condition. SCs 

are relatively quiescent and survive in anchorage independent conditions 
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withstanding anoikis, an apoptotic process due to anchorage detachment. In these 

conditions a single SC proliferates in suspension as a floating spherical clonal 

structure since the innate shape reachable in non-adherent condition by dividing 

cells is the sphere; this culture method selects for the SC growth and for the 

formation of the so called mammosphere (MS). 

A single WT MS is structured by ~300 progenitor cells and contains only one SC, 

(Cicalese et al., 2009), thereby SCs compose a small fraction of the entire dissociated 

bulk mammary epithelial cell population. SCs were purified from this first generation 

of MSs throughout the use of PKH26 (see Materials and Methods “Isolation of primary 

SCs from mouse breast”). PKH26 is a lipophilic dye and it was used to stain the bulk 

mammary population before undergoing the selective culture method. PKH26 stains 

all the cells, SCs included. This dye will be half-retained by the SC from the first 

mitotic division, while progressively diluted by the counterpart of progenitors cells 

(PC) undergoing several following rounds of mitosis until reaching the number liable 

for MS size. 

To track the SCs, aware of their quiescent or slowly dividing state, the employment of 

a lentiviral infection was chosen. A single cell population from dissociated MSs was 

stained with PKH-488, the green fluorescent analog of red PKH26, and lentivirally 

transduced with Numb-DsRed; the first rounds of mitotic division were monitored by 

time-lapse (TL) video-microscopy. Exploiting PKH-488 we were able to identify the 
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SC as the cell retaining the higher amount of lipophilic dye after the very first mitotic 

division and during the following ones; in the mean while the DsRed signal carried by 

Numb allowed us to track Numb distribution. Our aim was to see whether Numb was 

equally divided between the two daughter cells or rather retained by one of them. 

The TL identified the PKHpos SC as the Numb-retaining cell (Fig. 1). Together with the 

identification of the Numb retaining daughter cell, TL analysis helper us to study the 

SC first mitotic division discriminating between symmetric and asymmetric mode. 

The mode of SC division was established by two criteria  

• an initial asymmetric division of the SC, followed by symmetric divisions of the 

progenitor, led to a typical 1-2-3-5 progression in the cell number; conversely a 

symmetric division of the SC led to a 1-2-4 pattern;  

• retrospectively the “stem” daughter cell was identified as the cell that remained 

quiescent and therefore retained the PKH-488 dye (Cicalese et al., 2009; Pece et al., 

2010), while the progenitor divided further to yield a limited progeny; this pattern 

was clearly identifiable only when an initial asymmetric division had occurred, since a 

fully symmetric pattern of SC division led to progressive dilution of the dye.  

We found that, predominantly, MSCs divided asymmetrically and that Numb 

partitioned in the cell retaining the PKH dye, thereby the “stem” daughter cell (Fig. 2).  
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Figure 1 
Time Lapse analysis. Numb partition in SC first mitotic division 
Mouse MECs were labeled with PKH 448 and pLVX puro Numb DsRed. Quiescent/slowly 
dividing SCs fraction retained PKH dye during the first divisions (green). 488 nm green 
light tracks SCs (yellow arrows) in the forming MS. 660 nm red light: Numb DsRed Merge 
panel is presented both in fluorescence and bright field (b.f+merge)    
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Figure 2 
TL statistical analysis.  
Numb partition in first mitotic division. Cake graph on the left summarizes the percentage 
of asymmetric vs. symmetric events on total number of 56 observations. 
The graph on the right estimates the percentage of co-segregations Numb/PKHhigh pos cells 
on total 32 mitotic divisions observed. 
 

Numb KO and Numb KD: loss of Numb causes replicative symmetry in MSCs 

Once identified the Numb-retaining daughter cell as stem cell, we investigated the 

consequences of Numb ablation in MSCs. To perform this study we exploited both 

the in vitro and the in vivo approach.  

The in vivo implications of Numb loss were studied throughout the Numb KO 

engineered mouse model that was obtained using the CRE-loxP recombinase system 

(Wang Y et al., 1996).  

Within the normal mammary gland, the SCs are located within the epithelial basal 

compartment. These cells express both luminal (citokeratin CK8, CK18) and 
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basal/myo-epithelial markers (cytokeratin CK5, CK6, CK14) (Howard et al., 2000; 

Petersen et al., 2010)  

The use of the CK5 promoter let us to specifically knock down Numb in the stem cell 

compartment. CK5 transcription is regulated by its CK5 promoter that is active in 

breast and in several epithelial tissues, including the basal cell layer of the epidermis, 

hair follicles, oral epithelium, vagina, stomach, esophagus, bladder, and thymus 

(Ramirez et al., 1994; Stingl et al., 2006; Pece et al., 2010). To obtain the Numb KO 

mouse model we crossed Cre-loxP conditional Numb-KO mice (Zilian et al., 2001 

Wilson et al., 2007) with CK5-Cre mice (Ramirez et al., 2004) (see Materials and 

Methods “The Cre/loxP recombination system in transgenic mice”). 

 

Aim of the work 
The aim of the project is to study the role of Numb and the consequences of its loss 

in breast stem compartment. To reach this goal we developed the murine Numb KO 

model exploiting the Cre/loxP recombination system. The Numb KO mouse lacks in 

Numb in all the tissues in which K5 is active and among these, the breast is included. 

In support to this strategy and to validate the results coming from Numb KO mouse 

model we could count on Numb KD in vitro model using ShRNA (short hairpin) 

silencing technique in WT murine breast primary cells. 
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Numb Knocking Out: efficacy of murine model 
To verify whether Numb KO murine model displayed correctly Numb loss in breast 

and in stem cell compartment, biochemical analysis (Western Blot) was carried on the 

primary mammary epithelial cells (MECs) obtained from breast digestion of Numb KO 

mice breast and related spawned MSs. 

Numb KO mice breast confirm a markedly reduced Numb level both in MECs and MSs, 

thereby we step forward analyzing first of all the possible in vivo phonotypical effects 

of Numb loss and than, through in vitro assays, we tested Numb KO MECs sphere 

forming efficiency (SFE) and related MS propagation.  

 

Numb KO in vivo read out 
Numb KO mice breast did not display evident morphological changes to a first 

necroscopical analysis. We thereby decided to perform a whole mount analysis on the 

entire fat pad. This approach consist in a low magnification screening to get 

information about possible gross alterations of the major structures composing the 

breast fat pad. This histological technique permits to focus the attention on number 

and dimension of primary and secondary ducts, rate of branching and acini size. 

Whole mount analysis was performed using Carmine Alum technique (see Materials 

and Methods “Mammary gland Whole Mount staining with Carmine Alum”), and it was 

accompanied by classical histological investigation with hematoxilin/eosin (H/e) 
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staining for a higher magnification analysis that put in evidence enlarged and 

hyperbranched ducts (Fig. 3c,d; Fig. 4b) together with hyperplastic (Fig. 4c; Fig. 5b, 

c), dysplastic and preneoplastic lesions, such as hyperplastic alveolar nodules (HANs) 

(Medina et al., 1976, 1996; Cardiff, et al., 2000). 

This is the most extensively characterized lesion and it is similar to the differentiated 

alveolar cells normally found in pregnant mammary gland of lactating mice. HANs 

were originally identified as persistent focal areas of alveolar hyperplasia in non-

pregnant mice. 

These morphological evidences strongly argue a fundamental role of Numb in breast 

tumorigenesis, emerging from the analysis of phenotype obtained throughout its loss 

in murine Numb KO model. 
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Figure 3 
Numb KO mouse model: macroscopic breast analysis. 
Carmine Alum staining was used on whole mount inguinal breasts to investigate the ductal 
architecture. 
(a) WT control breast phenotype, magnification in figure b. 
(c) Numb KO2 breast phenotype, magnification in figure d. 
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Figure 4 
H/e microscopic breast analysis on FFPE: Comparison between WT and Numb KO mouse 
breast: 
(a) Typical bilayered asset of WT epithelial duct with correctly sized lumen. 
(b) Possible Numb KO phenotype: enlarged duct with filled lumen delimitated by stretched 
epithelium. 
(c) Possible Numb KO phenotype: Hyperplastic Duct, loss of epithelial architecture, 
reduced/absent lumen 
(d) Ductal hyperbranching (black arrow): Numb KO breast displays increased number of 
secondary ducts exiting from primary ducts side.  

 

Figure 5 
Numb KO mouse model: microscopic breast analysis. 
H/e analysis of FFPE Numb KO2 breast. In evidence the presence of both normal and 
hyperplastic ducts in the same sample (black arrows). Representative images are shown.  

 

Numb KO in vitro read out 
Biochemical analysis (Western Blot - WB) carried on that primary mammary epithelial 

cells (MECs) obtained from breast digestion of Numb KO mice breast displayed 

markedly reduced Numb levels (Fig. 6a,b). According to previous studies (Colaluca et 
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al., 2008; Pece et al., 2004), Numb plays a crucial role in two major pathways. Numb 

has been demonstrated to inhibit Notch function preventing its translocation to the 

nucleus inducing its ubiquitination and meanwhile controlling Notch intracellular 

domain degradation (McGill & McGlade 2003; Pece et al., 2004). Recently Numb has 

been entrusted with the role of p53 regulator, participating in the formation of the 

Numb-p53-MDM2 tricomplex, which is responsible for the regulation on p53 

ubiquitinilation and than the control of p53 homeostasis (Colaluca et al., 2008). 

Therefore a possible approach was identified in the biochemical analysis of the 

molecular partners interacting with p53 and Notch in order to verify whether the loss 

of Numb brought to changes in their activity. QPCR analysis reports how the loss of 

Numb causes decreased p53 levels respect to WT counterpart and congruent 

alterations of positively regulated (mdm2, p21) and negatively-regulated (nanog) p53 

targets (Fig. 6c). Furthermore Notch activity is enhanced, proofed by increased 

transcription of the Notch targets, hey1 and hey2 (Fig. 6c). A similar alteration at the 

level of p53 and Notch pathways has been seen in the Numb KD MSs (Fig. 6c). 
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Figure 6 
Analysis of the efficiency of conditional Numb Knocking Out in mouse MECs and related 
spawned MSs.  
(a, b) Immunoblot analysis of Numb expression in total cell lysates (30µg) of MEC and 
related spawned MSs Both Numb KO1 and KO2 lines were considered in MMECs analysis. 
Numb levels were detected with Ab#21 monoclonal antibody. Vinculin was detected as a 
protein loading control.  
(c) QPCR analysis of Numb targeted factors mRNA relative expression. Hey1, hey2 and 
nanog levels were considered as readout of Notch signaling, p21 and MDM2 levels for p53 
activity. Immunoblots are representative of 2 experimental repeats. 

Numb KO cells in vitro propagation: the Mammosphere assay  
Since p53 is largely considered one of the major tumor suppressors controlling cell 

cycle and cell homeostasis (Lane et al., 1992), often involved in different tissues 

tumorigeneris. The Cancer Stem Cells (CSCs) theory (Clarke et al., 2006) identifies in 

CSCs expansion the responsible for tumorigeneris as well as for tumor relapse; 

following this hypothesis, we decided to investigate on a possible SC compartment 

expansion in Numb KO model, where, as previously said, the loss of Numb brings to 

a decreased p53 activity.  
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To verify whether the loss of Numb levels and activity by knocking out had caused an 

expansion of the SC compartment we performed the in vitro Mammosphere assay 

(see Material and Methods: Mammosphere assay and SFE). This experiment consists 

in a precise retroactive study of SCs number relying on the sphere number found 

after a determined period of MECs culture. The combination of SCs culture medium 

(MESCM see Material and Methods) and the lack of adhesion, let only the SCs 

proliferate spawning floating spheroid colonies, identified as mammospheres (MSs) 

and their final number is indicative of the SCs number included in the early bulk 

population. The final number of spheres divided for the starting number of cell 

seeded (multiplied for 100) scores the Sphere Forming Efficiency index. 

Thereby the sphere size can be easily calculated by disaggregating the MSs to a 

single cell suspension; the number of cells obtained divided for starting MSs number 

gives a value to MSs size.  

This assay allows us to estimate the starting number of SCs in a sample, their self-

renewing potential and nevertheless to notice a possible SC number increase upon 

serial propagation in vitro. This last step consists in a prolonged culture assay 

throughout consecutive passages. MSs were mechanically desaggregated and seeded 

in single cell suspension to let the next generation MSs grow. Indeed once the SC is 

released from its PCs envelope that inhibited SCs mitosis, the SC can divide again 

spawning another sphere; that process can be repeated up to 3/4 times in WT sample 
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until the self-renewing extinguishment. On the other hand, in tumor samples, as 

previously demonstrated (Cicalese et al., 2009; Pece et al., 2010), CSCs grow in 

number throughout the generations in vitro bringing to an increase in SFE index and 

MSs size. In that case the self-renewing potential is unlimited and the sphere 

propagation can be carried on for a not ended number of generations.  

To quantify the starting SC number in out samples we exploited the Fluorescence-

activated cell sorting (FACS) analysis. Bulk MEC population obtained from digestion of 

WT and Numb KO breasts were counted, stained with PKH26 and seeded in 5/6 days 

selective SC culture (absence of adhesion in MESCM). PKH26 is a lipophilic dye that is 

half-retained by the SC thereby resulting PKHHIGH stained from the first mitotic 

division, while progressively diluted by the counterpart of progenitors cells (PC) 

undergoing several following rounds of mitosis (thereby PKHLOW and PKH NEG). FACS 

discriminates and collects PKHHIGH SCs hence purified from the mammary epithelial 

buck population (see Materials and Methods “Isolation of primary SCs from mouse 

breast”). 

We tested both MECs and derived MSs, obtained from individual Numb-KO mice and 

WT mice. Numb-KO MECs contained ~3-4-fold more SCs than WT ones, with a SC 

frequency of ~1:8,000 in Numb-KO, and ~1:30,000 in WT cells (Tosoni Unpublished 

preliminary data).  
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Throughout in vitro analysis we observed that the 1st generation WT MSs were 

approximately ~100µm sized and contained ~300 cells/MS, with a SFE of ~0.3%, in 

agreement with the assumption of the correlation between the number of SCs and 

spawned MSs proposed in previous reports (Cicalese et al., 2009). On the other hand, 

MSs originated from Numb-KO MECs were ~2-fold larger (~500-600 cells/MS) and 

showed a ~2-3-fold higher SFE.  

The bigger size of these MSs and the higher SFE index of their constituting cells 

argue a higher amount of SCs inside them: we estimated a frequency of ~4-5 SCs per 

MS. We observed moreover that MSs derived in vitro from Numb-KO MECs had a SCs 

frequency of ~1:150/200 (Tosoni Unpublished preliminary data). 

Upon serial propagation in vitro, WT-MSs progressively lost self-renewal ability, 

consistent with previous reports in mouse and human (Cicalese et al., 2009; Pece et 

al., 2010). Conversely, the number of Numb-KO MS increased over time, with a 

constant ~2-3-fold expansion rate. In agreement with the correspondence between 

the starting SC number and the spawned MS (Cicalese et al., 2009; Pece et al., 2010), 

the observed increase of MS number through the consecutive passages in vitro 

argues a SC compartment expansion in Numb KO model. The step responsible of this 

event is the SC first mitosis, when the SC should divide in 1 SC and 1 progenitor 

following an asymmetric mode (see “Mode of division in SCs”). If a symmetric division 

occurs, the SC divides in 2 SC amplifying the resulting SC pool. 
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Throughout the time-lapse (TL) video-microscopy approach, we were able to 

demonstrate how Numb-KO SCs divided predominantly in a symmetric fashion (90%, 

Fig. 12b), and with a faster division rate compared to WT cells. The entire set of 

observations was replicated using an alternative strategy, the functional ablation (in 

vitro Numb KD) of Numb in WT-MECs (Fig. 7, Fig. 8).  
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Numb Knocking Down in vitro 
Similar results were obtained from in vitro Numb KD. WT MECs were infected with the 

lentiviral construct pLKO Sh Numb exploiting the ShRNA (short hairpin) silencing 

technique (see Materials and Methods). Among several constructs, pLKO #39 was 

chosen for its efficacy witnessed by biochemical analysis (WB Fig. 7a). Therefore a 

possible approach was identified in the biochemical analysis of the molecular 

partners interacting with p53 and Notch in order to verify whether the loss of Numb 

brought to changes in their activity. WB analysis and QPCR report how the loss of 

Numb causes decreased p53 levels (Fig. 7b) respect to WT counterpart and congruent 

alterations of positively regulated (mdm2, p21) (Fig. 7b,c) and negatively-regulated 

(nanog) p53 targets (Fig. 7c). 

Furthermore Notch activity is enhanced, proofed by increased transcription of the 

Notch targets, hey1 and hey2 (Fig. 7c). A similar alteration at the level of p53 and 

Notch pathways has been seen in the Numb KD MSs.  
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Figure 7 
Analysis of the efficiency of ShRNA technique Numb Knocking Down in mouse WT MECs and 
related spawned MSs.  
(a) Immunoblot analysis of Numb expression in total cell lysates (30µg) of MMECs after 
infection with PLKO Sh35,36,38,39. PLKO Sh39 was chosen and PLKO-ShLuc was used as 
negative control.  
(b) Immunoblot analysis of Numb expression in total cell lysates (30µg) of MSs spawn by 
PLKO Sh39 infected MMECs. Both short and long (high exp.) exposure images of Numb and 
p53 immunoblots are reported. Numb levels were detected with Ab#21 monoclonal 
antibody. Vinculin was detected as a protein loading control.  
(c) QPCR analysis of Numb targeted factors mRNA relative expression. Hey1, hey2 and 
nanog levels were considered as readout of Notch signaling, p21 and MDM2 levels for p53 
activity. Immunoblots are representative of 2 experimental repeats. 
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The entire panel of Numb KO in vitro experiment previously exposed was performed 

using Numb KD cells. According to results coming from mammosphere assay, Numb 

KD MSs displayed a bigger size compared to WT (Fig. 8b,d). After having performed 

an in vitro serial propagation we noticed an increasing estimated SFE for these cells 

throughout the consecutive passages, likewise in Numb KO cells (Fig. 8 lower table). 

These data argues a higher amount of SCs inside Numb KD MSs suggesting a 

possible switch from an asymmetric to a symmetric mode of division consequent to 

Numb knocking down. These evidences suggested that Numb silencing is a suitable 

alternative model to reproduce the results obtained from the Numb KO mouse model. 
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Figure 8 
Effects of Numb ablation on SCs organotypic outgrowths in culture suspension and SFE.  
SFE assay was performed on FVB cells collected from first generation sphere mechanical 
desaggregated and repeated for the next 2-4 passages.  
(a) Control cells were infected with PLKO-ShLuc.  
(b) Numb KD was assessed through PLKO Sh39 infection 
(c) Spawned spheres were counted and collected each passage, than desaggregated in 
single cells, of which number was considered to calculate sphere size and next passage SFE 
(d)   
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Aberrant mammary morphogenesis and tumor 
initiation by loss of Numb 

According to previous studies (Hennighausen and Robinson et al., 2001, 2005; 

Smalley and Ashworth, 2003), the SC is the only responsible for tissue 

organogenesis. This means that SCs, when inserted in a permissive context, can 

spawn the entire complex structure of the surrounding environment. In our case, SC 

showed the ability to spawn MSs in vitro as an attempt of morphogenesis. To 

investigate whether SC were able to re-constitute the epithelial tissue structure, we 

transplanted Numb KO bulk MECs and to quantify the SC number, MECs 

transplantation was performed at limiting dilution to score the mammary 

repopulating unit (MRU) index or the cancer initiating cell (CIC) number. These 

indexes are denotive of SC number in the starting bulk MEC population transplanted. 

A range of cell dilution, from 105 to 10 cells was chosen for the injection in 5 weeks 

NOD SCID mice inguinal breast, closed to nipple area where the endogenous 

epithelium is concentrated and the remaining fat pad was cleared to give space to cell 

outgrowth.  

The so obtained outgrowths were analyzed through histological assay in order to 

quantify the epithelial structures. 
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Figure 9 
in vivo Numb KO and Numb KD cell transplantation assay. MRU and CIC frequency. 
(a) Numb KO1 and KO2 MECs lines were transplanted at limiting dilution in cleared fat pad 
mice. A range of cell dilution, from 105 to 10 cells, was chosen and the mammary 
repopulating unit (MRU) index or the cancer initiating cell (CIC) number were calculated on 
the base of the eventual outgrowth obtained. 
(b) MSs spawned by Numb KO1 and KO2 MECs were desaggregated and the obtained cells 
transplanted at the same previous limiting dilution. MRU and CIC frequency were 
calculated. 
(c) Cells obtained from Numb KD MSs desaggregation were transplanted at the same range 
of dilution. MRU and CIC frequency were calculated 
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Macroscopically, the outgrowths generated by WT-MEC and WT-MS cells were 

indistinguishable from the normal mammary gland but after a deeper histological 

analysis, in 7 of 10 cases, the reconstituted mammary tissue generated by Numb-KO 

cells displayed a number of gross morphological alterations. Primarily these 

outgrowths displayed hyper-branched and enlarged ducts alongside areas of ductal 

hyperplasia and severe dysplasia together with preneoplastic lesions such as HANs 

(Medina et al. 1976) and areas of frank malignancy. In a fraction of cases (3 of 10), 

the outgrowths generated by Numb-KO cells were overtly neoplastic; the cells 

obtained from breast digestions of two cases among these were identified as KO1 

and KO2 and chosen to carry on the following experiments in relation to the shown 

tumorigenic skills.  

The selected KO1 and KO2 were transplanted the day after the digestion: cells were 

multiple injected at limiting dilution in order to score their mammary repopulating 

unit (MRU) frequency as readout of their cancer initiating cells (CIC) content.  

Both KO1 and KO2 MECs gave outgrowths with a higher frequency arguing a higher 

SCs fraction if compared to WT MECs; the loss of Numb could be the responsible of 

the SCs (or even CSCs) increase in these Numb KO MECs (Fig. 9a,b). 

The entire set of observations, obtained with Numb-KO MECs, could be replicated 

with the xenotransplantation of MSs spawn by both Numb KO and Numb KD MECs 

(Fig. 9c). 
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The tumorigenic skill of our Numb KO model was even confirmed even by 3D culture 

assay. Indeed, Numb-KO MECs seeded on 3D-organogenic Matrigel assay, generate 

outgrowths displaying features of faulty morphogenesis, with disorganised, filled and 

hyperproliferative structures, as opposed to the typical bilayered and hollowed 

acinar/lobulo-alveolar structures generated by WT-MECs (Fig. 10). 

 

 

 

Figure 10 
3-D Matrigel assay; differences between WT and Numb KO acinis. 
Morphological analysis of overlay seeded WT and Numb KO cells spawned spheres on 
matrigel support 
Left: Bright field and related magnification of WT vs KO MSs. 
Right: Histological (H/e) analysis; confrontation between lumen dimension and epithelial 
structures     
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As previously demonstrated, Numb unequally partitionates during MSC division 

segregating into the “stem” daughter cell, ruling the asymmetric fate determination 

of the SC itself. 

The subversion of this mechanism, through the loss of Numb expression, switches SC 

division from asymmetric to symmetric, causing the expansion of the SC 

compartment and contributing to the acquisition of a malignant phenotype 

observable in vitro, in MSs expansion (Fig. 8), in vivo, in breast outgrowth (Fig 3,4,5) 

and in matrigel assay organogenesis (Fig. 10).  

 

Numb rescue in vitro and in vivo  
To verify whether Numb restore could revert the malignant phenotype displayed by 

Numb KO MECs and MSs, we infected the Numb KO lines with the pLVX lentiviral 

vector carrying the Numb gene, tagged with DsRed fluorescent protein (Fig 11 right). 

In addition to in vivo Numb tracking, the use of pLVX-Numb-DsRed ensures the 

overexpression of Numb protein; in our context, in Numb KO cells, we tried to rescue 

Numb physiological levels and function. Afterwards we evaluated possible changes in 

MSs size and MECs SFE in vivo upon pLVX-Numb-DsRed infection. 

Reconstituted Numb-KO MECs displayed successful Numb and also p53 rescue in 

terms of protein levels. Moreover, p21 level, which was decreased as consequence of 

p53 fall in Numb KO model, was restored. (WB Fig. 11 left) 
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Figure 11 
Left: Immunoblot. Numb rescued cells upon lentiviral infection 
Right: pLVX-puro lentiviral plasmid carries the fusion protein Numb-DsRed.  
Numb was re-expressed in Numb KO cells.  
pLVX EV infection (-), pLVX puro NumbDsRed infection (+). 
Total cell lysates (30µg) from Numb KO (-) and Numb re-expressed Numb KO (+) were 
immunoblotted with Ab#21 monoclonal antibody. Anti p53 (Cell Signaling) Anti p21 (Santa 
Cruz Biotechnology) were used. GRP94 was detected as a protein loading control. Numb 
levels in Numb re-expressed cells are indicated by red arrow, endogenous Numb levels by 
black arrow. 
 

Effects of Numb rescue can be observed also in Time-Lapse analysis. Numb KO Stem 

Cells perform predominantly symmetric first mitotic divisions; Numb overexpression 

inverts this trend: after infection indeed the majority of observed mitosis showed an 

asymmetric mode of division (Fig. 12b). Evidences of Numb rescue came from in vitro 

analysis of Numb KO MSs grown from pLVX-Numb-DsRed infected MECs. These 
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MECs used to spawn spheres with a ~2-fold decrease SFE if compared with Numb KO 

MECs. These Numb rescued MSs moreover displayed a ~60% smaller size (Fig. 12a). 

 

Figure 12 
in vitro effects of Numb rescue on Numb KO1 cells upon pLVX Numb DsRed lentiviral 
infection. 
(a) Bar graph represents the SFE and MSs size in Numb KO (KO1 -black column) cells and 
the same parameters after Numb recue (KO1+Nb -white column).  
KO1 cells were compared with KO1+Nb cells exploiting TL analysis to get eventual changes 
in 1st mitotic division after Numb rescue. Bar graph “b” reports the ratio between symmetric 
(grey column) and asymmetric (red column) events both in KO1 and KO1+Nb cells.  
Numb re-expressed (pLVX NumbDsRed infected) Numb KO cells were injected in one side 
breast, pLVX-EV infected Numb KO cells were injected as control in the other side breast 
and let both the tumor masses develop. 
in vivo effects are reported in figure “c”. Bar graph displays the differences between the 
tumor volumes reached by Numb KO (KO1) control cells (black column) and Numb rescued 
Numb KO cells (KO1+Nb) (white column). 
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We investigated also the possible effects of Numb rescue in vivo. pLVX-Numb-DsRed 

infected MECs were transplanted in NOD SCID mice. The tumors raised were ~2-fold 

smaller in size compared to mock-infected controls (Fig 12c).  

To exclude the possibility that the smaller size of the tumors was due to increased 

apoptosis or decreased proliferation, we demonstrated by IHC analysis performing an 

anti-KI67 staining that the proliferation was not affected. Moreover Numb 

reconstituted tumors did not show a higher number of Caspase-3 activated cells, 

thereby arguing that these cells do not undergo apoptosis (Fig. 13). 

 

Figure 13 
IHC on tumors derived from Numb KO (KO1) and Numb re-expressed Numb KO (KO1+Nb) 
FFPE sections were stained for KI67 (Thermo Scientific #9106) to score the proliferation 
index. Consecutive sections were stained for Activated Caspase (Cleaved Caspase 3, 
Asp175 Cell Signaling #9661) to quantify the number of apoptotic events. 
Sections were scanned with Aperio ScanScope XT and DAB signal was quantified and 
analyzed with Spectrum Version 11.0.0.72 (Aperio Technologies) 
OCT Frozen sections were DAPI stained and observed in red fluorescent light (560nm). 
Numb DsRed fluorescent fusion protein was detected. 
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According to published data (Cicalese et al. 2009), the tumor suppressor p53 

controls the SC fate ruling the ratio of symmetric vs. asymmetric divisions. According 

to what has been previously shown about the role of Numb in stabilizing p53 protein 

(Colaluca et al 2008), here we show that Numb is required to maintain the correct 

p53 levels in the SC compartment to ensure the proper ration asymmetric vs. 

symmetric divisions. Loss of Numb causes a decrease in p53 levels and activity, and 

the consequence is a switch towards symmetric SC divisions. Thereby, Numb may 

function by modulating p53 activity in the MSC compartment. 

 

p53 rescue: Nutlin-3 in vitro 
Evidences that the Numb-p53 axis might have a role in the control of the MSCs 

number by imposing an asymmetric mode of division came from experiments of 

Numb protein levels rescue and p53 restoration. In particular, Numb control of p53 

homeostasis seems to have a crucial role in tumorigenesis; the issue is that we 

clarified this mechanism by imposing a SC directed approach throughout a lentiviral 

infection, not suitable in clinic strategies.  

Since our aim, as research group committed in experimental oncology, is to carry in 

clinical area our knowhow on molecular dynamics involved in breast tumorigenesis, it 

becomes necessary to develop a pharmacological approach suitable to interfere with 
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the mechanisms responsible for breast tumorigenesis. Thereby we considered as a 

possible direct strategy to hit p53-MDM2 axis.   

The p53–MDM2 autoregulatory feedback loop governs p53 amounts (Wu et al., 

1993). MDM2 is an ubiquitin ligase responsible for p53 ubiquitin-dependent 

proteolytic degradation. Overexpression of MDM2 in human cancer, e.g., gene 

amplification of MDM2, targets p53 and interrupts the p53 network. (see “The p53-

MDM2 axis”). We used Nutlin-3, a cis-imidazoline compound. (Tovar et al. 2006) to 

inhibit p53–MDM2 complex formation. Nutlin-3 as other MDM2 inhibitors, can block 

the p53-MDM2 complex formation. This mechanism is proofed by crystal-structure 

studies demonstrating that Nutlin-3 binds to a MDM2 hydrophobic cleft provided 

with crucial amino acid residues for p53-MDM2 coupling (Kussie et al., 1996). 

Nutlin-3 remarkably mimics p53 in its molecular interactions with its ubiquitin ligase 

MDM2  (Fig. 14 right). By binding MDM2, Nutlin-3 can dismiss p53 preventing its 

ubiquitin-dependent proteolytic degradation. In this way, Nutlin-3 preserves p53 

levels and activity bringing to cell cycle arrest and suppresses tumor growth in vivo 

(Vassilev et al., 2004). The entire set of in vitro Nutlin-3 treatments was performed 

applying 10µM final concentration for 24 and 48 hours. Nutlin-3 treatment was 

performed both in cell suspension for biochemical analysis and in Methylcellulose-

based medium (MethoCult™ Stemcell Technologies) for TL experiments. Since Nutlin-
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3 powder was resuspended in DMSO (according to product datasheet) all the control 

samples were treated with an equal volume of DMSO. 

Given that Numb-KO MSCs had overall lower p53 level and activity because of the 

lack of Numb, as previously demonstrated by Numb in vitro rescue in Numb KO cells 

upon pLVX-Numb-DsRed infection, we treated Numb KO cells from dissociated MSs 

to Nutlin-3 to test whether the restoration of p53 activity could restore the 

asymmetric mode of division and prevent the expansion of the SC compartment. 

Biochemical analysis (WB) confirmed p53 levels restoration after Nutlin-3 treatment; 

even p53 activity is restored as shown by p21 level, susceptible to p53 positive 

regulation (Fig.14 left). 
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Figure 14 
Left: Immunoblot. p53 rescue via Nutlin-3 in vitro treatment. 
Numb KO (KO1) cells were treated with 10 µM Nutlin-3 for 24h Total cell lysates (30µg) 
from DMSO treated KO1 (-) as control and Nutlin-3 treated KO1 (+) were immunoblotted 
with Anti p53 (Cell Signaling) Anti p21 (Santa Cruz Biotechnology). GRP94 was detected as 
a protein loading control. 
Right: Nutlin-3 fills MDM2 pocket avoiding MDM2-p53 binding.  
Figure adapted from Nalepa et al, 2006  

 

The mammosphere assay performed on Nutlin-3 treated Numb KO cells put in 

evidence a drug dependent SFE reduction accompanied by a significant decrease in 

MS average size (Fig. 15a), whereas, consistent with previous reports (Cicalese et al., 

2009), no effect was observed on the growth of control MSs.  
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Figure 15 
in vitro effects of p53 rescue via 10 µM Nutlin-3 treatment on Numb KO cells  
(a) Bar graph represents the SFE and MS size in DMSO treated (control) Numb KO cells (KO1 
-black column); the same parameters where considered after 24 hours 10 µM Nutlin-3 
treatment (Nutl 10 µM -white column) and p53 rescue validation (Western Blot Fig. 13 left). 
Control KO1 cells were compared with Nutlin-3 treated KO1 cells exploiting TL analysis to 
get eventual changes in 1st mitotic division after p53 rescue. Bar graph “b” reports the 
ratio between symmetric (grey column) and asymmetric (red column) events both in control 
KO1 and Nutlin-3 treated KO1 cells.  

 

TL analysis was performed to verify whether Nutlin-3 treatment also had skewed the 

mode of first mitotic division. Numb KO cells use to divide in symmetric mode in 

almost the totality of mitosis observed. That involves an increase in SC compartment 

since the first mitosis produces two SC, doubling their number throughout the serial 

propagation in vitro. Nutlin-3 treatment induced Numb KO cells to switch their mode 
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of division, from a complete symmetric fashion to an almost equal distribution of 

symmetric and asymmetric events (Fig. 15b).  

This last data in particular focus the attention on a possible Nutlin-3 dependent 

reduction in SC compartment that would lead to decrease in Numb KO cells 

tumorigenic potential. This hypothesis pushed us to perform the next set of in vivo 

experiments.   

 

Loss of Numb-induced tumorigenesis is p53-dependent 
According to the results obtained by mammosphere assay performed on Numb KO 

cells undergone to Nutlin-3 in vitro treatment, likewise SFE and MSs size reduction 

and nevertheless evident switch in SCs first mitotic division mode, we reasoned that 

deregulation of p53 function, as a consequence of the absence of Numb, might be 

the mechanism responsible for the tumorigenic properties of Numb-KO model and 

these properties may be related to Numb KO SC content.  

In fact we previously verified that the tumorigenicity of these cells was Numb-

dependent; by restoring Numb expression (pLVX Numb-DsRed infection) we obtained 

an increase of p53 levels and function accompanied by SFE reduction and sizeable 

switch from symmetric to asymmetric division. Given that Numb KO cells displayed 

sensibility to Nutlin-3 in vitro treatment, proofed even in these context by increased 

p53 levels and function, SFE reduction increase in asymmetric division events, we 
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considered the possibility that tumors grown from Nutlin-3 in vitro treated cells 

should be sensitive to Nutlin-3 mediated p53 restoration  

To test this hypothesis, we selected a Numb-KO MEC primary line that grew as 

tumors (identified as KO1) in the mammary fat pad transplantation assay. Numb KO 

MECs were Nutlin-3 in vitro treated in order to revert the tumorigenic phenotype of 

KO1 line, and than transplanted in NOD SCID mice.  

Nutlin-3 treatment resulted in tumors that were half the size of control tumors (Fig. 

15-2). 

 

 

Figure 15-2 
in vivo effects of in vitro Nutlin-3 treatment on KO1 cells  
in vitro Nutlin-3 treated KO1 cells were injected in one side breast, DMSO treated KO1 cells 
were injected as control in the other side breast and let both the tumor masses develop. 
Bar graph displays the differences between the tumor volumes reached by KO1 control cells 
(black column) and Nutlin-3 treated KO1 cells (white column). 
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To study the effects of Nutlin-3 in vivo treatment on Numb KO MECs, we 

transplanted untreated KO1 cells and allowed tumors to reach a palpable size of ~0.5 

cm in diameter prior Nutlin-3 in vivo treatment (Fig.16a dashed red line). 

Nutlin3 was administered intraperitoneally every 3 days for 12 days (4 treatments) 

using a dose of 20 mg/kg). At the end of the treatment, tumors in Nutlin3-treated 

mice had continued to expand at the same rate as tumors in mock-treated mice 

(Fig.16a) reaching the same size. This result identifies the SC compartment as Nutlin-

3 specific target. Indeed by injecting the drug in the palpable tumor lesion, no 

evident changes in tumor volume can be seen because the tumor size growth is 

dependent on progenitors proliferation. Once the first mitotic division has taken 

place and the first progenitor cell spawn, the SC can even be treated with Nutlin-3 

and new SC divisions prevented, but the progenitor, that is not sensitive to Nutlin-3, 

will undergo to successive mitosis and lead the tumor growth.  

To verify this hypothesis, we performed mammosphere assay on MECs obtained from 

tumors derived from in vivo Nutlin3-treated animals, these samples displayed a 

decreased SFE, if compared to mock-treated animals (Fig.16c). A significant 

difference became apparent even upon re-transplantation, indeed the second 

generation tumors that were obtained from MECs derived from Nutlin-3 in vivo 

treated mice displayed decreased growth rate, indeed they were ~2-fold smaller 

respect to tumors from mock-treated animals (Fig. 16b). 
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The Numb KO – Nutlin-3 treated tumors generated in the following transplantation 

assay were smaller compared to control counterpart as a consequence of the in vivo 

Nutlin-3 treatment, which reduced the number of SCs. 

 

Figure 16 
Effects of p53 rescue via 10 µM Nutlin-3 in vivo treatment on Numb KO tumors. 
Numb KO (KO1) cells were injected in both breast and let the tumor mass develop. 
(a) Nutlin3 (20 mg/kg) was administered intraperitoneally when the lesion was ~0.5 cm in 
diameter (dashed red line). The bar graph shows the difference between the tumor size 
reached by DMSO treated KO1 tumor (Ctrl –black column) and the Nutlin-3 treated KO1 
tumor (Nutl. 10 µM –white column). 
(b) MECs obtained from previous tumors were re-transplanted. The bar graph displays the 
difference between the second generation tumor sizes reached. 
Ctrl (black column) identifies the tumor originated from MECs belonging to DMSO treated 
KO1. 
The white column (Nutl. 10 µM) represents the tumor originated from MECs belonging to 
Nutlin-3 in vivo treated KO1 tumor. 
(c) The second generation tumors were digested and SFE assay was performed on MECs 
obtained. 
 



	
   81	
  

This result confirms the evidence of Nutlin-3 direct action on SCs before the first 

mitotic division, since only the second generation tumor size displays the effects of 

Nutlin-3, which by hitting directly the SCs can limit the progenitor outcome and 

minimizing the overall tumor growth. 

To demonstrate that the difference in tumor size was not related to tumor cell 

proliferation rather than any increase in apoptotic rate we performed IHC 

investigating on KI67 and activated Caspase-3 levels. 

IHC analysis confirms that Nutlin-3 had minimal effects on the bulk tumor cell 

proliferation or apoptosis. Staining for KI67 and activated Caspase-3 does not reveal 

any substantial difference independently of whether Numb-KO tumors were 

generated by cells pre-treated in vitro prior to transplantation (Fig. 17 left) or by re-

implantation of cells isolated from Numb-KO tumors treated in vivo (Fig. 17 right). 
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Figure 17 
IHC on tumors derived from not treated Numb KO (Ctrl) and in vivo Nutlin-3 treated Numb 
KO (Nutlin). Comparison between Nutlin-3 in vitro treatment prior to transplantation (left) 
and re-implantation of cells isolated from Nutlin-3 in vivo treated Numb-KO tumors 
(right).  
FFPE sections were stained for KI67 (Thermo Scientific #9106) to score the proliferation 
index. 
Consecutive sections were stained for Activated Caspase (Cleaved Caspase 3, Asp175 Cell 
Signaling #9661) to quantify the number of apoptotic events. 
 

The above results show how the loss of Numb, controlling the p53 levels and the 

numbers of SCs, contributes to tumorigenesis. 

By the way p53 pharmacological rescue by Nutlin-3 displayed efficacy on SCs 

compartment in case of prior in vitro SCs treatment and furthermore on second 

generation tumor transplants (which were not further exposed to the drug). 

The fact that Nutlin-3 was ineffective on first generation tumors, while being 

efficacious on second generation ones, would predict this drug for a SC-specific 

therapy aimed to tumor relapse treatment. 
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From mouse to human 
Our results put in evidence the importance of Numb in regulating mouse SC 

homeostasis and the effects in terms of tumorigenesis that Numb loss brings to. 

According to that, we wanted to verify whether the Numb-p53 circuitry was 

important also for the human MSC model system. 

IEO Hospital in agreement with the Molecular Medicine program guaranteed us the 

possibility to access to human tumor biopsies. Under strict supervision by Anatomo-

Pathology Unit, and only in case of permission by patients undergoing tumor surgical 

removal, we were allowed to collect human tumor samples in close period to surgery 

and to perform both in vitro and in vivo experiments throughout xenograft in mouse 

model. 

According to published data (Westhoff et al., 2009) one third of all breast tumors 

display the loss of Numb protein, an event that correlates with aggressive disease 

and poor prognosis. Moreover Pece et al focused their study on the correlation 

between Numb expression and tumor prognosis. According to The Gleason system 

(Gleason & Mellinger 2002) which classifies tumors on the base of their level of 

differentiation and grade of complexity, scoring from a G1 to a G3 class where a G1 

represents a well differentiated type of tumor while a G3 is a poorly differentiated 

kind, Pece et al demonstrated that G3 (but also G1 tumors) resulted enriched in 

cancer-initiating cells. The high grade of complexity and aggressiveness of a G3 
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tumor could be so linked to its content in MSCs. (Pece et al., 2010). The high-grade 

tumors were searched, collected and reduced to MECs throughout enzymatic 

digestion.  

We looked for tumors that, independently of their Numb status, displayed 

comparable exponential MSs growth and SFE (Fig. 18). Among these we finally 

selected MECs from two Numb-deficient (Numb-) and two Numb-proficient (Numb+) 

tumors that were carried for control analysis. 

 

 

Figure 18 
SFE assay on human tumor samples 
Numb deficient (T1 and T2, Numb-) and Numb proficient (T3 and T4, Numb+) selected 
samples were tested to score in vitro MECs SFE on the base of the cumulative sphere 
number through at least 4 MS generations. 

 

Validation of human xenografted Numb deficient model 
To reproduce in NOD SCID mouse model the context displayed by human tumors and 

to perform in vivo experiments on these samples, we xenografted human MECs 

derived from the related tumor digestion in in NOD SCID mice. In order to verity 
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whether Numb levels of expression was retained even after xenograft, we performed 

IHC to stain Numb levels so comparing the human tumor with the mouse outgrowth. 

 

 

Figure 19 
IHC staining for Numb levels in human tumor samples and related xenografts. 
Two Numb deficient (Numb-) T1 and T2 together with two Numb proficient (Numb+) T3 and 
T4 were selected. Surgery biopsies were digested and the obtained MECs were xenografted 
in NOD SCID mice. 
IHC staining compares Numb levels between patient primitive tumors and the respective 
xenografts. FFPE sections were stained with Ab#21 
 

To confirm the scenario previously displayed in mouse model were the loss of Numb 

not only brought to destabilization in p53 homeostasis but even in mode of SC 

division we performed biochemical and TL analysis on xenograft derived MECs. 

We investigated whether these tumors undergo an expansion of the SC compartment, 

as a consequence of alterations of the mode of SC division composing the same 

scenario seen in mouse model.  
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As expected, the pool of Numb- tumors displayed a decrease in p53 level compared 

to Numb-proficient tumors, because of MDM2 mediated ubiquitinilation and 

consequent degradation (Shirangi et al., 2002; Xirodimas et al., 2001 Bottger et al., 

1997); p21, as p53 target gene, was found downregulated. 

Moreover the in vitro TL analysis shows the prevalence of symmetric mode in first 

mitotic division, consistent with the results obtained in Numb KO MECs in mouse 

(Tosoni Unpublished preliminary data).  

 

Numb restoration in Numb deficient human tumors 
To test whether the continuous expansion of the SC compartment in Numb- tumors 

was due to the absence of Numb, we infected tumor MECs with pLVX-Numb-DsRed 

to rescue the expression of endogenous Numb levels. The expression of Numb-

DsRed efficiently restored p53 levels as shown by Western Blot analysis and p21 level 

as well was restored (Fig. 20).   
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Figure 20 
Immunoblot. Numb re-expression in human tumor samples  
Cells obtained from digestion of human Numb deficient (Numb-) tumors (T1 and T2) were 
infected with pLVX puro Numb DsRed to rescue Numb levels in vitro. Numb proficient 
(Numb+) tumors (T3 and T4) were even infected and considered as control.  
pLVX EV infection (-), pLVX puro Numb DsRed infection (+), endogenous Numb level (black 
arrow), Numb DsRed (red arrow). 
Total cell lysates (30µg) from Numb- and Numb+ samples were immunoblotted with Ab#21 
monoclonal antibody. Anti p53 (Cell Signaling) Anti p21 (Santa Cruz Biotechnology) were 
used. GPR94 was detected as protein loading control. Numb levels in Numb rescued 
samples are indicated by red arrow, endogenous Numb levels by black arrow. 

 

Moreover we performed SFE assay to study the in vitro outcome of Numb restoration 

first of all to figure out possible consequences in SC compartment. The bar graph 

shows a ~ 2-fold decrease in SFE and mammospheres size after Numb rescue (Fig. 

21) in Numb deficient tumors.  
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Figure 21 
in vitro effects of Numb re-expression in human Numb deficient (T1 and T2, Numb-) and 
Numb proficient (T3 and T4, Numb+) samples upon pLVX Numb DsRed lentiviral infection. 
Bar graph represents Numb- and Numb+ SFE and MS size displayed in vitro (Ctrl -black 
columns).  
The same parameters were considered after Numb re-expression throughout pLVX Numb 
DsRed lentiviral infection (+Nb -white column).  
 

To verify whether Numb re-expression had influenced the mode of first mitotic 

division, which from a first investigation resulted mainly symmetric, we performed TL 

analysis on pLVX Numb DsRed infected human MECs. We observed a significant 

increase in the number of asymmetric divisions (Fig. 22) in Numb- tumor MECs 

reconstituted with exogenous Numb, while the Numb-DsRed expression did not 

affect Numb+ MECs mode of division that maintained mainly symmetric.  



	
   89	
  

 

Figure 22 
Time Lapse analysis: Numb re-expression in vitro effects in human samples 
Numb deficient (Numb-) and samples were pLVX Numb DsRed infected in order to re-
express Numb levels (+Nb). Numb proficient (Numb-) samples were Numb over-expressed 
as positive control. 
pLVX-EV infection was performed on both Numb- and Numb+ as negative control (Ctr) 
+/- Numb recued Numb- and Numb+ cell 1st mitotic division mode was analyzed through 
TL imaging. 
The ratio between symmetric (grey columns) and asymmetric (red columns) events was 
quantified in the bar graph. 
 

On the base of these evidences we decided to perform in vivo experiments in order to 

investigate on possible consequences of Numb reconstitution on tumor growth. 

Numb- tumor MECs were Numb-reconstituted by lentiviral infection and xenografted 

in mouse fat pad. These MECS generated tumors that were ~2-fold smaller in size 

compared to mock-infected controls (Fig. 23). 
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Figure 23 
Numb re-expression in vivo effects in human tumor samples.  
Numb re-expressed (+Nb, pLVX Numb DsRed infected) Numb- (T1 and T2) cells were 
injected in one side breast, pLVX-EV infected (Ctr) Numb- cells were injected as negative 
control in the other side breast and let both the tumor masses develop. Numb+ (T3 and T4) 
cells were equally treated and injected as positive control.        
Bar graph quantifies the tumor size reached by these transplanted cells and compares the 
tumors originated by pLVX-EV infected cells (Ctrl) (black columns) with tumors originated 
by Numb re-expressed cells (+Nb) (white columns). 
 

Numb-overexpression on MECs through lentiviral infection had on the other hand no 

effect on tumorigenesis and did not alter the final tumor volume in Numb proficient 

samples that were comparable to mock-infected controls.  

To remove the possibility of increased apoptosis or decreased proliferation 

withstanding the decreased tumor size, we stained the tumors through IHC with KI67 

and activated Caspase-3 antibodies, but no evident differences between Numb 

deficient tumors and Numb deficient tumors reconstituted with Numb protein were 

observed (Fig. 24). 
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Figure 24 
IHC on tumors derived from Numb deficient T1 cells, and Numb re-expressed T1 cells 
(T1+Nb) cells injection. 
FFPE sections were stained for KI67 (Thermo Scientific #9106) to score the proliferation 
index. 
Consecutive sections were stained for Activated Caspase (Cleaved Caspase 3, Asp175 Cell 
Signaling #9661) to quantify the number of apoptotic events. 
OCT Frozen sections were DAPI stained and observed in red fluorescent light (560nm). 
Numb DsRed fluorescent fusion protein was detected. 

 

Collectively the results argue that even in Numb- human tumors, the lack of Numb 

expression participates in the expansion of the SC compartment leading to tumor 

growth. 

 

p53 rescue in human tumors: Nutlin-3 
Once confirmed in human tumors the trend emerged in Numb KO mouse model, 

aware of the consequences of Numb reconstitution obtained throughout our 
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experimental model based on Numb DsRed lentiviral infection, as previously done 

with Numb KO mouse MECs, we step forward with pharmacological approach by use 

of Nutlin-3 in order to restore p53 levels in Numb- human MECs. Western Blot 

analysis confirms the previous evidence of Nutlin-3 treatment efficacy in p53 rescue 

in levels and activity as witnessed by p21 levels (Fig 25). 

 

Figure 25 
Immunoblot. Human tumor samples p53 rescue via Nutlin-3 in vitro treatment 
Numb deficient (T1 and T2, Numb-) and Numb proficient (T3 and T4, Numb+) samples were 
in vitro treated with 10 µM Nutlin-3 for 24 hours (+). DMSO treatment (-) was performed 
on the same samples as negative control. 
Total cell lysates (30µg) were immunoblotted with Anti p53 (Cell Signaling) Anti p21 (Santa 
Cruz Biotechnology). GPR94 was detected as a protein loading control. 
 

Following mammosphere assay was needed to confirm Nutlin-3 treatment targeted 

action on SC compartment as previously emerged by the same experiment performed 

in Numb KO mouse model. 
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Upon Nutlin-3 treatment, Numb- MECs displayed a significant reduction in the 

number (SFE) and size of MS; above all, Nutlin-3 treatment leaded to reduction in the 

ability of MS to be propagated in vitro throughout serial passages (Fig. 26) even in 

that case suggesting a reduction in SCs compartment.  

 

 

Figure 26 
SFE assay performed in serial passages on human tumor samples upon in vitro Nutlin-3 
treatment. 
Numb deficient (Numb-) and Numb proficient (Numb+) selected samples were tested to 
score in vitro MECs SFE. The assay was performed for at least 4 passages. (Ctr -grey dots). 
The same SFE assay was performed on MECs upon in vitro 10 µM Nutlin-3 treatment for 24 
hours. The assay was performed for at least 4 passages. (Nutlin -red dots) 

 

TL analysis shows a switch from symmetric to asymmetric trend of division 

confirming a restoration of p53 activity since p53 level emerged increased in WB 

analysis (Tosoni Unpublished preliminary data). As control, Numb+ MECs SFE and 

MSs size were not affected.  
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in vitro vs. in vivo Nutlin-3 treatment in human tumors 
Numb KO mouse cells displayed a marked susceptibility to Nutlin-3 treatment as 

proofed by the previous set of experiments. The major out coming evidence was that 

Nutlin-3 treatment did target SC compartment despite not affecting tumor growth 

when administrated in vivo in mice already developing a tumor mass. 

To investigate whether Nutlin-3 moved the same mechanisms in human tumors, in 

vitro-treated Numb- MECs were xenografted in NOD SCID mouse fat pad.  

The originated tumors were smaller compared to mock-treated cells and Numb+ 

tumors (Fig. 27).  

 

Figure 27 
in vivo effects of p53 rescue via Nutlin-3 in vitro treatment on human tumor samples. 
Numb deficient (T1 and T2, Numb-) and Numb proficient (T3 and T4, Numb+) samples were 
in vitro treated with 10 µM Nutlin-3 for 24 hours (Nutl 10 µM). DMSO treatment (Ctrl) was 
performed on the same samples as negative control. 
Nutlin-3 treated Numb- cells were xenografted in one side breast, Ctrl Numb- cells were 
xenografted as negative control in the other side breast and let both the tumor masses 
develop. Numb+ (T3 and T4) cells were equally treated and injected as positive control.        
Bar graph displays the in vivo effects of p53 rescue quantifying the tumor size reached by 
xenografted cells. Here the tumors originated by Ctrl cells (black columns) together with 
tumors originated by p53 rescued cells (Nutl 10 µM) (white columns) are shown. 
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We investigated the cause of this size difference and we demonstrated that it was not 

due to Numb- MECs proliferation decrease or apoptotic rate increase, as 

demonstrated by KI67 and activated Caspase-3 IHC staining (Fig. 28). 

 

Figure 28 
IHC on tumors derived from xenograft of in vitro Nutlin-3 treated Numb deficient T1 (T1-
Nutlin) compared to DMSO treated T1 (T1-Ctr) 
FFPE sections were stained for KI67 (Thermo Scientific #9106) to score the proliferation 
index. 
Consecutive sections were stained for Activated Caspase (Cleaved Caspase 3, Asp175 Cell 
Signaling #9661) to quantify the number of apoptotic events. 
 

The results obtained with Nutlin-3 in vitro assays drove the following experiments in 

vivo. 
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As previously done in Numb KO mouse model we xenografted Numb- and Numb+ 

human cells and once a palpable lesions had formed and reached ~0.5 cm in 

diameter (Fig. 29 dashed red line), Nutlin3 was administered intraperitoneally every 3 

days for 12 days for a total of 4 treatments using a dose of 20 mg/kg. Tumors were 

let grow and interestingly in vivo drug treatment did not lead to a significant 

decrease in the final tumor size (Fig. 29).  

 

 

Figure 29 
Effects of p53 rescue via Nutlin-3 in vivo treatment on human tumor samples. 
Numb deficient (T1 and T2) cells were xenografted separately. Each sample cells were 
injected in both breasts and let the tumor mass develop up to the palpable lesion (~0.5 cm 
in diameter, dashed red line) when 20 mg/kg Nutlin-3 was injected intraperitoneally every 
3 days for 12 days  
The bar graph shows the difference between the tumor size reached by DMSO treated 
tumors (Ctrl –black column) and the Nutlin-3 treated tumors (Nutl. 10 µM –white column). 
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According to the results previously obtained on second generation Numb KO tumors 

that were in vivo treated with Nutlin-3 we explanted and reduced to MECs the human 

tumors undergone Nutlin-3 in vivo treatment. Although cells were not exposed to 

any further drug treatment, as happened in Nutlin-3 in vivo treated Numb KO 

tumors, human Numb- tumors MECs displayed a significant SFE and MS size decrease 

as emerged by in vitro mammosphere assay (Fig 30b) thus demonstrating SC target 

efficacy. Nutlin-3 in vivo treatment was even proofed by Western Blot analysis were 

Nutlin-3 treatment shows efficacy in p53 rescue both in levels and activity, as 

witnessed by p21 levels (Fig 30a). 

Thereby we tested these Numb- tumors MECs tumorigenicity in vivo by xenograft 

assay in NOD SCID mice. Nutlin-3 in vivo treated MECs grew in smaller sized tumors 

if compared to not treated cells (Fig 30c) and again, Nutlin-3 treatment did not affect 

proliferation or apoptosis in vivo as demonstrated by KI67 and Caspase-3 activated 

IHC staining.  
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Figure 30 
(a) Immunoblot. MECs obtained from Nutlin-3 in vivo treated Numb deficient (T1 and T2, 
Numb-) tumors were reduced to MECs by digestion to verify p53 rescue consequent to 
Nutlin-3 in vivo treatment (+). The immunoblot compares their p53 levels with control 
DMSO in vivo treated tumor derived MECs (-). Total cell lysates (30µg) were immunoblotted 
with Anti p53 (Cell Signaling) Anti p21 (Santa Cruz Biotechnology). GPR94 was detected as 
a protein loading control. 
(b) Left: Nutlin-3 in vivo treated Numb deficient tumor derived MECs were xenografted and 
let develop the second generation tumor. Control DMSO treated tumor derived MECs were 
xenografted at the same time. The bar graph displays the difference between second 
generation tumor sizes reached by MECs belonging to DMSO treated first generation tumor 
(Ctrl -black column). 
The white column (Nutl. 10 µM) represents the size of tumor originated from MECs 
belonging to Nutlin-3 in vivo treated first generation tumor. 
(b) Right: the second generation tumors were digested and SFE assay was performed on 
MECs obtained. 

 

As happened in mouse MECs, in vivo Nutlin-3 treatment displayed effect on SCs 

obtained from in vivo treated tumors digestion, as seen by SFE and MSs size 

reduction while TL analysis confirms this evidence on the base of their first mitotic 

division (Tosoni Unpublished preliminary data). 
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Interestingly the same result emerged by in vitro treated MECs later injected in vivo. 

Nutlin-3 appeared not efficient in in vivo treatment since no difference was displayed 

in terms of reached size between DMSO and Nutlin-3 perfused tumors. On the other 

hand Nutlin-3 treatment showed late effects on SFE and MS size of MECs obtained 

from in vivo treated tumors. Furthermore we could see Nutlin-3 effects when these in 

vivo treated samples where xenografted again to score their tumorigenic ability. The 

second generation tumor growth was impaired in Nutlin-3 previously treated sample 

as witnessed by their smaller size.  

This evidence introduces the SC compartment as the effective aim of Nutlin-3 action. 

The tumor size growth is ruled by PC expansion and cannot be affected by Nutli-3 

treatment. On the other hand the SFE reduction, seen in in vitro assays, upon Nutlin-

3 treatment confirms a reduction in SC compartment even according to second 

generation tumor size decrease. These reduction is witness of the in vivo Nutlin-3 

late effect on SC, of which tumorigenic phenotype is most likely reduced.  

These results shows that the kinetic behavior of the SC compartment in Numb- 

breast cancers phenocopies the genetically-defined SC compartment of Numb-KO 

mice, and establish that the Numb-p53 axis plays a relevant role in human mammary 

tumorigenesis, via its impact on the homeostasis of the mammary SC compartment. 
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MATERIALS AND METHODS 
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Gene Knocking Out: The Cre/loxP recombination 
system in transgenic mice 

The Cre/loxP system is useful for tissue-specific knockout of genes to investigate the 

in vivo effects of their loss. This technique can be used both to eliminate an 

endogenous gene (Knocking Out) or activate a transgene (Knocking In).  

Cre is a 38 kDa recombinase protein from bacteriophage P1. This enzyme roles site 

specific recombination between loxP sites through both intramolecular excision or 

inversion. Cre can also mediate intermolecular integration of genes. 

A loxP site (locus of X-ing over) consists of two 13 bp inverted repeats separated by 

an 8 bp asymmetric spacer region. One molecule of Cre binds per inverted repeat or 

two Cre molecules line up at one loxP site. The recombination occurs in the 

asymmetric spacer region. Those 8 bases are also responsible for the directionality of 

the site. Two loxP sequences in opposite orientation to each other invert the 

intervening piece of DNA, two sites in direct orientation dictate excision of the 

intervening DNA between the sites leaving one loxP site behind.  

Two mouse lines are required for conditional gene deletion.  

• a conventional transgenic mouse line with Cre targeted to a specific tissue or cell 

type; in our mouse, Cre activity is K5 promoter dependent, thereby activated in the 

breast and other epithelial tissues. 
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• a mouse strain that embodies a target gene (endogenous gene or transgene) 

flanked by two loxP sites in a direct orientation, the so called "floxed gene", in our 

experiment, Numb is double foxed in loxP-Numb-loxP.  

The recombination, so the excision and consequently inactivation of the target gene, 

occurs only in those tissue expressing CK5 thereby performing Cre recombinase 

activity. Hence, the target gene remains active in all cells and tissues in which Cre is 

not activated (Wagner et al., 1997) 

 

Figure 1 
The Cre/loxP recombination system in transgenic mice 
Mouse breeting between conventional K5-Cre transgenic mouse and double floxed Numb 
mouse to obtain the Numb KO mouse, lacking Numb in CK5 dependent districts. 
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 FVB/Hsd mice 
In 1966 two mouse strains, HSFS/N and HSFR/N were selected for sensitivity and 

resistance, respectively, to the action of Histamine after treatment with Bordetella 

pertussis vaccination. Later a group of mice at the eighth inbred generation of 

HSFS/N were found to carry the Fv-1b, allele for sensitivity to the B strain of Friend 

leukaemia virus. Homozygous mice were then inbred without further selection for 

histamine sensitivity and the final strain obtained was named FVB (Taketo et al, 

1991). 

This strain is slightly different from the largely used C56 strain. The microsatellite 

analysis indeed puts in evidence a difference of 145 markers between FVB/N and 

C56BL/6J strains (Neuhaus et al, 1997). 

These mice have a vigorous reproductive performance with large litters, (Taketo et al, 

1991) because of that, this prolific strain was chosen to explant considerable 

amounts of breast tissue to purify the highest number of SCs.  

 

NOD SCID IL2 R gamma-chain null 
Non-obese diabetic (NOD) strain mice were developed at Shionogi Research 

Laboratories in Aburahi, Japan by Makino et al in 1980. This strain exhibits a 

susceptibility to spontaneous development of autoimmune insulin dependent 

diabetes mellitus (IDDM) (Kikutani H, Makino S 1992) as other autoimmune 
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syndromes.  

NOD/SCID/ILR γnull strain was generated by 8 backcross matings of C57BL/6J-γnull 

mice and NOD/Shi-scid mice.  

The resulting strain is a double homozygous for the severe combined 

immunodeficiency (SCID) mutation and interleukin-2 Receptor γ (IL-2 R γ) allelic 

mutation (γ null). This strain was previously (Ito et al 2002) introduced as an excellent 

recipient mouse model for engraftment of human cells.  

Human CD34+ cells transplanted into this strain, displayed a significantly higher 

engraftment rate in NOD/SCID/ILR γnull strain than that in NOD/Shi-scid mice treated 

with anti-asialo GM1 antibody or in the β2-microglobulin–deficient NOD/LtSz-scid 

(NOD/SCID/β2mnull) mice.  

In NOD/LtSz-scid and NOD/Shi-scid mice, in order to ameliorate engraftment 

efficiency for transplanted human cells, the injection of anti-NK cell antibody before 

transplantation was used while the γnull mutation in NOD/SCID/ILR γnull confers a 

constitutive lack in NK cell activity (Ohbo et al., 1996). 

This indicate that residual NK cell activity might interfere with engraftment efficiency 

(Koyanagi 1997  Yoshino H 2000). Multiple immunological dysfunctions, including 

cytokine production capability, in addition to functional incompetence of T, B, and NK 

cells, may lead to the high engraftment levels of xenograft in NOD/SCID/γnull mice. 

According to that NOD/SCID/γnull display a severe reduction of interferon-γ (IFN-γ) 
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production from dendritic cells in the mouse spleen and even that may lead the 

comprehensive impairment of immunological functions (Ito et al 2002). 

High engraftment rate were reported since low numbers of cells, up to 1 × 102 

CD34+, could grow and differentiate in this strain underling a possible application 

even in multilineage cell differentiation. For this reason NOD/SCID/γnull mice were 

considered as superior animal recipients for xenotransplantation and were especially 

valuable for human stem cell assay (Ito et al 2002). 

 

Tissue collection and digestion 
Five weeks old female FVB/Hsd mice are used to collect both axillary and inguinal 

breasts. The sample taking must be done under sterile hood and before opening the 

carcass the fur must be carefully disinfected. 

This animal age has been chosen since from 4 to 6 weeks of life, mouse breast 

contain the highest number of SCs in a relatively small sized fat pad.  

Tissues can be stored at 4°C in sterile saline solution or PBS until the beginning of the 

preparation when the sample is minced by sterile scissors into ~1−2 mm3 pieces. 

Reduced tissue is immediately resuspended in 10 mL pre-warmed EDM and 

incubated at 37°C in a 5% CO2 humidified incubator. The digestion mixture must be 

resuspended up and down with pipette several times (~5–7) every 20–30 min to aid 

tissue dissociation until all large fragments are digested. Groups of 5 animals for a 
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total number of 20 mice are used; the equivalent amount of 5 mice tissue is totally 

digested in 4 hours.  

The digested tissue suspension is transferred in conical bottomed tubes and 

centrifuged at 80 × g for 10 min at room temperature. This step of differential 

centrifugation will allow to separate single stromal cells, mostly fibroblasts and 

endothelial cells which will remain in the supernatant (Eirew et al., 2008), from the 

epithelial portion of the mammary tissue that contains primary normal mammary 

epithelial cells (MECs) and SCs together with large clusters of tissue commonly 

referred as to “organoids”. 

The supernatant is carefully removed eliminating fat residues and stromal cells; the 

pellet is gently resuspend in10 mL DMEM plus 2 mM L -Glutamine to yield a 

homogeneous suspension. The material is filtered sequentially using cell strainers 

(BD Falcon) of decreasing pore.  

The first 100-µm cell strainer retains gross digestion residues together with fur or 

possible muscle and skin fragments. The so obtained flow through is sieved for first 

in 70-µm and than in 40-µm cell strainer. Pure organoids are retained during this 

step, while the last filtration with 20-µm syringe bound strainer eliminates the 

digestion residues such as groups of aggregated cells smaller than organoids. Pure 

MECs are so obtained in single cell suspension.  

Blood cells are typically small sized and go through all the steps of filtration. To 
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remove them an ipotonic 0.2% NaCl solution can be used for 60’ to induce a volume 

shock and to lysate red blood cells. To avoid any damage on the MECs population the 

physiological condition must be restored in cell suspension neutralizing the 0.2% 

NaCl with a 1.6% NaCl. MECs are thereby resuspended in the specific medium to allow 

the SCs growth, the Mammary Epithelial Stem Cell Medium (MESCM).  

Notwithstanding the several adopted tricks to purify MECs a certain amount of 

contaminant cells remains in the MECs suspension. To remove this fraction, rather 

than seed cells directly on non-adherent supports in order to perform the 

mammosphere assay, it is useful to place MECs on non-tissue culture treated 

supports. This environment maintains the SCs fraction in anchorage independent 

conditions while permits strong adhesive cells, such as fibroblast to weakly adhere to 

the bottom. In a short time the bulk mammary epithelial cell population will be 

deprived of contaminants and the pure MECs can be delicately collected to be seeded 

on Poly-HEMA coated plates. 

 

Enzyme Digestion Mixture (EDM) 
EDM is obtained from a solution of DMEM (Lonza) + HAM’s nutrient mixture F12 

medium (Gibco) (1:1 ratio) supplemented with 1 µ g/mL insulin (Roche), 1 µ g/mL 

Hydrocortisone (Sigma), 100 U/mL Penicillin, 100 U/mL Streptomycin and 2 mM L-

Glutamine. EDM is sterilized through a 0.2- µ m vacuum filter unit and store at 4°C 
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until needed. Immediately before use, 10 ng/mL EGF (Peprotech) 200 U/mL 

Collagenase type 1A (Sigma) and 100 U/mL Hyaluronidase (Sigma) are added. EDM 

should be prewarmed at 37°C in a water bath before adding to sample tissues.  

 

Mammary Epithelial Stem Cell Medium (MESCM) 
MEBM Basal Medium (Lonza) is supplemented with 100 U/mL Penicillin, 100 U/mL 

Streptomycin, 2 mM L -Glutamine, 5 µ g/mL Insulin, 0.5 µg/mL Hydrocortisone, 1 

U/mL Heparin (Wockhardt).  

The complete medium MESCM is obtained by adding 20 ng/mL EGF, 20 ng/mL FGF 

(Peprotech), and 2% B-27 Supplement (Gibco) immediately before use.  

B-27 is a serum-free supplement typically used in research for growth and long-term 

viability of hippocampal neurons. The selection of its inner components makes B-27 

successfully suitable even for epithelial mammary SCs research because of the 

absence of serum that would otherwise drive the in vitro SCs differentiation.  

The complete medium is filter sterilized through a 0.2- µm filter prior to adding 

complete MESCM to cells.  

 

Sphere culture Supports 
To obtain supports suitable for cell suspension culture, low adhesion plates were 

prepared using Non-Tissue culture treated flat bottomed plates (Falcon). These 
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plates were doubly coated with the inert, chemically stable, non-toxic polymer 

named Poly-HEMA (2-hydroxyethylmethylmethacrylate) (Sigma). 

A stock concentration (12%) Poly-HEMA solution is prepared by dissolving 25 g of 

Poly-HEMA crystal powder in 208 mL 95% ethanol overnight at 55°C using a rotating 

shaker. From this stock concentration, a 1:10 dilution in 95% ethanol is prepared to 

yield the Poly-HEMA working solution at a final concentration of 1.2%. Filter sterilize 

through a 0.2- µm vacuum. The second bottom plate coating must be applied only 

when the first volume of Poly-HEMA has completely dried under a sterile hood.  

 

Isolation of primary SCs from mouse breast 
This methodological approach is suitable for the isolation of pure SCs population 

from both mouse and human dissociated mammary gland (Pece et al., 2010; Cicalese 

et al., 2009). 

Tosoni et al set up this strategy relying on two key defining SCs properties, namely 

their relative quiescence and their ability to survive in anchorage independent 

conditions. SCs can indeed withstand anoikis, an apoptotic process due to anchorage 

detachment (Pece et al., 2010; Cicalese et al., 2009; Dontu et al., 2003). Bulk primary 

mammary epithelial cells were isolated from either murine or human mammary 

tissues and cultivated in MESCM in absence of adhesion, condition in which, the 

innate shape reachable by dividing cells is the sphere, thereby the so obtained 
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“mammosphere”.   

SCs compose a small fraction of the entire dissociated bulk mammary epithelial cell 

population; their low division rate allows us to track them down by staining with a 

lipophilic dye, the PKH26 (Sigma).  

PKH26 must reach a final 1:10000 ratio in the total reaction volume; PKH26 is for 

first pre diluted in a volume of PBS equal to the half of total reaction volume, this 

step avoids the cells to be stressed by pure PKH26 direct contact. Up to 107 cells are 

resuspended in an equal volume of PBS and mixed to the pre-diluted PKH26. The mix 

is incubated in the dark for 5’ at RT, the cells are collected and seeded in culture.   

PKC26 will be half-retained by the SC from the first mitotic division, while 

progressively diluted by the counterpart of progenitors cells (PC) undergoing several 

following rounds of mitosis. PKH-labelling of mammospheres was obtained using 

either the PKH26 (red epifluorescence) or the PKH2-GL (PKH488, green 

epifluorescence) dyes (Sigma), as appropriate. 

To Exploit Fluorescence-activated cell sorting (FACS), which is a specialized type of 

flow cytometry (Herzenberg, et al., 1972), we used Vantage SE flow cytometer 

(Becton&Dickinson) equipped with a 488 nm laser (Enterprise Coherent) and a band-

pass 575/26 nm optical filter (FL2 channel). An average sorting rate of 1,000 events 

per second at a sorting pressure of 20 PSI was maintained. 
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After 1 week of selective SC culture, single cell suspensions, from desaggregated 

PKH-labelled mammospheres, were sorted using a FACS assay. We were able to 

quantify the number of PKHHIGH quiescent/not dividing SC since all the other cells (PC) 

have diluted the dye (thereby PKHLOW and PKH NEG) undergoing rounds of mitosis. 

FACS thereby discriminates and collects PKHHIGH , by purifying SCs from the 1st 

generation of mammospheres we can score the starting amount of SCs in the 

mammary epithelial buck population. 

 

 

Figure 2 
FACS-distribution of PKH cell subsets in WT mammospheres 
Mammospheres desaggregated led to a heterogeneous distribution of stained cells.  PKHHIGH 
SC can be separated from PKHLOW and PKH NEG PC. 
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The cut off value considered to identify PKHHIGH region in FACS output data was 

defined according to the calculated percentage of SCs in the mammospheres 

(Cicalese et al., 2009). 

The FACS assay can be replicated for the following generations of mammospheres 

because of SC self renewing in order to see whether the SC compartment remains 

even or rather it is expanding, in our case WT PKHHIGH grew in sphere until to 3rd 

generation while PKHLOW and PKH NEG PC could not be further passaged in culture 

(Cicalese et al., 2009). 

PKH26 can be even tracked by fluorescent light beam in the deep core of the 

structure obtained by the dividing PCs. This strategy is suitable not only for normal 

mammary SCs but also for isolation of CSCs making this technique even more 

essential because of the issue of breast cancer heterogeneity that would have been 

otherwise managed with the complex SC-specific immunophenotypical marker 

approach. 

 

The mammosphere assay and SFE 

According to published data (Cicalese et al., 2009) the normal SCs spawn a sphere 

containing  ~300 cells. This structure is approximately ~100µm sized. The 

mammosphere assay consists in a precise retroactive study of SCs number relying on 

the sphere number found after a determined period of MECs culture. As previously 
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said, because of both the MESCM and the lack of adhesion, SCs proliferate to the 

detriment of MECs bulk population and the final number of sphere in suspension is 

indicative of the SCs number included in the early bulk population. 

The SFE in an index describing this ratio; its value is obtained applying the formula: 

 

(nr spheres counted/nr cells seeded) *100 

 

Considering a normal SC giving a ~300 cells sized sphere, the SFE value is ~0.3% 

Once counted, the spheres can be collected and mechanically disaggregating in a 

single cell suspension in order to count their total number to estimate the average 

sphere size applying the formula: 

 

nr cells counted/nr spheres disaggregated 

 

This assay comes useful moreover to estimate SCs self-renewing potential in vitro. 

Indeed once the SC is released from its PCs envelope that inhibited SCs mitosis, the 

SC can divide again skewing another sphere; that process can be repeated up to 3/4 

times in a normal sample until the self-renewing extinguishment. 

On the other hand, in tumor samples, as previously demonstrated (Pece et al., 2010; 

Cicalese et al., 2009), CSCs grow in number throughout the generations in vitro 
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giving an increase in SFE index and sphere size. 

In this case the mammosphere assay gives information about the starting number of 

CSCs in a sample and moreover its increase though the time. To score the cumulative 

number of sphere throughout the generations in vitro the mammosphere re-plated in 

a serial assay. 

 

Serial re-plating of mammospheres 
For serial re-plating experiments, 5,000 (N1) cells from primary dissociated 

mammospheres were plated in quadruplicate onto Poly-HEMA treated plates (24 

multiwell) and, after 6 days, dissociated as described and re-plated at the same 

density. 

This procedure was repeated through several passages of dissociation/re-plating, 

and at each passage (i) the number of spheres (Sp) and relative dissociated cells (N) 

were determined. The average number of cells that compose a sphere (sphere size, S) 

was calculated as the ratio between (N) and (Sp). 

Cumulative sphere (CS) and cell (CN) curves were respectively calculated as: 

CSi = CSi-1 · (Spi / Sp1) 

CNi = CNi-1 · (Ni / N1) 

where CSi or CNi represent respectively the values of cumulative sphere and cell 
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curves at the passage i, Spi and Ni the sphere and cell numbers counted at the 

passage i, and Sp1 and N1 the number of plated spheres and plated cells. To note 

that the passages may be seen as a time unit of 6 days. Since the sphere size was 

constant during serial passages the value of Sp1 was calculated as the ratio between 

plated cell (N1=5,000) and average sphere size (S) during all passages. The 

cumulative curves plotted in a semi-logarithmic graph appear as straight lines, thus 

suggesting they resemble an exponential curve, as expected for a cell population that 

grow or die with a constant rate during the time. The cumulative curve may be 

expressed as: 

C = C0 · GRi 

where C represents the value of the curve at the passage i, C0 the value of the curve 

at passage 0 and GR the rate by which the curve grows (if GR>1) or decreases (if 

GR<1). To verify the exponential correlation between the cumulative numbers and 

time of culture, exponential regression of the data was performed. The exponential 

curve was converted to a linear one, using logarithm properties: 

C = C0 · GRi 

log(C) = log(C0 · GRi) 

log(C) = log(C0) + log(GRi) 

log(C) = log(C0) + log(GR) · i 
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The last equation represents a linear function where log(GR) is the slope of the line 

and a linear regression (using the least squares method) can be performed to 

calculate log(GR) and then GR. (cicalese) 

 

3D-Matrigel Assay 
Cells were seeded in 4-well chamber slides (LabTek: 2000 cells/ml/well) in Matrigel 

(BD-Biosciences) overlay or embedding conditions as described by Lee et al., and 

then cultured for 15 or 20 days. The resulting outgrowths were photographed and 

analyzed. All measurements were made with ImageJ software.  

 

Time Lapse (TL) Live Imaging analysis 
The mammosphere assay allows estimating the overall presence of CSCs in a sample 

but if a deeper investigation of the dynamics at the base of this increase is needed, 

hence we exploited the TL analysis. 

The Microscope Cage Incubator (Okolab) encloses the IX81-ZDC bright 

field/fluorescent microscope station (Olympus); this system has a laser-based Z-drift 

compensator and works as a dynamic scanner. The software plans a virtual grid 

above the tissue culture well and by keeping focused more fields, it can capture at 

different time points the cells shape recording the very first mitotic division and all 

the followings. The cells viability during all the record period is guaranteed by the 
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Cage Incubator, which maintains a microenvironment as close as possible to the 

culture incubator. In that manner, by analyzing the number of cells spawn from a 

single mitotic division it is possible to evaluate weather a symmetric rather than an 

asymmetric division has taken place. Furthermore overexpressing upon infections 

factors like Numb, by tracking Numb-DsRed, it becomes possible to study its 

distribution during the SCs division. 

To keep the cells static during the recording, the single cell suspension is embedded 

in Methylcellulose-based medium (MethoCult™ Stemcell Technologies) previously 

reconstituted with with 10% mammosphere medium MESCM (see Mammary Epithelial 

Stem Cell Medium (MESCM)) containing 10-fold concentrated supplements.  

Mammospheres were desaggregated to single cell suspension, resuspended in 

MESCM at the concentration of 5,000 cells per 30 µl and added to reconstituted 

methylcellulose in a 1:10 ratio. 300 µl of methylcellulose (5,000 cells) were then 

plated in glassed bottom wells (MatTek CorporationTM) to increase imagine quality.  

 

TL statistical analysis 
The statistical analysis on TL videos was performed only on single living cells without 

considering the small groups or cells aggregates. The first and second mitotic 

divisions were considered to score the ratio between asymmetric versus symmetric 
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events occurred. Throughout TL analysis even MSs size and SFE were estimated and 

studied in relationship with the first mitotic division modality.   

 

Transplantation experiments: In vivo xenograft 
assays 

Five week-old NOD/SCID IL2R gamma-chain null female mice were used for cell 

transplantation. 

Animals were treated with Tribromoethanol (Avertin®), a popular injectable 

anesthetic; witch was delivered by intra peritoneal injection. Avertin was prepared 

resuspending 2.5 g of 2,2,2 Tribromoethanol in 5 ml of 2-methyl-2-butanol 

(amylene hydrate, tertiary amyl alcohol). This step requires o/n heating to 

approximately 40° C and stirring. The solution was diluted in 200 ml distilled water 

(neutral pH), than filtered, stored at +4° C and protect from light since the material 

becomes toxic if it degrades. 

Avertin is appropriate for short term surgical procedures, it induces anesthesia 

rapidly and provides good surgical analgesia for approximately one hour. Mice were 

injected with a size proportional volume of Avertin, (10 µl/g). (IACUC Guidelines for 

Use of Avertin Tribromoethanol (Avertin) in Mice) 

Mice abdominal skin was excised with surgical scissors and the inguinal fat pad 

exposed. To evaluate the transplanted cells MRU, the breast tissue of the 4th 
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mammary gland, which is located in low-abdominal/inguinal area. (Figure 3. Lateral 

view). The fat pad was partially removed by cutting from half line on the central 

lymph node to lateral limit (fat pad clearance).  

 

Figure 3 
Diagram of Mammary Tissue 
Left. Lateral view; in evidence cervical (1), thoracic (2,3) and abdominal (4) breasts. 
Right. Ventro-dorsal view; distribution and contiguity of mouse breasts, in evidence the 
position of cervical, pectoral and inguinal nipples.  
Adapted form The Virtual Mouse Necroscopy Comparative Medicine Branch 

 

 

Figure 4 
Macroscopic detail. 4th mammary gland undergoing transplantation 
Left: site of injection. Cells are concentrated in the nipple posterior area 
Right: Outcome of injection  
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Cells or mammospheres were were resuspended in 40 µL of a 1:1 Matrigel-PBS 

solution and injected with micro volume syringe (Hamilton). 

Mice were monitored by hand-palpation for tumor development. Tumor growth was 

measured by using a vernier caliper and applying the standard formula: tumor 

volume = (a x b2)/2. Mice were sacrificed when tumors reached a dimension of 1.5 – 

2 mm3. Tumors were explanted, weighed, and processed for formalin-fixing and 

paraffin embedding. 

The surgical removal (clearing) of the mammary fat pad was performed as reported 

(DeOme et al., 1959) since in the 4th mammary gland of a 5-week old mouse the 

mammary epithelium is concentrated in the nipple area and has not yet grown out 

beyond the mammary lymph node penetrating the bulk of the fat pad. Clearing of the 

fat pad from the nipple to the lymph node leave the bulk of the fat pad free of 

epithelium and ready to receive cells throughout transplantation. 

For the evaluation of outgrowths, fat pads were whole mounted (8 to 10 weeks after 

transplantation) and analyzed as described (DeOme et al., 1959; Sleeman et al., 

2005). 

Briefly, they were scored as negative for outgrowth if “no epithelial structures could 

be observed or if an epithelial ductal network could be seen, in which the majority of 

ductal branching had the same direction and had grown in from one edge of the fat 

pad”. They were instead scored as positive if “outgrowths could be seen to have 
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originated from a central region of the cleared fad pad and the directionality of the 

ductal branching was different in different parts of the fat pad”. The exogenous 

epithelial reconstitution was witnessed by growing terminal ends ducts.  

 

Statistical analysis of limiting dilution transplantation 
Limiting dilution data and SC frequencies were analyzed using generalized linear 

models, as implemented in the limdil function of the “statmod" package 

(http://cran.rproject.org/web/packages/statmod/index.html) for the R computing 

environment (http://www.r-project.org/). The single hit Poisson model underling 

limiting dilution was estimated by a complementary log-log generalized linear model. 

A confidence interval was obtained for the SC frequency by computing two-sided 95% 

Wald confidence intervals. In cases of zero outgrowths, exact binomial confidence 

intervals (one-sided 95% Clopper- Pearson) were computed. Goodness of fit of the 

single-hit model was estimated by testing, using the likelihood ratio test, the null 

hypothesis that the angular coefficient equals to 1 in the linear model fitted with two 

two-parameters. The null hypothesis was not rejected (p > 0.05) for any dilution 

series (Bonnefoix et al., 1996). 
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Gene Knocking Down: ShRNA Interference. 
In vitro NUMB KD was performed throughout ShRNA (Small hairpin RNA) Interference 

using lentiviral infection. Once the vector has integrated into the host cell genome, 

the ShRNA is transcribed in the nucleus by polymerase II and III (Zhou et al., 2005). 

ShRNA exportation out of the nucleus is mediated by Exportin 5 (Yi et al., 2003). 

Thereafter, the ShRNA is processed by Dicer (Haase et al., 2005) and cleaved in one 

step generating a 19-23 nt duplex SiRNA with 2 nt 3’ overhangs and loaded into the 

RNA-induced silencing complex (RISC)(Gregory et al., 2005). While the sense strand 

is degraded by Ago2 (Matranga et al., 2005), which was previously recruited by Dicer 

itself, the antisense strand directs RISC to mRNA that has a complementary sequence. 

RISC represses the translation of the target mRNA, that is cleaved by Ago2 and 

degraded, allowing the target gene silencing. Among different PLKO Sh vector, Sh39 

was chosen as most efficient in in vitro Numb knocking down. 

 

Nutlin-3 treatment 
Nutlin-3 (Cayman Chemical #10004372) (4-[(4S,4R)-4,5-bis(4-chlorophenyl))-4,5-	
  

dihydro-2-(4-methoxy-2-(1-methylethoxy)phenyl)-1H-imidazole-1-carbonyl]-2 

piperazinone (C30H30Cl2N4O4) was resuspended in DMSO to obtain a final 10 mM 

concentration. Cells were treated with a final 10µM concentration for 24 and 48 

hours. Nutlin-3 treatment was performed both in cell suspension for biochemical 
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analysis and in Methylcellulose-based medium (MethoCult™ Stemcell Technologies) 

for TL experiments. For in vivo experiments Nutlin3 was administered 

intraperitoneally at the final dose of 20 mg/kg, the in vivo treatment was repeated 

every 3 days for 12 days for total 4 treatments. Mice were sacrificed and tumour sizes 

were measured. Tumors obtained were dissociated and cells were analysed by IB, to 

verify the efficacy of the Nutlin3 treatment and then either re-transplanted 

orthotopically in mice for 3 weeks 

 

Cell lysis and protein purification 
Cells were washed in PBS and lysed in RIPA lysis buffer [50 mmol/L Tris (pH 8), 120 

mmol/L NaCl, 0.5% NP40, Phosphatase and protease inhibitors were added freshly to 

lysis and wash buffers: 20 mM Na pyrophosphate pH 7.5, 50 mM NaF, 2 mM PMSF in 

ethanol, 10mM Na vanadate, Protease Inhibitor Cocktail (Calbiochem). Cells were 

harvested directly on the plates using a cell scraper. About 300 µl of RIPA lysis 

buffer/10-cm plates and 50 µl RIPA buffer/for one well of a 6-well plate were used. 

Lysates were incubated on ice for 10 min and centrifuged at 12,000 rpm for 15 min 

at 4ºC. The supernatant was transferred to a new Eppendorf tube and protein 

concentration was measured by the Bradford assay (Biorad), following manufacturer’s 

instructions. 
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SDS polyacrylamide gel electrophoresis (SDS-PAGE) 
Gels for resolution of proteins were made from a 30%, 29.1:1 mix of 

acrylamide:bisacrylamide (Sigma). As polymerization catalysts, 10% ammonium 

persulphate (APS) and TEMED were used. 

 

Immunoblotting 
Desired amounts of proteins were loaded onto 0.75 - 1.5 mm thick polyacrylamide 

gels for electrophoresis (Biorad). Proteins were transferred in western transfer tanks 

(Biorad) to nitrocellulose (Schleicher and Schnell) in 1 x Western Transfer buffer 

(diluted in 20% methanol) at 30 V overnight, or 100 V for 1 hour for small gels and at 

70 V for 3 hours for large gels. Ponceau coloring was used to reveal the amount of 

protein transferred to the filters. Filters were blocked 1 hour (or overnight) in 5% 

milk or 5% BSA in TBS 0.1% Tween (TBS-T). After blocking, filters were incubated with 

the primary antibody, diluted in TBS-T with 5% milk or BSA, for 1 hour at room 

temperature, or overnight at 4ºC, followed by 3 washes of 5 min each in TBS-T. 

Filters were then incubated with the appropriate horseradish peroxidase (HRP)-

conjugated secondary antibody diluted in TBS-T with 5% milk or BSA for 30 min.  

 



	
   125	
  

Primary antibodies 
Anti Numb antibody was furnished by "Cogentech" (Consortium for Genomic 

Technologies), a core technology facility created by IFOM and IEO.  

Anti p53 (Cell Signaling (1C12) #2524) 

Anti p21 (Santa Cruz Biotechnology (F-5) #6246) 

Anti-vinculin and anti tubulin home made produced, anti-e-cadherin (BD); anti n-

cadherin (BD); anti GPR 94 (Enzo Life Sciences (9E10)) were also used. After the 

incubation with the secondary antibody, the filter was washed 3 times in TBS-T and 

the bound secondary antibody was revealed using the ECL (enhanced 

chemiluminescence) method (Amersham). 

 

Mammary gland Whole Mount staining with Carmine 
Alum 

Carmine Alum staining was used to study the whole mount architecture in mouse 

breast. Instead of the classical histological staining, which are performed on paraffin 

embedded 3 µm thick slides, Carmine Alum is performed directly on the fixed fat 

pad. This technique is exploited to get a macroscopic overview allowing for gross 

morphological changes appreciation.  

As previously demonstrated, together with biochemical alterations, Numb loss brings 

to hyperplastic and pre-neoplastic phenotypes characterized by hyperbranching and 

enlarged primary and secondary ducts (pece 2010). To get a deeper analysis on 
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these features the classical histo-pathological approach together with immune 

histochemistry (IHC) were hence coupled with Carmine Alum staining. Carmine is a 

"semi-synthetic" intensely red dye used to stain glycogen, its use requires the use of 

a mordant, usually aluminum potassium sulfate in water and gives a nuclear stain 

(Dapson et al., 2007). 

After the surgical remove, mouse inguinal mammary gland was stretched and 

flattened on a microscope slide and immediately placed in Kahle’s fixing solution for 

a minimum of 4 hours.  

Kahle’s fix (500ml)- stored at RT 

53   ml 37% formaldehyde 

147 ml 95% EtOH 

9.8  ml glacial acetic acid 

290.2 ml dH2O 

Once fixed, aftre 70% EtOH Wash, the mammary gland is rised in distilled water since 

Carmine Alum is in aqueous solution. The staining is o/n long, it is followed by a 

growing EtOH scale washing and a final xylene bath clears the fat pad from fat 

leaving an almost transparent tissue allowing the duct analysis.   

Carmine Alum solution. 

1g Carmine (Sigma C1022) and 2.5g aluminum potassium sulfate (Sigma A7167) 

were resuspended  in 500ml dH2O and boiled for 20 min. 
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immunofluorescence 
Cells were plated on glass coverslips pre-incubated with 0.5% gelatin in PBS at 37ºC 

for 30 min. Cells were fixed in 4% paraformaldehyde (in Pipes Buffer) for 10 min, 

washed with PBS and permeabilized in PBS 0.1% Triton X-100 for 10 min at room 

temperature. To prevent non-specific binding of the antibodies, cells were incubated 

with PBS in the presence of 5% BSA for 30 min. The coverslips were incubated with 

primary antibodies diluted in PBS 0.2 % BSA.  After 1 hour of incubation at room 

temperature, coverslips were washed 3 times with PBS. Cells were then incubated for 

30 min at room temperature with the appropriate secondary antibody Cy3 

(Amersham), Alexa 488-conjugated (Molecular Probes).  

After three washes in PBS, coverslips were mounted in a 90% glycerol solution 

containing diazabicyclo-(2.2.2) octane antifade (Sigma) and examined under a wild-

field immunofluorescence microscope (Leica). Images were further processed with the 

Adobe Photoshop software (Adobe) or with Image J to merge the images of the single 

channels. 

 

Immunohistochemistry 
IHC staining was performed on both frozen and fixed tissues. After surgical explant, 

tissues are formalin fixed () for a size related period and paraffin embedded. Fresh 

tissue are frozen and covered with cryostat embedding medium (OCT). 
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3 µm thick samples slices are cut by microtome and incubated in xylene in order to 

remove paraffin. 

The slices undergo antigen retrieval from formalin and paraffin through incubation in 

99º C Antigen Unmasking Buffer for 40’. 

 

Citrate: 10 mM Sodium Citrate Buffer:  

To prepare 1 L add 2.94 g sodium citrate trisodium salt dihydrate to 1 L dH2O. 

Adjust pH to 6.0. 

 

EDTA: 1 mM EDTA:  

To prepare 1 L add 0.372 g EDTA to 1 L dH2O. Adjust pH to 8.0.  

 

Endogenous peroxidases are quenched by 3% Hydrogen Peroxide and the slice is pre-

incubated with TBST 2% normal goat serum + 2% BSA to prepare the tissue for 

primary antibody incubation. The antibody is diluted in the same solution and the 

slice incubated at RT or +4º C for an antibody affinity related period.  

Secondary HRP conjugated antibodies (DAKO) were used and the DAB chromogen 

system (DAKO) was exploited for the secondary antibody detection.     

Wash Buffer (1X TBS/0.1% Tween-20 (1X TBST) is used  
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Constructs and plasmids 
The pLVX-puro lentiviral vector (Clontech #632164) was used to generate a construct 

to overexpress Numb in mammalian cells. The human isoform 71 Numb coding 

sequence (CDS) was taken from the vector pEGFP N1-Numb, already present in the 

lab (Clontech #6085-1), Numb was extracted through digestion with EcoRI and SalI. 

The same enzymes were used to digest an expression vector (pDsRed-Monomeric-

N1 Clontech #632465) carrying DsRed coding sequence, a monomeric mutant 

derived from a tetrameric Discosoma sp. Red fluorescent protein DsRed. Numb CDS 

was kept in frame with DsRed ATG in order to obtain a fusion protein Numb-DsRed 

later retrieved with EcoRI and NotI digestion. The NotI end was reduced to a blunt end 

throughout 20’ incubation with DNA Polymerase I, Large (Klenow) Fragment. Numb-

DsRed was cloned into pLVX-puro, previously digested with EcoRI and SmaI, this last 

conferring a blunt end. T4 ligase was used for o/n ligation, all mentioned enzymes 

were New England Biolabs (NEB) products. The so obtained pLVX-Numb-DsRed was 

used to overexpress Numb and to rescue its physiological levels in Numb KO models 

in vitro analysis, while in TL analysis, it was exploited for Numb tracking. With this 

system, the expression of Numb is driven by the human cytomegalovirus immediate 

early promoter. pLVX contains a puromycin resistance gene under the control of the 

murine phosphoglycerate kinase promoter for the selection of stable transductants. 
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Basic cloning techniques 
Agarose gel electrophoresis 

DNA samples were loaded onto 0.8 - 2% agarose gels along with DNA markers. Gels 

were made in TAE buffer containing 0.3 µg/ml ethidium bromide and run at 80 V 

until the desired separation was achieved. DNA bands were visualized under a UV 

lamp. 

 

Transformation of competent cells 
Fresh competent cells (50 µl), Top10 (Invitrogen) for cloning and DNA preparation 

were thawed on ice for approximately 10 min prior to the addition of plasmid DNA. 

Cells were incubated with DNA on ice for 30 min and then subjected to a heat shock 

for 1 min at 42°C. Cells were then returned to ice for 2 min. SOC medium (300 µl) 

was then added and the cells were left at 37°C for 1 hour before plating them onto 

LB-agar plates with the appropriate antibiotic. Two plates for each reaction were 

used, one plated with 2/3 of the transformed bacterial cells and the other one with 

the rest. Plates were incubated overnight at 37°C. 

 

Minipreps 
Clones picked from individual colonies were used to inoculate 5 ml LB (containing the 

appropriate antibiotic) and grown overnight at 37°C. Bacteria cells were transferred to 
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Eppendorf tubes and pelleted for 5 min at 12,000 rpm. Minipreps were performed 

with the Plasmid DNA purification kit (Macherey-Nagel) following the manufacturer’s 

instructions. The plasmids were eluted in 50 µl nuclease free H2O. 

 

Diagnostic DNA restriction 
Between 0.5 and 5 µg DNA were digested for 2 hours at 37°C with 10 – 20 units of 

restriction enzyme (New England Biolabs). For digestion, the volume was made up 

depending on the DNA volume to 20 – 50 µl with the appropriate buffer and ddH2O. 

 

Large scale plasmid preparation 
Cells containing transfected DNA were expanded into 200 ml cultures overnight. 

Plasmid DNA was isolated from these cells using the Maxi-prep kit (Macherey Naghel) 

according to the manufacturer’s instructions. 

 

Cell transfection 
Transfections were performed using calcium phosphate or Lipofectamine® 

(Invitrogen) reagents, according to manufacturer’s instructions. Lentiviral vectors lack 

in packaging protein genes for safety reasons, because of that a co-transfection with 

third generation helper vectors carrying these genes as pMDL, pREV and pVSVG are 

needed. For lentiviral production, 60% confluent packaging 293T cells were 
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transfected with calcium phosphate. Each 15 cm diameter plate was transfected with 

45 µg lentiviral vector together with 15 µg of every packaging plasmid. DNA mix was 

added with CaCl2 dropped in bubbling 2x HBS (Hepes Buffered Saline) and diluted in 

cells medium. Transfection was performed both o/d and o/n. Once removed the 

transfection medium. Virus was produced for 24 hours directly in medium of cells to 

be infected and used immediately after collection. The medium containing the virus 

was filtered through 45 µm filters, than added with fresh growth factors and 

hexadimethrine bromide (polybrene), a cationic polymer used to increase the 

efficiency of infection. In case of Lipofectamine® transfection, 80% confluent cells 

were used. Ninety µl of Lipofectamine® was added to DNA mix, prepared in serum-

free medium using 15 µg of lentiviral vector and 5 µg each packaging vector. The 

mix was incubated at room temperature for 5 min and then diluted in a pare volume 

of serum-free medium added with 60µl of Plus Reagent provided in the kit. After 

additional 20 min incubation, the final mix was added to the transfection medium 

which was removed after 3 hours incubation. Cells were then incubated at 37°C for 

o/d and/or o/n 12 hours cycles. Forty-eight hours after infection, cells were split and 

puromycin (1 µg/ml) was added to select infected cells.  
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DISCUSSION 
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According to the Stem Cell Theory of Cancer, at the heart of the tumorigenic process, 

is the Stem Cell and its homeostasis. Moreover, the critical role played by genes that 

regulate the Stem Cell compartment controlling the SCs self-renewal potential, the 

number of SCs and the tumorigenic potential of SCs is of particular interest is. 

Among them, I studied the protein Numb and its role in the maintenance of the Stem 

Cell compartment with particular emphasis on the consequences of Numb loss in the 

pathogenesis of breast cancer either in Numb KO mouse models on in human breast 

tumors. 

In this thesis, I have demonstrated that the cell fate determinant Numb plays a broad 

regulatory role in mammary gland homeostasis. At the top of the mammary 

hierarchy, in the MSC compartment, Numb partitions into the daughter progeny that 

retains the SC identity and imposes an asymmetric outcome to MSC self-renewing 

divisions by the liaison of p53 activity. Selective ablation of Numb or of p53 (Cicalese 

et al. 2009), causes the symmetric division of MSCs and a geometric expansion of the 

SC compartment, due to increased frequency of symmetric divisions.  

Mechanistically, I showed that p53-signaling is attenuated in Numb-KO SCs. 

Pharmacological restoration of normal levels of p53 in Numb-null cells decreased 

lifespan and self-renewing divisions of cancer SCs (to an extent identical to that of 

the WT SCs), rescues the asymmetric replicative kinetics and reverts SC expansion 

and reduced tumor expansion in vivo, without affecting significantly the growth of 
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additional cancer cells. Thus, a Numb-p53 axis controls the homeostasis of the 

breast SC compartment; the subversion of the Numb-p53 axis is relevant to breast 

cancers. I demonstrated here that the process affected by this alteration is the mode 

of self-renewal of the breast cancer SC, which becomes skewed towards a symmetric 

pattern. Loss of Numb expression, in a mouse model, leads to immortalisation of 

SCs, also prone to the acquisition of a transformed phenotype. Similarly, in Numb-

deficient human breast cancers, the expansion of the SC compartment can be 

reverted by restoration of Numb expression or of sufficient levels of p53 activity. In 

addition, my results indicate a gradient of alterations induced by loss of Numb in the 

KO model, from aberrant morphogenesis to preneoplastic lesions to various degrees 

of aggressiveness and tumorigenicity upon orthotopic transplantation. These 

observations suggest the possible selection of additional lesions to achieve a fully 

transformed phenotype. 

My data, however, unequivocally show that the altered homeostasis of the SC 

compartment is necessary for tumorigenesis in Numb-deficient human breast 

cancers. In addition, since the effects of Numb or p53 restoration were evident only 

in Numb-deficient tumours, these tumours are addicted to the loss of the Numb-p53 

axis, supporting the notion that the expansion of the SC compartment is selected for 

as an advantage-conferring event in the natural history of these tumours. As a 

consequence, Numb- or p53-targeted therapies should constitute SC-specific 
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treatments in Numb-deficient tumours. I demonstrated the proof of mechanism for 

such an approach in orthotopic xenografts and my work represents, to my 

knowledge, the first example of such anti-cancer SC targeted therapy in human solid 

tumours. 

These data demonstrate that increased frequency of self-renewing divisions in cancer 

SCs is critical for tumor growth, and suggest that asymmetric division functions as a 

mechanism of tumor suppression in mammals. Furthermore, these findings represent 

the first direct evidence that the selective ablation of cancer SCs leads to reduced 

tumor growth, thus providing experimental support to the concept of “cancer SC-

targeted therapy”. 

 

Numb asymmetric distribution at mitosis of Stem Cell 
The Stem Cell Theory of Cancer point to the responsibility of SCs’ number in the 

tumorigenic process, since the SC in normal condition divides in asymmetric mode 

generating two daughter cells, a SC and a progenitor cell, maintaining the starting 

number of SCs. When the SC mitosis does not proceed in this order, when a SC 

divides in symmetric mode, two identical SC are generated giving enrichment in SCs 

number. 
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Here, I have demonstrated that the asymmetric distribution of Numb during the first 

SC mitosis imposes an asymmetric fate on the SC progeny. Numb segregates into the 

daughter cell that retains the SC identity.  

I obtained this evidence exploiting an in vitro lentiviral infection of purified mammary 

epithelial SCs. Bulk epithelial mammary cells were obtained through enzymatic 

digestion of 5 weeks old mouse mammary glands. We used PKH dye to stain the 

entire bulk mammary population, which upon selective culture medium, generated 

floating spheroid colonies identified as mammospheres. These structures are the 

result of SC division and their cell daughter (progenitors) proliferation. SCs 

underwent a single round of mitosis thereby the PKH amount has maintained higher 

in SC and progressively diluted in the progenitors. I purified the SCs by the use of 

FACS-Sorting analysis and once obtained the pure SCs, I used the lentiviral vector 

pLVX Numb DsRed to track Numb partition during the first SC mitosis which was 

microscopically monitored by Time Lapse (TL) video-microscopy Analysis.  

This experiment showed that the PKH retaining cell, the true SC, was the daughter 

cell inheriting Numb protein. 
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Consequences in terms of tumorigenesis of Numb-loss of function 
The presence of Numb in the SC prompted us to study the consequences of Numb 

loss in the Stem cell compartment. Throughout the Numb KO mouse model and even 

with Numb KD we obtained the selective ablation of Numb. 

Throughout macroscopical (Whole mount analysis with Carmine Alum staining) and 

microscopical (Hematoxilin/heosin) investigations, I found that Numb KO mammary 

glands displayed morphological alterations, such as hyperplasia and dysplasia. 

According to in vitro assays performed on mammary epithelial cells (MECS) obtained 

form Numb KO mammary glad digestion, the loss of Numb causes an increase of 

sphere forming efficiency (SFE) and mammosphere (MS) size in comparison with 

control counterpart. Moreover the Numb KO SCs display an immortal behavior 

compared to WT SCs. 

The entire panel of in vitro experiments performed with Numb KO SCs was repeated 

with Numb KD cells with comparable results. 

These results suggest that the loss of Numb causes the symmetric division of SCs 

and a geometric expansion of the SC compartment. In agreement with the previous 

studies (Colaluca et al., 2008) arguing the existence of a Numb-p53 axis controlling 

the homeostasis of the breast SC compartment, the loss of Numb is accompanied 

even by the decrease of p53 levels and activity confirmed by p21 levels as shown by 

Western Blot analysis. 
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Since SC are able to re-constitute the epithelial tissue structure, we transplanted 

Numb KO bulk MECs in order to quantify the SC number: MECs transplantation was 

performed at limiting dilution (from 105 to 10 cells) to score the mammary 

repopulating unit (MRU) index or the cancer initiating cell (CIC) number. We 

considered these indexes to evaluate the SC number in the starting bulk MEC 

population transplanted. In many cases the outgrowths obtained displayed ductal 

hyperplasia, severe dysplasia together with preneoplastic lesions; in a minor fraction 

of cases the cells originated tumors. We collected cells from these neoplastic samples 

(identified as KO1 and KO2) and we performed MECs transplantation at limiting 

dilution; the higher frequencies of MRU displayed by KO1 and KO2 argued a higher 

SC content in their MECs population confirming the previous hypothesis out coming 

the in vitro assays. 

 

Rescue of Numb in Numb KO cells 
On the base of the results obtained from the previous set of experiments, we decided 

to proceed investigating on the effects of Numb reconstitution in Numb null SC 

compartment throughout infection using pLVX Numb DsRed lentiviral vector.  

Western Blot analysis confirms that Numb reconstitution was efficient in promoting 

the rescue of p53 levels and activity ensuring the efficacy of our rescue model. 
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SFE assay was performed on Numb reconstituted Numb KO cells which displayed a 

reduction both in SFE and in MS size arguing a reduction in SC compartment. This 

event perhaps depends on the reversion of modality of first mitotic division, from an 

almost predominant symmetric mode of Numb KO cells to a co-existence of both 

asymmetric and symmetric trends as witnessed by TL analysis. 

Numb reconstituted Numb KO cells were transplanted in order to see whether the SC 

compartment was actually diminished, and the out came tumors were in fact smaller 

than tumors grown from Numb KO EV infected cells without any alteration in 

proliferation or apoptosis of progenitors cells.  

 

p53 restoration by the use of Nutlin-3 
The previous experiments show that Numb overexpression in Numb KO cells is 

sufficient to restore the p53 activity, to impose the asymmetric replicative kinetics of 

divisions and to revert SCs expansion. 

Together with previous demonstration (Colaluca et al., 2008) that Numb sustains p53 

stability and function by interfering with the ubiquitinating enzyme Mdm2, this result 

argues that a Numb-mediated inhibition of p53 degradation in the “stem” daughter 

cell is the most likely mechanism to account for the maintenance of the SC 

compartment. To act at the level of p53-MDM2 interaction we treated Numb KO cells 

with Nutlin-3. This drug because of its molecular conformation can interfere in p53-
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MDM2 binding by occupying the p53 site of docking in MDM2 structure. We treated 

Numb KO cells with a 10µM final concentration of Nutlin-3 and the in vitro assay 

showed a reduction in SFE and MS size arguing a reduction in SC compartment. As 

demonstrated by TL analysis the SC number reduction was caused by a switch in the 

mode of first mitotic SC mitotic division, Nutlin-3 treated Numb KO cells increasing 

the number of asymmetric mitotic events. These cells were even transplanted to 

understand whether a reduction of SC compartment could lead to in vivo effects and 

interestingly the size of tumors obtained from Nutlin-3 treated Numb KO cells 

transplantation was smaller if compared with tumors grown from untreated cells. 

Furthermore I investigated whether the results obtained from Nutlin-3 in vitro 

treatment were consistent with the in vivo experiments. I decided to inject (IP) Nutlin-

3 in mice which were developing Numb KO palpable lesions. The pharmacological 

treatment did not affect the tumor growth, which is sustained by progenitor cells 

proliferation. To confirm whether Nutlin-3 treatment was efficient rather on SC 

compartment, this first generation of tumors were reduced to MECs, examined 

through SFE assay and transplanted again to study the Nutlin-3 treatment effects on 

the growth of second generation of tumors. Nutlin-3 in vivo treatment reduced the 

SFE and MS size confirming a targeted action against SC compartment, which is 

reduced as witnessed by the second generation tumor size. Indeed tumors grown by 
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MECs obtained from in vivo treated tumors were smaller than tumors of not treated 

mice. 

Numb KO mouse model helped us to clarify the tumorigenic mechanisms in which SC 

are involved and above all we better understood the critical role of Numb and the 

effects of its loss in terms of p53 homeostasis and SC compartment regulation. This 

data were our turning point to introduce this approach of study in human contest. 

 

From mouse to human  
According to the results obtained in mouse model and aware of the evidences 

emerged on the role of Numb, the consequences of its loss and the further effects of 

its reconstitution on p53 levels and activity rather than on SC compartment, we 

carried the strategy pursued in mouse directly in human model system. 

We screened different human tumor samples collected by IEO Anatomo-Pathology 

Unit. Tumor biopsies were xenografted in NOD SCID mice breast and let the tumor 

develop. Once the lesions were grown I compared through histological investigation 

(IHC) and biochemical analysis (Western Blot) whether the xenograft characteristics 

were representative of the human primitive counterpart. Western Blot analysis 

revealed that when Numb is lost in Numb defective tumors a concomitantly decrease 

in p53 levels and activity in seen. Thereby we sorted samples on the base of their 

Numb levels choosing for the next set of experiments two Numb negative and two 
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Numb positive samples as control. Results from in vitro SFE assay together with TL 

analysis confirmed an enrichment in SC compartment occurring in Numb negative 

samples as witnessed even by cumulative sphere number assay.  

As done in mouse model we tried to revert this phenotype by reconstituting Numb 

levels using the lentiviral infection with pLVX Numb DsRed vector. Western Blot 

confirms the efficacy of this approach showing a reconstitution of Numb levels and a 

p53 rescue in levels and activity. 

Later on, SFE assay displayed how Numb reconstitution was able to reduce the SFE 

and MS size arguing an effective action on SC compartment, then confirmed by TL 

analysis that reported an increase in asymmetric event in detriment of an almost total 

symmetric phenotype in first mitotic division after Numb reconstitution. We 

xenografted Numb reconstituted Numb negative cells and Numb negative cells as 

control in NOD SCID mice breasts and here we report a decrease in tumor volume 

consequent to Numb reconstitution and not to increased apoptosis or proliferation. 

According to our intents in finding a cure for cancer, we performed Nutlin-3 

treatment both in vitro and in vivo on previously studied human samples. Numb 

negative samples responded to Nutlin-3 treatment as reported by Western Blot 

analysis displaying p53 rescue in levels and activity. Furthermore Numb negative cells 

upon Nutlin-3 showed a reduced SFE as reported by cumulative sphere number in 

serial propagation assay arguing an effective in vitro Nutlin-3 action on SC 
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compartment. Nutlin-3 in vitro treated cells were even xenografted and we report a 

decreased growth in tumor spawned by these cells which was not dependent on 

increased apoptosis or proliferation as witnessed by IHC. 

To investigate whether Nutlin-3 acted on SC compartment rather than on progenitors 

we treated in vivo by IP injection mice which were developing palpable Numb negative 

lesions and we do not report any difference in first generation tumor growth in 

comparison with Numb positive lesions grown as control. This evidence suggests a 

Nutlin-3 directed action on SC compartment, the responsible in tumorigenesis rather 

than the progenitor since the in vivo treatment was ineffective on progenitors 

proliferation hence tumor growth. This hypothesis was confirmed by SFE assay 

performed on MECs derived from Nutlin-3 in vivo treated: the decreased SFE is proof 

of Nutlin-3 action on SC compartment. We xenografted Nutlin-3 in vivo treated 

tumor derived MECs and we report a decrease in size of tumors spawned by these 

cells. 

Taken together this last data argue an efficacy of Nutlin-3 treatment on SC 

compartment suggesting Nutlin-3 as a putative treatment suitable for CSC targeted 

therapy but at the same time not useful for arresting tumor growth since not ruled by 

SC compartment but by progenitors’ expansion. Nutlin-3 could thereby considered 

as therapy for tumor relapse, event in which the SC proliferation is for sure involved.    
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