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ABSTRACT:  
 

 

 

This PhD thesis aims to improve the actual systems of management and quality control of food, 

expanding the knowledge about the microorganisms responsible of food spoilage (Specific 

Spoilage Organisms) and their degradative activities. 

The analysed foods were of vegetable and animal origin: in particular they were ready-to-eat 

vegetables (carrots and green salads packaged in air and MAP), milk and dairy products (raw, 

pasteurized, UHT and micro-filtered milk and mozzarella cheese) and beef and hamburger 

packaged traditionally or in master bag.  

Firstly the microbial quality of each food was monitored from the production, during the 

declared shelf life and even after the expiration date. The isolates were phenotypically and 

genotipically characterized and identified; for each food SSOs were recognized. 

Some microorganisms appeared typical of each product, sometimes also depending on the 

packaging and storage conditions. Leuconostoc spp. was indicated as typical carrots spoiler; 

Enterobacteriaceae family was involved in spoilage of salads packaged under modified 

atmosphere; lactic acid bacteria were typical of food packaged in low oxygen concentrations 

(salads in MAP and meat in master bag) and Brochothrix thermosphacta was specific of beef. 

Pseudomonas spp. appeared common to all the analysed products and dominant among the 

bacterial spoilers. For this genus more detailed studies were conducted: the classification was 

made up to the biotype and biovar level; the characterization focused on different enzymatic 

activities and in particular the proteolysis was qualitatively and quantitatively evaluated; a 

phylogenetic study, based on the gene codifying for the most common Pseudomonas protease, 

was made. 

Subsequently each food was analysed with a different approach. For vegetables the influence of 

temperature on microbiota was verified, resulting that low temperature slowed down microbial 

growth and partially modified the composition of the microbiota. In milk proteolytic activity of 

Pseudomonas spp. was evaluated and the formation of Pseudo-GMPs, deriving from the cutting 

of K-casein (103-104 position), were recognized. In mozzarella the blue pigment formation was 

studied and a rapid method for the detection and the quantification of alive, dead and Viable 

But Non Colturable (VBNC) cells was set up. For meat, a primer specific for Brochothrix genus 

was built and the packaging conditions were studied to verify the evolution of microbiota and 

the possible effects on the growth of Listeria monocytogenes (challenge test).  
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RIASSUNTO:  
 

 

Identificatine e caratterizzazione di Specific Spoilage Organisms (SSOs) in differenti 

matrici alimentari. 

 

 

Lo scopo di questa tesi di dottorato è contribuire a implementare gli attuali sistemi di gestione e 

controllo della qualità di prodotti alimentari, ampliando la conoscenza dei microrganismi 

responsabili dell’alterazione degli alimenti (Specific Spoilage Organisms) e delle loro attività 

degradative. 

Sono state considerate matrici alimentari sia di origine vegetale sia animale, in particolare sono 

stati analizzati vegetali di IV gamma (carote julienne e diverse insalate verdi a foglia 

confezionate in aria e in atmosfera protettiva), latte e latticini (latte crudo, sottoposto a 

trattamenti di sanificazione termici e di filtrazione, e mozzarella) e prodotti carnei (fette di 

manzo e hamburger, entrambi confezionati tradizionalmente e in master bag). 

Inizialmente la qualità microbiologica di ogni alimento è stata monitorata dalla produzione, per 

tutta la durata della shelf life dichiarata dal produttore, fino a oltre la data di scadenza. I 

microrganismi isolati sono stati classificati e identificati e sono quindi stati riconosciuti i 

microrganismi specifici per ogni alimento (SSOs) responsabili delle alterazioni.  

Alcuni microrganismi sono apparsi tipici e specifici del singolo alimento, a volte in dipendenza 

anche dalle condizioni di confezionamento e stoccaggio. Il genere Leuconostoc è stato 

individuato come tipico alterante delle carote; la famiglia delle Enterobacteriaceae è coinvolta 

nell’alterazione di insalate confezionate in atmosfera modificata; batteri lattici sono tipici di 

prodotti confezionati con ridotte concentrazioni d’ossigeno (insalate in MAP e prodotti carnei 

soprattutto confezionati in master bag) e Brochothrix thermosphacta è specifico di prodotti 

carnei.  

Il genere Pseudomonas contrariamente a tutti i batteri precedenti è apparso comune a tutte le 

matrici analizzate e sempre dominante tra gli alteranti. Per questo genere sono quindi stati 

effettuati studi più approfonditi: la classificazione è stata fatta fino a livello di biotipo e biovar, 

la caratterizzazione ha previsto lo studio di diverse attività enzimatiche, in particolare la 

proteolisi è stata valutata con metodi qualitativi e quantitativi ed è stato condotto uno studio 

approfondito sul gene codificante per la più comune proteasi di Pseudomonas spp. 

Successivamente ogni alimento è stato analizzato con una diversa finalità. Per i vegetali è stata 

verificata l’influenza della temperatura di conservazione sul microbiota, ritrovando che la bassa 

temperatura rallenta lo sviluppo microbico e modifica parzialmente la composizione del 

microbiota. Nel latte è stata valutata l’attività proteolitica del genere Pseudomonas ed è stata 

osservata la formazione di Pseudo-GMPs derivanti dal taglio della K-caseina in posizione 103-

104 per opera di proteasi termoresistenti di Pseudomonas spp. In mozzarella è stata studiata la 

produzione di pigmenti blu ed è stato messo a punto un metodo rapido di determinazione e 

quantificazione di cellule vive, morte e vitali ma non coltivabili di Pseudomonas spp. Per i 

prodotti carnei è stato costruito un primer per l’identificazione specifica di Brochothrix spp. ed 

è stato studiato come il confezionamento influenzi l’andamento delle diverse popolazioni 

microbiche presenti, compreso lo sviluppo di patogeni come Listeria monocytogenes (challenge 

test). 
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1.1 Food microbiology 

 

Food spoilage is defined as any change that makes a product unacceptable for human 

consumption. It can result from different causes involving physical-chemical and biochemical 

changes and also microbial growth and activity (Huis in’t Veld, 1996). In table 1.1 are shown 

the most common changes responsible of food spoilage.  

In particular, microbial growth and activity are the most important causes of reduction of 

quality and shelf life of foods. The presence of a microorganism, at any production step, 

represents index of contamination; however not all microorganisms negatively operate on food.  

 

In accordance to their activity, they can be divided into three groups: 

 Pro-technological microorganisms: all the microorganisms whose presence is required 

and necessary for production or maturation of food; usually they are present in high 

number, but during shelf life they drastically decrease. This group includes lactic acid 

bacteria, but also yeasts, acetic acid bacteria and some moulds; 

 Spoilage microorganisms (quality and process indices): they are specific for each food, 

according to its features and the storage conditions; they affect the shelf life of the 

product, therefore they should be present in low concentration since the beginning and 

should not increase too much during the conservation. All the utilized conservation 

methods aim to reduce the number of those microorganisms, preventing spoilage 

phenomena; 

 Pathogen microorganisms (safety index): all microorganisms that represent a very 

serious danger for the safety of the consumer, for their presence or for their toxins 

production. They must be absent in 1 or 25 or 100g of food according to their hazard 

(Galli, 2005; Jay et al., 2005). 

 

 

1.2 Specific Spoilage Organisms 

At the end of the working process, each food has its own microbial population whose growth 

and activity depend on different interacting factors (Galli, 2005; Jay et al., 2005). 

The intensity of the spoilage is not always linked to the total microbial concentration: in fact 

usually only a fraction of the population induces the spoilage and it is know as Specific 

Spoilage Organism (SSO). At the beginning, the SSOs usually are a minority, then during the 

shelf life they grow faster than the other microorganisms and produce the metabolites and the 

enzymes responsible of the spoilage (figure 1.1). 

The SSOs are different microbial species depending on the food, in term of physical, chemical 

and structural features, on the type of packaging and the storage conditions, such as 

temperature, humidity and atmosphere composition. Another implicit parameter that affects the 

SSO population is the mutual influence among the organisms. Many microorganisms in fact can 

produce and release in the environment chemical molecules, called auto-inducers. Those 

substances are recognized from the microbiota and induce modifications in its gene expression. 

This event leads to changes in the composition of the microbiota and can generate loss of 

dominance and gradual replacement of certain species in the environment. This phenomenon is 

known as Quorum Sensing. 

The SSOs can perform different activities depending on the physical-chemical features of food 

and on the ability of each microorganism to degrade nutrients. Example of SSOs activity is the 

fermentation of simple sugars that can lower the pH and produce gas, generating sour taste and 
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swelling of the package respectively. Complex carbohydrates instead are rarely attacked and 

only in the presence of pectinase, pectinesterase, cellulase, amylase and collagenase, which are 

enzymes typical of microorganisms responsible of rot on vegetables (Pseudomonas spp., 

Erwinia carotovora and some moulds).  

Other activities of SSO can involve proteins and create free amino acids especially in milk, 

meat and fish. If this phenomenon happens in absence of oxygen it become putrefaction with a 

further degradation of amino acids in smelly compounds (putrescine, cadaverine, H2S, NH3). 

The microbiological lipolytic activity can generate negative events inducing rancidity in the 

products, or can have positive and necessary effects for the production of the expected aroma of 

food (e.g. Taleggio cheese) (Feligini et al., 2012). The microbial spoilage can also affect the 

colour of foods (Franzetti & Scarpellini, 2007), which is not a dangerous phenomenon for 

human but it makes the product unpleasant for the consumer.  

 

 

 

Fig.1.1 Growth and enzymes production of TBC and SSO during time (Huis in’t Veld, 1996). 
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Table 1.1. The most common changes responsible of food spoilage. 

 

 

Changes Spoilage event Effects 

Physical Water content variation  Dehydration / hydration  

Aggregation phenomena  

Chemical Oxidation  Rancidity 

Maillard reaction Off-colours - Browning  

Enzymatic Polyphenol oxidase activity Enzymatic browning  

Lipoxygenase e lipase activity Rancidity 

Protease activity Gelation - Structural changes  

Amylase activity Structural changes 

Microbial Growth of spoilage microorganisms  Lost of sensorial features and  

shelf life reduction  

Growth of pathogen microorganisms  Health consumer risks  

Growth of pro-technological 

microorganisms  

Positive changes of structure  

and flavours  
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1.3 Microbial food spoilage 

Microorganisms difficultly attack starchy foods, such as cereals and flours, because their low aw 

content prevents microbial growth: only some spore-forming bacteria (e.g. Bacillus spp.) and 

moulds can survive at values around 0.6 of aw (Sorokulova et al., 2003; Jay et al., 2005) (figure 

1.2). 

Vegetables and fruit spoilage is principally due to the formation of slime, browning and rots 

(Barth et al., 2009) (figure 1.3). Ready-to-use vegetables are more perishable than the 

corresponding fresh products because of the stress to which they are subjected during the 

production (Riva et al., 2001; D’Egidio et al., 2009). 

Usually in the spoilage of milk and dairy products, psychrotrophic bacteria are involved. 

Pseudomonas spp. for example produces heat-stable lipases and proteases (Deeth et al., 2002; 

Gunaskera et al., 2003) that can affect raw, pasteurized and sterilized milk and generate 

bitterness, off-flavours, coagulation and pigments of different colours (Datta & Deeth, 2001; 

Dogan & Boor, 2003; Giaccone, 2010). Typical events of spoilage in cheese are early and late 

swelling due to coliforms and Clostridium spp. respectively (Bassi et al., 2013) (figure 1.4). 

In meat and meat products the most common microbial activity is the off-flavour production 

due to the putrescine and cadaverine, caused especially by Pseudomonas spp. and Brochothrix 

termosphacta (Ercolini et al., 2010; Limbo et al., 2010). The activity of Brochotrix is observed 

especially on meat packaged under modified atmosphere; in these conditions also some 

Clostridia can grow in the deepest part of the muscle (Gram et al., 2002). 

Fishes are principally affected by Gram negative, aerobic, psychrothrofic bacteria such as 

Pseudomonas spp., Acinetobacter spp. Shewanella putrefaciens and different species belonging 

to the Vibrionaceae family, which produce off-flavours and fluorescence (Franzetti et al., 2001; 

Gram & Dalgaard, 2002; Franzetti et al., 2003) (figure 1.5). 

The many microorganisms present on the surface of eggs can cross the eggshell and grow 

inside. In fact, although the lysozyme of the albumen has antimicrobial activity against Gram 

positives bacteria, the nutrients of the yolk represent optimal substrates for microbial growth 

(Hidalgo et al., 2008).  

In alcohol-free drinks the spoilage can be present in terms of off-flavours, strange colours, 

turbidity, gas and films, caused by Lactic Acid Bacteria (principally Leuconostoc spp. and 

Lactobacillus spp.), Acetic Acid Bacteria, yeast and moulds (Aspergillus spp., Penicillum spp. 

and Mucor spp.).  

Among the alcoholic drinks, beer is one of the most critics. Stringing can be due to 

Acinetobacter spp., Lactobacillus spp. or Pediococcus cerevisiae; honey smell can be caused by 

Pediococcus cerevisiae; souring is consequence of Acinetobacter spp. activity, and turbidity 

appeared for the presence of Zymomonas anaerobia and many yeasts among which 

Saccharomyces cerevisiae, Pichia membranifaciens and Debaryomyces spp. (Jay et al., 2005). 

 

1.4 The most frequent SSO: Pseudomonas spp.  

Pseudomonas spp. is one of the most common and dominant SSO. This genus is composed by 

Gram negative, aerobic, mesophilic and psychrotrophic rods belonged to Psedudomonadaceae 

family. They are oxidase and catalase positives and often pigment and fluorescence producers; 

they are considered ubiquitous because, thanks to their complex enzymatic systems, they can 

grow on different and even extreme substrates (e.g. soil, artic ice, hypersaline lakes, vegetables, 

animal tissues) (Giupta et al., 2008; Lee et al., 2012; Lopena et al., 2012; Phillips et al., 2012; 

Wilhelm et al., 2012).  
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Fig.1.2 Examples of microbial growth on bread. 

    
 

 

 

 

 

 

 Fig.1.3 Example of microbial growth on vegetables.       Fig.1.4 Example of swelling in cheese. 

                                  
 

 

 

 

 

 

Fig.1.5 Examples of spoiled fishes. 
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The cells of Pseudomonas are very sensitive to high temperature and can be destroyed by heat 

treatment (pasteurization and sterilization); their extracellular enzymes instead are very thermo-

stable and can spoilage food even after the cells death, a typical example is the UHT milk 

coagulation due to microbial proteases (Datta & Deeth, 2001). 

The only human pathogen specie of this genus is Pseudomonas aeruginosa, which is 

opportunistic and causes many nosocomial infections (Stover et al., 2000). It produces 

endotoxins able to infect all the parts of human body, in host with compromised immune 

system. It can induce infections in urinary tract, respiratory tract, flat tissues, junctions, bones 

and gastrointestinal tract in patients affected by cancer, cystic fibrosis, burns and AIDS 

(Marquart et al., 2005; Reszka et al., 2010).  

Some species are plant pathogen, for example Pseudomonas syringae, which has different 

phyto-variants able to affect more than 80 plants inducing necrosis (Hirano & Upper, 2000). In 

particular it enters inside the leaves using the stomata, growing in the interstitial spaces and 

generating the typical necrotic lesions (Buell et al., 2003). Pseudomoans viridiflava instead 

shows its activity against plats of Arabidopsis thaliana, creating translucent full of water spots 

that after two days degenerated to chlorotic lesions and then necrosis (Jakob et al., 2002).  

A peculiar feature of Pseudomonas genus is the biofilm production. Many species in fact, 

especially Pseudomonas fluorescens and Pseudomonas aeruginosa, can grow in two different 

ways: the traditional planktonic form and the aggregated form. In the fist way the cells are 

independent in a liquid environment; in the second instead the cells are closely linked to each 

other on a solid surface. This behaviour is induced by the Quorum Sensing chemical 

communication mechanism (Williams, 2007). 

In figure 1.6 is shown the biofilm formation. At the beginning the biofilm starts with the 

adhesion of fluctuant microorganisms on a surface with weak and reversible Van der Waals 

interactions (phase 1), then if they are not immediately removed from the surface, they can bind 

firmly to the surface (phase 2). At this point the first colonizers produce exopolysaccharides 

that become a bridge among the cells and the surface facilitating the link of other cells (phase 

3). In this way, the biofilm quickly grow on one hand thanks to the division of the cells and on 

the other hand by the link of external microorganisms, even of other microbial species 

(Drenkard & Ausubel 2002; Marino, 2008). Biofilms in fact are usually not composed by 

unique specie, but many species are present and unevenly distributed as micro-colonies 

dispersed and protected by the matrix (phase 4). In some biofilms water channels were 

recognized; those allow the distribution of nutrients and signal molecules (auto-inducers) inside 

the biofilm and also the removal of wastes outside the matrix (Sauer et al., 2002; Karatan & 

Watnick, 2009). After a while (phase 5), the cells present inside the biofilm are able to detach 

and constitute new independent agglomerate. This phenomenon depends from the sliding forces 

of the fluid, the presence of certain compound and the features of the bacterial species.  

Biofilm formation represents a huge problem for food factories because microbial adhesion to 

surfaces in contact to foods or the foods itself, creates hygiene issue and economical looses 

(Marino, 2008). 

Fig.1.6 Biofilm formation. 
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1.5 Conclusion and aim of the thesis 

 

In conclusion, the presence in foods of SSOs is a big problem not in terms of consumers’ 

dangers but because of their influence on shelf life of foods. For this reason it is very important 

to improve the knowledge about those microorganisms and their activities, to find rapid 

methods of detection and technological solutions (storage and packaging conditions) to slow 

down their growth and their metabolic activities. In this context, this PhD thesis is involved. 

The aim of this work is to study the main microorganisms responsible of foods spoilage.  

The research involved foods of both vegetable and animal origin; the microbial quality of each 

food was verified and the SSOs were isolated. The isolates were identified and characterized. 

Their activities in foods were evaluated and the relationship between them and food spoilage 

were assessed. Rapid methods for the detection and quantification of Pseudomonas spp. (the 

SSO common to each product) were set up using Real Time-PCR (qPCR) and Retro 

Transcription-PCR (RT-PCR). 
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2.1 INTRODUCTION 
Ready-to-use vegetables are fresh products subjected to minimal processing to preserve their 

freshness. They belong to the convenience foods category, as they offer many added features 

like freshness, commodity of use and good retention of nutritional qualities. The products are 

very low-processed: they are picked, washed, dried, trimmed, cored, cut and packed, then 

marketed ready to eat without further handling (Baur et al., 2005; Della Rosa et al., 2007; 

Caponigro et al., 2010) (fig. 2.1). The above operations can increase the respiratory activity of 

vegetables, causing negative effects on their texture and colour, and rendering them more 

perishable than corresponding fresh vegetables. The stability of these products depends on the 

quality of raw materials, the handling procedures, the packaging, and the storage conditions 

(Gim’enez et al., 2003; Legnani et al., 2004; Morgante et al., 2008). 

Microbial growth is a key factor in these products deterioration as the processing excludes the 

operations of sanitation and stabilization, and the raw material, characterized by a high nutrient 

and enzyme content and high water activity, is an excellent substrate for microorganisms 

(Ragaert et al., 2007; Riva et al., 2001). 

In general, resident microorganisms in ready-to-use-vegetables are not pathogenic to humans, 

though there have been some reports in literature (Fröder et al., 2007; Little et al., 2007; 

Sant’Ana et al., 2012). The most important components of the microbiota of ready-to-use-

vegetables are Gram negative microorganisms, belonging to the Pseudomonadaceae and 

Enterobacteriaceae families. However, the microbiota can vary, depending on the environment 

and the characteristics of the product (Tournas, 2005; Abadias et al., 2008; Caponigro et al., 

2010; De Giusti et al., 2010; Franzetti et al., 1999; Oliveira et al., 2011).  

The European Regulation 1441/2007 fixes a limit for Salmonella and Escherichia coli and the 

French regulations (Ministère de l’Economie, Article du 22-3-1993) fixes the maximum 

acceptable contamination values for the end of production and for retail sites. The respect of the 

cold chain (4°C) is determinant to control both enzymatic activity and microbial growth. More 

recently the modification of the atmosphere within the packaging showed to slow down the 

deterioration process (Sandhya, 2010).  

Fig.2.1 Production process of ready-to-use vegetable. 
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2.1.1 Aim of the study  

The aims of this work were i) to assess the microbiological quality and microbiota development 

of ready-to-use vegetables during shelf life, ii) to verify the influence of storage temperature 

and packaging method on microbiota composition and growth, iii) to characterize the most 

frequently found microbial strains responsible for deterioration phenomena. 

 

2.2 MATERIALS AND METHODS 

2.2.1 Samples 

Five different ready-to-use-vegetables were analysed. In particular, they were julienne carrots 

packaged in air and four different green salads: “Songino” (Valerianella olitoria) and 

“Lattughino” (Lactuca sub. secalina) both packaged in bags of PP antifog in air, and “Lattuga 

foglia quercia” (Lactuca sub. crispa) and “Lattuga cappuccio” (Lactuca sub. capitata) packaged 

under Modified Atmosphere (the atmosphere composition was not declared). 

All the samples were received into the laboratory, from the factory, the production day, and 

stored at 4°C and 10°C. The analyses were performed immediately at the reception (t0) and 

daily until two days after the expiry date at both temperatures.  

2.2.2 Microbiological analysis and isolation of the strains  

Ten grams of sample were drawn and homogenized with 90ml of sterile 0,85% trypton salt 

solution in a sterile Stomacher bag, by the use of a Colworth 400 Stomacher for 2min. Decimal 

progressive dilutions were prepared and the following bacteriological determinations were 

carried out: Total Bacterial Count (TBC)
 
(ISO 4833/2003), Escherichia coli (ISO 16649-

2/2001), Staphylococcus aureus (UNI/EN/ISO 6888/2004), Lactic Acid Bacteria (De Man et 

al., 1960), yeasts and moulds (ISO 21527/2008); as safety indicators, Salmonella spp. (EN/ISO 

6579/2007) and Listeria monocytogenes (ISO 11290-1/2004) were determined in 25g of 

product. 

All microbiological analyses were carried out in triplicate, and the results were expressed as the 

mean log cfu g
-1

. All colonies grown on the last dilution of PCA were collected, purified and 

stored in 20% (vol/vol) glycerol at -20°C. 

2.2.3 Phenotypic characterization 

The isolates were tested for morphology, motility, Gram staining by optical microscopy 

(1200X), catalase and oxidase tests.  

Fluorescent and phenazine pigment production (King et al., 1954), levans production (Lelliot et 

al., 1966), and oxidative/fermentative metabolism (OF test, Hugh et al., 1953) were used for a 

preliminary biochemical characterisation of Gram negative and catalase positive isolates. The 

enzymatic activities tested were: pectinolytic activity (Sands et al., 1972)
 
and starch hydrolysis 

(Stanier et al., 1966).  

Gram positive catalase negative no spore-forming bacteria were tested for gas production from 

glucose, NH3 production from arginine, growth at 45 and 10°C, and (cocci only) esculin 

hydrolysis. 

2.2.4 DNA extraction and PCR protocols 

Genomic DNA from isolates was extracted from 300µl of an overnight culture diluted with 

400µl of 1X TE buffer (10mM Tris-HCl and 1mM Na2EDTA, pH 8.0) as described by Mora et 

al., 2000. 

All PCR reactions were performed in a volume containing approximately 50-100ng of bacterial 

genomic DNA solution, 5µl of 10X PCR reaction buffer, 200µM of each dNTP, 2mM of 
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MgCl2, 0.5µM of each primer and 0.5U of Taq Polymerase (Amersham- Pharmacia).  

The primers and the amplification conditions used are shown in table 2.1, except for 16S rDA 

amplification that was performed using the following thermal profile: 2min at 94 °C; 5 cycles 

consisting of 94 °C for 45s, 55 °C for 1min, 72 °C for 2min; 35 cycles consisting of 92 °C for 

45s, 60 °C for 45s, 72 °C for 2min; final extension of 72 °C for 2min; and final cooling at 4 °C. 

All the amplifications were performed in a DNA thermal cycle (Biometra T gradient, 

Germany). Following the amplification, 7µl of each amplificate was analysed by 

electrophoresis at 100V (1% agarose gel, 0.2µg of ethidium bromide ml
-1

) in TAE buffer.  

2.2.5  Restriction analysis of the 16S rDNA gene and spacer gene (ITS1) - ARDRA analysis 

Restriction digestion of 16S rRNA gene was carried out for 16 hours at 30°C in 25µl reaction 

mixture containing 15µl of amplified 16S rRNA template, 2.5µl of 10X PCR restriction buffer, 

18.75U of one restriction enzyme, either HaeIII or VspI (Amersham Pharmacia Biotech). 

Restriction digestion of each amplified ITS1 was carried out for 16 hours at 65 °C in 25µl 

reaction mixture containing 15µl of ITS1template, 2.5µl of 10X PCR restriction buffer, 18.75U 

of TaqI (Amersham Pharmacia Biotech). The restriction digestions were then analysed by 

agarose gel electrophoresis (3% w/v) (Guasp et al., 2000).  

The restriction results were interpreted using Quntity One 4.6 software package (Bio-Rad 

Laboratories, Milan, Italy). 

2.2.6 Partial sequencing of the 16S rDNA gene  

After amplification of the 16S rDNA gene from extracted DNA, the PCR product was purified 

according to the instructions of a commercial kit (Qiaquick, Qiagen), and the amplicons were 

sequenced with the 16S forward primer in a model 310 automatic DNA sequencer (Applied 

Biosystem, Foster City, CA). The obtained sequences were elaborated by using the software 

Chromas 2.13 (Technelysium Pty Ltd. Helensvale, Queensland, Australia). Sequence data of 

type strains were retrieved from NCBI sequence database and pairwise comparison was 

conduced using BLAST program.  

2.2.7 Statistical analysis 

The counts obtained at both temperatures for each product and at each time, were subjected to 

one-way analysis of variance (ANOVA). In case of statistically significant differences the 

Tukey multiple comparison test was performed (P < 0.05 and P <0.01). 
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Table 2.1 PCR primers and conditions used. 

 

 

Gene Primers pair (5’-3’) 
Annealing 

temperature 

Intergenic spacer region  

(ITS) (Mora et al., 2003) 

ITSF: 

ITSR: 

GTCGTAACAAGGTAGCCGTA 

CAAGGCATCCACCGT 
54°C 

Intergenic spacer region 1 

(ITS1: 16S-ITS-23S)  

(Guasp et al., 2000) 

16F945: 

23R458: 

GGGCCCGCACAAGCGGTGG 

CTTTCCCTCACGGTAC 
55°C 

16S rDNA region 

(Lane et al., 1985) 

16SF: 

16SR: 

AGAGTTTGATCCTGGCTCAG 

CTACGGCTACCTTGTTACGA 
See in the text  

Pseudomonas fluorescens 16S 

rDNA partial region 

(Scarpellini et al., 2004) 

16SPSEfluF: 

16SPSEfluR: 

TGCATTCAAAACTGACTG 

AATCACACCGTGGTAACCG 
55.6°C 
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2.3 RESULTS AND DISCUSSION 

The investigated products appeared of good hygienic quality: Salmonella sp. and Listeria 

monocytogenes were always absents in 25g, while E. coli and Staphylococcus aureus were 

found with values less than 1log cfu g
-1

, the accepted level according to the European 

Regulation (1441/2007). Yeasts and molds were found only occasionally.  

About the green salads, the TBC growth trend was similar in all products at both temperatures, 

although the initial values were higher in air packaged ones. In “Songino” and “Lattughino” 

initial TBC were 6.1log cfu g
-1

, about 2log higher than “Lattuga foglia quercia” and “Lattuga 

cappuccio”, both packaged under Modified Atmosphere. During storage this microbial 

parameter increased and at expiry (sixth day for air packaged products and eighth day for 

Modified Atmosphere packaged vegetables) all the values were similar falling between 7.1 and 

8.2log cfu g
-1

. For each product, the daily average at 4°C was compared with the corresponding 

average at 10°C (Tables 2.2 and 2.3).  

However no statistically significant differences (at 95%) were found between the air-packed 

products stored at 4 and 10°C. The products packaged under Modified Atmosphere, instead, 

showed statistically significant differences. After varying times, depending on the type of 

product, the values are significant at 0.05 level, but on shifting this level to 0.01 the values were 

not statistically significant different. The differences found at p<0.05 are due to the overcoming 

of the limit imposed by the European regulation (1441/2007), that occurred for “Lattuga 

quercia” after 8 days at 10°C and for “Lattuga cappuccino” after 3 days at 10°C.  

Carrots packaged in air seemed less contaminated than the green salads packaged under the 

same condition: the TBC initial value was 4.3log cfu g
-1

, but the composition of this vegetable 

represents a favorable habitat for different microorganisms and during the shelf life at both 

temperatures TBC values reached values higher than 7log cfu g
-1

 (table 2.4). At the end of the 

analysis, after the expiration date of the product, those values appeared statistically significant 

different at p<0.05 and shifting this level to 0.01 the differences were not statistically 

significant.  

Lactic Acid Bacteria were present in all investigated products, but they reached important 

values only in carrots, whereas in salads their presence was 3 or 4log cfu g
-1

 less than the TBC 

value (results not shown). In carrots instead (table 2.4), practically absent at the beginning, they 

grown faster and reached values similar to the TBC especially when stored at 10°C. The higher 

temperature in fact favored their growth allowing them to grow faster at the beginning 

(statistically significant different at p<0.05 values after 2 and 3 days of storage).   

 

A total of 147 isolates were collected from PCA; biochemical investigations showed that over 

80% of isolates were Gram negative aerobic oxidase positive rods, whereas the rest were Gram 

negative, facultative anaerobic, oxidase negative rods. About 70% of aerobic isolates were 

devoid of amylase activity, whereas more than 50% showed high pectinolytic activity, 

responsible for the browning phenomena of ready-to-use vegetables.  

From MRS 84 strains were isolated and the 80% belonged to carrots. Over 85% of isolates, 

were hetero-fermentative cocci and the rest part was represented by omo-fermentative cocci. 

Microbial diversity investigation of all isolates was performed using the ITS-PCR assay with 

the universal primers. ITS profiles were used to create different groupings, and no less than two 

representatives from each group were identified by partial 16S rDNA sequencing (Table 2.5). 
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TABLE 2.2 Evolution of the Total Bacterial Count of air-packaged ready-to-use salads during 

storage at 4°C and 10°C 

Songino Lattughino 

Time 

(days) 
TBC 4°C TBC 10°C 

Significative 

differences 
TBC 4°C TBC 10°C 

Significative 

differences 

0 6.1±0.1 6,1±0.1  n.s.d. 6.1±0.1 6.1±0.1 n.s.d. 

1 6.4±0.2  6.5±0.3  n.s.d. 6.9±0.1 6.8±0.2 n.s.d. 

2 6.5±0.1  6.6±0.2  n.s.d. 7.1±0.3 7.5±0.2 n.s.d. 

3 7.4±0.2  7.6±0,2 n.s.d. 7.7±0.1 7.7±0.1 n.s.d. 

6 7,6±0.2  7.8±0,1 n.s.d. 7.8±0.2 7.9±0.2 n.s.d. 

8 7.7±0.3  8.5±0.4 n.s.d. 11.2±0.1 11.3±0.1 n.s.d. 

n.s.d.: no significant difference, p<0.05 

 

 

 

TABLE 2.3 Evolution of the Total Bacterial Count of modified atmosphere ready-to-use salads 

during storage at 4°C and 10°C 

Lattuga foglia quercia Lattuga cappuccio 

Time 

(days) 
TBC 4°C TBC 10°C 

Significative 

differences 
TBC 4°C TBC 10°C 

Significative 

differences 

0 4,2±0,3 4,2±0,3 n.s.d. 4,1±0,1 4,1±0,1 n.s.d. 

1 5,7±0,4 5,3±0,2 n.s.d. 5,5±0,3 5,1±0,2 n.s.d. 

2 6,3±0,4 6,3±0,2 n.s.d. 6,0±0,1 6,5±0,2 n.s.d. 

3 6,0±0,2 6,1±0,2 n.s.d. 6,4±0,2 7,1±0,1 * 

6 6,3±0,2 6,5±0,1 n.s.d. 7,1±0,4 7,5±0,3 n.s.d. 

8 7,1±0,1 7,7±0,2 * 7,4±0,4 8,2±0,1 n.s.d. 

10 7,7±0,3 8,2±0,3 n.s.d. 7,5±0,3 8,3±0,2 n.s.d. 

n.s.d.: no significant difference, p<0.05; *: significant difference, p<0.05 

 

 

TABLE 2.4 Evolution of the Total Bacterial Count and Lactic Acid Bacteria of carrots during 

storage at 4°C and 10°C 

             Carrots 

Time 

(days) 
TBC 4°C TBC 10°C 

Significative 

differences 
LAB 4°C LAB 10°C 

Significative 

differences 

0 4.3±0.1 4.3±0.1 n.s.d. 0.0±0.0 0.0±0.0 n.s.d. 

1 5.7±0.2 5.7±0.2 n.s.d. 3.6±0.2 4.1±0.3 n.s.d. 

2 5.9±0.2 6.2±0.2 n.s.d. 4.5±0.3 5.5±0.2 * 

3 6.5±0.3 7.3±0.2 n.s.d. 4.9±0.2 6.2±0.3 * 

7 7.0±0.2 7.3±0.2 n.s.d. 5.2±0.2 5.7±0.1 n.s.d. 

9 7.1±0.1 7.7±0.1 * 6.5±0.3 6.5±0.4 n.s.d. 

n.s.d.: no significant difference, p<0.05; *: significant difference, p<0.05 
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TABLE 2.5 16S rDNA partial sequencing of isolates. 

Group 16S region partial sequencing Accession number 

A Leuconostoc mesenteroides HM218785.1 

B Leuconostoc mesenteroides GQ351324.1 

C Leuconostoc mesenteroides HM058900.1 

D Leuconostoc mesenteroides HM218070.1 

E Leuconostoc mesenteroides HM058934.1 

F Leuconostoc mesenteroides EU099617.1 

G Leuconostoc mesenteroides AB593362.1 

H Leuconostoc pseudomesenteroides EU177643.1 

I Leuconostoc gasicomitatum GU470976.1 

L Leuconostoc palmae AM940225.1 

M Leuconostoc inhae AY675244.1 

N Leuconostoc citreum AB572028.1 

O Enterococcus mundtii AB576587.1 

P Enterococcus mundtii GU372708.1 

Q Carnobacterium maltaromaticum AY543035.1 

 Pantoea agglomerans FJ756348.1 

 Enterobacter cloacae EU733519.1 

 Citrobacter freundii EU365679.1 

 Rahnella aquatilis DQ440548.1 

 Erwinia rhapontici U80206.1|ERU80206 

 Serratia fonticola NR_025339.1 

 Enterobacter ludwigii JX666242 

1 Pseudomonas fluorescens GU198125.1 

2 Pseudomonas fluorescens HM439956.1 

3 Pseudomonas fluorescens EU169164.1 

4 P. marginalis pv. marginalis/ P. fluorescens HM190225.1 / GU198116.1 

5 P. fluorescens / P. poae HM439956.1 / AB495132.1 

6 P. fluorescens / P. poae GU198111.1 / FJ179369.1 

7 P. fluorescens/ P. extremaustralis/ P. veronii GU198116.1/AJ583501.3/AB334768.1 

8 P. poae / P. fluorescens AB495132.1 / GU198126.1 

9 P. grimontii / P. fluorescens NR_025102.1 / GU198125.1 

10 P. fluorescens / P. jessenii EU169164.1 / AM933510.1 

11 P. fluorescens / P. kilonensis FN675867.1 / DQ377772.1 

12 Pseudomonas koreensis HM367598.1 

13 Pseudomonas viridiflava AM182934.1 

14 Pseudomonas argentinensis AY691188.2 

15 Pseudomonas putida AY450555.1 

16 Pseudomonas putida EU118779.1 

17 Pseudomonas putida AB016428.1 

18 Pseudomonas koreensis FM202488.1 

19 Pseudomonas veronii AF539745.1 

20 Pseudomonas veronii AY512620.1 

21 Pseudomonas fragi GU549487.1 

22 Pseudomonas fragi AM062695.1 

23 Pseudomonas cf. synxantha V4 AJ244725.1 

24 Pseudomonas frederiksbergensis AY785733.1 

 

http://www.ncbi.nlm.nih.gov/nucleotide/307000354?report=genbank&log$=nuclalign&blast_rank=1&RID=UGJ956CT014
http://www.ncbi.nlm.nih.gov/nucleotide/255045579?report=genbank&log$=nuclalign&blast_rank=1&RID=VG63XHEY01P
http://www.ncbi.nlm.nih.gov/nucleotide/297040175?report=genbank&log$=nuclalign&blast_rank=1&RID=URUVD1T6015
http://www.ncbi.nlm.nih.gov/nucleotide/306999639?report=genbank&log$=nuclalign&blast_rank=1&RID=US2SNAEB015
http://www.ncbi.nlm.nih.gov/nucleotide/297040209?report=genbank&log$=nuclalign&blast_rank=1&RID=V7R5WT3W01N
http://www.ncbi.nlm.nih.gov/nucleotide/156535744?report=genbank&log$=nuclalign&blast_rank=1&RID=V7S8DVSR014
http://www.ncbi.nlm.nih.gov/nucleotide/308198889?report=genbank&log$=nuclalign&blast_rank=2&RID=VFWAV9RC011
http://www.ncbi.nlm.nih.gov/nucleotide/190360885?report=genbank&log$=nuclalign&blast_rank=1&RID=VFKW21D7014
http://www.ncbi.nlm.nih.gov/nucleotide/289595292?report=genbank&log$=nuclalign&blast_rank=4&RID=UDWG21NZ01S
http://www.ncbi.nlm.nih.gov/nucleotide/209413803?report=genbank&log$=nuclalign&blast_rank=1&RID=UGPK3FK301S
http://www.ncbi.nlm.nih.gov/nucleotide/53766366?report=genbank&log$=nuclalign&blast_rank=1&RID=UJTDM7ZN011
http://www.ncbi.nlm.nih.gov/nucleotide/329025395?report=genbank&log$=nuclalign&blast_rank=1&RID=V8PFDCVB011
http://www.ncbi.nlm.nih.gov/nucleotide/319802979?report=genbank&log$=nuclalign&blast_rank=4&RID=USJ5A3XJ015
http://www.ncbi.nlm.nih.gov/nucleotide/315493363?report=genbank&log$=nuclalign&blast_rank=4&RID=VFS0DZMG01N
http://www.ncbi.nlm.nih.gov/nucleotide/47155909?report=genbank&log$=nuclalign&blast_rank=7&RID=UJM9CWGZ01N
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Among Lactic Acid Bacteria, Leuconostoc mesenteroides was the predominant specie showing 

high bio-variability. The other species of Leuconostoc found in low concentration (L. 

gasicomitatum, L. palmae, L. inhae, L. citreum and L. pseudomesenteroides) were associated 

with gaseous spoilage of modified-atmosphere-packaged products. Occasionally we found 

homofermentative cocci, Enterococcus mundtii and rods like Carnobacterium maltaromaticum.  

About 80% of Enterobacteriaceae came from Modified Atmosphere packaged products, and the 

most frequent specie found was Citrobacter freundii, followed by Rahnella aquatilis and 

Pantoea agglomerans. A major variety of species (24 groups) were found among Pseudomonas, 

but Pseudomonas fluorescens was dominant. For some groups it was not possible to make 

unequivocal identification. In order to unequivocally ascribe the species, the isolates were tested 

with species-specific primers for P. fluorescens (Scarpellini et al., 2004) (results not shown). 

The most part showed the typical profile of this species (850bp), whereas only two groups did 

not show the amplification, and were classified as Pseudomonas jessenii and Pseudomonas 

kilonensis respectively (groups 10 and 11). 

For all the P. fluorescens strains (9 groups), the differentiation of biovars was performed 

according to Scarpellini et al., 2004 (figure2.2). Over 60% of P. fluorescens belonged to biovar 

G, 5% belonged to biovar 3, and the rests part was equally divided between biovars B and C. 

Table 2.6 summaries ARDRA analysis results. 

 

The species distribution (Figures 2.3) showed that in the air-packaged salads, Pseudomonas 

was, at the beginning of the shelf life, the dominant genus, particularly P. fluorescens, was the 

most frequently found specie. At the end of the shelf life it remained the most represented, 

however the presence of Enterobacteriaceae, less psychrotrophic, increased especially in the 

product stored at 10°C. Instead, packaging under modified atmosphere is a more favourable 

environment to Enterobacteriaceae. Their number increased during the storage and at the end of 

shelf life they became the prevalent microbial population. 

For carrots, the distribution of the microbial composition is reported in figure 2.4. At t0 the 

microbiota was composed by Pseudomonas koreensis and two species belonging to 

Enterobacteriaceae family. The storage at the two different temperatures didn’t affect the 

founded species: Pseudomonas became the dominant genus at both temperature and in addition 

to P. koreensis, P. fluorescens, P. veronii, P. fragi and P. putida were found. During the shelf 

life appeared the LAB, absent at the beginning. At the two temperatures, we found the same 

species and in the same percentage (figure 2.5). 
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Fig. 2.2 Electrophoretic profiles of the digestion with a) TaqI, b) HaeIII and c) VspI; Marker Gene 

Ruler 100 bp (MBI Fermentas). 

 

 

                                                         
 

 

 

 

 

 

TABLE 2.6 Differences and distribution of Pseudomonas fluorescens’ biovars. 

 

Biovar 
Taq I on 16S-ITS-

23S rDNA 
Hae III on 16S rDNA 

Vsp I on 

16S rDNA 

Levans 

production 

Recognized 

groups 

A 
420, 380, 280, 

230, 180, 150, 110 
700, 220, 180, 150 1600 + - 

B 
420, 380, 230, 

220, 150, 110 
450, 250, 220, 180, 150 1600 + 1, 2 

C 
420, 380, 230, 

220, 150, 110 
700, 220, 180, 150 1150, 450 + 3, 4 

3 
420, 380, 230, 

210, 150, 110 
700, 220, 180, 150 1150, 450 - 5 

G 
420, 380, 230, 

210, 150, 110 
700, 220, 180, 150 1600 + 6, 7, 8, 9 

 

a) 

 
b) 

 

c) 

 

M   1   2    3   4    5   6   7   8  9     
M 1  2  3  4  5  6  7  8  9 

M  4   5   3  1  2  6  7  8  9  
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Fig. 2.3 TBC percentage composition in a) air packaged product; b) Modified Atmosphere packaged product during the shelf life at 4 and 10°C.   
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Fig. 2.4 TBC percentage composition in carrots during the shelf life at 4 and 10°C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.5 TBC and LAB percentage and composition in carrots during shelf life. 
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2.3 CONCLUSIONS 

 

In conclusion the investigated products’ quality was good. Total Bacterial Count and Lactic 

acid bacteria were the most important indices to define the quality of the final product. 

According other authors (Fröder et al., 2007; Caponigro et al., 2010; Sandhya, 2010; Sant’Ana 

et al., 2012) the microbial quality of the raw vegetables, the processing, the packaging 

technique and the storage temperature are important factors influencing the qualitative and 

quantitative microbial composition in the final product. 

The predominant genus of TBC (80%) was Pseudomonas and in particular we found specie 

fluorescens. Over 60% of P. fluorescens belonged to biovar G, 5% belonged to biovar 3, and 

the rests part was equally divided between biovars B and C. These isolates were characterized 

by an important pectinolytic activity, responsible of browning phenomena of ready to use 

vegetables. Only 20% of the TBC belonged to species of Enterobacteriaceae family, and about 

80% of these came from Modified Atmosphere packaged products. These species are typical of 

vegetables environment (soul and water) and are characterized by a pectinolytic activity and 

starch hidrolisys. 

The LAB were a minority except in carrots (figure 2.5), Leuconostoc mesenteroides was the 

predominant specie (75%). In air packaged salads it was the only specie found, whereas more 

variability was observed in packaged under Modified Atmosphere lettuces. Leuconostoc spp. 

produces viscous and slimy material that allows adhering on the surface of vegetables, from 

which they are difficultly removed. Nevertheless LAB presence is important because with their 

metabolic activity (acidification) they influence the development of different microorganisms.  

The temperature seemed not to change the distribution of microbial population found in each 

product, the only detected difference is the appearance of certain microbial species at 10°C not 

found at 4° C (figures 2.3 and 2.4). The recovered species are typical of vegetables environment 

(soil and water) and are characterized by pectinolytic activity and starch hydrolysis. These 

results highlight how each vegetable has its own ecosystem and the composition (microbiota) of 

this system is influenced by the quality of raw materials, the processing and the packaging 

conditions and the storage temperature.  
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3  EVALUATION OF MILK DESTABILIZATION BY 

PROTEOLYTIC ACTIVITY OF Pseudomonas spp.  

 

 

 

 

 

 

 

 
 

 

 

 

 

 



 

 33 

3.1 INTRODUCTION 

Different technological tools can be adopted to reduce microbial presence in raw milk, which 

represents a suitable environment for microbial growth; in particular, the refrigeration of raw 

milk is imposed by EU Hygiene Regulations to keep microbial growth under control. However, 

low temperature creates selective conditions for psychrotrophic bacteria, especially those 

belonging to Pseudomonas spp. (Cousin, 1982; Datta et al., 2003; Lafarge et al., 2004; Hantsis-

Zacharov et al., 2007). This genus, and particularly Pseudomonas fluorescens, has significant 

spoilage potential due to its ability in producing heat-stable enzymes (proteases and lipases), 

which are not inactivated by pasteurisation and UHT treatments. These enzymes may cause 

reduction in cheese yield, gelation of UHT milk and off-flavours in many dairy products 

(Sorhaug et al., 1997; Woods et al., 2001; Dogan et al., 2003; Marchand et al., 2009a).  

While milk destabilisation can be a positive event in cheese production and maturation (Coker 

et al., 2005), it represents a very negative phenomenon in milk intended for direct consumption 

where it can lead to product waste with high economic losses. During storage at room 

temperature, UHT milk can undergo gelation and two different mechanisms have been 

proposed to explain this phenomenon. One relates to the heat-induced formation of a complex 

between the β-lactoglobulin and k-casein, which is then progressively released from the 

micelles into the milk serum and, when it reaches a certain concentration, it forms a three-

dimensional network (McMahon, 1996). More recently, another mechanism has been proposed 

that seems to be more relevant. It relates to a slow proteolysis of k-casein that leads to the 

formation of a gel similar to the gel obtained by rennet coagulation (Garcìa-Risco et al., 1999; 

Datta et al., 2001; Dupont et al., 2007). Thus destabilisation of UHT milk has been linked to 

residual or reactivated proteolytic enzymes (Nicodème et al., 2005; Liu et al., 2007; Dufour et 

al., 2008; Baglinière et al., 2013). These proteases are both native, as plasmin, and produced by 

psychrotrophic bacteria. These latter predominantly attack k-casein, and therefore seem to be 

more directly involved in gel formation (Baglinière et al., 2013), and can also affect whey 

proteins (Datta et al., 2001). In parallel, residual plasmin activity may contribute to further 

casein degradation, markedly αs2-casein (Chavan et al., 2011). 

AprX protease is the most common alkaline metallo-protease produced by Pseudomonas spp. 

and is the only one produced by P. fluorescens (Woods et al., 2001). It is a heat-stable protease 

belonging to the serralysin family and requiring Zn and Ca
2+ 

for its activity; it has an optimal 

pH of activity at 8.5 and an optimal temperature at 45 °C (Dufour et al., 2008).  

The aprX gene codifies for this protease and is located in an operone with other genes encoding 

for lipase (lipA), protease inhibitor (inh), protease secretion apparatus (aprDEF) and 

autotransporter proteins (prtA and prtB). The organization of such operon varies from one strain 

to another (Liao and McCallus, 1998; Johnson et al., 1992; Ahn et al., 1999Kawai et al., 1999; 

Woods et al., 2001). The regulation of the expression of this gene is very complex and not 

completely understood; usually the expression occurred in the exponential or stationary phase 

of microbial growth (Griffiths, 1989), and it is affected by different parameters, such as 

temperature (Nicodème et al., 2005), iron content (Woods et al., 2001), Quorum Sensing (Juhas 

et al., 2005; Liu et al., 2007) and phase variation (van den Broeck et al., 2005). 

  

3.1.1 Aim of the study 
Chemical and biochemical approaches have been used since long time for the study of UHT 

milk coagulation and destabilization phenomena (Mottar et al., 1985; Lopez Fandino et al., 

1993; Picard et al., 1996; Recio et al., 1996, Deeth et al., 2000). In this study we aim to improve 

the knowledge about milk destabilization and to examine a possible correlation with the 

proteolytic activity of Pseudomonas spp. In particular, the correlation between the molecular 

detection of aprX gene and the coagulation of milk was investigated. 
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3.2 MATERIALS AND METHODS 

3.2.1 Samples 

Commercial samples pasteurized, micro-filtered and UHT milk were analysed. The samples 

were collected during three years and analysed after different times of storage at 4°C or room 

temperature, in some cases after the expiration date. In addition, two samples of raw milk were 

provided by a milk manufacturer. Some samples were subjected to a previous inoculation with 

overnight culture of Pseudomonas fluorescens DSM50106
T 

before the analysis; the total count 

of the inoculum was determined by microscopy quantification (Burker chamber), and the 

concentration of the alive cells of the inoculum was quantified by culture dilutions plating on 

CFC selective Pseudomonas Agar Base (PAB) (VWR International, Italy). 

3.2.2 Microbial analysis and identification of the strains 

Decimal progressive dilutions in sterile trypton salt solution (0.85% w/v) were prepared and the 

following bacteriological determinations were carried out: Total Bacterial Count (TBC)
 
(ISO 

4833/2003), Escherichia coli (ISO 16649-2/2001), Staphylococcus aureus (UNI/EN/ISO 

6888/2004), Lactic Acid Bacteria (De Man et al., 1960), Pseudomonas spp. (ISO, 1372:2010), 

incubation at 35 °C for 5 days (Blazevic et al., 1973), yeasts and moulds (ISO 21527/2008).  

All microbiological analyses were carried out in triplicate, and the results were expressed as the 

mean log cfu ml
-1

. All colonies grown on the last dilution of PCA and CFC selective PAB were 

collected, purified and stored in 20% (vol/vol) glycerol at -20°C. The identification of the 

isolates was conduced following the methods previously reported (chapter 2, paragraphs from 

2.2.3 to 2.2.6).  

3.2.3 Molecular microbiology analysis of milk 

3.2.3.1 DNA and RNA extractions and amplifications 

For each sample, 0.2 ml of milk was used for the DNA and/or RNA extraction.  

DNA was extracted using QIAamp
® 

DNA Stool kit (Qiagen, Milano, Italy) and DNA Isolation 

System (Alfa Wassermann Diagnostic, West Caldwell, New Jersey), following instructions of 

the manufacturers, quantified with a Smart Spec
TM

 Plus Spectrophotometer (Bio-Rad 

Laboratories, Milan, Italy), and diluted to obtain a solution of 1ng/µl used for amplification. 

RNA was extracted using RNeasy
®

 Plus Universal kit (Qiagen, Milano, Italy), followed by a 

treatment with DNase1 amplification Grade (Sigma-Aldrich, Milano, Italy) to purify RNA and 

remove the eventual DNA residues. After quantification with Eppendorf Biophotometer, the 

reverse transcription was conduced on 1µg of RNA, using iScript
TM

 cDNA Synthesis kit (Bio-

Rad Laboratories, Milan, Italy).  

The obtained DNA and cDNA were subjected to Real Time-PCR amplification specific for the 

genus Pseudomonas built on the 16S rRNA region and/or specific for aprX gene, which codify 

for the most common metallo-protease of Pseudomonas spp. The primers used are reported in 

table 3.1. PCR reaction was carried out in a final volume of 15µl containing 7.5µl SSO Fast
TM

 

Eva Green
®
 Supermix (Bio-Rad Laboratories, Milan, Italy), 0.3µM of each primer and 5ng of 

extracted DNA. The amplifications were performed in CFX96 Real-Time PCR System (Bio-

Rad Laboratories, Milan, Italy), using the programs reported in table 3.2. A mixture of all PCR 

reagents without any DNA was used as a negative control; a response was considered positive 

when the amplification curve of the two replicates exceeded the fluorescence threshold line, 

which was positioned by a background-based algorithm calculated by the software.  
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3.2.3.2 Calibration curves and quantification 

Calibration curves generated by plotting CT versus log10 of starting genomic quantities were 

used to determine the limit of the detection (LOD) and the limit of quantification (LOQ) of the 

assay. Different calibration curves were constructed for DNA and RNA method by using known 

quantities of genomic DNA and RNA of P. fluorescens DSM50106
T
, extracted from a ten fold 

dilution series in a concentration range of about 0.96 to 6.96log cfu ml
-1

. The number of cfu for 

each dilution was obtained by the standard plate count method on CFC selective PAB.  

The concentrations of the extracted nucleotides were measured with Smart Spec
TM

 Plus 

Spectrophotometer (Bio-Rad Laboratories, Milan, Italy) and with an Eppendorf Biophotometer 

for the DNA and RNA respectively. High importance was given also to the ratio between the 

OD obtained at 260 and 280nm, which indicates the nucleic acid purity and it was always 

between 1.6 and 2. 

3.2.3.3 ANOVA analysis 

The repeatability of the methods was verified. Analysis of variance was conducted to determine 

whether there were statistically significant differences among mean quantities of Pseudomonas 

for each sample. Amplification efficiencies and detection sensitivities among different 

experiments were investigated: slopes of the calibration curves were calculated by performing a 

linear regression analysis. Amplification efficiency (E) was estimated by using the slope of the 

calibration curve and the formula E = (10
-1/slope

) - 1. A reaction with 100% efficiency will 

generate a slope of -3.32. 

3.2.4 Evaluation of proteolysis in milk  

3.2.4.1 Soluble peptides and proteins (HPLC)  

A 25ml aliquot of milk at 25°C was acidified at pH 4.6 using 2N HCl; after centrifugation 

(5000g, 20min at 10°C) and dilution with phosphate buffer (pH 6.7, 0.1M) the sample was 

filtered through a 0.45μm membrane filter (Millipore) and analysed under the conditions 

described by De Noni et al. (2007). The chromatographic separation was performed with an 

Alliance system (Waters, Milford, MA, USA) equipped with a PLRP-S column (300 A pore 

size, 5µm particle size, Polymer Laboratories Ltd, UK) and a 996 diode array detector (DAD) 

(Waters, Milford, MA, USA) operating at 280nm. Chromatogram acquisition was made using 

Millennium
R
 software (Waters).  

3.2.4.2 Casein fractions (CZE) 

A 250μl aliquot of milk was dissolved in 1ml of solubilisation buffer and kept for 4h at 25°C 

with agitation every 30min; after that, 250μl of the sample were dissolved in 1ml of extraction 

buffer and filtered through a 0.22μm membrane filter (Millipore) and analysed according to the 

conditions described by Recio et al. (1996). Electrophoretic separations were performed on a 

capillary electrophoresis system (P/ACE MDQ, Beckman Coulter, Fullerton, CA) equipped 

with a DAD. A bare fused-silica capillary (Agilent, Milan, Italy) of 50μm of diameter and 60cm 

total length (50cm to the detector window) was utilized. Prior to each run, the capillary was 

flushed with the running buffer for 3min with a pressure of 138kPa. Samples were introduced 

into the capillary column by hydrodynamic injection at 3.5kPa for 12.5s. Analyses were 

performed at 25°C using a separation voltage of 50kV/m and with UV detection at 214nm. 
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Table 3.1 PCR primers used. 

 

 

Gene Primers pair (5’-3’) 

16S Pseudomonas spp. 

specific (Calisti, 2008) 

P94F: 

P649R: 

CGGACGGGTGAGTAATGCCTAG  

CAGGAAATTCCACCACCCTCTACC 

aprX gene 

(Marchand et al., 2009b) 

SM2F: 

SM3R: 

AAATCGATAGCTTCAGCCAT 

TTGAGGTTGATCTTCTGGTT 

 

 

 

 

 

 

Table 3.2 PCR conditions used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Pseudomonas spp. aprX gene 
Denaturation step 95°C 3 min 94°C 3 min 

Amplification step 

(95°C 10s, 62.4°C 30s, 72°C 

30s, with a single fluorescence 

measurement) x40 times 

(95°C 30s, 60°C 30s, 72°C 60s, 

with a single fluorescence 

measurement) x40 times 

Melting curve program 
65-95°C hold 5s, fluorescence 

measurement every 0.5°C 

65-95°C hold 5s, fluorescence 

measurement every 0.5°C 
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3.3 RESULTS AND DISCUSSION 

3.3.1 Evaluation of the microbial population and identification of the isolates 

As expected, different microbial concentrations were found in the milk samples, depending on 

the production process. No microbial growth was recognized for both micro-filtered and UHT 

milk samples, indicating that their manufacturing processes were suitable to remove and/or 

destroy all alive cells. In pasteurized milk samples instead Total Bacterial Count of about 1log 

cfu ml
-1

 was found. Not correctly stored raw milk was analysed and showed extremely high 

TBC value of 6.78log cfu ml
-1

. 

Microbial isolates, all belonging to raw and pasteurized milk, were subjected to 

characterization. None of the isolates had amylolytic activity, furthermore, 36% of the isolates 

had lipolytic activity, 60% had lecithinasic activity and around 50% had pectinolytic activity. 

Proteolytic activity was widespread and generally very high; for some isolates it was favourite 

at low temperature. All isolates produced diffusible pale pigments (white and yellow), some 

produced also intense red colour, and only a few were florescent. 

The identification of raw milk isolates showed that Pseudomonas spp. were the dominant 

contaminants (60% of raw milk isolates) followed by Enterobacteriaceae (30%) such as 

Serratia marcescens, Hafnia alvei, and Citrobacter freundii. Quantitatively less important (10% 

of the isolates), Gram-positive isolates were found, belonging to the genera Staphylococcus and 

Lactococcus. For pasteurized milk, the same microbial groups were found, but in different 

concentrations: more important was the number of Lactic Acid Bacteria (50%), followed by 

Pseudomonadaceae (35%) and Enterobacteriaceae (15%). 

3.3.2 Artificial inoculation of micro-filtered and UHT milk: visual approach 

Samples artificially inoculated with P. fluorescens DSM 50106
T
 were studied and non-

inoculated samples were used as control. For these preliminary analyses the coagulation was 

only visually evaluated. Tables 3.3 and 3.4 report the results of plate count on CFC selective 

PAB for micro-filtered and UHT milk respectively.  

No viable growth of Pseudomonas spp. and no visual coagulation were detected for each 

control in both type of milk at both temperatures. Instead the growth of the strains was 

monitored in the inoculated samples and it is shown in figure 3.1. The trends of growth 

appeared similar in the two types of milk that showed comparable values at each time. About 

the storage temperature, this experiment confirmed that the growth rate of the strain is 

dramatically temperature-dependent. According to literature (Baglinière et al. 2013), a visual 

destabilisation appeared progressively over time and it was distinguished as the presence of two 

distinct phases: one solid and hyaline and the other liquid and whitish. In our samples the 

appearance was recognized at different concentration levels: it was very recognizable after two 

days at 25°C in both types of milk, whereas after 21 days at 4°C it was just at the beginning 

(Fig. 3.2). 

3.3.3 Proteolysis evaluation in naturally coagulated UHT milk 

Evaluation of proteolysis in naturally coagulated UHT milk was conducted as well. Figure 3.3 

reports the HPLC chromatograms of four samples, two coagulated UHT milk (1 and 2 samples) 

and two non-coagulated UHT milk (3 and 4 samples). In the figure it is possible to recognize 

the peaks of β-LG, α-LA and BSA; proteose peptones, deriving from the action of plasmin on 

β-CN, are clearly visible as well. The main difference was the presence in the two coagulated 

samples of many small peptides, among which two highest picks appeared interesting because 

they remained the glycomacropeptides (GMPs) originated form the rennet activity on the K-
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casein but showing a small delay in the elution time, and in accordance to the literature (Recio 

et al. 1996, Recio et al., 2000, Dupont et al., 2007) were defined Pseduo-GMPs. According 

Nieuwenhuijse (1995), the coagulation of UHT milk could be related to proteolytic activity of 

P. fluorescens.  

The identification of the two peaks of Pseudo-GMPs was carried out with Electrospray 

ionization mass spectrometry (HPLC/ESI-MS) (Rovaris, 2011). The detected mass showed that 

the k-CN hydrolysis occurred on the 103-104 bond. The two peaks showed a difference in their 

mass due to their different amino acid composition: Pseudo-GMP A has a Rt of 8min, a mass of 

6933Da and the AA Thr136 and Asp148; Pseudo-GMP B has a Rt of 10min, a mass of 6901.6Da 

and the AA Ile136 and Ala148. 

3.3.4 Chemical analysis of artificially inoculated micro-filtered milk 

A micro-filtered pasteurized milk was inoculated with a proteolytic strain of P. fluorescens 

(DSM 50106
T
) and analysed after different time (from zero to 62h) of incubation at 35°C. The 

control was the same milk non-inoculated and incubated for 32h at 35°C.  

The samples were analysed by HPLC (Fig. 3.4) and CZE (Fig. 3.5) to evaluate proteolysis 

extent. Plate count (Fig. 3.6) was determined as well on CFC selective PAB (VWR 

International, Italy).  

The HPLC chromatograms of the control and the samples after 24, 32, 48 and 62h of incubation 

are shown in figure 3.4. The control showed a chromatogram comparable to the time zero, as if 

the incubation didn’t affect the proteins. In the inoculated samples instead, the formation of 

Pseudo-GMPs started very quickly: Pseudo-GMP A is forming after 24h and Pseudo-GMP B 

after 32h of incubation. After 48h and even more after 62h, the proteolysis was so abundant that 

it was not possible do distinguish the Pseudo-GMPs among the many small peptides formed in 

milk.  

The CZE electrophoresis (Fig. 3.5) allowed to recognize the different fractions of casein (CN). 

In particular, in accordance to the HPLC results, the k-casein (K-CN) gradually decreased 

during incubation, until a complete disappearance at 62h of incubation; as a consequence, a 

Pseudo-para-K-casein was forming during incubation. The decreasing of the fractions of casein 

seemed to be due to the activity of P. fluorescens because after the removal of somatic cells, 

due to the micro-filtration, the plasmin activity should be reduced. Figure 3.6 showed the 

growth of P. fluorescens in blue, and the degradation of K-CN in red, expressed as the peak 

area ratio between K-CN and α-LA. The control after 32h, indicated with dotted circles, showed 

the same value of K-CN (around 1.6) of the T0 always in absence of the microorganism, 

confirming that the coagulation was due to the activity of strain and not to the temperature. It 

was assumed that the incubation at 35°C didn’t induce the coagulation. Nevertheless it is 

important to remind that the destabilization of milk by Pseudomonas spp. is strain-dependent 

(Baglinière et al., 2012).  
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Table 3.3 The growth of Pseudomonas spp. in micro-filtered pasteurized milk stored at 4 and 

25°C. Values expressed as means of the triplicate in log cfu ml
-1

 ± Standard Deviation; ND: non 

determined; /: visually non coagulated; *: visually coagulated. 

 

Time 

(days) 

Storage 

temperature: 4°C Coagulation 

Storage 

temperature: 25°C Coagulation 

Control Inoculated Control Inoculated 

0 <1 3.00±0.10 / <1 3.00±0.10 / 

1 <1 3.60±0.20 / <1 7.79±0.10 / 

2 <1 5.32±0.30 / <1 7.90±0.20 * 

3 <1 5.23±0.30 / <1 7.95±0.10 * 

7 <1 7.70±0.20 / ND ND ND 

10 <1 8.36±0.10 / ND ND ND 

13 <1 8.40±0.20 / ND ND ND 

21 <1 9.67±0.20 * ND ND ND 

 

 

 

Table 3.4 The growth of Pseudomonas spp. in UHT milk stored at 4 and 25°C. Values 

expressed as means of the triplicate in log cfu ml
-1

 ± Standard Deviation; ND: non determined; 

/: visually non coagulated; *: visually coagulated. 

 

Time 

(days) 

Storage 

temperature: 4°C Coagulation 

Storage 

temperature: 25°C Coagulation 

Control Inoculated Control Inoculated 

0 <1 3.00±0.10 / <1 3.00±0.10 / 

1 <1 3.54±0.10 / <1 7.70±0.20 / 

2 <1 4.48±0.20 / <1 7.85±0.10 / 

3 <1 5.85±0.20 / <1 8.60±0.20 / 

7 <1 7.95±0.30 / <1 8.48±0.30 * 

10 <1 8.70±0.20 / ND ND ND 

13 <1 9.00±0.10 / ND ND ND 

21 <1 9.85±0.20 * ND ND ND 
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Fig. 3.1 Growth of Pseudomonas spp. in micro-filtered and UHT milk at 4 and 25°C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2 Visual coagulation of inoculated and non-inoculated micro-filtered milk, stored at 4 and 

25°C. 
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Fig. 3.3 HPLC chromatograms of different UHT milk.  

Samples 1 and 2: naturally coagulated milk; samples 3 and 4: non-coagulated milk 

 

 

 

 

 

Fig. 3.4 HPLC chromatograms of micro-filtered milk at different time of incubation 

               at 35°C after inoculation with P. fluorescens DSM50106
T
.  
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Fig. 3.5 CZE of micro-filtered milk at different time of incubation after inoculation with P. 

fluorescens DSM50106
T
. 

 

 

 

 
 

 

Fig. 3.6 Growth of P. fluorescens DSM50106
T
 and decrease of K-CN in inoculated micro-

filtered milk during incubation at 35°C.  
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3.3.5 Evaluation of commercial kits for DNA extraction 

To choose the DNA extraction method, two commercial kits were compared extracting the 

DNA of different samples of milk (0.2ml) both as such and inoculated with known 

concentrations of overnight colture of P. fluorescens DSM50106
T
. For each extraction kit a 

calibration curve was created and the results of the amplification of the 16S specific for 

Pseudomonas genus were compared. The average values of the replicates expressed as log cfu 

g
-1

 are shown in table 3.5. 

The ANOVA analysis was made for two different purposes: to verify the eventual differences 

between the two extraction kits and between each single kit and the plate count method. Both 

the tested kits evidenced presence of Pseudomonas spp. in the inoculated UHT milk, with a 

slightly significant (p<0.05) difference with respect to plate count, and not in the control UHT 

milk. However, only the QIAamp® DNA Stool kit was able to detect the target bacteria in the 

pure culture and the level was not significantly different from that of the plate count. For this 

reason, QIAamp® DNA Stool kit was adopted for further experiments. 

3.3.6 Calibration curves and repeatability of DNA extraction 

In order to quantify the cells of Pseudomonas spp. (16S gene based quantification) in milk 

samples, several calibration curves (three independent experiments) were created starting from 

serially diluted cells in trypton salt solution (0.85% w/v); DNAs were extracted and subjected to 

qPCR. The linearity range was found from 1 to 7log cfu ml
-1

, the efficiency was 85.327% and 

the determination coefficient (R
2
) was 0.986 (Fig. 3.7). In this case, the limit of detection 

(LOD) and the limit of quantification (LOQ) coincided and their value was 1log cfu. 

The repeatability of the quantification of DNA of Pseudomonas spp. was evaluated on two 

samples (A and B) of milk from the same production batch. From each sample, ten independent 

DNA extractions and quantifications were conducted. In table 3.6, the average values and the 

standard deviations of the analyses are shown. The good repeatability of the method was 

confirmed; no statistically significant differences were found among the samples within the 

same analysis (intra-analysis) and even between the two different analyses (inter-analysis). 

Also for the aprX gene based quantification, several calibration curves (three independent 

experiments) were created. The linearity range was found from 6.48 to 1.48log cfu ml
-1

, the 

efficiency was 92.726% and the determination coefficient (R
2
) was 0.965 (Fig. 3.8). LOD and 

LOQ coincided and their value was 1.48log cfu. 

The repeatability of the DNA quantification of aprX gene was evaluated on pasteurized milk. 

The good repeatability of the method was confirmed; no statistically significant differences 

were found among the samples (C and D) within the same analysis (intra-analysis) and even 

between the two different analyses (inter-analysis) (table 3.7). 

3.3.7 Calibration curve and repeatability of RNA extraction 

As for DNA analysis, for Pseudomonas spp. quantification calibration curves (two independent 

experiments) were created starting from serially diluted cells in trypton salt solution (0.85% 

w/v). The linearity range was from 6.70 to 1.70log cfu ml
-1

, the efficiency was 82.855% and the 

determination coefficient (R
2
) was 0.982 (Fig. 3.9). LOD and LOQ showed the same value of 

1.70cfu. 

The repeatability of the RNA method was evaluated on two samples (E and F) of milk from the 

same production batch. From each sample, ten independent RNA extractions, reverse 

trascription and quantifications were conducted. This analysis confirmed a good repeatability of 

the method, no statistically significant differences were found (table 3.8).  
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Table 3.5 Comparison of QIAamp® DNA Stool and DNA Isolation System. 

Values expressed as means of the triplicate in log cfu ml
-1

 ± Standard Deviation; N/A: non-detected. 

 

 

 

 

 

 

 

Sample Extraction kit 
Plate count  
(log cfu ml-1) 

Real time-PCR 

quantification  
(log cfu ml-1) 

ANOVA 

analysis 

(kit-plate count) 

ANOVA 

analysis 

(kit-kit) 

Pure overnight colture 

(DSM50106
T
) 

QIAamp
® 

DNA Stool kit 
6.00±0.10 

6.47±0.10 n.s.d 
** 

DNA Isolation System N/A ** 

UHT milk 
QIAamp

® 
DNA Stool kit 

<1.00±0.00 
N/A n.s.d 

n.s.d. 
DNA Isolation System N/A n.s.d 

UHT milk inoculated  
QIAamp

® 
DNA Stool kit 

5.85±0.20 
6.73±0.20 * 

n.s.d. 
DNA Isolation System 6.58±0.20 * 

n.s.d.: no significant difference at p<0.05; *: significant difference at p<0.05; **:significant difference at p<0.01 
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Fig. 3.7 Standard curve for Pseudomonas spp. DNA quantification, showing the linear 

relationship between the Threshold Cycle (CT) values and Log cfu for serially diluted DNA 

obtained from an overnight P. fluorescens culture.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.8 Standard curve for aprX gene DNA quantification, showing the linear relationship 

between the Threshold Cycle (CT) values and Log cfu for serially diluted DNA obtained from 

an overnight P. fluorescens culture 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.9 Standard curve for Pseudomonas spp. RNA quantification, showing the linear 

relationship between the Threshold Cycle (CT) values and Log cfu for serially diluted DNA 

obtained from an overnight P. fluorescens culture 
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TABLE 3.6 Repeatability of the quantification of DNA of Pseudomonas spp. (16S gene) in UHT milk. 

 

 

 

 

 
TABLE 3.7 Repeatability of the quantification of aprX gene (DNA analysis) in pasteurized milk. 

 

 

 

 

 

 

TABLE 3.8 Repeatability of the quantification of RNA of Pseudomonas spp. (16S gene). 

 

 Values (log cfu g
-1

) Mean SD 
ANOVA 

intra-analysis 

ANOVA 

inter-analyses 

Sample A 3.38 3.40 3.93 3.09 3.38 3.96 3.35 3.77 3.70 3.31 3.53 0.29 n.s.d. 
n.s.d. 

Sample B 3.35 3.03 3.80 3.86 3.77 3.43 3.64 3.69 3.37 3.47 3.41 0.26 n.s.d. 

n.s.d.: no significant difference at p<0.05 

 Values (log cfu g
-1

) Mean SD 
ANOVA 

intra-analysis 

ANOVA 

inter-analyses 

Sample C 4.44 4.66 4.33 4.25 4.28 4.86 4.58 4.79 4.51 4.60 4.53 0.21 n.s.d. 
n.s.d. 

Sample D 4.38 4.51 4.65 4.37 4.97 4.52 4.39 4.47 4.73 4.49 4.55 0.19 n.s.d. 

n.s.d.: no significant difference at p<0.05 

 Values (log cfu g
-1

) Mean SD 
ANOVA 

intra-analysis 

ANOVA 

inter-analyses 

Sample E 3.41 3.42 3.40 3.53 3.38 3.27 3.55 3.48 3.37 3.35 3.42 0.09 n.s.d. 
n.s.d. 

Sample F 3.58 3.23 3.38 3.49 3.37 3.46 3.67 3.29 3.35 3.66 3.45 0.15 n.s.d. 

n.s.d.: no significant difference at p<0.05 
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3.3.8 Molecular analysis of raw, pasteurized and UHT milk 

Different raw, pasteurized and UHT milk were analysed from the molecular point of view (tab. 

3.9). Results for two raw milk samples analysed at time zero are reported; Pseudomonas spp. 

appeared to be present with very high values, alive cells were detected by traditional plate count 

on selective medium and by RNA quantification with values higher than 6.60log cfu ml
-1

. No 

significant differences were found for the results obtained by DNA and RNA Pseudomonas spp. 

quantification, indicating that almost all of the cells were alive. The quantification of aprX gene 

suggested that many cells  (more than 4.20log cfu ml
-1

) potentially could produce proteases. For 

pasteurized milk (two samples at time zero), no viable cells were detected by plate count, while 

around 3.40log cfu ml
-1

 were recognized as Viable But Non-Culturable (VBNC) cells (RNA 

quantification); the quantified DNA value represents the DNA of both VBNC and dead cells. 

For pasteurized samples, the most part of detected Pseudomonas spp. showed the presence of 

aprX gene in their genome.  

All the UHT milk reported in table 3.9 were analysed between three and twelve months after 

their expiration dates. The two naturally coagulated and semi-skimmed milk samples showed 

levels of 3.17 and 4.41log cfu ml
-1

 of Pseudomonas spp. and levels of 4.32 and 3.47log cfu ml
-1 

of aprX gene DNA respectively. The three normal samples, independently from the quantity of 

fat present inside the milk, showed lower values for both the indices. For all the UHT samples, 

the presence of DNA values in absence of plate count growth suggested the presence of dead 

cells. For all those products, the aprX gene quantification was between 3.45 and 4.66log cfu ml
-

1
 and the correlation between this value and the coagulation of milk wasn’t observed: high value 

didn’t correspond to the effective coagulation of milk. 

3.3.9 Combination of molecular and chemical approaches in UHT milk analysis 

In table 3.10 and figure 3.10 the molecular results and the HPLC and CZE patterns of two semi-

skimmed UHT milk samples are shown respectively; one sample was normal milk (in light 

blue) and the other one was coagulated (in blue). These preliminary results suggested a 

correlation between the molecular detection of aprX gene and the chemical degradation of 

casein. In fact the coagulated sample showed high values of Pseudomonas spp. and aprX DNA, 

high levels of Pseudo-GMPs and Pseudo-para-K-CN and the absence of intact K-CN; on the 

contrary the non-coagulated sample showed low or undetectable values of Pseudomonas spp. 

and aprX DNA, normal level of K-CN in absence of Pseudo-GMPs and Pseudo-para-K-CN. 

A full-cream and a semi-skimmed UHT milk samples, both naturally coagulated, were analysed 

after 90 and 130 days from the production (expiration date at 120 days from the production) 

(table 3.11 and figures 3.11 and 3.12). In absence of viable Pseudomonas spp. (selective plate 

count value), the full-cream milk showed almost constant value of Pseudomonas spp. DNA 

(3.3-3.6log cfu ml
-1

), no detected value for aprX gene and slightly decreasing values of proteose 

peptones, Pseudo-GMPs and small peptides. Those trends suggest that the total DNA detected 

value derived only from dead cells, and that the initial proteolytic activity recognized in the 

sample, only partially characteristic of Pseudomonas, has been inactivated by the sterilization 

process. For the semi-skimmed milk, the absence of alive Pseudomonas spp. was confirmed. 

High values for Pseudomonas spp. and aprX gene were detected in the sample at 90 days from 

production, both decreasing during the subsequent storage time, probably due to a partial 

degradation of DNA. Besides, in the semi-skimmed sample, both the Pseudo-GMPs and 

proteose peptone fractions slightly decreased whereas the small peptides increased by 40% 

approximately. The absence of K-CN, in favour of high value of Pseudo-para-K-CN (fig.3.12) 

detected after 90 days from the production, explained these trends: the increasing of small 

peptides could be due to non-specific protease activities occurred on other casein fractions 

during the considered storage. 
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TABLE 3.9 Raw, pasteurized and UHT milk samples analysis. Values expressed as means of 

the triplicate in log cfu ml
-1

 ± Standard Deviation; ND: non-determined; N/A: non-detected.  

Sample 

Selective 

plate 

count 

Pseudomonas spp. 

quantification 

aprX gene 

quantification 

DNA RNA DNA 

Raw milk 6.81±0.10 6.62±0.10 6.97±0.20 4.48±0.10 

Raw milk 6.60±0.05 6.14±0.20 6.77±0.15 4.27±0.20 

Pasteurized milk <1 4.22±0.20 3.40±0.10 4.45±0.30 

Pasteurized milk <1 4.64±0.10 3.42±0.25 4.66±0.20 

Naturally coagulated, 

semi-skimmed UHT milk 
<1 3.17±0.10 ND 4.32±0.10 

Naturally coagulated, 

semi-skimmed UHT milk 
<1 4.41±0.20 ND 3.47±0.30 

Normal,  

semi-skimmed UHT milk 
<1 3.34±0.10 ND 4.01±0.20 

Normal,  

semi-skimmed UHT milk 
<1 2.96±0.15 ND N/A 

Normal, 

full-cream UHT milk 
<1 2.96±0.20 ND 3.45±0.20 

 

TABLE 3.10 Semi-skimmed UHT milk samples analysis. Values expressed as means of the 

triplicate in log cfu ml
-1

 ± Standard Deviation; N/A: non-detected. 

 

TABLE 3.11 Naturally coagulated UHT milk samples analysis. Values expressed as means of 

the triplicate in log cfu ml
-1

 ± Standard Deviation; N/A: non-detected; Before: analysed before 

the expiration date (90 days after production); After: analysed after the expiration date (130 

days after production).  

Sample 
Selective 

plate count 

Pseudomonas spp. 

DNA quantification 

aprX gene DNA 

quantification 

Naturally coagulated milk <1 5.39±0.20 5.53±0.10 

Non-coagulated milk <1 3.57±0.30 N/A 

Sample 

Selective plate 

count 

Pseudomonas spp. 

DNA quantification 

aprX gene DNA 

quantification 

Before After Before After Before After 

Semi-skimmed milk <1 <1 5.39±0.20 4.13±0.10 5.53±0.10 N/A 

Full-cream milk <1 <1 3.36±0.20 3.61±0.10 N/A  N/A 
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Fig. 3.10 HPLC chromatograms and CZE electropherograms of two samples of semi-skimmed UHT milk: 

naturally coagulated sample (in blue), and non-coagulated sample (in light blue). 
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Fig. 3.11 Quantification of small peptides, proteose peptones and Pseudo-GMPs before and after expiration date in two naturally coagulated 

milk: semi-skimmed UHT milk (in blue) and in full-cream UHT milk (in red). 
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Fig. 3.12 CZE electropherograms before and after expiration date in a) naturally coagulated 

semi-skimmed UHT milk b) naturally coagulated full-cream UHT milk. 
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3.4 CONCLUSIONS 

 

In conclusion the psycrhotrofic bacteria appeared the most important contaminants in raw and 

pasteurized milk. In particular Pseudomonas spp., especially the specie fluorescens, showed 

high spoilage potential, thanks to their heat-stable enzymes. Our results suggested that the 

proteolytic activity of Pseudomonas spp. is very important in destabilization and coagulation of 

milk, being responsible for the cutting of K-CN, producing Pseudo-GMPs and Pseduo-para-K-

CN. The amino acid composition of the two fractions of Pseudo-GMPs was studied and a 

difference between the Pseudo-GMPs and the GMPs obtained with the rennet activity was 

found: the hydrolysis due to the proteases of Pseudomonas spp. in fact occurred on the 103-104 

bond of k-casein, instead the 105-106 bond cut by rennet. 

The only aprX gene detection appeared a not enough specific parameter for the prediction of 

milk coagulation, in fact the detection of this gene didn’t always correspond to the effective 

coagulation of the sample, indeed according to literature (Martins et al., 2005; Dufour et al., 

2008), the presence of the gene doesn’t necessary imply its expression. Besides our 

quantification referred to the gene of dead cells and it could be active only if the production of 

the proteases occurred before the destruction of the cells by UHT treatment. Nevertheless the 

quantifications of aprX gene and Pseudomonas spp. DNA combined with the chemical 

approach can give an indication about the possible destabilization and coagulation of milk; 

HPLC and CZE appeared suitable for the detection of the coagulation and the modification of 

the fractions of casein in milk.  
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4.1 INTRODUCTION 

Pseudomonas is the most common genus responsible for the spoilage of different kind of food. 

All the species of this genus, in fact, have simple nutritional requests and are characterized by a 

strongly developed adaptability, producing many enzymes (e.g. proteases, lipases, pectinases) 

that can allow them growing on different matrices. 

Although the cells are easily destroyed with high temperatures, many of their enzymes are heat-

stables and can spoil food even after the death of cells. It has been showed that Pseudomonas 

spp.’s proteases degrade casein, inducing bitterness in milk, gelation of UHT-milk and 

decreasing yields of soft cheese; lipases hydrolysing the triglycerides produce alterations of 

flavour and lecithinases are able to disrupt milk fat globule membranes, increasing the 

susceptibility of milk fat to the action of lipases (Datta & Deeth, 2001;Herrera, 2001; Deeth et 

al., 2002; Gunasekera et al., 2003; Ray, 2004). 

Mozzarella is a typical Italian cheese, whose producing process is characterized by the 

stretching of the curd, a treatment necessary to render the curd elastic. In particular the 

processing requires the addition of lactic acid bacteria (Streptococcus thermophilus, 

Lactobacillus delbrueckii subsp. bulgaricus or Lactobacillus helveticus) to the pasteurized milk, 

coagulating at 34-37°C, breaking and acidification of the curd (pH 5.1 – 5.2), stretching of the 

curd with hot water (90°C), formation, cooling and packaging in a governing liquid, mainly 

composed of tap water, brine and whey. 

The contamination of mozzarella mainly represented by Pseudomonas spp. and other 

psycrotrophic bacteria (Baruzzi et al., 2012) can occur at two steps, generating different 

problems. The first possibility is a contamination of the product before the heat-treatment; in 

this case the eventual heat-stable enzymes will survive and can induce instability into the final 

product, for example influencing the hardness, meltability and stretchability of Mozzarella 

(Oommen et al., 2002). However the most common contamination occurs after the heat process: 

dipping into the governing liquid can increase microbial loads and turbidity over the storage 

time and can cause alterations even under refrigeration conditions (Baruzzi et al., 2012). 

The interest in the role of Pseudomonas, especially the fluorescens specie, in the spoiling of 

mozzarella increased in summer 2010 when the “blue mozzarella” event occurred in Italy and 

then spread in many countries of Europe (Nogarol et al., 2013; Andreani et al., 2014). Official 

laboratory analysis and health authorities in fact linked the anomalous blue coloration of the 

cheese to the presence of strains of P. fluorescens group. 

For the quantification of nucleic acids Real Time-PCR has been widely used (Bustin 2002, 

Vanysacker et al., 2013; Wilson et al., 2013). This technique has many advantages: 

sensitiveness, speed, precision, high throughput and high degree of potential automation.  

Recently thanks to its significant advantages for the enumeration of bacteria directly from food 

samples, it found successful applications in food microbiology (Malorny et al., 2004; Oliveira 

et al., 2005; Alarcon et al., 2006; Wang et al., 2007; Rantsiou et al., 2008; Pennacchia et al., 

2009).  

Traditionally the cell viability was verified by growing on solid media, but nowadays is clear 

that the absence of colonies does not necessarily mean that the cells are dead. Instead it is 

possible that some Viable But Non-Culturable (VBNC) cells are present; those are damaged or 

dormant cells, not able to grow on culture media (Díaz et al., 2010). The causes can be multiple 

stresses (chemical or heat shock, osmotic stress and dehydration); in this state the cells maintain 

their metabolic activities and remain alive, with the possibility of an influence on many 

processes.   

The aim of this work is the set up of a rapid method for the total detection and the quantification 

of Pseudomonas genus in mozzarella cheese, discriminating among the dead, the alive and the 

VBNC cells. 
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4.2 MATERIALS AND METHODS 

4.2.1 Samples 

Mozzarella cheeses coming from GDO were analysed. The samples were collected during two 

years, from October 2011 to September 2013, analysed after different times of storage at 4°C. 

Some samples were subjected to a previous inoculation with overnight culture of P. fluorescens 

DSM50106
T 

before the analysis; the total count of the inoculum was determined by microscopy 

quantification, and the concentration of the alive cells of the inoculum was quantified by culture 

dilutions plating on CFC selective Pseudomonas Agar Base. 

4.2.2 Microbiological analysis  

The entire content of the package (mozzarella and governing liquid) was homogenized into a 

sterile Stomacher bag, by using a Colworth 400 Stomacher for 2 minutes. Decimal progressive 

dilutions in sterile trypton salt solution (0.85% w/v) were prepared and the concentration of 

Pseudomonas spp. was determined by spread technique on plates of CFC selective 

Pseudomonas Agar Base (VWR International, Italy). To allow the adaptation and growth of the 

eventual stressed Pseudomonas cells revivification step was set up: for each sample, 0.2g of 

mozzarella were incubated at 35°C for 4 hours, and the concentration of Pseudomonas spp. was 

compared to that in the samples without the incubation period. All the analyses were conducted 

in triplicate. 

4.2.3 DNA and RNA extractions 

For each product, 0.2 - 1g of mozzarella were used for the DNA and/or RNA extraction. For 

DNA extraction different commercial kits were tested following the manufacturer’s 

instructions: QIAamp
® 

DNA Stool kit (Qiagen, Milano, Italy), DNeasy
®
 Mericon

TM
 Food 

(Qiagen, Milano, Italy) and InstaGene
TM

 Matrix (Bio-Rad Laboratories, Milan, Italy). For all 

the DNAs, after quantification with a Smart Spec
TM

 Plus Spectrophotometer (Bio-Rad 

Laboratories, Milan, Italy), a solution of 1ng/µl was prepared and used for the amplification.  

Two volumes of RNA Protector Bacteria Reagent (Qiagen, Milano, Italy) were used to prepare 

the samples for RNA extraction. RNeasy
®

 Plus Universal kit (Qiagen, Milano, Italy) was used 

to extract RNA, followed by a treatment with DNase1 amplification Grade (Sigma-Aldrich, 

Milano, Italy) to purify RNA and remove the residual DNA. After that, the RNAs were 

quantified with Eppendorf Biophotometer and 1µg was utilized for reverse transcription using 

iScript
TM

 cDNA Synthesis kit (Bio-Rad Laboratories, Milan, Italy) with random primers. The 

resultant cDNA was subjected to qRT-PCR; a control PCR of the same samples without reverse 

transcriptase was included to assure the absence of DNA contamination. 

For PMA pre-treatment, 20µl of PMA 20mM in H2O (Biotium Inc., Hayward, USA), diluted at 

2.5mM in 20% DMSO, were added to 980µl of stomached mozzarella. Following an incubation 

period of 5min in the dark, samples were light-exposed for 15min using a 400-W halogen light 

source placed 20 cm from the sample tubes. During exposure, samples were placed on ice to 

avoid excessive heating. After photo-induced cross-linking, cells were pelleted at 6000g for 

5min prior to DNA and RNA isolation.  

4.2.4 Amplifications 

All the obtained DNA and cDNA were subjected to Real Time-PCR amplification specific for 

the genus Pseudomonas. The primers used (P94F 5’-CGGACGGGTGAGTAATGCCTAG-3’; 

P649R 5’-CAGGAAATTCCACCACCCTCTACC-3’) were built on the 16S rRNA region of 

Pseudomonas spp. (Calisti 2008) and the specificity was tested with melting curves during 

amplification and by 1% agarose gels.  

PCR reaction was carried out in a final volume of 15µl containing 7.5µl SSO Fast
TM

 Eva 
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Green
®
 Supermix (Bio-Rad Laboratories, Milan, Italy), 0.3µM of each primer and 5ng of 

extracted DNA. The amplifications were performed in CFX96 Real-Time PCR System (Bio-

Rad Laboratories, Milan, Italy), using the following program: denaturation step (95°C for 3 

min), amplification and quantification steps repeated for 40 cycles (95°C for 10s, 62.4°Cfor 

30s, 72°C for 30s with a single fluorescence measurement). A mixture of all PCR reagents 

without any DNA was used as a negative control; a response was considered positive if the 

amplification curve of the two replicates exceeded the fluorescence threshold line, which was 

positioned by a background-based algorithm calculated by the software. 

4.2.5 Calibration curves and results quantifications 

Calibration curves generated from plotting CT versus log10 of starting genomic quantities were 

used to determine the limit of the detection (LOD) and the limit of quantification (LOQ) of the 

assay. Different calibration curves were constructed for DNA and RNA method by using known 

quantities of genomic DNA and RNA of P. fluorescens DSM50106
T
, extracted from a ten fold 

dilution series in a concentration range of 1to 7log cfu ml
-1

. The number of cfu for each dilution 

was obtained by the standard plate count method on CFC selective Pseudomonas Agar Base.  

The concentrations of the extracted nucleotides were measured for the DNA with Smart Spec
TM

 

Plus Spectrophotometer (Bio-Rad Laboratories, Milan, Italy) and for the RNA with an 

Eppendorf Biophotometer. High importance was given also to the ratio between the OD 

obtained at 260 and 280 nm, which indicates the nucleic acid purity and was always between 

1.6 and 2. 

4.2.6 ANOVA analysis 

The repeatability of the methods was verified. Analysis of variance was conducted to determine 

whether there were statistically significant differences among mean quantities of Pseudomonas 

for each sample. Amplification efficiencies and detection sensitivities among different 

experiments were investigated: slopes of the calibration curves were calculated by performing a 

linear regression analysis. Amplification efficiency (E) was estimated by using the slope of the 

calibration curve and the formula E = (10
-1/slope

) - 1. A reaction with 100% efficiency will 

generate a slope of -3.32. 
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4.3 RESULTS  

4.3.1 Confronting DNA extraction kits 

During period of the analysis we verified the presence of Pseudomonas genus in mozzarella by 

plating on selective medium and by amplification with Real-Time PCR. None of the samples 

showed a detectable concentration on the selective medium, but they all were positive to the 

amplification. Even after the expiration date, the concentration on plate appeared less than the 

minimum relievable (<1log cfu g
-1

); nevertheless after the expiration date some samples 

appeared spoiled, in terms of visual degradation of mozzarella. 

To choose the DNA extraction method, three commercial kits were compared extracting the 

DNA of different samples of mozzarella (0.2g) as such and inoculated with know 

concentrations of overnight colture of P. fluorescens DSM50106
T
. For each extraction kit a 

calibration curve was created and the results were compared. The averages of the replicates 

expressed as log cfu g
-1

 are shown in tables 4.1 and 4.2. 

The ANOVA analysis was made for two different evaluations: verify the eventual differences 

between the two extraction kits and the eventual differences between each single kit and the 

plate count method. 

The ANOVA between each kit and the plate count method showed no statistically significant 

differences (p<0.05) in the inoculated samples; instead in absence of inoculation (samples as 

such) it showed statistically significant differences until p<0.01.  

Seeing the absence of statistically significant differences between the two kits (p<0.05), 

QIAamp® DNA Stool kit was preferred due to the higher extraction yield. 

In table 4.2, the averages of the replicates made for the comparison of Stool kit and Instagene 

Matrix kit are reported. The InstaGene
TM

 Matrix is a purifying kit based on the DNA retention 

on a resin. This analysis suggested that the resin interfered with the amplification; in fact to 

obtain an amplification signal a previous dilution of the samples was necessary, utilizing a 

solution of 0.01ng/µl. In addition, the resulting values appeared about three log cycles higher 

than the DNA amount actually present, showing high statistically significant differences with 

the DNA really present. For this reason, QIAamp® DNA Stool kit was adopted for further 

experiments. 
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TABLE 4.1 Comparison of DNeasy® mericonTM Food and QIAamp® DNA Stool DNA extraction kits. 

Sample Extraction kit 
Plate count 

(log cfu g
-1

) 

Real-Time PCR 

quantification 

(log cfu g
-1

) 

ANOVA 

analysis 

(kit-plate count) 

ANOVA 

analysis 

(kit-kit) 

Inoculated mozzarella DNeasy
®
 mericon 

TM
 Food 

7.9±0.0 
7.73±0.2 n.s.d. 

n.s.d. 
Inoculated mozzarella QIAamp

® 
DNA Stool 7.95±0.1 n.s.d. 

Mozzarella as such  DNeasy
®
 mericon 

TM
 Food 

<1 
6.50±0.1 ** 

n.s.d. 
Mozzarella as such  QIAamp

® 
DNA Stool 5.47±0.1 ** 

n.s.d.: no significant difference at p<0.05; *: significant difference at p<0.05; **:significant difference at p<0.01 

 

 

 

TABLE 4.2 Comparison of QIAamp® DNA Stool and InstaGene
TM

 Matrix DNA extraction kits. 

Sample Extraction kit 
Plate count  

(log cfu g
-1

) 

Real-Time PCR 

quantification 

(log cfu g
-1

) 

ANOVA 

analysis 

(kit-plate count) 

ANOVA 

analysis 

(kit-kit) 

Mozzarella as such  QIAamp
® 

DNA Stool 
<1 

3.71±0.1 * 
* 

Mozzarella as such  InstaGene
TM

 Matrix 6.16±0.2 ** 

Inoculated mozzarella QIAamp
® 

DNA Stool 
4.04±0.1 

5.00±0.0 n.s.d. 
* 

Inoculated mozzarella InstaGene
TM

 Matrix 7.19±0.1 * 

Inoculated mozzarella QIAamp® DNA Stool 
5.97±0.0 

6.62±0.2 n.s.d. 
* 

Inoculated mozzarella InstaGene
TM

 Matrix 9.15±0.1 * 

n.s.d.: no significant difference at p<0.05; *: significant difference at p<0.05; **:significant difference at p<0.01 
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4.3.2 Optimization and repeatability of DNA extraction 

To optimize the DNA extraction, the same mozzarella was analysed starting from different 

quantities (0.2-1g) and using different stomaching times (2-5minutes). Those samples were also 

compared with the corresponding ones subjected to the revivification treatment at 35°C for 4 

hours, in order to allow the adaptation and the growth of the stressed cells and to quantify them 

as difference between the values obtained for the two corresponding samples (with and without 

the treatment) (table 4.3). 

From table 4.3 appeared that none of the considered variables influenced the analysis: there are 

no statistically significant differences at 95% among all the samples. Also the incubation 

treatment seemed not to modify the detected concentrations, suggesting that this is not a good 

way to quantify the stressed cells; for this reason this step was no longer utilized. 

In order to quantify the cells in food samples, several calibration curves (three independent 

experiments) were created starting from serially diluted cells in trypton salt solution (0.85% 

w/v); DNAs were extracted and subjected to qPCR. The linearity range was found from 1 to 

7log cfu ml
-1

, the efficiency was 85.327% and the determination coefficient (R
2
) was 0.986 

(Fig.4.1). 

The repeatability of the DNA method was evaluated conducing independent analyses of 

mozzarella cheeses from the same production line batch. From each sample, ten DNA 

extractions and quantifications were conduced. In table 4.4 are shown the average and the 

standard deviations of the two analyses. 

The good repeatability of the method was confirmed; no statistically significant differences 

were found among the samples inside the same analysis (intra-analysis) and even between the 

two different analyses (inter-analysis). 

 

Fig. 4.1 Calibration curve for DNA quantification, showing the linear relationship between the 

Threshold Cycle (CT) values and Log cfu for serially diluted DNA obtained from an overnight 

P. fluorescens culture.  

y= -3.033x+34.181 

R
2
= 0.986 

E= 85.327% 
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TABLE 4.3 QIAamp® DNA Stool DNA extraction kit optimization. 

Sample 

(g) 
Revivification 

treatment 

Stomacher 

Time 

Plate count 

(log cfu g
-1

) 

Real-Time PCR 

quantification 

(log cfu g
-1

) 

ANOVA 

analysis 

0.2 / 

2 min 

<1 5.65±0.03 

n.s.d. 

0.2  <1 5.35±0.22 

1 / <1 5.13±0.01 

1  <1 5.06±0.10 

0.2 / 

5 min 

<1 5.75±0.06 

0.2  <1 5.49±0.03 

1 / <1 5.27±0.00 

1  <1 5.23±0.05 

/= Sample non-subjected to the treatment; =sample subjected to treatment 

n.s.d.: no significant difference at p<0.05 

 

 

TABLE 4.4 Repeatability of the DNA analysis. 

 
 Values (log cfu g

-1
) Mean SD 

ANOVA  

intra-analysis 

ANOVA  

inter-analyses 

First 

analysis 
5.65 5.35 5.43 5.13 5.06 5.75 5.49 5.29 5.27 5.23 5.36 0.19 n.s.d. 

n.s.d. 
Second 

analysis 
5.35 5.03 5.80 5.86 5.77 5.43 5.64 5.69 5.37 5.47 5.54 0.26 n.s.d. 

n.s.d.: no significant difference at p<0.05 
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4.3.3 Seasonality 

 

Optimized the method, samples of mozzarella as such and inoculated with known 

concentrations of overnight colture of P. fluorescens were analysed in different moment of the 

year. Table 4.5 shows the means of the results obtained in the warmer period (spring and 

summer), which is the most critical period for milk quality. 

In both seasons, the DNA concentrations in the non-inoculated samples were very high and 

showed statistically significant differences with the plate count, suggesting the presence of 

stressed or dead cells which represented the background noise of the matrix. These values were 

not always the same; in particular in summer mozzarella it was significantly higher than the 

spring-time sample. This kind of differences was explained by the different quality of the raw 

milk and the seasonality of the production (Barron et al., 2001; Caridi et al., 2003; Alonso et al., 

2011).  

Looking at the DNA quantification of the inoculated samples was affected by the background 

value. Depending on the noise concentration, the quantification of the inoculated samples were 

differently affected: statistically significant differences (p<0.01 and/ or p<0.05) were found in 

spring mozzarella for all the samples inoculated with concentrations lower than 3.67log cfu g
-1 

(sample D), whereas in summer mozzarella for almost all the samples inoculated with 

concentrations lower than 5.60log cfu g
-1 

(sample F). 
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TABLE 4.5 DNA analyses on mozzarella during the year.  

 

Spring-time analysis Summer-time analysis 

Sample; 

inoculum 

(log cfu g
-1

) 

Plate count  

(log cfu g
-1

) 

Real-Time PCR 

quantification 

 (log cfu g
-1

) 
ANOVA 

analysis 

Sample; 

inoculum 

(log cfu g
-1

) 

Plate count 

(log cfu g
-1

) 

Real-Time PCR 

quantification 

 (log cfu g
-1

) 
ANOVA 

analysis 

Means SD Means SD Means SD Means SD 

A (0) <1 0.00 3.26 0.72 ** A (0) <1 0.00 5.57 0.47 ** 

B (1) 1.59 0.41 3.68 0.18 ** B (1) 1.91 0.29 5.86 0.24 ** 

C (2) 2.66 0.33 4.10 0.24 ** C (2) 3.02 0.25 5.89 0.03 ** 

D (3) 3.67 0.44 4.13 0.24 * D (3) 3.82 0.44 6.27 1.19 ** 

E (4) 4.44 0.29 4.97 0.58 n.d.s. E (4) 4.81 0.30 5.96 0.03 ** 

F (5) 5.61 0.61 6.06 0.82 n.d.s. F (5) 5.60 0.44 6.60 0.28 * 

G (6) 6.29 0.04 7.07 0.58 n.d.s. G (6) 6.70 0.43 7.40 0.25 n.d.s. 

n.s.d.: no significant difference at p<0.05; *: significant difference at p<0.05; **:significant difference at p<0.01 
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4.3.4 Set up of RNA extraction for evaluating alive cells 

Seeing that it was not possible to establish a priori the background noise of the matrix and to 

quantify only the live cells the RNA was analysed.  

As for DNA analysis, calibration curves (three independent experiments) were created starting 

from serially diluted cells in trypton salt solution (0.85% w/v). The linearity range was from 1.7 

to 6.7log cfu ml
-1

, the efficiency was 82.855% and the determination coefficient (R
2
) was 0.982 

(Fig. 4.2).  

The repeatability of the RNA method was evaluated conducing three independent analyses of 

mozzarella cheeses from the same production line batch. From each sample, seven RNA 

extractions and quantifications were carried out (table 4.6). This analysis confirmed a good 

repeatability of the method: no statistically significant differences were found.  

To quantify the background noise of the death and uncultivable (VBNC) cells, we compare the 

quantification of the total DNA and RNA of mozzarella samples as such and inoculated with 

increasing and known concentrations of overnight colture of P. fluorescens DSM50106
T 

(table 

4.7). The values of plate count, DNA and RNA quantifications of each sample were used to 

quantify the dead and uncultivable cells. Again the background noise of the matrix (DNA of 

non-inoculated sample) affected the DNA quantification especially of the samples inoculated 

with low concentrations. The dead cells were quantified by subtraction of RNA concentration 

from DNA quantification; this value is around 4.5log cfu g
-1

 and it increased in the last three 

samples for the presence of inoculum dead cells. The Viable But Non-Culturable cells instead 

were quantified by subtraction of plate count results from RNA quantification; this value was 

around 2.5log cfu g
-1

 and became higher in the lasts samples due to the inoculum. 

 

 

 

Fig. 4.2 Calibration curve for RNA quantification, showing the linear relationship between the 

Threshold Cycle (CT) values and Log cfu for serially diluted DNA obtained from an overnight 

P. fluorescens culture.  

 

y= -3.084x+32.687 

R
2
= 0.982 

E= 82.855% 
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FIGURE 4.2 

 

TABLE 4.6 Repeatability of the RNA analysis. 

 

 

 

 

 

 

Table 7 – DNA and RNA comparison. 

Sample 
Plate count 

(log cfu g
-1

) 

DNA RT-PCR 

quantification 

(log cfu g
-1

) 

RNA RT-PCR 

quantification 

(log cfu g
-1

) 

Dead cells 

(log cfu g
-1

) 
VBNC cells 

(log cfu g
-1

) 

Mozzarella as such <1 4.52±0.2 1.94±0.1 4.51±0.3 1.94±0.1 

Inoculated mozzarella 1.81±0.2 4.40±0.2 2.32±0.1 4.40±0.3 2.16±0.4 

Inoculated mozzarella 2.79±0.1 4.56±0.1 2.94±0.3 4.55±0.4 2.41±0.2 

Inoculated mozzarella 4.11±0.1 4.81±0.3 4.13±0.2 4.71±0.4 2.70±0.4 

Inoculated mozzarella 4.91±0.2 5.29±0.2 4.93±0.1 5.05±0.3 3.49±0.4 

Inoculated mozzarella 5.91±0.3 6.23±0.0 5.91±0.2 5.95±0.2 3.95±0.3 

Inoculated mozzarella 6.95±0.2 7.17±0.1 6.96±0.1 6.75±0.2 4.81±0.3 

 Values  (log cfu g
-1

) Mean SD 
ANOVA  

intra-analysis 

ANOVA  

inter-analyses 

First 

analysis 
3.49 3.83 3.42 3.92 3.72 3.82 3.92 3.73 0.20 n.s.d. 

n.s.d. 
Second 

analysis 
2.69 2.84 3.08 3.20 2.83 3.02 2.38 2.86 0.28 n.s.d. 

Third 

analysis 
3.90 4.04 4.08 3.64 3.01 3.65 3.14 3.64 0.42 n.s.d. 

n.s.d.: no significant difference at p<0.05 
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4.3.5 Method application 

 

Thinking about the “blue mozzarella event” of 2010, we tried to reproduce the blue 

pigmentation. In particular different mozzarella cheeses form the same production line batch 

were inoculated with a note concentration (2.30log cfu g
-1

) of blue pigment producer P. 

fluorescens, incubated at 4°C, and 12°C for 30 days, and at 25°C for 2 days. Non-inoculated 

samples from the same production line batch were incubated and analysed as controls. The plate 

count specific for Pseudomonas spp. was done after different time (figure 4.3) and 17 days of 

storage the molecular analysis was conduced; in the same analysis a sample of another 

production line batch, recalled from the market because naturally become blue, was also 

analysed (table 4.8).  

In figure 4.3 the continuous lines represented the non-inoculated samples and show different 

trends of growth according to the temperature. The dashed lines instead represented the 

inoculated mozzarellas: the strain grew very quickly from the beginning producing the blue 

pigmentation at all temperatures when it reached around ten to the eight cfu g
-1

.  

In table 4.8 are reported the molecular analysis conduced after 17 days of storage. The samples 

of this analysis were the only non inoculated samples (A and C) positives to the plate count 

plating (around 3log cfu g
-1

); their VBNC value instead was variable: at 12°C the revivification 

seemed to be favourite, showing lower VNBC value (2.58log cfu g
-1

) than that at 4°C (3.86log 

cfu g
-1

). For B and D samples (inoculated samples), the dead cells were higher for the inoculum 

(7log cfu g
-1

) and the VBNC were approximately zero, indicating that the revivification was 

complete. For the E sample very high alive and VBNC cells values were found (8.75 and 

8.49log cfu g
-1

 respectively). Interesting was that the blue pigmentation appeared when the 

Pseudomonas concentrations reached around 8.0log cfu g
-1

 of alive cells.  

 



 

 69 

Fig. 4.3 Growth of blue pigment producer strain of Pseudomonas in mozzarella at different temperature of storage. 

 
 

 

TABLE 4.8 DNA and RNA comparison of blue mozzarellas. 

Sample 
Storage 

temperature 

Sample 

colour 

Plate count  

(log cfu g
-1

) 

DNA RT-PCR 

quantification  

(log cfu g
-1

) 

RNA RT-PCR 

quantification  

(log cfu g
-1

) 

Dead cells 
(log cfu g

-1
) 

VBNC cells 

(log cfu g
-1

) 

A As such  4°C Normal 2.74±0.1 3.95±0.2 3.89±0.1 3.06±0.3 3.86±0.2 

B Inoculated  4°C Blue 8.52±0.1 8.79±0.1 8.76±0.2 7.01±0.3 0.24±0.3 

C As such 12°C Normal 3.91±0.2 4.01±0.1 3.93±0.2 3.04±0.3 2.58±0.4 

D Inoculated  12°C Blue 7.96±0.1 8.30±0.2 7.96±0.1 7.03±0.3 0.00±0.2 

E As such 
Cold chain 

during sale 
Blue 8.75±0.2 8.97±0.1 8.94±0.2 7.79±0.3 8.49±0.4 
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4.3.6 PMA pre-treatment: preliminary results 

 

The identified method appeared rapid, effective and suitable for the detection of Pseudomonas 

spp., but economically expensive; trying to remedy this problem, a pre-treatment with 

Propidium MonoAzide was utilized. This is a dye able to enter inside cells with compromised 

membranes and, after photo-activation, to intercalate into the nucleic acids creating stable cross-

links, which prevent from the amplification of the DNA of dead cells. The reducing of the costs 

will be due to the excluding of RNA quantification and the possible quantification of the only 

DNA after the pre-treatment with PMA. 

We analysed mozzarellas as such and inoculated with different and known concentrations of P. 

fluorescens DSM 50106
T
. DNA and RNA were extracted and quantified in absence of PMA 

and after pre-treatment.  

In our analysis, RNA after PMA pre-treatment was used as control to check the selectivity of 

the dye: in fact RNA quantification allow to quantify alive cells, and for this reason the PMA 

treatment shouldn’t have any effects on this quantification, they should show similar values. If 

the two values appear different it could means that the PMA penetrated also into the live cells, 

damaging and killing them. In addition RNA was also a control, to check the efficacy of the 

pre-treatment: DNA after pre-treatment in fact should show the same values obtained for RNA.  

In table 4.9 are shown the preliminary results. For the non-inoculated mozzarella, the RNA 

values in presence and absence of PMA appeared the same (around 1.9log cfu g
-
1) and close to 

the plate count value. The pre-treatment with PMA seemed to have a partial effect on DNA 

concentration that from 4.5log cfu g
-1

 became 2.38log cfu g
-1

, but nevertheless remaining too 

high. 

For mozzarella inoculated with low concentration of P. fluorescens (3.95log cfu g
-1

), the PMA 

treatment worked very well: DNA quantification passed from 4.79log cfu g
-1

 to 3.97log cfu g
-1

 

after pre-treatment reaching RNA (with and without PMA). 

Different results instead were shown on mozzarella inoculated with higher P. fluorescens 

concentration (7.22log cfu g
-1

). In this case in fact it seemed that PMA could penetrat into live 

cells showing about 2log cfu g
-1

 less then the quantity really present in the sample. 

The results here presented are only a preliminary study and more analyses have to be done. 

 

 

 

 

 



 

 71 

 

 

 

 

 

 

TABLE 4.9 PMA pre-treatment analysis. 

 

 

Sample and 

inoculum  

(log cfu g
-1

) 

Plate count 

(log cfu g
-1

) 

Real-Time PCR quantification 

(log cfu g
-1

) 

DNA RNA 

Before PMA After PMA Before PMA After PMA 

Mozzarella 

as such       (0) 
<1 4.50±0.2 2.38±0.1 1.90±0.2 1.92±0.1 

Inoculated 

mozzarella (4) 
3.95±0.2 4.79±0.1 3.97±0.2 3.92±0.2 3.90±0.2 

Inoculated 

mozzarella (7) 
7.22±0.2 7.35±0.1 5.38±0.2 7.21±0.3 5.29±0.1 
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4.4 DISCUSSION AND CONCLUSIONS  

Pseudomonas genus is known to be an important spoilage organism of foods (Caldera & 

Franzetti, 2013); in particular it can deteriorate foods due to its life on the surface: growing and 

producing biofilms, anomalous colours, browning and enzymes or even after the death of the 

cells: many of its extracellular enzymes in fact are heat stable, survive the heat treatments and 

remain active in the derived products (Marchand et al., 2009; Arslan et al., 2011). For this 

reason, it is very important to rapidly detect and quantify the presence of live Pseudomonas but 

also dead and Viable But Non-Culturable cells to prevent deterioration of dairy products. In 

fact, as Gunasekera et al. (2003) suggested for milk, a rapid method for the detection and 

enumeration of Pseudomonas can facilitate the identification of specific contamination sources 

and the prediction of food shelf life. 

Therefore, the goal of this study was the set up of a rapid method for the detection, the 

quantification and the distinction of total, live, dead and VBNC cells of Pseudomonas genus in 

mozzarella. 

The method consists of the DNA and RNA extraction from mozzarella, reverse transcription of 

RNA into cDNA, amplification of DNA and cDNA in Real Time-PCR, quantification with the 

calibration lines and calculation of all the indices concentrations. The DNA values represents 

the totality of alive, VBNC and dead cells; RNA concentration is composed by alive and VBNC 

cells; the dead cells were quantified as difference between DNA and RNA and the VBNC cells 

were quantified as difference between RNA and plate count or inoculum. 

Our analysis suggested that the quality of raw milk used for mozzarella production affects the 

amount of dead and non-culturable cells present in the final product. In fact during the four 

seasons of the year the value of DNA concentration was variable among 3log cfu g
-1

 and 6log 

cfu g
-1

 (non inoculated samples). These values affected the DNA quantification of 

Pseudomonas spp. in samples previously contaminated with known concentrations of P. 

fluorescens DSM 50106
T
. 

A P. fluorescens blue pigment producer was intentionally inoculated on mozzarella. On the 

inoculated samples and on the naturally blue product recalled from the market, the blue 

coloration appeared when the microbial concentration reached 8log cfu g
-1

 and, in accordance to 

Sechi et al. (2013), even when they were kept in refrigeration conditions. 

The developed method requiring less than 4 hours is much faster than the 48 hours for 

presumptive identification using Pseudomonas selective media; it is also much specific and 

allows to distinguish among the dead, VBNC and live cells in mozzarella. It has also the 

possibility of be adapted for the detection of other organisms or single interesting Pseudomonas 

specie (such as P. fluorescens) by utilizing specific primers in the amplification. The possible 

costs reducing, by only quantify DNA after PMA treatment, is still under evaluation.  

In conclusion, the development of rapid method for detection, enumeration and recognition of 

the state (live, dead, VBNC) of Pseudomonas cells in mozzarella are important for quantitative 

population analysis of bacteria in this product. 
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5. INFLUENCE OF LOW OXYGEN TENSION 

PACKAGING SYSTEM ON MICROBIAL EVOLUTION 

IN BEEF AND HAMBURGERS 
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5.1 INTRODUCTION 
Meat is a very perishable food. It represents a favourable substrate for microbial growth thanks 

to its chemical composition: it presents a very high aw value (around 0.99) and a slightly acid 

pH (5.5-6.5) and contains all the nutrient substances (Marshall et al., 2001). Microorganisms 

firstly use glucose, and then they deteriorate amino acids and proteins realizing volatile 

compounds, such as putrescine and cadaverine, that induce off-flavours (Ercolini et al., 2010; 

Limbo et al., 2010). The spoilage of meat can occur as strong off-odours and off-flavours, 

discoloration, superficial slime, uncontrolled acidification, putrefaction and presence of 

fluorescence (Nychas et al., 2008). 

Wide ranges of microorganisms from different sources can be transferred onto meat at different 

moments of the production: before the slaughter, during slaughter and post mortem. Before the 

slaughter, the contamination is usually due to intestinal microorganisms and it happens if the 

animal is very stressed or under ill health. During the slaughter it is caused by environmental 

and intestinal bacteria, conveyed by contaminated tools, operators and delayed evisceration. 

The post mortem contamination is due to environmental microorganisms and usually affects the 

surface of meat (Galli Volonterio, 2005). 

High variety of microorganisms can contaminate meat surface. The most frequent bacteria are 

Pseudomonas spp., Aeromonas spp., Acitenobacter spp., Moraxella spp., Micrococcus spp., 

Streptococcus spp., Leuconostoc spp., Enterobacteriaceae, Clostridium spp. Flavobacterium 

spp. Brochothrix thermosphacta and Lactobacillus spp.; and among yeast has been recognized 

Saccharomyces spp., Candida spp. and Rhodotorula spp. and the most common moulds are 

Mucor spp., Alternaria spp., Penicillium spp., Aspergillus spp. (Gram et al., 2002; Olsson et al., 

2003; Koutsoumanis et al., 2008). In particular according to Nychas et al. (2008), aerobically 

stored meat is commonly spoiled by Pseudomonas (especially fluorescens, fragi and lundensis 

species), instead Enterobacteriaceae (e.g. Hafnia alvei, Serratia liquefaciens, Enterobacter 

agglomerans) have been considered as indicators of food safety. Both Lactic Acid Bacteria and 

Brochothrix thermosphacta are the main cause of spoilage in term of souring of meat packed 

under vacuum or modified atmospheres. 

To avoid meat deterioration different technological methods were used, in particular the 

packaging conditions have been widely studied. Vacuum packaging combined with storage 

under chilled conditions (Venter et al., 2006; Pennacchia et al., 2011; Nowak et al., 2012b), 

antimicrobial packaging films (active packaging) (Skandamis et al., 2001; Mauriello et al., 

2004; Ercolini et al., 2006; Ercolini et al., 2010) and modified-atmosphere packaging with 

different gases concentrations (Faber, 1991; Gill, 2003; Jeremiah, 2001, Nowak et al., 2012b) 

have been used and studied since long time.  

The solution utilized in this work, optimized by Limbo et al. (2013), consists of enclosing the 

traditionally packaged meat (trays overlapped with a film characterized by high gas 

permeability) into a master bag, able to contain multiple packages in low oxygen tension. At the 

opening of the master bag, meat has to be bloomed to get back the desirable red colour. This 

solution allows to facilitate the retailer labor and distribution, reducing waste of products and 

prolonging meat storage at retail store.  

 

5.1.1 Aim of the study  

The aims of this work were i) to assess the microbiological quality and microbiota development 

of slices of beef and hamburgers during shelf life, ii) to verify the influence of maser bag 

storage and the following display-life on microbiota composition and growth, iii) to identify the 

most frequently found microbial strains responsible for deterioration phenomena, iv) to conduce 

a challenge test to assess the growth of Listeria monocytogenes in hamburgers. 
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5.2 MATERIALS AND METHODS 

5.2.1 Samples 

Slices of beef and hamburgers packaged into trays overwrapped with a PVC stretch film with 

high oxygen permeability, were introduced in master bag, made by a coextruded film and 

containing 30% of CO2 and 70% of N2 and two oxygen absorbers. The master bag were stored 

at 0-1°C; at the opening times the trays were stored for 4 hours at 3°C in the dark to promote 

the oxygenation of the myoglobin (blooming) and then stored at 5°C in the presence of light to 

simulate the conditions of supermarket distribution (Limbo et al., 2013).  

5.2.2 Microbiological analysis  

Microbiological analyses were carried out at time zero, after 7, 14 and 21 days of slices of beef 

storage inside master bags immediately after the blooming, at time zero, after 4, 8 and 13 days 

of hamburgers storage inside master bags, and after 24 and 48h of display life for both products. 

Slices of beef and hamburgers traditionally packaged into trays overwrapped with a PVC 

stretch film with high oxygen permeability were analysed during their shelf life (three days at 

4°C) as control. 

Each time sampling 10g of meat were drawn from two trays and homogenized with 90ml of 

sterile 0,85% trypton salt solution in a sterile Stomacher bag, by the use of a Colworth 400 

Stomacher for 5 minutes. Decimal progressive dilutions were prepared and the following 

bacteriological determinations were carried out: Total bacterial count (TBC) was assessed by 

pour plates on Plate Count Agar (Merck Germany) (ISO, 2003), incubation at 30 °C for 72h. 

Enterobacteriaceae were assessed by double layer pour plates on Violet Red Bile Dextrose Agar 

(VRBD) (Merck Germany) (ISO, 2004), incubation at 37 °C for 24h. Escherichia coli was 

measured by pour plates on TBX (Merck Germany) (ISO, 2001), incubation at 37 °C for 24h. 

Pseudomonas spp. was assessed by spread technique on Pseudomonas Agar Base added with 

CFC Selective (Merck Germany) (ISO, 2010), incubation at 35 °C for 5 days. Lactic acid 

bacteria (LAB) were measured by pour plates on APT (Merck Germany), incubation at 30 °C 

for 48h under anaerobic condition (gas pack). Spores of Clostridium perfringens was counted in 

the presence of Sulphite Polimixin Sulfadiazine after pasteurization at 80 °C for 10min 

according to Angelotti et al. (1962). Brochrotix thermosphacta was assessed in STAA (Merck 

Germany) by spread plates, incubation at 30 °C for 48–72h (Dainty et al., 1980). Salmonella 

spp. (ISO, 2007) and Listeria monocytogenes (ISO, 2004) were determined in 25g of product.  

All microbiological analyses were carried out in triplicate, and the results were expressed as the 

mean log cfu g
-1

.  

5.2.3 Isolation and phenotypic characterization  

All colonies grown on the last dilution of PCA, Pseudomonas Agar Base, APT and STAA were 

collected, purified and stored in 20% (vol/vol) glycerol at -20°C. The isolates were tested for 

morphology, motility, Gram staining by optical microscopy (1200X), catalase and oxidase 

productions and oxidative/fermentative metabolism (OF test, Hugh et al., 1953) for a 

preliminary biochemical characterisation.  

5.2.4 DNA extraction and PCR protocols 

Genomic DNA from isolates was extracted from 300µl of an overnight culture diluted with 

400µl of 1X TE buffer (10mM Tris-HCl and 1mM Na2EDTA, pH 8.0) as described by Mora et 

al. (2000). 

All PCR reactions were performed in a volume containing approximately 50-100ng of bacterial 

genomic DNA solution, 5µl of 10X PCR reaction buffer, 200µM of each dNTP, 2mM of 

MgCl2, 0.5µM of each primer and 0.5U of Taq Polymerase (Amersham- Pharmacia).  
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The primers and the amplification conditions used are shown in table 5.1, except for 16S rDNA 

amplification that was performed using the following thermal profile: 2 min at 94 °C; 5 cycles 

consisting of 94 °C for 45s, 55 °C for 1min, 72 °C for 2min; 35 cycles consisting of 92 °C for 

45s, 60 °C for 45s, 72 °C for 2min; final extension of 72 °C for 2min; and final cooling at 4 °C.
 
 

All the amplifications were performed in a DNA thermal cycle (Biometra T gradient, 

Germany). Following the amplification, 7µl of each amplificate was analysed by 

electrophoresis at 100V (1% agarose gel, 0.2µg of ethidium bromide ml-1) in TAE buffer.  

For Brochothrix genus new forward primer was created based on the 16S gene. The sequences 

of two B. thermosphacta (ATCC 11509) and B. campestris (ATCC 43754) were aligned with 

the sequences of other bacteria using ClustalW. The optimization of the amplification was made 

by conducing a gradient of the annealing temperature between 45 and 55°C and 52°C appeared 

the optimal temperature. 

5.2.5 Partial sequencing of the 16S rDNA gene  

After amplification of the 16S rDNA gene from extracted DNA, the PCR product was purified 

according to the instructions of a commercial kit (Qiaquick, Qiagen), and the strains were 

sequenced with the 16S forward primer in a model 310 automatic DNA sequencer (Applied 

Biosystem, Foster City, CA). The obtained sequences were elaborated by using the software 

Chromas 2.13 (Technelysium Pty Ltd. Helensvale, Queensland, Australia). Sequence data of 

type strains were retrieved from NCBI sequence database and pairwise comparison was 

conduced using BLAST program.  

5.2.6 Challenge test 

The aim of a challenge test is to assess the growth of a pathogen in food by artificially 

inoculation with a known concentration of the microorganism target, followed by the 

determination of its growth during a defined period (shelf life) at given temperatures.  

Challenge testing was performed on hamburgers with the following method: three Listeria 

monocytogenes strains (ATCC 20600
T
 and two strains isolated from meat products) were grown 

overnight at 30 °C in Tryptone Soya Broth (Oxoid, Basingstoke, Hampshire, England), diluted 

and mixed to inoculate the surface of the meat in order to obtain inoculum levels of about 2 and 

4log cfu g
-1

. The total count of the inoculum was determined by microscopy quantification, and 

the concentration of the alive cells of the inoculum was quantified by culture dilutions plating 

on Tryptone Soya Agar (Oxoid, Basingstoke, Hampshire, UK). 

For each sampling day, two inoculated hamburgers were prepared. They were re-packed in 

PVC overlapped trays and in master bag conditions. The analyses were conduced during storage 

of traditionally packaged samples and at the same opening times reported in 5.2.1.  

The challenge test permits to establish the growth potential, which is calculated as difference 

between the log10 counts at the end of shelf life and the log10 of the initial concentration. If the 

difference between the counts at “day end of shelf life” and “day 0” did not exceed 0.5log10, the 

count values changes may be attributed to the uncertainty of microbiological measurement and 

hence this was not identify as significant growth of the pathogen (EU CRL L. monocytogenes, 

2008) (Uyttendaele et al., 2009). 

5.2.7 Statistical analysis 

The obtained counts were subjected to one-way analysis of variance (ANOVA). In case of 

statistically significant differences the Tukey multiple comparison test was performed (p < 0.05 

and p <0.01).  

 



 

 79 

 

 

 

Table 5.1 PCR primers and annealing temperature condition used. 

 

 

 

Gene Primers pair (5’-3’) 
Annealing 

temperature 

Intergenic spacer region  

(ITS) (Mora et al., 2003) 

ITSF: 

ITSR: 

GTCGTAACAAGGTAGCCGTA 

CAAGGCATCCACCGT 
54°C 

16S rDNA region 

(Lane et al., 1985) 

16SF: 

16SR: 

AGAGTTTGATCCTGGCTCAG 

CTACGGCTACCTTGTTACGA 
See in the text  

Brochotrix spp. (F: this study; 

R: Turner et al., 1999) 

BrocT: 

1100R: 

TGTGCTGAACATCAT 

AGGGTTGCGCTCGTTG 
52°C 
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5.3 RESULTS AND DISCUSSION 

 

5.3.1 Beef and hamburger quality control and master bag conservation analysis. 

The analysed beefs and hamburgers appeared of good hygienic quality: Salmonella spp. and 

Listeria monocytogenes were always absents in 25g, while E. coli was found with values less 

than 1log cfu g
−1

, the accepted level according to the European Regulation (Reg. 1441/2007). 

Table 5.2 shows the evolution of the quality microbial indices recognized in meat never stored 

in master bag. At time zero, before packaging, the Total Bacterial Count showed good values of 

about 3.4log cfu g
−1

 for slices and 5.4log cfu g
−1

 for hamburgers, and seemed mostly 

represented by Lactic Acid Bacteria, Pseudomonadaceae and Brochothrix thermosphacta. The 

last two indices grew during the two/three days of conservation, according to their metabolism 

in the traditional storage conditions (packaged in PVC wrapped trays, in air and stored at 

4±2°C). Especially Pseudomonas spp., which is the most important responsible of spoilage of 

meat, under aerobic condition represented the dominant microbiota. In particular in hamburgers 

it passed from 4.8 to 6.7log cfu g
-1

 during three days of storage, never reaching the limit value 

(7log cfu g
-1

) attributed to slime and off-odours formation (Nychas et al., 2008). LAB grew 

slowly, reaching values similar to Pseudomonas spp. when the oxygen availability decreased. 

The master bag conservation instead for the slices of beef seemed to have a bacteriostatic 

activity decelerating the TBC especially during the first two weeks, and limiting the growths of 

Pseudomonas spp. and B. thermosphacta that showed constant and low concentration values 

until the end of the experimentation (around 3log cfu g
−1

). The Lactic Acid Bacteria are the 

microbial population favourite in these conditions: they have a very rapid growth especially in 

the first seven days, after which they represent the biggest microbial component of the 

microbiota. Similar but more pronounced trends were identified for hamburgers: TBC slowly 

grew during the first four days reaching a stable value around 6.3log cfu g
−1

, Pseudomonas spp. 

and Brochothrix spp. showed stable levels until the end and LAB growth was favourite (Table 

5.3). 

The explanation of those trends is the hypothesis that Pseudomonas spp. and Brochotrix spp. 

were inhibited by the master bag conditions (combination of low oxygen concentrations with 

high carbon dioxide levels) and also by the acidification induced by Lactic Acid Bacteria (Lee 

and Yoon, 2001). The pH of the slices of beef, for example, decreased from 5.75±0.03 to 

5.50±0.05 in three weeks of master bag storage.  

 

5.3.2 Display-life of slices of beef after master bag storages.  

The results of the aerobic display-life analysis after 7 and 14 days in master bag are shown in 

table 5.4.  

For the first master bag opening (after 7 days of storage), Total Bacterial Count and 

Pseudomonas spp. seemed to be stable during the three days of conservation with low values. 

The other two indexes showed an important deceleration during the first 24 hours, after which 

Lactic Acid Bacteria became stable and B. thermosphacta started to grow, reaching values 

similar to the TBC. 

For the second master bag opening (after 14 days of storage), Total Bacterial Count and Lactic 

Acid Bacteria showed a similar fluctuant trend: during the first 24 hours they grew of 1log cfu 

g
-1

, then they came back to the initial values and during the last day they grew again. 

Pseudomonas spp. and B. thermosphacta instead showed the same attitude found after the first 

opening of master bag: the first stayed always stable and the second had an initial deceleration 

after which it grew again. 
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The explanation of those trends is different for each index: the deceleration of Lactic Acid 

Bacteria during the display life of the samples was due to the aerobic conditions, which 

appeared less favorable for their growth than the anoxic master bag storage; Pseudomonas spp. 

maintained constant concentrations during the display-life in air, probably for the residual effect 

of carbon dioxide of master bag; B. thermosphacta instead showed a trend inversely correlated 

to the LAB concentrations, in accordance to Russo et al. (2006) in fact a decrease was 

recognized when the LAB level increased. 

 

5.3.3 Display-life of hamburgers after 4 and 8 days in master bag.  

The results of the aerobic display-life analysis after 4 and 8 days in master bag are shown in 

table 5.5.  

For the first master bag opening, after an initial adaptation of about one day during which they 

showed a decrease, all the indices slowly grew, except for Pseudomonas spp., which rapidly 

increased reaching important values close to the TBC. 

Similar trends were recognized after the second master bag opening, even if the adaptation 

appeared less important especially for Pseudomonas spp. and Brochothrix spp., which rapidly 

increased of one log during the first day. 

In hamburgers it seemed that the residual effect of carbon dioxide of master bag less affected 

Pseudomonas spp., probably because of the feature of the matrix: hamburgers made by minced 

meat are characterized by a large surface area in contact with the external environment that 

allow a rapid replacement of the atmosphere, quickly reducing the carbon dioxide concentration 

at the mater bag opening. 
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TABLE 5.2. Evolution of the most interesting microbial indices during traditional storage. 

Sample 
Time 

(days) 
TBC 

Pseudomonas 

spp. 

Lactic Acid 

Bacteria 

Brochothrix 

thermosphacta 

Slices of beef 

0 3.4±0.1 3,0±0.1 2.3±0.1 3.0±0.1 

1 4.2±0.2 3.7±0.1 2.5±0.1 3.1±0.1 

2 4.8±0.1 4.2±0.2 2.3±0.2 4.0±0.2 

Hamburgers 

0 5.0±0.2 4.8±0.2 5.7±0.2 4.2±0.1 

1 5.2±0.1 5.4±0.1 6.1±0.2 4.2±0.2 

2 5.8±0.3 5.6±0.3 6.2±0.1 5.4±0.1 

3 7.6±0.2 6.7±0.1 6.5±0.1 5.7±0.1 

 

TABLE 5.3. Evolution of the most interesting microbial indices during storage in master bag. 

Sample 
Time 

(days) 
TBC 

Pseudomonas 

spp. 

Lactic Acid 

Bacteria 

Brochothrix 

thermosphacta 

Slices of beef 

0 3.4±0.1 3,0±0.1 2.3±0.1 3.0±0.1 

7 4.4±0.2 3.3±0.2 5.5±0.3 3.1±0.1 

14 5.1±0.2 3.0±0.1 5.3±0.1 3.0±0.2 

21 6.9±0.2 2.8±0.3 6.6±0.2 3.3±0.1 

Hamburgers 

0 5.0±0.2 4.8±0.2 5.7±0.2 4.2±0.1 

4 6.3±0.1 5.1±0.1 6.1±0.1 5.1±0.1 

8 6.3±0.2 5.0±0.1 6.7±0.2 4.0±0.2 

13 6.4±0.2 5.2±0.1 6.7±0.3 4.0±0.1 

 

TABLE 5.4. Evolution of the most interesting microbial indices in beef during aerobic display-

life after 7 and 14 days in master bag. 

 
Time 

(hours) 
TBC 

Pseudomonas 

spp. 

Lactic Acid 

Bacteria 

Brochothrix 

thermosphacta 

First 

opening 

7 4.4±0.2 3.3±0.2 5.5±0.3 3.1±0.1 

8 4.4±0.1 3.4±0.1 4.5±0.2 2.8±0.2 

9 4.6±0.2 3.5±0.1 4.8±0.1 4.4±0.2 

10 4.7±0.3 3.5±0.2 4.9±0.2 4.5±0.3 

Second 

opening 

14 5.1±0.2 3.0±0.1 5.3±0.1 3.0±0.2 

15 6.2±0.1 3.2±0.1 6.3±0.2 3.2±0.2 

16 5.1±0.2 3.3±0.2 5.6±0.1 4.2±0.2 

17 5.6±0.2 3.8±0.3 6.6±0.2 4.4±0.1 

 

 

TABLE 5.5. Evolution of the most interesting microbial indices in hamburgers during aerobic 

display-life after 4 and 8 days in master bag. 
 Time 

(hours) 
TBC 

Pseudomonas 

spp. 

Lactic Acid 

Bacteria 

Brochothrix 

thermosphacta 

First 

opening 

4 6.3±0.1 5.1±0.1 6.1±0.1 5.1±0.1 

5 6.6±0.1  5.0±0.2  6.1±0.2 4.5±0.2 

6 6.7±0.2  6.6±0.1  6.5±0.1 4.6±0.2 

Second 

opening 

8 6.3±0.2 5.0±0.1 6.7±0.2 4.0±0.2 

9 6.6±0.1 6.1±0.2 5.6±0.2 5.1±0.1 

10 6.8±0.2 6.7±0.1 6.0±0.1 5.3±0.2 
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5.3.4 Identification of the strains. 

A total of 270 strains were isolates from PCA, MRS, PAB and STAA media. From PCA the 

70% was Gram negative, aerobic rod, the 15% was facultatively anaerobic Gram negative rod 

and 15% Gram positive, among which only the 3.5% was spores producer. Among the LAB 

from MRS the most important group (80%) was the hetero – fermentative rod. The strains 

isolated from PAB and STAA appeared preliminarily belonged from Pseudomonas spp. and 

Brochothrix spp. respectively; in fact the firsts were aerobic, Gram negative, oxidase positive 

rods and the seconds were facultatively anaerobic, Gram positive, catalase positive irregular 

rods.  

Microbial diversity investigation of all isolates was performed using the ITS-PCR assay with 

the universal primers. ITS profiles were used to create different groupings, and no less than two 

representatives from each group were identified by partial 16S rDNA sequencing.  

The sequencing results of the isolates form beef are reported in table 5.5. According to literature 

(Ercolini et al., 2006; Pennacchia et al., 2011), the Gram negative isolates appeared almost 

divided between Pseudomonadaceae and Enterobacteriaceae families; all the isolates from PAB 

belonged to Pseudomonas genus. Among Gram positives bacteria, the most represented genus 

were Carnobacterium and Brochothrix, they are typical microorganisms of meat.  

The sequencing results of hamburgers isolates are reported in table 5.6. In hamburgers less 

variability was found and the microbiota appeared almost equally divided between Gram 

positive and Gram negative strains. Among the positives, Carnobacterium spp. and B. 

thermosphactha appeared the numerically more important groups. Psedumonas fragi instead 

was the dominant specie in the Gram negative group and it represented the 50% of the total 

population. 

 

5.3.5 Brochothrix thermosphacta 

Seeing the importance of Brochothrix spp. in spoilage of meat (Nychas et al., 2008; Russo et 

al., 2006; Ercolini et al., 2009; Nowak et al., 2012a; Gribble et al., 2013) and its detected 

presence in the analysed meat, we created a primer specific for this genus. In particular the 16S 

gene sequences of the two species B. thermosphacta (ATCC 11509) and B. campestris (ATCC 

43754) were aligned with the sequences of other bacteria commonly encountered in meat 

products (figure 5.1). The alignments were performed using ClustalW. The portion underlined 

in yellow appeared typical of Brochothrix and it was used as forward primer; a universal primer 

was used as reverse. The gradient of the annealing temperature, conduced for the optimization 

of the amplification, indicated the optimal temperature at 52°C (results not shown), and the 

electrophoresis confirmed that the amplification was present only for Brochothrix genus (figure 

5.2). 
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TABLE 5.5. Identification of isolates from beef, obtained by 16S rDNA partial sequencing.  
 

 

 
 

 

TABLE 5.6. Identification of isolates from hamburgers, obtained by 16S rDNA partial 

sequencing.  
 

Group Identification 
Accession 

number 

Isolates 

number 

A Carnobacterium maltaromaticum AB680942.1 7 

B Carnobacterium divergens HM244940.1 9 

C Brochothrix  thermosphacta  AB680248.1 9 

D Lactobacillus sakei  GQ222408.1 8 

1 Pseudomonas fluorescens JF327452.1 2 

2 Pseudomonas fragi HM032860.1 10 

3 Pseudomonas fragi AB680088.1 13 

4 Pseudomonas fragi AB685607.1 11 

 

 

 

 

 

 

Group Identification 
Accession 

number 

Isolates 

number 

A Carnobacterium maltaromaticum AB680942.1 59 

B Carnobacterium divergens HM244940.1 3 

C Brochothrix  thermosphacta AB680248.1 20 

D Lactobacillus sakei  GQ222408.1 1 

E Streptococcus sp. X78826.1 16 

F Bacillus sp. AJ000648.1 4 

G Weissella beninensis EU439435 1 

H Staphylococcus sp. X84731.1 3 

1 Pseudomonas fluorescens JF327452.1 30 

2 Pseudomonas putida EU118779.1 13 

3 Pseudomonas fragi AB680088.1 4 

4 Pseudomonas sp. GQ280063.1 5 

5 Stenotrophomonas maltophila HQ671069.1 30 

6 Pantoea agglomerans FJ756348.1 2 

7 Serratia sp. FM178865.2 3 

8 Rahnella aquatilis DQ440548.1 4 

9 Hafnia alvei FM179944 3 
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Fig. 5.1 Sequence alignment of 16S gene sequences of B. thermosphacta, B. campestris and 

other species including meat products associated bacteria, showing the region where the primer 

BrocT was designed. Alignment was performed using ClustalW. 

 

Fig. 5.2 Electrophoretic gel of the amplification with primers specific for Brochothrix genus. 
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5.3.6 Challenge test analysis  

In figure 5.3 the evolution of the microbial indices of traditionally packaged samples is shown. 

Under aerobic condition Pseudomonas spp. represented the dominant microbiota. Both LAB 

and Pseudomonas spp. faster increased in presence of higher Listeria concentration (Figure 

5.3b) showing similar trends. These conditions didn’t represent a limit for L. monocytogenes 

growth: starting at low concentration, L. monocytogenes increased of two orders in one day, 

then it reached a plateau and remained stable until the end of experimentation (Figure 5.3a); 

when the initial inoculum was high (figure 5.3b), it grew more slowly, taking three days to 

increase of two orders.  

The master bag storage instead favored the LAB growth (figures 5.4 and 5.5). After 7 days of 

storage in master bags, in presence of low content of L. monocytogenes (fig. 5.4a) Lactic Acid 

Bacteria increased from 5 to 6log cfu g
-1

 and Pseudomonas spp., inhibited by the anaerobic 

condition, remained constant. On the contrary, in presence of high L. monocytogenes 

concentration (fig. 5.5a), Pseudomonas spp. increased of more than one log, as if the presence 

of L. monocytogenes favored Pseudomonas growth. After the opening of master bags, during 

display life at both pathogen concentrations, the aerobic condition promoted a rapid increasing 

of Pseudomonas spp.  

The storage in master bag limited the growth of L. monocytogenes that remains stable at 2 and 

4log cfu g
-1

 respectively. However the effects of the master bag are only bacteriostatic, and after 

the opening also this index showed a rapid growth especially during the first day of exposure.   

The results obtained after 10 days of storage in master bag and during display life (figures 5.4b 

and 5.5b) confirmed the previous results. 

 

5.3.6.1 Calculation of potential growth 

The obtained results allow to calculate the growth potential (δ) (Table 5.6), which represents an 

useful parameter to evaluate how much the investigated food promote the growth of the 

pathogen. The limit indicated by Reg. CE 1441/2007 upon which the food supports the growth 

of the pathogen is δ≥ 0.5log10.  

Form these results it appeared clear that master bag solution doesn’t create favorable conditions 

for L. monocytogenes, showing δ lower 0.5log10. However due to the bacteriostatic effects of 

the storage in master bag, after the opening the environment become again suitable for L. 

monocytogenes, showing δ values similar to that of the traditionally air packaged samples.  
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Fig. 5.3 Evolution of the most important indices of traditionally packaged hamburgers in 

presence of a) low inoculum concentration and b) high Listeria monocytogenes inoculum. 

 

 

 

 

 

 

 

Fig. 5.4 Evolution of the most important indices in hamburgers after storage in master bag for a) 

7 days and b) 10 days, in presence of low inoculum concentration of Listeria monocytogenes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.5 Evolution of the most important indices in hamburgers after storage in master bag for a) 

7 days and b) 10 days, in presence of high inoculum concentration of Listeria monocytogenes.  
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TABLE 5.6. Potential growth (δ) calculated for hamburger stored in air or master bag and 

during shelf life; * low inoculation (2log cfu g
-1

), ** high inoculation (4log cfu g
-1

). 

 

 

 

Samples: hamburgers 

δ 

Suitability for the 

growth of 

L. monocytogenes 
Inoculation Packaging conditions 

   Low * Air              4 days 2.08 YES 

High ** Air              4 days 1.91 YES 

   Low * Master bag 7 days 0.09 NO 

High ** Master bag 7 days 0.04 NO 

   Low * Master bag 10 days 0.03 NO 

High ** Master bag 10 days 0.30 NO 

   Low * Master bag 7 days, air 2 days 1.30 YES 

High ** Master bag 7 days, air 2 days 0.90 YES 

   Low * Master bag 10 days, air 2 days 1.48 YES 

High ** Master bag 10 days, air 2 days 1.70 YES 
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5.4 CONCLUSIONS  

 
 

In conclusion the investigated products’ quality was good. Total Bacterial Count, Lactic Acid 

Bacteria and Pseudomonas spp. were the most important indices to define the quality of the 

final product.  

The composition of the microbiota appeared similar in slices of beef and hamburger, although 

less biodiversity was found in hamburgers. The relevance of Pseudomonadaceae (in particular 

P. fluorescens and P. fragi) and Lactic Acid Bacteria (especially Carnobacterium spp. and 

Brochothrix spp.) was detected.  

The storage conditions affected the evolution of the microbiota, favoring different microbial 

groups in dependence on the atmosphere inside the package. Anyway also the feature of the 

matrix influences the effects of conservation, in fact in hamburgers, which have also a initial 

microbial contamination higher then the slices, it seemed that storage in master bag has a better 

bacteriostatic activity, even if during the following display life the effects faster disappeared. 

Those events are explained by the larger surface exposed by minced meat of hamburgers which 

allow a faster replacement of the atmosphere, rapidly reducing the oxygen tension at the closing 

of master bag and the carbon dioxide concentration at the opening of mater bag. 

The evaluation of the growth of L. monocytogenes showed that the master bag doesn’t represent 

a favorable environment and the pathogen, if present, remains stable on initial values without 

growing or decreasing. However, after the opening of master bag, during the exposure on the 

bench (display-life), meat has to be considered as fresh meat: when L. monocytogenes is 

present, finding a favorable environment, it quickly grows. 
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6. Identification, enzymatic characterization and proteolytic 

activity quantification of Pseudomonas spp. isolated from 

different foods 
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6.1 INTRODUCTION 

The genus Pseudomonas comprises a heterogeneous group of microorganisms of the 

Pseudomonadaceae. It includes ubiquitous Gram negative, aerobic, non-fermentative, catalase 

and oxidase positive, mesophilic and/or psychrotrophic, non-spore forming rods. 

The present classification of the genus is complex and needs a profound revision based on 

molecular, genotypic and phenotypic data. Comparative 16S rRNA gene sequence analysis is 

used as taxonomic frame, but the high conservative nature of ribosomal genes makes them not 

suitable for species differentiation (Janda et al., 2007; Mellmann et al., 2008). Sequencing of 

several less conservative housekeeping genes was gradually included to obtain a more 

discriminatory phylogenetic evaluation (Ait Tayeb et al., 2005; Mulet et al., 2010; Rees-George 

et al., 2010; Yamamoto et al., 2000).  

Pseudomonas members are adapted to various conditions and therefore are found in a wide 

range of niches as soil, water, plants, animal tissues, foods, etc. (Franzetti et al., 2007) thanks to 

their complex enzymatic systems. Members of this genus are frequently implicated in the 

degradation and spoilage of a wide range of foods deriving from plants or animals. It is 

important to notice that Pseudomonas members produce many enzymes. In particular heat-

resistant proteases result in consolidation of activity also after heat treatment processes used to 

eradicate microorganisms in certain matrices. This phenomenon is very important in UHT milk 

and dairy products in which the protease can cause coagulation and instability phenomena, 

respectively (Datta et al., 2001). 

The mechanisms of these spoilage processes are not completely known but are strain dependent 

and related to temperature and environmental conditions (Chabeaud et al., 2001; Woods et al., 

2001; Nicodème et al., 2005). 

However, it is known that the responsible protease is an extracellular alkaline metallo-protease 

belonging to the AprX protein family, which has been extensively studied in Pseudomonas 

aeruginosa (Okuda et al., 1990, Duong et al., 2001; Blevesa et al., 2010). This protein is 

codified by the aprX gene, located in an operon that contains also the lipA gene, coding for a 

lipase, a protease inhibitor (inh), a secretion system (aprDEF) and two auto-secreted serine-

protease homologues (prtAB) (Woods et al., 2001). 

 

6.1.1 Aims of the study  

The aims of this work are i) the characterization and identification of Pseudomonas isolates 

from different food products (ready-to-eat vegetables, meat, milk and dairy products); and ii) 

the study of the heterogeneity in protease-activity of the isolates, in terms of quantification of 

the extracellular proteolytic activity, and genetic heterogeneity of the aprX gene. 

 

6.2 MATERIALS AND METHODS 

6.2.1. Microbial strains 

A total of 66 isolates of putative Pseudomonas spp. were examined for phenotypic and 

genotypic characteristics. The strains have been isolated from different food matrices; their 

origin is reported in Table 6.1 as well as eight type and reference strains, obtained from 

Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH. All the strains were 

maintained on Tryptic Soy Agar slopes at 5°C and frozen at -24°C in Tryptic Soy Broth with 

20% of glycerol. 
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TABLE 6.1. Tested strains and their origin. AP salad: Air-Packaged green salad; AP carrots: 

Air-Packaged cut carrots; MAP salad: Modified-Atmosphere Packaged green salad. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reference strain DSM Number 

P. aeruginosa DSM     50071 

P. cichorii DSM     50259 

P. fluorescens biotype A, bv.I DSM     50090 

P. fluorescens biotype C, bv. III DSM     50120 

P. fluorescens biotype C, bv. III DSM     50124 

P. fluoresens biotype G DSM     50148 

P. mendocina DSM     50017 

P. putida DSM         291 

Isolates Origin   Isolates Origin  
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P.cic1 AP salad 

D
ai

ry
 p
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d

u
ct

s 
is

o
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P.spp1 Soft cheese (Crescenza) 

P.flu13 AP salad P.spp2 Soft cheese (Crescenza) 

P.flu17 AP salad P.spp3 Soft cheese (Crescenza) 

P.flu20 AP salad P.spp4 Soft cheese (Crescenza) 

P.flu21 AP salad M9 Mozzarella cheese 

P.flu22 AP salad M5 Mozzarella cheese 

P.flu23 AP salad M3 Mozzarella cheese 

P.flu24 AP salad M6 Mozzarella cheese 

S2 AP salad CC Brown mozzarella cheese 

S31 AP salad LUCY Mozzarella cheese 

S32 AP salad H1 Blue mozzarella cheese 

S34 AP salad H2 Blue mozzarella cheese 

S38 AP salad H6 Blue mozzarella cheese 

I15 MAP salad H9 Blue mozzarella cheese 

I20 MAP salad H11 Blue mozzarella cheese 

I27 MAP salad M240 Pink mozzarella cheese 

I43 MAP salad M241 Pink mozzarella cheese 

LC28 MAP salad M243 Pink mozzarella cheese 

FQ52 MAP salad M244 Pink mozzarella cheese 

C15 AP carrots  M260 Blue mozzarella cheese 

C58 AP carrots  M261 Blue mozzarella cheese 

C61 AP carrots  M266 Blue mozzarella cheese 

C126 AP carrots  CPM Mozzarella cheese 

C131 AP carrots  

M
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t 
p
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d

u
ct

s 
is

o
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s 

1B2 Beef hamburger 

M
ik

 i
so

la
te

s 

LA1 Raw milk  2B1 Beef hamburger 

LA2 Raw milk 2B4 Beef hamburger 

LA3  Raw milk 5B1 Beef hamburger 

LA4 Raw milk 1D2 Beef hamburger 

LA6 Raw milk 3D5 Beef hamburger 

LA7 Pasteurized milk 8A Speck 

LA8 Pasteurized milk 8B Speck 

LA9 Raw milk 8C Speck 

LA10 Pasteurized milk 8D Speck 



 

 95 

 

 

6.2.2 Phenotypic characterization of the strains 

Each isolate was observed by optical microscope for its morphology, motility (480X), and 

Gram stain (1200X). Catalase and oxidase tests, growth in Tryptic Soy Broth at 4 and 10°C for 

ten days and 37, 40 and 45 °C for seven days, and oxidative/fermentative metabolism (OF test, 

Hugh et al., 1953) were used for preliminary biochemical characterization. The production of 

fluorescent pigments on King B media (King et al., 1954) and diffusible pigments on Triptic 

Soy Agar (TSA, VWR International), Pigment Producing Media (PPMD) (Puopolo, 2006) and 

Agar Mascarpone (500g mascarpone, 5g/l yeast extract, 500ml water, 15g/l agar) were 

evaluated. The following enzymatic activities were tested: lipase activity (Sierra, 1957), 

pectinolytic activity (Sands et al., 1972), starch hydrolysis (Stanier et al., 1966), lecithinase 

activity (Nutrient Agar plates plus 5% v/v egg-yolk emulsion) and proteolytic activity (Nutrient 

Agar plates containing 10% w/v skim milk powder). According to Scarpellini et al. (2004), the 

production of levans (fructose polymers) was verified. 

 

6.2.3 Molecular characterization and identification of the strains 

Total DNA of each strain was extracted as described by Mora et al. (2000). If not specified 

otherwise below, the different PCR assays were performed in a mixture containing 

approximately 50ng of bacterial genomic DNA, 5µl of 10X PCR reaction buffer (Amersham-

Pharmacia), 200µM of each dNTP, 2mM of MgCl2, each primer (Table 6.2) at a concentration 

of 0.5µM and 0.5U of Taq Polymerase (Amersham-Pharmacia). After amplification, 8µl of 

each sample were subjected to gel electrophoresis on 2% Seakem LE agarose gel in 0.5X TAE 

buffer, at 100V for 30 min, and the banding pattern was visualized under ultraviolet light after 

15min in Ethidium Bromide (2µg ml
-1

). 

 In the case of BOX-PCR, the amplification was conducted in a mixture containing 50ng of 

DNA solution, 5µl of 5x Gitschier – buffer (83mM (NH4)2SO4, 335mM Tris-HCl pH 8.8, 

33.5mM MgCl2, 33.5µM EDTA and 150mM ß-mercapto-ethanol), 32mM of each dNTP, 0.4µl 

of BSA (Roche, 20mg/ml), 2.5µl DMSO (Sigma, 100%), BOX-A1R primer at a concentration 

of 1µM and 1.5U of Red Diamond Taq (Eurogentec). The thermal program was 7 min at 95°C; 

30 cycles of 94°C for 1min, 53°C for 1min, 65°C for 8min; final extension at 65°C for 16min. 

Four µl of each amplicon was subjected to agarose (1.5% Seakem LE agarose) gel 

electrophoresis (120V for 4hours at room temperature) in 1XTBE buffer and the banding 

pattern visualized after EtBr staining (30 min). The resulting fingerprintings were analyzed by 

BioNumerics 6.6 software package (Applied Maths Inc). Similarities were calculated using 

Unweighted Pair Group Method with Arithmetic Mean (UPGMA) and Pearson correlation. 

Allocation of the isolates at the genus level. In order to confirm the allocation of the isolates to 

the genus Pseudomonas, a Pseudomonas specific 16S rRNA gene fragment (Calisti, 2008) was 

amplified with the following thermal program: 2 min at 94°C; 35 cycles of 95°C for 10sec, 

62,4°C for 30sec, 72°C for 30sec; final extension at 72°C for 7min.  

16S rRNA gene analysis. Amplification of a nearly complete 16S rRNA gene was realized with 

universal primers (Lane et al., 1985) and the following thermal program: 2 min at 94°C; 5 

cycles of 94°C for 45sec, 55°C for 1min, 72°C for 2min; 35 cycles of 92°C for 45sec, 60°C for 

45sec, 72°C for 2min and final extension at 72°C for 2min. The obtained amplicons were 

sequenced with 16S forward primer using a 310 automatic DNA Sequencer (Applied 

Biosystem, Foster City, CA, USA) and the sequences were elaborated by Chromas 2.13 

software (Technelysium Pty Ltd. Helensvale, Queensland, Australia).  
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RpoB analysis. For rpoB amplification, the following thermal profile was used: 1.5min at 94°C, 

32 cycles of 94°C for 10sec, 50°C for 20sec, 72°C for 50sec and final extension at 72°C for 

5min. Sequencing was performed using a ABI 3730 XL DNA Sequencer (Applied Biosystem, 

Foster City, CA, USA) and the sequences were elaborated by Kodon 3.6 software (Applied 

Maths, Sint-Martens-Latem, Belgium). 

GyrB analysis. For gyrB amplification the following program was used: 2 min at 94°C; 30 

cycles of 94°C for 1 min, 60°C for 1 min, 72°C for 1min and final extension of 72°C for 7 min. 

The obtained amplicons were sequenced using a 310 automatic DNA Sequencer (Applied 

Biosystem, Foster City, CA, USA) and Chromas 2.13 software (Technelysium Pty Ltd. 

Helensvale, Queensland, Australia) was used to analyse the sequences. 

RFLP analysis of the ITS1 rDNA and of the 16S rDNA region (Scarpellini et al., 2004). The 

RFLP approach was used to allocate the putative Pseudomonas fluorescens strains at the 

biovar/biotype level. The 16S-ITS-23S region (ITS1) amplification was performed using the 

following thermal program: 5 min at 94°C; 30 cycles of 94°C for 1min, 55°C for 1min, 72°C 

for 2min; final extension of 72°C for 2 min.  

Restriction digestion of ITS1 amplicons was carried out for 16 hours at 65 °C in 25µl reaction 

mixture containing 15µl template, 2.5µl of 10X restriction digestion buffer, 18.75U of TaqI 

(Amersham Pharmacia Biotech). The restriction digestions were then analysed by agarose gel 

electrophoresis (3% w/v) (Guasp et al., 2000) and the results were interpreted using Quantity 

One 4.6 software package (Bio-Rad Laboratories, Milan, Italy). 

The 16S rRNA part for restriction analysis was amplified using universal primers (Table 2) and 

following the above described protocol for 16S rRNA gene analysis. 

Restriction digestion of 16S rDNA was carried out for 16 hours at 30°C in 25µl reaction 

mixture containing 15µl of template, 2.5µl of 10X restriction digestion buffer, 18.75U of 

restriction enzymes HaeIII or VspI (Amersham Pharmacia Biotech) and the results were 

interpreted using Quantity One 4.6 software package (Bio-Rad Laboratories, Milan, Italy). 

aprX gene analysis. The amplification of the aprX gene of Pseudomonas spp. was performed 

using the SM2F and SM3R primers (Table 2) and following thermal program: 3 min at 94°C, 

30 cycles of 95°C for 15s, 60°C for 15s; 72°C for 30sec, final extension at 72°C for 8min. 

Sequencing was performed using a ABI 3730 XL DNA Sequencer (Applied Biosystem, Foster 

City, CA, USA) and the sequences were elaborated by Kodon 3.6 software (Applied Maths, 

Sint-Martens-Latem, Belgium). The EMBL database was used to assess the most similar 

sequences. These database sequences were then aligned with the new generated sequences 

using ClustalW. A phylogenetic tree was constructed using MEGA 5.1 software, applying the 

neighbour joining algorithm without corrections. Tree statistical evaluation was performed by 

bootstrap analysis with 1000 replications and the rooted tree was created with Pseudomonas 

aeruginosa PAO1 as outgroup.  

Putative identification based on molecular data. Sequence data of type strains were either 

retrieved from NCBI sequence database or from the in house LMG database for 16S rRNA, 

gyrB and rpoB genes. They were used as frame for putative identification of the Pseudomonas 

isolates. For 16S rRNA and gyrB gene, pairwise comparison was conduced using BLAST and 

FASTA programs respectively. For rpoB, the putative identifications were obtained via 
comparative sequence analysis based on UPGMA program generated similarity matrix and 

clustering; the cut-off levels for species delineation were arbitrary chosen on the basis of the 

smallest dissimilarities observed between an isolate and two type strains of different closely 

related species.  
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6.2.4 Quantification of proteolytic activity in milk  

Firstly each frozen isolate was recovered in Brain Heart Infusion broth (BHI) (OXOID) (room 

temperature until visible growth), then 100µl of this overnight culture in BHI were inoculated in 

10ml of commercial UHT milk and incubated overnight at room temperature. 100µl of the 

overnight grown UHT milk culture was transferred to10 ml fresh UHT milk and incubated 

again over night at room temperature. From this second UHT culture (this step was included to 

permit the isolates to adapt to milk medium), 100µl of the grown cultures were added to 10ml 

fresh UHT milk to a final concentration of about 10
3
cfu/ml and stored at 5°C for 5 days. After 

20 min centrifugation (Eppendorf centrifuge 5810-R) at 6000g, bronopol (Merck, Schushardt, 

Germany) and sodium azide (Merck, Darmstadt, Germany) were added to the supernatans up to 

a concentration of 0.025% and 0.01 % respectively, to prevent further bacterial growth.  

Then, 1ml of the supernatant was added to 9ml of fresh UHT milk in duplo. One tube was 

frozen at -24°C (T0) and the other was incubated at 37°C for 14 days.  

The quantification of the proteolytic activity is based on the determination of the α-amino 

groups reacting with the TNBS reagent (Sigma-Aldrich) at pH 9.2 in the dark. The intensity of 

the developed yellow colour is measured by the spectrophotometric absorbance at 420nm 

(Biotek instruments, Uvikon XL). As described by Marchand et al. (2009a) the proteolytic 

activity was calculated as the difference between the free amino groups at the T0 and after 14 

days expressed as µmol of glycine equivalent ml
-1

 milk. 
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TABLE 6.2. Utilized primers. 

 

Primer Sequence (5’3’) Amplification portion Reference 

BOX A1R CTACGGCAAGGCGACGCTGACG 
Repetitive extragenic 

palindromic (BOX-PCR) 
Rademaker et al., 2000 

P94F CGGACGGGTGAGTAATGCCTAG 16S gene signature for 

Pseudomonas spp. 
Calisti, 2008 

P649R CAGGAAATTCCACCACCCTCTACC 

16S945 GGGCCCGCACAAGCGGTGG 16S-ITS-23S region 

(ITS1) 
Guasp et al., 2000 

23R458 CTTTCCCTCACGGTAC 

16SF AGAGTTTGATCCTGGCTCAG 16S gene  

(Universal primers) 
Lane et al., 1985 

16SR CTACGGCTACCTTGTTACGA 

LAPS TGGCCGAGAACCAGTTCCGCGT 
rpoB gene Ait Tayeb et al., 2005 

LAPS27 CGGCTTCGTCCAGCTTGTTCAG 

UP1S GAAGTCATCATGACCGTTCTGCA 
gyrB gene Yamamoto et al., 1995 

UP2R AGCAGGGTACGGATGTGCGAGCC 

SM2F AAATCGATAGCTTCAGCCAT aprX gene of  

Pseudomonas spp. 
Marchand et al., 2009b 

SM3R TTGAGGTTGATCTTCTGGTT 
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6.3 RESULTS  

 

6.3.1 Phenotypic classification of the strains 

The results of the phenotypic investigation are compiled in Table 1. The growth of the isolates 

was temperature dependent. All isolates grew at 4 and 10°C; whereas at 40°C growth was 

observed for only 80% of the meat and dairy products isolates, 70% of the isolates from 

vegetables and 12% of the milk isolates, respectively. Raising the incubation temperature to 

45°C resulted in growth of 40% of the isolates overall. 

The major part of the isolates (71%) produced fluorescent pigments, especially the vegetables 

(92%) and cheese isolates (83%). However, the production of diffusible pigments was medium 

dependent. On TSA, the pigment producers (about 55% of the total) exhibited different colours 

(brown, yellow, green, orange and pink). On PPMD around 50% of the pigment producers on 

TSA appeared colourless and others showed less intense pigment production. On Mascarpone 

agar, a blue pigment appeared but all producers were isolated from milk and dairy products 

(26% and 44% of the respective isolates). The pectinolytic activity, known as responsible of 

vegetables browning (Membré et al., 1994), was demonstrated for more than 70% of the 

vegetables isolates and for around 65% of the meat isolates. Amylolytic activity was less 

frequently present and was demonstrated for 33% of the vegetables isolates and 10% of the 

meat isolates, respectively.  

Around 40% of the isolates overall showed lipolytic activity, whereas the lecithinase hydrolysis 

was found especially in vegetables (67%) and milk - dairy products (72%) isolates. 

The extracellular protease activity occurred amongst the isolates from every matrix. At 5°C, 

50% of the vegetables isolates, 48% of the dairy products isolates, 20% of the milk isolates and 

33% of the meat isolates were positive, while at 25°C protease production was observed for 

58% of the vegetables, 65% of the dairy products, 70% of the milk and 10% of the meat 

isolates. 

 

6.3.2 Molecular classification and identification 

All isolates showed the specific 16S rDNA amplicon of 550bp with the primers P94F-P649R, 

confirming their assignment at the genus level (data not shown).  

In Table 6.3 identifications are given for each isolate based on comparative analysis of the 

sequences of the housekeeping genes as well as the biotype and biovar differentiation based on 

RFLP of 16S rDNA and ITS1.  

For the decision on the species allocation, the putative identification was established combining 

the single gene based identification with the RFLP results; when this combination produced 

indecisive identification we indicated the isolates as Pseudomonas sp. 

Among the isolates from milk, 45% was identified as Pseudomonas fluorescens, principally 

biotype C, and about 20% was considered Pseudomonas sp. Similar indications were found for 

the isolates from mozzarella: P. fluorescens appeared the dominant specie (44%), especially 

biotype C, followed by P. fragi (17%), and a large number of the isolates was indicated as 

Pseudomonas sp. (around 30%). The numerically more important species found in meat were P. 

fragi and P. putida (50% and 40% respectively). More biodiversity was recognized in 

vegetables isolates: P. fluorescens (17%) and P. marginalis (13%) were surrounded by various 

species in very low percentage (P. cichorii, P. fragi, P. jessenii, P. putida, P. veronii, P. 

viridiflava, P. grimmonti). 
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In the BOX analysis, BOX patterns of previous work (Marchand et al. 2009b) were added for 

comparison. The obtained dendrogram (Figure 6.1) shows the existence of high genetic 

diversity among the isolates and at a delineation level of 60% similarity, 16 clusters were 

observed. In particular seven clusters grouped isolates with different putative identifications 

(clusters 1, 3, 4, 7, 11, 14 and 16); the others instead were characterized by grouping the isolates 

with a similar putative identification: cluster 2 grouped P. fluorescens Biotype C biovar III, 

cluster 5 grouped P. fluorescens biotype C, cluster 6 grouped P. fluorescens biotype C biovar 

III, cluster 8 grouped P. cichorii, cluster 9 grouped P. veronii, cluster 10 grouped P. grimmonti, 

cluster 12 grouped P. rhodesiae, and cluster 13 and 15 both grouped P. fragi.  
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TABLE 6.3. 16S, rpoB and gyrB genes sequence based identifications and biotype/biovar analysis. The isolates are grouped for food matrix and 

the numbers in parenthesis refer to the clusters based on BOX-PCR. ND: Non-determined.  

 

Isolate and BOX-

PCR cluster 

(where applicable) 

16S sequence based 

identification 

rpoB sequence based 

identification 

gyrB sequence based 

identification 

Putative 

identification 

Biotype / biovar 

(where applicable) 
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cic1 P. cichorii P. cichorii P. cichorii P. cichorii ND 

flu13          (5) P. fluorescens Close to P. gessardii P. fluorescens P. fluorescens Biotype C  

flu17          (8) P. fluorescens Close to P. cichorii P. cichorii P. cichorii ND 

flu20          (7) P. fluorescens P. marginalis P. marginalis P. marginalis ND 

flu21          (5) P. fluorescens Pseudomonas sp. P. fluorescens P. fluorescens Biotype C  

flu22 P. fluorescens Close to P. proteolytica P. fluorescens Pseudomonas sp. ND 

flu23 P. fluorescens Close to P. mediterranea P. fluorescens Pseudomonas sp. ND 

flu24 P. fluorescens ND Pseudomonas sp. Pseudomonas sp. ND 

S2 P.frederiksbergensis Pseudomonas sp. Pseudomonas sp. Pseudomonas sp. ND 

S31            (3) P. synxantha Close to P. gessardii P. fluorescens Pseudomonas sp. ND 

S32 P. kilonensis Pseudomonas sp. Pseudomonas sp. Pseudomonas sp. ND 

S34 P. argentiniensis ND Pseudomonas sp. Pseudomonas sp. ND 

S38 P. viridiflava P. viridiflava P. viridiflava P. viridiflava ND 

I15 P. fluorescens Close to P. tolaassi P. fluorescens P. fluorescens Biotype G 

I20             (9) P. meridiana P. veronii P. veronii P. veronii ND 

I27             (4) P. koreensis Close to P. gessardii Pseudomonas sp. Pseudomonas sp. ND 

I43 P. fragi ND P. fragi P. fragi ND 

LC28         (1) P. jessenii ND P. jessenii P. jessenii ND 

FQ52 P. putida ND P. putida P. putida ND 
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C15          (10) P. grimmonti P. grimmonti P. grimmonti P. grimmonti ND 

C58 P. fluorescens Close to P. proteolytica P. fluorescens P. fluorescens Biotype G 

C61 P. fluorescens P. fluorescens Pseudomonas sp. P. fluorescens Biotype G 

C126        (10) P. fluorescens P. grimmonti P. grimmonti P. grimmonti ND 

C131          (9) P. veronii P. veronii P. veronii P. veronii ND 

M
ea

t 
p

ro
d

u
ct

s 
is

o
la

te
s 

1B2 P. fragi ND P. fragi P. fragi ND 

2B1            (3) P. fluorescens Close to P. gessardii Pseudomonas sp. Pseudomonas sp. ND 

2B4            (7) P. fragi Pseudomonas sp. P. fragi P. fragi ND 

5B1          (15) P. fragi P. fragi P. fragi P. fragi ND 

1D2          (13) P. fragi P. fragi P. fragi P. fragi ND 

3D5          (13) P. fragi P. fragi P. fragi P. fragi ND 

8A P. putida ND P. putida P. putida ND 

8B P. putida ND P. putida P. putida ND 

8C P. putida ND P. putida P. putida ND 

8D P. putida ND P. putida P. putida ND 

M
il

k
 i

so
la

te
s 

LA1         (12) P. fluorescens Close to P. rhodesiae P. rhodesiae P. rhodesiae ND 

LA2         (12) P. fluorescens Close to P. rhodesiae P. rhodesiae P. rhodesiae ND 

LA3 P. fluorescens P. proteolytica P. fluorescens P. fluorescens Biotype C bv. III 

LA4         (15) P. fragi P. fragi P. fragi P. fragi ND 

LA6           (4) P. fluorescens Close to P. gessardii P. fluorescens P. fluorescens Biotype C  

LA7         (11) P. fluorescens Close to P. peli P. fluorescens Pseudomonas sp. ND 

LA8         (11) P. fluorescens Close to P. peli P. fluorescens Pseudomonas sp. ND 

LA9           (6) P. fluorescens P. brenneri P. fluorescens P. fluorescens Biotype C bv. III 

LA10 P. fluorescens ND P. fluorescens P. fluorescens Biotype G 
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D
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spp 1 P. fragi Close to P. fragi P. fragi P. fragi ND 

spp 2          (5) P. fluorescens 
Close to P. fragi  

or to P. psychrophila 
P. fluorescens P. fluorescens Biotype C  

spp 3 P. fragi ND P. fragi P. fragi ND 

spp 4 P. fragi ND P. fragi P. fragi ND 

M9             (4) P. fluorescens Close to P. gesardii P. fluorescens P. fluorescens Biotype C  

M5             (4) P. fluorescens Close to P. gesardii P. fluorescens P. fluorescens Biotype C  

M3             (4) P. fluorescens Close to P. gesardii P. fluorescens P. fluorescens Biotype C  

M6             (4) P. fluorescens Close to P. gesardii P. fluorescens P. fluorescens Biotype C  

CC P. koreensis Close to P. moraviensis P. fluorescens Pseudomonas sp. ND 

Lucy P. fragi ND P. fragi P. fragi ND 

H1 P. poae / fluorescens ND P. fluorescens P. fluorescens Biotype B 

H2 P. poae / fluorescens ND P. fluorescens P. fluorescens Biotype B 

H6             (4) P. fluorescens Close to P. gesardii Pseudomonas sp. Pseudomonas sp. ND 

H9 P. putida ND P. putida P. putida ND 

H11          (14) P. fluorescens Close to P. proteolytica P. fluorescens Pseudomonas sp. ND 

M240         (3) P. fluorescens / synxantha Close to P. gesardii P. fluorescens P. fluorescens Biotype C  

M241        P. koreensis / putida Close to P. koreensis P. koreensis P. koreensis ND 

M243         (4) P. fluorescens Close to P. gessardii P. fluorescens P. fluorescens Biotype C  

M244       (14) fluorescens  P. lurida P. fluorescens P. fluorescens Biotype C  

M260         (1) P. fluorescens Close to P. proteolytica P. fluorescens Pseudomonas sp. ND 

M261 P. fluorescens Close to P. proteolytica P. fluorescens Pseudomonas sp. ND 

M266 P. veronii Close to P. proteolytica P. fluorescens Pseudomonas sp. ND 

CPM          (4) P. fluorescens P. gessardii Pseudomonas sp. Pseudomonas sp. ND 



 

 

	

 Figure 6.1. Dendrogram based on BOX-PCR, constructed using UPGMA and Pearson 

coefficient. BOX-cluster numbers are in parentheses. In bold are the comparative strains 

(Marchand et al., 2009b).  
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6.3.3 Proteolytic activity quantification 

 

According to the overall protease evaluation on skimmed milk plates more than 50% of 

vegetables and dairy products isolates were positive, and around 20 and 25% of milk and meat 

isolates, respectively. For all isolates, protease activity was quantified in milk. In our approach, 

the Pseudomonas proteases were first produced in UHT milk at 5°C (storage condition of the 

analysed foods). In the second step, their proteolytic activity was assessed with the TNBS 

method after incubation for two weeks at 37°C (optimal temperature for the enzymes). The 

results are shown in Table 6.4 and in Figures 6.2, 6.3 and 6.4. The strains were considered 

active if the value of the protease activity was higher than 2µmol glycin equivalent ml
-1

. The 

values of growth and proteolytic activity reported in Table 6.4 are means of cfu values (all 

isolates grew in milk) and of proteolytic activities of the positive isolates, respetively. The meat 

isolates showed the highest (9.74±2.22µmol glycin equivalent ml
-1

) activity, although 

proteolytic activity was found in only 25% of the meat isolates. All mean values of proteolytic 

activity showed very high standard deviations, indicating important differences for various 

isolates from the same food matrix. This variation can be due to the behavior of different 

isolates: none of the Pseudomonas putida isolates showed proteolytic activity; P. veronii had 

values between 3 and 6 µmol glycin equivalent ml
-1

; when present in P. marginalis, the 

proteolytic activity ranged between 2 and 4µmol glycin equivalent ml
-1

. Pseudomonas cichorii 

(both isolate and type strain DSM 50259
T
) showed high activity (15 and 12µmol glycin 

equivalent ml
-1

 respectively) at rather low cell density (7.65 and 7.85 log cfu ml
-1

 respectively). 

For P. fragi and P. fluorescens we found more variability depending on the strains. 
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TABLE 6.4. Isolation source, % of proteolytic isolates, means growth density (log cfu ml
-1

) and 

quantified proteolytic activity (µmol glycin equivalent ml
-1

) in UHT milk. 

 

Isolates origin 

Percentage 

of positive 

isolates 

Growth Proteolytic activity 

Mean 
Standard 

deviation 
Mean 

Standard 

deviation 

Vegetables 54% 8.06 0.34 8.23 4.49 

Meat 25% 7.95 0.47 9.74 2.22 

Dairy products 57% 8.67 0.80 8.93 4.18 

Milk 20% 9.36 0.24 8.26 5.95 
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Figure 6.2. Quantification of the proteolytic activity in milk of milk and dairy products isolates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3. Quantification of the proteolytic activity in milk of meat isolates and reference 

strains. 
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Figure 6.4. Quantification of the proteolytic activity in milk of vegetables isolates.  
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6.3.4 aprX gene analysis 

 

 

All the isolates and the reference strains were subjected to the specific amplification of the aprX 

gene. Forty-seven Pseudomonas isolates and 4 reference strains rendered an amplicon of the 

expected size (±850bp), for the other twenty-three strains (19 isolates and 4 references), which 

did not show a protease production on plates, no amplification was observed. 

The heterogeneity of aprX gene was shown in a comparative alignment and phylogenetic 

analysis of the sequences (Figures 6.5 and 6.6) in which the sequences of Marchand et al. 

(2009b) were also included.  

On the basis of this analysis five groups (A, B, C, D and E) were identified supported by high 

bootstrap values. In group C, two sub-groups (C1 and C2) can be delineated, though not 

supported by high bootstrap values. It is interesting to observe that generally each group 

included the isolates from one specific food matrix; group A consists of milk isolates, groups B 

and E contains mostly mozzarella strains, while group C2 is mostly composed of vegetables 

isolates; group D contains only meat isolates. The only mixed group is C1 that consists of 

isolates from different matrices. 

Observing the aprX sequences we noticed that all the strains of A and B groups showed an 

insertion of more then twenty bases, having two different sequences (figure 6.6). Interesting 

was to notice that all the isolates belonged to A group resulted as P. fluorescens biotype C 

biovar III. The absence of this insertion in all the P. fluorescens biotype C non-biovar III 

suggests that aprX gene, when present, could be a target gene to identify P. fluorescens biotype 

C biovar III, favouring its discrimination from P. fluorescens biotype C non-biovar III. 
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Fig. 6.5. aprX-phylogenetic analysis; values higher than 65% are given. 
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Figure 6.6. aprX sequences of the strains. Group A and group B showed an insertion.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G
ro

u
p

 A
 

G
ro

u
p

 B
 

G
ro

u
p

 C
, su

b
-g

ro
u

p
 C

1
 



 

 112 

 

 

 

 

G
ro

u
p

 C
, su

b
-g

ro
u

p
 C

2
 

G
ro

u
p

 E
 



 

 113 

 

6.4 DISCUSSION AND CONCLUSION 

 

The goals of this study were to identify the species level and evaluate the enzymatic spoilage 

activities of Pseudomonas spp. isolated from different food matrices (ready-to-eat vegetables, 

meat, milk and dairy products). Pseudomonas members are known to be the most common 

microbiota involved in spoilage of many kinds of foods, due to their very simple nutritional 

requirements and their metabolic versatility that allows them to thrive in various environments. 

In this work, the proteolytic activity was studied qualitatively as well as quantitatively in 

combination with the presence and heterogeneity of the aprX gene. The aprX gene codes for the 

most common extracellular protease of Pseudomonas spp.; it is a heat-resistant metallo-protease 

that can survive also after UHT processing, and therefore may induce the spoilage of fresh, 

pasteurized and sterilized products.  

After a molecular confirmation of the genus level, the isolates were tested for their enzymatic 

activities. The results showed that all the isolates were capable of producing enzymes and 

pigments that can affect food products. According to the features of the isolation matrix, the 

isolates showed different enzymatic activities. The isolates from vegetables were characterized 

by pectinolytic, lecithinase and proteolytic activities, the meat isolates induced proteolysis, 

pectinolysis and lipolysis especially, and the dairy products isolates produced proteolytic and 

lecitinase enzymes. 

The complex and disordered taxonomy of the Pseudomonas genus explains the difficulty that 

we found in the identification of the isolates. Only for eight strains the three genes showed the 

highest homology with the same species giving indubitable identification, for the major part of 

the isolates the sequencing of the housekeeping genes didn’t always show the same results 

(Table 6.3).  

The qualitative approach of proteolytic activity was confirmed by quantitative analysis, 

showing significant values of glycin equivalent ml
-1

 in UHT milk. Seeing that the food matrices 

of origin were mostly fresh food, not subjected to heat- treatment, we decided to quantify with 

this analysis the total proteolytic activity and not only the heat-resistant proteolytic activity as 

Marchand et al. (2009a) did. Relatively more cheese isolates had protease activity compared to 

the milk isolates (figure 2), and they also showed a higher activity (table 6.4). A minority (25%) 

of the meat isolates showed, protease activity but when present the activity was very high 

(9.74±2.22 mol glycin equivalent ml
-1

). In contrast, proteolytic activity was more commonly 

present among the vegetables isolates. 

The molecular analysis of the aprX gene showed five groups (A, B, C, D and E) and two 

subgroups (C1 and C2). In each group the strains appeared isolated from principally one food 

matrix.  

Four groups (A, B, C and D) were the same as obtained by Marchand et al. (2009b) and in 

addition, we were able to recognize another group (E), containing principally mozzarella 

isolates and some outsiders of Marchand et al. (2009b). From comparative analysis of the aprX 

sequences it can be deduced that all isolates of A and B groups showed an insertion between 

around 381 and 410 bases on the sequence, having two different sequences (Figure 6.6). Groups 

A and D are the most homogeneous ones, containing isolates putative identified as 

Pseudomonas fluorescens biotype C biovar III and Pseudomonas fragi, respectively.  
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Specific spoilage bacteria in different type of packed fresh foods 

Caldera L. (1), Franzetti L. (1)  
 

(1) Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 

Italy 

Presenting author: Lucia Caldera - lucia.caldera@unimi.it 

Introduction: The Specific Spoilage Organism is the fraction of the microbiota responsible of 

the spoilage of food. Generally this fraction is composed by different taxonomic groups that, at 

the beginning are only a minority, then during the storage become numerically more important, 

growing faster then the other microorganisms, and produce the metabolites and the enzymes 

responsible of the spoilage. The SSO is represented by different microbial species depending on 

the characteristics of the food, the type of packaging and the storage conditions. In this work we 

studied the microbiota of different fresh foods to identify the bacterial fraction of their SSO. 

Material and methods: In this study, two ready-to-use green salads packaged in air and under 

Modified Atmosphere respectively, ready-to-use stick carrots, mozzarella cheese and beef meat 

in different packaging conditions, were used. All the products were analyzed during the shelf-

life with traditional plate count method, using generic and differential / selective media. The 

isolates were classified and identified until specie level by molecular techniques. For the 

Pseudomonas genus the molecular analysis was conduced until biovar identification, and an 

enzymatic characterization was made. 
Results: In carrots we recognized Pseudomonas spp. and Leuconostoc spp., in particular L. 

mesenteroides sub. mesenteroides and L. pseudomesenteroides. This genus is responsible of 

exudation and losses in texture of carrots, thanks to its obligatory hetero-fermentative 

metabolism. The SSOs of salads were related to the internal atmosphere of the packages: the 

salads packaged under Modified Atmosphere were characterized by the presence of facultative 

aerobic and anaerobic bacteria, such as Enterobacteriaceae and Lactic Acid Bacteria, even if the 

dominant genus was always Pseudomonas, in particular Ps. fluorescens and other species 

belonged to group I, known as Pseudomonas in sensu stricto. All these isolates were able to 

produce fluorescence and diffusible pigments, causing the browning of green salad. In meat, 

especially packaged in low oxygen concentration, we identified as SSO Pseudomonas spp. 

(dominant specie Ps. fragi), while in air packaged products Brochothrix thermosphacta produce 

undesirable odors. In mozzarella Pseudomonas spp. was the most important spoilage organism, 

in particular the specie fluorescens, able to colonized mozzarella and create blue and yellow 

spots on the surface. The most part of Pseudomonas were characterized by proteolytic, 

pectinolytic and lecithinasic activities according to the isolation matrix and were mostly 

represented by Ps. fluorescens biovar G. 

Significance: This work shows that each analyzed food has, depending on the storage 

conditions, its own spoilage bacteria characterized by different activities. We also noticed the 

relevance of Pseudomonas genus, as the most common spoilage bacteria in packed fresh foods. 

Keywords: Specific Spoilage Bacteria; fresh foods; packaging conditions; 

Pseudomonas spp. 
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Atti del convegno 10° CISETA, Milano 9 e 10 maggio 2011 

 

 

Identificazione di microrganismi indicatori della qualità isolati da vegetali 

minimamente trattati diversamente confezionati   

Caldera L.* Franzetti L., Limbo S., Rollini M., Scarpellini M. 

DISTAM, Università degli studi di Milano Via Celoria, 2 

 

 

I vegetali di quarta gamma sono prodotti con incisive prestazioni di servizio 

(convenience foods) e marcate caratteristiche di freschezza e vengono genericamente 

raggruppati sotto la denominazione di “alimenti minimamente trattati”.  Questi prodotti 

prima di essere commercializzati e consumati subiscono infatti una serie di trattamenti 

tecnologici di blanda intensità tali da non comprometterne le caratteristiche naturali di 

freschezza e al tempo stesso volte ad aumentare il loro valore e convenienza d’uso. 

Numerose sono però le alterazioni che possono rapidamente comprometterne la 

qualità igienica e sensoriale. La loro degradazione coinvolge processi di natura 

chimico-fisica, biochimica e microbiologica. In questo lavoro è stata seguita la crescita 

microbica in sei verdure di IV gamma, tre (carote, songino e lattughino) confezionate in 

aria, e tre (lattuga iceberg, lattuga foglia quercia e lattuga cappuccio) in atmosfera 

modificata, conservate a 5°C e 10° C. L’indice microbico di maggior interesse è 

apparso la CBT, costituita in particolare da bastoncini Gram negativi aerobi/anaerobi 

facoltativi, mentre i batteri lattici e lieviti rappresentano una componente minoritaria, 

fatta eccezione per le carote. Tutti gli li isolati sono stati identificati fino al livello di 

specie, con prove tecniche biochimiche e molecolari.  
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Atti del convegno 10° CISETA, Milano 9 e 10 maggio 2011 

 

 

Attività antimicrobica di sostanze di origine naturale impiegabili in 

imballaggi plastici funzionali di vegetali minimamente trattati (IV gamma) 

Rollini M., Musatti A., Caldera L., Manzoni M. 

DISTAM, Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Via Celoria 2, 

Milan (Italy) 

 

La ricerca, inserita nell’ambito del progetto Vegapack, relativo alla qualità e sicurezza dei 

prodotti vegetali minimamente trattati (IV gamma) attraverso imballaggi plastici funzionali, ha 

previsto la determinazione dell’attività antimicrobica di carvacrolo e timolo, oli essenziali (EO), 

unitamente al LAE (etil-lauroil-arginato), solubile in acqua. L’attività antimicrobica è stata 

inizialmente determinata nei confronti di microrganismi di collezione. I batteri Gram positivi 

(Listeria, Staphylococcus e Bacillus) sono risultati più sensibili al LAE, con MIC pari a 12mg/L 

coltura, mentre i Gram negativi (E. coli e Pseudomonas) e S. cerevisiae hanno presentato 

sensibilità inferiore, con MIC da 24mg/L. Il timolo non ha presentato attività significativa, 

anche ad elevate concentrazioni (30g/L), mentre per il carvacrolo la MIC è risultata compresa 

tra 17 e 100µl /L. L’impiego dei due antimicrobici in associazione ha prodotto un effetto 

sinergico, con MIC dell’ordine di 12mg/L per LAE e 50µl /L per carvacrolo. 

L’attività antimicrobica dei due composti è stata inoltre valutata nei confronti di microrganismi 

isolati da prodotti vegetali minimamente trattati, e i risultati ottenuti hanno confermato 

l’efficacia delle molecole allo studio. L’approccio proposto di associazione delle due attività 

antimicrobiche, una attiva in fase vapore e una in fase liquida, potrebbero costituire quindi 

un’innovazione nel settore del packaging alimentare. 
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16th Workshop on the Developments in the Italian PhD Research on Food Science Technology 

and Biotechnology, Lodi (Italy), 21-23 September 2011. 

Research and isolation of Specific Spoilage Organisms (SSOs) 

from different food matrices 

Lucia Caldera (lucia.caldera@unimi.it) 

Dept. of Food and Science Technology and Microbiology, University of Milan, Milan, Italy 

Tutor: Prof. Laura Franzetti 

 

 

This PhD thesis research project is aimed at identify and characterize microorganisms 

responsible for the spoilage of food. The purpose of the work is to study the enzymatic activity 

of microorganisms, search for rapid methods for the quantification, assess the relationship 

between these microorganisms and food spoilage and study the relationships between different 

microbial species through the study of chemicals (autoinducers) issued by the microorganisms 

present in the food. 
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17th Workshop on the Developments in the Italian PhD Research on Food Science Technology 

and Biotechnology, Cesena (Italy), 19-21 September 2012 

Detection and Characterization of Specific Spoilage Organisms 

(SSOs) in Different Food Matrices 

Lucia Caldera (lucia.caldera@unimi.it) 

DeFENS - Dept. of Food, Environmental and Nutritional Science, University of Milan, Italy 

Tutor: Prof. Laura Franzetti 

 

 

The aim of this PhD thesis is to study the microorganisms responsible of foods spoilage. The 

work was carried out following the points indicated last year (Caldera, 2011). Here are 

presented the first three points of the research. Firstly, the microbiological quality of different 

food matrices was investigated and the SSOs of each product were isolated, characterized and 

identified until specie level. Then the total DNA and RNA of some foods were extracted and 

the SSOs were quantified with molecular techniques. After that, the gene coding for a spoilage 

enzyme was detected directly in foods. 
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18th Workshop on the Developments in the Italian PhD Research on Food Science Technology 

and Biotechnology, Conegliano Veneto (Italy), 25-27 September 2013 

Specific spoilage organisms (SSOs) in different food matrices 

Lucia Caldera (lucia.caldera@unimi.it) 

DeFENS - Dept. of Food, Environmental and Nutritional Science, University of Milan, Italy 

Tutor: Prof. Laura Franzetti 

 

 

This PhD thesis dealt with the study of the main microorganisms responsible of foods spoilage. 

For each food, the microbial quality was verified and the SSOs were isolated. The phenotypical 

and genotypical classification of the isolates was studied: the strains were identified until 

specie, biovar and biotype level and the most interesting enzymatic activities (in particular the 

proteolytic one) were analyzed with qualitative and/or quantitative methods. The concentration 

of the SSOs into the foods was quantified with molecular techniques (qPCR and RT-PCR) and 

the gene aprX, coding for a spoilage enzyme, was detected directly in foods. 

 


