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Summary 

 

A class of sialosides (down reported 3a-e, 4a-c, 5a-c and 5e), designed to inhibit the biological 

transfer of sialic acid 1 to the terminal portion of glycoconjugates, mediated by the enzymes 

sialyltransferases, was synthesized and their inhibitory activities was tested on a α-2,3 

sialyltransferase, from Pasteurella multocida, and on GM3 synthase, present both as a cellular 

homogenate and in a cell line of HEK293 (Human Embryonic Kidney). 

 

 

The synthesized compounds 3a-e are congeners of the natural sialyl donor CMP-Neu5Ac 2 and 

incorporate some structural properties of the compound 3a, the only known inhibitor of GM3 

synthase enzyme reported in a short note.1 

Moreover, we synthesized also the lactones 4a-c and the peracetylated derivatives 5a-c and 5e in 

order to improve the cell permeability of their parent hydroxyl acids. 

The GM3 synthase activity was evaluated detecting the formation of the labeled GM3 in process 

using lactosyl-ceramide labelled ([3-3H(sphingosine)]LacCer] as acceptor, or labeled sphingosine 

([3-3H] SPH) as unsialylated ganglioside precursor.3 Last procedure allowed to evaluate also the 
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complete pattern of gangliosides formed in the cell in the presence or absence of inhibitors. All 

synthesized compounds were tested on GM3 synthase of HEK cellular homogenate. The more active  

acidic compounds were also tested on intact cell lines, improving their lipofilicity, by methyl 

esterification and  after peracetylation. The free compounds 3b-c, 3e and 4c show an inhibitory 

activity always higher than 3a. Similarly the peracetylated methylester 5b-c and 5-e are more 

activity than 5a in intact cell lines.  

All compounds show an inhibitory activity higher on the cell homogenates than that on HEK cells. 

The lactones 4a-c were not active in cell lines probably since they do not cross the cell membrane 

as the peracetylated methyl ester 5a-e that are actives. 

The α-sialoside 5e resulted the most active. This is a very interesting result since evidences that the 

geometry at the anomeric centre of the glycosyl donor is not an exential requisite. 

However, all results together extend the knowledge on inhibitors of GM3 synthase and provide new 

structural information for the development of other novel STs inhibitors. 
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1. INTRODUCTION  

Sialyltransferases (STs) are an enzyme family able to transfer the N-acetylneuraminic acid 

(Neu5Ac; SA*) 1 or its companions, activated as cytidine 5’-monophosphate-N-acetylneuraminic 

acid (CMP-Neu5Ac) 2, (Figure 1) to the terminal portion of a glycoconjugate, where a 

glicoconjugate (glycolipid, glycoprotein, and lipopolysaccharide) is a compound in which one or 

more monosaccharide or oligosaccharide units are covalently linked to a noncarbohydrate moiety 

(the aglycone).4-6 

 

 

Figure 1: A) Neu5Ac 1a (SA) with main companions and activated SA (CMP-Neu5Ac) and B) biological sialylation.  

 

The sialic acid molecule, leaving the donor and bonding the acceptor, undergoes a reversal of its 

beta configuration at the anomeric carbon, thus forming an alpha bond.  

The process is of relevance since sialylated glycolproteins, glycolipids are involved in various 

biologically important processes as cellular interactions during cell development, cell 

differentiation, inflammation processes and binding of virus or bacteria.4, 5, 7, 8 

 

 

*More often the name SA is used to signify one of the more studied members of sialic acid family (N-acetylneuraminic       
acid (Neu5Ac), N-glycolilneuraminic acid (Neu5Gc) and 3-deoxy-nonulosonic-acid (KDN).  
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In fact, due to its strategic terminal position, Neu5Ac plays an important role in recognition and 

signaling phenomena occurring in a large number of cellular events (cell-cell interaction, immune 

response, cellular differentiation, apoptosis and migration)8. 

CMP-sialic acid derives from the sialic acid, present in the cell nucleus, that is activated as CMP-

SA by catalysis of a synthetase.Then, the formed CMP-SA migrates to the Golgi apparatus, where 

allows the sialyl transfer, assisted by a ST. In this way the formation of a sialylate-glycoconjugate 

or, specifically, of the GM3 occurs. From there, they are transferred outside of the cell, on the cell 

membrane. 

Of particular interest it appears a specific ST called GM3 synthase (CMP-N-acetylneuraminic acid: 

lactosyl-ceramide (LacCer) α−2,3 ST) responsible for the synthesis of GM3, the simplest member 

of a family of sialylatedglycosfingolipids, called gangliosides, particularly abundant on neuronal 

cell surface. GM3 is the precursor for most of the more complex ganglioside species and is 

synthesized by transfer of a Neu5Ac molecule from CMP-Neu5Ac to a terminal galactose residue 

of a LacCer through the α-2,3 glycosidic bond formation.9-11 

The involvement of sialylglycoconjugate, such as GM3, in some important physiological and 

pathological events, as well as the relationship between the alteration of ST activity and 

pathological states (tumor, metastatic and inflammatory processes), suggests that this enzyme may 

be of value as a therapeutic target.4, 7, 12 

However, despite the interest for inhibitors of STs no efficient inhibitors of GM3 synthase has, until 

now, been reported, apart from the de-phosphonate derivative 3a (Figure 2) described, in a short 

paper, 1 as specific for the GM3 synthase. 

O
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Figure 2: Inhibitor of GM3 synthase reported in literature. 

 

In order to find insights on the biological sialylation process using compounds potentially able to 

regulate these pathways, in my PhD work, I decided to perform a study of possible inhibitors of 

GM3 synthase. In particular, I focused my interest on inhibitors having, as 3a,1 a structure that 

mimes that of the CMP-Neu5Ac 2. 

Thus, I programmed and performed the synthesis of eight acidic sialosides, analogues of CMP-

Neu5Ac, and of their 1,7 lactone congeners. Moreover, I tested the newly synthesized compounds 
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on a bacterial α-2,3 ST, using an universal kit, and on GM3 synthase evaluating the formation of 

labeled GM3 obtained from labeled sphingosine ([3-3H(sphingosine)] LacCer).3 In this final 

comprehensive report on my PhD thesis work, I summarized and discussed the main obtained 

results. 
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1.1 Sialyltransferases (STs)  

STs are a subset of glycosyltransferase enzymes (GTs), a family that catalyzes the biological 

transfer of monosaccharaides from an activated donor to a specific acceptor molecule forming a 

glycosidic linkage. To perform their catalytic activity STs use CMP-Neu5Ac 2 as sialyl donor and  

in their action these enzymes mediate the transfer of a molecule of Neu5Ac 1 to the terminal non-

reducing end of a growing carbohydrate chain linked glycoconjugate (glycoproteins, glycolipids 

and lipopolysaccharides) (Figure 3). Usually, they bond the Neu5Ac molecule by a α−glycosidic 

linkage to terminal residue of glycoconjugates.4, 6, 7, 12 

 

Figure 3: Biological sialylation.  

 

The terminal sugar, accepting Neu5Ac, can be a molecule of galactose, that forms the bond at C-3 

or C-6 position, a residue of N-acetyl galactosamine that forms α-2,6 linkages or another residue of 

Neu5Ac bonded to the C-8 position. 

STs are commonly (CAZy database) classified in six different families: GT29 comprising 

eukaryotic and viral ST sequences and GT4, GT38, GT42, GT52 and GT80 comprising bacterial ST 

sequences.4, 6 

Moreover on the basis of crystallographic and fold data available, STs can be grouped into two 

structural superfamilies that represent variations of the canonical glycosyltransferase (GT-A and 

GT-B) folds. These two superfamilies differ in the nature of their active site residues, notably the 

catalytic base (a histidine or an aspartate residue). In the following paragraphs I report a short 

comment on the ST family in eukaryotic, viral and prokaryotic.4 

 

1.1.1 Eukaryotic and viral STs 

All eukaryotic and viral ST sequences are grouped into the GT29 CAZy family,4, 6 while, to date, 20 

different STs, acting on glycoproteins and/or glycolipids, have been characterized in human. They 

are classically split into the following four groups, depending on the type of linkage formed and of 

the nature of the sugar acceptor: 
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• ST6Gal family comprises only two protein members (ST6Gal-I and ST6Gal-II) that catalyze 

the transfer of Neu5Ac residues to the hydroxyl group in C-6 of a terminal galactose residue 

of type 2 disaccharide (Galβ1-4GlcNAc), and potentially to the N-acetylgalactosamine 

(GalNAc) residue of LacdiNAc motif (GalNAcβ1-4GlcNAc); 

• ST6GalNAc family comprises six different members (ST6GalNAc-I to VI) that catalyze a 

similar reaction but they use as acceptor a GalNAc residue found on O-glycosylproteins 

(ST6GalNAc-I, II and IV) or on glycolipids (ST6GalNAc-III, V and VI); 

• ST3Gal family comprises six protein members of the ST3Gal group (ST3Gal-I to VI) 

catalyze the formation of a α-2,3 linkage between Neu5Ac and terminal galactose residues 

found on glycoproteins and glycolipids. The subfamilies I and II use as a specific acceptor 

the type 3 oligosaccharides structure Galβ1-3GalNAc-R as asialo-GM1 and GM1a. The 

ST3Gal III, IV, V and VI recognize as acceptor these oligosaccharide structure: Galβ1-

3/4Glc(NAc)-R. In particular, only subfamily V uses as specific acceptor the LacCer 

affording the ganglioside GM3.7 

• ST8Sia family comprises six enzymes (ST8Sia-I to VI) that mediate the transfer of Neu5Ac 

to the hydroxyl group in C8 of another terminal Neu5Ac residue, found on glycoproteins 

and glycolipids. 

Vertebrate STs (GT29) predominantly reside in the Golgi compartment and they have, similarly 

with the other Golgi-resident GTs, a type II architecture consisting (Figure 4) in: 

 

Figure 4: Vertebrate STs architecture. 

• A short N-terminal cytoplasmatic tail with high variable amino acid composition and no 

essential for the catalytic activity, but its role, is still not clarified. It has been proposed that 

it could define subcellular localization and could provide stability to ST in intracellular 

dynamics; 
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• a unique transmembrane domain that is known as Golgi membrane anchor and it could play 

a role in localization of the ST; 

• a variable stem domain length from 20 to 200 amino acids. This is the region that inactive 

the catalytic domain when is not necessary for the catalysis. This region often displays high 

sequence variability and little secondary organization and is therefore predicted to be highly 

flexible.13 However, the role of the stem is not only this, but it has been proposed that it 

could play a role in both the enzyme retention in appropriate sub-compartment (Golgi 

apparatus) and in enzyme activity. Moreover, the mechanism of this activation is not yet 

clarified;14 

• a large C-terminal catalytic domain facing in the lumen of the Golgi compartment.14 

A special feature of GT29 enzymes, considered hallmarks for the identification of ST gene, is the 

presence in their catalytic domain of four conserved peptide sequences, termed sialylmotifs such 

assialylmotif L (large), S (small), motif 3 and VS (very small). The functional significance of the 

sialylmotifs L and S, assessed by site-directed mutagenesis, using the human ST6Gal-I as a model, 

led to reach the following conclusion:4, 6 

• the sialylmotif L is devoted to the recognition of sugar donor; 

• the sialylmotif S aimed to the binding of both donor and the acceptor substrates; 

• the sialylmotif L and S are believed important for the catalytic activity of ST, in fact they 

form a disulfide linkage between two cysteine residues; 

• motifs 3 and VS contribute to the binding of the acceptor. 

Except for these peptide motifs, the various GT29 groups show few sequence similarities. 

Considering only the twenty distinct human ST sequences, that have been cloned to date, we can 

observe that they have in common the presence of only 10 invariant residues (five in motif L, two in 

motif S and VS and one in motif 3).  

 

1.1.2 Prokaryotic STs  

Bacterial STs are very important since are expressed by pathogenic bacteria to mimics sialylated 

human glycan structures on their cell surface. Thus, the enzymes that synthesize these structures 

represent attractive targets for therapeutic development.4, 6 

Bacterial STs, as evident from the above classification, appear to have more flexible substrate 

specificity than their eukaryotic counterparts. In fact, these enzymes differ from mammalian ones, 

which are commonly monofunctional, since have multiple functions, including ST activities 

responsible for forming different sialyl linkages with or without additional sialidase and trans-

sialidase activities. 
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All the known bacterial STs have been classified into five different CAZy families (GT4, GT38, 

GT42, GT52 and GT80).6 

• Family GT4 includes highly homologous capsular polysaccharide (CPS) polymerases 

(SiaDs), such as N. meningitidis serogroups W135 and Y which have both 

hexosyltransferase (α1,4 galactosyltransferase activity for SiaDW135 and α1,4 

glucosyltransferase activity for SiaDY) and sialyltransferase activities responsible for 

the synthesis of sialic acid-containing heteropolymeric CPSs [−6Gal/Glcα1,4 

Neu5Acα2-]n. 

• Family GT38 includes polySTs (NeuS, SiaD) from E. coli K1 or K92 and N. 

meningitides serogroup C;6, 15 

• Family GT42 comprises mono-functional α-2,3 STs and bifunctionalα-2,3/α-2,8 STs 

from C. jejuni and H. influenza (Cst-I, Cst-II, Cst-III, Lic3A, Lic3B);16, 17 

• Family GT52 includes mono-functional α-2,3 STs and bifunctional α-2,3/α-2,6 STs 

from Neisseria spp.(Lst), but also an α-1,2 glucosyltransferase that uses UDP-α-D-Glc 

from Salmonella enterica subsp. Arizonae.17, 18 The presence of both inverting and 

retaining enzymes in the same family is somewhat unexpected and highlights the 

difficulty in assigning a precise biochemical function to the yet uncharacterized protein 

sequences that classify into family GT52.  

• Family GT80 comprises α-2,3 STs, α-2,6 STs and bifunctionalα-2,3/α-2,6 STs. One 

peculiar feature is that some bacterial STs are multifunctional. 

 

1.1.3  Structures 3D of STs 

Currently, some structural information is available for seven STs, belonging, to families GT4, 

GT29, GT42, GT52 and GT80. On the contrary, no structural data of the seven crystallized ST are 

available for the bacterial ST family GT38.4, 6 

Observing the 3D structures, it appears that STs, whatever their eukaryotic or prokaryotic origin, 

fall into the two main folding groups: GT-A and GT-B folds. The folds of GT29 and GT42 families 

are considered as variants of the GT-A architecture, but they lack the DxD motif that is one 

characteristic feature of most GT-A enzymes. They do not require the metal ion for their catalytic 

activities, whereas STs of families GT38 and GT52 an also adopt a GT-B fold. These two ST 

structural super-families not only differ in their spatial arrangement but also in the nature of their 

activate site residues, notably the catalytic base (a histidine or an aspartate residue), thus suggesting 

that they evolved independently.   
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1.2  Sialylation and sialylglycoconjugate 

From a chemical point of view, the sialylation is any reaction that introduces a sialyl group into a 

molecule. As I discuss in next paragraph, no definitive conclusion has been reached on its 

mechanism, but some hypotheses can be formulated.  

 

1.2.1 Catalytic mechanism of STs 

On the bases of its result, the sialylation is a nucleophilic substitution reaction operated by a 

nucleophilic carbohydrate hydroxyl on the anomeric carbon of the sialyl donor bearing a good 

leaving group activated by a phosphate ester function.4, 6, 19 
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Figure 5: ST mediated sialylation reaction. 

 

Considering the stereochemistry of the sialosyl donor and that of sialic fragment bonded to the end 

of the glycoconjugate, an inversion of the configuration (β to α) at the anomeric center occurs. 

Indeed, STs are classified as GTs inverting metal-ion independent enzymes, where the reaction 

occurs by the inversion of anomeric carbon configuration β, in CMP-Neu5Ac, to α in 

sialylglycoconjugate.4, 6 

This inverting mechanism, catalyzed by GTs appears, to support a possible SN2 mechanism, 

whereby a general base deprotonates the incoming nucleophile of the acceptor sugar, thus enabling 

the direct displacement of the nucleoside diphosphate.4-6 

Moreover, a retaining GT catalyzed mechanism is also proposed that should proceed via a double-

displacement reaction with a covalently bound glycosyl-enzyme intermediate. In this mechanism, a 

suitably positioned amino acid within the active-site functions as a nucleophile to catalyze the 

reaction is necessary.19 In comparison to inverting glycosyltransferases, retaining 

glycosyltransferase reactions also proceed through oxocarbenium ion-like transition states.  
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Despite this, several evidences (inhibition and kinetic studies) appear to support the hypothesis that 

is SN1 the mechanism for ST reaction.20, 21However, both the conjectures are in agreement with the 

formation oxacarbeniumione transition states in the ST reactions (Figure 6). 

 

 

 

 

Figure 6: Schematic representation of (a) inverting and (b) retaining catalytic mechanisms via oxacarbeniumione 

transition state and ST oxacarbenium ione. 

Despite of this, the mechanism for retaining glycosyltransferases is still being explored in order to 

identify any intermediate in its support that at the moment appear only highly speculative.  

At the moment, in absence of appropriate mechanism evidences, any choose between on SN1 or SN2 

mechanism is not possible. 

Despite the knowledge of the catalytic enzyme are still limited, however the catalytic role of some 

aminoacidic residues located on the active site appear important. For example, both aminoacidic 

residues of histidine (His) family or aspartic acid family (Asp) are important for their action as 
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catalytic base in different ST. Some other amino acidic residues have been also found to facilitates 

the elimination of the phosphate leaving group and their action on specific ST has been 

demonstrated.4-6 

However, structural data to understand the precise molecular base that account for the acceptor 

substrate specificities are still scarce. Differences in acceptor specificity are attributed to the lid 

domain region that probably plays a major role in selecting different acceptor molecules.4 

Thus, additional structural studies (modelling and mutation) are needed to further understanding the 

mechanism action. 

1.2.2 Biological synthesis of the CMP-Neu5Ac sialosyl donor 

The biosynthesis of CMP-Neu5Ac, is strictly correlated to that of Neu5Ac (Figure 7). Herein, I will 

consider both. 

In vertebrate system Neu5Ac derived by condensation of ManNAc-6-phosphate (ManNAc-6-P) 

with phosphoenolpyruvate (PEP). The precursor of ManNAc-6-P is glucose which is transformed in 

the cytosol, in several steps, into Uridine Diphosphate N-Acetylglucosaminine (UDP-GlcNAc). 

This substrate is converted in ManNAc-6-phosphate (ManNAc-6-P) by a bifunctional enzyme 

called GlcNAcepimerase (GNE) / ManNAc kinase (MNK). Then, the ManNAc-6-P is the substrate 

of a specific aldolase to give the Neu5Ac-9-P that, in turn, is transformed by specific phosphatase 

(encoded by NANP), to free Neu5Ac in the cytoplasmic compartment.22 

At this point Neu5Ac is transferred within the nucleus where it is activated, as CMP-Neu5Ac, by 

the action of specific enzyme called CMP-synthase. In eukaryotic cells, there is a feedback 

inhibition system contributing to govern the levels of sialic acid in the cell: free CMP-Neu5Ac acts 

as allosteric inhibitor of GNE. These topological issues are not applicable to prokaryotes, where 

CMP-Neu5Ac are synthesized in the cytoplasm and directly used in the coordinated assembly of 

cell-surface glycans, before their delivery to the surface. 

Finally, the CMP-Neu5Ac is transferred in the Golgi apparatus where the Neu5Ac is linked by 

specific STs to an appropriate acceptor molecule. Then, the oligosaccharide of nascent 

glycoconjugate is carried outside on the cell membrane. 22 
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.  

 

Figure 7: Intracellular sialic acid metabolism. CTP, cytidine triphosphate; PEP, phosphoenolpyruvate; OGS, 
oligosaccharides.The sialic acid pathway beginning with UDP-GlcNAc proceeds by the sequential action of (a,b) UDP-
GlcNAc 2-epimerase/ManNAc 6-kinase; (c)sialic acid 9-phosphate synthase; (d) sialic acid 9-phosphatase; (e) CMP-
sialic acid synthetase. Then, CMP-sialic acid Golgi transporter and sialyltransferase (several in humans) install a sialic 
acid on glycoconjugates destined for the cell surface. 
  
 

1.2.3 Acceptor family 

The main acceptors of sialic acid, transferred by specific ST using CMP-SA as high-energy donors, 

are the penultimate sugars of glycoconjugates (glycolipids, glycoproteins and lipopolysaccarides).  

The most common linkages of Neu5Ac are to the C-3 or C-6 positions of galactose residues or to 

the C-6 position of N-acetylgalactosamine residues. However, Neu5Ac can also take up internal 

positions within glycans, the most common being when one SA residue is attached to another, often 

at C-8 position.22 In addition, internal SA can occur in the repeating units of some bacterial 

polysaccharides and echinodermal oligosaccharides.  
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1.2.4 Function of sialylglycoconjugates under physiological and pathological conditions.  

Sialylglycoconjugates being expressed on the cell membrane, are involved in many biological 

functions as cell-cell talking, molecular recognition events, cell differentiation, immune response 

modulation and many others.4-6, 23 In fact, many evidences show that sialylglycoconjugates are 

recognized from specific glycoprotein for example as, lectines, that act as regulating factor in the 

activation of lymphocyte B and in the homeostasis of lymphocytes T. Thus, they modulates in this 

way, the immune response and the inflammatory processes.  

Moreover the sialylglycoconjugates play important roles in cell adhesion, survival and proliferation 

(see GM3 section). On the other hand, the SAs of a glycoconjugate can mask the antigenic 

recognized site located at the penultime galactose residue of the glycoconjugate. 

Furthermore, the high expression of SAs on outer cell membranes appears to suggest that they have 

roles in the stabilization of molecules and membranes, as well as in modulating interactions with the 

environment. In particular, the electronegative charges of sialylglycoconjugates, due to negative 

charge at the sialic acid residues in the terminal portion, allow the modulation of some functions 

such as the binding and transport of ions and drugs, the stabilization protein conformation, 

including enzymes and enhancement of the viscosity of mucins. 

On the other hand many evidences have suggested a correlation between the alteration of ST 

activity and of sialylglycoconjugate presence in several diseases. Indeed an alteration of the 

sialyltransferase activity causes the characteristic composition of glycoproteins in transformed cells, 

as shown in human colorectal cancer, breast carcinoma, leukemic cell lines and metastatic tissue.4-6, 

24 

Thus, the elevated plasma sialyltransferase activities can be used as tumor markers for cancer 

diseases. These alterations in the ST activity and in sialylglycoconjugated composition in sick cells 

have been observed also in: inflammatory pathology, autoimmune illness, metabolic disorderand 

many others. 
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1.3  Sialyltransferase inhibitors  

In recent years much attention has been devoted to develop inhibitors of STs due to the fact that, 

inhibition of these enzymes represents an useful tool in elucidating the biological functions of the 

sialylation process and possibly in improving therapeutic applications. In fact, these enzymes are 

considered potential therapeutic targets in many illnesses and in particular in some tumours (as 

breast carcinoma, metastatic tissue and colorectal cancer) in pathological inflammation processes, 

in metabolic disorder and many others. As a consequence, in spite of the scarce structural 

information on the enzymes structure, a number inhibitors have been developed following different 

lines. A suitable accepted classification may be: 

1 donor-based inhibitors (CMP-Neu5Ac); 

2 acceptor-based inhibitors; 

3 transition state analogues;  

4 bisubstrate analogues.  

5 other ST inhibitors 

It will be herein shortly discuss them. 

 

1.3.1 Donor-based inhibitors 

These inhibitors mime the CMP-Neu5Ac, the common donor substrate of all known STs, and 

compete with it. In particular, they should be synthesized considering the structure of the natural 

donor substrate and of the previously data reported, concerning the consequences of its modification 

or substitution to its three molecular portions: 

• cytidine portion 

• phosphate bridge 

• sialic acid moiety 

 

The cytidine portion  is essential for the competitive inhibition activity.25 Indeed, CMP (cytidine 

monophosphate), CDP and CTP are potent inhibitors of human serum α-2,6 ST (Ki = 16 to 50 µM), 

while the replacement of the cytidine nucleotide with another nucleotide (AMP, UDP), affords to a 

drastic reduction of antisialyltransferase activity. 

The contribution of the phosphate bridge to the binding, is not clear. In fact, the substitution of this 

portion with different groups does not afford a remarkable inhibition, as shown by derivatives I-II 

(Ki = 250 to 780 µM), thiophosphonate III  and amino acid derivative IV  (Ic50 =1000 µM towards 

α−2,6 ST) or the dephosphonate derivative 3a (21% toward α-2,3 ST and 30% inhibition at 21mM 

toward α-2,6 ST) (Figure 8). 1, 26, 27 
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No conclusion can be made, in our opinion, concerning the stereochemistry of the phosphonate 

group linking to the sialic portion. In fact, few epimers has been synthesized and/or tested and the 

only reports, concerning phosphite or aminoacidic congeners afford contrast result, (a low 

decreasing and inalteration). 

 

Sialic acid portion is not an essential requirement for high binding affinities.28, 29In fact, interesting 

result was obtained replacing the SA portion with another acidic sugar moiety. Indeed, the 

substitution with derivatives of quinic acid, V-IX compounds, affords a Ki value between 20-1400 

µM against an α-2,6 ST from rat liver.29-31 Of interest it appears the introduction of a fluorine atom 

in the SAs molecule that improve eight time Ki value (X Ki = 5.7 µM) (Figure 8). As already known 

from other glycosyltransferase inhibitors, fluorine substituted glycosyl donors are potent inhibitors 

of these enzyme. Indeed, the electronegative fluorine atom prevents the cleavage of the glycosidic 

bond by destabilization of the oxacarbenium ion transition state.26, 32 As a final comment, we can 

say that to design a rational formulation of donor inhibitor analogues, only few literature 

information are still available. 
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Figure 8:Donor-based inhibitor. 

 

1.3.2 Acceptor-based inhibitors 

The programming of inhibitors according to this approach is based on the knowledge of the 

interactions involved in the enzyme-substrate recognition process. Acceptor analogues compete 

with the natural glycoconjugate in the active site of the enzyme, without be glycosilated, due to the 

lack of the accepting group in their structure. 

Several compounds, which mimes the structure of the terminal glycan portion of the sugar-

acceptors, have been reported in the literature. However, herein, I report the compounds that in my 

opinion, afford the relatively most interesting results. As showed in the Figure 9, compounds XI-

XIII and the dimeric compound XIV,  that mime the structure of N-acetyllactosamine, show values 

of Ki = 760-4140 µM towards α-2,6 ST from rat liver, very similar to that corresponding to the 

endogenous acceptor (KM= 900µM).33 Furthermore kinetic analyses on these compounds show 

some interesting features: 

1. the binding of CMP-SA with enzyme do not affect the bond between acceptor, or its 

analogues, and STs; 

2. their inhibition mode is not purely competitive;  

3. the hydroxyl group at C-6 of N-acetyl lactosamine is not important for the enzyme substrate 

binding. Indeed, compounds XV-XVII , showed similar inhibition data (Ki = 760 to 1700 

µM).34 

The values of Ki of all these inhibitors are very lower than those of donor analogues. This result 

could be explained considering that the designed analogs are based on the small terminal unit of the 

sugar-acceptor, while STs recognize not only the terminal residues, but also more extended portions 
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of their natural acceptors. In fact, kinetic studies toward rat liver α−2,6 ST show that they form 

multivalent binding sites.35 

 

 

 

Figure 9: Acceptor-based inhibitors. 

 

1.3.3 Transition state-based inhibitors 

The structures of those inhibitors have been devised considering the possible formation of an 

oxacarbenium ion in the transition state XVIII (Figure 10), of the sialylation with inversion of the 

anomeric carbon configuration. This intermediate has a distorted half-chair conformation and a 

positive charge that is delocalized between the anomeric carbon and the oxygen atom of the ring. In 

particular, Smith and coworkers, on the basis of the proposed transition state formation, have 

noticed the following essential features, that the transition state inhibitor should possess: 

• an anomeric carbon with sp2  hybridization; 

• an appropriate distance between the anomeric carbon and the CMP leaving group; 

• two negative charges of oxygen atom with a distance of about five bonds; 

• an essential cytidine portion, while the sialic portion may be substituted by other groups. 

 

According to this, the first transition-state mimetic inhibitors were the 2-deoxy-2,3-didehydro-N-

acetylneuraminic acid (DANA) derivatives. These DANA derivative show a sialic portion20IXX-

XX) and a good values of Ki (0.04 to 6.0 µM) and in addition XX  and XXI , having an exocyclic 

double bond. 21, 36 Subsequently, Smith et al. developed other new inhibitors of transition state by 

the replacement of sialic motif (very expensive as starting material) with sialyl-mimetics, such as 

D-glucosamine. In this way, the new compounds XXII-XXVI , differing only for the simplified side 

chain, showed inhibitory activity further improved. According with my knowledge, the compounds 
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XXIV-XVI exhibit the best inhibition activity, against α−2,6 ST, until now reported.37Another 

class of transition-state analog inhibitors was developed containing: a CMP moiety essential for 

activity, a carboxylate, or, alternatively, a phosphonate group as a spacer, while the sugar or 

glycosidic portion (Neu5Ac or D-glucosamine) is replaced with a stable “non-glycosidic" bond to 

CMP. A double bond is introduced in the pyranose sialic ring to obtain a flattened ring system 

which mimics the transition-state. Major exponents of this class are derivatives of cycloexanone 

XXVII and compounds XXVIII-XXX with endocyclic and exocyclic double bonds, synthesized 

staring from D-quinic acid. All these compounds show an important antisialyltransferase activity. In 

particular, compounds XXIX  and XXX  are potent inhibitors against α-2,3 (Ki = 4-10 µM) and α-2.6 

(Ki = 0.27-1.6 µM).31 38 

Starting from these results, new specific inhibitors were synthesized against α-2,6 STs. Inter alia, 

the sp2 hybridization of anomeric carbon of the transition state is simplified by the replacement with 

planar or hetero-aromatic system. The phosphonate group displaces the carboxyl group of sialic 

acid portion that allows the presence of two negative charges and it must be spaced again five bonds 

and the bond to the essential cytidine portion. Some other α-hydroxyacetate and α-

hydroxyphosphonate analogues, with various aromatic rings, show a good inhibition activity against 

α-2,6 ST. For example, compounds XXXI-XXXIII  have a Ki value between 7-23 µM as well as 

XXXIV and XXXV that contain different aromatic rings and conserved the antisialyltranferase 

activity (Ki= 0.6-0.13 µM). 21 

As described above, all the powerful sialyltransferase inhibitors known are polar and charged. 

However compounds of this type are difficult to exert their functions in cells or organisms due to 

their low membrane permeability. The design and discovery of inhibitors that can easilypermeate 

the cell membrane remain a major challenge. 
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Figure 10:Transition state-based inhibitors. 

 

1.3.4 Bisubstrate-based inhibitors 

The bisubstrate inhibitors are characterized by the presence, in the same molecule, of elements that 

mime both donor and acceptor portions. For this, as evident from the formulas, of the more active 

inhibitors of this type (Figure 11), their design take advantage from the knowledge acquired in the 

studies of transition-state analogs. 
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Herein, I report the more interesting compounds showing inhibitory activity34 (XXXVI  and 

XXXVII and XXXVIII; Figure 11). 

In another approach the natural CMP-Neu5Ac donor was attacked via a short SCH2S spacer to the 

6'-position of a lactosamine derivative. The resulting bisubstrate analog XXXVIII exhibits an 

inhibition activity (Ki = 10µM) towards α-2,3 and α-2,6 STS which is in the range of the 

corresponding donor substrate analogs.39 

 

Figure 11:Bisubstrate-based inhibitors. 

1.3.5 Other ST inhibitors 

In addition to the more common strategy examined for the development of the inhibitors of STs,  

some other structures of relatively small endogenous molecules, antibiotic antisense-

oligonucleotides, and natural products show an inhibitory activity against STs. 

For example the α1-macroglobuline is a small endogenous protein reported as a selective inhibition 

against α-2,6 ST but the mechanism of inhibition action is not clear.40 

Another exemple is the N-butylmannosamine that is a small molecule able to get in the metabolism 

of sialic acid and it is converted in CMP-SABut. This compound is transferred less efficiently than 

the natural CMP-Neu5Ac, showing an inhibition effect toward the α-2,8 STs.41 

Moreover, the treatment with specific antisense-oligonucleotide, complementary to the region 

upstream of the initial codon of Galβ1,4GlcNAcα-2,6 ST, shows the decrease of the expression of 

enzyme and of its mRNA level.42 
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Furthermore, by screening of natural products and microbial extracts (about 7500 samples) it was 

possible to individuate the sayasaponin I, the first competitive inhibitor of CMP-Neu5Ac for 

ST3Gal I, with a value of Ki= 2.1 µM, that shows the most potent antisialyltransferase activity.43 

  



 

1.4 GM3 synthase 

Of particular relevance it appears GM3 synthase (ST I, ST3Gal V, CMP

sialyl transferase; EC 2.4.99.9) that catalyzes the transfer of Neu5Ac, to the terminal galactose 

residues of LacCer, thus affording GM3, the metabolic precursor for the biosynthesis of ganglioside 

series (Figure 12).This enzyme is highly specific fo

LacCer as acceptor substrate.9, 10

gangliosides have permitted to predict the amino acid sequences of t

synthase and to have many insights on the regulatory mechanism for their expression. The isolation 

of the cDNA of GM3 synthase appears to depend on the type of tissue, dominating in brain, 

muscles, testes, and placenta.44, 45

synthase makes it possible to prepare the recombinant enzyme both as full sequence and fragment

This possibility has allowed some preliminary studies developed 

regulating GM3 contents in tissues and cells that, however, are not completely clarified.

 

 

Figure 12: Biosynthesis of a, b and c series of gangliosides. Cer, ceramide; SA, sialic acid; ST I, GM3 synthase; ST 

II, GD3 synthase; ST III, GT3synthase; ST IV, GD1a synthase; ST V, GT1a synthase; GlcT, GlcCer synthase; GalTI, 

LacCer synthase; GalT II, GM1 synthase; GalNAcT,N
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The gene encoding human GM3 synthase is located on the second chromosome and consists of nine 

exons containing the coding region in exons 4-9.46 Functional analysis of the 5’-flanking region by 

the transient express method revealed that the –177 to –83 region from the transcription initiating 

site functions as the core promoter essential for transcriptional activation of the GM3 synthase gene 

in cells of human neuroblastoma and hepatoma.  

Several signal pathways (PKA, PKC, stress-activated protein as kinase/c-JunN-terminal kinase, and 

p38MAPK) are able to regulate its expression by the activation of CREB. Indeed, within promoter 

region of gene for GM3 synthase, there is CRE (cAMP response elements), that is recognizes from 

CREB increasing of GM3 synthase levels as well as GM347 

Moreover, also Sp-1 and AP2 transcription factors have a binding site within gene promoter of 

enzyme, with enhance the basal activity of the GM3 synthase.48 

Intracellular location of GM3 synthase is a factor regulating its synthesis and that of higher 

gangliosides that occurs, mainly in cells and tissues, of both endoplasmic reticulum and the Golgi 

apparatus.49 Recently it has been proposed the presence of two isoforms of GM3 synthase, a short 

and long isoforms.2, 45 The first is mainly located in the “proximal” (cis/medial/trans) Golgi 

apparatus and it should be involved in synthesis of simple gangliosides GM3 and GD3, while the 

second one is located in Golgi apparatus (distal, trans-net) and should be mainly involved in 

synthesis from GM3 of more complex gangliosides (GD1a, CT1a, GT1b, and GQ1b see Figure 12). 
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1.5 GM3  

GM3 is an essential component of plasma membrane lipid ganglioside-enriched microdomains 

(GEM) or rafts. This topological distribution has been found in the majority of extra neural tissues 

of vertebrata and represents an interesting and fruitful research field. The main function of GEM is 

in signal transduction where it concentrates receptor and signaling molecules on the membrane. 

This maximize the effect of the ligand−receptor binding during the signal transduction and  prevent 

undesirable “talks” between different signaling pathways. In particular, GM3 is involved in 

regulation of all cellular processes (cell proliferation, differentiation, apoptosis, embryogenesis, 

oncogenesis and many others).  

Herein I report a short mention of the GM3 role in some of these processes.  

 

1.5.1 GM3 in cell proliferation and oncogenesis 

Several literature data on the ability of GM3 to inhibit the growth of tumor cells and tumor 

development are reported.2This ability is due to a fundamental property of this ganglioside to 

suppress tyrosine phosphorylation of some growth factor receptors (as fibroblast growth factor 

(FGF) and platelet-derived growth factor (PDGF)) present in membranes of tumoral cells. This 

action has been detected in some human tumors, such as neuroblastome, lymphoma and ovary 

cancer.2 In contrast with this general behavior, has been suggested that GM3 induces the 

proliferation of carcinoma in the presence of urochinase.50 

However, GM3 can also influence proliferation by another mechanism: this ganglioside can inhibit 

the cell population growth by prolonging the G1 phase of the cell cycle in fibroblast cultures. 

However, it should be noted that the ratio of GM3 to complex gangliosides determines their 

influence on tumor growth and angiogenesis. 

 

1.5.2 GM3 in apoptosis  

GM3 plays a dual role in apoptosis: since in on one hand, it suppresses the effect of apoptotic 

cytokines (antiapototic effect), and in the other one causes apoptosis due to inhibition of cell 

proliferation (pro-apoptotic effect). 

• Antiapototic effect is correlated with an increase of the sialidase activity, that 

transforms GM3 in SA and lactosylceramide (LacCer). This compound has an 

anti-apoptotic effect by an up-regulation on Bcl-2, that one turn inhibits the 

apoptosis machine. In this way, the levels of GM3 decrease while the cell 

motility and cell growth increase.51 
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• Pro-apoptotic effect is mediated by two different actions. The first one is an 

inhibition of the cell proliferation that especially occurs in metastatic cells. The 

second effect involves the relationship between the GM3 and α–TNF levels. Last 

one is a multifunctional cytokine with a well-established role in immunity 

modulation and inflammation. Moreover, it is a known inducer of insulin 

resistance and apoptosis.52 Indeed, increase the GM3 level induces the 

correspective enhancement to expression of α-TNF affording a pro-apoptotic 

effect.9 

 

1.5.3 GM3 in cell adhesion  

Many literature reports suggest that the role of GM3 in the cell adhesion consists in an enhancement 

of the cell extracellular matrix interaction. For instance it has been observed that adhesiveness of 

melanoma B 16 on endothelia cells is due to a specific interaction between GM3, expressed on the 

melanoma B 16 cells, and LacCer located on the cell endothelia surface. 

The adhesion degree is in relationship with the expression level of GM3 on the cell surface of 

melanoma cells.53 

These data suggest that the adhesion of GM3 occurs by action on integrine receptors.54 These 

conclusions are consistent also with data reporting the involvement of GM3 in suppression of cell 

mobility, invasiveness and apoptosis.   

 

1.5.4 GM3 in cell differentiation 

The ganglioside GM3 seems to be important also in modulating the cells differentiation. Many 

evidences of this activity have been showed by the relationship between differentiation and levels of 

GM3. For example the high level of GM3 (tenfold increase) have been found in differentiation of 

human polypotent leukemic cells (HL60) to monocyte/macrophage phenotype induced by 

mitogenic agent as phorbol ester (Protein kinase C (PKC).55 Moreover, the GM3 is able to induce 

the differentiation of HL 60 cells also without the presence of proliferation inducer as mitogenic 

agents. In fact the accumulation of GM3 in the plasma membrane induces a variation of the 

ganglioside pattern, exposed on the cell membrane that is needful for the cellular differentiation.55, 

56 
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1.5.5 GM3 in insulin resistance  

GM3 level are also regulated by the expression of α-TNF and, in the adipocyte cells, the 

enhancement of the α-TNF expression leads an increase of GM3 levels with consequently 

suppression of the transduction signals mediated by the insulin receptors GM3 mediate.11, 57 

Indeed, in this way, the adipocyte is not able to respond to insulin signals conducing to the insulin 

resistance mediated by GM3 since causes on uncoupling of the insulin receptor activity towards the 

insulin receptor substrate with suppression of the insulin-sensitive glucose transport. 

Moreover has been reported that, using inhibitors against the biosynthesis of GM3, the effect of α-

TNF on adipocyte cells is suppress, resolving the insulin resistance.11, 57 Thus the serum level of 

GM3 may be useful marker for the management of metabolic syndrome, including insulin 

resistance, as well as, for the early diagnosis of atherosclerosis.10 Recently inhibitors GM3 

biosynthesis are proven to have therapeutic value by oral administration in diabetic rodent model.58 

 

1.5.6 Other processes 

Other studies that relate the GM3 values and the occurrence of pathologies have been reported. As 

an example, some observation demonstrate a direct link between GM3 synthase and hearing 

functions. Indeed, mice lacking of GM3 exhibit complete hearing loss due to selective degeneration 

of the organ of Corti. However, also the relationship between over expression of GM3 and some 

viral diseases has been suggested.9, 10 Thus, the involvement of GM3 synthase, in many biological 

and pathological function, suggests that this enzyme may be of value as therapeutic or biological 

tool.  
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2. AIM OF THE WORK  

With the aim to find suitable inhibitors of GM3 synthase, in my thesis work I decided to study the 

synthesis of the glycoside 3a, the first congeners, reported in a short note, as the only active 

inhibitoron GM3 synthase and of other unreported analogues.1 Indeed, I devised to synthesize also 

some perfluorinated analogues 3b-c and lactones 4a-c, confident that these compounds could have 

an inhibitions activity improved in respect to that 3a. Moreover, I devised to setup a synthetic 

procedure that could allow to establish, without doubts, the stereochemistry of the final compounds 

that, in the case of 3a, had been only empirically established.  
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Figure 13: Donor inhibitors based on CMP-Neu5Ac designed and synthesized. 

 

For the selection of the structure I considered that the presence of the perfluoroacylamido groups 

could increase the inhibition activity of the compounds as occurs for the 3 α fluorine CMP-Neu5Ac 

in respect to the natural non fluorinate compound 2 (Figure 8).32 In my mind, the presence of the 

fluorinated acyl groups in glycoside 3b-c and 4b-c should growth the tendency of the carbonyls to 

their tetrahedral hydrate form, a characteristic know to expand the activity of carbonyls against 

some enzymes activity. Similarly, the inner esterification of the polar carboxylic group with the 7 

hydroxyl group, could increase the inhibition activity of the compounds 4a-c in respect to the parent 
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acids. Moreover I devised to synthesized also the perfluorinated glycoside α−epimers at anomeric 

center 3d-e. Their testscould support or contrast the conjecture that the stereochemistry of this 

center is an essential requirement for the inhibitory activity on ST.27 Furthermore I synthesized 

theperacetylated derivatives 5a-c and 5e in order to facilitate the cell permeability of the glycosides 

in experiments performed on cells. 

I could test these compounds on cell homogenate and on cell lines in order to verify their action. 

After the selection of the active compounds, I could refine their synthesis and their structure. 

Herein, I report the successful synthesis of all programmed compounds: acids, lactones, α−epimers, 

and acetylated analogues and encouraging results on their inhibitory activity on GM3 synthase. 
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3. RESULTS AND DISCUSSION 

In this section I will discuss all the experimental results starting from the description of the 

synthetic protocols I set up to obtain some new glycoside derivatives, Neu5Ac-CMP donor 

analogues. Then, I will continue the discussion reporting some biological assays on STs and GM3 

synthase performed to evaluate the inhibitory activity of these new compounds. 

 

3.1 Chemical results 

We decided to synthesize the glycosides 3a-e and their 1,7-lactones 4a-c taking advantage from 

some works, recently done in the Prof. Mario Anastasia laboratory, both on the N-transacylation of 

amides and on the 1,7-lactonization of Neu5Ac 1.59 So, we started our synthetic work from the 

known cytidine aldehyde 660 that, in a relatively shorter way than that reported in literature afforded 

the alcohol 9, i.e. the cytidine portion of the required glycosides 3a-e (Scheme 1).1 The alcohol 9, 

by glycosidation with the nucleophilic 5-acylamido-4,7,8,9-tetra-O-acetyl-2-chloro-2,3,5-tridehoxy-

β-D-glycero-D-galacto-2-nonulopyranosates 11a-c, afforded β-glycosides 12a-c, in satisfactory 

yields (39, 36 and 27% respectively), accompanied by variable, but always minor, amounts of their 

2α-epimers 13a-c (<1, 20 and 24% respectively) (Scheme 1). 

We performed the reaction with the chlorinated donors 11a-c since we were interested to obtain the 

β-glycosides 12a-c and the α-epimers 13a-c, not only to test the influence of the α and β geometry 

in the inhibition, but also to interpret the chemical and physical properties of these compounds 

having both isomers.  
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Scheme 1: Synthesis of: A) cytidine portion, B) sialosyl donors and C) glycosidic reaction. Reagent and conditions: 

A) i: (Ph)3P=CHCHO, CH2Cl2, 23°C, overnight, ii:H2, Pd/C, MeOH, rt, 1h; iii: NaBH4, MeOH, -20°C, 15 min, 45%; B) 

iv: AcCl, MeOH, 0°C to 23°C, overnight, 77, 81 and 80%; C) v: AgOTf,toluene/CH3NO2, rt, 3h, β-anomers yields (39, 

36 and 27%) and α-anomer yields ( <1, 20, 24%). 

 

In the work, the aldehyde 6 was transformed into the homologue alcohol 9 by a Wittig reaction with 

(triphenylphosphoranylidene) acetaldehyde, followed by the a catalytic hydrogenation of the 

formed α,β-unsaturated aldehyde 7 and by a successive chemical reduction of the saturated 

aldehyde 8 with NaBH4 to the alcohol 9. We attempted also a direct reduction of the aldehyde 7, 

using various chemical or catalytic methods that, however, afforded unsatisfactory results, due to 

the cleavage of the acetamido and of the cytidine base of the unsaturated or saturated aldehydes 7 or 

8. The aldehyde 6 could be isolated, without significant loss, by simple column chromatography on 

silica, on the contrary, the saturated and unsaturated aldehydes 7 and 8 showed an evident 

decomposition, during their purification on silica, reason for which we successively reacted in crude 

form, limiting the purification to a sample used for their complete characterization. At the end, we 

isolated the alcohol 9, in pure form as a stable compound in 45% yield from the aldehyde 6.This 

alcohol showed the expected physico-chemical properties that were identical to those in part 

reported for compound 9 prepared by a different route.1 

In parallel, we prepared the 2-chloroderivatives 11a-c (77, 81, 80%) useful to perform the 

glycosidation of the alcohol 9, treating the appropriate peracetylated sialic acid methyl ester 10a-c 
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with hydrogen chloride in methanol (Scheme 1). Then we performed the glycosidation of the 

alcohol 9 with the 2-chlorine of Neu5Ac 11a, under the Koenig-Knorr like conditions, and we 

obtained the desired β-glycoside 12a in satisfactory yields (39%), that we consider satisfactory 

since some starting alcohol could be recovered by column chromatography. The unfluorinated β-

glycoside 12a was accompanied by trace amounts of the α-epimer 13a (< 1%). Then, we performed 

the reaction with the fluorinate compounds 11b-c and observed the glycosides 12b-c (36% and 27% 

respectively)accompanied by more consistent amounts of their 2α-epimers 13b-c (20% and 24% 

respectively). This confirmed the literature observation according to which, the presence of a 

perfluorinated acylamido group at C-5 of sialic acid donors decreases the β-stereoselectivity of the 

glycosidation.61 The obtained glycosides showed the correct elemental analyses and chemical and 

physical properties in agreement with their structure. However, in spite to our expectations their 

complete NMR analysis did not allow to assign rationally their α or β-geometry that, at this point of 

the work, we assigned on the basis of the empirical rules for the sialosides,62 (this assignment was 

also in the reported short note disclosing the synthesis of 3a) i.e. we assigned the β-configuration to 

the anomers showing a relatively lower coupling constant between H-7 and H-8 sialic protons 

(JH7,H8 = 1.6-1.9 Hz for β-anomers and 8.7 Hz for α-anomers) and a relatively larger chemical shift 

difference between the two H-9 protons (around 0.87 ppm) in respect to the α-anomers (δ < 0.1). 

Moreover, in the course of our work we unequivocally confirmed this assignment by chemical way, 

showing that only the sialosides deriving by an appropriate deprotection of the sialosides 12a-c, of 

assigned    β−−−−geometry, were able to form 1,7-lactones.  

At this point, after some unsuccessful attempts to improve the yields of our glycosylation reactions, 

we decided to experiment the selective preparation of the glycoside 12a-c following an two step 

procedure, i.e. performing the glycosylation of the alcohol 9 with dibromine derivatives 14a-c, (92, 

93, 95%) prepared by simple addition of bromine to the sialyl glycals methyl esters 15a-c. We were 

confident that, as first reported by T. Goto et al.,63 a dibromine sialosyl donor 14a-c, as a 

consequence of the trans geometry of its bromine atoms, reacts preferentially from the β-side. If, in 

our case, this effect exceeded the opposite influence of the perfluorinate acylamido groups at C-5, 

we ideally could obtain a quantitative selectivity in favor of the β-glycosides 16a-c (51, 48, 32%). 

This, by reductive elimination with (n-Bu)3SnH of the 3-bromine atom, could afford the desired β-

glycoside 12a-c (81, 83, 87%) (Scheme 2).  

In effect, the sialylation, performed at 23 °C, occurred in all cases in a short time affording 

exclusively the expected β-glycosides 16a-c that, by successive debromination, gave the glycosides 

12a-c identical in all respects to those obtained above.  

However, the overall yields of the two steps process resulted only slightly higher of those observed 
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in the one step preparation of the β-glycoside 12a-c,thus we considered this procedure as an 

alternative not at all attractive. 
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Scheme 2: Syntheses of: A) dibromine sialosyl donors 14a-c and alternative glycosylation reactions. Reagent and 

conditions: A) i: Br2, CH2Cl2, 0°C to rt, 92, 95, 93%; B) ii: AgOTf, toluene/CH3NO2, rt, 3h, 51, 48, 32%; iii: (Bu)3SnH, 
THF, reflux, 2h, 81, 83, 87%. 

 

With the synthetized protected sialosides 12a-c, we performed the synthesis of the desired lactones 

using as common key intermediates the acids 3a-c obtained by a sequential regeneration of the 

protected functions according to the reaction sequence reported in the scheme (Scheme 3). This 

sequence was selected experiencing some less satisfactory results obtained reverting the 

regeneration of the protected functions. The sequence merits a few key observations concerning 

first of all the hydrolytic conditions found to remove the methyl ester function keeping the 5-

acylamido group. This was easy in the case of the acetyl group that allowed, as expected, the use of 

the aqueous sodium hydroxide (on the contrary NaHCO3 does not work, contrast with reference)1 

and in the case of the heptafluorobutyric amide that tolerates the methanolic K2CO3, in moist 

methanol. On the contrary, it was critical in the case of the trifluoroacetyl group that occurs in a 

suitable way only in the presence of triethylamine in aqueous methanol under strictly controlled 

conditions.  

The obtained sialosides 3a-c showed physical-chemical properties (Mass spectra, NMR) in 

agreement with the assigned structures. In particular appear indicative for their β-structure the NMR 

analysis with a total proton and carbon resonance assignments, achieved by combination of 1D and 

2D NMR experiments. These evidenced show clear proton signals shifted to relatively high fields (δ 

= 2.40-2.43 ppm) for the 3-equatorial hydrogen atoms of sialic acid portion, diagnostic for the β-

sialoside bond in the molecules.64 The relatively high fields shift was evident on comparing the 

chemical shift observed in the 1H-NMR spectrum of the α-glicosides 3d and 3e (δ = 2.81-2.79 
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ppm), obtained by regeneration of the protected functions of the α-glicosides 13b and 13c (Scheme 

3). Indeed we prepared also α-isomers, 3e and 3d, and we controlled their1H-NMR spectra, their 

inability to form an 1,7-lactone and their anti GM3 syntase activity. 

The 1H-NMR attributed to the known glycoside 3a was also identifiable to that reported for the 

same compound, provided that some mistakes and erroneous attributions of the literature are carried 

out (compare experimental data).1 

 

 

Scheme 3:Synthesis of free sialyl-glycosides and 1,7 lactonesi: Reagent and conditions: i:moistly TFA, CH2Cl2 

reflux 30 min-1h, 72-79%; ii:NaOMe, MeOH, rt, 1h, 88-91%; iii a NaOH aq 1M, rt, 40 min, 90-92%; iii b: Et3N, 

MeOH/H2O, rt, 12h, 86-88%; iii c: K2CO3 H2O/MeOH, rt, 92%; iv:CbzCl, Et3N, THF/DMF (4:3; v/v), 0 °C to 23 °C, 

1h, 70-71%; v: TFA aq (95% v/v), rt, 30 min, 75%. 

 

With the appropriated hydroxyl acidic glycosides 3a-c in the hands, we attempted their direct 1,7-

lactonization, using our protocol recently set-up for the preparation of 1,7-lactone of Neu5Ac 1 

(Scheme 3). 65 The reaction afforded the desired 1,7-lactones 4a-c with different yields that were 

good for 4b-c, while were unsatisfactory for 4a. No lactones were obtained in the parallel reaction 

of the α-glycosides 3e and 3d.We considered these results in keeping with the geometry assigned to 

the starting glycosides that in this way was supported by chemical evidences. Moreover, 

considering that the unsatisfactory yields in the reaction of 3a was due to the lower solubility of this 
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glycoside in the reaction solvent, we decided to attempt the lactonization on the corresponding 

acetonide 17 (Scheme 3). In this case, the reaction occurs in satisfactory yield and affords the 

protected 1,7 lactone 18 in good yields. The regeneration of the hydoxylic groups of cytidine 

system of the lactone 4a with differ acids, appeared not completely selective and difficult to control. 

Thus, we accepted as the best conditions those using aqueous CF3COOH (95%, 30 min, 23 °C) 

affording, in 75% yields, a mixture (65-10%) of the desired final lactone 4a and of its parent acid 

3a. Moreover, we could separate the desired by reverse-phase preparative column chromatography. 

On the other hands, sample of all final compounds were purified by reverse-phase preparative 

column chromatography and lyophilisation this way before their use in biological assays. 

Then, in order to achieve a further objective, which is to develop of cell-permeable inhibitors, I 

accomplish also the synthesis of the corresponding analogues protected as acetyl derivatives, 

compounds 5a-e.  

In fact, we were supported by some literature studies, which demonstrated the effectiveness of 

administering the peracetylates derivatives of sialic acid as precursors readily converted to the 

corresponding free donor substrate analogs intracellularly in cell culture.66 

Thus, we prepared the protected compounds 5a-e, in agreement with the scheme below (Scheme 4), 

by simple deprotection of the hydroxylic cytidine portion of the sialosides 12a-e and reacetylation. 

The reactions work well and afforded the desired compounds in high yields (around 70%). 

 

Scheme 4: Synthesis of peracetylated analogues5a-e. Reagents and conditions:i:moistly TFA, CH2Cl2 

reflux 30 min-1h, 77-79%; ii: Ac2O, Py, 23 °C, 3h 89-91%). 
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Tested compounds 

 

Acidic sialosides 

 

1,7-lactone sialosides 

 

Peracetylated  sialosides 
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3.2 Biological results and discussion 

 

Considering our decision to study donor-based ST inhibitors, we decided, at first, to test the ability 

to inhibit the enzyme activity of the acidic compounds 3a-e and of the lactones 4a-c on a bacterial 

α-2,3 sialyltransferase (from Pasteurella multocida). For this purpose we used a very simple and 

universal non-radioactive commercial assay that is versatile for the evaluation of the inhibition 

activity of compounds on purified STs.67 

Then, in order to find new inhibitors of GM3 synthase, we decided to test our synthesize 

compounds on cell homogenate fraction containing GM3 synthase of Human Embryonic Kidney, 

HEK cells. For this we devised to use an HPTLC radioactivity imaging assay according to the 

procedure reported by Prinetti et al. since this assay was also applicable to non-purified enzymes.3In 

the following section, I will describe the results obtained using all the synthesized compounds at 1 

mM concentration and for the most promising compounds to a further concentration of 10 µM. 

Finally, we also report the data obtained performing assays on HEK cell cultures finalized to 

determine the variation of sphingolipid pattern in the presence of our inhibitors, using their 

peracetylated derivatives, compounds 5a-c and 5e. 

Herein, I first discuss the results on a commercial α -2,3 sialyltransferase then the biological assays 

on GM3 synthase. 

 

3.2.1 Inhibition on bacterial α-2,3 ST from Pasteurella multocida 

We first tested the anti ST inhibitory activity of the acidic compounds 3a-e and of the lactones 4a-c 

on a bacterial α-2,3-ST. 

All compounds, were first purified, by preparative HPLC, and them tested for their possible anti-

sialytrasferase activity,using N-acetyllactose amine as acceptor. I devised used a colorimetric assay 

reported by L. Wu et al. based on the evaluation of inorganic phosphate formed in the hydrolysis of 

the nucleotidic leaving group lost by CMP-sialic acid in the sialyltransferase reaction.67 The 

malachite green phosphate detection reagents that turn inorganic phosphate to a green colored 

complex allow us to evaluate the amount of inorganic phosphate released, that is equal to the CMP-

sialic acid consumed or the sialyl-conjugate produced (see experimental section). 

Compounds 3a-e and 4a-c afforded the inhibition results reported in the following table (Table 1). 
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Table 1: Inhibition of the bacterial ST from Pasteurella multocida by free acidic sialosides 3a–e and lactones 4a–c. 

 

 

Compound KM(µM) or Ki(µM)a 

CMP-Neu5Ac 422 ± 9 

3a 1312 ± 14 

3b 402± 7 

3c 109± 4 

3d 406± 6 

3e 128±3 

4a 602±8 

4b 215±4 

4c 65±3 
a Each value represents the mean ± standard deviation of two or three independent experiments carried out in triplicate. 

As evident from the Ki of the tested compounds 3b-e and 4a-c, all of them arealways noticeable 

lower than the Ki of 3a and of the KM obtained in our experiment for CMP-Neu5Ac. Interesting, 

the fluorinated congeners 3b and 3c are three times or more than one order of magnitude active than 

3a. Apparently, the 5N-heptafluorobutyrrate compounds 3c, 3e and 4c are the most actives. 

An additional increase of the inhibitory activity is observed in all lactones compounds 4a-cwhen 

compared with their respective acid analogues. Even more interesting, the α-epimers 3d-e retain a 

comparable activity suggesting, in agreement with the few literature data, that the geometry at this 

center is not an essential requirement for the inhibitor-enzyme interaction.27 

Thus, we can conclude that both the presence of fluorine atoms and lactonization improve the 

inhibitory activity of the synthesize sialosides. 
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3.2.2 Inhibition of GM3 synthase 

Then, considering the final aim of our work, we decided to test all the new compounds on the GM3 

synthase.  

Since, we were interested to confirm and evaluate the inhibitory activity of compound 3a, the only 

reported inhibitor of GM3 synthase, and to compare its inhibition activity with other prepared 

congeners, we performed an initial screening evaluation of all the synthesized compounds at the 

concentration of 1 mM. This concentration is lower than that (21 mM) used in the literature to 

obtain with the compound 3a 20% inhibition of the GM3 synthase in tissues.  

In our experiments, almost initially, we could use a crude GM3 synthase obtained from HEK cells.1 

In this way, we could select the most active compounds that in a second moment could be tested on 

a purified enzyme. Thus, we evaluated our compounds on cell homogenate fraction containing 

GM3 synthase using as acceptor substrate of the enzyme labeled LacCer, at the position three of 

sphingosine, according to Prinetti et al.3 

In this way the activity of the obtained GM3 could be evaluated from the radioactivity incorporated 

in the molecule. As a scale we decided to consider as maximum (100%) the radioactivity associated 

to the GM3 formed in absence of inhibitors. We considered as the minimum (0%) the situation in 

which no reactivity was associated to GM3 and, in the meantime, all radioactivity was associated to 

the starting LacCer. The intermediate values were established by a mathematical extrapolation. 

Herein, I reported the results obtained on the free and lactonecompounds, I avoided to describe the 

results on protected compounds that result inactive at a concentration of 1 mM. 

As we can observe from the results, reported in the table (Table 2), as % inhibition extent, 

compound 3a, its fluorinated analog 3b and the α-heptafluorinate 3es how at 1 mM the 100% 

inhibition. 
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Table 2: Inhibition of cell homogenate fraction containing GM3 synthase of HEK cellsby free acidic sialosides 3a–e 

and lactones 4a–cat a 1mM concentration. 

 

 
Each value represents the mean ± standard deviation of two or three independent experiments carried out in triplicate, 
expressed as percentage of GM3 on positive control. 

 

Data were average from a triplicate inhibition assay performed at 37° C for 3 hours. Moreover I 

repeated again the experiments with 3c and 3dthus confirming their behavior, that, surprisingly, was 

different from that of 3b and 3d.  

Also lactones 4a-c show an unexpected behavior when compared with their acid analogues, in fact 

the unfluorinated lactone 4a is less active than the acid 3a, as in the case of the lactone 4b and its 

acid analogue 3b; on the contrary the lactone 4c is more active than 3c. 

Moreover very interesting data are obtained with their 2α isomers 3e-d. In particular compound 3e 

displays a 100% inhibition activity, higher than its β-epimer. 

Thus, all the synthesized compounds, having an inhibition activity lower than 10%, were tested at 

two order of magnitude lower concentration (10µM). 
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Table 3:Inhibition of cell homogenate fraction containing GM3 synthase of HEK cellsby selected free acidic 

sialosides 3a, 3b, 3e and lactone4cat a 10 µM concentration. 

 
Each value represents the mean ± standard deviation of two or three independent experiments carried out in triplicate, 
expressed as percentage of GM3 on positive control. 

 

As evident from the data reported in table (Table 3), all the compounds tested at this concentration 

(10 µM), independently from their acid or lactonic structure, show an inhibitory activity in the 

range of 50% compared to the positive control. Interesting, all the tested compounds show an 

inhibitory activity higher than that of compound 3a, the most active compound being the 2α-isomer 

3e. 

 

3.2.3 Matabolic evaluation of sphingolipid pattern by treatment with peracetylated GM3 

synthase inhibitors 

Encouraged by the good results obtained on GM3 synthase of HEK cell homogenates, we decided 

to test the active substances in cell cultures suitable to determine also the sphingolipid pattern of 

HEK cells. For this we treated with inhibitors and [3-3H] sphingosine ([3-3H] SPH), a natural 

precursor of sphingolipids. With this assay, it could be possible to evaluate the cellular content of 

sphingolipids in terms of both quality and quantity, in presence or absence of our inhibitors, simply 

by an extraction of the metabolic radioactive products and HPTLC separation. 

In particular, we decided to evaluate the inhibitory activity of both lactones 3a-c and peracetylated 

methyl esters derived from free acids, compounds 5a-e. We tested the protected analogs considering 

that these molecules have an improved increased lipophilicity useful to cross membranes.The 

results obtained are reported in the table below (Table 4) and they are once again expressed 

considering 100% the GM3 formed in absence inhibitors. 
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Herein I reported are the results that, to date, are most promising, obtained for the protected 

derivatives of acids. However, further biological evaluation is necessary and merit additional work. 

 

Table 4:Evaluation of radiolabelled GM3 on HEK cells treated by selected peracetylatedmethyl esters sialosides 5a-c, 

5eat a 10 µM concentration versus the control. 

 

 
Each value represents the mean ± standard deviation of two or three independent experiments carried out in triplicate, 
expressed as percentage of GM3 on positive control. 

As evident from the results reported in the picture and referred to triplicate experimentally all the 

tested compounds are actives. In particular, the peracetylated 5c, derivatived of thefluorinated 

inhibitor 3c, shows the lower activity followed by the unfluorinated 5a. This result is in agreement 

with the trend of values found inhibition assay on homogenate fraction containing GM3 ST. 

On the contrary an evident improvement of inhibitory activity is observed for the perfluoroacetate 

5b and for the hepetafluorobutirrat α-epimers 5e. Thus, this result suggest that, once again, the most 

active inhibitors of GM3 at the moment known is the derivative 3e.  

In the same experiments, in addition to the GM3 inspection, we also checked the levels of the other 

known gangliosides (GD1a, GM1 and GM2) present in the aqueous phase (Table 5a). 
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Table 5 (a) and (b): Radiolabeled sphingolipid distribution, aqueous (a) and organic phases (b), of HEK cells 

treated with inhibitors by metabolic labeling with sphingosine ([3-3H] SPH. 

                            (a) 

 

 

                              (b) 

 

 

Each value represents the mean ± standard deviation of two or three independent experiments carried out in triplicate, 
expressed as percentage of GM3 on positive control. 

 

 



45 

 

The data reported for the treatment with the compounds synthesized 5a-c and 5e, show that, in our 

conditions, only the synthesis ofganglioside GM3 is significantly decreases (p< 0.0001). This 

suggests that the inhibition obtained is specific for GM3 synthase. 

Moreover, inspectingthe data concerning the GM2, we could observe, almost in some cases, an a 

statically significant increase of the levels of GM2. This is in agreement with a literature showing 

that decreasing the GM3 biosynthesis causes a parallelincrease of GM2.68Also in this aspect in our 

opinion further studies and experimentations are required.  

We evaluated also the incorporation of labeled sphingosine in soluble organic fraction of cells 

(Table 5b). This in order to inspect the complete sphingolipidic pattern, as reported in the picture on 

organic fraction containing neutral lipids sphingomyelin (SM), globoside 3(Gb3), glucosylceramide 

(GlcCer), ceramide (Cer).As evident from the results, unchanged picture of natural lipids is 

observed.This appears to suggest that all our inhibitors, independently from their activity level, are 

all specific for GM3 synthesis. This is a result noticeable for future researches. 
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4. CONCLUSIONS 

 

In conclusion, I have synthesized, by an unreported procedure, eight sialoside congeners of the 

natural sialyl donor CMP-Neu5Ac. 

The synthetic protocol, set up for the glycosidation, allows to assign the structure of all compounds 

beyond any reasonable doubt using both NMR evidences of α and β epimers and the successive 

exclusive 1,7 lactonization of the β-epimers. The preparation of the reported inhibitor 3a allowed 

also to set up some capricious reaction conditions reported in the synthesis and to correct NMR 

assignment of the few reported intermediate and of the final compound. 

Interesting, the availability of the α-epimers allowed us to evidence that the α and β geometry of the 

glycoside bound of the CMP-Neu5Ac mimic inhibitors is irrelevant or even ameliorative of the 

inhibitory activity of the compounds.   

This observation, together with the final results showing that an acetylation of the hydroxyl and 

amine group of the cytidine portion and the saccharide portion facilitates the cell permeability 

provide interesting structural formation for the development of new STs inhibitors. 

The set up of the synthetic general method for the preparation of the active inhibitors appear useful 

for a rational programming of new inhibitory, even with computational chemistry support. 

Concerning biological experiments devoted to ascertain the inhibitory activity of the compounds, 

efforts are still necessary both to purify GM3 synthase and to avoid the use of radioactivity. In this 

respect, deuterium labelled precursory offer more convenient opportunity for further studies.            
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5. EXPERIMENTALS 
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5. EXPERIMENTAL 

 

5.1 Chemical materials and methods: 

All chemicals used were special (specific) grade unless otherwise specified, were purchased from 

commercial source. Water was prepared by filtering deionized water on a Milli-Q Simplicity 185 

filtration system from Millipore (Bedford, MA, USA). Discovery DSC-18 SPE tubes for sample 

clean up were purchased from Supelco (Bellefonte, PA, USA). 

Solvents were dried using standard methods and distilled before use. The progress of all reactions 

was monitored by thin-layer chromatography (TLC) carried out on 0.25 mm E. Merck silica gel 

plates (60 F254) using UV light, 50% sulphuric acid, anisaldehyde/H2SO4/EtOH solution or 0.2% 

ninhydrin in ethanol and heat as developing agent. All flash chromatography was performed with 

normal phase silica gel (E. Merck 230-400 mesh silica gel), following the general protocol of 

Still[1]. 

Melting points were measured on a SMP3 mp apparatus (Stuart Scientific, USA) and are not 

corrected. NMR spectra were recorded at 25°C on a Bruker AM-500 spectrometer operating at 

500.13 MHz for 1H and 125.76 MHz for 13C. The chemical shifts are reported in ppm and coupling 

constant are given in Hz, relative to CD3OD signal fixed at 3.31 ppm for 1H spectra and to CD3OD 

signal fixed at 49.05 ppm for 13C spectra, to (DMSO)-d6 signal fixed at 2.50 ppm for 1H spectra and 

to (DMSO)-d6 signal fixed at 39.52 ppm for 13C spectra, relative to CDCl3 signal fixed at 7.26 ppm 

for 1H spectra and to CDCl3 signal fixed at 77.00, and to internal (CH3)3COH 1.24 ppm and 30.29 

ppm for solutions in D2O. 

Proton and carbon assignments were established, if necessary, with 1H-1H and 1H-13C correlated 

NMR experiments. Data for 1H NMR are recovered as follows: chemical shift (ppm), multiplicity 

(s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br , broad), coupling constant(s) in Hz, 

number of protons, assignment of proton(s). 

Optical rotations were taken on a Perkin-Elmer 241 polarimeter equipped with a 1 dm tube; [a]D 

values are given in 10-1deg cm2 g-1 and the concentration are given in g/100 mL. Mass spectrometry 

was performed using Finnigan LCQDeca quadrupole ion-trap mass spectrometer equipped with an 

ESI ion source (Finnigan ThermoQuest, San Jose, CA, USA). The spectra were collected in 

continuous flow mode by connecting the infusion pump directly to the ESI source. Solutions of 

compounds were infused at a flow rate of 5 mL/min. 

The spray voltage was set at 5.0 kV in the positive and at 4.5 kV in the negative ion mode with a 

capillary temperature of 220 °C. Full-scan mass spectra were recorded by scanning a m/z range of 

100-2000. All described compounds showed a purity >98%, as determined by HPLC (UV and MS 



50 

 

detectors). LC-UV/MS data were collected with an Agilent 1100 HPLC connected to a Bruker 

Esquire 3000+ ion trap mass spectrometer through an ES interface. 

5.2 Biological materials and methods: 

Inhibition activity assay on commercialα 2,3-sialyltransferase. Commercial chemicals were of 

analytical grade or the highest purity available. α-2,3-Sialyltransferase from Pasteurella multocida, 

CMP-sialic acid, N-acetyl-D-lactosamine were purchased from commercial sources. Malachite 

Green Phosphate Detection Kit was from R&D Systems. Solvents were distilled before use. The 

water routinely used was freshly distilled on a glass apparatus. ST activity was measured with a 

microplate reader (Victor 3, PerkinElmer) set at 620 nm wavelength. 

Inhibition activity assay on GM3 synthase. Commercial chemicals were of analytical grade or the 

highest purity available. Human Embryonic Kidney, HEK293A (Invitrogen). Protein concentration 

was determined by a JASCO V-530 spectrophotometer. The cell pellet was homogenized with a 

Dounce homogenizer.  

[3-3H(sphingosine)]LacCer and other radioactive lipid, used as reference standards was from Prof. 

Bruno Venerando group that collaborated to my thesis work. 

High performance silica gel-precoated thin-layer plates (HPTLC Kieselgel 60) were purchased from 

Merck (Darmstadt, Germany).Radioactive lipids were visualized with a Beta-Imager 2000 

(Biospace, Paris, France) and identified by comparison with radiolabeled standards. 

Sphingolipid pattern evaluation by metabolic labeling with [3-3H] sphingosine ([3-3H] SPH) in 

HEK cells treated with inhibitors. 

Commercial chemicals were of analytical grade or the highest purity available. Human Embryonic 

Kidney, HEK293A (Invitrogen). Protein concentration was determined by a JASCO V-530 

spectrophotometer. [3-3H]sphingosine (19.8 Ci/mmol) was provided by PerkinElmer (Waltham, 

MA). The radioactive lipid , used as reference standards was from Prof. Bruno Venerando group 

that collaborated to my thesis work. 

High performance silica gel-precoated thin-layer plates (HPTLC Kieselgel 60) were purchased from 

Merck (Darmstadt, Germany). 

Radioactive lipids were visualized with a Beta-Imager 2000 (Biospace, Paris, France) and identified 

by comparison with radiolabeled standards. 
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5.3 Chemistry 

 

5.3.1 Synthetic procedure affording alcohol 9. 

N

NO

NHAc

O

O O

9

HO

 
 
Aldehyde 6 (1.20 g, 3.71 mmol) was dissolved in CH2Cl2 (60 mL), added by 

(triphenylphosphoranyliden) acetaldehyde (1.36 g, 4.46 mmol) and stirred overnight at 23 °C. Then, 

the orange solution was concentrated in vacuo to give crude aldehyde 7. Then, the crude mixture of 

aldehyde 6, dissolved in MeOH(100 mL), was directly hydrogenated in the presence of Pd on 

carbon 10% (160 mg) for 2 h. At this time, the catalyst was filtered, washed with MeOH (60 mL) 

and the solvent was then evaporated under reduced pressure to afford the crude compound 8. This 

intermediatewas dissolved in MeOH (20 mL) and the reaction was cooled at -20 °C. At this time, 

NaBH4 (158 mg, 2.05 mmol)was added and after 15 minutes the reaction was stopped with the 

addition of acetone (4 mL), then neutralized with Amberlite resin IRC-50 (H+). The resin was 

filtered, washed with MeOH (30 mL) and the solvent was then evaporated under reduced pressure 

to afford, after purified by chromatography on silica gel (eluting with AcOEt/MeOH, 9:1 v/v), the 

compound 9 (590 mg, 45%), as white powder: m.p. 97–98°C (from CH2Cl2-diisopropyl ether); 

[α]D
20 = +31.2 (c 1.0 in methanol). 1H NMR (CDCl3): δ = 9.71 (s, 1H; NH), 7.72 (d, J6,5 = 7.5 Hz; 

1H, H-6), 7.42 (d, J5,6 = 7.5 Hz, 1H, H-5), 5.65 (d, J1’,2’ = 1.6 Hz, 1H; H-1’), 4.97 (dd, J2’,3’ = 6.6, 

J2’,1’ = 1.6 Hz, 1H; H-2’), 4.62 (1H, br d, J3’,2’ = 6.6, J3’,4’ = 4.6 Hz, 1H; H-3’), 4.19–4.16 (m, 1H; 

H-4’), 3.67–3.64 (overlapping, 2H; H-7a’ and H-7b’), 2.25 (s, 3H; NHCOCH3 at C-4), 1.87–1.78 

(overlapping, 2H; H-5a’ and H-5b’), 1.73–1.67 (overlapping, 2H; H-6a’ and H-6b’), 1.56 (s, 3H; 

C(CH3)2), 1.33 ppm (s, 3H; C(CH3)2). MS (ESI positive)m/z: 376.2 [M+Na]+, 729.1 [2M+Na]+. 

11.89. Other physico-chemical properties were identical to those reported in literature.1 
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The caratterization of intermediate aldehydes 6, 7 and 8 purified only in small quantities. 
 

 

N

NO

NHAc

O

O O

O

6  
 

1HNMR (CD3)2SO: δ = 9.75, (s, 1H; NHAc), 9.37 (s, 1H; CHO), 7.68 (d, J6,5 = 7.6 Hz, 1H; H-6), 

7.55 (d, J5,6 = 7.6 Hz, 1H; H-5), 5.60 (s,1H; H-1’), 5.30 (br d, J2’,1’ = 6.2 Hz1H; H-2’), 5.16 (br d, 

J3’,4’ = 6.2 Hz, 1H; H-3’), 4.58 (s, 1H; H-4’), 2.30 (s, 1H; OCOCH3 at C-4), 1.55 (s, 3H; C(CH3)2), 

1.38 (s, 3H; C(CH3)2);MS (ESI positive)m/z: 323.9.[M+H]+. Other physico-chemicals properties 

were identical to those reported in litterature.60 

 

N

NO

NHAc

O

O O

OHC

7  
 
Aldehyde 7 showed: m.p. 183°C (from CH2Cl2-diisopropyl ether); [α]D 

20 = +24.7 (c = 1 in CHCl3). 
1HNMR (CDCl3): δ =  9.56 (d, J7’,6’ = 7.8 Hz, 1H; H-7’), 8.95 (s, 1H; NH ), 7.60 (d, J6,5 = 7.5 Hz, 

1H; H-6), 7.43 (d, J5,6 = 7.5 Hz, 1H; H-5), 7.00 (dd, J5’,4’ =6.2 J5’,6’ = 15.8; 1H, H-5’), 6.23 (dd, J6’,7’ 

=7.8 J6’,5’ = 15.8, 1H; H-6’) 5.57 (br s,1H; H-1’), 5.25 (br d, J2’,3’ = 6.3, 1H; H-2’), 5.07 (dd, J3’,4’ = 

3.9, J3’,2’ = 6.3 Hz,  1H; H-3’), 4.87–4.83 (m, 1H; H-4’), 2.25 (s, 3H; NHCOCH3 at C-4), 1.58 (s, 

3H; C(CH3)2), 1.36 ppm (s, 3H; C(CH3)2); 
13C NMR (CDCl3): δ = 193.2 (C-7’), 170.1 ( 

NHCOCH3), 163.3 (C-4), 154.6 (C-2), 153.0 (C-5’), 147.9 (C-6), 132.3 (C-6’), 114.3 (C(CH3)2), 

99.0 (C-1’), 96.8 (C-5), 89.0 (C-4’), 85.2 (C-3’), 85.0 (C-2’), 27.0 (C(CH3)2), 25.2(C(CH3)2), 25.0 

(NHCOCH3). MS (ESI positive)m/z: 372.1 [M+Na]+. Elemental analysis calcd (%) for C16H19N3O6: 

C 55.01, H 5.48, N 12.03; found C 54.86, H 5.34, N 11.92. 
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N

NO

NHAc

O

O O

OHC

8  
 
Aldehyde 8 showed: m.p. 185°C (from CH2Cl2-diisopropyl ether); [α]D 

20 = +23.4 (c = 1 in CHCl3). 
1H NMR (CDCl3): δ =  9.75 (br s, 1H; H-7’), 9.23 (s, 1H; NH ), 7.63 (d, J6,5 = 7.4 Hz, 1H; H-6), 

7.42 (d, J5,6 = 7.4 Hz, 1H; H-5), 5.60 (br s,1H; H-1’), 5.04 (br d, J2’,3’ = 6.5; 1H, H-2’), 4.71-4.67 

(m, 1H; H-3’), 4.14–4.0 8 (m, 1H; H-4’), 2.62-2.58 ( overlapping, 2H; H-6a’ and H-6b’), 2.26 (s, 

3H; NHCOCH3 at C-4), 2.19-2.03 (overlapping, 2H; H-5a’ and H-5b’), 1.55 (s, 3H; C(CH3)2), 1.33 

ppm (s, 3H; C(CH3)2); 
13C NMR (CDCl3): δ = 201.2 (C-7’), 170.4 (NHCOCH3), 163.1 (C-4), 154.5 

(C-2), 146.6 (C-6), 114.5 (C(CH3)2), 96.7 (C-5), 96.2, (C-1’), 87.2 (C-4’), 84.9(C-2’), 83.8 (C-3’), 

40.0 (C-6’) 27.2 (C(CH3)2), 25.5 (C-5’),25.3 (C(CH3)2), 25.0 (NHCOCH3) ppm. MS (ESI 

positive)m/z: 374.6 [M+Na]+. Elemental analysis calcd (%) for C16H21N3O6: C 54.69, H 6.02, N 

11.96; found C 54.35, H 5.87, N 12.06. 
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5.3.2 General procedure to synthesize chloro derivatives 11a-c. 

 

To a solution of selected compund 10a-c (0.30 mmol), dissolved in acetyl chloride (35 mL) and 

cooled at -10°C under argon atmosphere, anhydrous methanol (5 mL) was added. The solution was 

stirred at room temperature overnight then the mixture was evaporated in vacuo to give a syrup, 

which was crystallized from hexane-ethyl acetate to affording the desired derivatives 11a-c. 

 
Synthesis of compound 11a. 
 
 

O
CO2CH3

Cl

AcO
CH3COHN

AcO

OAcAcO

11a  
 
Starting from the peracetylated Neu5Ac methyl ester 10a (160 mg, 0.3 mmol) the 2-chloro 

peracetylated Neu5Ac methyl ester 11a (117 mg, 77%) was obtained as only stereoisomer as a 

white solid. 1H NMR (CDCl3): δ = 5.47 (dd, J7,6=  2.4, J7,8=  7.0 Hz, 1H; H-7), 5.44 (d, JNH,5 = 10.2 

Hz, 1H; NH), 5.39 (ddd, J4,3a = 4.8, J4,5= 10.4, J4,3b = 11.0 Hz, 1H; H-4), 5.17 (ddd, J8,9a = 2.7, 

J8,9b= 5.8, J8, 7=  7.0 Hz, 1H; H-8), 4.42 (dd, J9a,8=  2.7,J9a,9b = 12.5 Hz, 1H; H-9a), 4.35 (dd, J6,7= 

2.4, J6,5=  11.3 Hz, 1H; H-6), 4.20 (ddd, J 5,NH = 10.2, J5,4 = 10.4, J5,6=  11.3 Hz, 1H; H-5), 4.06 (dd, 

J9b,8=  5.8, J9b,9a = 12.5 Hz, 1H; H-9b), 3.87 (s, 3H; COOCH3), 2.78 (dd, J3a,4=  4.8, J3a,3b=  13.9 Hz, 

1H; H-3a), 2.28 (dd, J3b,3a=  11.2, J3a,3b =  13.9 Hz, 1H; H-3b), 2.12 (s, 3H; OCOCH3), 2.05 (s, 3H; 

OCOCH3), 2.04 (s, 3H; OCOCH3 ), 2.03 (s, 3H; OCOCH3), 1.91 ppm (s, 3H; NHCOCH3).MS (ESI 

positive)m/z: 532.9 [M+Na]+. Elemental analysis calcd (%) forC20H28ClNO12: C 47.11, H 5.53, N 

2.75; found C 47.18, H 5.61, N 2.81. Other physico-chemical properties were identical to those 

reported in literature.69 

 

Synthesis of  compound 11b. 
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Starting from the N-trifluroacetamido peracetylated Neu5Ac methyl ester 10b 59 (176 mg, 0.30 

mmol) and the 2-chloro derivative 11b (137 mg, 81%) was obtained as only stereoisomer as a white 

solid: m.p. 132°C; [α]D 
20 = +25.1 (c = 1 in CHCl3). 

1H NMR (CDCl3): δ = 6.53 (d, JNH,5 = 10.1 Hz, 

1H; NH), 5.53 (ddd, J4,3a = 4.9, J4,5= 10.2, J4,3b = 11.3Hz, 1H; H-4), 5.44 (dd, J7,6=  2.3, J7,8=  7.2 

Hz, 1H; H-7), 5.19 (ddd, J8,9a = 2.6, J8,9b= 5.3, J8,7 = 7.2Hz, 1H; H-8), 4.51 (dd, J6,7=  2.3, J6,5= 

10.7 Hz, 1H; H-6), 4.40 (dd, J9a,8=  2.6, J9a,9b = 12.6 Hz, 1H; H-9a), 4.13 (ddd, J5,NH = 10.1, J5,4 = 

10.2, J5,6=  10.7 Hz, 1H; H-5), 4.08 (dd, J9b,8=  5.3, J9b,9a = 12.6 Hz, 1H; H-9b), 3.89 (s, 3H; 

COOCH3), 2.83 (dd, J3a,4=  4.9, J3a,3b=  14.0 Hz, 1H; H-3a), 2.31 (dd, J3b,3a=  11.3, J3a,3b=  14.0 Hz, 

1H; H-3b), 2.13 (s, 3H; OCOCH3), 2.09 (s, 3H; OCOCH3), 2.05 ppm (s, 6H; 2 X OCOCH3).
 13C 

NMR (CDCl3): δ = 170.8, 170.6, 170.4, 169.5 (4C, OCOCH3), 165.3(C-1), 157.6 (1C, JC,F = 38.0 

Hz, COCF3),115.3 (C, JC,F = 287.9 Hz, COCF3), 96.0 (C-2), 73.1 (C-6), 70.7 (C-8), 68.1 (C-4), 66.9 

(C-7), 62.0 (C-9), 53.7 (COOCH3), 49.0 (C-5), 40.4 (C-3), 20.7, 20.5, 20.4 (4C, OCOCH3) ppm.MS 

(ESI positive) m/z: 586.2[M+Na]+. Elemental analysis calcd (%) for C20H25ClF3NO12: C 42.60, H 

4.47, N 2.48; found C 42.52, H 4.48, N 2.63. 

 
Synthesis of  compound 11c 
 

O
CO2CH3

Cl

AcO
C3F7COHN

AcO

OAcAcO

11c  
 
Starting from the N-trifluroacetamido peracetylated Neu5Ac methyl ester 10c 59(206 mg, 0.30 

mmol) and the 2-chloro derivative 11c (160mg, 80%) was obtained as only stereoisomer as a white 

solid: m.p. 128°C; [α]D 
20 = +12.5 (c = 1 in CHCl3). 

1H NMR (CDCl3): δ = 7.32 (d, JNH,5 = 9.7 Hz, 

1H; NH), 5.55 (ddd, J4,3a = 4.9, J4,5= 10.3, J4,3b = 11.2Hz, 1H; H-4), 5.43 (dd, J7,6=  2.2, J7,8=  5.7 

Hz, 1H; H-7), 5.15 (ddd, J8,9a = 2.5, J8,7 = 5.7, J8,9b= 6.4 Hz, 1H; H-8), 4.57 (dd, J6,7=  2.2, J6,5=  

10.7 Hz, 1H; H-6), 4.50 (dd, J9a,8=  2.5,J9a,9b = 12.5 Hz, 1H; H-9a), 4.18 (ddd, J5,NH= 9.7, J5,4 = 10.3, 

J5,6=  10.7 Hz, 1H; H-5), 4.10 (dd, J9b,8=  6.4, J9b,9a = 12.5 Hz, 1H; H-9b), 3.88 (s, 3H; COOCH3), 

2.83 (dd, J3a,4=  4.9, J3a,3b=  13.9 Hz, 1H; H-3a), 2.24 (dd, J3b,3a=  11.2, J3a,3b=  13.9 Hz, 1H; H-3b), 

2.13 (s, 3H; OCOCH3), 2.10 (s, 3H; OCOCH3), 2.04 (s, 3H; OCOCH3), 2.03 ppm (s, 3H; 

OCOCH3); 
13C NMR (MeOD): δ = 170.6 (4C, OCOCH3), 169.7(C-1), 158.1 (1C, JC,F = 26 Hz, 

COCF2CF2CF3), 124.0-110.0 (3C, COCF2CF2CF3), 95.9 (C-2), 73.1 (C-6), 70.8 (C-4), 67.8 (C-8), 

67.0 (C-7), 62.0 (C-9), 53.9 (COOCH3), 49.5 (C-5), 40.6 (C-3), 20.8, 20.6, 20.5, 20.4 (4C, 
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CH3COO) ppm.MS (ESI positive) m/z:686.3[M+Na]+. Elemental analysis calcd (%) for 

C22H25ClF7NO12: C 39.80, H 3.80, N 2.11; found C 39.72, H 3.78, N 2.15. 
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5.3.3 General procedure to synthesize dibromo derivatives 14a-c. 

 

To a solution of appropriate compound 15a-c (0.60 mmol) in dichloromethane (5mL) was added 

bromine (0.80 mmol) at 0°C under argon atmosphere. After stirring for 30 minutes at room 

temperature the mixture was evaporated in vacuo to give a syrup, which was crystallized from 

hexane-ethyl acetate to afford the analougous 2,3-dibromo derivative 14a-c. 

 

Synthesis of  compound 14a. 

O
CO2CH3

Br

AcO
CH3COHN

AcO

OAcAcO

Br
14a  

 
Starting from 15 (284 mg, 0.60 mmol), the 2,3-dibromo derivative 14a (383 mg, 93%) was obtained 

as a white needles showing:1H NMR (CDCl3): δ = 5.86 (d, JNH,5 = 9.6 Hz, 1H; NH), 5.69 (dd, J4,3 = 

3.5, J4,5= 10.5Hz, 1H; H-4), 5.41 (dd, J7,6 = 2.1, J7,8=6.8 Hz, 1H; H-7), 5.20 (ddd, J8,9a  = 2.3, J8,9b 

=5.8,   J8,7 = 6.8 Hz, 1H; H-8), 5.02 (d, J3,4=  3.4 Hz, 1H; H-3), 4.58 (dd, J5,NH= 9.6, J5,4 = J5,6 = 

10.5Hz, 1H; H-5), 4.47-4.40 (overlapping, 2H; H-6 and H-9a), 4.15-4.07 (m, 1H; H-9b), 3.88 (s, 

3H; COOCH3), 2.14 (s, 3H; OCOCH3), 2.09 (s, 3H; OCOCH3), 2.06 (s, 3H; OCOCH3), 2.03 (s, 3H; 

OCOCH3), 1.93 ppm (s, 3H, NHCOCH3). All other physicochemical properties practically 

superimposable to those previously reported.70 

 
Synthesis of compound 14b. 
 

 
 

Starting from 15b 71(316 mg, 0.60 mmol), the 2,3-dibromo derivative 14b (392 mg, 95%) was as a 

white needles, showing: [α]D 
20 = -30.1 (c = 1 CHCl3).

1H NMR (CDCl3): δ = 7.00 (d, JNH,5 = 9.1 Hz, 

1H; NH), 5.84 (dd, J4,3 = 3.2, J4,5= 10.4Hz, 1H; H-4), 5.40 (d app, J7,8=6.6 Hz, 1H; H-7), 5.27-5.23 

(m, 1H; H-8), 5.06 (d, J3,4=  3.2 Hz; 1H; H-3), 4.59 (d app, J6,5=  10.8 Hz; 1H, H-6), 4.52-4.45 

(overlapping, 2H; H-5 and H-9a), 4.19 (dd, J9b,8=  5.5, J9b,9a = 12.6 Hz, 1H; H-9b), 3.92 (s, 3H; 

COOCH3), 2.17 (s, 3H; OCOCH3), 2.11 (s, 3H, OCOCH3), 2.10 (s, 3H; OCOCH3), 2.05 ppm (s, 

3H; OCOCH3); 
13C NMR (CDCl3): δ = 170.7, 170.6, 170.3, 170.1 (4C, OCOCH3), 163.8 (C-1), 
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157.6 (1C, JC,F = 38.0 Hz, COCF3),115.3 (C, JC,F = 287.9 Hz, COCF3), 91.0 (C-2), 75.3 (C-6), 70.6 

(C-8), 68.1 (C-4), 66.9 (C-7), 61.9 (C-9), 54.4 (COOCH3), 52.6 (C-3), 46.1 (C-5), 20.9, 20.6, 20.4 

(4C, OCOCH3) ppm.; MS (ESI positive) M+Na]+m/z: 710.3[M+Na]+. Elemental analysis calcd (%) 

for C20H24Br2F3NO12: C 34.96, H 3.52, N 2.04; found C 34.85, H 3.48, N 2.09. 

 
Synthesis of compound 14c. 
 

O
CO2CH3

Br

AcO
C3F7COHN

AcO

OAcAcO

Br
14c  

 
Starting from 14c 71 (376 mg, 0.60 mmol), the 2,3-dibromo derivative 13c (439 mg, 93%) was as a 

white needles, showing: [α]D 
20 = -18.5 (c = 1 in CHCl3).

1H NMR (CDCl3): δ = 7.29 (d, JNH,5 = 8.8 

Hz, 1H; NH), 5.89 (dd, J4,3 = 3.5, J4,5= 10.6Hz, 1H; H-4), 5.37 (dd, J7,6=  1.8, J7,8=  6.3 Hz ;1H, H-

7), 5.25 (ddd, J8,9a = 2.3, J8,9b= 5.7, J8, 7 = 6.3 Hz, 1H; H-8), 5.08 (d, J3,4=  3.5 Hz; 1H, H-3), 4.64 

(dd, J6,7=  1.8, J6,5=  10.8 Hz, 1H, H-6), 4.52 (dd, J9a,8=  2.3,J9a,9b = 12.6 Hz, 1H, H-9a), 4.43 (ddd, 

J5,NH = 8.8, J5,4 = 10.6, J5,6=  10.8 Hz, 1H; H-5), 4.22 (dd, J9b,8=  5.7, J9b,9a = 12.6 Hz, 1H; H-9b), 

3.91 (s, 3H; COOCH3 ), 2.18 (s, 3H; OCOCH3), 2.09 (s, 6H; 2 X OCOCH3), 2.04 ppm (s, 3H; 

OCOCH3).
 13C NMR (MeOD): δ = 170.6, 170.5, 170.4, 169.8 (4C, OCOCH3), 163.8(C-1), 158.0 

(1C, JC,F = 38.0 Hz, COCF3),125.0-110.0 (3C, COCF2CF2CF3), 90.6 (C-2), 74.7 (C-6), 70.4 (C-8), 

67.7 (C-4), 67.0 (C-7), 61.8 (C-9), 54.0 (COOCH3), 52.8 (C-3), 46.1 (C-5), 20.8, 20.6, 20.5, 20.3 

ppm (4C, OCOCH3).MS (ESI positive) m/z:810.3 [M+Na]+. Elemental analysis calcd (%) for 

C22H24Br2F7N4O12: C 33.57, H 3.07, N 1.78; found C 33.49, H 2.98, N 1.79. 
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5.3.4 Synthetic glycosilation procedures affording to derivatives 12a-c and 13b-c 
 
Procedure A: general glycosilation procedure via chloro derivatives  
 

 
 
To a stirred solution of the appropriate chlorine derivative 11a-c (0.95 mmol) and of alcohol 8 (265 

mg, 0.75 mmol) in anhydrous mixture of toluene (4.0 mL) and nitromethane (4.0 mL), containing 

molecular sieves 4Å,  was added a solution of AgOTf (283 mg, 1.10 mmol) dissolved in toluene 

(2.0 mL) and nitromethane (2.0 mL) at room temperature under argon. The crude was stirred for 3h 

at room temperature and filtered throught celite bed and solid was washed with AcOEt/MeOH 

mixture. The combined filtrates were evaporated in vacuo to a residue, that was purified by 

chromatography on silica gel to afford the desired compounds 12a-c and 13a-c . 

 
Procedure B: General glycosilation procedure via dibromo derivatives (step 1) and reductive 
dibromination (step 2) 
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(Step 1) To a stirred solution of the appropriate dibromide 14a-c (1.10 mmol) and of alcohol 8 (265 

mg, 0.75 mmol), in anhydrous mixture of toluene (4.0 mL) and nitromethane (4.0 mL), containing 

molecular sieves 4Å,  was added a solution of AgOTf (308 mg, 1.20 mmol) dissolved in toluene 

(2.0 mL) and nitromethane (2.0 mL) at room temperature under argon. The crude was stirred for 3h 

at room temperature and filtered throught celite bed and solid was washed with AcOEt/MeOH 

mixture. The combined filtrates and washing were evaporated in vacuo to a residue, that was 

purified by chromatography on silica gel, to afford the desired compounds 16a-c 

 

(Step 2) To a solution of compound 16a-c (0.10 mmol) and in THF (5 mL) was added tri-n-butyltin 

hydride (0.06 mL, 0.20 mmol), and the reaction was refluxed for 3h. Then the reaction was 

concentrated and the residue was tritured with diisopropyl ether and hexane to afford the 

appropriate compounds 12a-c. 
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Synthesis of compounds 12a and 13a 

 
 
 
i) Starting from compound 11a (484 mg; 0.95 mmol) and operating according to procedure A,  the 

compound 12a was obtained as a first eluate, after rapid chromatography (AcOEt/MeOH, 98:2 v/v 

to AcOEt/MeOH, 80/20 v/v), as a white solid (241 mg, 39%) together  with trace of its α-anomer 

13a as a second white solid eluate (mg, <1%). 

Compound 12a showed: [α]D 
20 = -7.2 (c = 1 MeOH).1H NMR (CDCl3): δ = 9.20 (s, 1H, NH at C-

4), 7.90 (d, JNH,5’’  = 9.9 Hz, 1H; NH at C-5’’), 7.61 (d, J6,5 = 7.4 Hz, 1H; H-6,), 7.43 (d, J5,6 = 7.4 

Hz, 1H; 5-H), 5.89 (dd, J7’’, 8’’ = 1.6, J7’’ ,6’’= 3.0 Hz, 1H; H-7’’), 5.68 (dd, J2’,1’ = 1.2, J2’,3’ = 6.3, 

1H; H-2’), 5.43 (br s, 1H; H-1’), 5.35 (ddd, J4’’,3a’’  = 4.9, J4’’ ,5’’= 10.5, J4’’ ,3b’’ = 11.1 Hz, 1H; H-

4’’), 5.11(ddd, J8’’, 7’’  = 1.6, J8’’ ,9a’’ = 2.0, J8’’ ,9b’’= 9.5 Hz, 1H; H-8’’), 5.00-4.95 (overlapping, 2H; 

H-3’and H-9a’’), 4.54 (dd, J6’’,5’’  = 10.6, J6’’7’’  = 3.0 Hz, 1H; H-6’’), 4.28-4.19 (overlapping; 2H, H-

4’and H-5’’), 4.12 (dd, J9b’’,9a’’= 12.0, J9b’’,9a’’= 9.5 Hz, 1H; H-9b’’), 3.80 (s, 3H; COOCH3), 3.58-

3.54 (overlapping, 2H; H-7a’ and H-7b’), 2.60 (dd, J3a’’,3b’’= 12.7, J3’’ ,4’’= 4.9 Hz, 1H; H-3a’’), 2.26 

(s, 3H; NHCOCH3 at C-4), 2.23 (s, 3H; OCOCH3), 2.06 (s, 3H; OCOCH3), 1.97 (s, 3H; OCOCH3), 

1.92 (s, 3H; OCOCH3), 1.81 (s, 3H; NHCOCH3 at C-5’’), 1.76-1.59 (overlapping, 4H, H-5a’, H-

5b’, H-6a’and H-6b’), 1.57 (s, 3H; C(CH3 )2), 1.41 ppm (s, 3H; C(CH3 )2). 
1H NMR (MeOD): δ = 8.05 (d, J6,5=  7.5 Hz, 1H, H-6), 7.42 (br d, J5,6 = 7.5 Hz, 1H, H-5), 5.83 (d, 

J1’,2’ = 0.9 Hz, 1H, H-1’), 5.48 (dd, J7’’,6’’ =  2.2, J7’’ ,8’’=  4.2 Hz, 1H, H-7’’), 5.31–5.24 (overlapping, 

2H, H-4’’and H-8’’), 5.14 – 5.08 (m, 1H, H-2’), 4.80 – 4.73 (overlapping,2H, H-3’ and H-9a’’), 

4.18 (dd, J6’’,5’’ =  10.5,J6’’7’’ =  2.2 Hz, 1H, H-6’’), 4.15 – 4.08 (overlapping, 2H, H-9b’’and H-4’), 

4.00 (t app, J5’’,6’’ =J5’’,4’’  = 10.5, 1H, H-5’’), 3.81 (s, 3H, COOCH3), 3.64 – 3.55 (m, 1H, H-7a’), 

3.46 – 3.40 (m, 1H, H-7a’), 2.49 (dd, J3a’’,3b’’=  12.9, J3’’ ,4’’=  4.9 Hz, 1H, H-3a’’), 2.21 (s, 3H, 

NHCOCH3 at C-4), 2.14 (s, 3H, OCOCH3), 2.02 (s, 3H, OCOCH3), 2.01 (s, 3H, OCOCH3 ), 2.00 (s, 

3H; OCOCH3), 1.96-1.86 (overlapping, 5H, H-5a’’, H-5b’’ and NHCOCH3 at C-5’’), 1.8 –1.65 

(overlapping, 1H, H-6a’’and H-b’’), 1.57 (s, 3H, C(CH3)2), 1.38 ppm (s, 3H, C(CH3)2);
 13C NMR 

(MeOD): δ = 173.5 (1C, NHCOCH3 at C-5’’), 172.9 (1C, NHCOCH3 at C-4), 172.5 (1C, CH3COO 



62 

 

at C-9’’), 172.0 (2C, CH3COO at C-4’’ and C-8’’), 171.9 (1C, CH3COO at C-7’’), 169.2(C-1’’), 

164.7 (C-4), 157.7 (C-2), 148.5 (C-6), 115.4 (C(CH3)2), 100.0 (C-2’’), 98.2 (C-5), 96.7 (C-1’), 88.8 

(C-4’), 86.3 (C-2’), 85.6 (C-3’), 72.8 (C-8’’), 72.3 (C-6’’), 70.7 (C-4’’), 70.3 (C-7’’), 64.7 (C-7’), 

63.7 (C-9’), 53.2 (COOCH3), 50.3 (C-5’’), 38.5 (C-3’’), 31.5 (C-5’), 27.6 (C(CH3)2), 26.8 (C-6’), 

25.6 (C(CH3)2), 24.6 (NHCOCH3 at C-4) 22.9 (1C, NHCOCH3 at C-5’’), 21.0, 20.8, 20.7, 20.7 (4C, 

CH3COO) ppm. MS (ESI positive) m/z 827.0[M+H]+, 849.3 [M+Na]+; elemental analysis calcd (%) 

forC36H50N4O18: C 52.30; H 6.10; N 6.10; found C 52.41; H 6.18; N 6.09. 

Compound 13a (α-anomer) MS (ESI positive) m/z 827.3[M+H]+, 849.0 [M+Na]+.   

 

ii) Starting from the dibromide 14a (697 mg, 1.10 mmol) and operating according to procedure B 

step 1 intermediate 16a was obtained after rapid chromatography (eluting with AcOEt/MeOH, 98:2, 

v/v), as a white powder (346mg, 51%), showing: m.p. 154-156°C dec. (from CH2Cl2/diisopropyl 

ether); [α]D
20 = -20.2 (c = 0.5 in chloroform); [α]D

20 = +65.0 (c = 1.0 in methanol). 1H NMR 

(CDCl3): δ = 9.23 (s, 1H; NH at C-4), 7.89 (d, JNH,5’’  = 9.9 Hz, 1H; NH at C-5’’), 7.59 (d, J6,5 = 7.3 

Hz, 1H; H-6), 7.42 (d, J5,6 = 7.3 Hz, 1H; H-5), 5.87 (dd, J7’’,8’’ = 1.6, J7’’,6’’ = 2.8 Hz, 1H; H-7’’), 

5.63 (d, J2’,3’ = 6.3 Hz, 1H; H-2’), 5.41 (br s, 1H; H-1’), 5.25 (dd, J4’’, 3’’ = 3.7, J4’’ ,5’’  = 10.4 Hz, 1H; 

H-4’’), 5.12 (ddd, J8’’, 7’’  = 1.6, J8’’ ,9a’’ = 2.1, J8’’ ,9b’’= 9.5 Hz, 1H; H-8’’), 5.05 (dd, J9a’’,8’’  = 2.1 , 

J9a’’,9b’’ = 12.1 Hz, 1H; H-9a’’), 4.91 (dd, J3’,4’=  1.8, J3’,2’= 6.3 Hz, 1H; H-3’),4.71 (d, J3’’,4’’ =  3.7 

Hz, 1H; H-3’’), 4.67 (ddd, J5’’ ,NH = 9.9, J5’’ ,4’’=J5’’ ,6’’=  10.3 Hz, 1H; H-5’’), (dd, J6’’,5’’  = 10.3 , 

J6’’7’’  = 2.8 Hz, 1H; H-6’’), 4.25–4.20 (m, 1H; H-4’), 4.13 (dd, J9b’’,8’’= 9.5 , J9b’’,9a’’ = 12.1 Hz, 1H; 

H-9b’’), 3.80 (s, 3H; COOCH3), 3.63–3.53 (overlapping, 2H; H-7a’ and H-7b’), 2.22 (s, 6H; 

NHCOCH3 at C-4 and OCOCH3), 2.09 (s, 3H; OCOCH3), 1.94 (s, 3H; OCOCH3), 1.89 (s, 3H; 

OCOCH3), 1.79 (s, 3H; NHCOCH3 at C-5’’), 1.70–1.58 (overlapping, 4H; H-5a’, H-5b’, H-6a’ and 

H-6b’), 1.54 (s, 3H; C(CH3)2), 1.39 ppm (s, 3H; C(CH3)2). 
1H NMR (CD3OD): δ = 8.05 (d, J6,5=  7.4 

Hz, 1H; H-6), 7.44 (d, J5,6 = 7.4 Hz, 1H; H-5), 5.81 (d, J1’,2’ = 1.6 Hz, 1H; H-1’), 5.47 (dd, J7’’ ,6’’=  

2.1, J7’’ ,8’’=  4.4 Hz, 1H; H-7’’), 5.38–5.31 (overlapping, 2H; H-8’’and H-4’’), 5.14 (dd, J2’,1’ = 1.6, 

J2’,3’ = 6.4 Hz, 1H; H-2’), 4.83 (dd, J9a’’,8’’ =  1.5 Hz,J9a’,9b’ = 12.7 Hz, 1H; H-9a’’), 4.70 (t, J3’,4’=  

4.2, J3’,2’= 6.4 Hz, 1H; H-3’), 4.71(d, J3’’,4’’ =  3.6 Hz, 1H; H-3’’), 4.51 (t, J5’’ ,4’’=J5’’ ,6’’=  10.5 Hz, 

1H; H-5’’), 4.24 (dd, J6’’ ,5’’=  10.5, J6’’ ,7’’=  2.1 Hz, 1H; H-6’’), 4.18-4.09 (overlapping, 2H; H-4’ 

and H-9’’),3.84 (s, 3H; COOCH3), 3.68–3.61 (m, 1H; H-7a’), 3.39–3.33 (m, 1H; H-7b’), 2.21 (s, 

3H; NHCOCH3 at C-4), 2.18 (s, 3H; OCOCH3), 2.06 (s, 3H; OCOCH3),2.02 (s, 3H; OCOCH3), 

2.01 (s, 3H; OCOCH3), 1.96–1.86 (overlapping, 5H; H-5a’, H-5b’ and NHCOCH3 at C-5’’), 1.83–

1.76 (m, 1H; H-6a’), 1.72–1.65 (m, 1H; H-6b’), 1.57 (s, 3H; C(CH3)2),1.37 ppm (s, 3H; C(CH3)2). 
13C NMR (CD3OD): δ =173.5 (1C, NHCOCH3 at C-5’’), 172.9 (1C, NHCOCH3 at C-4), 172.5, 
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172.0, 171.9, 171.6 (4C, OCOCH3), 167.2(C-1’’), 164.7 (C-4), 157.7 (C-2), 148.9 (C-6), 115.3 

(C(CH3)2), 101.5 (C-2’’), 98.2 (C-5), 97.2 (C-1’), 88.8 (C-4’), 86.2 (C-2’), 85.7 (C-3’), 72.7 and 

72.6 (C-6’’and C-8’’), 70.6 (C-4’’), 70.1 (C-7’’), 66.3 (C-7’), 63.8 (C-9’’), 53.4 (COOCH3), 52.9 

(C-3’’), 46.4 (C-5’’), 31.3 (C-5’), 27.6 (C(CH3)2), 26.6 (C-6’), 25.6 (C(CH3)2), 24.6 (NHCOCH3 at 

C-4), 22.9 (1C, NHCOCH3 at C-5’’), 21.0, 20.8, 20.7, 20.6 (4C, OCOCH3) ppm.MS (ESI positive) 

m/z:927.1[100%; 79Br-M+Na]+, 929.1 [94%; 81Br-M+Na]+. Elemental analysis calcd (%) for 

C36H49BrN4O18: C 47.74, H 5.45, N 6.19; found C 47.66, H 5.56, N 6.09. 

 

Purified intermediate 16a (0.10 mmol 90.4 mg) was reacted according to procedure B step 2 to 

afford the title compound 12a (67 mg 81%). MS (ESI positive) m/z 827.4[M+H]+, 849.2 [M+Na]+. 

elemental analysis calcd (%) for C36H50N4O18: calcd C 52.30; H 6.10; N 6.10; found C 52.37; H 

6.15; N 6.02. Other physico-chemical properties were identical to those previously reported. 
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Synthesis of compounds 12b and 13b 
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i) Starting from compound 11b (564mg, 0.95 mmol) and operating according to procedure A;  the 

compound 12b was obtained as a first eluate, after rapid chromatography (hexan /AcOEt, 70: 30v/v 

to AcOEt/MeOH 95:5 v/v), as a white solid (238 mg, 36%) toghether with its α-anomer 13b as a 

second white solid eluate (134 mg, 20%). 

Compound 12b showed: m.p. 134°; [α]D 
20 = -44.5 (c = 1 in CHCl3), [α]D 

20 = -12.2 (c = 1 in 

MeOH). 1H NMR (CD Cl3): δ = 9.16 (d, JNH,5’’  = 9.8 Hz, 1H; NH at C-5’’), 9.02 (s, 1H; NH at C-4), 

7.58 (d, J6,5=  7.4 Hz, 1H; H-6), 7.42 (d, J5,6 = 7.4 Hz, 1H; H-5), 5.90 (dd, J7’’ ,8’’=  1.9, J7’’,6’’ =  2.9 

Hz, 1H; H-7’’), 5.67 (d, J1’,2’ = 1.5 Hz, 1H; H-1’), 5.43-5.36 (overlapping, 2H; H-3’ and H-4’’), 

5.09 (ddd, J8’’, 7’’  = 1.9, J8’’ ,9a’’ = 2.2, J8’’ ,9b’’= 9.9, Hz, 1H; H-8’’), 4.95 (dd, J9a’’,8’’ =  2.2, J9a’’,9b’’  = 

12.1 Hz, 1H; H-9a’’), 4.92 (dd, J2’,1’ = 1.5, J2’,3’= 6.3 Hz, 1H; H-2’), 4.71 (dd, J6’’,7’’ =  2.9, J6’’,5’’ =  

10.3 Hz, 1H; H-6’’), 4.28-4.21 (overlapping, 2H; H-4’ and H-5’’), 4.08 (dd, J9b’’,8’’ =  9.9 Hz,J9b’’,9a’’  

= 12.1 Hz, 1H; H-9b’’), 3.79 (s, 3H; COOCH3), 3.60–3.53 (overlapping, 2H; H-7a’ and H-7b’), 

2.65 (dd, J3a’’,4’’=  5.1, J3a’’,3b’’=  12.8 Hz, 1H; H-3a’’), 2.21 (s, 6H; NHCOCH3 at C-4 and 

OCOCH3), 2.01 (s, 3H; OCOCH3 ), 1.95 (s, 3H; OCOCH3), 1.78 (s, 3H; OCOCH3), 1.77-1.69 (m, 

1H ; H-3b’’), 1.61-1.53 (overlapping, 4H, H-5a’, H-5b’, H-6a’ and H-6b’), 1.55 (s, 3H; C(CH3)2), 

1.40 ppm (s, 3H; C(CH3)2). 
1H NMR (CD3OD): δ = 8.04 (d, J6,5=  7.5 Hz, 1H; H-6), 7.35 ( d, J5,6 = 

7.5 Hz, 1H; H-5),5.83 (d, J1’,2’ = 1.1 Hz, 1H; H-1’),5.43 (dd, J7’’,6’’ =  1.9, J7’’ ,8’’=  4.4 Hz, 1H; H-7’’), 

5.34(ddd, J4’’ ,3a’’ = 4.9,J4’’ ,5’’= 10.5, J4’’, 3b’’  = 10.9Hz, 1H; H-4’’), 5.27(ddd, J8’’ ,9a’’ = 2.3, J8’’, 7’’  = 

4.4, J8’’ ,9b’’=6.9 Hz, 1H; H-8’’),5.04 (dd, J2’,1’ = 1.1, J2’,3’= 6.2 Hz, 1H; H-2’),4.74 (dd, J9a’’,8’’ =  

2.3,J9a’’,9b’’  = 12.4 Hz, 1H; H-9a’’),4.70 (dd, J3’,4’ = 4.5, J3’,2’= 6.2 Hz, 1H; H-3’), 4.31 (dd, J6’’7’’ =  

1.9, J6’’,5’’ =  10.5 Hz, 1H; H-6’’), 4.15-4.01 (overlapping, 2H; H-4’ and H-9b’’), 4.00 (t app=J5’’,4’’ = 

J5’’,6’’  = 10.5, 1H; H-5’’),3.80 (s, 3H; COOCH3),3.60–3.53 (m, 1H; H-7a’),3.44-3.38 (m, 1H; H-

7b’), 2.50 (dd, J3a’’,4’’=  4.9, J3a’’,3b’’=  13.0 Hz, 1H; H-3a’’) ,2.19 (s, 3H; NHCOCH3 at C-4),2.12 (s, 

3H; OCOCH3),2.01 (s, 3H; OCOCH3),2.00 (s, 3H; OCOCH3),1.97 (s, 3H; OCOCH3),1.90-1.66 

(overlapping, 5H; H-5a’, H-5b’, H-6a’, H-6b’ and H-3b’’), 1.55 (s, 3H; C(CH3)2), 1.35 ppm (s, 3H; 

C(CH3)2); 
13C NMR (MeOD): δ = 172.9 (1C, NHCOCH3 at C-4), 172.5, 172.0, 171.8, 171.7. (4C, 



65 

 

OCOCH3), 169.0(C-1’’), 164.5 (C-4), 159.3(1C, JC,F = 37 Hz, COCF3), 157.7 (C-2), 149.1 (C-6), 

121.7 (1C, JC,F = 318 Hz COCF3), 115.5 (C(CH3)2), 100.0 (C-2’’), 98.2 (C-5), 95.7 (C-1’), 88.3 (C-

4’), 86.4 (C-2’), 85.2 (C-3’), 72.5 (C-8’’), 71.4 (C-6’’), 70.0 (2C C-4’’, and C-7’’), 64.8 (C-7’), 

63.5 (C-9’’), 53.3 (COOCH3), 51.0 (C-5’’), 38.4 (C-3’’), 31.3 (C-5’or C-6’), 27.5 (C(CH3)2), 26.8 

(C-6’ or C-5’), 25.6 (C(CH3)2), 24.6 (NHCOCH3 at C-4), 21.0, 20.7, 20.6 (4C, 4 X OCOCH3). MS 

(ESI positive) m/z: 903.1 [M+Na]+. Elemental analysis calcd (%) for C36H47F3N4O18: C, 49.09; H, 

5.38; N, 6.36; found C, 49.17; H, 5.35; N, 6.32. 

 
Compound 13b (α-anomer): m.p. 120°C; [α]D 

20 = -4.70 (c = 1 in CHCl3);
 1H NMR (CDCl3): δ = 

9.30 (s, 1H; NH at C-4), ,7.72 (d, J6,5=  7.5 Hz, 1H; H-6), 7.42 (d, J5,6 = 7.5 Hz, 1H; H-5), 6.92 (d, 

JNH,5’’  = 9.7 Hz, 1H; NH at C-5’’), 5.66 (br s, 1H; H-1’), 5.41 (ddd, J8’’, 7’’  = 8.7, J8’’ ,9a’’ = 2.9, 

J8’’ ,9b’’= 4.6, Hz, 1H; H-8’’), 5.33 (dd, J7’’ ,8’’=  8.7, J7’’,6’’ =  1.9, Hz, 1H; H-7’’), 5.09 (ddd, J4’’ ,3a’’ = 

4.6, J4’’ ,5’’= 10.7, J4’’, 3b’’  = 12.0Hz, 1H; H-4’’), 5.03 (d app, J2’,3’= 6.1 Hz, 1H; H-2’), 4.64 (dd, 

J3’,4’ = 4.7, J3’,2’= 6.1 Hz, 1H; H-3’), 4.28 (dd, J6’’,7’’ =  1.9, J6’’,5’’ =  10.7 Hz, 1H; H-6’’), 4.23-4.19 

(overlapping, 2H; H-9a’’ and H-9b’’), 4.16-4.04 (m, 1H; H-4’), 4.00 (dd app, J 5’’,NH = 9.7, J5’’,4’’  = 

J5’’,6’’ =  10.7, 1H; H-5’’), 3.83–3.77 (m, 1H; H-7a’), 3.75 (3H; COOCH3), 3.31-3.24 (m, 1H; H-7b’), 

2.65 (dd, J3a’’,4’’=  4.6, J3a’’,3b’’=  12.9 Hz, 1H; H-3a’’), 2.24 (s, 3H; NHCOCH3 at C-4), 2.13 (s, 3H; 

OCOCH3), 2.11 (s, 3H; OCOCH3 ), 2.04 (s, 3H; OCOCH3), 2.02 (s, 3H; OCOCH3), 1.93 (dd, 

J3b’’,4’’=  12.1, J3a’’,3b’’=  12.9 Hz,1H ; H-3b’’), 1.83-1.76 (overlapping, 2H, H-5a’ and H-5b’), 1.71-

1.58 (overlapping, 2H H-6a’ and H-6b’), 1.56 (s, 3H; C(CH3)2), 1.34 ppm (s, 3H; C(CH3)2); 
1H 

NMR (CD3OD): δ = 8.05 (d, J6,5=  7.5 Hz, 1H; H-6), 7.42 (d, J5,6 = 7.5 Hz, 1H; H-5), 5.85 (d, J1’,2’ = 

2.0 Hz, 1H; H-1’), 5.40 (ddd, J8’’ ,9a’’ = 2.9, J8’’ ,9b’’= 5.2, J8’’, 7’’  = 9.0Hz, 1H; H-8’’), 5.30 (dd, 

J7’’,6’’ =  2.2, J7’’ ,8’’=  9.0 Hz, 1H; H-7’’), 4.97 (dd, J2’,1’ = 2.0, J2’,3’= 6.4 Hz, 1H; H-2’), 4.91 (ddd, 

J4’’ ,3a’’ = 4.6, J4’’ ,5’’= 10.4, J4’’, 3b’’  = 12.1Hz, 1H; H-4’’), 4.65 (dd, J3’,4’ = 4.4, J3’,2’= 6.4 Hz, 1H; 

H-3’), 4.32 (dd, J6’’7’’ =  2.2, J6’’,5’’ =  10.5 Hz, 1H; H-6’’), 4.27 (dd, J9a’’,8’’ =  2.6 Hz,J9a’’,9b’’  = 12.5 

Hz, 1H; H-9a’’), 4.18-4.13 (m, 1H; H-4’), 4.09 (dd, J9b’’,8’’ =  5.2 Hz,J9b’’,9a’’  = 12.5 Hz, 1H; H-9b’’), 

3.97 (dd, J5’’,6’’ =  10.5, J5’’,4’’  = 10.4, 1H; H-5’’), 3.83-3.77 (overlapping, 4H; COOCH3 and H-7a’), 

3.39– 3.33 (m, 1H; H-7b’), 2.67 (dd, J3’’ ,4’’=  4.7, J3a’’,3b’’=  12.7 Hz, 1H; H-3a’’), 2.18 (s, 3H; 

NHCOCH3 at C-4), 2.14 (s, 3H; OCOCH3), 2.10 (s, 3H; OCOCH3), 1.99 (s, 3H; OCOCH3 ), 1.97 

(s, 3H; OCOCH3), 1.88-1.63 (overlapping, 5H; H-5a’’, H-5b’’, H-6a’’, H-6b’’ and H-3b’’), 1.56 (s, 

3H; C(CH3)2), 1.35 ppm (s, 3H; C(CH3)2); 
13C NMR (MeOD): δ = 173.0 (1C, NHCOCH3 at C-4), 

172.5, 171.8,171.6 (4C, OCOCH3), 169.6(C-1’’), 164.7 (C-4), 159.4 (1C, JC,F = 37 Hz, COCF3), 

157.7 (C-2), 147.6 (C-6), 117.1 (1C, COCF3), 115.4 (C(CH3)2), 100.1 (C-2’’), 98.1 (C-5), 95.5 (C-

1’), 88.6 (C-4’), 88.5 (C-2’), 85.3 (C-3’), 72.5 (C-6’’), 70.2 (C-4’’), 69.4 (C-8’’), 68.4 (C-7’’), 65.6 
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(C-7’), 63.4 (C-9’’), 53.4 (COOCH3), 50.8 (C-5’’), 39.1 (C-3’’), 31.1 (C-5’), 27.6 (C(CH3)2), 27.1 

(C-6’), 25.7 (C(CH3)2), 24.6 (NHCOCH3 at C-4), 21.3, 20.8, 20.7, 20.6 (4C, CH3COO) ppm. MS 

(ESI positive) m/z:903.4[M+Na]+. Elemental analysis calcd (%) forC36H47F3N4O18: C, 49.09; H, 

5.38; N, 6.36; found C, 49.15; H, 5.41; N, 6.30. 

 

ii) Starting from the dibromide 14b (866 mg, 1.10 mmol) and operating according to procedure B 

step 1 intermediate 16bwas obtained after rapid chromatography eluting with (hexane /AcOEt, 70: 

30v/v to AcOEt/MeOH 95:5 v/v) as a white powder (346 mg, 48%), showing: m.p. 134-136 °C dec. 

(from CH2Cl2/diisopropyl ether); [α]D
25 = + 65.0 (c = 1.0 in CH3OH). 1H NMR (CDCl3): δ = 9.23 

(d, JNH,5’’  = 9.1 Hz, 1H; NH at C-5’’), 9.04 (s, 1H; NH at C-4), 7.58 (d, J6,5=  7.4 Hz, 1H; H-6), 7.43 

(d, J5,6 = 7.4 Hz, 1H; H-5), 5.91 (br, s, 1H; H-7’’), 5.63 (dd, J2’,1’ = 1.3, J2’,3’= 6.3 Hz, 1H; H-2’), 

5.39 (d, J1’,2’ = 1.3Hz,1H; H-1’) 5.31(dd, J4’’ ,3’’  = 3.7, J4’’ ,5’’= 10.0 Hz, 1H; H-4’’), 5.12 (ddd, J8’’, 7’’  

= 2.1, J8’’ ,9a’’ = 2.4, J8’’ ,9b’’= 9.5, Hz, 1H; H-8’’), 5.04 (dd, J9a’’,8’’ =  2.4,J9a’’,9b’’  = 12.1 Hz, 1H; H-

9a’’), 4.89 (dd, J3’,4’ = 1.8, J3’,2’= 6.3 Hz, 1H; H-3’), 4.76 (d, J3’’,4’’ =  3.6 Hz, 1H; H-3’’), 4.75-4.67 

(overlapping, 2H; H-5’’; H-6’’), 4.26-4.21 (m, 1H; H-4’), 4.14-4.09 (m, 1H; H-9b’’), 3.83 (3H; 

COOCH3), 3.64–3.55 (overlapping, 2H; H-7a’ and H-7b’), 2.23 (s, 3H; NHCOCH3 at C-4), 2.21 (s, 

3H; OCOCH3), 2.07 (s, 3H; OCOCH3 ), 1.94 (s, 3H; OCOCH3), 1.78 (s, 3H; OCOCH3), 1.77-1.55 

(overlapping, 4H, H-5a’, H-5b’, H-6a’ and H-6b’), 1.54 (s, 3H; C(CH3)2), 1.39 (s, 3H; C(CH3)2); 
1H 

NMR (CD3OD): δ= 8.02 (d, J6,5=  7.5 Hz, 1H; H-6), 7.43 ( d, J5,6 = 7.5 Hz, 1H; H-5), 5.80 (d, J1’,2’ = 

1.7 Hz, 1H; H-1’), 5.46 (dd, J7’’,6’’ =  2.0, J7’’ ,8’’=  4.6 Hz, 1H; H-7’’), 5.40(dd, J4’’ ,3’’  = 3.6,J4’’ ,5’’= 

10.5, Hz, 1H; H-4’’), 5.32 (ddd, J8’’ ,9a’’ = 2.5, J8’’, 7’’  = 4.6, J8’’ ,9b’’=7.3, Hz, 1H; H-8’’), 5.09 (dd, 

J2’,1’ = 1.7, J2’,3’= 6.4 Hz, 1H; H-2’),4.81 (dd,J9a’’,8’’ =  2.5, J9a’’,9b’’  = 12.4 Hz, 1H; H-9a’’), 4.73 (d, 

,J3’’ ,4’’=  3.6 Hz, 1H; H-3’’), 4.71 (dd, J3’,4’ = 4.4, J3’,2’= 6.4 Hz, 1H; H-3’), 4.50 (dd, J5’’,6’’ =  10.6, 

J5’’,4’’  = 10.5 Hz, 1H; H-5’’), 4.38 (dd, J6’’,7’’ =  2.0, J6’’,5’’ =  10.6 Hz, 1H; H-6’’), 4.17-

4.07(overlapping, 2H; H-4’ and H-9b’’), 3.83 (s, 3H; COOCH3), 3.69–3.63 (m, 1H; H-7a’), 3.41-

3.35 (m, 1H; H-7b’), 2.19 (s, 3H; NHCOCH3 at C-4), 2.15 (s, 3H; OCOCH3), 2.03 (s, 3H; 

OCOCH3), 2.00-1.99 (overlapping, 6H; 2X OCOCH3), 1.93-1.60 (overlapping, 4H; H-5a’, H-5b’, 

H-6a’ and H-6b’), 1.54 (s, 3H; C(CH3)2), 1.35 (s, 3H; C(CH3)2).
 13C NMR (MeOD): δ = 172.9 (1C, 

NHCOCH3 at C-4), 172.5, 171.9, 171.8, 171.3. (4C, OCOCH3), 167.0(C-1’’), 164.7 (C-4), 

159.3(1C, JC,F = 37 Hz, COCF3), 157.7 (C-2), 148.6 (C-6), 117.7 (1C, JC,F = 287 Hz COCF3), 115.4 

(C(CH3)2), 101.5 (C-2’’), 98.2 (C-5), 96.7 (C-1’), 88.6 (C-4’), 86.2 (C-2’), 85.5 (C-3’), 72.4 (C-8’’), 

71.9 (C-6’’), 70.0 (C-4’’), 69.8 (C-7’’), 66.4 (C-7’), 63.6 (C-9’’), 53.2 (COOCH3), 52.6 (C-3’’), 

47.1 (C-5’’), 31.2 (C-5’or C-6’), 27.6 (C(CH3)2), 26.7 (C-6’ or C-5’), 25.6 (C(CH3)2), 24.6 

(NHCOCH3 at C-4), 21.0, 20.7, 20.7, 20.5 (4C, 4 X OCOCH3);MS (ESI positive) m/z:981.1[100%; 
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79Br-M+Na]+, 983.1 [94%; 81Br-M+Na]+. Elemental analysis calcd (%) for C36H46BrF3N4O18: C 

45.06, H 4.83, N 5.84; found C 45.06, H 4.83, N 5.94.  

 

Purified intermediate 16b (96 mg 0.10 mmol) was reacted according to procedure B step 2 to 

afford the title compound 12b (73 mg 83%). MS (ESI positive) m/z:903.4[M+Na]+. C36H47F3N4O18: 

calcd C, 49.09; H, 5.38; N, 6.36; found C, 49.02; H, 5.45; N, 6.40. 

  



68 

 

Synthesis of compounds  12c and 13c 
 
 

O
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O O

O
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i) Starting from compound 11c (536 mg; 0.95 mmol) and operating according to procedure A,  the 

compound 12c was obtained as a first eluate, after rapid chromatography (hexane/AcOEt 70:30 v/v 

to AcOEt/MeOH 95:5 v/v), as a white solid (199 mg, 27%) togheder with its α-anomer 13c as a 

second white solid eluate (177 mg, 24%). 

Compound 12c showed: m.p. 128-130 °C; [α]D 
20 = +3.9 (c = 1.0 in methanol). 1H NMR (CDCl3): δ 

= 9.19 (d, JNH,5’’  = 9.7 Hz, 1H; NH at C-5’’), 9.08 (s, 1H; NH at C-4), 7.58 (d, J6,5=  7.4 Hz, 1H; H-

6), 7.42 (d, J5,6 = 7.4 Hz, 1H; H-5), 5.96 (dd, J7’’ ,8’’=  1.8, J7’’,6’’ =  3.2, Hz, 1H; H-7’’), 5.68 (d, J1’,2’ 

= 1.6 Hz, 1H; H-1’), 5.39 (dd, J3’,4’ = 4.4, J3’,2’= 6.3 Hz, 1H; H-3’), 5.36 (ddd, J4’’ ,3a’’ = 5.0, J4’’ ,5’’= 

10.4, J4’’, 3b’’  = 11.0Hz, 1H; H-4’’), 5.11 (ddd, J8’’, 7’’  = 1.8, J8’’ ,9a’’ = 2.4, J8’’ ,9b’’= 9.6 Hz, 1H; H-

8’’), 4.95 (dd, J9a’’,8’’ =  2.4,J9a’’,9b’’  = 12.1 Hz, 1H; H-9a’’), 4.92 (dd, J2’,1’ = 1.6, J2’,3’= 6.3 Hz, 1H; 

H-2’), 4.73 (dd, J6’’,7’’ =  3.2, J6’’,5’’ =  10.7 Hz, 1H; H-6’’), (4.32 ddd, JNH,5’’  = 9.7, J5’’,4’’  = 10.4, 

J5’’,6’’ =  10.7 Hz, 1H; H-5’’), 4.27-4.23 (m, 1H; H-4’), 4.07 (dd, J9b’’,8’’ =  9.6,J9b’’,9a’’  = 12.1 Hz, 1H; 

H-9b’’), 3.79 (3H; COOCH3), 3.58–3.54 (overlapping, 2H; H-7a’ and H-7b’), 2.68 (dd, J3a’’,4’’=  

5.1, J3a’’,3b’’=  12.8 Hz, 1H; H-3a’’), 2.22 (s, 3H; NHCOCH3 at C-4), 2.21 (s, 3H; OCOCH3), 1.99 

(s, 3H; OCOCH3), 1.95 (s, 3H; OCOCH3), 1.79 (s, 3H; OCOCH3), 1.76-1.73 (m, 1H; H-3b’’) 1.70-

1.58 (overlapping, 4H, H-5a’, H-5b’, H-6a’ and H-6b’), 1.55 (s, 3H; C(CH3)2), 1.40 ppm (s, 3H; 

C(CH3)2); 
1H NMR (CD3OD): δ= 8.05 (d, J6,5=  7.5 Hz, 1H; H-6), 7.36 (d, J5,6 = 7.5 Hz, 1H; H-5), 

5.87 (d, J1’,2’ = 1.6 Hz, 1H; H-1’), 5.41 (dd, J7’’,6’’ =  1.9, J7’’ ,8’’=  4.6 Hz, 1H; H-7’’), 5.37 (ddd, 

J4’’ ,3a’’ = 5.0, J4’’ ,5’’= 10.6, J4’’, 3b’’  = 11.7Hz, 1H; H-4’’), 5.29 (br ddd, J8’’ ,9a’’ = 2.5, J8’’,7’’  = 4.6, 

J8’’ ,9b’’=7.1 Hz, 1H; H-8’’), 5.03 (dd, J2’,1’ = 1.6, J2’,3’= 6.5 Hz, 1H; H-2’), 4.79-4.70 (overlapping, 

2H; H-3’ and H-9a’’), 4.36 (dd, J6’’7’’ =  1.9, J6’’,5’’ =  10.3 Hz, 1H; H-6’’), 4.17-4.10 (overlapping, 

2H; H-4’ and H-9b’’), 4.07 (dd, J5’’,6’’ =  10.3, J5’’,4’’  = 10.6 Hz, 1H; H-5’’), 3.82 (s, 3H; COOCH3), 

3.61–3.57 (m, 1H; H-7a’), 3.45-3.41 (m, 1H; H-7b’), 2.55 (dd, J3a’’,4’’=  5.0, J3a’’,3b’’=  13.0 Hz, 1H; 

H-3a’’), 2.22 (s, 3H; NHCOCH3 at C-4), 2.14 (s, 3H; OCOCH3), 2.05 (s, 3H; OCOCH3), 2.03 (s, 

3H; OCOCH3), 1.96 (s, 3H; OCOCH3), 1.92-1.72 (overlapping, 5H; H-5a’, H-5b’, H-6a’, H-6b’ and 

H-3b’’), 1.57 (s, 3H; C(CH3)2), 1.37 ppm (s, 3H; C(CH3)2); 
13C NMR (MeOD): δ = 172.9 (1C, 
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NHCOCH3 at C-4), 172.5, 172.1, 171.7, 171.5 (4C, OCOCH3), 169.0(C-1’’), 164.5 (C-4), 159.6 

(1C, JC,F = 28 Hz, COCF2CF2CF3), 157.7 (C-2), 147.9 (C-6), 124.0-110.0 (3C, COCF2CF2CF3), 

115.5 (C(CH3)2), 100.0 (C-2’’), 98.2 (C-5), 95.7 (C-1’), 88.3 (C-4’), 86.4 (C-2’), 85.2 (C-3’), 72.5 

(C-8’’), 71.4 (C-6’’), 70.0 (C-4’’), 69.9 (C-7’’), 64.8 (C-7’), 63.5 (C-9’’), 55.3 (COOCH3), 51.0 (C-

5’’), 38.4 (C-3’’), 31.2 (C-5’), 27.5 (C(CH3)2), 26.8 (C-6’), 25.6 (C(CH3)2), 24.6 (NHCOCH3 at C-

4), 21.0, 20.7, 20.6 (4C, CH3COO) ppm; MS (ESI positive) m/z:1003.0 (100%), 1004.1 

(55%)[M+Na]+. Elemental analysis calcd (%) for C38H47F7N4O18: C 46.53, H 4.83, N 5.71; found C 

46.42, H 4.78, N 5.89. 

 

Compound 13c (α-anomer): m.p. 132-136°C; [α]D 
25 =-26.1 (c = 1 in CH3OH); 1H NMR (CDCl3): δ 

= 9.30 (s, 1H; NH at C-4), 7.72 (d, J6,5=  7.5 Hz, 1H; H-6), 7.42 (d, J5,6 = 7.5 Hz, 1H; H-5), 6.93 (d, 

JNH,5’’  = 10.0 Hz, 1H; NH at C-5’’), 5.66 (br s, 1H; H-1’), 5.41 (ddd,J8’’ ,9a’’ = 2.7, J8’’ ,9b’’= 4.6, 

J8’’,7’’  = 8.7 Hz, 1H; H-8’’), 5.33 (dd, J7’’,6’’ =  1.8,J7’’ ,8’’=  8.7Hz , 1H; H-7’’), 5.09 (ddd, J4’’ ,3a’’ = 

4.6, J4’’ ,5’’= J4’’, 3b’’  = 10.5Hz, 1H; H-4’’), 5.05-5.01 (m,1H; H-2’), 4.64 (dd, J3’,4’ = 4.6, J3’,2’= 6.1 

Hz, 1H; H-3’), 4.28 (dd, J6’’,7’’ =  1.8, J6’’,5’’ =  10.7 Hz, 1H; H-6’’), 4.26-4.19 (overlapping, 2H; H-

9a’’ and H-9b’’), 4.16-4.09 (m, 1H; H-4’), 4.00 (dd app, J 5’’,NH = 10.0, J5’’,4’’  = 10.5,J5’’,6’’ =  10.7, 

1H; H-5’’), 3.83–3.77 (m, 1H; H-7a’), 3.75 (3H; COOCH3), 3.31-3.25 (m, 1H; H-7b’), 2.65 (dd, 

J3a’’,4’’=  4.6, J3a’’,3b’’=  12.9 Hz, 1H; H-3a’’), 2.34 (s, 3H; NHCOCH3 at C-4), 2.13 (s, 3H; 

OCOCH3), 2.11 (s, 3H; OCOCH3 ), 2.04 (s, 3H; OCOCH3), 2.02 (s, 3H; OCOCH3), 1.91 (dd, 

J3b’’,4’’=  10.5, J3a’’,3b’’=  12.9 Hz,1H ; H-3b’’), 1.83-1.75 (overlapping, 2H, H-5a’ and H-5b’), 1.72-

1.60 (overlapping, 2H, H-6a’ and H-6b’), 1.56 (s, 3H; C(CH3)2), 1.34 ppm (s, 3H; C(CH3)2); 
1H 

NMR (CD3OD): δ = 8.05 (d, J6,5=  7.5 Hz, 1H; H-6), 7.42 (br d, J5,6 = 7.5 Hz, 1H; H-5), 5.85 (d, 

J1’,2’ = 2.0 Hz, 1H; H-1’), 5.39 (ddd, J8’’ ,9a’’ = 2.6, J8’’ ,9b’’= 5.1, J8’’, 7’’  = 8.9Hz, 1H; H-8’’), 4.97 

(dd, J7’’,6’’ =  2.0, J7’’ ,8’’=  8.9 Hz, 1H; H-7’’), 4.97 (dd, J2’,1’ = 2.0, J2’,3’= 6.4 Hz, 1H; H-2’), 4.92 

(ddd, J4’’ ,3a’’ = 4.7, J4’’ ,5’’= 10.5, J4’’, 3b’’  = 12.0Hz, 1H; H-4’’), 4.65 (dd, J3’,4’ = 4.4, J3’,2’= 6.4 Hz, 

1H; H-3’), 4.34 (dd, J6’’7’’ =  2.0, J6’’,5’’ =  10.5 Hz, 1H; H-6’’), 4.27 (dd, J9a’’,8’’ =  2.6,J9a’’,8’’  = 12.5 

Hz, 1H; H-9a’’), 4.19–4.13 (m, 1H; H-4’), 4.09 (dd, J9b’’,8’’ =  5.1,J9b’’,9a’’  = 12.5 Hz, 1H; H-9b’’), 

4.03 (t app, J5’’,6’’ =J5’’,4’’  = 10.5 Hz, 1H; H-5’’), 3.85-3.76 (overlapping, 4H; COOCH3 and H-7a’), 

3.39–3.33 (m, 1H; H-7b’), 2.69 (dd, J3’’ ,4’’=  4.7, J3a’’,3b’’=  12.7 Hz, 1H; H-3a’’), 2.18 (s, 3H; 

NHCOCH3 at C-4), 2.15 (s, 3H; OCOCH3), 2.11 (s, 3H; OCOCH3), 1.99 (s, 3H; OCOCH3 ), 1.96 

(s, 3H; OCOCH3), 1.88–1.61 (overlapping, 5H; H-5a’, H-5b’, H-6a’, H-6b’ and H-3b’’), 1.56 (s, 

3H; C(CH3)2), 1.35 ppm (s, 3H; C(CH3)2); 
13C NMR (MeOD): δ = 173.0 (1C, NHCOCH3 at C-4), 

172.5, 171.8, 171.4 (4C, OCOCH3), 169.5(C-1’’), 164.7 (C-4), 159.6 (1C, JC,F = 27 Hz, 

COCF2CF2CF3), 157.7 (C-2), 147.6 (C-6), 124.0-110.0 (3C, COCF2CF2CF3), 115.4 (C(CH3)2), 
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100.0 (C-2’’), 98.1 (C-5), 95.5 (C-1’), 88.6 (C-4’), 86.6 (C-2’), 85.3 (C-3’), 72.4 (C-6’’), 70.2 (C-

4’’), 69.5 (C-8’’), 68.5 (C-7’’), 65.6 (C-7’), 63.5 (C-9’’), 53.3 (COOCH3), 50.7 (C-5’’), 39.2 (C-

3’’), 31.1 (C-5’), 27.6 (C(CH3)2), 27.1 (C-6’), 25.7 (C(CH3)2), 24.6 (NHCOCH3 at C-4), 21.3, 20.8, 

20.7, 20.6 (4C, OCOCH3) ppm; MS (ESI positive) m/z:1003.1[M+Na]+.Elemental analysis calcd 

(%) for C38H47F7N4O18: C 46.53, H 4.83, N 5.71; found C 46.42, H 4.78, N 5.89. 

 

ii) Starting from the dibromide 14c (866 mg, 1.10 mmol) and operating according to procedure B 

step 1 intermediate 16c was obtained after rapid chromatography (hexane/AcOEt 70:30 v/v to 

AcOEt/MeOH 80:20 v/v, as a white powder (254 mg, 32%), showing: m.p. 138-140°C; [α]D 
20 = 

+8.5 (c = 1 CH3OH);1H NMR (CDCl3): δ = 9.23 (d, JNH,5’’  = 9.0 Hz, 1H; NH at C-5’’), 9.04 (s, 1H; 

NH at C-4), 7.58 (d, J6,5=  7.4 Hz, 1H; H-6), 7.43 (d, J5,6 = 7.4 Hz, 1H; H-5), 5.91 (br, s, 1H; H-7’’), 

5.63 (dd, J2’,1’ = 1.1 Hz, J2’,3’= 6.3 Hz, 1H; H-2’), 5.39 (d, J1’,2’ = 1.1Hz,1H; H-2’) 5.32(dd, J4’’ ,3’’  = 

3.6, J4’’ ,5’’= 9.9 Hz, 1H; H-4’’), 5.12 (ddd, J8’’, 7’’  = 1.7, J8’’ ,9a’’ = 2.4, J8’’ ,9b’’= 9.4, Hz, 1H; H-8’’), 

5.04 (dd, J9a’’,8’’ =  2.4,J9a’’,9b’’  = 12.1 Hz, 1H; H-9a’’), 4.89 (dd, J3’,4’ = 1.7, J3’,2’= 6.3 Hz, 1H; H-

3’), 4.76 (d, J3’’,4’’ =  3.7 Hz, 1H; H-3’’), 4.73-4.67 (overlapping, 2H; H-5’’; H-6’’), 4.26-4.22 (m, 

1H; H-4’), 4.14-4.06 (m, 1H; H-9b’’), 3.82 (3H; COOCH3), 3.64–3.54 (overlapping, 2H; H-7a’ and 

H-7b’),2.23 (s, 3H; NHCOCH3 at C-4), 2.21 (s, 3H; OCOCH3), 2.01 (s, 3H; OCOCH3 ), 1.95 (s, 

3H; OCOCH3), 1.78 (s, 3H; OCOCH3), 1.77-1.51 (overlapping, 4H, H-5a’, H-5b’, H-6a’ and H-

6b’), 1.51 (s, 3H; C(CH3)2), 1.39 ppm  (s, 3H; C(CH3)2); 
1H NMR (CD3OD): δ= 8.02 (d, J6,5=  7.5 

Hz, 1H; H-6),7.43 ( d, J5,6 = 7.5 Hz, 1H; H-5), 5.80 (d, J1’,2’ = 1.8 Hz, 1H; H-1’),5.46 (dd, J7’’,6’’ =  

2.0, J7’’ ,8’’=  4.6 Hz, 1H; H-7’’), 5.40(dd, J4’’ ,3’’  = 3.6,J4’’ ,5’’= 10.5, Hz, 1H; H-4’’), 5.29 (ddd, 

J8’’ ,9a’’ = 2.6, J8’’, 7’’  = 4.6, J8’’ ,9b’’=7.3, Hz, 1H; H-8’’), 5.09 (dd, J2’,1’ = 1.8, J2’,3’= 6.4 Hz, 1H; H-

2’),4.81 (dd,J9a’’,8’’ =  4.6,J9a’’,9b’’  = 12.4 Hz, 1H; H-9a’’), 4.74-4.69. (overlapping, 2H; H-3’ and H-

3’’), 4.50 (dd, J5’’,6’’ =  10.6, J5’’,4’’  = 10.5 Hz, 1H; H-5’’), 4.38 (dd, J6’’7’’ =  1.9, J6’’,5’’ =  10.6 Hz, 1H; 

H-6’’), 4.17-4.07(overlapping, 2H; H-4’ and H-9b’’), 3.83 (s, 3H; COOCH3), 3.69–3.63 (m, 1H; H-

7a’), 3.47-3.41 (m, 1H; H-7b’), 2.19 (s, 3H; NHCOCH3 at C-4), 2.15 (s, 3H; OCOCH3), 2.03 (s, 

3H; OCOCH3), 2.00-1.99 (overlapping, 6H; 2X OCOCH3), 1.92-1.66 (overlapping, 4H; H-5a’, H-

5b’, H-6a’ and H-6b’), 1.54 (s, 3H; C(CH3)2), 1.35 ppm (s, 3H; C(CH3)2). 
13C NMR (MeOD): δ = 

173.0 (1C, NHCOCH3 at C-4), 172.5, 172.0, 171.6, 171.2 (4C, OCOCH3), 167.0 (C-1’’), 164.7 (C-

4), 159.6 (1C, JC,F = 26 Hz, COCF2CF2CF3), 157.7 (C-2), 148.3 (C-6), 124.0-110.0 (3C, 

COCF2CF2CF3), 115.5 (C(CH3)2), 101.5 (C-2’’), 98.2 (C-5), 96.2 (C-1’), 88.3 (C-4’), 86.3 (C-2’), 

85.4 (C-3’), 72.5 (C-8’’), 71.8 (C-6’’), 69.9(C-4’’), 69.6 (C-7’’), 66.4 (C-7’), 63.5 (C-9’’), 53.6 

(COOCH3), 52.6 (C-3’’), 47.1 (C-5’’), 31.1 (C-5’or C-6’), 27.6 (C(CH3)2), 26.7 (C-6’ or C-5’), 25.6 

(C(CH3)2), 24.6 (NHCOCH3 at C-4), 21.0, 20.7, 20.7, 20.5 (4C, 4 X OCOCH3) ppm. MS (ESI 
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positive) m/z:1082.6 [M+Na]+. Elemental analysis calcd (%) for C38H46BrF7N4O18: C 43.07, H 4.38, 

N 5.29; found C 43.02, H 4.38, N 5.35. 

 

Purified intermediate 16c (105 mg, 0.10 mmol) was reacted according to procedure B step 2 to 

afford the title compound 12c (85.3 mg 87%). MS (ESI positive) m/z:1003.3[M+Na]+; elemental 

analysis calcd (%) for C38H47F7N4O18: C 46.53, H 4.83, N 5.71; found C 46.50, H 4.76, N 5.79. 
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5.3.5 Synthetic deprotection procedures affording derivatives 3a-e  
 
Step 1: General procedure of actonide deprotection. 

To a solution of appropriate 12a-c or 13b-c (0.40 mmol) in dichloromethane (5mL) moist TFA (0.6 

mmol) was added and the mixture was stirred for 30 minutes or 1 houer at reflux. Then the mixture, 

treted with weak basic resin IRA 67, was filtered and evaporated in vacuo to give a syrup, which 

was purified by chromatography on silica gel, to afford the desired de-acetonide intermediate. 

 

Step 2: General procedure of deacetylation. 

To a solution of.de-acetonide intermediate (0.20 mmol) .in dry methanol a 0.5 M solution of sodium 

methoxide in dry methanol was added. After stirring for 1 h the solution was neutralized by addition 

of Amberlite weakly acid CG50, filtered, and evapored. The residue was purified by flash 

cromatography to afford thhe methyl esters of 3a-e. 

 

Step 3: General procedures methyl ester deprotection. 

The residue (0.10 mmol) was reacted according one of these procedures. 

a) In aqueous methanol (1.0 mL, 2:1 v/v) saturated with K2CO3, was stirred for 12 h at 23 °C. Then 

the solution was treated with an acidic resin Amberlite weakly acid CG50. The solution was filtered 

and the solvent was removed under reduced pressure to afford the free glycoside. 

b) The appropriate protected sialoside (0.10 mmol) dissolved in methanol–water (1.5 mL, 2:1 v/v) 

was treated with Et3N (0.90 mL) under stirring for 12 h at 23 °C. Then the solvent was removed 

under reduced pressure and the residue was recovered with water and lyophilized many times until 

complete elimination of Et3N. 

c) The residue (0.18 mmol) dissolved in MeOH and was trated with NaOH aq solution for 40 min. 

under stiring at 23°C. Then the reaction is neutralized with Amberlite weakly acid CG50, filtered 

and the solvent was removed under reduced pressure. 

 

Step 4: General procedure of purification by HPLC-RP cromatography 

All final compaunds 3a-e were purified by HPLC-RP chromatography using the C18 reverse phase 

column (Atlantis C-18-Preper T3 ODB, 5um, 19X10 mm HPLC column) and starting from 100% 

of aqueous 0.1% (v/v) formic acid to 100% CH3CN as eluent. 
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Synthesis of compound 3a via 3 step deprotection and preparative HPLC purification. 
 

O
COOCH3

O

AcO
H3COCHN

AcO

OAcAcO

N

NO

NHAc

O

OHOH  
 
Step 1: Starting from 12a, (331 mg, 0.40 mmol) according to the general deprotection procedure 

step 1the de-acetonide compound was obtained, after flash chromatography (eluiting with 

AcOEt/MeOH 9:1) as white powder (230 mg 75%) showing: m.p. 118-121 °C; [α]D
25 = +14.2 (c = 

1 in methanol). 1H NMR (MeOD): δ = 8.03 (d, J6,5=  7.5 Hz, 1H; H-6), 7.40 (d, J5,6 = 7.5 Hz, 1H; H-

5), 5.83 (d, J1’,2’ = 2.5, 1H; H-1’), 5.41 (dd, J7’’ ,6’’ =  2,2,J7’’ ,8’’=  4.1 Hz, 1H; H-7’’), 5.32–5.28 (m, 

1H; H-8’’), 5.26–5.22 (m, 1H; H-4’’), 4.80 (dd, J9a’’,8’’ =  2.5 Hz,J9a’’,8’’  = 12.4 Hz, 1H; H-9a’’), 4.20 

(dd, J2’,1’=  2.5,J2’,3’=  5.2 Hz,1H; H-2’), 4.18–4.07 (overlapping,2H; H-6’’and H-9b’’), 4.06–4.02 

(m, 1H; H-4’), 3.95 (t, J5’’ ,4’’ =J5’’ ,6’’ =  10.41 Hz, 1H; H-5’’), 3.86 (dd, J3’,2’= 5.2, J3’,4’=  7.1 Hz, 1H; 

H-3’),3.80 (s, 3H; COOCH3) 3.66–3.59 (m, 1H; H-7a’), 3.47-3.41 (m, 1H; H-7b’), 2.47 (dd, 

J3a’’,4’’=  5.0, J3a’’,3b’’=  13.0 Hz, 1H; H-3a’’), 2.19 (s, 3H; NHCOCH3 at C-4), 2.11 (s, 3H; 

OCOCH3), 2.04–1.96 (overlapping, 11H; 3 X OCOCH3, H-5a’ and H-5b’), 1.90–1.81 (overlapping, 

5H; NHCOCH3 at C-5’’, H-6a’ and H-6b’), 1.79 ppm (dd, J3b’’, 4’’ =  11.5, J3b’’,3a’’=  13.0 Hz, 1H; H-

3b’’); 13C NMR (MeOD): δ = 173.6 (1C, NHCOCH3 at C-5’’), 173.6 (1C, NHCOCH3 at C-4), 

172.7, 172.3, 172.1, 171.8 (4C, OCOCH3), 169.2(C-1’’), 164.2 (C-4), 158.1 (C-2), 146.2 (C-6), 

100.0 (C-2’’), 98.4 (C-5), 94.0 (C-1’), 84.5 (C-4’), 76.3 (C-2’), 75.0 (C-3’), 73.0 (C-8’’), 72.3 (C-

6’’), 70.5 (C-4’’), 70.1 (C-7’’), 64.9 (C-7’), 64.9 (C-9’’), 53.3 (COOCH3), 50.3 (C-5’’), 38.5 (C-

3’’), 31.2 (C-5’), 27.3 (C-6’), 24.6 (1C, NHCOCH3 at C-4), 22.8 (1C, NHCOCH3 at C-5’’), 21.0, 

20.9, 20.8, 20.8 ppm (4C, OCOCH3); MS (ESI positive) m/z:809.3[M+Na]+. Elemental analysis 

calcd (%) forC33H46N4O18: C 50.38, H 5.89, N 7.12; found C 50.46, H 5.80, N 7.03. 
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Step 2: This intermediate (157 mg, 0.20 mmol) was deacetylated according to general 

deprotection procedure step 2 to afford, after flash cromatography (eluiting with AcOEt/MeOH 

8:2), the intermediate metyl ester of3a as white powder (104 mg 90%) showing:  m.p. 118-120 

°C; [α]D
25 = +15.1 (c = 1 in H2O); 1H NMR (D2O): δ= 7.67 (d, J6,5=  7.6 Hz, 1H; H-6), 6.03 (d, J5,6 

= 7.6 Hz, 1H; H-5), 5.84 (d, J1’,2’ = 3.9 Hz, 1H; H-1’), 4.33 (dd, J2’,1’ = 3.9, J2’,3’ = 4.9 Hz, 1H; H-

2’), 4.14–4.00 (overlapping, 3H; H-4’, H-4’’ and H-3’), 3.96–3.88(overlapping,2H; H-5’’and H-

6’’), 3.88–3.81(overlapping, 5H; COOCH3, H-8’’and H-9a’’), 3.76–3.74 (overlapping,2H; H-7a’ 

and H-9b’’), 3.59 (d, J7’’,8’’ =  9.3Hz, 1H; H-7’’), 3.40–3.33 (m, 1H; H-7b’), 2.43 (dd, J3a’’,4’’ =  

4.7,J3a’’, 3b’’=  13.2 Hz, 1H; H-3a’’), 2.05 (s, 3H; NHCOCH3), 1.95–1.70 ppm (overlapping, 5H; H-

5a’, H-5b’, H-6a’, H-6b’ and H-3b’’); 13C NMR (D2O): δ = 176.2 (1C, NHCOCH3), 171.9 (C-1’’), 

166.8 (C-4), 157.6 (C-2), 143.4 (C-6), 100.0 (C-2’’), 97.5 (C-5), 92.0 (C-1’), 84.5 (C-4’), 75.0 (C-

2’), 74.3 (C-3’), 71.9 (C-6’’), 71.2 (C-8’’), 69.3 (C-7’’), 67.7 (C-4’’), 64.7 (C-9’’), 64.6 (C-7’), 54.8 

(COOCH3), 53.2 (C-5’’), 40.7 (C-3’’), 30.5 (C-5’), 26.3 (C-6’), 23.4 ppm (1C, NHCOCH3); MS 

(ESI positive) m/z:599.3[M+Na]+. Elemental analysis calcd (%) forC23H36N4O13: C 47.91, H 6.29, 

N 9.72; found C 47.87, H 6.09, N 9.83. 

 

 
 
 
Step 3 Finally, metyl ester of 3a (104 mg, 0.10 mmol) was deprotected according to generale 

deprotection procedure step 3(C) to afford free acid 3a (93 mg 92%), after purification by HPLC-

RP cromatography according to general deprotection procedure step 4. The compaunds 3a was a 

white solid that showed: [α]D
25 = +13.9 (c = 1 in H20); 1H NMR (D2O): δ = 7.64 (d, J6,5=  7.5 Hz, 

1H; H-6), 6.00 (d, J5,6 = 7.5 Hz, 1H; H-5), 5.87 (d, J1’,2’ = 3.9 Hz; 1H; H-1’), 4.31 (t app, J2’,1’ = 3.9, 

J2’,3’ = 5.4 Hz, 1H; H-2’), 4.11-4.06 (overlapping, 2H; H-4’and H-4’’), 4.02 (t app, J3’, 2’=  5.4 Hz, 

1H; H-3’), 3.97-3.84(overlapping,4H; H-5’’, H-6’’, H-8’’and H-9a’’), 3.71 (dd, J9b’’,8’’=  

5.3,J9a’’,9b’’=  11.7 Hz, 1H; H-9b’’), 3.62–3.56 (m, 1H; H-7a’), 3.53 (d, J7’’,8’’ =  9.4Hz, 1H; H-7’’), 

3.38–3.31 (m, 1H; H-7b’), 2.37 (dd, J3a’’,4’’ =  4.8,J3a’’, 3b’’=  12.9 Hz, 1H; H-3a’’), 2.05 (s, 3H; 

NHCOCH3), 1.94-1.86 (m, 1H; H-5a’), 1.82-1.69 (overlapping, 3H; H-5b’, H-6a’ and H-6b’), 1.63 



75 

 

ppm (t app, J3b’’, 3a’’=  12.9 Hz, 1H; H-3b’’); 13C NMR (D2O): δ= 176.3(C-1’’), 175.6 (1C, 

NHCOCH3), 167.0 (C-4), 158.4 (C-2), 142.4 (C-6), 100.7 (C-2’’), 97.1 (C-5), 91.2 (C-1’), 84.1 (C-

4’), 74.7 (C-2’), 73.8 (C-3’), 70.9 (C-6’’), 70.8 (C-8’’), 69.2 (C-7’’), 67.9 (C-4’’), 64.4 (C-9’’), 63.3 

(C-7’), 52.9 (C-5’’), 40.8 (C-3’’), 30.3 (C-5’), 25.9 (C-6’), 22.9 ppm (1C, NHCOCH3); MS (ESI 

negative) m/z:561.3[M-H]-, 583.3[M-2H+Na]-. Elemental analysis calcd (%) forC22H34N4O13: C 

46.97, H 6.09, N 9.96; found C 46.87, H 6.00, N 9.85. 
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Synthesis of compound 3b via 3 step deprotection and preparative HPLC purification. 
 

 
 

Step 1: Starting from 12b, (352 mg, 0.40 mmol) according to the general deprotection 

procedurestep 1 the intermediate de acetonide was obtained, after flash chromatography (eluiting 

with AcOEt/MeOH 9:1  as white powder (259 mg 77%) showing  m.p. 128-130 °C; [α]D 
20 = +21.5 

(c = 1 MeOH); 1H NMR (CD3OD):δ= 8.02 (d, J6,5=  7.5 Hz, 1H; H-6), 7.47 ( d, J5,6 = 7.5 Hz, 1H; 

H-5), 5.81 (d, J1’,2’ = 2.0 Hz, 1H; H-1’), 5.39 (dd, J7’’,6’’ =  2.0, J7’’ ,8’’=  4.2 Hz, 1H; H-7’’), 5.38-5.29 

(overlapping, 2H; H-4’’ and H-8’’), 4.78 (dd, J9a’’,8’’ =  2.1,J9a’’,9b’’  = 12.4 Hz 1H; H-9a’’), 4.28 (dd, 

J6’’,7’’ =  2.0, J6’’,5’’ =  9.5 Hz, 1H; H-6’’), 4.18 (dd, J2’,1’ = 2.0, J2’,3’= 4.9 Hz, 1H; H-2’), 4.12 (dd, 

J9b’’,8’’ =  7.4,J9a’’,9b’’  = 12.4 Hz 1H; H-9b’’),4.05-3.96 (overlapping, 2H; H-4’ and H-5’’), 3.87-3.77 

(overlapping, 4H; H-3’ and COOCH3),3.67–3.59 (m, 1H; H-7a’),3.48-3.42 (m, 1H; H-7b’),2.51 (dd, 

J3a’’,4’’=  4.9, J3a’’,3b’’=  12.9 Hz, 1H; H-3a’’),2.18 (s, 3H; NHCOCH3 at C-4),2.12 (s, 3H; 

OCOCH3),2.03 (s, 3H; OCOCH3),2.02 (s, 3H; OCOCH3),1.97 (s, 3H; OCOCH3),1.92-1.77 

(overlapping, 5H; H-5a’, H-5b’, H-6a’, H-6b’ and H-3b’’) . 13C NMR (MeOD): δ = 173.0 (1C, 

NHCOCH3 at C-4), 172.5, 172.2, 171.7, 171.5 (4C, 4 X OCOCH3), 169.0(C-1’’), 164.4 (C-4), 

159.3 (1C, JC,F = 38 Hz, COCF3), 158.0 (C-2), 146.1 (C-6), 117.1 (1C, JC,F = 287 Hz COCF3), 

100.0 (C-2’’), 98.3 (C-5), 94.1(C-1’), 84.4 (C-4’), 76.2 (C-2’), 75.0 (C-3’), 72.7 (C-8’’), 71.6 (C-

6’’), 70.0 (C-4’’), 69.9 (C-7’’), 65.0 (C-7’), 63.5 (C-9’’), 53.3 (COOCH3), 51.0 (C-5’’), 39.5 (C-

3’’), 31.1 (C-5’or C-6’), 27.2 (C-6’ or C-5’), 24.6 (NHCOCH3 at C-4), 21.0, 20.7, 20.6 ppm (4C, 4 

X OCOCH3);MS (ESI positive) m/z:863.1[M+Na]+. Elemental analysis calcd (%) for 

C33H43F3N4O18: C 47.15, H 5.16, N 6.66; found C 47.22, H 5.28, N 6.50. 
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Step 2: This intermediate (168 mg, 0.20 mmol) was deacetylated according to general 

deprotection procedure step 2 to afford, after flash cromatography (eluiting with AcOEt/MeOH 

8:2), the intermediate metyl ester of3b (115 mg 91%) as white powered showing: m.p. 120°C; 

[α]D 
20 = +18.1 (c = 1 in CH3OH). 1H NMR (CD3OD): δ= 7.60 (d, J6,5=  7.4 Hz, 1H; H-6),5.93 (d, 

J5,6 = 7.4 Hz, 1H; H-5),5.77 (d, J1’,2’ = 3.2 Hz, 1H; H-1’),4.20-4.09 (overlapping, 3H; H-2’, H-4’’, 

and H-6’’), 4.00 (t app=J5’’,4’’ = J5’’,6’’  = 10.3, 1H; H-5’’), 3.96-3.90 (m, 1H; H-4’), 3.85-3.76 

(overlapping, 7H; H-3’, H-7a’, H-8’’, H-9a’’ and COOCH3), 3.67 (dd, J9b’’,8’’ =  5.2,J9a’’,9b’’  = 11.3 

Hz, 1H; H-9b’’), 3.46 (d app, J7’’ ,8’’=  9.4, 1H; H-7’’),3.30–3.24 (m, 1H; H-7b’),2.39 (dd, J3a’’,4’’=  

4.9, J3a’’,3b’’=  12.5 Hz, 1H; H-3a’’),1.94-1.71 (overlapping, 4H; H-5a’, H-5b’, H-6a’ and H-6b’), 

1.66 ppm (dd, J3b’’,4’’=  11.5, J3a’’,3b’’=  12.5 Hz, 1H; H-3b’’). 13C NMR (MeOD): δ = 171.5(C-1’’), 

167.7 (C-4), 159.8 (1C, JC,F = 37 Hz, COCF3), 158.5(C-2), 142.8 (C-6), 117.6 (1C, JC,F = 287 Hz,  

COCF3), 100.1 (C-2’’), 96.3 (C-5), 93.1 (C-1’), 84.3 (C-4’), 75.8 (C-2’), 75.0 (C-3’), 71.8 (C-8’’), 

71.4 (C-6’’), 70.1 (C-7’’), 67.3 (C-4’’), 65.2 (C-9’’), 64.4 (C-7’), 54.3 (C-5’’), 53.4 (COOCH3), 

41.9 (C-3’’), 31.1 (C-5’or C-6’), 27.0 (C-6’ or C-5’) ppm; (ESI positive) m/z:653.0[M+Na]+, MS 

(ESI negative) m/z:629.1[M-H]-. Elemental analysis calcd (%) for C23H33F3N4O13: C 43.81, H 5.28, 

N 9.04; found C 43.62, H 5.10, N 9.30. 
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Step 3: Finally metyl ester of 3b (113.5 mg, 0.10 mmol) was deprotected according to generale 

deprotection procedure step 3(B) to afford, by HPLC/preparative according to step 4 of general 

deprotection the compands 3b (97 mg 88%) as white powder showing:  m.p. 129-131°C; [α]D 
20 = 

+18.9 (c = 1 in H2O); 1H NMR (D2O): δ= 7.86 (d, J6,5=  7.9 Hz, 1H; H-6), 6.23 (d, J5,6 = 7.9 Hz, 1H; 

H-5), 5.83 (d, J1’,2’ = 3.8 Hz, 1H; H-1’), 4.35 (dd, J2’,1’ = 3.8, J2’,3’= 5.1 Hz, 1H; H-2’), 4.23 (t app, 

J4’’ ,3a’’ = 4.9, J4’’ ,5’’= J4’’, 3b’’  = 11.1Hz, 1H; H-4’’), 4.13-3.99 (overlapping, 4H; H-3’, H-4’, H-5’’ 

and H-6’’), 3.89-3.82 (overlapping, 2H; H-8’’ and H-9a’’), 3.69-3.62 (overlapping, 2H; H-7a’ and 

H-9b’’), 3.53 (d app, J7’’ ,8’’=  9.7, 1H; H-7’’), 3.42–3.36 (m, 1H; H-7b’), 2.43 (dd, J3a’’,4’’=  4.9, 

J3a’’,3b’’=  13.2 Hz, 1H; H-3a’’), 1.96-1.87 (m, 1H; H-5a’), 1.84-1.70 ppm (overlapping, 4H; H-5b’, 

H-6a’, H-6b’ and H-3b’’).  13C NMR (D2O): δ = 174.4(C-1’’), 160.6 (C-4), 160.0 (1C, JC,F = 39 Hz, 

COCF3), 149.0 (C-2), 144.9 (C-6), 116.4 (1C, JC,F = 286 Hz, COCF3), 100.0 (C-2’’), 95.8 (C-5), 
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91.4 (C-1’), 86.4(C-4’), 74.4 (C-2’), 73.5 (C-3’), 70.7 (C-8’’), 70.1 (C-6’’), 68.8 (C-7’’), 66.6 (C-

4’’), 64.1 (C-9’’), 63.6 (C-7’), 53.5 (C-5’’) 40.5(C-3’’), 30.0 (C-5’or C-6’), 25.8 (C-6’ or C-5’) 

ppm; MS (ESI negative) m/z 615.2[M-H]-. Elemental analysis calcd (%) for C22H31F3N4O13: C 

42.86, H 5.07, N 9.09; found C 43.01, H 5.0, N 9.12. 
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Synthesis of compound 3c via 3 step deprotection and preparative HPLC purification. 
 

 

 
Step 1: Starting from 12c, (392 mg, 0.40 mmol) according to the general deprotection procedure 

step 1,  the de-acetonide intermediate was obtained, after flash chromatography (eluiting with 

AcOEt/MeOH 9:1) as white powder (297 mg 79%) showing: m.p. 130-132°C, [α]D 
20 = +19.4 (c = 

1.0 CH3OHl); 1H NMR (CD3OD): δ= 8.04 (d, J6,5=  7.4 Hz, 1H; H-6), 7.37 (d, J5,6 = 7.4 Hz, 1H; H-

5), 5.83 (d, J1’,2’ = 2.6 Hz, 1H; H-1’), 5.41-5.27 (overlapping, 3H; H-7’’, H-4’’ and H-8’’), 4.76 (dd, 

J9a’’,8’’ =  2.3,J9a’’,8’’  = 12.4 Hz, 1H; H-9a’’), 4.32 (d app, J6’’,5’’ =  10.4 Hz, 1H; H-6’’), 4.19 (dd, J2’,1’ 

= 2.6, J2’,3’= 5.2 Hz, 1H; H-2’), 4.15-4.00 (overlapping, 3H; H-4’, H-5’’ and H-9b’’), 3.87 (dd, 

J3’,2’= 5.2, J3’,4’ = 6.5 Hz, 1H; H-3’), 3.80 (s, 3H; COOCH3), 3.67–3.59 (m, 1H; H-7a’), 3.48-3.41 

(m, 1H; H-7b’), 2.53 (dd, J3a’’,4’’=  4.7, J3a’’,3b’’=  12.9 Hz, 1H; H-3a’’), 2.19 (s, 3H; NHCOCH3 at C-

4), 2.12 (s, 3H; OCOCH3), 2.04 (s, 3H; OCOCH3), 2.01 (s, 3H; OCOCH3), 1.96 (s, 3H; OCOCH3), 

1.92-1.76 ppm (overlapping, 5H; H-5a’, H-5b’, H-6a’, H-6b’ and H-3b’’); 13C NMR (MeOD): δ = 

173.0 (1C, NHCOCH3 at C-4), 172.5, 172.2, 171.6, 171.4 (4C, 4 X OCOCH3), 169.0(C-1’’), 164.2 

(C-4), 159.6 (1C, JC,F = 26 Hz, COCF2CF2CF3), 158.1 (C-2), 146.1 (C-6), 121.0-106.0 (3C, 

COCF2CF2CF3), 100.0 (C-2’’), 98.4 (C-5), 93.8 (C-1’), 84.6 (C-4’), 76.3 (C-2’), 74.9 (C-3’), 72.7 

(C-8’’), 71.5 (C-6’’), 69.8 (2C, C-4’’ and C-7’’), 65.0 (C-7’), 63.5 (C-9’’), 53.3 (COOCH3), 51.0 

(C-5’’), 38.5 (C-3’’), 31.1 (C-5’), 27.2 (C-6’), 24.6 (NHCOCH3 at C-4), 21.0, 20.7, 20.6 (4C, 4 X 

OCOCH3) ppm;MS (ESI positive) m/z:963.1 [M+Na]+. Elemental analysis calcd (%) for 

C35H43F7N4O18: C 44.69, H 4.61, N 5.96; found C 44.52, H 4.70, N 5.93. 

 

 
 
Step 2: This intermediate (188 mg, 0.20 mmol) was deacetylated according to general 

deprotection procedure step 2 to afford, after flash cromatography (eluiting with AcOEt/MeOH 

8:2), the intermediate metyl ester of 3c (130 mg 89%) as white powered showing: m.p. 130-
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132°C; [α]D 
20 = +5.0 (c = 1 in CH3OH). 1H NMR (CD3OD):δ= 7.60 (d, J6,5=  7.5 Hz, 1H; H-6),5.93 

(d, J5,6 = 7.5 Hz, 1H; H-5),5.77 (d, J1’,2’ = 3.4 Hz, 1H; H-1’),4.20-4.02 (overlapping, 4H; H-2’, H-

4’’, H-5’’ and H-6’’),3.96-3.89 (m, 1H; H-4’), 3.86-3.74 (overlapping, 7H; H-3’, H-7a’, H-8’’, H-

9a’’ and COOCH3), 3.63 (dd, J9b’’,8’’ =  5.6,J9a’’,9b’’  = 11.4.4 Hz, 1H; H-9b’’), 3.44 (d app, J7’’ ,8’’ =  

9.4, 1H; H-7’’),3.29–3.24 (m, 1H; H-7b’),2.39 (dd, J3a’’,4’’=  4.8, J3a’’,3b’’=  12.9 Hz, 1H; H-

3a’’),1.93-1.69 (overlapping, 4H; H-5a’, H-5b’, H-6a’ and H-6b’), 1.66 ppm (dd, J3b’’,4’’=  11.2, 

J3a’’,3b’’=  12.9 Hz, 1H; H-3b’’). 13C NMR (MeOD): δ = 171.6(C-1’’), 167.7 (C-4), 159.9 (1C, JC,F = 

25.7 Hz, COCF2CF2CF3), 158.4 (C-2), 142.8 (C-6), 120.9-107.1.0 (3C, COCF2CF2CF3), 100.1 (C-

2’’), 96.3 (C-5), 93.1 (C-1’), 84.2(C-4’), 75.8 (C-2’), 75.0 (C-3’), 71.7 (C-8’’), 71.4 (C-6’’), 70.2 

(C-7’’), 67.3 (C-4’’), 65.3 (C-9’’), 64.4 (C-7’), 54.4 (C-5’’), 53.5 (COOCH3), 42.0 (C-3’’), 31.0 (C-

5’or C-6’), 27.0 (C-6’ or C-5’). ppm;MS (ESI positive) m/z:753.1[M+Na]+,(ESI negative) 

m/z:729.1[M-H+]-. Elemental analysis calcd (%) for C25H33F7N4O13: C 41.10, H 4.55, N 7.67; found 

C 41.30, H 4.40, N 7.82. 

 

Step 3: Finally, methyl ester of 3b (130 mg, 0.10 mmol) was deprotected according to generale 

deprotection procedure step 3(A) to afford 3c as white powder (119 mg 92%), after purification 

by HPLC-RP chromatography accroding to step 4 of general deprotection procedure. The 

compound 3c showed:  m.p. 125-126°C; [α]D 
20 = + 22.1 (c = 1 in H20). 1H NMR (D2O):δ= 7.64 (d, 

J6,5=  7.6Hz, 1H; H-6),6.05 (d, J5,6 = 7.6 Hz, 1H; H-5),5.86 (d, J1’,2’ = 4.0 Hz, 1H; H-1’),4.30 (dd, 

J2’,1’ = 4.0, J2’,3’= 4.6 Hz, 1H; H-2’), 4.20 (ddd, J4’’ ,3a’’ = 4.9, J4’’ ,5’’= 10.2, J4’’, 3b’’  = 11.2Hz, 1H; 

H-4’’), 4.09-4.00 (overlapping, 4H; H-3’, H-4’, H-5’’ and H-6’’), 3.91-3.82 (overlapping, 2H; H-8’’ 

and H-9a’’), 3.63-3.57 (overlapping, 2H; H-7a and H-9b’’), 3.47 (d app, J7’’ ,8’’=  9.4, 1H; H-

7’’),3.37–3.31 (m, 1H; H-7b’),2.40 (dd, J3a’’,4’’=  4.9, J3a’’,3b’’=  13.2 Hz, 1H; H-3a’’),1.95-1.69 

(overlapping, 4H; H-5a’, H-5b’, H-6a’ and H-6b’), 1.66 ppm (dd, J3b’’,4’’=  11.2, J3a’’,3b’’=  13.2 Hz, 

1H; H-3b’’). 13C NMR (D2O): δ = 176.1(C-1’’), 166.9 (C-4), 160.4 (1C, JC,F = 26.6 Hz, 

COCF2CF2CF3), 158.3 (C-2), 142.2 (C-6), 120.9-107.0 (3C, COCF2CF2CF3), 100.6 (C-2’’), 97.1 

(C-5), 91.0 (C-1’), 84.0(C-4’), 74.6 (C-2’), 73.6 (C-3’), 70.8 (C-8’’), 70.0 (C-6’’), 69.1 (C-7’’), 67.0 

(C-4’’), 64.3 (C-9’’), 63.2(C-7’), 53.8 (C-5’’) 41.0 (C-3’’), 30.1 (C-5’or C-6’), 25.9 (C-6’ or C-5’). 
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ppm; MS (ESI negative) m/z 715.2[M-H]-, 737.4[M-2H+Na]-. Elemental analysis calcd (%) for 

C24H31F7N4O13: C 40.23, H 4.36, N 7.82; found C 40.60, H 4.13, N 7.30. 
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Synthesis of compound 3d via 3 step deprotection and preparative HPLC purification. 
 

 
 
Step 1: Starting from 13b, (352 mg, 0.40 mmol) according to the general deprotection 

procedurestep 1, the de-acetonide compound of 13b (255 mg 76%) was obtained, after flash 

chromatography (eluiting with AcOEt/MeOH 85:15), as a white solid and showing: :m.p. 132-

134°C; [α]D 
20 = -24.1 (c = 1 in MeOH); 1H NMR (CD3OD): δ 8.08 (d, J6,5=  7.4 Hz, 1H; H-6), 7.49 

(d, J5,6 = 7.4 Hz, 1H; H-5), 5.85 (d, J1’,2’ = 1.4, 1H; H-1’), 5.47-5.41 (m, 1H; H-8’’), 5.33 (d, J7’’ ,8’’=  

8.7 Hz, 1H; H-7’’), 4.96-4.84 (m, 1H; H4’’), 4.36-4.27 (overlapping, 2H; H-6’’ and H-9a’’), 4.18-

4.15 (m,1H; H-2’), 4.14-4.03(overlapping,3H; H-3’, H-4’ and H-9b’’), 4.02 (t app, J5’’,4’’  =  J5’’,6’’  = 

10.7 Hz, 1H; H-5’’) 3.90-3.80 (overlapping, 4H; H-7a’and COOCH3), 3.44-3.38 (m, 1H; H-7b’), 

2.71 (dd, J3a’’,4’’=  4.6, J3a’’,3b’’=  12.5 Hz, 1H; H-3a’’), 2.20 (s, 3H; NHCOCH3), 2.17 (s, 3H; 

CH3COO), 2.13 (s, 3H; CH3COO), 2.01 (s, 3H; CH3COO), 1.99 (s, 3H; CH3COO), 1.94-1.72 ppm 

(overlapping, 5H; H-5a’, H-5b’, H-6a’, H-6b’ and H-3b’’). MS (ESI positive) m/z:863.6[M+Na]+. 

Elemental analysis calcd (%) for C33H43F3N4O18: C 47.15, H 5.16, N 6.66, found C 47.66, H 5.20, 

N 6.40. 

 

 
 
Step 2: This intermediate (164 mg, 0.20 mmol) was deacetylated according to general 

deprotection procedure step 2 to afford, after flash cromatography, (eluiting with AcOEt/MeOH 

8:2), the intermediate metyl ester of3d (106 mg 84%) as white powered showing:m.p. 132-134°C; 

[α]D 
20 = -16.2 (c = 1 in MeOH); 1H NMR (CD3OD):δ 7.61 (d, J6,5=  7.3 Hz, 1H; H-6), 5.95 (d, J5,6 = 

7.3 Hz, 1H; H-5), 5.79 (br d, J1’,2’ = 1.7Hz 1H; H-1’), 4.09 (br s, 1H; H-2’), 3.99-3.91 (overlapping, 

2H; H-4’ and H-5’’), 3.90-3.80 (overlapping, 8H; H-3’, H-6’’, H-7a’, H-8’’, H-9a’’ and COOCH3), 

3.71 (ddd, J4’’,3a’’ = 4.6, J4’’,5’’ = 10.2, J4’’,3b’’ =12.4 Hz; 1H; H-4’’), 3.64 (dd, J9b’’,8’’=  5.9,J9a’’,9b’’=  
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11.9 Hz, 1H; H-9b’’),3.50-3.42 (overlapping, 2H; H-7a’ and H-7b’), 2.68 (dd, J3a’’,4’’ =  4.6,J3a’’, 3b’’= 

12.8 Hz, 1H; H-3a’’), 1.91-1.63 ppm (overlapping, 5H; H-5a’, H-5b’, H-6a’, H-6b’ and H-3b’’). 

MS (ESI negative) m/z:629.2[M-H]-. Elemental analysis calcd (%) for C23H33F3N4O13: C 43.81, H 

5.28, N 8.89, found C 43.94, H 5.40, N 8.72. 

 
 

 
 

 

Step 3: Finally, metyl ester of 3d (114 mg, 0.10 mmol) was deprotected according to generale 

deprotection procedure step 3(B) to afford the compaund 3d (96 mg 86%) as white powder after 

purification by HPLC-RP chromatography showing:m.p. 125-128°C; [α]D 
25 = -20.5 (c = 1 H2O); 1H 

NMR (D2O): δ = 8.12 (d, J6,5=  7.7 Hz, 1H; H-6), 6.18 (d, J5,6 = 7.7 Hz, 1H; H-5), 5.88 (d, J1’,2’ = 

3.9 Hz, 1H; H-1’), 4.34–4.29 (m, 1H; H-2’), 4.12–3.99 (overlapping, 3H; H-3’, H-4’ and H-5’’), 

3.96–3.84 (overlapping, 4H; H-6’’, H-7a’, H-8’’and H-9a’’), 3.85–3.68 (m, 1H; H-4’’), 3.64 (dd, 

J9b’’,8’’=  6.2,J9a’’,9b’’=  11.5 Hz, 1H; H-9b’’),3.59-3.50 (overlapping, 2H; H-7b’ and H-7’’), 2.81 (dd, 

J3a’’,4’’ =  4.6,J3a’’, 3b’’=  12.6 Hz, 1H; H-3a’’), 1.88–1.67 ppm (overlapping, 5H; H-5a’, H-5b’, H-6a’, 

H-6b’ and H-3b’’); MS (ESI negative) m/z: 629.1 [M-H]-. Elemental analysis calcd (%) for 

C23H33F3N4O13: C 43.81, H 5.28, N 8.89; found: C 45.76, H 5.10, N 8.96. 
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Synthesis of compound 3e via 3 step deprotection and preparative HPLC purification. 
 

 
 
Step 1: Starting from 13c, (392 mg, 0.40 mmol) according to the general deprotection 

procedurestep 1, the de-acetonide compound (271 mg 72%) was obtained, as white powder, after 

flash chromatography (eluiting with AcOEt/MeOH 85:15), showing:m.p. 122-124 °C; [α]D 
20 = -

14.9 (c = 1 in MeOH); 1H NMR (CD3OD): δ 8.06 (d, J6,5=  7.5 Hz, 1H; H-6), 7.46 (d, J5,6 = 7.5 Hz, 

1H; H-5), 5.83 (d, J1’,2’ = 2.5, 1H; H-1’), 5.41 (ddd, J8’’ ,9a’’ = 2.7, J8’’ ,9b’’= 5.2, J8’’, 7’’  = 8.9Hz, 1H; 

H-8’’), 5.29 (dd, J7’’ ,6’’ =  2.1,J7’’ ,8’’=  8.9 Hz, 1H; H-7’’), 4.96-4.88 (m, 1H; H4’’), 4.34 (dd, J6’’,7’’ =  

1.9 Hz,J6’’,5’’  = 10.7 Hz, 1H; H-6a’’), 4.29 (dd, J9a’’,8’’ =  2.7 Hz,J9a’’,8’’  = 12.5 Hz, 1H; H-9a’’), 4.15 

(dd, J2’,1’=  2.5,J2’,3’=  5.2 Hz,1H; H-2’), 4.09-4.00(overlapping,3H; H-4’, H-5’’ and H-9b’’), 3.88-

3.78 (overlapping, 5H; H-3’, H-7a’and COOCH3), 3.42-3.36 (m, 1H; H-7b’), 2.70 (dd, J3a’’,4’’=  4.7, 

J3a’’,3b’’=  12.7 Hz, 1H; H-3a’’), 2.18 (s, 3H; NHCOCH3), 2.15 (s, 3H; CH3COO), 2.11 (s, 3H; 

CH3COO), 1.99 (s, 3H; CH3COO), 1.96 (s, 3H; CH3COO), 1.91-1.69 ppm (overlapping, 5H; H-5a’, 

H-5b’, H-6a’, H-6b’ and H-3b’’); 13C NMR (MeOD): δ = 173.0 (1C, NHCOCH3 at C-4), 172.5, 

171.9, 171.5, 171.4 (4C, CH3COO), 169.5(C-1’’), 164.2 (C-4), 159.6 (1C, JC,F = 27 Hz, 

COCF2CF2CF3), 158.1 (C-2), 146.1 (C-6), 124.0-110.0 (3C, COCF2CF2CF3), 100.1 (C-2’’), 98.2 

(C-5), 93.8 (C-1’), 84.7 (C-4’), 76.4 (C-2’), 75.0 (C-3’), 72.4 (C-6’’), 72.3 (C-4’’), 70.5 (C-8’’), 

68.6 (C-7’’), 65.7 (C-7’), 63.5 (C-9’), 53.3 (COOCH3), 50.7 (C-5’’), 39.2 (C-3’’), 30.7 (C-5’), 27.5 

(C-6’), 24.6 (1C, NHCOCH3 at C-4), 21.3, 20.8, 20.7, 20.6 ppm (4C, CH3COO). MS (ESI positive) 

m/z:963.1[M+Na]+. Elemental analysis calcd (%) for C35H43F7N4O18: C 44.69, H 4.61, N 5.96, 

found C 44.66, H 4.73, N 6.03. 
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Step 2: This intermediate (188 mg, 0.20 mmol) was deaceytlated according to general 

deprotection procedure step 2to afford, after flash cromatography (eluiting with AcOEt/MeOH 

8:2), the intermediate metyl ester of 3e (126 mg 86%) as white powered showing:m.p. 125-127 

°C; [α]D 
20 = -11.1 (c = 1 in MeOH); 1H NMR (CD3OD): δ 7.61 (d, J6,5=  7.3 Hz, 1H; H-6), 5.94 (br 

d, J5,6 = 7.3 Hz, 1H; H-5), 5.78 (br s, 1H; H-1’), 4.09 (br s, 1H; H-2’), 4.03 (dd, J5’’,6’’ = J5’’,4’’ = 

10.2, 1H; H-5’’), 3.96-3.91 (m, 1H; H-4’), 3.90-3.79 (overlapping, 8H; H-3’, H-6’’, H-7a’, H-8’’, 

H-9a’’ and COOCH3), 3.81-3.72 (m, 1H; H-4’’), 3.69 (dd, J9b’’,8’’=  6.3,J9a’’,9b’’=  11.6 Hz, 1H; H-

9b’’),3.49-3.42 (overlapping, 2H; H-7b’ and H-7’’), 2.68 (dd, J3a’’,4’’ =  4.5,J3a’’, 3b’’=  12.7 Hz, 1H; H-

3a’’), 1.92-1.65 ppm (overlapping, 5H; H-5a’, H-5b’, H-6ª, H-6b and H-3b’’); 13C NMR (CD3OD): 

δ = 170.9 (C-1’’), 167.7 (C-4), 160.0 (1C, JC,F = 26 Hz, COCF2CF2CF3), 158.4 (C-2), 142.6 (C-6), 

124.0-110.0 (3C, COCF2CF2CF3), 100.3 (C-2’’), 96.3 (C-5), 92.8 (C-1’), 84.1 (C-4’), 75.9 (C-2’), 

75.0 (C-3’), 73.7 (C-6’’ or C-8’’), 72.8 (C-6’’ or C-8’’), 70.3 (C-7’’), 68.3 (C-4’’), 64.8 (C-7’or C-

9’’), 64.7 (C-7’or C-9’’), 54.1 (C-5’’), 53.3 (COOCH3), 41.9 (C-3’’), 30.7 (C-5’), 27.2 ppm (C-6’); 

MS (ESI positive) m/z: 753.6 [M+Na]+. Elemental analysis calcd (%) for C25H33F7N4O13: C 41.10, 

H 4.55, N 7.67; found C 41.19, H 4.61, N 7.59. 

 

 
 

Step 3: Finally methyl ester of3e (130 mg, 0.10 mmol) was deprtected according to generale 

deprotection procedure step 3(A) to afford  3e (108 mg, 84%) as white powder after purification 

with HPLC-RP cromatography in according with general procedure step 4. The compound 3a 

showed: [α]D 
25 = -11.3 (c = 1 H2O);1H NMR (D2O): δ = 8.05 (d, J6,5=  7.5 Hz, 1H; H-6), 6.09 (br d, 

J5,6 = 7.5 Hz, 1H; H-5), 5.90 (d, J1’,2’ = 3.8 Hz, 1H; H-1’), 4.36–4.26  (m, 1H; H-2’), 4.12–3.99 

(overlapping, 3H; H-3’, H-4’ and H-5’’), 3.97–3.82 (overlapping, 4H; H-6’’, H-7a’, H-8’’and H-

9a’’), 3.81–3.72 (m, 1H; H-4’’), 3.64 (dd, J9b’’,8’’=  6.3,J9a’’,9b’’=  11.5 Hz, 1H; H-9b’’),3.59-3.50 

(overlapping, 2H; H-7b’ and H-7’’), 2.79 (dd, J3a’’,4’’ =  4.8,J3a’’, 3b’’=  12.6 Hz, 1H; H-3a’’), 1.92–

1.67 ppm (overlapping, 5H; H-5a’, H-5b’, H-6a’, H-6b’ and H-3b’’); 13C NMR (D2O): δ = 176.6 

(C-1’’), 166.3 (C-4), 159.8 (1C, JC,F = 26 Hz, COCF2CF2CF3), 157.7 (C-2), 141.5 (C-6), 120.0-

110.0 (3C, COCF2CF2CF3), 100.8 (C-2’’), 96.4 (C-5), 90.2 (C-1’), 83.4 (C-4’), 74.0 (C-2’), 73.0 

(C-3’), 72.1 (C-6’’ or C-8’’), 71.9 (C-6’’ or C-8’’), 68.4 (C-7’’), 68.1 (C-4’’), 64.5 (C-7’), 62.6 (C-

9’’), 53.0 (C-5’’), 40.6 (C-3’’), 29.3 (C-5’), 25.5 ppm (C-6’); MS (ESI negative) m/z: 715.3 [M-H]-; 
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elemental analysis calcd (%) for C24H31F7N4O13: C 40.23, H 4.36, N 7.82; found: C 40.39, H 4.24, 

N 7.85. 
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5.3.6 General procedure of 1,7 lactonization reaction 

 
Triethylamine (1.24 mmol) was added to a stirred solution of starting material 3b-c or 17 (0.10 

mmol) in THF-DMF mixture (1.5 mL and 1 mL), stirring the solution at 0 °C, for 5 min. Then, 

CbzCl (0.14 ml, 0.98 mmol), dissolved in THF (1 mL), was added dropwise and the mixture was 

stirred at 23 °C, for 1 h. Then, the reaction MeOH (1.5 mL) was added and the stirring was 

continued for 15 min. After evaporation of the solvent under high vacuum (0.1 mmHg), a crude 

residue was obtained which, after purification by flash chromatography afforded the pure lactone 18 

and 4b-c. 
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Synthesis of compound 4a. 

  

 
 

The compound 12a (165 mg) was treated with the general deprotection procedurestep 2 and step 

3(C) to afford, the compound 17 (95 mg 79%) as white solid showing: [α]D
20 = +39.1.1 (c = 1, 

H2O). 1H NMR (D2O): δ = 7.64 (d, J6,5=  7.5 Hz, 1H; H-6), 6.02 (d, J5,6 = 7.5 Hz, 1H; H-5), 5.81 (d, 

J1’,2’ = 2.1 Hz; 1H; H-1’), 5.09 (dd, J2’,1’ = 2.1, J2’,3’ = 6.5 Hz, 1H; H-2’), 4.73-4.64 (m, 1H; H-3’), 

4.16-4.11 (m, 1H; H-4’), 4.07 (dd, J4’’,3a’’ =  4.9, J4’’, 5’’ = 10.4 J4’’, 3b’’ =  10.8, Hz, 1H; H-4’’) 3.91-

3.77(overlapping,4H; H-5’’, H-6’’, H-8’’and H-9a’’), 3.66 (dd, J9b’’,8’’=  5.6,J9a’’,9b’’=  12.1 Hz, 1H; 

H-9b’’), 3.56–3.50 (overlapping, 2H; H-7a’ and H-7’’), 3.36–3.29 (m, 1H; H-7b’), 2.37 (dd, 

J3a’’,4’’ =  4.8,J3a’’, 3b’’=  13.0 Hz, 1H; H-3a’’), 2.04 (s, 3H; NHCOCH3), 1.84-1.77 (overlapping, 2H; 

H-5a’and H-5b’), 1.72-1.61 ppm (overlapping, 3H; H-6a’, H-6b’ and H-3b’’). 13C NMR (D2O): δ= 

178.1(C-1’’), 175.4 (1C, NHCOCH3), 167.1 (C-4), 157.8 (C-2), 143.7 (C-6), 115.6 (C(CH3)2), 

100.5 (C-1’’), 96.7 (C-5), 91.2 (C-1’), 86.9 (C-4’), 85.0 (C-2’), 83.7 (C-3’), 70.8 (C-6’’), 70.7 (C-

8’’), 69.0 (C-7’’), 67.8 (C-4’’), 64.2 (C-9’’), 63.0 (C-7’), 52.8 (C-5’’), 40.7 (C-3’’), 30.2 (C-5’), 

26.6 (C-6’), 25.7 (C(CH3)2 ), 25.1 (C(CH3)2), 22.8 (1C, NHCO CH3); MS (ESI negative) 

m/z:601.4[M-H]-. Elemental analysis calcd (%) forC25H38N4O13: C 49.83, H 6.36, N 9.30; found C 

49.89, H 6.14, N 9.10. 
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The intermediate compound 17 (60 mg, 0.10 mmol), according to general procedure of1,7 

lactonization, is transformed to pure lactone 18 (41 mg 70%)after purification with flash 

chromatography (eluiting with AcOEt/MeOH 80:20 v/v). Compaund 18 showed:[α]D = +23.1 (c = 

1, CH3OH). 1H NMR (CD3OD): δ = 7.63 (d, J6,5= 7.5 Hz, 1H, H-6), 5.91 (d, J5,6 = 7.5 Hz, 1H, H-5), 

5,77 (d, J1’,2’ = 2.3Hz, 1H, H-1’), 4.95 (dd, J2’,1’ = 2.3, J2’,3’ = 6.5 Hz, 1H, H-2’),4.63 (dd, J3’,4’ = 4.8, 

J3,’2’ = 6.5 Hz, 1H, H-3’), 4.58 (br s, 1H, H-6’’), 4.46 (dd, J7’’,6’’  = 1.0, J7’,8’ = 7.8 Hz, 1H, H-7’’), 

4.07-4.04 (m, 1H, H-4’’), 4.04-3.99 (m, 1H, H-4’), 3.97 (br d, J5’’,4’  = 1.2 Hz,1H, H-5’’), 3.82-3.69 

(overlapping, 4H, H-7a’’, H-8’’, H-9a’’and H-9b’’), 3.48-3.42 (m, 1H, H-7b’), 2.12 (dd, J3a’’,4’’ =  

3.3,J3a’’,3b’’=  14.1 Hz, 1H, H-3a’’), 2.06 (dd, J3b’’,4’’ =  2.1, J3b’’,3a’’=  14.1 Hz, 1H, H-3b’’), 2.02 (s, 

3H, NHCOCH3),1.84-1.78 (overlapping, 2H, H-5a’and H-5b’), 1.74-1.66 (overlapping, 2H, H-6a’ 

and H-6b’’), 1.55 (s, 3H, C(CH3 )2), 1.35 ppm (s,3H, C(CH3 )2);
13C NMR (CD3OD): δ = 173.0 (1C, 

NHCOCH3), 170.3 (C-1’’), 168.0 (C-4), 158.0 (C-2), 144.5 (C-6), 115.5(1C, C(CH3 )2), 96.3 (C-5), 

96.1(C-2’’), 94.7 (C-1’), 87.6 (C-4’), 86.2 (C-2’), 85.3 (C-3’), 79.8 (C-7’’), 73.2 (C-8’’), 72.1 (C-

6’’), 67.7 (C-4’’), 64.7 (C-7’), 63.6 (C-9’’), 52.8 (C-5’’), 38.0 C-3’’), 31.0 (C-5’), 27.7 (C-6’), 

27.0(1C,C(CH3 )2), 25.7(1C,C(CH3 )2), 22.5(1C, NHCOCH3) ppm.MS (ESI negative) m/z 583.1[M-

H]-, 605.2[M-2H+Na]-. Elemental analysis calcd (%) forC25H36N4O12: C 51.37, H 6.21, N 9.58; 

found C 51.28, H 6.29, N 9.61. 

 

 

The compound 18 (50 mg 0.09 mmol ) was dissolve in 200 µL of water and it was  treated with a 

solution of CF3COOH aq at 95% v/v (8 µL 0.10 mmol) under stirred, for 30 minute at room 

temperature. Then the reaction is neutrlizzed by the added of Amberlite IRA-67, filtered and 

evaporated in vacuo. The crude reaction was purified by HPLC-RP according to the general 

procedure of deprotection step 4, to afford as first eluate the pure compound 4a (30 mg 65%) and 

3a as second eluate (5 mg 10%). 

Compaund 4a showed: [α]D 
20 = +31.0 (c = 1 in MeOH). 1H NMR (CD3OD):δ= 7.60 (d, J6,5=  7.5 

Hz, 1H; H-6), 5.91 (d, J5,6 = 7.5 Hz, 1H; H-5), 5.77 (d, J1’,2’ = 3.3 Hz, 1H; H-1’), 4.56 (br s, 1H; H-

6’’), 4.44 (d app, J7’’ ,8’’=  7.8, 1H; H-7’’), 4.11-4.08 (m,1H; H-2’), 4.05-4.02 (m, 1H; H-4’’), 3.96-

3.94 (m, 1H; H-4’), 3.94-3.84 (m, 1H; H-5’’), 3.84–3.68 (overlapping, 5H; H-3’, H-7a’, H-8’’, H-

9a’’ and H-9b’’), 3.50–3.43 (m, 1H; H-7b’), 2.10 (dd, J3a’’,4’’=  3.4, J3a’’,3b’’=  14.1 Hz, 1H; H-3a’’), 

2.05 (dd, J3b’’,4’’=  2.1, J3b’’,3a’’=  14.2 Hz, 1H; H-3b’’), 1.88-1.69 (overlapping, 4H; H-5a’, H-5b’, H-

6a’ and H-6b’). MS (ESI positive) m/z: 567.1 [M+Na]+. Elemental analysis calcd (%) for 

C22H32F3N4O12: C 48.53, H 5.92, N 10.29; found C 48.69, H 5.76, N 10.01. 
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Compaund 3a showed:  δ = 7.62 (d, J6,5=  7.5 Hz, 1H; H-6), 6.01 (d, J5,6 = 7.5 Hz, 1H; H-5), 5.87 (d, 

J1’,2’ = 3.9 Hz; 1H; H-1’), 4.31 (t app, J2’,1’ = 3.9, J2’,3’ = 5.4 Hz, 1H; H-2’), 4.11-4.06 (overlapping, 

2H; H-4’and H-4’’), 4.02 (t app, J3’, 2’=  5.4 Hz, 1H; H-3’), 3.97-3.82(overlapping,4H; H-5’’, H-6’’, 

H-8’’and H-9a’’), 3.71 (dd, J9b’’,8’’=  5.4,J9a’’,9b’’=  11.7 Hz, 1H; H-9b’’), 3.62–3.56 (m, 1H; H-7a’), 

3.53 (d, J7’’,8’’ =  9.4Hz, 1H; H-7’’), 3.38–3.30 (m, 1H; H-7b’), 2.37 (dd, J3a’’,4’’ =  4.8,J3a’’, 3b’’=  12.9 

Hz, 1H; H-3a’’), 2.05 (s, 3H; NHCOCH3), 1.94-1.86 (m, 1H; H-5a’), 1.82-1.69 (overlapping, 3H; 

H-5b’, H-6a’ and H-6b’), 1.63 ppm (t app, J3b’’, 3a’’=  12.9 Hz, 1H; H-3b’’). MS (ESI negative) 

m/z:561.1[M-H]-. All other physicochemical properties practically are superimposable to those 

previously reported for the same compound. 
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Synthesis of compound 4b.     

O O

OH

NHCOCF3

O O

HO

HO

N

NO

NH2

O

OHOH
4b

 
 
Starting from compound 3b (61 mg, 0.10) and operating according to 1,7 lactonizatio nprocedure, 

the compound 4b (42mg 70%) was obtained in pure form, after flash cromatagaphy (eluiting with: 

AcOEt/MeOH 85:15). The compound 4b showed: m.p. 123-124 °C; [α]D 
20 = +19.1 (c = 1 in 

MeOH). 1H NMR (CD3OD):δ= 7.62 (d, J6,5=  7.5 Hz, 1H; H-6),  5.96 (d, J5,6 = 7.5 Hz, 1H; H-5), 

5.80 (d, J1’,2’ = 3.5 Hz, 1H; H-1’),4.67 (br s, 1H; H-6’’),4.47 (d app, J7’’ ,8’’=  7.9, 1H; H-7’’),4.14-

4.08(overlapping, 2H; H-2’ and H-4’’), 4.00 (br s, 1H; H-5’’), 3.95-3.90 (m, 1H; H-4’), 3.86–3.75 

(overlapping, 4H; H-3’, H-7a’, H-8’’and H-9a’’), 3.75-3.69 (m, 1H; H-9b’’),3.49–3.42 (m, 1H; H-

7b’),2.16 (dd, J3a’’,4’’=  3.5, J3a’’,3b’’=  14.2 Hz, 1H; H-3a’’), 2.07 (dd, J3b’’,4’’=  1.5, J3b’’,3a’’=  14.2 Hz, 

1H; H-3b’’),1.89-1.61 (overlapping, 4H; H-5a’, H-5b’, H-6a’ and H-6b’).13C NMR (MeOD): δ = 

170.1(C-1’’), 167.6 (C-4), 159.0(1C, JC,F = 38 Hz, COCF3), 158.6 (C-2), 142.5 (C-6), 117.3 (1C, 

COCF3),96.5 (C-5), 96.1 (C-2’’), 92.5 (C-1’), 84.4(C-4’), 79.7 (C-7’’), 76.0 (C-2’), 74.9 (C-3’), 

73.0 (C-8’’), 71.3 (C-6’’), 67.0 (C-4’’), 65.0 (C-7’), 63.5 (C-9’’), 53.8 (C-5’’), 38.0 (C-3’’), 30.9 

(C-5’or C-6’), 27.2 (C-6’ or C-5’). MS (ESI positive) m/z:621.2 [M+Na]+ . Elemental analysis calcd 

(%) for C22H29F3N4O12: C 44.15, H 4.89, N 9.36; found C 44.71, H 4.65, N 9.10. 
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Synthesis of compound 4c. 
 

 

O O

OH
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Starting from compound 3c (72 mg, 0.10 mmol) and operating according to 1,7 lactonization 

procedure, the compound 4c (50 mg, 71%) was obtained in pure form, after flash cromatagaphy 

(eluiting with: AcOEt/MeOH 85:15). The compound 4c showed: [α]D 
20 = - 42.9 (c = 1 in 

MeOH).1H NMR (CD3OD): δ = 7.60 (d, J6,5=  7.5 Hz, 1H; H-6), 5.92 (d, J5,6 = 7.5 Hz, 1H; H-5), 

5.77 (d, J1’,2’ = 3.3 Hz, 1H; H-1’),4.68 (br s, 1H; H-6’’),4.46 (d app, J7’’ ,8’’=  8.0, 1H; H-7’’), 4.13-

4.07 (overlapping, 2H; H-2’ and H-4’’), 4.04 (br s, 1H; H-5’’), 3.94-3.88 (m, 1H; H-4’), 3.84-3.75 

(overlapping, 4H; H-3’, H-7a’, H-8’’and H-9a’’), 3.74-3.70 (m, 1H; H-9b’’), 3.48-3.43 (m, 1H; H-

7b’) 2.15 (dd, J3a’’,4’’=  3.4, J3a’’,3b’’=  14.2 Hz, 1H; H-3a’’), 2.07 (dd, J3b’’,4’’=  2.3, J3b’’,3a’’=  14.2 Hz, 

1H; H-3b’’), 1.89-1.68 (overlapping, 4H; H-5a’, H-5b’, H-6a’ and H-6b’). 13C NMR (MeOD): δ = 

170.0(C-1’’), 167.6 (C-4), 159.4(1C, JC,F = 27 Hz, COCF2CF2CF3), 158.5 (C-2), 142.6 (C-6), 

120.1-109.3 (3C, COCF2CF2CF3),96.4 (C-5), 96.1 (C-2’’), 92.6 (C-1’), 84.3 (C-4’), 79.7 (C-7’’), 

76.0 (C-2’), 74.9 (C-3’), 73.0 (C-8’’), 71.3 (C-6’’), 66.9 (C-4’’), 65.0 (C-7’), 63.5 (C-9’’), 54.1 (C-

5’’), 38.0 (C-3’’), 30.9 (C-5’or C-6’), 27.2 (C-6’ or C-5’); MS (ESI positive) m/z: 721.1 [M+Na]+. E 

lemental analysis calcd (%) for C24H29F7N4O12: C 41.27, H 4.18, N 8.02; found C 41.11, H 4.39, N 

8.13. 
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5.3.7 General procedure to synthesize peracetylated compounds 5a-c and 5e. 

 

Step 1: General procedure of actonide deprotection  

To a solution of appropriate 12a-c and 13c (0.4 mmol) in dichloromethane (5mL) moist TFA (0.6 

mmol) was added and the mixture was stirred for 30 minutes or 1 houer at reflux. Then the mixture, 

treted with weak basic resin IRA 67, was filtered and evaporated in vacuo to give a syrup, which 

was purified by chromatography on silica gel, to afford the desired deprotected intermediate. 

 

Step 2: General procedure of acetylation 

The de-acetonide compounds of 12a-c or 13c (0.2 mmol) was dissolved in pyridine (2 ml) and, to 

this solution, was added acetic anhydride (1.6 mmol). Then the reaction was stirred for 3h at 23°C. 

At this time, the reaction mixture was diluted with AcOEt, washed with aqueous HCl (1 M) and 

worked-up, to afford, after purification by flash chromatography the desiderated peracetylated 

compaunds.  
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Synthesis of compound 5a 
 

 
 
Step 1: Starting from 12a, (331 mg, 0.4 mmol) according to the general procedure to obtain 

peracetylated compound step 1, the de-acetonide compound of 12a was obtained, after flash 

chromatography (eluiting with AcOEt/MeOH 9:1) as white powder (242 mg 77%). This compound 

showed: 1H NMR (MeOD): δ = 8.02 (d, J6,5=  7.4 Hz, 1H; H-6), 7.40 (d, J5,6 = 7.4 Hz, 1H; H-5), 

5.83 (d, J1’,2’ = 2.5, 1H; H-1’), 5.41 (dd, J7’’ ,6’’ =  2,2,J7’’ ,8’’=  4.1 Hz, 1H; H-7’’), 5.30–5.25 (m, 1H; 

H-8’’), 5.26–5.22 (m, 1H; H-4’’), 4.80 (dd, J9a’’,8’’ =  2.4 Hz,J9a’’,8’’  = 12.4 Hz, 1H; H-9a’’), 4.20 (dd, 

J2’,1’=  2.5,J2’,3’=  5.2 Hz,1H; H-2’), 4.18–4.07(overlapping,2H; H-6’’and H-9b’’), 4.06–4.02 (m, 

1H; H-4’), 3.95 (t, J5’’ ,4’’ =J5’’ ,6’’ =  10.3 Hz, 1H; H-5’’), 3.86 (dd, J3’,2’= 5.2, J3’,4’=  7.1 Hz, 1H; H-

3’),3.80 (s, 3H; COOCH3) 3.66–3.59 (m, 1H; H-7a’), 3.47-3.41 (m, 1H; H-7b’), 2.47 (dd, J3a’’,4’’=  

5.0, J3a’’,3b’’=  13.0 Hz, 1H; H-3a’’), 2.19 (s, 3H; NHCOCH3 at C-4), 2.11 (s, 3H; OCOCH3), 2.04–

1.96 (overlapping, 11H; 3 X OCOCH3, H-5a’ and H-5b’), 1.90–1.81 (overlapping, 5H; NHCOCH3 

at C-5’’, H-6a’ and H-6b’), 1.79 ppm (dd, J3b’’, 4’’ =  11.5, J3b’’,3a’’=  13.0 Hz, 1H; H-3b’’). MS (ESI 

positive) m/z:809.1[M+Na]+. All other physicochemical properties are practically superimposable to 

those previously reported for the same compound. 

 

 
 
Step 2: The de-acetonide compound of 12a (157 mg, 0.2 mmol) was treated, according to the 

general procedure to obtain peracetylated compound step 2, for affording the compound 5a 

(159 mg, 91%) after flash chromatography (eluiting with AcOEt/MeOH 99:1) as white solid 

showing:[α]D 
20 = +32.1 (c = 1 CH3OH). 1H NMR(CD3OD) δ = 8.02 (d, J6,5=  7.5 Hz, 1H; H-6), 

7.47 ( d, J5,6 = 7.5 Hz, 1H; H-5), 5.91 (d, J1’,2’ = 3.8 Hz, 1H; H-1’), 5.57 (dd, J2’,1’ = 3.8, J2’,3’= 5.9 



95 

 

Hz, 1H; H-2’), 5.41 (dd, J7’’,6’’ =  2.0, J7’’ ,8’’=  4.0 Hz, 1H; H-7’’), 5.30-5.24 (overlapping 2H; H-3’ 

and H-8’’), 5.21 (ddd, J4’’ ,3a’’ = 4.9,J4’’ ,5’’= 10.5, J4’’, 3b’’  = 11.4Hz, 1H; H-4’’), 4.80 (dd, J9a’’,8’’ =  

2.3,J9a’’,9b’’  = 12.3 Hz, 1H; H-9a’’), 4.21-4.15 (m, 1H; H-4’),4.12-4.06 (overlapping, 2H; H-6’’ and 

H-9b’’) 3.97 (dd, J5’’,4’’ =10.5, J5’’,6’’  = 10.4, 1H; H-5’’), 3.80 (s, 3H; COOCH3), 3.64–3.57 (m, 1H; 

H-7a’), 3.49-3.39 (m, 1H; H-7b’), 2.45 (dd, J3a’’,4’’=  4.9, J3a’’,3b’’=  12.9 Hz, 1H; H-3a’’), 2.19 (s, 

3H; NHCOCH3 at C-4), 2.11 (s, 6H; 2X OCOCH3), 2.09 (s, 3H; OCOCH3) 2.02 (s, 6H; 2X 

OCOCH3), 1.98 (s, 3H; OCOCH3), 1.96-1.87 (overlapping, 2H; H-5a’ and H-5b’) 1.85 (s, 3H; 

OCOCH3), 1.83-1.57 ppm (overlapping, 3H; H-6a’, H-6b’ and H-3b’’). MS (ESI positive) 

m/z:893.5[M+Na]+. Elemental analysis calcd (%) for C37H50F7N4O20: C 51.03, H 5.79, N 6.43; 

found C 51.23, H 5.56, N.6.32. 
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Synthesis of compound 5b 
 

 
 
Step 1: Starting from 12b, (352 mg, 0.40 mmol) according to the general procedure to obtain 

peracetylated compound step 1, the de-acetonide compound of 12b was obtained, after flash 

chromatography (eluiting with AcOEt/Exane 9:1) as white powder (266 mg 79%). This compounds 

showed: 1H NMR (CD3OD): δ= 8.02 (d, J6,5=  7.5 Hz, 1H; H-6),7.47 ( d, J5,6 = 7.5 Hz, 1H; H-

5),5.83 (d, J1’,2’ = 2.0 Hz, 1H; H-1’), 5.39 (dd, J7’’,6’’ =  2.0, J7’’ ,8’’=  4.2 Hz, 1H; H-7’’), 5.38-5.29 

(overlapping, 2H; H-4’’ and H-8’’), 4.78 (dd, J9a’’,8’’ =  2.1,J9a’’,9b’’  = 12.2 Hz 1H; H-9a’’), 4.28 (dd, 

J6’’,7’’ =  2.0, J6’’,5’’ =  9.5 Hz, 1H; H-6’’), 4.18 (dd, J2’,1’ = 2.0, J2’,3’= 4.9 Hz, 1H; H-2’), 4.12 (dd, 

J9b’’,8’’ =  7.4,J9a’’,9b’’  = 12.2 Hz 1H; H-9b’’),4.05-3.96 (overlapping, 2H; H-4’ and H-5’’), 3.87-3.77 

(overlapping, 4H; H-3’ and COOCH3),3.67–3.59 (m, 1H; H-7a’),3.48-3.42 (m, 1H; H-7b’),2.51 (dd, 

J3a’’,4’’=  4.9, J3a’’,3b’’=  12.9 Hz, 1H; H-3a’’),2.16 (s, 3H; NHCOCH3 at C-4),2.12 (s, 3H; 

OCOCH3),2.03 (s, 3H; OCOCH3),2.02 (s, 3H; OCOCH3),1.97 (s, 3H; OCOCH3),1.92-1.75 

(overlapping, 5H; H-5a’, H-5b’, H-6a’, H-6b’ and H-3b’’) . MS (ESI positive) m/z:863.3[M+Na]+. 

All other physicochemical properties are practically superimposable to those previously reported for 

the same compound. 

 

 

 

 
 
Step 2: The de-acetonide compound of 12b (168 mg, 0.20) was treated, according to the general 

procedure to obtain peracetylated compounds step 2, for affording the compound 5b (164.5 mg 89 

%), after flash chromatography (eluiting with AcOEt/hexane 9:1) as white solid showing: m.p. 130-

131 °C; [α]D 
20 = +21.3 (c = 1 CH3OH);1H NMR(CD3OD) δ= 8.02 (d, J6,5=  7.5 Hz, 1H; H-6), 7.47 ( 
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d, J5,6 = 7.5 Hz, 1H; H-5), 5.91 (d, J1’,2’ = 3.8 Hz, 1H; H-1’), 5.51 (dd, J2’,1’ = 3.8, J2’,3’= 6.0 Hz, 

1H; H-2’), 5.38 (dd, J7’’,6’’ =  2.1, J7’’ ,8’’=  4.5 Hz, 1H; H-7’’), 5.35-5.27 (overlapping 2H; H-4’’ and 

H-8’’), 5.25 (t app, J3’,2’ = J4’’ ,5’’= 6.0 Hz, 1H; H-3’), 4.77 (dd, J9a’’,8’’ =  2.5,J9a’’,9b’’  = 12.4 Hz, 1H; 

H-9a’’), 4.27 (dd, J6’’ ,7’’=  1.9, J6’’ ,5’’=  10.4 Hz, 1H; H-6’’), 4.21-4.15 (m, 1H; H-4’), 4.14-4.06 (m, 

1H; H-9b’’), 3.99 (dd, J5’’,4’’ =10.3, J5’’,6’’  = 10.4, 1H; H-5’’), 3.81 (s, 3H; COOCH3), 3.64–3.57 (m, 

1H; H-7a’), 3.47-3.40 (m, 1H; H-7b’), 2.49 (dd, J3a’’,4’’=  5.0, J3a’’,3b’’=  13.0 Hz, 1H; H-3a’’), 2.18 

(s, 3H; NHCOCH3 at C-4), 2.12 (s, 3H; OCOCH3), 2.10 (s, 3H; OCOCH3), 2.09 (s, 3H; OCOCH3) 

2.03 (s, 3H; OCOCH3), 2.01 (s, 3H; OCOCH3), 1.96 (s, 3H; OCOCH3), 1.96-1.72 (overlapping, 5H; 

H-5a’, H-5b’, H-6a’, H-6b’ and H-3b’’). MS (ESI positive) m/z:947.6 [M+Na]+. Elemental analysis 

calcd (%) for C37H47F3N4O20: C 48.05, H 5.12, N 6.06; found C 48.18, H 5.40, N.6.38 
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Synthesis of compound 5c 
 
 

 
 
Step 1: Starting from 12c, (392 mg, 0.40 mmol) according to the general procedure to obtain 

peracetylated compound step 1, the de-acetonide compound of 12c (297 mg 79%) was obtained, 

after flash chromatography (eluiting with AcOEt/MeOH 9:1) as white powder. This compounds 

showed: 1H NMR (CD3OD): δ= 8.04 (d, J6,5=  7.4 Hz, 1H; H-6), 7.37 (d, J5,6 = 7.4 Hz, 1H; H-5), 

5.83 (d, J1’,2’ = 2.6 Hz, 1H; H-1’), 5.41-5.27 (overlapping, 3H; H-7’’, H-4’’ and H-8’’), 4.76 (dd, 

J9a’’,8’’ =  2.3,J9a’’,8’’  = 12.4 Hz, 1H; H-9a’’), 4.30 (d app, J6’’,5’’ =  10.4 Hz, 1H; H-6’’), 4.19 (dd, J2’,1’ 

= 2.6, J2’,3’= 5.0 Hz, 1H; H-2’), 4.14-4.00 (overlapping, 3H; H-4’, H-5’’ and H-9b’’), 3.87 (dd, 

J3’,2’= 5.0, J3’,4’ = 6.5 Hz, 1H; H-3’), 3.80 (s, 3H; COOCH3), 3.67–3.59 (m, 1H; H-7a’), 3.48-3.41 

(m, 1H; H-7b’), 2.53 (dd, J3a’’,4’’=  4.7, J3a’’,3b’’=  12.9 Hz, 1H; H-3a’’), 2.19 (s, 3H; NHCOCH3 at C-

4), 2.12 (s, 3H; OCOCH3), 2.04 (s, 3H; OCOCH3), 2.01 (s, 3H; OCOCH3), 1.96 (s, 3H; OCOCH3), 

1.92-1.76 ppm (overlapping, 5H; H-5a’, H-5b’, H-6a’, H-6b’ and H-3b’’); MS (ESI positive) 

m/z:963.4[M+Na]+. All other physicochemical properties are practically superimposable to those 

previously reported for the same compound. 

O
COOCH3

O
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C3F7COHN
AcO

OAcAcO

N

NO

O

AcO OAc

NHAc

5c  
 
 

Step 2: The de-acetonide compound of 12c (188 mg, 0.20 mmol) was treated, according to the 

general procedure to obtain peracetylated compound step 2,affording the compound 5c (182.4 

mg 89 %), after flash chromatography (eluiting with AcOEt/hexane 9:1) as white solid showing: 

[α]D 
20 = +21.3 (c = 1 CH3OH). 1H NMR(CD3OD) δ= 8.02 (d, J6,5=  7.5 Hz, 1H; H-6), 7.47 ( d, J5,6 

= 7.5 Hz, 1H; H-5), 5.91 (d, J1’,2’ = 3.8 Hz, 1H; H-1’), 5.54 (dd, J2’,1’ = 3.8, J2’,3’= 6.0 Hz, 1H; H-

2’), 5.36 (dd, J7’’,6’’ =  2.0, J7’’ ,8’’=  4.5 Hz, 1H; H-7’’), 5.35-5.27 (overlapping 2H; H-4’’ and H-8’’), 

5.25 (t app, J3’,2’ = J4’’ ,5’’= 6.0 Hz, 1H; H-3’), 4.76 (dd, J9a’’,8’’ =  2.5,J9a’’,9b’’  = 12.4 Hz, 1H; H-9a’’), 
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4.29 (dd, J6’’ ,7’’=  1.1, J6’’ ,5’’=  10.6 Hz, 1H; H-6’’), 4.22-4.15 (m, 1H; H-4’),4.11 (dd, , J9b’’,8’’ =  7.3, 

J9b’’,9a’’  = 12.4 Hz, 1H; H-9a’’1H; H-9b’’), 4.05 (dd, J5’’,4’’ =10.3, J5’’,6’’  = 10.6, 1H; H-5’’), 3.80 (s, 

3H; COOCH3), 3.64–3.57 (m, 1H; H-7a’), 3.46-3.40 (m, 1H; H-7b’), 2.51 (dd, J3a’’,4’’=  5.0, 

J3a’’,3b’’=  13.0 Hz, 1H; H-3a’’), 2.18 (s, 3H; NHCOCH3 at C-4), 2.12 (s, 3H; OCOCH3), 2.10 (s, 

3H; OCOCH3), 2.09 (s, 3H; OCOCH3) 2.03 (s, 3H; OCOCH3), 2.02 (s, 3H; OCOCH3), 1.95 (s, 3H; 

OCOCH3), 1.93-1.73 ppm (overlapping, 5H; H-5a’, H-5b’, H-6a’, H-6b’ and H-3b’’). MS (ESI 

positive) m/z:1047.2[M+Na]+. Elemental analysis calcd (%) for C39H47F7N4O20: C 45.71, H 4.62, N 

5.47; found C 45.11, H 4.75, N.5.23. 
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 Synthesis of compound 5e 
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Step 1: Starting from 13c, (392 mg, 0.40mmol) according to the general procedure to obtain 

peracetylated compound step 1, the de-acetonide compound of 13c (275 mg 74%) was obtained, 

after flash chromatography (eluiting with AcOEt/MeOH 9:1) as white powder. This compounds 

showed: 1H NMR (CD3OD): δ 8.06 (d, J6,5=  7.5 Hz, 1H; H-6), 7.46 (d, J5,6 = 7.5 Hz, 1H; H-5), 5.82 

(d, J1’,2’ = 2.5, 1H; H-1’), 5.41 (ddd, J8’’ ,9a’’ = 2.7, J8’’ ,9b’’= 5.2, J8’’, 7’’  = 8.9Hz, 1H; H-8’’), 5.29 

(dd, J7’’ ,6’’ =  1.8,J7’’ ,8’’=  8.9 Hz, 1H; H-7’’), 4.96-4.88 (m, 1H; H4’’), 4.34 (dd, J6’’,7’’ =  1.8 Hz,J6’’,5’’  

= 10.7 Hz, 1H; H-6a’’), 4.29 (dd, J9a’’,8’’ =  2.7 Hz,J9a’’,8’’  = 12.5 Hz, 1H; H-9a’’), 4.15 (dd, J2’,1’=  

2.5,J2’,3’=  5.2 Hz,1H; H-2’), 4.08-4.00(overlapping,3H; H-4’, H-5’’ and H-9b’’), 3.88-3.78 

(overlapping, 5H; H-3’, H-7a’and COOCH3), 3.42-3.36 (m, 1H; H-7b’), 2.70 (dd, J3a’’,4’’=  4.6, 

J3a’’,3b’’=  12.7 Hz, 1H; H-3a’’), 2.18 (s, 3H; NHCOCH3), 2.15 (s, 3H; CH3COO), 2.11 (s, 3H; 

CH3COO), 1.99 (s, 3H; CH3COO), 1.96 (s, 3H; CH3COO), 1.91-1.69 ppm (overlapping, 5H; H-5a’, 

H-5b’, H-6a’, H-6b’ and H-3b’’). MS (ESI positive) m/z:963.2[M+Na]+. All other physicochemical 

properties are practically superimposable to those previously reported for the same compound. 

 

O
O

AcO
C3F7OCHN

AcO

OAcAcO
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Step 2: The de-acetonide compound of 13c (188 mg, 0.20 mmol) was treated, according to the 

general procedure to obtain peracetylated compaund step2, for affording the compound 5e 

(180.4 mg 88 %), after flash chromatography (eluiting with AcOEt/hexane 9:1) as white solid, 

showing::m.p. 132-129 °C; [α]D 
20 = -18.3 (c = 1 in MeOH); 1H NMR (CD3OD): δ 8.05 (d, J6,5=  7.5 

Hz, 1H; H-6), 7.47 (d, J5,6 = 7.5 Hz, 1H; H-5), 5.93 (d, J1’,2’ = 3.8, 1H; H-1’), 5.51 (dd, 

J2’,1’=3.8,J2’,3’=  6.0 Hz,1H; H-2’), 5.40 (ddd, J8’’ ,9a’’ = 2.6, J8’’ ,9b’’= 5.4, J8’’, 7’’  = 8.6Hz, 1H; H-8’’), 
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5.28 (dd, J7’’ ,6’’=  2.1,J7’’ ,8’’ =  8.6 Hz, 1H; H-7’’), 5.22 ( t app, J3’,2’=J3’,4’ = 6.0 Hz, 1H; H-3’), 4.92 

(ddd, J4’’ ,3a’’ = 4.6, J4’’ ,5’’ = 11.1, J4’’ ,3b’’ = 11.9 Hz, 1H; H4’’), 4.34 (dd, J6’’,7’’ =  2.1 Hz,J6’’,5’’  = 10.7 

Hz, 1H; H-6’’), 4.30 (dd, J9a’’,8’’ =  2.6 Hz,J9a’’,9b’’  = 12.5 Hz, 1H; H-9a’’), 4.21-4.16(m, 1H; H-4’), 

4.13-4.01 (overlapping, 2H; H-5’’ and H-9b’’), 3.84-3.77 (overlapping, 4H; H-7a’and COOCH3), 

3.42-3.35 (m, 1H; H-7b’), 2.69 (dd, J3a’’,4’’=  4.6, J3a’’,3b’’=  12.7 Hz, 1H; H-3a’’), 2.18 (s, 3H; 

NHCOCH3), 2.14 (s, 3H; CH3COO), 2.11 (s, 3H; CH3COO), 2.10-2.09 (overlapping, 6H; 

2XCH3COO), 1.99 (s, 3H; CH3COO), 1.96 (s, 3H; CH3COO), 1.90-1.63 ppm (overlapping, 5H; H-

5a’, H-5b’, H-6a’, H-6b’ and H-3b’’);MS (ESI positive) m/z:1047.1[M+Na]+. Elemental analysis 

calcd (%) for C39H47F7N4O20: C 45.71, H 4.62, N 5.47; found C 45.13, H 4.70, N.5.31. 
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5.4 Biological  

 

5.4.1 Inhibition activity assay on commercialα 2,3-sialyltransferase  

 

ST activity and inhibition assay 

Inhibition of α 2,3-sialyltransferase activity is performed essentially according to using a 

commercial sialyltransferase activity kit67. This kit takes advantage of a 5’-nucleotidase to remove 

inorganic phosphate from the leaving nucleotide cytidine 5’-monophosphate (CMP) of 

sialyltransferase reactions and malachite green phosphate detection reagents that turn inorganic 

phosphate to a green colored complex. The amount of inorganic phosphate released by the 5’-

nucleotidase is equal to the CMP-sialic acid consumed or the sialyl-conjugate produced; therefore, 

the rate of inorganic phosphate produced reflects the kinetics of a sialyltransferase reaction.  

Briefly, the ST reaction was carried out in 50 µL of reaction buffer (25 mM Tris, 150 mM NaCl, 5 

mM MgCl2 and 5 mM MnCl2, pH 7.5) in a 96-well plate at room temperature for 20 min. To 

determine the kinetic parameters of ST, multiple reactions with varied amounts of either the enzyme 

or substrates were carried out simultaneously in the presence of fixed amounts of all other 

components, including a coupling phosphatase. Particularly, specific activity against donor 

substrate CMP-NeuAc in the presence of 1 mM acceptor N-acetyl-D-lactosamine; specific activity 

vs. acceptor substrate N-acetyl-D-lactosamine in the presence of 0.2 mM CMP-NeuAc and activity 

vs. enzyme dose in the presence of 1 mM CMP-NeuAc and 4 mMN-acetyl-D-lactosamine. One well 

containing all components except for the enzyme was used as a blank control. The reactions were 

initiated by adding the substrates and phosphatase to the enzyme and terminated by the addition of 

30µL of Malachite reagent A and 100µL of water to each well. The color was developed by the 

addition of 30µL of Malachite reagent B to each well followed by gentle mixing and incubation at 

room temperature for 20 min. Following color development, the plate was read at 620 nm with the 

multiwell plate reader. A phosphate standard curve was also performed to determine the conversion 

factor between the absorbance and the inorganic phosphate contents. 

For KM and Vmax determination, the results were plotted against substrate concentrations and fitted 

to the Michaelis–Menten equation using the KaleidaGraph 4 program (www.synergy.com). 

In order to test our inhibitors, the incubation mixture (final volume of 50µL) contained 0.1 mU of α-

2,3-Sialyltransferase from Pasteurella Multocida, various amounts of inhibitors (0-500 mM), 1 mM 

CMP-NeuAc and 4 mM N-acetyl-D-lactosamine, buffer (25 mM Tris, 150 mM NaCl, 5 mM MgCl2 

and 5 mM MnCl2, pH 7.5). After incubation at 37°C for 20 min, the reactions are stopped by the 
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addition of 30 µL of Malachite reagent A and 100 µL of water to each well. The color was 

developed by the addition of 30 µL of Malachite reagent B to each well followed by gentle mixing 

and incubation at room temperature for 20 min and the ST activity is determined by multiwell plate 

reader at 620 nm. The inhibition values are obtained by linear regression (using Microsoft Excel) of 

different concentrations of inhibitors from 0 to 500 mM (five concentrations of each inhibitor are 

used) with a fixed concentration of substrates.  

Typical concentration–response plots are obtained from the average values of triplicate assay 

results. 
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5.4.2 Inhibition activity assay on GM3 synthase 

Cell culture 

The Human Embryonic Kidney, HEK293A, were grown at 37°C in the presence of 5% CO2, in 

DMEM medium supplemented with 10% (v/v) FBS, 2mM glutamine and 1mM 

Penicillin/Streptomycin. 

The cryopreservation of these cells is commonly performed in liquid nitrogen and involves the use 

of freezing medium, containing a mixture of 90% FBS and 10% DMSO. 

 
Protein quantification: Bradford method 

A standard calibration curve with BSA (bovine serum albumin), at known concentrations, was 

prepared to determine the protein concentration of the samples.  

1 ml of blue dye Coomassie diluted in water 1:4 was added to each sample; then, absorbance was 

detected with a JASCO spectrophotometer, at 595 nm. 

 

Inhibiton assay on GM3 synthase  

Cells cultured in 100-mm dishes were harvested using a plastic scraper and washed two times with 

phosphate-buffered saline. Cells were resuspended in 150 mM sodium cacodylate-HCl buffer, pH 

6.6 (20 mg of cell protein/ml) with protease inhibitors (2 mM 4-(2-aminoethyl)benzenesulfonyl 

fluoride, 0.0016 mM aprotinin, 0.044 mM leupeptin, 0.08 mM bestatin, 0.03 mM pepstatin A, 0.028 

mM E-64) and homogenized with a Dounce homogenizer (10 strokes, tight). In each reaction tube, 

10 µl of Triton CF-54 1.5% (v/v) in chloroform/methanol (2:1) were mixed with [3-
3H(sphingosine)]LacCer, corresponding to 45 nCi, from a stock solution in chloroform/methanol 

(2:1) and dried under N2. To this mixture, 8 µl of 750 mM sodium cacodylate-HCl buffer, pH 6.6, 4 

µl of 125 mM MgCl2, 4 µl of 125 mM 2-mercaptoethanol, 10 µl of 5 mM CMP-NeuAc, and 10 µl 

of cell homogenate (containing 200 µg of protein) were added in a total reaction volume of 50 µl. 

Briefly, the GM3 activity assay was performed using as positive control the cell homogenate 

incubated with the radioactive LacCer and in absence of GM3 synthase inhibitors; the negative 

control was performed using heat-inactivated cell homogenates (100 °C for 3 min) in the presence 

of 3-3H(sphingosine)] LacCer; the GM3 inhibitors were tested using a final concentration of 1mM 

or 10µM incubated with the cell homogenate and the radioactive LacCer. All the incubations were 

performed at 37 °C for 3 h with continuous shaking. The reactions were stopped by adding 1.5 ml 

of chloroform/methanol (2:1). The reaction mixture (68dpm) was analyzed by HPTLC using the 



105 

 

solvent system chloroform/methanol/water (55:20:3 v/v). Radioactive lipids were detected by 

analysis with the Beta-Imager 2000 (Biospace, Paris, France) and quantified by densitometric 

analysis using M3 Vision software (Biospace, Paris, France). 

Data are means ±SD of three different experiments, statistical differences were determined by 1-

way Anova. 
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5.4.3 Sphingolipid pattern evaluation by metabolic labeling with [3-3H] 

sphingosine ([3-3H] SPH) in HEK cells treated with inhibitors. 

 

Metabolic assay  

The sphingolipid pattern of HEK293 cells, treated with GM3 synthase inhibitors, was determined 

by metabolic labeling with [3-3H] sphingosine ([3-3H] SPH). [3-3H] SPH is a natural precursor of 

sphingolipids. When cells are placed in culture medium supplemented with radiolabeled 

sphingosine, [3-3H] SPH is absorbed and used into the biosynthetic pathways of sphingolipids. The 

metabolic products are radioactive, and after extraction and separation by HPTLC, it is possible to 

evaluate the cellular sphingolipid content in terms of both quality and quantity. 

Cells were incubated with 10 µM GM3 synthase inhibitors 2 hours before the addition of [3-3H] 

SPH. During the entire assay cells were maintained in the presence of inhibitors. (0.4 µCi) [3-3H] 

SPH was administered to the cells after being dissolved in culture medium at a final concentration 

of 3x10-8M. Subsequently, the lipids were extracted and separated by HPTLC and the 

chromatographic profile was obtained by Beta-Imager equipment (Biospace). 

Data are means ±SD of three different experiments, statistical differences were determined by 1-
way Anova. 
 

1. [3-3H] SPHINGOSINE PREPARATION: 

[3-3H] SPH was dissolved in sterile conditions in DMEM medium with 10% FBS, 2 mM 

Glutamine. 

The solution was sonicated for 2 min and vortexed for 1 min. This procedure was repeated 3 

times.The degree of solubilization (> 70%) was verified by counting the radioactivity by β-

counter (Perkin Elmer). 

 

2. PULSE: 

The day before, 2,5x105 cells were plated. 

The culture medium was replaced with 5ml of medium containing [3-3H] SPH. 

The cells were then incubated for 2 hours at 37 °C, with 5% CO2. 

In this phase the cells absorbed the [3-3H] SPH present in the medium. 

After two hours, the medium was taken from plates and stored for the quantification of [3-3H] 

SPH absorbed by cells, by counting the radioactivity with a β-counter (Perkin Elmer). 

 

3. CHASE 
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The cells were grown in 8ml of growth medium without [3-3H] SPH, for 48 hours, at 37 ° C 

with 5% CO2. 

 

4. CELL HARVESTING 

At the end of the chase, medium was collected from plates and kept for counting by β-Counter 

(Perkin Elmer). The cells were washed three times with PBS and harvested. 

After being harvested by centrifugation (300xg, 10 min, 4 °C), the cells were freeze and 

lyophilized 

 

5. EXTRACTION OF TOTAL LIPIDS FROM CELL PELLET 

The lyophilized cells were resuspended in 25µl of water, sonicated in ultrasonic bath and 

vortexed. In order to obtain a good solubilization, two lipid extractions were made.  

 

 

FIRST EXTRACTION 

10 volumes of methanol were added to the aqueous solution of cells. The resulting mixture was 

sonicated in ultrasonic bath for 2 min and vortexed for 1 min. 

Then, 20 volumes of chloroform were added. Sonication in ultrasonic bath for 2 minutes and 

agitation were repeated. 

The samples were shaken on an Eppendorf shaker for 10 min and centrifuged at 10,000xg, for 10 

min at room temperature. 

The supernatant containing the lipids was transferred to a new eppendorf. 

 

SECOND EXTRACTION 

10 volumes of a mixture of chloroform / methanol 2:1were added to pellet. 

The samples were sonicated in ultrasonic bath, vortexed and shaken for 10 min; then, they were 

centrifuged at 10,000xg, for 10 min, at room temperature. The lipid supernatant was collected and 

combined with that collected after the first extraction. 

The protein pellets, after the evaporation of solvent, was digested overnight at room temperature in 

50µl of 1N NaOH and then, subsequently, increased to 1 ml with water.  

Proteins were then measured by the method of Lowry. 

The lipid radioactivity was evaluated to determine the percentage yield of the lipid extraction. 
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PARTITION OF LIPIDS 

This procedure allows to divide the extracted lipid in an aqueous phase (FA), containing 

gangliosides, and an organic phase (FO), containing neutral glycolipids.  

The partition was divided into two phases:  

 

FIRST PARTITION 

In order to separate the aqueous from the organic phase, a volume of water equal to 20% of the total 

solution was added to lipid extracts. Samples were vortexed and mixed on Eppendorf mixer for 15 

min and centrifuged at 3,500xg for 5 min. The aqueous phase was collected and transferred to a 

new eppendorf.  

 

SECOND PARTITION 

A mixture of methanol / water 1: 1, equal to 40% of the initial volume, was added to the organic 

phase. The separation of the aqueous phase from the organic phase was obtained by vortexing and 

agitation on an Eppendorf shaker for 15 min and, finally, centrifugation at 3,500xg for 5 min.  

The aqueous phase was collected and added to that obtained in the first separation.  

The two separated phases were dried under nitrogen and suspended in a mixture of 

chloroform/methanol 2:1. The aqueous phase was resuspended in 100 µl of solvent, while the 

organic phase was resuspended in 200 µl.  

Radioactivity assays of the two phases were performed to determine the percentage yield of the 

partition. The total lipids, neutral glycolipids and gangliosides were then separated by HPTLC and 

the content of the component detected was expressed as dpm / mg total protein.  

In order to separate total lipids and gangliosides was used a solvent consisting of 

chloroform/methanol/0.2% CaCl2 (60:40:9) and to separate neutral lipids in the organic phase, a 

solvent consisting chloroform/methanol/water (110:40:6). 
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