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Preface 

Pain is recognized as one of the most distressing cancer-related syndromes and treatment 

side effects and is linked to decreased quality of life among patients. Despite the 

improvements of pain management guidelines proposed in the last decades, therapeutic 

issues are still unsolved, above all in the treatment of loco-regional painful symptoms. 

For example, a proper pharmacological therapy to treat cisplatin-induced ototoxicity is 

not currently available. Pain associated to cutaneous wounds is treated by an off-label use 

of systemic analgesics with high incidence of related side effects. Conventional dosage 

forms applied in the buccal cavity are unable to achieve suitable efficacy in the case of 

oral mucositis. 

Hence, there is a need to design novel drug delivery systems, which can be easily used in 

the clinical practice for an effective treatment of loco-regional painful syndromes.  

This doctoral thesis aimed to investigate the critical aspects of drug delivery correlated to 

three loco-regional syndromes and propose technological solutions to rationalize drug 

delivery. In particular, the experimental work focused on: 

(1) the development of a mucoadhesive microparticle suspension intended for treating 

oral mucositis and designed to combine the peculiarities of prolonged release 

mucoadhesive systems with those of an immediate release oromucosal solution; 

(2) the optimization of a biodegradable nanoparticle system intended to deliver 

resveratrol to cochlea in the therapy of cisplatin-induced ototoxicity;  

(3) the rationalization of the use of morphine derivatives, according to their chemical 

structure, in the management of cutaneous painful syndromes.
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1 General introduction 

The prevalence of cancer has been enlarged worldwide both for the increase of population 

age and for the diffusion of unhealthy behavior (e.g., smoking). Moreover, the 

development of effective cancer treatments has also increased the 5-year survival of 

patients, since some cancer types have become chronic [1, 2]. Pain is one of the main 

symptoms of cancer, especially in advanced and incurable states. Indeed, more than 50% 

of all patients suffer for painful cancer-related syndromes [3]. Therefore, pain 

management is the central goal of care to ensure an acceptable patient quality of life. The 

etiology of pain is very wide: painful syndromes might be caused by cancer itself, cancer-

related symptoms, concurrent disorder or side effects related to anticancer treatments [4]. 

Furthermore, pain manifestations might be systemic or loco-regional. 

The World Health Organization (WHO) has introduced specific guidance for palliative 

care [4]. According to the WHO, “palliative care is an approach that improves the quality 

of life of patients and their families facing the problem associated with life-threatening 

illness, through the prevention and relief of suffering by means of early identification and 

impeccable assessment and treatment of pain and other problems, physical, psychosocial 

and spiritual” [5]. In order to achieve acceptable pain management, the WHO suggests 

that clinical protocols should be based on a 3-step “analgesic ladder” [4]. The analgesic 

drugs are chosen according to the scale of pain severity. NSAIDs are preferred for treating 

mild pain, but moderate and severe pain requires potent analgesics as opioids. Although 

good effectiveness in controlling acute and chronic pain, the onset of related side effects 

(e.g., sedation, nausea, constipation and fatigue) negatively affects the risk-benefit 

assessment of opioid-based treatments.  

In general, available therapeutic strategies for systemic drug delivery have been based on 

oral, transdermal and parenteral dosage forms (e.g., solutions, suspensions, tablets and 

transdermal patches) [6]. For the management of loco-regional symptoms, the 

development of locally acting drug products have also been developed and marketed. 

However, many of them are liquid and semisolid dosage forms, which are not optimized 

for drug absorption through physiological barriers such as buccal mucosa and skin. Even 

if many analgesic drugs and dosage forms are available in the market, therapeutic failure 
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has been widely reported in literature [7]. In many cases, undertreated pain has been 

caused by low patient compliance and onset of drug side effects [8]. 

In particular, therapeutic failures are more frequent in the treatment of loco-regional 

painful symptoms. On the top of that, pharmacological solutions were often absent, based 

on off-label use of systemic analgesics or conventional dosage forms with unsatisfactory 

bioavailability. 

To improve the clinical effectiveness and patient’s compliance, the development of novel 

drug delivery systems intended for specific locoregional drug delivery might be 

challenging. For example, oral mucositis (OMs) are a critical side effect to treat. Induced 

by chemo- or radiotherapy, OMs might affect oral intake, maintenance of oral hygiene 

and quality of life of patient [9]. Many of the pharmacological treatments available on the 

market are drug solutions or other immediate release dosage forms. Such dosage forms 

might be ineffective for guaranteeing high drug bioavailability, since the short absorption 

window due to the physiological swallowing. Consequently, clinical protocols require 

high doses and regimen increasing the systemic side effect incidence.  

On the other hand, Food and Drug Administration (FDA) and European Medicines 

Agency (EMA) have not yet authorized drug products for preventing or treating the 

ototoxicity induced by cisplatin [10]. Indeed, conventional dosage forms cannot 

guarantee reproducible drug concentration at the active site, because of the small 

distribution volume of cochlea. 

Finally, cutaneous painful symptomatology (e.g., post herpetic neuralgia, cutaneous 

lesions) are also critical. The discovery of opioid receptor in skin epidermis has increased 

the off-label use of topical opioids [11]. However, the effectiveness of such treatments 

has not been well demonstrated, especially for the empirical selection of drug and delivery 

systems. 
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1.1 Aim of the work 

This doctoral thesis aimed to investigate and propose technological solutions for 

rationalizing drug delivery in three cancer- and treatment-related syndromes. In 

particular, the experimental work focused on: (1) the development of a mucoadhesive 

formulation intended for prolonged drug absorption in the buccal cavity; (2) the 

optimization of a nanoparticle system intended for drug delivery to cochlea; (3) the study 

of influence of chemical structure on the dermal and transdermal delivery of morphine 

derivatives. Such a rationalization was focused on identifying the best opioid candidate 

for skin penetration among the morphine derivatives used in therapy. 

1.1.1 Mucoadhesive mouthwash intended for the treatment of oral 

mucositis induced by chemo- and radiotherapy 

OMs are one of the side effects of anticancer treatment that badly affects the patient 

quality of life [12]. Indeed, most of the drugs used in cancer chemotherapy are toxic for 

rapidly dividing mucosal cells, thus inducing a loco-regional inflammation and epidermal 

damage. In particular, OMs are generally associated with head and neck cancer chemo- 

and radiotherapy. The overall incidence ranges from 40% to 76%. OMs induce pain, 

limitations to oral intake, high incidence of secondary infection and risk of systemic 

septicemia [13]. Therefore, several therapeutic protocol, including basic oral care 

interventions [14], administration of anti-inflammatory agents [15], antimicrobials, 

mucosal coating agents, anesthetics and analgesics [9], have been proposed for preventing 

or treating OMs. 

However, few of them have been proven efficacy in reducing the severity and duration of 

OMs, since most of the clinical studies have been contradictory or carried out with 

inadequate methodologies. Moreover, the selection of drug delivery systems has not been 

rationalized according both the pharmacokinetic limitations of buccal cavity and the 

patient’s compliance. For example, topical applied drug solutions (e.g., lidocaine 

mouthwashes) were reported to ensure a very short-lived pain relief. On the other side, 

the use of systemic analgesic drugs (e.g., fentanyl transdermal patch) is related to 

systemic side effects. 

The development of a prolonged release dosage forms might be useful to improve the 

patient’s compliance and treatment efficacy. For an efficient drug delivery system, the 
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adhesion to the mucous layer on the surface of buccal cavity should be carefully 

considered to improve the drug absorption. The polymer selection is critical to achieve 

suitable mucoadhesion, since it is a complex phenomenon that may be considered as the 

result of electrostatic, Van de Waal’s interactions between polymer chain and mucosa 

proteins (e.g., mucin) [16]. 

Therefore, prolonged release mouthwashes were designed by preparing mucoadhesive 

microparticles in aqueous suspension (Chapter 2). The feasibility was investigated by 

preparing different formulations containing three model drugs, namely clobetasol, 

flurbiprofen and delmopinol. The formers were selected for their clinical effectiveness in 

treating OMs and other inflammatory conditions of buccal cavity. Delmopinol was 

chosen to verify the effectiveness of this technological platform as supportive treatment 

for limiting secondary bacterial infection in OMs patients. The mucoadhesive 

microparticles were made by spraying polymeric solutions containing the three model 

drugs in a cross-linking bath. Alginates were used as functional excipient of 

microparticles and bivalent cations were added as cross-linking agents [17]. Poly-

acrylates were added for increasing microparticle mucoadhesion. The effects of 

microparticle composition and manufacturing parameters on in vitro performances of 

clobetasol mucoadhesive mouthwash were evaluated using a full-factorial design 

(Chapter 3). The ability of proposed technological platforms to improve the drug 

penetration into the buccal mucosae were studied by a wash-off method [18]. The in vitro 

ability to avoid and/or reduce the plaque development was also assayed in case of 

delmopinol formulations. 

1.1.2 Nano-delivery system intended for treating ototoxicity induced by 

chemotherapeutic agents 

Cisplatin is frequently used as chemotherapeutic agent for the treatment of several cancer 

types. However, its clinical effectiveness has been correlated with severe side effects, 

such as ototoxicity [10]. The ototoxic effect of cisplatin is particularly critical in children, 

because of their higher susceptibility in comparison with adults [19]. In this case, the 

ototoxicity might seriously prejudice speech skill, language and social development of 

young patients [20]. For instance, great efforts have been devoted to understand the 

mechanism of drug-induced ototoxicity and suggest some prevention strategies. In vivo 
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and in vitro studies showed that cisplatin induces apoptosis in cochlear cell lines (e.g., 

hair cells, Strial Ganglion cells and Stria Vascularis cells) [21, 22], increasing the 

intracellular concentration of reactive oxygen species [23]. Therefore, the efficacy of 

several antioxidant agents have been tested after local and systemic delivery [24, 25]. 

Nonetheless, the simultaneous administration of some antioxidant agents (e.g., sodium 

thiosulfate) decreased the therapeutic effect of cisplatin due to a direct molecular 

interaction, thus limiting their systemic administration [10].  

According to the peculiarity of the cochlear system, the development of a drug delivery 

has been very challenging for pharmacokinetic issues after both systemic and local 

administration. Indeed, the small dimension of the cochlea does not allow achieving 

suitable drug concentrations in the target site without increasing its systemic doses. On 

the other hand, the local delivery was affected by low drug bioavailability and high intra-

patient variability (e.g., tympanic delivery route). Moreover, high-specialized medical 

devices and expertise are required for intra-tympanic or intra-cochlear drug delivery [26]. 

The recent improvements in nanotechnology could overcome the pharmacokinetic and 

physicochemical drawbacks, thus delivering the drug directly to target tissues or cell 

lines. Therefore, the properties of nanoparticle systems should be carefully selected 

according to the therapeutic target. In particular, the nanoparticle morphology, the surface 

properties, cellular uptake mechanism, the drug release profile should be deeply 

investigated in order to optimize drug delivering and avoiding toxic effect induced by the 

nanocarrier itself [27]. 

Resveratrol-loaded nanoparticles were developed and optimized to obtain nanoparticle 

with reproducible morphology and high drug loading (Chapter 4). Since it was known 

that freeze-drying process affects the physical stability of nanosystems [28], the effect of 

well-known cryoprotectants was also evaluated. Finally, the toxicity of proposed 

nanosystems was checked in vitro using a model of organ of Corti cells and a Stria 

Vascularis one. 
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1.1.3 Dermal and transdermal delivery of morphine derivatives: a 

qualitative structure-penetration relationship 

Opioids have been widely used for managing several kinds of acute and chronic painful 

syndromes [29]. Their pharmacological action (e.g., central analgesia) or related side 

effects (e.g., constipation) are related to the activation of G protein-coupled receptors 

widely distributed in brain, spinal cord and digestive tract. 

Recently, opioid receptors were also discovered in the human skin [30]. In addition to the 

regulation of peripheral nociceptive signaling, cutaneous opioid receptors are involved in 

the keratinocyte proliferation, differentiation and the pigmentation process. These 

receptors might also modulate the immunity response of skin immune cells [31]. 

Therefore, recent clinical studies reported the efficacy of opioid in the treatment of 

peripheral painful syndromes, such as post herpetic neuralgia [32], regeneration of 

cutaneous lesions and pain controlling in wounds [33]. 

Although these cutaneous lesions are very painful, the use of potent analgesic is still 

limited. Indeed, the systemic administration of opioids is complicated by the 

unpredictable drug cutaneous bioavailability due to the inflammation process [34]. 

Therefore, topical opioids (e.g., morphine gels) have been widely studied for treating 

cutaneous painful syndromes to guarantee high drug concentration at therapeutic site and 

negligible systemic absorption [34]. However, their effectiveness has been strongly 

affected by the drug ability to diffuse through the skin barrier [11]. In order to obtain a 

local effect in the skin, morphine derivatives have to permeate through the stratum 

corneum and concentrate in the viable epidermis.  

Despite the increase of clinical interest, the cutaneous absorption of morphine and its 

active derivatives has not been deeply investigated. Published studies are limited to 

fentanyl [35, 36] and buprenorphine [37]. Moreover, the available literature reports that 

morphine and its derivatives poorly permeated the human epidermis. According to the 

results obtained by Roy et al., the in vitro flux of morphine, hydromorphone and codeine 

was lower than 0.1 µg/cm2/h through human cadaver skin [38], where the fluxes fentanyl 

and buprenorphine were 40-fold higher [39]. 

These evidences allowed speculating that small modifications on chemical structure of 

morphine derivatives have a great influence on their permeation profiles. For example, 
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the introduction of a methoxyl group induced a 15-fold increase in the permeation profile 

of codeine in comparison with morphine [38]. Furthermore, Wang et al. suggested that 

esterification of the hydroxyl group on morphine phenolic ring could improve the drug 

permeation though nude/hairless mouse skin [40], because of an increase of drug 

lipophilicity. In particular, most of the models used have demonstrated the correlation 

between the drug lipophilicity (log P) and molecular weight to its diffusion through the 

human skin [41]. However, such models lost robustness in describing the permeation of 

a small dataset of molecules and other electrochemical descriptors have been proposed 

[42]. Furthermore, the drug retention in the human skin has not been widely investigated. 

On the best of our knowledge, only few authors tried modelling the skin retention of a 

specific class of molecules, like corticosteroids [43, 44]. 

Considering the clinical need to find effective treatments for managing loco-regional 

painful syndromes and for avoiding systemic side effect, the influence of chemical 

structure of eight well-known morphine derivatives was evaluated in terms of skin 

permeation and retention (Chapter 5). Statistical analyses were carried out to test the 

effect of four substituents (i.e., 3-methoxyl, 6-carbonyl, 14-hydroxyl, 7,8-didehydro) on 

molecule penetration through human epidermis. 
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2.0 Abstract 

An oromucosal suspension of mucoadhesive microparticles (MMS) able to combine the 

peculiarities of prolonged release mucoadhesive microparticles with those of an 

immediate release oromucosal solution is described. Microparticles were obtained by 

ionotropic gelation of alginate blended with another mucoadhesive material in a one-step 

process where the cross-linking bath constituted the suspension vehicle. The effects of 

formulation and processing conditions on MMS performances were measured in vitro 

determining the enhancement of drug penetration in buccal porcine mucosa and inhibition 

of tooth plaque formation using flurbiprofen and delmopinol as model drugs, 

respectively. Well-formed and spherical microparticles were obtained combining alginate 

with carbomer; linear dependence of particle size from the feed composition, viscosity 

and atomization pressure was found. As demonstrated by using FITC-labelled 

microparticles, the system remained onto the buccal mucosa at least for a six-hour period. 

Consequently, 0.1% flurbiprofen MMS guaranteed a concentration of flurbiprofen into 

buccal porcine mucosa over 6 hours comparable to 0.25% flurbiprofen reference solution, 

allowing a potential reduction of the 60% administered dose. The use of in-house made 

artificial mouth revealed that the once-a-day administration of 0.1% delmopinol MMS 

was as effective in plaque inhibition as the 0.2% delmopinol reference solution product 

given twice a day. These results suggested that the development of bioadhesive 

oromucosal suspensions, localizing the drug into buccal cavity, can reduce regimen and 

administrated dose. 

 

 

The formulative studies were carried out in the laboratory directed by prof. Luisa Montanari, 

Department of Pharmaceutical Sciences, University of Milan, via G. Colombo, 71 – 20133, Milan 

(Italy). 

The in vitro evaluation of plaque development was carried out by in the laboratory directed by 

dr. Cristiano Rumio, Department of Medical Biotechnology and Translational Medicine, 

Humanitas Clinical and Research Center, via Manzoni, 56 – 20089, Rozzano (Italy) 

 

The contents of this chapter was published in Current Drug Delivery (Cilurzo et al.; Cur. Drug. 

Del.; 2013, 10, 251-260) 
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2.1 Introduction 

Oromucosal formulations are intended for administration in the oral cavity and/or the 

throat to achieve mainly a local effect. They are usually immediate release dosage forms, 

such as mouthwashes and sprays, which are easily swallowed and are unable to maintain 

efficacious drug levels for a prolonged period. Mucoadhesive preparations designed to 

retain the active ingredient in the oral mucosal epithelium by adhesion, may prolong drug 

absorption at the site of application [1, 2]. Nevertheless, the slow drug release can delay 

the drug onset of action. Thus, the main objective of this study was to develop an 

oromucosal formulation, which can guarantee both fast onset of action and prolonged 

release. The basic idea was to prepare an oromucosal suspension of mucoadhesive 

microparticles (MMS) combining peculiarities of an oromucosal solution with those of 

prolonged release mucoadhesive microparticles, guaranteeing uniform distribution of the 

drug into the mouth because of their high surface.  

However, the main critical issue in MMS was related to the physical stability of the 

microparticulate systems. Suspension should be easy to disperse by shaking after long 

period of storage and enough stable to deliver correct dose and to assure drug release. 

Indeed, mucoadhesive microparticles have to exhibit a narrow particle size distribution 

and a mean diameter suitable to be delivered by using a spray device that allows the 

uniform distribution of the preparation in the mouth. 

In order to produce such MMS by a one-step process, spray coagulation method was 

tested using alginates as the main microparticles constituents. Alginates were chosen 

considering their ability to form stable reticulated structure in presence of alkali earth 

ions, like calcium. This feature has been extensively exploited to produce beads by 

ionotropic/external gelation process [3, 4]. Cross-linking of alginates is mainly achieved 

by exchanging sodium ions from the guluronic acids with bivalent cations and stacking 

these guluronic groups to form the characteristic egg-box structure [5]. Considering poor 

mucoadhesive properties of calcium alginates [6], the effect of blending with several 

mucoadhesive polymers, namely hydroxypropyl methylcellulose [7], 

carboxymethylcellulose [8], poly-(sodium methacrylate, methylmethacrylate) [9, 10] or 

carbomer [11], on microparticles properties was investigated in the current work. 
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The feasibility of using this approach for designing MMS was evaluated in vitro by using 

two different active ingredients with different charges and water solubilities, namely 

delmopinol and flurbiprofen. The former is a cationic freely soluble active ingredient able 

to inhibit plaque and gingivitis [12-15]; the latter is an anionic insoluble drug, commonly 

locally administered to treat inflammatory processes of oral cavity, such as ulcers and 

aphtous stomatitis, postsurgical dental pain, gingivitis, laryngopharyngitis, and sore 

throat [16-19]. 

The mucoadhesion strength of microparticles was determined estimating the interaction 

with mucin by a colorimetric assay. Furthermore, the residence time of the microparticles 

onto the buccal porcine mucosae was in vitro determined by wash off method using 

placebo MMS prepared with FITC-labelled alginate.  

The performances of the proposed drug delivery systems were evaluated by a) measuring 

flubiprofen amount penetrated into porcine cheek mucosal segment as well as effused 

from the mucosa surface by a falling liquid technique and b) checking the ability to inhibit 

plaque development, using an in-house made artificial mouth appositely developed. 

2.2 Materials and Methods 

2.2.1 Materials 

Sodium alginate (Protanal® LF210M) was kindly gifted by FMC Biopolymer (Cork, 

Ireland). Carboxymethylcellulose (CMC; 400-600 mPas) and hydroxyl propyl methyl 

cellulose K4M (HPMC) were obtained from Chimitex (Milan, Italy), and Colorcon 

(Gallarate, Italy), respectively. Sodium poly-(methyl methacrylate) (NaPMM) was 

obtained as previously described [20]. Carbopol® 974P (carboxypolymethylene cross-

linked with allyl sucrose; CP) was provided from Lubrizol Co. (Wickliffe, USA). Porcine 

mucin, fluorescein isothiocyanate (FITC), N-(3-dimethylaminopropyl)-N’-

ethylcarbodiimide (EDC), N-hydroxysulfosuccinimide sodium salt (NHSS), and 

diamino-hexane (DAH) were purchased by Sigma Aldrich Co. (Milan, Italy). 

Cremophor® RH was kindly gifted from BASF (Ludwigshafen, Germany). Flurbiprofen, 

sodium saccharine, sorbitol, calcium chloride bihydrate, methyl-paraben and long 

articulated throat adapter were purchased from Farmalabor (Canosa di Puglia, Italy). 

Hyaluronic acid sodium salt was obtained from Therapo (Basel, Switzerland). Glycerol 



Chapter 2 

 

21 
 

was purchased from Carlo Erba Reagenti (Milan, Italy). Mint flavor was kindly gifted by 

Kerry Group (Tralee, Ireland). Delmopinol hydrochloride was kindly obtained from 

Sinclair Pharma S.r.l. (Milan, Italy). All solvents were of analytical grade unless 

specified. 

2.2.2 Preparation of FITC-labelled alginate 

The alginate-FITC derivative was synthesized adapting a process previously described in 

literature [21]. Briefly, 12 g sodium alginate solution 1% w/w were mixed in 1.5 mL pH 

4.9 sodium acetic buffer and mixed with 50 mg EDC and 30 mg NHSS for 30 min; then 

60 mg DAH were added and the system was stirred for 4 h. Finally, 12 mL isopropanol 

were added to the blend to remove the excess of DAH and precipitate the alginate-amine 

derivative. The latter was reacted with 14.03 mg FITC in pH 9 sodium bicarbonate for 4 

h and precipitated with 5 mL acetone. Alginate-FTIC was assayed by an HPLC coupled 

with a spectrofluorimeter (HP 1100 ChemStations, Agilent, Santa Clara, USA) using a 

SEC column (BioSuit 125, 4 µm UHR SEC 4.6x300 mm, Waters Co., Dublin, Ireland) 

to assure the absence of unreacted FITC and/or FITC-labelled alginate degraded by the 

reaction process. 

2.2.3 Preparation of oromucosal microparticle suspension 

In order to evaluate the influence of formulation variables and experimental parameters, 

placebo MMS were preliminarily prepared starting from mixtures of alginate and several 

mucoadhesive polymers. The feed was made mixing aqueous dispersion of sodium 

alginate and secondary mucoadhesive polymer in 3:1 ratio. The best feed in terms of 

microparticles formation was remade according to the ratios reported in Table 2.1. 

Afterwards, feed was pumped at the rate of 15 mL/min into a standard two-way nozzle 

(0.8 mm inner diameter, Schlick Atomizing Technologies, Düsen-Schlick GmbH, 

Untersiemau, Germany) and sprayed into a 2% w/w calcium chloride solution, under 

magnetic stirring. The air pressure ranged from 450 mbar to 550 mbar. Microparticles 

were cured into the cross-linking bath for 1 h at room temperature before filtering 

throughout a 710 µm sieve. The final placebo MMS were stored in 50 mL blue PE bottle 

at 25°C until use. Drug-loaded MMS were similarly prepared. Since cross-linking baths 

constituted product vehicles, all constituents, including active ingredients, were dissolved 
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before spraying (Table 2.1). In the control formulations D0a, D0b and F0 (Table 2.1), 

microparticles and cross-linking agent were not present.  

2.2.4 Viscosity measurements 

The feed viscosity was determined using a rotational viscometer (HAAKE VT500, 

Gemini B.V., Apeldoorn, Netherlands) equipped with a recirculating bath to maintain 

sample at 20.0±0.1 °C. The sample temperature in the rheometer was stabilized 15 min 

before taking the measurement. The shear rate (D) was in the 0-300 s-1 range. 

Reproducibility of the data was assessed in triplicate. The obtained rheograms were 

analyzed and adjusted to the Ostwald model, then the viscosity () was calculated at D = 

250 s-1. 

2.2.5 Determination of microparticle size 

The particle size of suspension (1 mL) was measured by an Accusizer 770 granulometer 

(PSS Inc., Santa Barbara, USA). Particle size was expressed as undersize cumulative 

percentages and the population dispersion was referred as SPAN and calculated as 

reported in the Eq. 2.1: 

𝑆𝑃𝐴𝑁 =
𝑑90−𝑑10

𝑑50
         Eq. 2.1 

where d90, d10, and d50 are the mean diameters at the 90%, 10% and 50% of the population 

distribution, respectively. 

2.2.6 Uniformity of Mass Delivered 

The uniformity of mass delivered from the device was assayed according to the Ph. Eur. 

method (2.9.27). Moreover, since a variation in the amount of delivered microparticles 

might cause differences in the drug release, the number of microparticles suspended in 

aliquots of 10 mL and 20 mL were also counted by an Accusizer 770 granulometer (PSS 

Inc., Santa Barbara, USA). The results were expressed as the mean of three 

determinations. 
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Table 2.1 – Compositions of placebo MMS (Formulations P0-P3), Delmopinol MMS (Formulations D0-D2) and Flurbiprofen MMS (Formulations F0-F3). 

The Ratio phase A/phase B was fixed at 1/10 (%, w/v) for Formulations P0-P3, F1-F2 and D1, 1.5/10 (%, w/v) for Formulation D2 and 1/5 (%, w/v) for 

Formulation F3. 

 
Ingredients 

Formulations 

P0 P0a P1 P2 P3 D0a D0b D1 D2 F0 F1 F2 F3 

Phase A 

(microparticles) 

Flurbiprofen   - - - - - - - - 0.10 0.10 0.05 

Delmopinol hydrochloride   - - - - - 0.1 - - - - - 

Sodium alginate 3.00 2.00 2.25 1.80 1.50 - - 2.25 1.80 - 1.50 2.25 1.50 

Carbopol® 934P   0.75 1.20 1.50 - - 0.75 1.20 - 1.50 0.75 1.50 

Purified water 97.00 98.00 97.00 97.00 97.00 - - 97.00 97.00 - 96.90 96.90 96.95 

Phase B 

(aqueous vehicle) 

Flurbiprofen   - - - - - - - 0.25 0.10 0.10 0.05 

Delmopinol hydrochloride   - - - 0.20 0.10 0.10 0.11 - - - - 

Glycerol   - - - - - - - 10.00 10.00 10.00 10.00 

Sodium saccharine    - - - 0.01 0.01 - 0.01 0.15 0.15 0.15 0.15 

Sorbitol   - - - - - - - 7 7 7 7 

Sodium hyaluronate   - - - - - - 0.02 - - - - 

Cremophor® RH   - - - - - - - 2.40 2.40 2.40 2.40 

Sodium methyl-paraben   - - - - - - - 0.12 0.12 0.12 0.12 

Mint flavor   - - - 0.02 0.02 0.02 0.02 0.20 0.20 0.20 0.20 

Calcium chloride bihydrate 2.00 2.00 2.00 2.00 2.00 - - 2 2 - 1.00 1.00 1.00 

Water 98.00 98.00 98.00 98.00 98.00 98.27 99.27 96.28 95.37 69.88 69.03 69.03 69.08 

Ethanol   - - - 1.50 1.50 1.50 1.50 10 10 10 10 
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2.2.7 Mucoadhesive properties 

The mucoadhesive properties of placebo and drug-loaded microparticles were determined 

after filtering MMS through a 90 μm sieve. Aliquots of 100 mg microparticles were 

suspended in 2.5 mL purified water. Afterwards, same volume of 0.05% w/v mucin 

solution was added. Samples were shaken at 100 rpm for 5 min in a shaker incubator 

(Sartorius Stedim, Antella, Italy) at 371 °C and then centrifuged at 1000 × g by a Hettich 

Universal centrifuge 30F (Andreas Hettich GmbH & Co. KG, Tuttlingen, Germany). 

After discharging the supernatant, 5 mL fresh purified water was added to each tube to 

remove mucin not adsorbed on the microparticle surface. This water was discharged and 

the microparticles were re-suspended in 2.5 mL deionized water. Aliquots of each 

suspension (200 μL) were incubated for 30 min at 371 °C by using a micro BCA Protein 

Assay Reagent (Euroclone, Pero, Italy) following a method adapted from Shi and 

Caldwell [22]. The amount of bound mucin was determined by spectrophotometer at the 

wavelength of 562 nm (DU®-640 spectrophotometer, Beckman Coulter, Brea, USA). 

2.2.8 Drug content 

Microparticles recovered by filtration through a 0.45 μm membrane were washed with 

methanol to remove the drug absorbed on their surface and dried at room temperature till 

constant weight. 50 mg samples were digested in 10 mL 5% w/v sodium chloride 

solution/methanol (50/50 %, v/v) under sonication for 2 h. Then, samples were filtered 

and the contents of flurbiprofen and delmopinol were determined using the HPLC 

methods reported below. The drug content of the aqueous vehicle was also determined 

after dilution 1:10 with water. 

2.2.9 HPLC assay 

The drug content in microparticles and vehicles was determined by an HP 1100 

Chemstations (Agilent, Santa Clara, USA). The results were expressed as mean of three 

determinations. The experimental conditions were set up in order to avoid interferences 

of the other components. 

Flurbiprofen - Column: Symmetry ShieldTM, ODS HYPERSIL, 100 x 4.6 mm ID, 

particle size 3 μm (Waters Co., Dublin, Ireland); mobile phase: methanol/pH 2.5 0.01 M 

Na2HPO4 (66/34 %, v/v);. flow rate: 1.2 mL/min; temperature: 40°C wavelength: 254 
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nm; injection volume: 10 μL; retention time: 4 min. The standard curve was constructed 

in the concentration range from 0.05 to 50 μg/mL (R2 = 0.99999). 

Delmopinol - Column: Symmetry ShieldTM RPC-18, 150 x 4.6 mm ID, particle size 5 

μm (Waters Co., Dublin, Ireland); mobile phase: methanol/pH 7.0 PBS (80/20 %, v/v); 

flow rate: 1 mL/min; wavelength: 210 nm; temperature: 25°C; injection volume: 10 μL; 

retention time: 5 min. The standard curve was constructed in the concentration range from 

15 to 500 μg/mL (R2 = 0.99921).  

2.2.10 In vitro drug release 

The release profile of flurbiprofen from microparticles was determined using the USP 26 

paddle dissolution apparatus, using 500 mL of PH 6.4 PBS at 37.0±0.5 °C and 25 rpm. 

MMS was filtered in order to remove suspension medium and washed with fresh water. 

Samples of microparticles were exactly weighed to achieve an amount of flurbiprofen 

corresponding to 50 mg. Drug concentration in the release medium was determined at 

249 nm.  

The results were expressed as mean of three samples. In order to understand drug release 

mechanism, release profiles were fitted with the Higuchi model (Eq. 2.2). 

𝑀𝑡 𝑀∞⁄ = 𝐾𝑡1 2⁄          Eq. 2.2 

where Mt was the amount of drug released at time t, M∞ was the drug loading in the 

microparticles, and K was the release rate constant expressed as h-1 [23]. 

2.2.11 In vitro mucosa penetration study 

The in vitro mucosa penetration study was performed adapting the falling liquid technique 

described by Rao and Buri [24] by using fresh porcine cheek mucosa obtained by a local 

slaughterhouse. Specimens of mucosa were dipped in pH 7.4 PBS at 70°C for 1 min in 

order to isolate mucosa epithelium. 

In-house equipment of three components was built up: (a) six in-series mucosa supports 

set at an acute angle of 30°; (b) peristaltic pump and (c) collector of fractions. Apparatus 

was designed in order to mimic both the effusion of the preparations from the surface of 

buccal mucosa and flurbiprofen penetrated amount. 



Chapter 2 

 

26 
 

A dose of the selected MMS was sprayed twice onto a 2.5x1.0 cm mucosal surface 

corresponding to a total amount of about 40 mg. Then, porcine cheek epithelium 

membrane was placed on the sample support and pH 6.4 PBS was dropped at the rate of 

1 mL/min to simulate the buccal environment and the saliva swallowing.  

This system was used either for qualitatively estimating the residence time of 

microparticles onto the buccal mucosa by testing MMS, made with 30% of FTIC-labelled 

alginate, or determining the penetration of flurbiprofen in the porcine cheek epithelium 

membrane. In the former case, porcine sample sheet was dismounted at predetermined 

intervals of time and fluorescent microparticles applied onto the mucosa segments were 

observed by using an Eclipse 80i Microscope (Nikon Instruments S.p.A, Firenze, Italy). 

In the case of flurbiprofen formulations, portions of the effused buffer were collected at 

predetermined intervals and drug concentration was determined by HPLC. 

At predefined times (i.e., 1, 3 and 6 h), the applied test sample was peeled away by means 

of an adhesive tape strip and the mucosa was stored at -40°C for 24 h. Finally, mucosa 

samples were homogenized and the amount of the penetrated drug was extracted with 5 

mL methanol and assayed. 

2.2.12 In vitro evaluation of plaque development 

In order to investigate antiplaque efficacy of different formulations, an in vitro system 

called “artificial mouth”, assuring high standardization and repeatability, was developed. 

This testing system was composed by an array of six glass holding intact human grinders 

reassembling in independent artificial oral cavities. The artificial oral cavities were 

surrounded by thermostated jacket at 351 °C. The upper part of the artificial oral cavity 

was firmly closed by a lid equipped with three atomizers connected to working solutions 

which acted as drop collectors for bacterial suspension and the testing product. The 

functionality of each atomizer was independently programmable. Each artificial oral 

cavity was equipped with a discharge system for the rinsing liquids. Prior insertion in the 

artificial mouth to use, each tooth was thoroughly cleaned with a rubber cup and pumice, 

immersed in physiologic solution and sterilized by saturated steam under pressure at 

121°C for 15 min. 
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At the beginning of the experiments, sterilized teeth were inserted into the artificial 

mouth. The drop collectors for bacteria suspension and the test solution were adjusted at 

a position of 8 cm straight above the tooth specimen. The solutions of tested plaque-

inhibiting compounds were supplied (6 mL/dose) onto the tooth specimen once a day over 

a 10 day period. For guaranteeing formation and development of plaque, it was essential 

that any contamination occurred. Therefore, equipment coming into direct contact with 

the bacterial suspension, nutrient broth or tooth specimen were sterilized and all 

procedures were carried out in aseptic conditions. Moreover, a standard protocol was 

established for the sterilization of artificial oral cavities at the beginning and the end of 

each testing. Soft plaque collected from healthy human subjects was cultured in a nutrient 

broth and bacteria were harvested in the logarithmic growth phase. The nutrient broth 

containing bacteria was used at a bacterial density of 106-107 cells/mL. The suspension 

of bacteria was supplied onto the tooth specimen at a flow rate of 5 mL/h over a 10-day 

period, at 5 s per hour, once an hour. The suspension of bacteria was daily tested for pH 

and number of cells per volume unit. During the experimental procedure, the suspension 

of bacteria was kept at 41 °C under continuous stirring to avoid undesired bacterial 

growth. 

At the end of the testing period (10 days), the plaque formed on the tooth surface was 

stained with 0.05% w/v basic fuchsine. To estimate plaque-inhibiting effect of the tested 

product, the amount of plaque formed on the tooth surfaces was quantified according to 

a Visual Index as well as a semi-automatic image analyzer (NAIS Elements) on defined 

area of the tooth surface. 

The Visual Index was made up by the following scale: 

 0: no plaque formation; 

 1: slight plaque formation, when less than 1/3 of the tooth surface was covered by 

plaque; 

 2: moderate plaque formation, when 1/3-2/3 of the tooth surface was covered by 

plaque; 

 3: heavy plaque formation, when more then 2/3 of the tooth surface was covered by 

plaque. 
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In addition, the percentage of the tooth surface covered by plaque was calculated by 

computerized planimetric measurements and the plaque inhibiting effect of the tested 

substance was classified as following: 

 very good: less than 10% tooth surface covered by plaque; 

 good: 10-20 % tooth surface covered by plaque; 

 moderate: 20-50 % tooth surface covered by plaque 

 slight: 50-80 % tooth surface covered by plaque; 

 no effect: more than 80% tooth surface covered by plaque. 

To assess ability to the reduce plaque formation, following formulations were tested: 

formulation D0a (the conventional solution containing 0.2% w/w delmopinol as the 

marketed product), D0b (the conventional solution of delmopinol at the same 

concentration as the MMS) and D2 (0.1% w/w delmopinol MMS) (Table 2.1). Sterile 

water was also supplied onto control tooth specimens for comparison with plaque 

inhibitors-treated teeth. 

2.2.13 Preliminary evaluation of MMS stability 

The stability of drug-loaded MMS was investigated over six months in terms of re-

suspendability, pH of aqueous vehicle and drug content. Volumes of 100 mL of the 

Formulations D2 and F1 were filled in 120 mL blue polyethylene terephthalate bottles and 

stored at 25°C/60 % and 40°C/75 % relative humidity (RH).  

2.3 Results  

2.3.1 Preparation of oromucosal mucoadhesive suspensions 

Spraying alginate/NaPMM mixtures into the aqueous vehicle containing CaCl2, 

formation of irregular and solid particles occurred probably due to the strong interaction 

between NaPMM and calcium ions [25]. The suspension of microparticles made of 

CMC/alginate and HPMC/alginate mixtures resulted not stable overtime, since 

aggregation was evident after few days of storage. 

Well-formed and spherical microparticles were obtained only combining alginate with 

CP. Table 2.2 reports the feed viscosities and the particle size distribution of suspensions 
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of designed formulations using such polymeric blends. Considering that obtained 

microparticles should guarantee a prolonged drug release and be deployed from the 

device by spraying, SPAN and d90 were considered the most critical parameters to 

evaluate in particle size distribution. As far as the former parameter was concerned, the 

atomization of the feed, during the preparation process, at 550 mbar allowed lower values 

and narrower particle size distribution than 450 mbar; increasing atomization pressure up 

to 550 mbar did not allow suitable microparticle formation.  

A linear dependence of d90 from the feed composition, viscosity (η) and atomization 

pressure (P) was found as shown by Eq. 2.3 (R2=0.894):  

d90 = +0.238 ± 0.005 η − 1.323 ± 0.229 P − 1.039 ± 0.247 CP  Eq. 2.3 

where all independent variables were significant (p<0.01). The amount of alginate was 

excluded from the equation due to co-linearity with CP. 

Both the total amount of mass delivered (average value 160 mg) and the number of 

microparticles sprayed from the device filled with 30 mL MMS of Formulation P2 

atomized at 450 mbar resulted not statistically different during the draining: 38000±5000 

microparticles were sprayed, 36000±5000 after the deployment of one third of the MMS 

and 35000±6000 after the deployment of two third of the preparation from the same 

container. Therefore, the selected spray device was considered adequate for the delivery 

of the MMS. The measured pH in all vehicles resulted 4.5. 

The mucoadhesive data are reported in Table 2.2. As expected, MMS made of alginate 

and CP showed mucoadhesive properties statistically higher than cross-linked alginate 

(p<0.05) and the following rank order was found: P0 < P1 ≈ P2 < P3. Moreover, the 

encapsulation and/or adsorption of both drugs did not affect the mucoadhesive properties 

of all formulations (p>0.80).  

In all MMSs, sedimentation of microparticles occurred within few hours leading to a clear 

vehicle. The preliminary stability data indicated suitability of the proposed system to 

produce oromucosal suspensions. Indeed, the sediment of microparticles could be easily 

re-suspended by manual agitation. No aggregates were observed up to six months from 

preparation, indicating that the selected active ingredients did not affect the physical 
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stability of formulation. These observations were also confirmed by results of mass 

delivered as the number of microparticles sprayed from the device after 6 months of 

storage at 25°C and 40°C results comparable to those obtained at time 0 (data not shown). 

On bases of these evaluations, the atomization pressure of 550 mbar was selected and the 

upper limit of viscosity was established at 50 cps for drug-loaded MMS. 

Table 2.2 – Particle size distribution and mucoadhesive properties of placebo MMS. 

Form. 
Feed viscosity 

(mPa/s)# 

Pressure 

(mbar) 
d10 d50 d90 SPAN 

mg bound-mucin/g 

microparticles 

P0 96,500 450 18 67 143 1,81 -* 

  550 10 26 71 2,28 1.33 ± 0.12 

P0a 50,748 450 10 29 55 1,53 -* 

  550 8 23 47 1,69 -* 

P1 43,936 450 17 41 84 1,66 -* 

  550 15 33 64 1,52 1.79 ± 0.20 

P2 38,118 450 5 29 77 2,50 -* 

  550 17 40 68 1,26 2.01 ± 0.18 

P3 28,866 450 17 40 74 1,41 -* 

  550 13 36 78 1,80 2.76 ± 0.15 

# standard deviation less than 2%; *not performed 

The loading of flurbiprofen affected neither particle size distribution nor the particle 

morphology (Table 2.3). Delmopinol addition in the feed of Formulation D1 (Table 2.1) 

did not allow the formation of spherical microparticles.  

This evidence might be explained hypothesizing that its surfactant properties affected 

droplet surface energy and modified droplet penetration into the cross-linking bath. 

Indeed, spraying of this formulation led to the formation of a film on the surface of CaCl2 

solution. To solve this limitation, delmopinol was dissolved only in the aqueous vehicle 

and the placebo microparticles were maintained in the drug-loaded vehicles in order to 

favor the partition of the active ingredient from the vehicle to the microparticles until 

equilibrium between the two phases was reached.  
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The drug content assayed in the vehicle and microparticles of Formulation D1 indicated 

that encapsulation efficiency was higher than 100% (Table 2.3). This evidence may be 

due to interaction among delmopinol amine and carboxylic moieties of CP and/or 

alginates. The same phenomenon was not evident in the presence of hyaluronic acid 

(Formulation D2, Table 2.1). Indeed, it is possible to speculate that this compound was 

able to limit the drug migration from the external phase towards the microparticles.  

Table 2.3 – Particle size distribution and drug content. 

Form. 
Particle size (µm) Drug content (% w/w) 

d10 d50 d90 Microparticles Aqueous vehicle 

F1 45 65 85 0.10 ± 0.00 0.10 ± 0.00 

F2 44 90 124 0.10 ± 0.01 0.10 ± 0.01 

F3 45 77 117 0.06 ± 0.01 0.05 ± 0.00 

D1 43 71 103 0.18 ± 0.03 0.09 ± 0.01 

D2 42 95 99 0.12 ± 0.02 0.10 ± 0.01 

The percentages of delmopinol or flurbiprofen recovered in the vehicle and in 

microparticles showed no significant changes over the considered period of storage as 

reported in Table 2.4. Moreover, at the end of the scheduled period of storage, the 

measured pH resulted 4.5, independently of the tested formulation and the storage 

conditions. 

Table 2.4 – Drug content (%, w/w) in D2 and F1 MMS formulations after six months of storage in 

normal (25°C/ 60 % RH ) and accelerated (40°C/60 % RH) conditions. 

Form. 
25°C/ 60 % RH 40°C/60 % RH 

Microparticles Aqueous vehicle Microparticles Aqueous vehicle 

D2 0.13 ± 0.00 0.09 ± 0.00 0.12 ± 0.01 0.09 ± 0.00 

F1 0.10 ± 0.02 0.10 ± 0.00 0.11 ± 0.01 0.10 ± 0.01 

2.3.2 In vitro mucosa Flurbiprofen penetration studies 

Preliminary, residence time of the microparticles which were visually detected by using 

the formulation P3 prepared with 30% of FITC-labelled alginate. As expected, continuous 
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washing determined a progressive decrease of microparticle number adhered onto the 

porcine mucosae. In every case, they were detectable over at least 6 h (Figure 2.1) 

confirming the mucoadhesive properties of MMS. 

The experiments aiming to determine the amount of flurbiprofen retained into the porcine 

mucosa were performed with drug-loaded formulations over the same period. One hour 

after the sample application onto the mucosa sheets, the drug amount penetrated into the 

mucosa was significantly higher for the reference solution (Formulation F0) with respect 

to flurbiprofen MMSs (Figure 2.1) according to the higher drug content (Table 2.3). 

Nevertheless, after 3 h the flurbiprofen amount retained into the mucosa was reduced of 

about 3-fold and further decreased over time. 

The use of MMS allowed improving drug concentration into the porcine buccal mucosa 

over time. Indeed, Formulation F2 exhibited a pattern similar to formulation F0 even if the 

flurbiprofen retained into the mucosa was only halved between 1 and 3 h. No statistically 

differences in drug levels were evident over 3 h and 6 h period for Formulation F3 and F1, 

respectively.  

 

Figure 2.1 – Amount of flurbiprofen penetrated into porcine cheek mucosal segments, 1, 3 and 6 

hours after the application of Formulations F0-F3. The images reports the mucoadhesive 

microparticles of formulation F2 taken by fluorescent microscope at the three different times. The 

irregular shape of the microparticles represented at time 1 h and 6 h is an artefact related to their 

drying during the observation by microscope. 
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After 6 hours, the drug concentrations for Formulations F0 and F2 were not statistically 

different (p=0.47) and were lower than those obtained with Formulations F1 and F3 

(p<0.02). A higher reduction of drug concentration after 6 hours was observed for 

Formulations F1 than F3, since a lower amount of mucoadhesive microparticles was 

present in aqueous vehicle of such formulation (Table 2.1). 

Independently to the tested formulation, the recovery of flurbiprofen in the eluted washing 

medium revealed that unabsorbed drug was completely washed off within one hour and 

the maximum concentration was achieved within 15 min (Figure 2.2). As a matter of fact, 

the drug was not quantifiable over periods of time longer than 1 h in the eluted washing 

medium. The drug amount eluted from the mucosa surface was in agreement with the 

drug concentration in the oral spray formulations and was closed to the theoretical amount 

of drug sprayed onto the mucosae. The different pattern of Formulation F2 with respect 

to Formulations F1 and F3 was attributed to the lower mucoadhesive properties (Table 

2.2), which favored an easier washing off microparticles.  

 

Figure 2.2 – Elution profiles determined by in vitro falling technique of flurbiprofen after the 

application of Formulations F0-F3. 
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Figure 2.3 – Drug release profile of flurbiprofen from microparticles contained in Formulations 

F1 and F2. 

This hypothesis was confirmed by the comparison of the drug release profiles, which 

resulted superimposable (Figure 2.3). Furthermore, the release rate constants (K) 

calculated according the Higuchi model were not statistically different (KF1 = 1.07±0.06 

h-1; KF2 = 1.06±0.04 h-1; p=0.7487) and the good sound of correlation (R2>0.9940) 

supported the hypothesis that the drug release was mainly controlled by diffusion. This 

result suggests that Formulations F1 and F3 retained the drug in the buccal mucosa for 

longer period with respect to Formulation F2 because of its higher mucoadhesive 

properties rather than to a different ability to control drug release. 

2.3.3 In vitro evaluation of plaque development 

The in-house made artificial mouth and selected operative conditions allowed to 

discriminate the effect of the formulative variables of the oromucosal preparations on 

antiplaque effect of delmopinol. Indeed, results obtained by computerized planimetry 

with a semi-automatic image analyzer on definite areas of tooth surface (Figure 2.4) 

substantially confirmed evaluation by Visual Index: antiplaque performance of reference 

solutions, containing the highest drug amount (Formulation D0a) was considered “very 

good”.  
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Figure 2.4 – Percentage of tooth surface covered by plaque, as obtained by computerized 

planimetry with a semi-automatic image analyzer after application of Formulations D0, diluted 

D0 and D2 and Visual Index for plaque formation after application of Formulations D0a, D0b and 

D2 (insert).  

The reduction of drug concentration from 0.2% w/w to 0.1% w/w (Formulation D0b) led 

a reduction of the anti-plaque effect which can be considered, in the proposed score 

system, moderate. Since Formulation D2 was delivered once-a-day while Formulations 

D0a and D0b twice-a-day, the former could be considered the most efficacious in the 

prevention of plaque formation, with less than 20% of tooth surface covered by the 

plaque. 

2.3.4 Preliminary stability evaluation 

The stability data for formulations D2 and F1 are reported in Table 2.4. 

The additives present in the oromucosal formulations were not detected in the 

chromatograms and therefore did not interfere with the drug determination. No 

degradation products were detectable in the chromatograms of both the tested 

formulations. The drug content showed no significant changes during storage indicating 

that both drugs resulted stable in MMS over considered time.  
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Moreover, at the end of the scheduled period of storage, the measured pH resulted 4.5, 

independently of the tested formulation and the storage conditions. 

2.4 Discussion 

The feasibility of obtaining a drug controlled release by preparing microparticles 

comprising alginate and CP was already reported in several papers [26]. Nevertheless, the 

final goal was to obtain mucoadhesive microparticles suitable for oral administration. In 

all cases, mucoadhesive microparticles were obtained by adding dropwise an aqueous 

polymeric dispersion comprising sodium alginate and CP to a cross-linking bath. 

Afterwards, the resulting suspension was filtered, dried and the microparticles derived by 

collapsing the hydrated beads [26, 27]. 

The production by using a standard nozzle, instead of a syringe equipped with a needle 

having a diameter generally comprised in the range 24-27G, allowed to obtain hydrated 

microparticles with an average particle size of 100 µm, which did not require further 

processing, such as drying. Such microparticles had no tendency to aggregation and, at 

the same time, high surface area and satisfactory mucoadhesive properties.  

As underlined by the results concerning the multiple regression (Eq. 2.3), the particle size 

of microparticles could be easily set by changing polymer concentrations, which 

determined the feed viscosity, and atomization pressure. In particular, CP concentration 

might be considered the most critical formulative parameter since it determined the 

microparticle mucoadhesive properties and, therefore, drug retention into mucosa.  

The proposed system resulted also flexible and versatile, in terms of encapsulation, since 

active ingredients with different characteristics could be loaded. The final drug loading 

might be adjusted by adding different amount of active ingredient in the feed and/or in 

the aqueous vehicle, or appropriate excipients. As verified in the case of delmopinol, the 

active ingredient could be added only in the cross-linking bath ant then uptaken by 

microparticles after their formation. The data obtained by flurbiprofen MMS suggested 

that when specific interaction between drug and swelled polymers used to obtain 

microparticles did not occur, the drug release was mainly controlled by the physically 

cross-linked alginate rather than the CP content. 
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The quantification of flurbiprofen penetrated into porcine buccal mucosa and the 

inhibition of plaque formation on teeth induced by delmopinol suggested that use of 

prolonged release oromucosal bioadhesive suspensions, such as those proposed in the 

current study, might decrease both the administered dose and the frequency of 

administration. Indeed, these formulations permitted to obtain performances comparable 

to those obtained by administering a traditional flurbiprofen oromucosal spray and 

delmopinol conventional product at dose reduced of about 60% and 50%, respectively.  

The proposed drug delivery systems present also several advantages with respect to other 

mucoadhesive preparations intended for the treatment of pathologies localized in the oral 

cavity. With respect to buccal tablets and patches, the delivery of formulation by means 

a spray permitted to cover easily the entire oral mucosa or to localize active ingredient 

mainly on the throat. Furthermore, since mucoadhesive microparticles were suspended in 

a medium containing the drug, it could be assumed that designed MMS allowed to a fast 

onset of action associated to subsequent prolonged drug release. 

2.5 Conclusion 

The alginate/CP binary blend might be used for producing such MMS by ionotropic 

gelation using a one step process. The mucoadhesive microparticles exhibited a narrow 

particle size distribution and a mean diameter suitable to be delivered by using a spray 

device. The proposed MMS could assure a prolonged release of both cationic and anionic 

active ingredients. Finally, results of in vitro experiments suggested that development of 

MMS, localizing the drug into buccal cavity, could reduce the administrated dose and 

regimen. 
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3.0 Abstract 

The study aimed to develop a buccal delivery system designed for having both fast onset 

of drug action and prolonged release, combining the peculiarities of aqueous solution and 

prolonged release mucoadhesive microparticles. Clobetasol propionate (CP) was chosen 

as model drug since it is currently administered to treat inflammatory diseases of the oral 

cavity. CP loaded mucoadhesive microparticles were prepared in one-step process by 

spray coagulation method. Sodium alginate (ALG) and two different grades of acrylic 

acid-based polymers (PAA) were selected as encapsulating and bioadhesive polymers, 

respectively. The effects of PAA type, PAA concentration in microparticle (25% or 50%, 

w/w) and spraying pressure (450 or 550 mbar) were investigated on microparticle 

morphology and CP penetration into porcine cheek mucosa by 23 factorial design. 

Microparticles were characterized in terms of morphology, micrometrics, mucoadhesion. 

Well-formed and spherical microparticles were obtained combining ALG with both types 

of PAA. The microparticle micrometrics was mainly influenced by spraying air pressure. 

The amount of mucin bounded to ALG/PAA microparticles was significantly higher 

(p<0.05) than those made of the pure ALG. The drug amount penetrated into the mucosa 

was significantly higher after 6 hours from administration of CP-loaded microparticles in 

comparison with the reference drug solution. The PAA type was critical to achieve high 

amount of drug penetration, especially when ALG/PAA were in the 1/1 ratio. 

In conclusion, the proposed oromucosal mucoadhesive prolonged release suspension 

might be advantageously used to reduce the administration frequency of CP in the oral 

cavity. 

 

 

 

 

 

 

The experimental work was carried out in the laboratory directed by prof. Luisa Montanari, 

Department of Pharmaceutical Sciences, University of Milan, via G. Colombo, 71 – 20133, Milan 

(Italy). 
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3.1 Introduction 

Oral mucositis is one of the most critical complication of chemo- and radiotherapy [1]. 

Because of the high impact on life quality and care cost, several therapeutic protocols 

have been proposed for prevention and treatment. In general, they consisted in the basic 

oral care, topical administration of antimicrobials, mucosal coating agent, anesthetics, or 

systemic administration of high potent analgesics. Moreover, anti-inflammatory agents 

were tested, since oral mucositis are also correlated to an activation of inflammatory 

mechanism [2]. However, few of them were proven efficacy in reducing the severity and 

duration of oral mucositis.  

Since buccal dosage forms used in the treatment of oral mucositis are based on solutions 

and semisolid preparations for skin application, the clinical failure might also be 

correlated to an ineffective drug delivery. Therefore, to improve the patient’s compliance, 

the development of a prolonged release dosage forms might be challenging.  

In a previous work, Cilurzo et al. proposed an oromucosal suspension of mucoadhesive 

microparticles (MMS) able to combine the peculiarities of prolonged release systems with 

those of an immediate release oromucosal solution [3]. The MMS was made by one-step 

spray coagulation method using sodium alginate (ALG) and poly-acrylate acids (PAA) 

as main microparticle constituents. The former was selected for the ability to form stable 

reticulate structure in presence of bivalent cations [4], the latter to conferee suitable 

mucoadhesive properties of microparticle. The in vitro effectiveness of MMS was 

demonstrated by loading flurbiprofen and delmopinol. However, the effect of polymeric 

feed composition and process conditions on the MMS residence time on buccal mucosa 

was not investigated in detail. 

Therefore, the present study aimed to study the effect of these variables on clobetasol 

propionate (CP)-loaded MMS aiming to assure the presence of the drug into the buccal 

mucosae over six hours. CP was selected as model drug since its effectiveness in the 

treatment of oral mucositis and oral lichen planus [5]. Furthermore, two types of PAA 

were selected among those authorized for oral delivery according to the different 

crosslinking pattern: Carbopol® 974P is cross-linked with allyl ethers of pentaerythritol 

(APE), whereas Noveon® AA-1 is cross-linked with divinyl glycol (DVG). The effect of 
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the PAA types was evaluated in term of microparticle mucoadhesion and MMS in vitro 

performances. 

A 23 full factorial design was built in to investigate the influence of formulation variables 

(i.e., PAA type, ALG/PAA) and manufacturing parameter (i.e., spraying air pressure) on 

the microparticle micrometrics the CP amount of penetrated in porcine mucosa after 6 h. 

3.2 Materials and methods 

3.2.1 Materials 

Clobetasol propionate was purchased from Sicor SpA (Rho, Italy). Protanal® LF 120 M 

was supplied by FMC BioPolymer (Philadelphia, USA). Carbopol® 974P (APE-PAA), 

Noveon® AA-1 (DVG-PAA) were purchased from Lubrizol Corporation (Wickliffe, 

USA). Cremophor® RH 40 was kindly gifted by BASF (Ludwigshafen, Germany). 

Polyethylene glycol 400, sorbitol, saccharin sodium, methyl-paraben sodium, calcium 

chloride dehydrate were supplied by Farmalabor (Canosa di Puglia, Italy). Glycerol and 

ethanol were purchased form Carlo Erba Reagenti (Milan, Italy). Mint flavor was 

purchased from Kerry Group (Tralee, Ireland). Mucin type II was purchased from Sigma-

Aldrich Co. (Milan, Italy). All other reagents and solvents were used as received without 

further purification. 

3.2.2 Mouthwash preparation 

The placebo feed solutions were made mixing aqueous dispersion of ALG and 

mucoadhesive polymers (i.e., APE-PAA, DVG-PAA) in the 1/1 ratio. The feed solution 

was pumped at the rate of 15 mL/min into a standard two-way nozzle (0.8 mm inner 

diameter; Schlick Atomizing Technologies, Düsen-Schlick GmbH, Untersiemau, 

Germany) and sprayed into a 1% w/w calcium chloride solution, under magnetic stirring. 

The spraying air pressure ranged was set at 450 mbar. Microparticles were cured into the 

cross-linking bath for 1 h at room temperature before filtering throughout a 710 µm sieve. 

The final MMS were stored in 50 mL blue PE bottle at 25°C until use. The ratio between 

feed and aqueous vehicle were set up to achieve a final microparticle concentration of 

10% w/w. 

The CP-loaded MMS were prepared adding drug in both feed solution and vehicle 

solution to achieve final concentration of 0.025% w/v in microparticle and aqueous 
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vehicle. The PAA type, its concentration in microparticles and spraying air pressure were 

set up according 23 full factorial design (Table 3.1 and Table 3.2). In order to compare 

the effectiveness of MMS with a marketed mouthwash containing 0.025% w/v CP, other 

excipients were added to aqueous vehicles as reported in Table 3.3. 

Table 3.1 - Factor and responses used in the 23 full factorial design of CP-loaded MMS and 

response specification. 

Factors Low level High level 

PAA type (X1) APE-PAA DVG-PAA 

% PAA (X2) 25 50 

Air pressure (X3, mbar) 450 550 

Responses Goals 

Particle mean diameter (Y1) None 

SPAN (Y2) Minimize 

Retained amount at 6h (Y3) Maximize 

3.2.3 Mucoadhesive properties 

Although mucoadhesion of microparticles have been also investigated previously [3], the 

effect of DVG-PAA have not been evaluated on microparticle mucoadhesion yet. 

According that, three placebo MMS were made containing ALG only (P0), ALG/APE-

PAA (P1) and ALG/DVG-PAA (P2) (Table 3.3). The ratio between ALG and PAA was 

set up at 1/1 for maximize the mucoadhesion differences. The mucoadhesion properties 

of three formulation was determined after filtering microparticles through a 90 µm sieve. 

Aliquots of 100 mg microparticle were suspended in 2.5 mL purified water and known 

volume of 0.05% w/v mucin solution was added. Then, samples were shaken at 100 rpm 

for 5 min in a shaker incubator (Sartorius Stedim, Bagno a Ripoli, Italy) at 37±1 °C and 

centrifuged at 1000 x g by a Hettich Universal centrifuge 30F (Andreas Hettich GmbH & 

Co. KG, Tuttlingen, Germany). After discharging the supernatant, microparticles were 

washed by 5 mL fresh purified water to remove mucin not adsorbed on the surface. 

Afterwards, microparticles were re-suspended in 2.5 mL deionized water. Aliquot of each 

suspension (200 µL) were incubated with a micro BCA Protein Assay Reagent 

(Euroclone, Pero, Italy) for 30 min at 37±1 °C, as modified from Shi and Caldwell [6]. 

The amount of bound mucin was determined by spectrophotometer at the wavelength of 
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562 nm (DU®-640 spectrophotometer, Beckman Coulter, Brea, USA). The results were 

expressed as milligrams of bound mucin normalized for grams of microparticles. The data 

was reported as mean values ± SEM (n=3).  

3.2.4 Design of experiments 

A 23 full factorial design was built in to screen formulation and manufacturing parameter 

influencing the effectiveness of proposed CP-loaded OMS in mucosal drug penetration. 

Type of bioadhesive polymer (APE-PAA, DVG-PAA; X1), theoretical PAA 

concentration in dried microparticles (X2), and spray air pressure (X3) were selected as 

independent variables (factors). The particle mean diameter (Y1), particle size dispersion 

(SPAN; Y2) and drug penetrated amount into mucosa after 6 h (Y3) were used as 

dependent variables (responses; Table 3.1). Statistical analyses of the formulations 

design were performed using JMP® software version 10 (SAS Institute; Cary, USA). 

3.2.5 Statistical analyses  

Linear correlations were made from the response values of the Y1, Y2, Y3 of results of 8 

runs (Table 3.2). Analyses of variance (ANOVA) were performed to ensure the model 

fit. Factors and their interaction that significantly influenced Y1, Y2 and Y3 were identified 

by stepwise backward analyses. Theoretical optimum condition was obtained by setting 

the maximum desirability of minimum Y2 and maximum Y3 (Table 3.1). Any optimal 

condition was set up for Y1, considering that microparticle size was not a critical 

parameter for oromucosal delivery. Results were considered statistically significant at 

p<0.05 using the Fisher’s t-test. 

3.2.6 Microparticle size and distribution 

The particle size of suspension (1 mL) was measured by an Accusizer 770 granulometer 

(PSS Inc., Santa Barbara, USA). Particle size was expressed as undersize cumulative 

percentages and the population dispersion was expressed as SPAN, according to the 

following equation (Eq. 3.1): 

𝑆𝑃𝐴𝑁 =
𝑑90−𝑑10

𝑑50
× 100        Eq. 3.1 
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where d90, d10 and d50 were the mean diameters at the 90%, 10% and 50% of the 

distribution of microparticle population, respectively. 

3.2.7 Drug content 

Microparticles recovered by filtration through 45 µm membrane were washed with 

acetonitrile to remove the drug absorbed on the surface and dried at room temperature till 

constant weight. Microparticle samples (50 mg) were digested in 10 mL of 5% w/v 

sodium chloride solution/acetonitrile (50/50, % v/v) under sonication for 2 h. Then, 

samples were 45 µm filtered and the CP content was quantified by HPLC as reported 

below. The CP content of aqueous vehicle was also determined after dilution 1:10 with 

HPLC-grade water. The analyses were carried out in triplicate.  

3.2.8 HPLC analysis 

The concentration of CP was determined by HPLC (HP 1100, Chemstations, Agilent 

Technologies, Santa Clara, USA). Compound separation was carried out using reverse-

phase column (Water Spherisorb®, ODS2, 3 µm, 150x4.6 mm, Waters Co., Dublin, 

Ireland) and HPLC-grade water/acetonitrile (50/50, % v/v) as mobile phase. The flow rate 

was 1.0 mL/min and the injection volume of 20 µL. The drug concentration was 

determined at 240 nm from calibration curves in the range of 0.05-5 µg/mL (R2>0.999). 

3.2.9 In vitro mucosa penetration study 

The in vitro mucosa penetration study was performed according the falling liquid 

technique described by Cilurzo et al. [3]. Briefly, the fresh porcine cheek mucosa was 

obtained by a local slaughterhouse. Specimens of mucosa were dipped in pH 7.4 PBS at 

70°C for 1 min to isolate the mucosa epithelial layer. In-house equipment was composed 

by six in series mucosa supports set at an acute angle of 30°, the peristaltic pump and the 

liquid fraction collector. Tested MMS was sprayed twice onto a 2.5x1.0 cm mucosa 

surface corresponding a total amount of about 40 mg MMS. Then, porcine cheek 

epithelial layer was placed on the sample support and pH 6.4 PBS was dropped at the 1 

mL/min rate to simulate the buccal environment and the saliva swallowing. At predefined 

times (i.e., 1, 3 and 6 h), the applied test sample was peeled away by means of an adhesive 

tape strip and the mucosa was stored at -40°C for 24 h. Finally, mucosa samples were 

homogenized and penetrated drug amount was extracted in acetonitrile (2.5 mL) and then 



Chapter 3 

 

47 
 

quantified by HPLC. The amount of CP retained after a defined time (Qret) was expressed 

as micrograms of drug in micrograms of epithelial layer. 
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Table 3.2 - Experimental matrix and observed responses from randomized runs in the 23 full factorial. In particular, PAA type (X1), concentration (X2) 

and air pressure setting (X3), microparticle size (Y1), SPAN (Y2) and amount retained in the mucosa after 6 h (Y3) are reported. The experimental results 

are expressed as mean values ± SEM (n=3). 

Form X1 X2 

(%) 

X3 

(mbar) 

Y1 

(µm) 

Y2 Y3 

(µg/mg mucosa) 

C1 DVG-PAA 25 450 172.2 0.78 1.01 ± 0.06 

C2 DVG-PAA 25 550 58.0 1.40 2.15 ± 0.29 

C2 DVG-PAA 50 450 178.6 0.77 0.67 ± 0.15 

C4 DVG-PAA 50 550 50.0 1.56 1.52 ± 0.36 

C5 APE-PAA 25 450 133.2 1.11 1.79 ± 0.50 

C6 APE-PAA 25 550 44.7 1.10 1.25 ± 0.01 

C7 APE-PAA 50 450 128.2 1.14 3.04 ± 0.35 

C8 APE-PAA 50 550 66.0 0.71 1.98 ± 0.56 
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Table 3.3 – Composition of placebo mouthwashes (P0-P2), Reference (R) and optimal CP-loaded MMS (CP-MMS) according the results of 23 full 

factorial design. The ratio between Phase A and Phase B was fixed at 1/10. 

Ingredients 
Formulation composition (%) 

P0 P1 P2 R CP-MMS 

Phase A 

(microparticles) 

Clobetasol propionate  - - - - 0.025 

Sodium alginate 3.00 1.50 1.50 - 1.50 

Carbopol® 974P - 1.50 - - - 

Noveon® AA-1 - - 1.50 - 1.50 

Purified water 97.00 97.00 97.00 100.00 97.00 

Phase B 

(aqueous 

vehicle) 

Clobetasol propionate - - - 0.025 0.025 

Glycerol - - - 10.00 10.00 

Ethanol - - - 10.00 10.00 

Sorbitol - - - 7.00 7.00 

Cremopohor® RH 40 - - - 2.40 2.40 

CaCl2 1.00 1.00 1.00 1.00 1.00 

Mint Flavor - - - 0.20 0.20 

Sodium saccharin  - - - 0.15 0.15 

Sodium methyl-

paraben  

- - - 0.10 0.10 

Purified water 89.00 89.00 89.00 69.125 69.125 
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3.3 Results and discussion 

As expected, the addition of bioadhesive polymer to the feed solution conferred 

mucoadhesive properties to microparticles. In particular, the results showed that bound 

mucin increased from 1.33±0.07 mg/g for P0 to 2.23±0.09 for P1 (p=0.001) and 1.97±0.16 

for P2 (p=0.019). No significant differences were observed comparing the results of two 

types of PAA (p=0.225), showing that different cross-linker used did not significantly 

affect mucoadhesion. 

CP could be added to feed solution and its final concentration in microparticles ranged 

from 0.029 to 0.032 % w/w. The drug loading caused an increase in particle size from 

about 50 µm of placebo microparticles [3] to 150 µm of CP-loaded MMS (Table 3.2). 

Furthermore, the step stepwise analyses highlighted that microparticle dimension were 

mainly affected by spraying air pressure (X3). In particular, the microparticle size (Y1) 

was inversely correlated to X3, as shown in Eq. 3.2 (p=0.016; R2=0.64; F Ratio=10.90). 

𝑌1 = 496.17 − 0.76𝑋3         Eq. 3.2 

On the contrary, the SPAN was influenced by the interaction of X1 and X3 (p=0.016). In 

particular, the higher the air pressure used to spray (X3), the higher the values of Y2. The 

linear correlation, valid only for MMS containing DVG-PAA, was shown by Eq. 3.3 

(p=0.012; R2=0.97; F Ratio=77.35). 

𝑌2 = −2.39 + 0.01𝑋3        Eq. 3.3 

This evidence suggested that cross-linked nature of PAA was critical for microparticle 

polydispersion. In general, cross-linking increased the rigidity of polymer structure. 

Therefore, it is possible that DVG-PAA chains affected the ALG reorganization in 

microparticles more strongly than APE-PAA, producing a high particle dispersion. 

The in vitro penetration studies showed a high inter-sample variability (CV% > 30) due 

to high heterogeneity of epithelial layer of porcine mucosa [7]. However, the results 

showed different performances of tested formulation in drug retention into mucosa 

epithelial layer (Figure 3.1). 
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Figure 3.1 –  Qret of reference (R) and MMS formulations of 23 factorial design (Table 3.2) 

containing DVG-PAA (A) and APE-PAA (B) after 1, 3 and 6 h. Data are represented as average 

mean values ± SEM (n=3). *p<0.05 when compared with control by Student’s t-test. 
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Qret decreased over time both for reference mouthwash and for all MMS formulations. In 

the case of reference mouthwash, CP retained amounts decreased from 3.04±0.55 to 

0.72±0.21 µg/mg of mucosa after 1 and 6 h, respectively. The CP- loaded MMS retention 

trends were influenced by design factors. Comparing Figure 3.1 A and B, it is noteworthy 

that Qret was higher for MMS containing APE-PAA than for those with DVG-PAA. For 

example, Qret were 0.94±0.29 and 5.47±0.73 µg/mg of mucosa after 1 hour from the 

application of C3 and C7, respectively (p<0.01). The statistical analyses also suggested 

that Qret after 6 h (Y3) was significantly influenced by the PAA type (X1; p=0.017), 

interaction of the PAA type with ALG/PAA ratio (X1*X2; p=0.013) and with air pressure 

(X1*X3; p=0.006).  

Since the linear multiple regression fitted well with experimental results (p=0.0068; 

R2=0.94; F Ratio=20.54), Eq. 3.4 was applied to describe the factor influence on MMS 

made with APE-PAA. 

Y3 = 3,56 + 0.03X2 − 0.01X3       Eq. 3.4 

According to that, the Y3 was positively influenced by increase of APE-PAA and its 

concentration in the dried microparticle (X2), whereas it was negatively affected by 

increase of spraying air pressure (X3). The former observation might be justified 

considering that the APE-PAA concentration in microparticle was correlated to the 

improvement of microparticle mucoadhesion [3]. Therefore, the higher the mucoadhesive 

properties of microparticles the longer the resistance time on the buccal mucosa, 

prolonging the CP released at penetration site.  

In the second case, the air pressure on Y3 induced the presence of smaller microparticles 

on the mucosa surface as expressed by Eq. 3.3. These evidences might be explained 

considering that drug retention was related to microparticle residence time on the mucosa. 

The falling film technique uses liquid flow on an inclined plane to simulate the 

physiological swallowing [8]. In these conditions, the liquid flow forces microparticles to 

roll on the mucosa surface. Therefore, microparticle movement might be simplified as 

sphere movement on the inclined plane.  

The tendency to roll was directly correlated to the force applied on the sphere by liquid 

flow (FL) and indirectly correlated to the rolling resistance (Fr). As reported by 
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Ketterhagen and coworkers, the force of rolling resistance has been directly related to the 

sphere weight (W) by the coefficient of rolling resistance (Crr) [9]. Since FL was constant 

during the experiment, the microparticle residence time on the mucosa was directly 

correlated to Fr. Furthermore, an increase of mucoadhesion produced higher Crr due to 

the higher interaction between microparticle surface and mucosa layer. Therefore, at 

elevated PAA concentrations (X2), Crr increased because of stronger mucoadhesion and 

therefore the tendency of the microparticles to roll away to the mucosa resulted decreased. 

On the other side, the negative effect of spraying air pressure (X3) on Qret might be 

justified considering that size can be correlated to microparticle weight. At constant 

density: the smaller the size, the lower the microparticle weight and the lower Fr. 

Moreover, statistical model allowed identifying optimal formulation and condition to 

achieving satisfying retention after 6 h. As shown in Figure 3.2, the optimal conditions 

were APE-PAA (X1), 50% w/w of PAA (X2) and 450 mbar (X3; Desirability: 0.83). 

 

Figure 3.2 – Prediction and desirability plot showing the effect of factors on Y3 of 23 full factorial 

design. 
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3.4 Conclusion 

The experimental work confirmed that MMS was a suitable technological platform for 

oromucosal delivery of drugs. The current study demonstrated that MMS were also able 

to increase the mucosal penetration of clobetasol propionate. The 23 full factorial design 

showed which formulation and manufacturing process affect mainly the microparticles 

performances. Moreover, optimal conditions for high CP retention after 6 hours were 

obtained using APE-PAA as bioadhesive polymer in the 50% w/w of microparticle 

concentration. Finally, the spraying air pressure had to be set at 450 mbar in order to limit 

the particle size dispersion during the production process. 
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4.0 Abstract 

The present work aimed to investigate polymeric nanoparticles (NPs) loaded with 

resveratrol (RES)-loaded nanoparticles (NPs) as suitable drug delivery system to cochlear 

cells. RES-loaded NPs were prepared by solvent-diffusion technique without surfactant. 

Box-Behnken design was used to study the effect of formulation variables on particle 

mean diameter, polydispersity index (PDI), zeta-potential, and percent drug encapsulation 

efficiency (EE%) and ratio between NPs size before and after freeze-drying (Sf/Si). 

Furthermore, the physicochemical stability of the colloidal suspension was improved 

using different types and concentrations of cryoprotectants. Finally, the in vitro toxicity 

of the synthesized NPs was evaluated in two cochlear cell lines: organ of Corti (HEI-

OC1) and Stria Vascularis (SVK-1) cells. The optimal formulation (desirability: 0.86) 

corresponded to NPs with mean diameter of 135.5±37.3 nm, PDI of 0.126±0.080, zeta-

potential of -26.84±3.31 mV, EE% of 99.83±17.59% and Sf/Si of 3.30±0.92. The particle 

mean diameter and PDI of RES-loaded NPs were maintained within the model space only 

when trehalose was used at concentrations higher than 15% w/v. The in vitro studies 

showed that blank NPs did not alter the viability of both cells lines, except for 

concentrations higher than 600 µg/mL. On the other hand, the cell viability decreased at 

high concentrations of native RES (>50μM) in both cell lines, whereas RES-loaded NPs 

influenced only HEI-OC1 cell viability. 

 

 

The formulative and in vitro toxicity studies were carried out in the Laboratory of Future 

Nanomedicines and Theoretical Chronopharmaceutics directed by prof. Bi-Botti C. Youan, 

Division of Pharmaceutical Sciences, University of Missouri Kansas City, 2464 Charlotte St., 

Kansas City, MO 64108, USA. 

The Powder X-ray diffraction analyses were carried out in the laboratory directed by prof. James 

B. Murowchick, Department of Geosciences, University of Missouri-Kansas City, 420 Flarsheim 

Hall, 5110 Rockhill Rd., Kansas City, MO, 64110, USA. 

 

The contents of this chapter have been submitted for publication to an. international peer-

reviewed journal. Furthermore, the results of ancillary in vivo biodistribution study were 

presented as posters at the 2013 AAPS Annual Meeting and Exposition (Appendix 4.1). 
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4.1 Introduction 

Cisplatin (cis-diaminedichloroplatinum (II)) is one of the most frequently used 

chemotherapeutic agents for the treatment of several varieties of tumors, including 

ovarian, testicular, breast, hematologic, lung, cervical, and head and neck cancers. 

However, its clinical effectiveness is often correlated with severe side effects such as 

ototoxicity [1]. Cisplatin-induced ototoxicity generally manifests as ear pain, tinnitus, 

sensorial hearing loss and deafness. In particular, around 60% of treated patients have 

exhibited elevated hearing threshold with a higher incidence in children than in adults [2]. 

Cisplatin has been demonstrated to trigger in vitro activation of apoptosis in cochlear cell 

lines (i.e., outer hair, Strial Ganglion and Stria Vascularis cells) through the generation 

of reactive oxygen species (ROS) [3, 4]. Therefore, the efficacy of several antioxidant 

agents, including α-lipoic acid, D-methionine, ebselen, L-carnitine, N-acetylcysteine, has 

been tested in vitro and in vivo after local and systemic delivery [1, 5]. However, there 

are no FDA/EMA-approved medicines for the treatment of hearing impairment caused 

by cisplatin. 

Recently, resveratrol (RES) has been proposed as a protective agent since its effectiveness 

was proven after systemic administration in guinea pigs and rats [6, 7]. RES (3,5,4’-

trihydroxystilbene) is a non-flavonoid poly-phenolic compound abundant in grapes, 

peanuts and other foods. In humans, RES has been correlated with several 

pharmacological effects, including cardio-protection, cancer prevention, anti-

inflammatory activity, antioxidant effects, improvement of cellular stress resistance and 

longevity [8]. However, the use of RES in clinics remains limited due to its low oral 

bioavailability (70%), rapid metabolism and elimination [9]. Several delivery systems 

including microparticles, ultra-fine fiber, nanosponges, liposomes, and nanoparticles 

(NPs) have been proposed as alternative solutions to bypass the pharmacokinetic 

limitations [9]. 

In the present study, RES was loaded in polymeric NPs, made of two biodegradable 

polymers. Poly-(lactic-co-glycolic) acid (PLGA) was selected as a biodegradable 

polymer considering its well-known safety and ability to control drug release. On the 

other hand, the poly-(caprolactone)–poly-(ethylene glycol) (PCL–PEG) di-block was 
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used for taking advantage of its amphiphilic nature for stabilizing nanoparticle surface 

and improving drug loading. 

Recently, experimental approaches based on design of experiment (DoE) have been 

widely applied in the academic research and pharmaceutical development of new drugs 

[10, 11]. Hence, Box-Behnken design (BBD) was selected, requiring fewer number of 

runs (12 plus 3 center points) and only three levels of each independent variable than 

other response surface designs [12]. The BBD allowed to deeply investigate the influence 

of formulation variables (i.e., RES, PLGA and PCL-PEG amounts) on the selected 

responses, namely particle mean diameter, PDI, Zeta-potential, percent drug 

encapsulation efficiency (EE%) and physicochemical changes after freeze-drying.  

The optimal formulation was also characterized by powder X-ray diffraction (PXRD), 

scanning electron microscopy (SEM) and in vitro drug release. Furthermore, the effect of 

well-known cryoprotectants was investigated to minimize physical instability of 

nanoparticle system during freeze-drying. 

Since no information has been available in literature about the pharmacology/toxicology 

of RES in cochlear cells, its toxicity was evaluated in vitro in two different cochlear cell 

lines: organ of Corti cells (HEI-OC1) and a Stria Vascularis one (SVK-1) [13, 14]. The 

toxicity of blank and RES-loaded NPs was also tested in HEI-OC1 and SVK-1 cells. 

4.2 Materials and Methods 

4.2.1 Materials 

RES was obtained from AK Scientific Inc. (Union City, USA). Poly-(D,L-lactide-co-

glycolide) with a L/G ratio of 50/50 and inherent viscosity of 0.39 dL/g was supplied 

from Birmingham Polymers Inc. (Pelham, USA). Poly-(ε-caprolactone)–poly-(ethylene 

glycol) di-block was obtained from Advanced Material Polymers Inc. (Montréal, 

Canada). Sucrose, trehalose, acetone, methanol were supplied from Sigma Aldrich (Saint-

Louis, USA). Lactose and Mannitol were obtained from Fisher Scientific Inc. (Pittsburgh, 

USA). All other chemicals used in the study were of analytical grade and were used 

without further purification. 
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4.2.2 Preparation of resveratrol-loaded nanoparticles 

RES-loaded NPs were prepared by solvent-diffusion technique without surfactant 

adapted from published method [15]. NPs were prepared by varying the amounts of RES 

and PCL-PEG/PLGA ratio (Table 4.1). Briefly, a known amount of PLGA and PCL-PEG 

was dissolved in 1 mL of acetone containing a known amount of RES. The resulting 

solution was added dropwise into 10 mL of purified water (Direct-Q 3 UV system, 

Millipore SAS, Molsheim, France) under constant mechanical stirring at 1,100 rpm 

(stirrer model RO 15, IKA-WerkeGmbh& Co, Staufen, Germany). The organic phase was 

evaporated (BUCHI Labor technik AG, Flawil, Switzerland) at 25°C for 2 h. Finally, the 

RES-loaded NPs were isolated by centrifugation at 15,000 rpm, 4°C for 20 min (VWR 

International Micro 18R, Darmstadt, Germany), washed twice and re-suspended in 

purified water. Then, the suspension was frozen at -196°C in liquid N2 and dried at -47°C, 

0.01 mbar, for 24 h (Labconco Corporation, Kansas City, USA). The powdered RES-

loaded NPs were stored at 4°C until use. Blank NPs were similarly prepared without 

active substance. 

4.2.3 Preparation of resveratrol nanocrystals 

RES nanocrystals were produced according to a published method [16] using acetone and 

water as solvent and anti-solvent, respectively. The organic solution and the anti-solvent 

were mixed rapidly to assure fast nucleation and thereby forming small particles. RES 

nanocrystals were collected by centrifugation (10,000 rpm for 20 min at 5°C), washed 

twice and freeze-dried. 

4.2.4 Design of experiments 

4.2.4.1 Experimental design 

The BBD was used as experimental design for response surface methodology to optimize 

the NP formulation. RES (X1), PLGA (X2), and PCL–PEG amount (X3) were selected as 

independent variables (factors). The particle mean diameter (Y1), polydispersity index 

(PDI; Y2), zeta-potential (Y3), percent drug encapsulation efficiency (EE%; Y4), and ratio 

between NP diameter before (Si) and after (Sf) freeze-drying (Y5) were used as dependent 

variables (responses, Table 4.1). A statistical model incorporating interactive and 

polynomial terms was utilized to evaluate the formulation responses (Eq. 4.1). 
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𝑌𝑖 = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + 𝑏3𝑋3 + 𝑏1,2𝑋1𝑋2 + 𝑏1,3𝑋1𝑋3 + 𝑏2,3𝑋2𝑋3 + 𝑏1,1𝑋1
2 +

𝑏2,2𝑋2
2 + 𝑏3,3𝑋3

2         Eq. 4.1 

where Yi is the dependent variable, b0 is the arithmetic mean response of the 15 runs, bi is 

the estimated coefficient for each factor and Xi represents the independent variables. 

Table 4.1 - Variables used in the Box-Behnken Design of RES-loaded NPs engineering and 

response specification of Monte Carlo simulation. 

Factors 
Levels 

Low Medium High 

X1 (Resveratrol amount, mg) 3 6 9 

X2 (PLGA amount, mg) 3 6 9 

X3 (PCL-PEG amount, mg) 3 6 9 

Responses Goals Simulation specification 

Y1 (particle mean diameter; nm) Minimize < 200 nm 

Y2 (PDI) Minimize < 0.2 

Y3 (Zeta-potential; mV) None < - 15 mV 

Y4 (EE%) Maximize 85 – 125% 

Y5 (Sf/Si) Minimize None 

Statistical analysis of the formulation design was performed using JMP® software 

version 10 (SAS Institute, Cary, USA). Furthermore, the robustness of the optimal 

formulation was tested using the Monte Carlo simulation (15,000 runs) [17]. The Monte 

Carlo simulation allowed to evaluate the influence of casual changes in factors on 

reproducibility of model responses. After simulation, each tested parameter was 

associated with defect rate value, which indicated how many runs of simulation were out 

of the targeted response specifications (Table 4.1). 

4.2.4.2 Checkpoint analysis 

The resulting statistical model was checked in triplicate with two random points with 

respective (X1, X2 and X3) values of (−0.5, −0.5, −0.5) and (+0.5, +0.5, +0.5), in addition 

to the theoretically optimal formulation R16 (+1.4, −1, −0.7; Table 4.2). Biases percentage 

(Eq. 4.2) between predicted and observed values were calculated for all dependent 
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variables. The experimental responses (Yi) were compared with those predicted by the 

model using the Student’s t-test. 

𝐵𝑖𝑎𝑠 % =
(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒−𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒)

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒
𝑥100     Eq. 4.2 

4.2.4.3 Statistical analysis 

Polynomial equations were made by the significant response values of Y1, Y2, Y3, Y4 and 

Y5 of 15 run results. One-way analysis of variance (ANOVA) and the analysis of lack of 

fit were performed to ensure the model fitting. The formulation variables that significantly 

affected Y1, Y2, Y3, Y4 and Y5 were identified and shown through a Pareto chart. The 

theoretical optimum condition was obtained by setting the maximum desirability of 

minimum Y1, Y2, Y5 and maximum Y4. Since Y3 was not critical for the proposed 

formulation, the desirability was not set up (Table 4.1). Results were considered 

statistically significant at p<0.05 using the Fisher’s t-test. 

4.2.5 Physiochemical characterization of resveratrol-loaded 

nanoparticles 

4.2.5.1 Particle mean diameter, polydispersity index and zeta-potential 

measurements 

The particle mean diameter, PDI, and zeta-potential were measured at 25°C by dynamic 

light scattering method (DLS; Zetasizer Nano ZS, Malvern Instruments Ltd, 

Worcestershire, UK). According to the National Institute of Standards and Technology, 

a sample with a PDI < 0.05 is considered monodisperse [18]. 

4.2.5.2 Percent drug encapsulation efficiency of resveratrol-loaded nanoparticles 

The percent drug encapsulation efficiency (EE%; Y4) was evaluated according to a 

previous method described by Youm et al. [19] with a slight modification. Briefly, the 

powdered RES-loaded NPs (1 mg) were dissolved in 0.02 mL of acetone and diluted 

(1:74, v/v) in a mixture of 1% v/v acetic acid aqueous solution and methanol (40:60). The 

suspension was centrifuged at 15,000 rpm, 4°C for 20 min and then the supernatant was 

collected for analysis. The amount of RES in the supernatant was determined by high 

performance liquid chromatography (HPLC, Milford, USA) equipped with UV detector 

at 305 nm. An isocratic flow of mobile phase composed of 1% v/v acetic acid aqueous 
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solution/methanol (40:60, v/v) was employed at a flow rate of 1 mL/min with an injection 

volume of 10 µL. The separation of RES was carried out using a Waters Spherisorb ODS2 

Column, 80 Å, 5 µm, 4.6 x 250mm (Waters Corporation, Milford, USA) [20]. The 

calibration curves were constructed in the range of 0.002 to 0.05mg/mL (R2=0.9982) and 

0.05 to 1.00 mg/mL (R2=0.9993). The experimental loading of RES was quantified using 

the peak area of each NP formulation. Theoretical RES loading (DL) and EE% were 

calculated according to Eq. 4.3 and Eq. 4.4: 

𝐷𝐿% =
𝐷𝑟𝑢𝑔 𝑎𝑚𝑜𝑢𝑛𝑡

𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑝𝑜𝑙𝑦𝑚𝑒𝑟+𝑑𝑟𝑢𝑔
𝑥100      Eq. 4.3 

𝐸𝐸% =
𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑑𝑟𝑢𝑔 𝑙𝑜𝑎𝑑𝑖𝑛𝑔

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑑𝑟𝑢𝑔 𝑙𝑜𝑎𝑑𝑖𝑛𝑔
𝑥100      Eq. 4.4 

4.2.5.3 Powder X-ray diffraction analysis of resveratrol-loaded nanoparticles 

PXRD analyses of the powdered RES-loaded NPs were performed using a MiniFlex 

automated X-ray diffractometer (Rigaku, The Woodlands, USA) at room temperature. 

Ni-filtered Cu Kα radiation was used at 30 kV and 15 mA. The diffraction angle covered 

from 2θ = 10° to 2θ = 50° with a step size of 0.05°/step, and a count time of 2.5 sec/steps 

(effectively 1.2 °/min). The samples were tested for 38 min. The diffraction patterns were 

processed using Jade 8+ software (Materials Data, Inc., Livermore, USA). 

4.2.6 Effect of cryoprotectants on resveratrol-loaded nanoparticle 

changes during freeze-drying 

In order to minimize unexpected physical changes of RES-loaded NPs, lactose, mannitol, 

sucrose, and trehalose were tested to achieve suitable cryoprotection. Cryoprotectant 

aqueous solutions were made at various concentrations (2%, 10%, 20%, 30%, 40%, w/v) 

and mixed with aliquots of RES-loaded NP suspension before freeze-drying, to obtain the 

final concentration of 1%, 5%, 10%, 15%, and 20% w/v. The suspensions were frozen at 

-196°C in liquid N2 and dried at -47°C, 0.01 mbar for 24 h.  

The particle mean diameter and PDI were measured by DLS before and after freeze-

drying at 25°C. The former analyses were carried out after diluting the mother suspension 

(1:50, v/v) in HPLC-grade water (Fisher Scientific Inc., Pittsburgh, USA) and sonicating 

the latter for 1 min. On the other hand, the particles dispersibility was optimized in 
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suspending 1 mg of the powdered RES-loaded NPs in HPLC-grade water (dilution 1:50, 

v/v). The colloidal supension was sonicated for 1 min with a probe-sonicator (Sonicator 

300, Misonix Inc., Farmingdale, USA) and analyzed by DLS. The initial and final particle 

mean diameter and PDI ratios (Sf/Si; PDIf/PDIi) were calculated as end points of the 

freeze-drying process. The variabilities accepted by BBD for Y1 and Y2 were utilized as 

references to evaluate the physical stability of the particles after freeze-drying. Therefore, 

Sf/Si and PDIf/PDIi values up to 1.27 and 1.59 were considered out of the model space. 

4.2.7 Morphological analysis of resveratrol-loaded nanoparticles  

Mixtures of RES-loaded NPs and cryoprotectant (15%, w/v) were analyzed by scanning 

electron microscopy (SEM). For this purpose, a small amount of the powdered RES-

loaded NP/cryoprotectant mixture was put into a grid and visualized under a Philips SEM 

515 microscope (Philips/FEI, Eindhoven, USA). 

4.2.8 In vitro drug release from resveratrol-loaded nanoparticles 

In vitro drug release from RES-loaded NPs was performed using a dialysis method [19]. 

Specifically, a known amount of the powdered RES-loaded NPs (2 mg) was suspended 

in an inner dialysis bag (Spectra/Por Float-A-Lyzer G2, MWCO 3.5-5 kD, Spectrum 

Laboratories Inc. Rancho Dominguez, USA) containing 4 mL of 5% w/v ethanol aqueous 

solution. Considering the poor water solubility of RES [9], ethanol medium was chosen 

to achieve sink condition. In turn, the inner bag containing the RES-loaded NP suspension 

was placed in a tube filled with 15 mL of 5% w/v ethanol solution. The system was placed 

in a shaking water bath (BS-06, Lab. Companion, Des Plaines, USA) at 25°C, under 

constant agitation (speed 50 rpm). At several times (1, 8, 24, 48, 72, and 96 h), aliquots 

of 300 μL were withdrawn and replaced with the same volumes of fresh medium to 

maintain constant the volume. The percent of RES released (%) from the NPs was 

calculated at each time point as a percentage of total entrapped drug. RES nanocrystals 

were used as a reference. 

4.2.9 In vitro cell culture study of resveratrol-loaded nanoparticles  

4.2.9.1 Cell culture 

The toxicity studies were performed using cochlear cell lines as previously described [21]. 

Briefly, HEI-OC1 and SVK-1 cells, obtained from the House Research Institute (formerly 
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House Ear Institute, Los Angeles, USA), were cultured under permissive conditions 

(33°C, 10% CO2) in 75 cm2 culture flasks containing high-glucose Dulbecco’s Modified 

Eagle’s Medium (DMEM; Gibco BRL, Gaithersburg, USA) and 10% v/v fetal bovine 

serum (FBS; Gibco BRL, Life Technologies, Carlsbad, USA). 

4.2.9.2 In vitro toxicity of native resveratrol and resveratrol-loaded nanoparticles 

The in vitro toxicity of RES, blank NPs and RES-loaded NPs was investigated by the cell 

viability and cellular membrane integrity assays after 24 h incubation. 

The cell viability was determined by methyl tetrazolium salt (MTS) assay following the 

manufacturer protocol. The assay was optimized for the cell lines used in the experiments. 

Briefly, cells were transferred to 96-well plates to ensure 1x104 cells per well until 80% 

confluence. Then, each well was filled with 100 µL of increasing concentrations of native 

RES, RES-loaded NPs (RES concentration: 0.005, 0.05, 0.5, 5, 50, 500 µM) and blank 

NPs (NPs concentration: 200, 400, 600, 800, 1000 µg/mL) for 24 h of incubation at 37°C 

with 5% CO2. The fresh medium and 1% of Triton X-100 were used as the control and 

positive control, respectively. After incubation, 20 µL of CellTiter 96® Aqueous One 

Solution Reagent (Promega, Madison, USA) was added to each well for 3 h. After the 

completion of exposure period, 96-well plates were placed on a DTX 800 multimode 

microplate reader (Beckman Coulter, Brea, USA) and absorbance of the formazan 

product was read at 490 nm. The cell viability was determined using Eq. 4.5: 

𝐶𝑒𝑙𝑙 𝑣𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%) =
𝐴𝐵𝑆𝑇𝑒𝑠𝑡

𝐴𝐵𝑆𝐶𝑜𝑛𝑡𝑟𝑜𝑙
× 100      Eq. 4.5 

where ABSTest and ABSControl represent the absorbance of formazan detected in viable 

cells treated with NPs and the culture medium alone, respectively. 

The cellular membrane integrity was determined by the release of lactate dehydrogenase 

(LDH) following the manufacturer protocol. Briefly, cells were seeded in a 96-well plate 

and incubated with native RES, blank NPs and RES-loaded NPs using the same condition 

as the MTS assay. After 24 h of incubation, the medium was removed and the cells were 

washed twice with phosphate buffered saline (PBS). Then, 100 µL of CytoTox-OneTM 

reagent (Promega, Madison, USA) was added in each well. The microplate was 

maintained at room temperature for 10 min and 50 µL of stop solution was added to each 
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well. The fluorescence was detected using the microplate reader at an excitation 

wavelength of 560 nm and emission wavelength of 590 nm. For this assay, the samples 

of both supernatant and cell lysate were determined in order to correct any endogenous 

LDH activity in mammalian cells. The percent cell death for a given treatment is 

expressed through Eq. 4.6: 

𝐶𝑦𝑡𝑜𝑥𝑖𝑐𝑖𝑡𝑦 (%) =
𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙−𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒−𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
𝑥100     Eq. 4.6 

where Experimental, Background, and Positive represent the fluorescence of the NPs 

treated, not treated, and cells treated with 1% of Triton X-100, respectively. 

 

4.3 Results 

4.3.1 Optimization of resveratrol-loaded nanoparticles  

RES-loaded NPs were successfully formulated and optimized using BBD. The effect of 

independent variables (X1, X2, and X3) on Y1, Y2, Y3, Y4 and Y5 were thoroughly 

investigated. As showed in Table 4.2, RES-loaded NPs had Y1 and Y2 ranging from 119.1 

to 329.5 nm and from 0.089 to 0.334, respectively. The Y3 was ranged from -35.2 to -

12.83 mV, Y4 from 31.11% to 141.35% and Y5 from 1.69 to 5.84. The effect of 

formulation variables on the NPs physicochemical properties is shown in Figure 4.1 and 

Figure 4.2.  

Pareto charts show that a positive increase of Y1 can influence X1 (e.g., R3 versus R5; 

Table 4.2) and X2 (e.g., R7 versus R10). On the other hand, X3 did not have any significant 

effect on Y1 (p=0.8687). 
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Table 4.2 – Experimental matrix, observed responses from randomized runs, optimal formulation 

(R16), and checkpoint formulation (R17, R18) in the BBD (Table 4.1). 

Form. X1 

(mg) 

X2 

(mg) 

X3 

(mg) 

Y1 

(d-nm) 

Y2 Y3 

(mV) 

Y4 

(%) 

Y5 

R1 6 9 3 203.4 0.089 -33.00 104.18 3.55 

R2 3 3 6 128.0 0.152 -29.03 31.11 4.07 

R3 3 9 6 152.7 0.129 -35.20 47.43 4.68 

R4 3 6 9 138.5 0.147 -30.83 43.95 5.84 

R5 9 9 6 329.5 0.334 -26.00 103.08 3.01 

R6 6 3 3 152.7 0.129 -28.50 98.52 4.68 

R7 6 3 9 119.1 0.194 -21.15 138.45 2.34 

R8 9 6 3 212.5 0.157 -31.77 107.5 4.62 

R9 6 6 6 164.8 0.137 -28.77 77.62 3.79 

R10 6 9 9 178.4 0.215 -26.93 116.82 3.89 

R11 9 6 9 289.4 0.520 -12.83 141.35 1.69 

R12 6 6 6 164.6 0.133 -27.20 95.04 3.50 

R13 3 6 3 167.6 0.162 -22.33 63.99 2.73 

R14 6 6 6 177.7 0.202 -23.93 90.15 2.67 

R15 9 3 6 161.5 0.180 -22.97 100.18 2.45 

R16 7.4 3 5.3 136.2 0.127 -26.80 100.09 3.30 

R17 7.5 7.5 7.5 236.70 0.289 -24.47 100.65 2.46 

R18 4.5 4.5 4.5 136.10 0.137 -27.20 75.32 4.31 

Furthermore, the interactions between X1 and X2, and the intermolecular interaction of 

X1 was shown to have a significant effect on Y1 (p=0.0223; p=0.0410, respectively). The 

following polynomial equation was found to represent adequately Y1 variation (p=0.001, 

R2 = 0.88; Eq. 4.7): 

𝑌1 = 165.81 + 50.76𝑋1 + 37.83𝑋2 + 35.82𝑋1𝑋2 + 31.64𝑋1
2   Eq. 4.7 

In contrast, Y2 was mainly influenced by X1 and X3 and the interaction between X1 and 

X3 and intramolecular interaction of X1, (p=0.0006, R2=0.84; Eq. 4.8): 

𝑌2 = 0.16 + 0.08𝑋1 + 0.07𝑋2 + 0.09𝑋1𝑋3 + 0.06𝑋1
2    Eq. 4.8 
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Figure 4.1 – Pareto Charts showing standardized effect of formulation variables (X1, X2, X3) and 

their interaction on Y1 (A), Y2 (B), Y3 (C), Y4 (D): x-axis showing the t ratio. Bars extending past 

the vertical line indicate values reaching statistical significance. 

The results also indicated that X1 (e.g., R3 versus R5) and X3 (e.g., R1 versus R10) induced 

the significantly increase of Y3, whereas an increase of X2 leads to a decrease of Y3 (e.g., 

R7 versus R10). The interaction between X1 and X3 influenced significantly Y3 (p=0.0009). 

The Eq. 4.9 reports all significant effects on Y3 (p=0.0002, R2=0.87): 

𝑌3 = −26.69 + 2.98𝑋1 − 2.44𝑋2 + 2.98𝑋3 + 6.86𝑋1𝑋3    Eq. 4.9 

Y4 increased with an increase of X1 (e.g., R3 versus R5; Table 4.2) and X3 (e.g., R4 versus 

R13). Moreover, the increases of X2 did not have any significant influence on Y4 

(p=0.9160). The data showed a significant interaction of X1 (p=0.0110), X3 (p=0.0082). 

The interaction between X1 and X3 (p=0.0482) had a significant effect on Y4. The 

following polynomial equation represents Y4 variation (p<0.0001, R2 = 0.94; Eq.4.10): 

𝑌4 = 90.11 + 33.20𝑋1 + 8.30𝑋3 + 13.47𝑋1𝑋3 − 21.53𝑋1
2 + 22.50𝑋3

2             Eq. 4.10 

Finally, Y5 results showed that the modification of the formulation composition was not 

able to prevent the instability of the freeze-dried nanoparticles (Y5 > 1; Table 4.2). 

Furthermore, the Pareto chart shows that Y5 was mainly influenced by X1 (p=0.0153; data 

not shown). 
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Table 4.3 – Biases (%) between predicted and observed values for all dependent variables (Table 

4.1) of three checkpoint formulations. 

Responses 
Bias (%) 

R16 R17 R18 

Y1 -6.02 2.50 8.16 

Y2 0.81 6.29 -2.21 

Y3 -8.08 -7.71 -2.07 

Y4 0.46 12.74 -9.97 

Y5 7.52 14.70 -16.71 

 

 

Figure 4.2 – Prediction, desirability, and simulation plot showing the effect of factors on the 

responses (Table 4.1). 
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As showed in Figure 4.2, the BBD optimal formulation was R16 (desirability 0.86). The 

predicted responses of the optimal formulation were Y1: 135.5±37.3 nm, Y2: 

0.126±0.080, Y3: -26.84±3.31 mV, Y4: 99.83±17.59 %, and Y5: 3.30±0.92 (Table 4.2). 

A checkpoint analysis was performed with two random points R17, R18 and R16 (Table 

4.2). The differences between predicted and measured Yi values were not statistically 

significant (p>0.10). Moreover, Yi biases (%) were lower than 10%. The only exceptions 

were Y5 values of R17 and R18 (Table 4.3). It might be explained by the fact that the model 

lost accuracy predicting stochastic events such as physical changes that occurred during 

freeze-drying [22]. 

According to the Monte Carlo simulation, the cumulative defect rate was near to 0.10, 

indicating that less than 10% runs were discarded. This indicated a good robustness of 

model prediction (Figure 4.2). Furthermore, the simulation showed Y1 (defect rate: 0.04), 

Y2 (defect rate: 0.05), and Y4 (defect rate: 0.05) as the most sensitive responses to casual 

errors. 

4.3.2 Powder X-ray diffraction pattern analysis of resveratrol-loaded 

nanoparticles 

Representative PXRD patterns of the native RES, polymers, physical mixture 

(RES+PLGA+PCL-PEG, 1:1:2, w/w/w; RES+blank R16, 1:1, w/w) and three RES-loaded 

NPs (R2, R11, R16) are reported in Figure 4.3. As shown, native RES exhibited major 

diffraction peaks at 16°, 19°, 22°, 23°, 25°, and 28°, which were consistent with previous 

RES crystallography [23, 24]. PEG-PCL exhibited four characteristic peaks at 19°, 21°, 

22°, and 24° as reported previously [19].  

The RES and PEG-PCL diffraction peaks were present in the PXRD pattern of the 

physical mixture. In contrast, these peaks disappeared in both blank NPs and RES-loaded 

NPs, suggesting its presence in amorphous state. RES diffraction peaks were detected in 

the physical dispersion with blank R16 and in RES-loaded NPs (R11, R16), but not in the 

formulation R2 
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Figure 4.3 – Powder X-ray diffraction pattern for RES-loaded NPs, physical mixtures (PM) and 

individual component used in the formulation of nanoparticles. Native RES (A), RES-loaded NPs 

R16 (B), RES-loaded NPs R11 (C), RES-loaded NPs R2 (D), blank NPs R16+RES physical mixture 

(E), blank NPs R16 (F), RES+PLGA+PCL-PEG physical mixture (G), PCL-PEG (H), PLGA (I). 

4.3.3 Effect of the cryoprotectants on the physical stability of resveratrol-

loaded nanoparticles  

As shown in Figure 4.4, all the tested cryoprotectants were able to minimize the NPs 

mean diameter changes after freeze-drying. The results also indicated that the 

cryoprotectant effectiveness was type- and concentration-dependent. For example, 1% 

w/v mannitol was correlated with low Sf/Si value (≈1.5), whereas at higher concentrations 

of mannitol (15%, w/v), the Sf/Si was increased up to 2.20±0.01. Compared to the other 

tested cryoprotectants, the PDIf/PDIi values were higher when stabilized with mannitol. 

The cryoprotective effectiveness of sucrose, lactose and trehalose increased with 

concentration. At 1% w/v of cryoprotectant, the Sf/Si values were 1.64±0.10 and 

1.51±0.01 for sucrose and lactose, respectively. This value was significantly increased at 

1% w/v of trehalose (1.79±0.07, p<0.05).  
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Figure 4.4 – Effect of cryoprotectant types and concentration on (A) particle mean diameter and 

(B) PDI of RES-loaded NPs during freeze-drying. Data are presented as average value ± St. Dev. 

(n=3), + when Sf/Si and PDIf/PDIi are in BBD model variability. 
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However, at 15% w/v of trehalose, the Sf/Si value was found to be 1.28±0.02, which was 

lower than that of sucrose (1.36±0.02; p=0.01). Similar results were observed for 

PDIf/PDIi. By comparing the Sf/Si trend from 1% w/v to 15% w/v of disaccharides, a 

difference was found. The effectiveness of lactose did not change (p=0.21), while a 

significant improvement of the NPs stability was observed with sucrose (p=0.04) and 

trehalose (p=0.01). However, the data showed that only trehalose (15%, w/v) was able to 

maintain the NP and PDI change in the model space. Therefore, it was selected for the 

preparation of further R16 batches. 

4.3.4 Morphology of resveratrol-loaded nanoparticles 

The results obtained from SEM analysis showed RES-loaded NPs morphology with a 

high dependency on the type of cryoprotectant (Figure 4.5). In the absence of 

cryoprotectant, the roundness of RES-loaded NPs was reduced. A similar result was 

obtained with mannitol (data not shown). Spherical particles with a mean diameter of 1 

µm were detected in the presence of lactose, sucrose or trehalose. These spherical 

particles were also shown to be embedded in the solid matrix of cryoprotectant. 

 

Figure 4.5 – Resveratrol-loaded NPs (R16) images obtained by scanning electron microscopy 

(SEM) (A) without or with 15% w/v cryoprotectant: (B) lactose, (C) sucrose, and (D) trehalose. 
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4.3.5 In vitro drug release kinetics from resveratrol-loaded nanoparticles 

The in vitro drug release kinetics from different RES-loaded NPs was compared to that 

of RES nanocrystals (Figure 4.6). Although Zambito et al. [25] have shown that the 

dialysis bag was not the gold standard method for studying the drug release from 

nanosystems; the method was only applied to compare formulation performances. From 

all tested formulations, 1 hour was required to observe detectable amount of RES in the 

outer phase. After that, the amount of RES nanocrystals increased until 100% of release 

after 50 h (drug release rate: 1.99±0.02 μg/h). The NPs formulations released RES within 

8 h and then achieved a plateau phase (drug release rate: ≤0.2 μg/h). However, the 

percent-cumulated amount of RES released from NPs was lower than 50%. For example, 

the RES released from the optimal formulation R16 was lower than 20% of loaded amount. 

 

Figure 4.6 – Resveratrol released (%) from RES nanocrystals within 96 h (control), RES-loaded 

NPs R11, R16 (red line), R17, R18. Data are reported as average value ± St. Dev. (n=3). 

  

0

20

40

60

80

100

0 20 40 60 80 100

R
ES

 r
el

ea
se

d
 (

%
)

Time (h)

RES-Crystal R11 R16 R17 R18



Chapter 4 

 

75 
 

4.3.6 In vitro toxicity of resveratrol, blank and resveratrol-loaded 

nanoparticles 

As shown in Figure 4.7, the percentage of cytotoxicity induced by native RES and RES-

loaded NPs was negligible in both cell lines in comparison with blank control (p<0.05). 

However, the results from blank NPs showed no-toxicity at lower concentration, whereas 

cell-dependent cytotoxicity at higher concentration at higher ones.  

At high concentration of NPs (600 µg/mL), HEI-OC1 cells seemed to be more sensitive 

to blank NPs than SVK-1 cells. Indeed, the percentage of cell death in HEI-OC1 cells 

achieved 58% when treated with 1000 μg/mL of blank NPs (Figure 4.7).  

On the other hand, the cell viability was affected in a concentration-dependent manner in 

both cell lines (Figure 4.8). At concentrations equal to 50 μM of RES, the cell viability 

was decreased down slightly to 87% in HEI-OC1 cells. After incubation with 500 μM of 

RES, the decrease of the cell viability was around 27%, which was similar to positive 

control results in both cell lines (p>0.05). In the case of blank NPs, the results showed the 

same trend of cytotoxicity in HEI-OC1 cells. At concentration higher than 800 μg/mL of 

blank NPs, the viability of HEI-OC1 cells decreased, achieving 56% at 1000 μg/mL. 

Finally, RES-loaded NPs were shown to affect the cell viability in HEI-OC1. A 

significant effect on the cell viability was observed at concentrations higher than 25 

µg/mL of RES-loaded NPs, corresponding to 50 µM of RES. However, the decrease of 

the cell viability was less intense with RES-loaded NPs (90%) than with native RES 

(p<0.05). 
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Figure 4.7 – Cytotoxic effect of native RES (A), Blank NPs (B) and RES-loaded NPs (C) in SVK-

1 and HEI-OC1 cells after 24h exposure. Concentrations of RES-loaded NPs are expressed in 

amount of RES loaded (µM). Data are presented as the average value ± SEM (n=5). * P<0.05 

when compared with control by Student’s t-test. 
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Figure 4.8 – Viability of SVK-1 and HEI-OC1 cells of native RES (A), Blank NPs (B) and RES-

loaded NPs (C) after 24h exposure. Concentrations of RES-loaded NPs are expressed in amount 

of RES loaded (µM). Data are presented as the average value ± SEM (n=5). * P<0.05 when 

compared with control by Student’s t-test.  
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4.4 Discussion 

The present study showed that the solvent-diffusion method was suitable for the 

production of the proposed RES-loaded NPs. Moreover, all the NPs formulation prepared 

showed consistency with other similar nanoparticle systems reported in literature [26]. 

The use of BBD as a tool for the design of experiment allowed creating a statistical model 

for selecting the optimal formulation. The data obtained from checkpoint analyses (Table 

4.2) and Monte Carlo simulation (Figure 4.2) demonstrated the accuracy and robustness 

of the model prediction. Moreover, the BBD model could well describe how the factors 

influenced the physiochemical properties of the RES-loaded NPs.  

The results indicated that the amount of PLGA (X2) could directly influence the particle 

mean diameter (Y1) and the NPs structure as well. As shown in a previous study, the 

PLGA concentration might influence the viscosity of the organic internal phase [27]. In 

the presence of PLGA, an increase of the viscosity tended to increase the size of acetone 

nanodroplets dripped into the water phase, thus inducing an increase of the NPs diameter.  

On the other hand, PXRD analyses showed that the crystalline diffraction peaks of PCL-

PEG were attenuated in the NPs, suggesting that the PCL-PEG chains were dispersed in 

the PLGA matrix. Moreover, the BBD results revealed that PCL-PEG has a significant 

influence on NPs surface. In addition, the amount of PLGA seemed to decrease the zeta-

potential of RES-loaded NPs (Figure 4.1, 4.2), whereas PCL-PEG tended to neutralize 

it. Since zeta-potential has been defined as the potential difference between the aqueous 

medium and the stationary layer of fluid attached to the dispersed particle [28], it was 

likely to be influenced by the nature of NP surface. Therefore, the shift of the 

neutralization of zeta-potential due to PCL-PEG suggested that negative charges of the 

PLGA carboxylic group were shielded by the presence of the PCL-PEG molecules on the 

surface of the NPs at physiological pH. 

Moreover, the BBD results indicated that NPs, made of PCL-PEG and PLGA, were able 

to load RES with high EE% (Table 4.2). Since the EE% (Y4) was mainly influenced by 

the amount of PCL-PEG, it is possible to speculate that PCL-PEG increased the 

hydrophobicity of the NPs core (Figure 4.2). This hypothesis was also supported by 

published results of other nanosystems made of PCL-PEG [29, 30]. It is also interesting 

to note that the EE% values were higher than 100% for DL higher than 30% (e.g., R11: 
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DL 37%, EE% 141.35%; Table 4.2). Indeed, the amount of drug-loaded in the NPs matrix 

depends on thermodynamic equilibrium [31, 32]. Moreover, Weigiel et al. have indicated 

the RES/polymer ratio as a critical parameter for the avoidance of the drug crystallization 

[23]. Therefore, NPs were not able to load RES above the thermodynamic limit of the 

selected polymer mixture (close to 30% of DL); otherwise, the drug crystallization might 

occur. Indeed, the PXRD analyses showed that RES was molecularly dispersed in the NP 

formulations at low EE% (e.g., R2), whereas the typical RES crystal peaks appeared in 

the formulations at high EE% (e.g., R11). 

The significant effect of RES on the zeta-potential (Figure 4.1) suggested that drug 

crystallization might occur on the surface of the NPs. This evidence also justified the 

difference observed between formulations in percent of burst effect during the release 

studies (Figure 4.6). Indeed, formulations with high EE% correlated well with high burst 

effect. For example, the formulation R11 (EE%: 141.35%) exhibited the highest burst 

effect (48.2%), whereas the lowest (3.7%) was detected with the formulation R18 (EE%: 

75.32%). 

Regardless to the burst effect, release studies showed that RES-loaded NPs were able to 

prevent the release in the ethanol solution for more than 96 h. In comparison with other 

published studies on RES-loaded micelles [29] or other RES-loaded NPs [33], 

experimental results suggested that the PLGA matrix could better control the release of 

RES. Indeed, if 60% of RES was released from the PCL-PEG micelles after 120 h, less 

than 20% of RES was released after 96 h (R16). Moreover, the burst effect of R16 (< 20%) 

was lower than that from PCL-PEG micelles (≈35%). 

Indeed, the proposed NP system might be advantageous for the delivery of RES in the 

cytoplasm of cochlear cells. This conclusion considers both low burst effect and 

negligible amount of RES released into the physiological fluids before the cellular uptake. 

Overall results indicated that RES-loaded NPs were unstable after the freeze-drying 

(Sf/Si≥1.69; Table 4.2). Therefore, the utilization of cryoprotectants was required to 

preserve the particle integrity [22]. The tested cryoprotectants did not show the same 

effectiveness in maintaining Sf/Si and PDIf/PDIi values within the variability described 

by BBD (Figure 4.4). For example, mannitol was not able to minimize the physical 



Chapter 4 

 

80 
 

instability of the NPs, whereas the cryoprotective effectiveness of lactose, sucrose, and 

trehalose was concentration-dependent (Figure 4.4).  

According to the literature, a slow crystallization of mannitol has occurred after freeze-

drying at temperatures near to its glass transition (Tg), which was comparable to the 

freezing temperature used during the freeze-drying process [34]. On the other hand, 

disaccharides have inhibited the growth of ice crystal by the formation of cluster, thus 

increasing the physical stability of the frozen compound [35]. Among the tested 

disaccharides, only trehalose (> 15%, w/v) maintained the Sf/Si and PDIf/PDIi values in 

the desirable BBD variability range. Therefore, trehalose might be considered as the most 

effective cryoprotectant in minimizing the growth of ice crystals. 

The evaluation of the NP toxicity has been very challenging over the last years [36, 37]. 

Hoire et al. have shown that PLGA microparticles loaded with lidocaine did not affect 

the auditory and vestibular functions after their application to the round-window 

membrane in guinea pigs [38]. However, the in vitro studies have shown a dosage-

dependent toxicity of nanocapsules on primary cochlear and mouse fibroblast cells, 

particularly for concentration higher than 785 μg/mL [39]. 

In line with literature, the proposed blank NPs showed a concentration- and cell-

dependent toxicity. As showed in Figure 4.7, blank-NPs induced a significant 

cytotoxicity in HEI-OC1 cells at higher concentrations (> 800 μg/mL). However, the 

cytotoxicity and the cell viability were not affected by the blank NPs in SVK-1 cells 

(Figure 4.7 and 4.8).  

This difference in cell sensitivity might be attributed to specific characteristics of the cell 

lines. HEI-OC1 cells are immortalized and derived from murine organ of Corti and can 

be a specific tool to test the ototoxicity of drugs [13], whereas SVK-1 cells have been 

derived from murine Stria Vascularis [14]. Since the organ of Corti cells required a 

specific environmental condition to modulate the hearing process, high NPs 

concentrations might alter the osmotic balance of the environment. This alteration might 

be stressful for HEI-OC1 cells causing the decrease of cell viability and increase 

cytotoxicity.  
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On the other hand, SVK-1 cell line exhibits the morphology of epithelial cells and builds 

the barrier between endolymph and blood [14]. Therefore, these cells were expected to 

be more resistant than HEI-OC1 cells to stressful factors and osmotic modification 

induced by nanoparticles. 

The toxicity of RES was also evaluated in cochlear cell lines. Any cytotoxic effect was 

observed in both cell lines at low and medium concentrations of RES (Figure 4.7). 

However, the cell viability decreased in both cell lines when incubated with 100 μL of 

complete medium containing higher concentrations of RES (> 50 μM; Figure 4.8). This 

finding was due to a direct effect of RES on the functionality of cell mitochondria. 

Lagouge et al. have shown that 50 μM of RES could increase oxidative phosphorylation 

and mitochondrial biogenesis [40]. Moreover, RES concentrations higher than 100 μM 

have been found to induce apoptosis and mitochondrial dysfunction in the human 

hepatoblastoma cell model [41].  

According to these facts and experimental results (Figure 4.8), it is reasonable to 

conclude that RES concentrations below 50 μM did not affect the viability of HEI-OC1 

and SVK-1 cells. Moreover, the results of RES-loaded NPs are consistent with those 

obtained with native RES. RES concentrations higher than 50 µM significantly affected 

the cell viability, especially the HEI-OC1 cells. Therefore, it is possible to exclude that 

the effect of RES-loaded NPs on the cell viability was not due to modification of cell 

environment. Indeed, the highest RES-loaded concentration tested (< 300 µg/mL) was far 

from lowest cytotoxic concentration of blank NPs (600 µg/mL). Overall results suggested 

that RES-loaded NPs might be taken up by the cochlear cells and release the RES into the 

cytoplasm. 
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4.5 Conclusion 

The present study investigated the critical aspect involved in the preparation of RES-

loaded NPs intended for cochlear delivery. The application of Box-Behnken Design 

allowed understanding deeply the effect of the formulation composition on the NPs 

properties. Furthermore, the Monte Carlo simulation showed the robustness of optimal 

formulation and highlighted which NPs properties are more sensitive to unintended errors 

in the manufacturing process. Therefore, the use of Monte Carlo simulation in 

combination with BBD permitted both optimizing the formulation and selecting the most 

critical parameters of RES-loaded NPs. The use of trehalose (>15%, w/v) was required 

to minimize the physical instability of RES-loaded NPs during the freeze-drying. The 

results revealed that blank NPs could affect the viability of HEI-OC1 cells at 

concentrations higher than 600 μg/mL. On the other hand, the results showed that RES 

was able to decrease cell viability at concentrations higher than 50 µM. A similar 

pharmacological effect was also observed when RES was loaded in NPs. These results 

suggested that RES-loaded NPs were uptaken into the cells and released RES.  

However, future works are required to study deeply the cell uptake mechanism and 

cellular release of RES. Moreover, the effect of RES on the mitochondrial oxidative 

phosphorylation should be studied to find out the effective concentration of RES that is 

able to protect cochlear cells from cisplatin-induced ototoxicity. 

  



Chapter 4 

 

83 
 

4.6 References 

[1] Rybak, L. P., Whitworth, C. A., Mukherjea, D., and Ramkumar, V., 2007, "Mechanisms of 
cisplatin-induced ototoxicity and prevention," Hear. Res., 226(1–2), pp. 157-167. 

[2] Knight, K. R., Kraemer, D. F., and Neuwelt, E. A., 2005, "Ototoxicity in children receiving 
platinum chemotherapy: underestimating a commonly occurring toxicity that may influence 
academic and social development," J. Clin. Oncol., 23(34), pp. 8588-8596. 

[3] Bragado, P., Armesilla, A., Silva, A., and Porras, A., 2007, "Apoptosis by cisplatin requires p53 
mediated p38α MAPK activation through ROS generation," Apoptosis, 12(9), pp. 1733-1742. 

[4] Alam, S. A., Ikeda, K., Oshima, T., Suzuki, M., Kawase, T., Kikuchi, T., and Takasaka, T., 2000, 
"Cisplatin-induced apoptotic cell death in Mongolian gerbil cochlea," Hear. Res., 141(1–2), pp. 
28-38. 

[5] Rybak, L. P., Whitworth, C., and Somani, S., 1999, "Application of antioxidants and other 
agents to prevent cisplatin ototoxicity," Laryngoscope, 109(11), pp. 1740-1744. 

[6] Yumusakhuylu, A. C., Yazici, M., Sari, M., Binnetoglu, A., Kosemihal, E., Akdas, F., Sirvanci, S., 
Yuksel, M., Uneri, C., and Tutkun, A., 2012, "Protective role of resveratrol against cisplatin 
induced ototoxicity in guinea pigs," Int. J. Pediatr. Otorhinolaryngol., 76(3), pp. 404-408. 

[7] Erdem, T., Bayindir, T., Filiz, A., Iraz, M., and Selimoglu, E., 2011, "The effect of resveratrol on 
the prevention of cisplatin ototoxicity," Eur. Arch. Otorhinolaryngol., 269(10), pp. 2185-8 

[8] Baur, J. A., and Sinclair, D. A., 2006, "Therapeutic potential of resveratrol: the in vivo 
evidence," Nat. Rev. Drug Discov., 5(6), pp. 493-506. 

[9] Amri, A., Chaumeil, J. C., Sfar, S., and Charrueau, C., 2012, "Administration of resveratrol: 
What formulation solutions to bioavailability limitations?," J. Control. Release, 158(2), pp. 182-
193. 

[10] Rathore, A. S., and Winkle, H., 2009, "Quality by design for biopharmaceuticals," Nature 
biotechnology, 27(1), pp. 26-34. 

[11] Meng, J., Sturgis, T. F., and Youan, B.-B. C., 2011, "Engineering tenofovir loaded chitosan 
nanoparticles to maximize microbicide mucoadhesion," Eur. J. Pharm. Sci., 44(1–2), pp. 57-67. 

[12] Box, G. E. P., and Behnken, D. W., 1960, "Some New Three Level Designs for the Study of 
Quantitative Variables," Technometrics, 2(4), pp. 455-475. 

[13] Kalinec, G. M., Webster, P., Lim, D. J., and Kalinec, F., 2003, "A cochlear cell line as an in 
vitro system for drug ototoxicity screening," Audiol. Neurootol., 8(4), pp. 177-189. 

[14] Rivolta, M. N., and Holley, M. C., 2002, "Cell lines in inner ear research," J. Neurobiol., 53(2), 
pp. 306-318. 

[15] Fessi, H., Puisieux, F., Devissaguet, J. P., Ammoury, N., and Benita, S., 1989, "Nanocapsule 
formation by interfacial deposition following solvent displacement," Int. J. Pharm., pp. 55:R51-
R54. 

[16] List, M., and Sucker, H., 1988, "Pharmaceutical injectable hydrosols containing water-
insoluble active agents," Sandoz S. A., Switz. . p. 26 pp. 

[17] Kappele, W. D., "Setting robust process specifications using design of experiments and 
Monte Carlo techniques," Proc. 2010 AIChE Spring Meeting and 6th Global Congress on Process 
Safety, 10AIChE. 



Chapter 4 

 

84 
 

[18] Hackley, V., and Ferraris, C., 2001, "The use of nomenclature in dispersion science and 
technology, NIST Recommended Practice Guide: SP." 

[19] Youm, I., Murowchick, J. B., and Youan, B. B., 2012, "Entrapment and release kinetics of 
furosemide from pegylated nanocarriers," Colloids Surf. B Biointerfaces, 94, pp. 133-142. 

[20] Chen, X., He, H., Wang, G., Yang, B., Ren, W., Ma, L., and Yu, Q., 2007, "Stereospecific 
determination of cis- and trans-resveratrol in rat plasma by HPLC: application to 
pharmacokinetic studies," Biomed. Chromatogr., 21(3), pp. 257-265. 

[21] Kalinec, G. M., Webster, P., Lim, D. J., and Kalinec, F., 2003, "A Cochlear Cell Line as an in 
vitro System for Drug Ototoxicity Screening," Audiol. Neurootol., 8, pp. 177-189. 

[22] Abdelwahed, W., Degobert, G., Stainmesse, S., and Fessi, H., 2006, "Freeze-drying of 
nanoparticles: formulation, process and storage considerations," Adv. Drug Deliv. Rev., 58(15), 
pp. 1688-1713. 

[23] Wegiel, L. A., Mauer, L. J., Edgar, K. J., and Taylor, L. S., 2013, "Crystallization of amorphous 
solid dispersions of resveratrol during preparation and storage-Impact of different polymers," J. 
Pharm. Sci., 102(1), pp. 171-184. 

[24] Zhang, X.-P., Le, Y., Wang, J.-X., Zhao, H., and Chen, J.-F., 2013, "Resveratrol nanodispersion 
with high stability and dissolution rate," LWT - Food Science and Technology, 50(2), pp. 622-628. 

[25] Zambito, Y., Pedreschi, E., and Di Colo, G., 2012, "Is dialysis a reliable method for studying 
drug release from nanoparticulate systems?-A case study," International journal of 
pharmaceutics, 434(1-2), pp. 28-34. 

[26] Riley, T., Govender, T., Stolnik, S., Xiong, C. D., Garnett, M. C., Illum, L., and Davis, S. S., 1999, 
"Colloidal stability and drug incorporation aspects of micellar-like PLA–PEG nanoparticles," 
Colloids Surf. B Biointerfaces, 16(1–4), pp. 147-159. 

[27] Mondal, N., Samanta, A., Pal, T. K., and Ghosal, S. K., 2008, "Effect of different formulation 
variables on some particle characteristics of poly (DL-lactide-co-glycolide) nanoparticles," 
Yakugaku Zasshi, 128(4), pp. 595-601. 

[28] McNaught, A. D., and Wilkinson, A., 1997, IUPAC. Compendium of Chemical Terminology, 
Blackwell Scientific Publications, Oxford. 

[29] Lu, X., Ji, C., Xu, H., Li, X., Ding, H., Ye, M., Zhu, Z., Ding, D., Jiang, X., Ding, X., and Guo, X., 
2009, "Resveratrol-loaded polymeric micelles protect cells from Aβ-induced oxidative stress," 
Int. J. Pharm., 375(1-2), pp. 89-96. 

[30] Kim, B. K., Lee, J. S., Oh, J. K., and Park, D. J., 2009, "Preparation of resveratrol-loaded poly(ε-
caprolactone) nanoparticles by oil-in-water emulsion solvent evaporation method," Food 
Science and Biotechnology, 18(1), pp. 157-161. 

[31] Kumar, V., and Prud'homme, R. K., 2008, "Thermodynamic limits on drug loading in 
nanoparticle cores," J. Pharm. Sci., 97(11), pp. 4904-4914. 

[32] Vijay, N., Murowchick, J. B., and Youan, B. B., 2010, "Thermodynamics of drug 
nanoencapsulation: case study of phenytoin-poly (D, L-lactide) nanocarrier," Curr. Drug Deliv., 
7(5), pp. 343-354. 

[33] Sanna, V., Siddiqui, I. A., Sechi, M., and Mukhtar, H., 2013, "Resveratrol-Loaded 
Nanoparticles Based on Poly(epsilon-caprolactone) and Poly(d,l-lactic-co-glycolic acid)–
Poly(ethylene glycol) Blend for Prostate Cancer Treatment," Mol. Pharm., 10(10), pp. 3871-3881. 



Chapter 4 

 

85 
 

[34] Kim, A. I., Akers, M. J., and Nail, S. L., 1998, "The physical state of mannitol after freeze-
drying: effects of mannitol concentration, freezing rate, and a noncrystallizing cosolute," J. 
Pharm. Sci., 87(8), pp. 931-935. 

[35] Tsutomu Uchida, S. T. M. N. a. K. G., 2012, "Freezing Properties of Disaccharide Solutions: 
Inhibition of Hexagonal Ice Crystal Growth and Formation of Cubic Ice," Crystallization and 
Materials Science of Modern Artificial and Natural Crystals, E. Borisenko, ed., InTech. 

[36] Hu, Y. L., and Gao, J. Q., 2010, "Potential neurotoxicity of nanoparticles," Int. J. Pharm., 
394(1-2), pp. 115-121. 

[37] FDA, 2011, "Investigation of Potential Toxic Effects of Engineered Nanoparticles and Biologic 
Microparticles in Blood and Their Biomarker Applications.." 

[38] Horie, R. T., Sakamoto, T., Nakagawa, T., Tabata, Y., Okamura, N., Tomiyama, N., Tachibana, 
M., and Ito, J., 2010, "Sustained delivery of lidocaine into the cochlea using poly lactic/glycolic 
acid microparticles," Laryngoscope, 120(2), pp. 377-383. 

[39] Zhang, Y., Zhang, W., Löbler, M., Schmitz, K. P., Saulnier, P., Perrier, T., Pyykkö, I., and Zou, 
J., 2011, "Inner ear biocompatibility of lipid nanocapsules after round window membrane 
application," Int. J. Pharm., 404(1-2), pp. 211-219. 

[40] Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin, F., Messadeq, 
N., Milne, J., Lambert, P., Elliott, P., Geny, B., Laakso, M., Puigserver, P., and Auwerx, J., 2006, 
"Resveratrol Improves Mitochondrial Function and Protects against Metabolic Disease by 
Activating SIRT1 and PGC-1α," Cell, 127(6), pp. 1109-1122. 

[41] Ma, X., Tian, X., Huang, X., Yan, F., and Qiao, D., 2007, "Resveratrol-induced mitochondrial 
dysfunction and apoptosis are associated with Ca2+ and mCICR-mediated MPT activation in 
HepG2 cells," Mol. Cell. Biochem., 302(1-2), pp. 99-109 

  



Chapter 4 

 

86 
 

4.7 Appendix 4.1: Ferrocene-loaded nanocarrier as probe for 

cochlear biodistribution study 

 

The contents of this appendix was presented as poster at the 2013 AAPS Annual Meeting 

and Exposition; November 10-14, 2013; San Antonio TX, USA; Poster W4103. 

 

Purpose: The fate of drug nanocarriers (NCs) in the inner ear remains elusive. The aim 

of the work is to develop ferrocene (FER)-loaded NCs to elucidate the cochlear 

biodistribution of such NCs. 

 

Methods: FER-NCs were prepared by surfactant free solvent-diffusion technique using 

a mixture of PLGA/PCL-PEG (ratios 1/1, 1/2) dissolved in acetone. FER-NCs were 

washed and freeze-dried. TEM analyses were carried out to study the FER-NC 

morphology. Lactose, mannitol, sucrose were tested at different 

cryoprotectant/nanocarrier ratios (0/1, 1/1, 3/1, 5/1) to stabilize FER-NCs during freeze-

drying. The stability of the FER-NCs was checked by measuring particle size and zeta-

potential (ZP) immediately after water dispersion and after 12 days. FER-NCs were 

placed in the round window (RW) niche of the middle ear in guinea pigs. After 48 hours, 

the animals were sacrificed, the cochlea isolated and prepared for TEM. 

 

Results: The Ferrocene-loaded NCs had a mean diameter of 201.2±57.7, PDI of 

0.328±0.074 and ZP of -20.2±4.8mV. PLGA/PCL-PEG NCs of 1/2 allowed higher EE% 

(85.50±11.15) than ones made with 1/1 ratio (42.93±3.65). The FER-NCs appeared 

spherical with smooth surface. All cryoprotectants increased RES-NCs stability during 

the freeze-drying process. However, lactose, especially when used in 3/1 ratio, was more 

effective than other ones after dispersion and during 12-day stability studies. FER-NCs 

crossed the RW membrane and were found adjacent or in the cells lining the scala tympani 

of the cochlea (Figure 4.A.1). Hearing was normal after RW placement of NCs (Figure 

4.A.2). 
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Conclusion: FER-NCs were successfully prepared by emulsion-diffusion technique and 

the 1/2 PLGA/PLC-PEG ratio was selected in term of best encapsulation efficiency. 

Moreover, lactose (3/1 cryoprotectant/NCs ratio) guaranteed FER-NCs stability during 

freeze-drying process and maintained FER-NCs stable in suspension for at least 12 days. 

When placed into the RW niche, FER-NCs enter the cochlea and do not appear to cause 

hearing loss. 

 

 

Figure 4.A.1 - Distribution of FER-loaded NCs in cochlear tissue (Guinea pig). 
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Figure 4.A.2 - Hearing thresholds by auditory brainstem responses (ABRs) after FER-loaded NC 

injection into the middle ear (Guinea pig). 

 

 

 

 

 

 

The formulative studies were carried out in the Laboratory of Future Nanomedicines and 

Theoretical Chronopharmaceutics directed by prof. Bi-Botti C. Youan, Division of 

Pharmaceutical Sciences, University of Missouri Kansas City, 2464 Charlotte St., Kansas City, 

MO 64108, USA. 

The in vivo biodistribution study was carried out in the laboratory directed by prof. Michael Anne 

Gratton, Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Saint Louis 

University, 3635 Vista Ave, St. Louis, MO 63110,USA.
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5 Dermal and transdermal delivery of 

morphine derivatives: a qualitative 

structure-penetration relationship 
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5.0 Abstract 

Opioids have been used widely for pain management in patients with degenerative or 

neoplastic diseases. Recent studies showed that opioids are also effective in the treatment 

of cutaneous lesions. Aiming to select the most suitable candidate for cutaneous painful 

syndromes, the in vitro permeability of eight different morphine derivatives (morphine, 

codeine, hydromorphone, hydrocodone, oxymorphone, oxycodone) through human 

epidermis was studied to elucidate the influence of four different substituents (e.g., 3-

methoxyl, 6-carbonyl, 14-hydroxyl, 7,8-didehydro) on the drug permeation and retention. 

The in vitro permeation studies were performed using the Franz diffusion cells. The donor 

phases were aqueous saturated solutions of morphine derivatives. At the end of 

experiment (i.e., 24 h), the maximum flux (Jmax), the permeation coefficient (pKp), the 

drug concentration in the epidermis at the steady state (Epi Qss) and normalized by drug 

solubility (RQ/S) were calculated and a statistical analysis of possible structure-

permeability relationship was performed. In particular, the statistical analyses indicated 

that 3-methoxyl group played a key role in governing the skin penetration of morphine 

derivatives through human skin, since it increased the permeation flux and decreased the 

drug retention. Moreover, the retention/permeation affinity index confirmed morphine as 

suitable candidate and suggested hydromorphone as an alternative drug for treating 

cutaneous painful symptomatology.  

 

 

 

 

 

 

 
The synthesis of morphine derivatives was carried out in the Laboratory directed by prof. Marco 

De Amici, Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli, 25 – 

20133, Milan (Italy). 

The penetration study was carried out in the Laboratory directed by prof. Luisa Montanari, 

Department of Pharmaceutical Sciences, University of Milan, via G. Colombo, 71 – 20133, Milan 

(Italy). 
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Abbreviations 

AcOEt Ethyl acetate 

CH2Cl2 Dichloromethane 

CHCl3 Chloroform 

CDCl3 Deuterochloroform 

CH3CN Acetonitrile 

DMSO-d6 Hexadeuterodimethyl sulfoxide 

Et2O Diethyl ether 

EtOH Ethanol 

HCl Hydrochloric acid 

 iPrOH Isopropanol 

KCl Potassium chloride 

KOH Potassium hydroxide 

MeOH Methanol 

Na2CO3 Sodium carbonate 

NaHCO3 Sodium bicarbonate 

NaN3 Sodium azide 

Na2SO4 Sodium sulfate 

oct Octan-1-ol  

Tg Glass transition temperature 

 THF  Tetrahydrofuran 

 rt  Room temperature 
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5.1 Introduction 

Opioids are widely and commonly used in pain relief therapies of degenerative diseases 

or neoplastic pathologies. Indeed, WHO guidelines indicate their systemic administration 

as first line drugs for controlling moderate to severe pain [1].  

Recent studies have shown that opioids are also locally effective in the treatment of 

inflammatory pain in wounds [2, 3] by activation of opioid receptors in the human skin 

[4]. However, no information are available on the ability of human skin to retain morphine 

derivatives. The skin penetration studies reported in literature are mainly focused on 

fentanyl and its derivatives [5, 6] or buprenorphine [7], which are administered by 

transdermal patches to obtain systemic activity. 

Aiming to rationalize the selection of the most suitable morphine derivative in local pain 

relief therapy, the present study investigated the effect of four different substituents (i.e., 

3-methoxyl, 6-carbonyl, 14-hydroxyl groups and 7,8-didehydro; Figure 5.1) on skin 

penetration of eight morphine derivatives. 

 

Figure 5.1 - Structures of morphine derivatives. 

Therefore, the skin penetration parameters, namely the drug maximum flux and the skin-

retained amount, were determined in vitro using human epidermis as a membrane. The 

impact of substituents was studied in the attempt to minimize the skin permeation and 

maximize the skin retention. Then, possible relationships between the skin penetration 

data and the chemical structure or some physicochemical parameters related to drug 

lipophilicity and/or polarity were screened by stepwise backward statistical analyses. 
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Most of the models in literature demonstrated the correlation between diffusion through 

the human skin and the drug lipophilicity (log P) and molecular weight [8, 9]. In other 

models, log P was more explicitly represented introducing the terms of dipolarity, 

polarizability, hydrogen bond donor and acceptor activity, and molar refractivity [10]; 

whereas further parameters related to the permeant solubility were also taken into 

consideration [11].  

Unlike permeation process, the drug retention in the human skin has not been widely 

investigated. On the best of our knowledge, only few papers proposed to model skin 

retention of specific classes of molecules like alcohols and steroids [12, 13].  

However, Cross and Robert demonstrated that drug retention was significantly affected 

by dermal clearance [13]. The authors compared the concentration of different alcohols 

and steroids in the viable epidermis obtained from two physiological models of blood 

flow in human skin, namely the full-thickness skin and the epidermal membrane. The 

former represents an in vivo infinite dermal vasoconstriction (low dermal clearance), 

whereas the latter is a model of in vivo infinite dermal perfusion (high dermal clearance). 

The published results showed that full thickness skin permitted to achieve higher drug 

concentration in the epidermis layer than other model, suggesting that epidermis retention 

was increased by low dermal clearance.  

In the present study, the epidermis was selected as model membrane for the retention 

study of morphine derivatives, because it permitted to better clarify the effects of 

chemical structure on retention process in comparison to other skin models with higher 

dermal clearance. 

5.2 Materials and methods 

5.2.1 Materials 

Morphine hydrochloride, codeine phosphate, dihydrocodeine bitartrate and oxycodone 

hydrochloride were purchased from SALAARS S.p.A. (Como, Italy). Standard KOH (0.5 

N) and HCl (0.5 N) were prepared from Titrisol volumetric vials purchased from VWR 

International PBI s.r.l. (Milan, Italy). All other reagents and solvents were used as 

received without further purification. 
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5.2.2 Preparation and characterization of the morphine derivatives 

5.2.2.1 Synthesis 

The progress of reactions was monitored by TLC analyses performed on commercial 

silica gel 60 F254 aluminum sheets (Merck KGaA, Darmstadt, Germany); spots were 

visualized by UV detection and further evidenced by spraying with a dilute alkaline 

potassium permanganate solution or phosphomolybdic acid in ethanol solution, and the 

Dragendorff reagent. 1H NMR and 13C NMR spectra were recorded with a Varian 

Mercury 300 (1H, 300.063; 13C, 75.451 MHz) spectrometer at 20°C; the deuterated 

solvents were indicated for each compound. Chemical shifts (δ) are expressed in ppm and 

coupling constants (J) in Hz. ESI-MS spectra were obtained on a Varian 320 LC–MS/MS 

instrument; data are reported as mass-to-charge ratio (m/z) of the corresponding positively 

charged molecular ions. 

Morphine [(5α,6α)-7,8-didehydro-4,5-epoxy-17-methylmorphinan-3,6-diol, 1]. Commercially 

available morphine hydrochloride (1.000 g, 3.108 mmol) was dissolved in Na2CO3 aq. sat. and 

vigorously extracted with CHCl3/iPrOH (9:1, 50 mL х 5). The organic phases were collected, dried 

over anhydrous Na2SO4 and evaporated under reduced pressure to afford a viscous yellow oil that 

was recrystallized from Et2O to give pure morphine base (1). Yield: 0.822 g (93%); white solid; 1H 

NMR, 13C NMR and MS spectra were identical to those reported in the literature [14]. 

Dihydromorphine [3,6-dihydroxy-(5α,6α)-4,5-epoxy-17-methylmorphinan, 2]. A stirred 

suspension of morphine hydrochloride (1.031 g, 3.204 mmol) and 10% Pd/C (50 mg) in MeOH 

(25 mL) was evacuated and hydrogenated under pressure (50 psi) in a Parr apparatus for 4 h. The 

reaction mixture was then passed through a pad of Celite® and the filtrate was concentrated under 

reduced pressure. This crude material was dissolved in NaHCO3 aq. sat. and extracted with 

CHCl3/iPrOH (9:1, 30 mL х 5), the organic phases were collected, dried over anhydrous Na2SO4 

and evaporated under reduced pressure to afford a yellow oil which was recrystallized from CH3CN 

to give pure dihydromorphine (2). Yield: 0.830 g (90%); pale yellow solid, Rf = 0.23 

(CH2Cl2/MeOH = 7:3); 1H NMR (300 MHz, CDCl3):  = 6.66 (d, 1H, J = 8.0 Hz), 6.55 (d, 1H, 

J = 8.0 Hz), 4.60 (d, 1H, J = 5.2 Hz), 4.00 (m, 1H), 3.15 (m, 1H), 2.97 (d, 1H, J = 18.4 

Hz), 2.59 (dd, 1H, J = 12.4, 3.8 Hz), 2.42 (s, 3H), 2.40 (dd, 1H, J = 18.4, 6.0 Hz), 2.28 

(m, 2H), 1.95 (dt, 1H, J = 12.4, 5.2 Hz), 1.69 (ddd, 1H, J = 12.4, 3.8, 1.9 Hz), 1.45 (m, 

3H), 1.08 (m, 1H) ppm; 13C NMR (75 MHz, DMSO-d6):  = 146.03, 137.98, 130.07, 
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125.19, 117.98, 116.69, 89.94, 66.11, 58.92, 46.03, 42.77, 42.01, 38.19, 37.25, 25.61, 

19.61, 19.48 ppm; ESI-MS: m/z [M+H]+ calcd for [C17H22NO3]
+ 288.16, found 288.1. 1H 

NMR, 13C NMR and MS spectra were identical to those reported in the literature [15, 16].  

Oxymorphone [4,5-α-epoxy-3,14-dihydroxy-17-methylmorphinan-6-one, 3]. This compound 

was synthesized from commercially available oxycodone hydrochloride following a procedure 

already reported in the literature [17]. Yield: 0.799 g (93%) from 1.004 g of oxycodone 

hydrochloride; white solid; Rf = 0.45 (CH2Cl2/MeOH = 9:1); 1H NMR (300 MHz, CDCl3):  = 

6.72 (d, 1H, J = 8.0 Hz), 6.61 (d, 1H, J = 8.0 Hz), 5.30 (bs, 2H), 4.68 (s, 1H), 3.15 (d, 1H, 

J = 18.4 Hz), 3.04 (dt, 1H, J = 5.2, 14.4 Hz), 2.88 (d, 1H, J = 5.6 Hz), 2.56 (dd, 1H, J = 

6.0, 18.8 Hz), 2.46 (m, 5H), 2.31 (dt, 1H, J = 2.8, 14.4 Hz), 2.21 (m, 1H), 1.88 (ddd, 1H, 

J = 3.2, 5.2, 13.6 Hz), 1.64 (m, 2 H) ppm; 13C NMR (75 MHz, DMSO-d6):  = 208.7, 

143.5, 139.5, 129.2, 119.1, 117.2, 89.3, 70.0, 63.9, 49.6, 45.2, 42.3, 39.9, 35.6, 31.0, 29.9, 

21.5 ppm; ESI-MS: m/z [M+H]+ calcd for [C17H20NO4]
+ 302.14, found 302.1. 1H NMR, 

13C NMR and MS spectra were identical to those reported in literature [18]. 

Hydromorphone [4,5-α-epoxy-3-hydroxy-17-methyl morphinan-6-one, 4]. This compound was 

prepared starting from morphine base (1) by a known procedure [19]. Yield: 1.089 g (82%) from 

1.324 g of morphine; white solid; Rf = 0.22 (CH2Cl2/MeOH = 3:7); 1H NMR (300 MHz, CDCl3): 

 = 6.71 (d, 1H, J = 8.3 Hz), 6.61 (d, 1H, J = 8.3 Hz), 4.66 (s, 1H), 3.30 (m, 1H), 3.04 (d, 

1H, J = 18.7 Hz), 2.69 (m, 2H), 2.48 (s, 3H), 2.40 (m, 2H), 2.27 (m, 2H), 1.83 (m, 2H), 

1.25 (m, 2H) ppm; 13C NMR (75 MHz, DMSO-d6):  = 209.1, 144.0, 139.4, 127.6, 124.6, 

119.4, 117.1, 90.5, 58.4, 46.5, 46.3, 42.7, 41.5, 40.0, 34.9, 25.2, 19.6 ppm; ESI-MS: m/z 

[M+H]+ calcd for [C17H20NO3]
+ 286.14, found 286.1. 1H NMR, 13C NMR and MS spectra 

were identical to those reported in literature [20, 21]. 

Codeine [(5α,6α)-7,8-didehydro-4,5-epoxy-3-methoxy-17-methylmorphinan-6-ol, 5]. 

Commercially available codeine phosphate (1.6209 g, mmol) was dissolved in Na2CO3 aq. sat. 

and extracted with AcOEt (50 mL х 3). The organic phases were collected, dried over anhydrous 

Na2SO4 and evaporated under reduced pressure to afford a viscous oil which was recrystallized 

from Et2O to give pure codeine base (5). Yield: 0.959 g (78%); white solid; 1H NMR, 13C NMR 

and MS spectra were identical to those reported in literature [22]. 
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Dihydrocodeine [4,5-α-epoxy-3-methoxy-17-methylmorphinan-6-ol, 6]. Commercially 

available dihydrocodeine bitartrate (1.119 g, 2.479 mmol) was dissolved in Na2CO3 aq. sat. and 

extracted with AcOEt (50 mL х 3). The organic phases were collected, dried over anhydrous 

Na2SO4 and evaporated under reduced pressure to afford a viscous yellow oil which was triturated 

with Et2O to give pure dihydrocodeine base (6) as a white glassy solid. Yield: 0.720 g (96%); white 

solid; 1H NMR, 13C NMR and MS spectra were identical to those reported in literature [23]. 

Oxycodone [4,5-α-epoxy-14-hydroxy-3-methoxy-17-methylmorphinan-6-one, 7]. 

Commercially available oxycodone hydrochloride (0.598 g, 1.702 mmol) was dissolved in Na2CO3 

aq. sat. and vigorously extracted with AcOEt (35 mL х 3). The organic phases were collected, dried 

over anhydrous Na2SO4 and evaporated under reduced pressure to afford a viscous oil that was 

recrystallized from Et2O to give pure oxycodone base (7). Yield: 0.482 g (90%); white solid; 1H 

NMR, 13C NMR and MS spectra were identical to those reported in literature [24]. 

Hydrocodone [4,5-α-epoxy-3-methoxy-17-methylmorphinan-6-one, 8]. To a solution of 

dihydrocodeine base (6) (0.734 g, 2.435 mmol) in dry CH2Cl2 (20 mL) Dess-Martin periodinane 

(1.033 g, 2.435 mmol) was added at 0°C and the reaction mixture was stirred for 30 min, whereupon 

it was allowed to warm to rt and stirred for further 2 h. The reaction mixture was diluted with 

CH2Cl2, acidified with 1 N HCl and washed with Et2O (30 mL х 3). The acidic aqueous layer was 

then basified with Na2CO3 and extracted with CH2Cl2 (30 mL х 3). The organic phases were 

collected, dried over anhydrous Na2SO4 and evaporated under reduced pressure to afford a yellow 

oil which was recrystallized from Et2O to provide pure hydrocodone (8). Yield: 0.649 g (89%); pale 

yellow solid; Rf = 0.35 (CH2Cl2/MeOH = 85:15); 1H NMR (300 MHz, CDCl3):  = 6.69 (d, 1H, J 

= 8.1 Hz), 6.62 (d, 1H, J = 8.1 Hz), 4.64 (s, 1H), 3.88 (s, 3H), 3.22 (m, 1H), 3.02 (d, 1H, J = 18.3 

Hz), 2.62 (m, 2H), 2.43 (s, 3H), 2.39 (m, 1H), 2.30 (m, 1 H), 2.17 (m, 2H), 1.83 (m, 2H), 1.24 (m, 

2H) ppm; 13C NMR (75 MHz, CDCl3):  = 208.1, 145.6, 143.1, 127.4, 126.4, 120.0, 114.7, 91.6, 

59.5, 56.9, 53.7, 47.1, 43.1, 42.8, 40.4, 35.6, 25.8, 20.2 ppm. ESI-MS: m/z [M+H]+ calcd for 

[C18H22NO3]
+ 300.16, found 300.1. 1H NMR, 13C NMR and MS spectra were identical to those 

reported in the literature [23]. 
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5.2.2.2 Determination of ionization constants and lipophilicity 

The water-saturated octan-1-ol (partition-coefficient grade) was used in all partition experiments. 

The KOH was standardized by titration with potassium hydrogen phthalate, while pH electrode 

standardization was performed daily by titrating a known amount of HCl with standardized KOH. 

The titration instrument Sirius PCA200 (Sirius Analytical Instruments, Forrest Row, UK) was 

employed to perform the pKa and log P assays (25.0±0.1 °C under argon atmosphere). It was 

equipped with a semi-micro Ross-type pH electrode, quartz precision dispensers for titrant addition, 

a temperature probe and a micro mechanical stirrer. The operational pH scale was converted to the 

concentration scale using a four-parameter equation [25].  

Alkalimetric sample titrations were performed in 0.15M KCl employing sample concentrations in 

the low mM-high µM range. All compounds (1-8) were sufficiently water soluble to perform 

normal aqueous titrations. All octan-1-ol/water volume ratios were optimized to allow partitioning 

in the octan-1-ol phase and a proper shift of the aqueous titration curve. The weighting scheme and 

the iterative least squares refinement of the titration curves both in water and in octan-1-ol/water 

biphasic partition system have been reported previously [26].  

The aqueous ionization constants (pKa) were estimated from the Bjerrum difference plots and they 

were refined by a non-linear multi titration-set least squares procedure [26]. The partition coefficient 

(log P) was determined from the difference between the aqueous pKa of the species and the apparent 

pKa (poKa) estimated from a titration in the presence of the partition solvent. The log P constants 

were refined using data from three or more titrations, each with a different octan-1-ol/water volume 

ratio and are reported together with their standard deviations. 

5.2.2.3 DSC analyses 

Thermal stability was estimated using Differential Scanning Calorimetry (DSC1, Mettler 

Toledo, Greifensee, Switzerland). Samples of about 2.5 mg were loaded into a standard 

aluminum pan and scanned from 0 to 300°C at a heating constant rate of 20°C/min under 

constant purging of nitrogen at a rate of 80 mL/min. 

5.2.2.4 Water solubility 

Saturated solutions of opioids were made in HPLC-grade water. Briefly, a known amount 

of opioids (about 40 mg) was suspended in 2 mL of solvent under constant stirring at 

32°C for 24 h. Then, the suspension was centrifuged at 5000 rpm, 32°C, for 20 min 
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(Universal 30RF, Hettich Holding GmbH & Co., Kirchlengern, Germany) and then the 

supernatant was withdrawn, opportunely diluted and analyzed by HPLC. 

5.2.2.5 Quantitative determination 

The concentration of each opioid derivative was determined by HPLC (HP 1100 

ChemStations, Agilent Technologies, Santa Clara, USA). Compound separation was 

carried out using reverse-phase column (Hypersil Gold C8, 5 µm, 150 х 4.6 mm, Thermo 

Fisher Scientific Inc., Waltham, USA) and 0.02 M phosphate pH 8 buffer/acetonitrile 

(75/25) as mobile phase. The flow rate was 1.0 mL/min and the injection volume was 10 

µL. The retention time of all opioid derivatives was between 3 and 10 min. The drug 

concentration was determined at 210 nm by UV spectrophotometer from calibration 

curves in the range of 0.1-10 µg/mL (R2<0.999). 

5.2.3 In vitro penetration studies 

Human epidermis was selected as membrane for the skin permeation studies. The skin 

used in the permeation studies was obtained from the abdominal skin of two donors, who 

underwent cosmetic surgery.  

Skin samples were prepared following an internal standard procedure [27]. The full-

thickness skin was sealed in evacuated plastic bags and frozen at 20°C within 6 h after 

removal. Prior to experiments, the skin was thawed at room temperature, and the excess 

of fat was carefully removed. The skin sections were cut into squares of about 2.5 cm2 

and, after immersing the skin in water at 60°C for 1 min, the epidermis was gently 

separated from the remaining tissue with forceps and carefully inspected by light 

microscopy for any defects. Afterward, the epidermis was mounted on the Franz diffusion 

cell whose receptor compartment was filled with degassed phosphate buffer pH 6.5 

containing 100 mg/mL NaN3 as preservative. Special care was given to avoid air bubbles 

between the buffer and the epidermis in the receptor compartment. The upper and lower 

parts of the Franz cell were sealed with Parafilm® (Pechiney Plastic Packaging Company, 

Chicago, USA) and fastened together by means of a clamp, with the epidermis acting as 

seal between the donor and receptor compartments. Then, the donor compartment was 

filled with 0.4 mL saturated solution opioids. The system was kept at 37°C with a 
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circulating water bath, so that the epidermis surface temperature was at 32±1 °C 

throughout the experiment. 

At predetermined times (1, 3, 5, 8, 24 h), 200 µL samples were withdrawn from the 

receiver compartment and replaced with fresh receiver medium. Sink conditions were 

maintained throughout the experiments. Samples were analyzed by HPLC according to 

the method described above. The values were the averages of parallel experiments 

performed in triplicate using epidermis sheet from two donors (n=6).  

At the end of the permeation experiments, the opioid amount retained into epidermis was 

quantified according to the following procedure. The epidermis sheet was removed from 

Franz diffusion cell and each side was gently washed with 5 mL of methanol in order to 

wash out the unabsorbed drug. Subsequently, sample was dried, sliced thinly and placed 

in 5 mL of fresh methanol. The suspension was soaked in a sonicator for 30 min and then 

maintained for 24 h at 2-8°C. Finally, the supernatant was 0.45 µm filtered and analyzed 

by HPLC. The opioid amount retained by the epidermis after 24 h (Epi Qss) was expressed 

as micrograms of opioid in milligrams of epidermis.  

5.2.4 Data analysis 

The cumulative amount permeated through the skin per unit area was calculated from the 

drug concentration in the receiving medium and plotted as a function of time. The steady 

state flux (Jmax) was determined as the slope of the linear portion of the plot. The 

permeability coefficient was calculated according to the modified Fick’s first law of 

diffusion (Eq. 5.1): 

𝑝𝐾𝑝 = − log
𝐽𝑚𝑎𝑥

𝑆
         Eq. 5.1 

where pKp (cm/h) is the permeability coefficient and S is the drug donor concentration 

(µg/cm3), corresponding to the drug solubility in the vehicle at 32°C.  

The concentration in the epidermis at the steady state (Epi Qss) was expressed as drug 

concentration in the epidermal layer (µg/mg). In order to exclude the influence of drug 

solubility on the retention, the Epi Qss was normalized by drug solubility in the donor 

phase (S) [13, 28], as showed in Eq. 5.2: 
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𝑅𝑄/𝑆 =
𝐸𝑝𝑖 𝑄𝑠𝑠

𝑆
          Eq. 5.2 

The epidermis/transdermal selectivity index (IE/T value) was also calculated for each drug 

as the ratio between the Epi Qss and Jmax. According to Lin et al., IE/T value can be used 

as descriptor of the molecule affinity to be retained or permeate through human epidermis 

[28]: the higher IE/T value, the greater affinity of the drug for epidermis (Eq. 5.3). 

𝐼𝐸/𝑇 𝑣𝑎𝑙𝑢𝑒 =
𝐸𝑝𝑖 𝐶𝑠𝑠

𝐽𝑚𝑎𝑥
         Eq. 5.3 

5.2.5 Statistical analyses 

The effects of substituents (i.e., 3-methoxyl, X1; 6-carbonyl, X2; 14-hydroxyl, X3; 7,8-

didehydro, X4;) on permeation/retention parameters (Log Jmax, Y1; Log Epi Qss, Y2; pKp, 

Y3; - Log RQ/S, Y4) and solubility (S, Y5) of the tested drugs were evaluated by JMP 10.0 

software (SAS Institute, Cary, USA). Polynomial equations of interactive terms were 

built in for each dependent variable, as shown by Eq. 5.4: 

𝑌𝑖 = 𝑏𝑜 + 𝑏1𝑋1 + 𝑏2𝑋2 + 𝑏3𝑋3 + 𝑏4𝑋4 + 𝑏1,2𝑋1𝑋2 + 𝑏1,3𝑋1𝑋3 + 𝑏1,4𝑋1𝑋4 +

𝑏2,3𝑋2𝑋3 + 𝑏3,4𝑋3𝑋4            Eq. 5.4 

where Yi is the dependent variable, b0 the arithmetic mean response of the runs and bi the 

estimated coefficient for the categorical factor Xi. The interaction between carbonyl (X2) 

and 7,8-didehydro (X4) was not considered in the statistical analyses, since it was not 

present in the considered dataset of molecules.  

The main effects represent the average results of changing one factor at a time from its 

low (absence: - 1) to high level (presence, +1), as represented in Table 5.1. The 

interaction terms (e.g., X1*X2) show how the response changes when two factors are 

simultaneously changed.  

The estimated coefficient of each interaction was calculated according to a symmetric 

matrix 2x2 made plotting all possible combinations of two substituents. Due to the 

symmetry of the matrix, two possible cases were taken into consideration in the model: 

a) the level of substituents was the same (-1, -1; +1, +1) or b) the opposite (-1, +1; +1, -
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1). Consequently, the interaction coefficient estimated by the model in case b) had 

opposite sign vs case a). 

For each dependent variable, stepwise backward analyses were built in to exclude 

negligible terms from the statistical model (p-value to leave: 0.051).  

Even if the inter-donor variability might affect the results of statistical analyses, the t-

student tests were carried out on each of the considered permeation/retention parameters. 

The results did not highlight any significant differences. Therefore, the epidermis donor 

was not considered as block variable. 

Table 5.1 – Chemical substituents present on the chemical structure of morphine derivatives. The 

code +1 indicates the substituent presence, whereas -1 its absence. 

Compound 3-methoxyl 

(X1) 

6-carbonyl 

(X2) 

14-hydroxyl  

(X3) 

7,8-didehydro  

(X4) 

Morphine -1 -1 -1 +1 

Dihydromorphine  -1 -1 -1 -1 

Oxymorphone -1 +1 +1 -1 

Hydromorphone -1 +1 -1 -1 

Codeine +1 -1 -1 +1 

Dihydrocodeine +1 -1 -1 -1 

Oxycodone +1 +1 +1 -1 

Hydrocodone +1 +1 -1 -1 

5.3 Results 

5.3.1 Chemistry 

Morphine (1), codeine (5), dihydrocodeine (6) and oxycodone (7) were purchased as salts 

and converted into the corresponding free bases by an organic solvent extraction from the 

basic aqueous solutions and subsequent crystallization or trituration. The syntheses of 

opioid derivatives (2), (3), (4), (8) were accomplished as shown in Figure 5.2.  

Dihydromorphine (2) was obtained in high yield by a palladium-catalyzed high-pressure 

hydrogenation of morphine hydrochloride in methanol at room temperature. In our 

conditions, the hydrogenation reaction proceeded in a very satisfactory manner without 
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any significant undesired isomerization of morphine, despite what described by Metzger 

[29, 30] and Weiss and Weiner [31]. 

Indeed, such type of isomerization reactions seems to be promoted by the presence of 

large amounts of the noble metal catalyst, heating and strong acidic solutions. It is likely 

that the high ratio starting material/metal catalyst and the high hydrogen pressure 

employed favored the double bond hydrogenation respect to any other side reaction, 

providing dihydromorphine (2) in high yield. Oxymorphone (3) was prepared in very 

good yield from oxycodone hydrochloride by a standard procedure of O-demethylation 

with boron tribromide in dichloromethane [17]. 

 

Figure 5.2 – Reagents and conditions: a) 50 psi H2, 10% Pd/C, MeOH; b) 1 M BBr3/n-hexane, 

CH2Cl2, 0°C to rt; c) Ru black, H2SO4, H2O, EtOH, 75°C; d) Dess-Martin periodinane, CH2Cl2, 

0°C to rt. 

Hydromorphone (4) was synthesized by refluxing an acidic solution of morphine (1) in 

ethanol and water in the presence of ruthenium as catalyst, following a procedure known 

from the literature [19]. Finally, hydrocodone (8) was obtained in high yield via Dess-

Martin oxidation of dihydrocodeine (6). The same procedure was described in a recent 

work by Varghese and Hudlicky [23]. All the free bases synthesized were obtained in a 

pure form by methods of extraction and crystallization or trituration from organic 

solvents. 
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5.3.2 Physicochemical characterization 

The solubility at saturation, log P and melting temperature (Tm) of the tested compounds 

are reported in Table 5.2. The codeine derivatives were more water-soluble than 

morphine ones: dihydrocodeine had the highest solubility, whereas morphine the lowest. 

Among codeine derivatives, oxycodone was an exception, since its solubility was near to 

morphine one (p=0.64). It is noteworthy that 7,8-didehydro absence increased the 

solubility of both morphine and codeine. Indeed, the solubility of dihydromorphine was 

6-fold higher than morphine. The presence of 3-methoxyl also increased the lipophilicity 

of molecules (p<0.0001). 

Table 5.2 – Physicochemical parameters of tested molecules. The results are expressed as mean 

values ± St. Dev. (n=3). 

Compound Solubility 

(mg cm-3) 

Amine pKa log P Tm 

(°C) 

Morphine 0.299± 0.006 8.16±0.01 0.89±0.01 256.5±0.1 

Dihydromorphine 1.997±0.135 8.46±0.02 0.87±0.01 -a 

Oxymorphone 4.919±0.501 8.30±0.01 0.74±0.01 245.1±0.0 

Hydromorphone 2.652±0.163 8.17±0.01 0.93±0.01 258.6±0.2 

Codeine 9.366±0.578 8.28±0.01 1.18±0.01 156.4±0.2 

Dihydrocodeine 14.923±2.246 8.87±0.01 1.31±0.01 -b 

Oxycodone 0.310±0.039 8.89±0.01 1.47±0.01 221.9±0.0 

Hydrocodone 3.123±0.250 8.28±0.01 1.41±0.01 176.3±0.2 

a Tg = 91.1±0.9 °C; b Tg = 37.1±1.0 °C 

These findings were confirmed by the statistical analyses. The linear multiple regressions 

suggested that all substituents significantly influenced the water solubility (Table 5.3) 

and the resulting polynomial equation strongly fitted with experimental data (p<0.0001; 

R2=1.00; R2
Adj=1.00; F Ratio=706.03; Eq. 5.5). 

𝐿𝑜𝑔𝑆 = 3.15 + 0.07𝑋1 − 0.14𝑋2 − 0.19𝑋3 − 0.26𝑋4 − 0.20𝑋1𝑋2 − 0.32𝑋1𝑋3 +

0.16𝑋1𝑋4           Eq. 5.5 

The statistical model confirmed that 3-methoxyl (X1) positively influenced molecule 

solubility (p<0.0001). The regression results also evidenced the synergic effect of 3-
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methoxyl and 7,8-didehydro on drug solubility (X1*X4: p<0.0001). On the contrary, other 

substituents negatively affected the drug solubility both alone (p<0.0001) and in 

combination with 3-methoxyl (p<0.0001).  

Finally, Tm of morphine derivatives were in agreement to literature data, with the 

exception of dihydromorphine and dihydrocodeine. Surprisingly, the thermal analyses 

showed glassy transitions, whereas melting temperatures were reported in literature [32]. 

The glass transition temperature (Tg) of dihydromorphine and dihydrocodeine were 

91.1±0.9 °C and 37.1±1.0 °C, respectively (Table 5.2). Moreover, the lowest Tg value 

registered for dihydrocodeine justified the highest solubility of such a compound. 

Table 5.3 – Effect of substituents on Log S, Log Jmax, pKp, Log Epi Qss, - Log RQ/Si. The interaction 

effect reported in table is obtained when the level of both substituent is the same (+1, +1; -1, -1). 

Vice versa, the interaction effect has opposite impact on penetration parameters when substituent 

level had opposite sign (+1, -1;-1, +1). 

Substituent Log S Log Jmax pKp Log (Epi Qss) - Log RQ/S 

X1 increase# increase# decrease# decrease# increase# 

X2 decrease# decrease* - decrease* - 

X3 decrease# decrease* - decrease# - 

X4 decrease# decrease* - decrease* decrease* 

Interactions      

X1*X2 decrease# decrease* - decrease# - 

X1*X3 decrease# decrease# - decrease# - 

X1*X4 increase# - increase* - - 

X2*X3 - - - - - 

X3*X4 - - - - - 

# p<0.001 by Fisher test.
  *

 p<0.05 by Fisher test.  

5.3.3 In vitro penetration studies 

The cumulative amounts of tested compounds permeated through the human epidermis 

in 24 h are shown in Figure 5.3. At a first glance, the permeation profiles evidenced that 

3-methoxyl significantly increased the drug diffusion through the human epidermis. 

Indeed, Jmax values of codeine derivatives resulted significantly higher than other 

compounds (Table 5.4; p<0.01). 
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Figure 5.3 – Permeation profiles of morphine (A) and codeine (B) derivatives. (n=6, mean value 

± SEM.). Morphine derivatives are morphine (1), dihydromorphine (2), oxymorphone (3) and 

hydromorphone (4). Codeine derivatives are codeine (5), dihydrocodeine (6), oxycodone (7) and 

hydrocodone (8). 

The highest Jmax was reported for dihydrocodeine, whereas the lowest for the morphine. 

Indeed, Jmax values calculated for codeine derivatives resulted significantly higher than 

other compounds (Table 5.4; p<0.01). Jmax of oxycodone was the only exception and its 
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flux value was similar to morphine derivatives. The permeation coefficients confirmed 

this trend: the pKp values of codeine derivatives resulted the lowest among the tested 

molecules. 

Table 5.4 – Penetration data and IE/T values of tested compounds (mean ± sd; donors=2, n=6). 

Compound Jmax 

(µg cm-2 h-1) 

pKp 

(cm h-1) 

Epi Qss 

(μg mg-1) 

- Log RQ/S  

(cm3 mg-1) 

IE/T 

Morphine 0.05±0.02 3.88±0.29 0.64±0.27 2.72±0.29 12.80 

Dihydromorphine 0.21±0.20 4.22±0.55 1.50±0.78 3.16±0.24 7.14 

Oxymorphone 0.58±0.70 4.24±0.58 4.68±2.54 3.09±0.25 8.07 

Hydromorphone 0.11±0.07 4.47±0.34 2.81±1.64 3.04±0.24 25.55 

Codeine 9.60±3.39 3.21±0.15 6.44±2.26 3.18±0.21 0.67 

Dihydrocodeine 36.25±14.28 2.64±0.18 8.03±0.89 3.27±0.22 0.22 

Oxycodone 0.40±0.41 3.07±0.45 0.10±0.05 3.52±0.26 0.25 

Hydrocodone 4.19±1.43 2.90±0.17 2.10±0.82 3.20±0.18 0.50 

The polynomial equations (Eq. 5.6 and Eq. 5.7) obtained for permeation parameters fitted 

with the experimental data (Figure 5.4), allowing to identify the significant contribute of 

each substituent to the permeation process (Table 5.4). 

𝐿𝑜𝑔 𝐽𝑚𝑎𝑥 = −0.90 + 1.36𝑋1 − 0.60𝑋2 − 0.39𝑋3 − 0.60𝑋4 − 0.44𝑋1𝑋2 − 0.96𝑋1𝑋3 

p<0.0001; R2=0.89; R2
adj=0.88; F ratio=57.32     Eq. 5.6 

𝑝𝐾𝑝 = 3.58 − 0.53𝑋1 + 0.19𝑋1𝑋4       Eq. 5.7 

p<0.0001; R2=0.76; R2
adj=0.74; F ratio=69.89 

The statistical results confirmed the predominant effect of 3-methoxyl (X1) on the 

permeation process through the skin. Indeed, 3-methoxyl determined an increase of Jmax 

(p<0.0001) and a significant decrease pKp values (p<0.0001), suggesting that its effect on 

diffusion process was due to an improvement of epidermal diffusivity of the molecule 

through the human epidermis other than to the increase of drug solubility. 
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The presence of other substituents on molecule backbone had an opposite effect on Jmax 

(X2, p=0.0012; X3, p=0.0317; X4, p=0.0013) and resulted ineffective on pKp values, 

suggesting that, conversely to 3-methoxyl, they influenced only the concentration 

gradient. Moreover, the 3-methoxyl/6-carbonyl (X1*X2; p=0.0056) or 3-methoxyl/14-

hydroxyl (X1*X3; p<0.0001) interactions had a detrimental effect on the flux (Eq. 5.6). 

These findings were in agreement with the highest Jmax of dihydrocodeine, having only 

3-methoxyl among the considered substituents, and the lowest values of morphine (Table 

5.4). 

The trend observed in the case of Jmax and pKp were significantly different from that 

observed in the case of the amount retained from the skin at the end of experiments (Epi 

Qss). In this case, the highest Epi Qss values were found in the case of dihydrocodeine, 

codeine, and oxymorphone. Furthermore, the retention seemed to be correlated to drug 

solubility, as shown by Eq. 5.8. 

𝐿𝑜𝑔(𝐸𝑝𝑖 𝑄𝑠𝑠) = −6.81 + 0.94𝐿𝑜𝑔𝑆       Eq. 5.8 

p<0.0001; R2=0.75; R2
adj=0.74; F ratio=136.86 

However, the experimental results cannot be explained considering only water solubility 

as the key parameter for partition of the morphine derivative from the donor solution to 

the human epidermis. As an example, Epi Qss for morphine resulted about 6-fold higher 

than that of oxycodone (Table 5.4), although the solubility was comparable (Table 5.2).  

In the case of Epi Qss, the statistical analysis evidenced that all considered substituents 

influenced the drug amount retained by the epidermis (Eq. 5.9) 

𝐿𝑜𝑔(𝐸𝑝𝑖 𝑄𝑠𝑠) = 0.06 − 0.42𝑋1 − 0.21𝑋2 − 0.63𝑋3 − 0.29𝑋4 − 0.56𝑋1𝑋2 −

0.89𝑋1𝑋3           Eq. 5.9 

p<0.0001; R2=0.89; R2
adj=0.88; F ratio=56.90 

In particular, all significant factors determined a decrease of drug concentration in 

epidermis. It should be also underlined that among the main factors, 14-hydroxyl (X3) 

along with interactions between 3-methoxyl and 6-carbonyl (X1*X2) or 14-hydroxyl 

(X1*X3) showed the greater coefficients and the most significant effect (p<0.0001), 
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justifying the lowest Epi Qss values determined in the case of oxycodone, which has all 

these substituents. 

On the contrary, the most of the significant effects observed in Eq. 5.9 became negligible 

when – Log RQ/S was used as retention descriptor (Eq. 5.10). 

−𝐿𝑜𝑔𝑅𝑄/𝑆 = 3.08 + 0.14𝑋1 − 0.13𝑋4                Eq. 5.10 

p<0.0001; R2=0.41; R2
adj=0.38; F ratio=15.44 

The stepwise backward analyses showed that 3-methoxyl and 7,8-didehydro were the 

only effects to remain significant when – Log RQ/S was used as retention descriptor. In 

particular, the presence of 3-methoxyl (X1; p<0.0001) increased the – Log RQ/S, whereas 

the 7,8-didehydro (X4; p<0.0013) had an opposite effect. Since the low correlation of Eq. 

5.10, the results of stepwise backward analyses were checked by one-way ANOVA 

analyses. These further tests confirmed 3-methoxyl (X1; p<0.0003) and 7,8.-didehydro 

(X4; p<0.0057) to be significant for drug retention, suggesting that the influence of both 

substituents on the drug retention was independent of the drug solubility in the donor 

phase.  

The estimated X1 coefficient in Eq. 5.10 is consistent with the value in Eq. 5.9, showing 

that 3-methoxyl negatively affected the drug retention in the human epidermis. On the 

other side, the coefficients of X4 had an opposite effect of 7,8-didehydro according to the 

retention descriptor taken into account (Table 5.3). When Epi Qss was considered, the 

results of statistical analyses showed that 7,8-didehydro decreased the drug concentration 

in the human epidermis (b4 = - 0.29; Eq. 5.9). On the contrary, its negative effect on – 

Log RQ/S suggested that X4 increased drug retention (b4 = - 0.13; Eq. 5.10). This 

incongruity might be explained considering that drug solubility influenced only Epi Qss 

and not –Log RQ/S. Thus, the negative effect of X4 on Epi Qss was related to the decrease 

of drug solubility in the donor phase (Table 5.3). These findings are in agreement with 

the experimental data. For example, the lower solubility of codeine justified its lower Epi 

Qss in comparison to dihydrocodeine values (Table 5.2 and Table 5.4). Moreover, no 

differences were observed in – Log RQ/S values of both molecules, suggesting that lower 

Epi Qss of codeine was only due to drug solubility.  
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Therefore, Eq. 5.10 better described the influence of 7,8-didehydro on the drug retention 

than Eq. 5.9, since it exclude the ancillary effect of drug solubility. 

 

Figure 5.4 – Actual and predicted plot of the linear multiple regression analyses on the 

substituent effect on Log Jmax (A), pKp (B), Epi Qss (C) and – Log RQ/S (D). 
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5.4 Discussion 

The permeation data were consistent with those reported in literature, confirming that 

morphine derivatives slowly permeated through human skin [33]. Statistical analyses 

revealed significant correlations between chemical modifications on morphine structure 

and the permeation process. At a first glance, the gradient concentration between donor 

and receiver compartments seemed to govern the passive diffusion of these molecules 

through the human epidermis. In other words, the higher the water solubility, the higher 

the flux (p<0.0001; R2=0.72, R2
adj=0.72; F=119.82). 

However, 3-methoxyl determined an increase of Jmax and a significant decrease in pKp 

values, suggesting that its effect on diffusion process was due to an improvement of 

epidermal diffusivity of the molecule through the human epidermis other than the increase 

of the concentration gradient.  

In order to evaluate the goodness of linear regression in predicting the drug permeation 

through human epidermis, the model proposed by Potts and Guy [8] was applied to the 

experimental data of morphine derivatives. The results showed that the Potts and Guy 

model fitted well with the dataset (p<0.0001; R2=0.63; R2
adj=0.62, F ratio=39.10). 

However, its low R2
adj suggested that such a linear regression model was less accurate in 

predicting permeation of morphine derivatives than the model described by Eq. 5.7. 

Indeed, the bias between predicted and experimental pKp values of dihydrocodeine was 

twice higher when pKp was calculated by the Potts and Guy equation (17.6%) than by 

Eq. 5.7 (8.2%). 

The lack of fit of the Potts and Guy model can be explain in term of molecular weight. In 

the case of morphine derivatives, the considered range was too narrow to influence 

significantly the drug permeation. Indeed, the statistical analyses emphasized the key role 

of drug lipophilicity (log P) in determining the skin permeation (leverage p<0.0001), 

whereas the effect of molecular weight was negligible (leverage p=0.6030). 

Moreover, retained drug amount was demonstrated to correlate to the drug concentration 

gradient as well as permeation process (Eq. 5.8). However, the substituent effect on drug 

retention was not only justified by its effect on solubility, as shown by Eq. 5.10. In line 

with literature data [13, 28], normalizing drug retention by solubility (RQ/S) permitted to 
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discriminate which substituent effect on retention was influenced by solubility. For 

example, 3-methoxyl (X1) had a positive influence on the drug solubility (Eq. 5.5), 

whereas it negatively affected the drug retention in epithelial layer. These findings are in 

agreement with permeation results: since 3-methoxyl was able to improve drug diffusivity 

through the epidermis, it significantly decrease Epi Qss and increase – Log RQ/S.  

The low correlation of the linear regression equation obtained for – Log RQ/S 

demonstrated that retention process might not be modelled only on the base of chemical 

structure modifications (Eq. 5.10). Furthermore, the use of physicochemical parameters 

(i.e., molecular weight, log P) as model descriptors were linked to a similar lack of fit 

(p<0.0001; R2=0.38; R2
adj=0.35; F ratio = 13.75) [13], suggesting that the retention 

process might be modelled introducing also descriptors based on composition of upper 

layers of human skin. The stratum corneum barrier function is due to a multi-layered wall-

like structure in which flat keratinized corneocytes are embedded in a lipophilic network 

of ceramides, cholesterol esters and fatty acids. In particular, ceramides are essential since 

their key-role in the lipophilic network organization [34] and are able to modulate the 

drug permeation through epidermis according to the relative concentration of the 

ceramides types in the upper layers of human skin [35]. Therefore, the development of 

predicting models able combine the physicochemical properties of molecules and their 

interaction with epidermal constituents might be an challenging solution for solving the 

lack of fit of proposed modelling approach. 

In order to select the most suitable compound for designing a dosage form intended for 

the local treatment of topical painful syndromes, the minimization of the skin permeation 

and the maximization of the skin retention are highly desirable. Firstly, the overall results 

on morphine revealed one of the lowest Epi Qss value and Jmax. Although the Epi Qss data 

might induce to discard morphine as candidate for topical treatment, the low permeation 

flux suggested a lower incidence of systemic side effect than other more permeable 

morphine derivatives. Indeed, IE/T value is an order of magnitude higher than codeine 

derivatives and it was comparable or slightly lower with respect to the parent compounds.  

Furthermore, the results identified hydromorphone as another suitable alternative to be 

topically applied for cutaneous pain management. Hydromorphone exhibited a very low 

flux through the human epidermis (i.e., the highest pKp value) and Epi Qss was 4-fold 
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higher than morphine. Therefore, hydromorphone resulted the morphine derivative with 

the highest affinity for epidermis retention (highest IE/T value, Table 5.4) among the 

considered set of compounds.  
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5.5 Conclusion 

The overall results highlighted that the permeation and retention of morphine derivatives 

may be modelled according to the small modification on their chemical structure. Such 

an approach appears accurate in predicting drug permeation. In particular, the statistical 

analyses indicated that 3-methoxyl group played a key role in governing the skin 

penetration of morphine derivatives through human skin. In contrary, the low R2 of linear 

regression model for – Log RQ/S demonstrated that physicochemical properties of 

molecules might be not enough for modelling the retention process, suggesting the need 

to deeply understand the retention process taking in consideration the epithelial features. 

Moreover, the retention/permeation affinity index confirmed that morphine was a good 

candidate for treating cutaneous painful symptomatology, although low Epi Qss. 

Interestingly, the statistical results suggested that hydromorphone can represent a good 

alternative to morphine thanks to its greater affinity for human epidermis as well as a 

relatively higher potency [36]. 

Finally, the study also underlined that dihydromorphine and dihydrocodeine bases were 

not achievable as crystals, but only in amorphous state. These findings justified the higher 

solubility of such drugs and, therefore, the higher fluxes with respect to the parent 

compounds, namely morphine and codeine. 
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6 Final remarks 

This doctoral thesis dealt with the critical delivery aspects of three loco-regional cancer-

related syndromes and proposed technological solutions for rationalizing the drug 

delivery. In particular, the experimental work permitted (1) to develop a mucoadhesive 

formulation to guarantee a prolonged drug penetration in the buccal cavity; (2) to optimize 

a nanoparticle system intended for the resveratrol delivery to cochlea; (3) to rationalize 

the dermal delivery of morphine derivatives on the base of their chemical structure and 

identify the best opioid candidate for skin permeation and retention among the most used 

morphine derivatives in clinics. 

The mucoadhesive microparticle suspension (MMS) was proposed as a technological 

platform for delivering drugs intended for the treatment of oral mucositis (Chapter 2). 

The MMS combined the advantages of liquid and semisolid drug products intended for 

buccal delivery. First of all, it can be easily handled as liquid solution and it might avoid 

the fast elimination of drugs by swallowing as well as semisolid dosage forms. Moreover, 

being made with alginate, microparticles were conveniently prepared in one-step process. 

The selection of poly-acrylates as bioadhesive polymers permitted to obtain 

microparticles with a reproducible morphology and satisfactory mucoadhesive properties. 

The loading of drugs with different physicochemical properties showed that MMS is a 

robust technological platform for the delivery of several candidates intended for treating 

oral mucositis (OMs). Moreover, the in vitro studies showed that the use of MMS might 

be more advantageous than other conventional dosage forms for buccal delivery. In fact, 

the in vitro increase of the drug penetration in mucosa suggested that MMS might allow 

the in vivo reduction of the drug dose and regimen. 

Resveratrol-loaded nanoparticles were proposed for treating cisplatin-induced ototoxicity 

(Chapter 4). Such technological platform has the double advantage to be theoretically 

suitable both for intra-tympanic and systemic administration. Indeed, the same 

nanoparticle system was able to diffuse through round window membrane in guinea pigs 

(Appendix 4.1). The PLGA-based matrix could also control the drug release better than 

other similar delivery systems published in literature, reducing the drug amount released 

before the intracellular uptake. Preliminary uptake studies revealed a significant effect of 
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resveratrol on mitochondrial metabolism suggesting that it might be released in the 

cellular environment. Furthermore, the in vitro toxicity studies indicated that nanosystem 

was safe for cochlear cell lines. 

In both cases, Design of Experiments (DoE) was efficiently applied for rationalizing the 

development of the proposed delivery systems. Since DoE was introduced in academic 

and pharmaceutical industry, its application allows to better understand the effect of 

formulative and process parameters on the final product properties. In particular, the use 

of a 23 factorial design permitted to screen the influence of poly-acrylate polymer and air 

pressure setting on the microparticle morphology and in vitro clobetasol mucosal 

penetration (Chapter 3). The Box-Behnken Design (BBD) was applied to the 

development of resveratrol-loaded nanoparticles (Chapter 4). It allowed to clarify the 

influence of nanoparticle composition on the morphology and other critical properties and 

to identify an optimal formulation. Moreover, the Monte Carlo simulations showed how 

much robust the features of optimal formulation were to stochastic errors in the 

preparation process. Such an approach showed the importance of combining DoE and 

simulation tools for the improvement of the model accuracy and robustness in drug 

product development. 

Finally, the experimental work provided useful data for the selection of opioid molecules 

intended for dermal delivery (Chapter 5). According to literature, the effectiveness of 

opioids in the treatment of cutaneous painful syndromes was demonstrated by empirical 

evaluation of clinical cases, rather than deep investigation of their pharmacological 

activity or skin permeation profiles. The current investigation highlighted that permeation 

and retention were influenced by presence and/or absence of specific substituents on the 

chemical structure of the considered morphine derivatives. In particular, the overall 

results suggested that the phenolic ring substitution might be critical for the modulation 

of the drug affinity to permeate or be retained in the human skin. Among the eight 

morphine derivatives, hydromorphone resulted as the most promising compound for 

obtaining a local effect in the human skin. Indeed, due to the highest retention/permeation 

index (IE/T value), the hydromorphone had the highest affinity to the epidermal layer 

among tested molecules, one of the lowest flux through the human epidermis and a 

relative potency higher than morphine. 
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