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Abstract: 

Genomic DNA is under constant attack from both endogenous and exogenous 

DNA damaging agents like reactive oxygen species which include O2, H2O2, 

OH, reactive carbonyl species, alkylating agents such as estrogen and 

cholesterol metabolites, radiations (like UV, x-rays and gamma rays) and 

mutagenic chemicals. Moreover, threats to DNA integrity can also come from 

DNA metabolism such as replication, transcription and recombination. In 

order to survive and faithfully transmit the genetic material to the progeny, 

cells must detect the damage and activate repair mechanisms and, if the 

damage cannot be repaired, trigger the apoptotic program. All these processes, 

which are collectively known as DNA damage response (DDR), are 

coordinated by surveillance mechanisms often called DNA damage 

checkpoint, which temporarily halt or slow down cell cycle progression to 

provide enough time for DNA repair. The failure of the DNA damage 

response and other mechanisms deputed to the maintenance of genome 

integrity leads to a condition called “Genome Instability”, consisting in the 

accumulation of damage, genomic aberrations, such as mutations, gross 

chromosomal rearrangements and chromosome loss. Genome instability is a 

hallmark of cancer and a driving force in tumorigenesis.  

We exploit budding yeast Saccharomyces cerevisiae as a model system for 

studies on genome maintenance pathways which are highly conserved 

throughout evolution from yeast to human. Despite recent advances in the 
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field, genome integrity pathways are not yet fully understood and not all the 

genes involved have been identified. We developed a screening strategy, based 

on the overexpression of DDC2, a critical DNA damage checkpoint gene in 

the contest of a yeast deletion collection, in order to identify genes controlling 

genome integrity on the basis of spontaneous accumulation of endogenous 

DNA damage. We identified several genes and pathways associated with 

genome integrity maintenance, among which are many genes induced in 

peroxisome biogenesis and mitochondria structure and function, as well as 

several uncharacterized ORFs. 
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State of the art 

1. Introduction to DNA damage and genome 

maintenance 

 DNA, the blueprint of life, encodes the genetic information required 

for the development, functioning and survival of all known living organisms 

and many viruses.  DNA is the carrier of genetic material and has to be 

replicated and passed through generations without or with few errors. 

Genomic DNA is under constant attack from both endogenous and exogenous 

DNA damaging agents (See Fig 1). Many of the DNA lesions caused represent 

structural impediments to DNA replication or transcription. 

1.1 Endogenous DNA damage 

The majority of DNA modifications are endogenous in origin (De 

Bont, R., et al., 2004). Spontaneous hydrolysis is the simplest form of 

endogenous DNA damage leading to depurination (Lindahl T, 1993). The N-

glycosidic bond between the DNA base and the deoxyribose is particularly 

prone to acid-catalyzed hydrolysis which leads to abasic or 

apurinic/apyrimidinic (AP) sites, and the loss is estimated to occur at the rate 

of approximately 10,000 per cell per day (Lindahl T, 1993; Lindahl T, 1972). 

The AP sites are genotoxic as they stall DNA synthesis and may lead to 

collapse of the replication forks, causing the formation of double strand breaks
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 (DSBs). AP sites are also mutagenic, as the replicative DNA polymerases 

lack a template, and thus a random base is inserted, although in 54% of the 

cases is an adenine (De Bont and van Larebeke, 2004; Lawrence et al., 1990). 

Deamination is another common reaction of hydrolysis where DNA bases 

carry the exocyclic amino group (Lindahl T, 1993; Yonekura S. et al., 2009). 

The formation of uracil from cytosine is the most common lesion that occurs 

at an estimated 100-500 times per cell per day (McKinnon PJ, 2009; De Bont 

R, 2004). Similarly, adenine and guanine deaminate to form hypoxanthine and 

xanthine, although at a much lower rate (Lindahl T, 1993).  

Moreover, normal cellular metabolism acts as a source of endogenous 

reactive oxygen species (ROS) and reactive nitrogen species. The ROS, which 

include O2, H2O2, OH (Lindahl T 1972; Sugiyama H, 1994) generate more 

than one hundred different oxidative DNA lesions, such as base modification, 

deoxyribose oxidation, single or double strand breaks and DNA-protein cross 

links (Cadet J, 1997). Similarly, endogenous reactive nitrogen species can 

produce oxidative adducts from primarily nitric oxide and its by-products 

(Burney S, et al., 1999). One of the most extensively studied oxidative DNA 

lesions is 8-oxoguanine, which is routinely used as an analytical measure of 

oxidative DNA damage in biological systems (Ravanat J-L, 2005). The 

reactive carbonyl species (RCS) are potent mediators of cellular carbonyl 

stress originating from endogenous chemical processes such as lipid 

peroxidation and glycation (Roberts et al., 2003). The oxidized lipid products 

react with DNA, which can result in the severe crosslinking between opposite 

DNA strands, (interstrand crosslinks, ICLs) (Friedberg, 2006). Moreover, 

alkylation to DNA damage may arise from endogenous (i.e., S-

adenosylmethionine pool, lipid peroxidation products) or exogenous sources. 

However, due to endogenous agents reactivity, mutagenic and cytotoxic 

adducts can also be formed (De Bont and van Larebeke, 2004).  
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1.2 Exogenous DNA damage 

 Overall, exogenous DNA damage is more bulky compared to 

endogenous DNA damage, and is the main source for DSBs (De Bont and van 

Larebeke, 2004). Exogenous DNA damage can be produced by physical or 

chemical sources. For example, physical genotoxic agents from sunlight are 

ionizing radiation (IR) and ultraviolet (UV) light, the latter is estimated to 

induce 105 DNA lesions (pyrimidine dimer and 6-4 photoproducts) per cell per 

day (Hoeijmaker, 2009).   IR (from, e.g., Cosmic radiation and X-rays or 

radiotherapy) can induce oxidation of DNA bases and generate single-strand 

DNA break (SSBs) and double-strand DNA break (DSBs).  

  

  

Figure 1. Schematic representation of DNA damage, repair and its 

consequences (taken from Jan H. J. Hoeijmakers, 2001) 

  Besides the physical insults, cells must also cope with several 

chemical sources of DNA damage (Wogan GN, 2004; Irigaray P, 2010). For
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 example, different types of chemical agents have been developed and used to 

target DNA as a means to treat cancer, and they cause a variety of DNA 

lesions. Among these agents we can mention alkylating agents such as methyl 

methanesulfonate (MMS) and temozolomide, as well as bifunctional 

alkylating agents, such as nitrogen mustards, platinum compounds and the 

natural product mitomycin C (MMC) that causes DNA damage in the form of 

intrastrand and interstrand cross-links (Noll DM, et al., 2006).  

 Chemotherapeutic drugs, such as topoisomerse I or II inhibitors (e.g., 

camptothecin or etoposide, respectively), generate SSBs or DSBs by trapping 

topoisomerase–DNA covalent complexes, respectively (Sinha BK, 1995). 

Widely used DNA-damaging chemicals include N nitrosoamines, heterocyclic 

amines, and polycyclicaromatic hydrocarbons (e.g., benzo[a]pyrene), which 

are commonly found in the diet, with the latter also being produced in air 

emissions, such as cigarette smoke and vehicle exhaust. DNA damage can be 

both mutagenic and cytotoxic to the cell. If left unrepaired upon DNA 

replication, damage to DNA can give rise to mutations, and accumulation of 

mutations in genes coding for proteins involved in the cell’s regulation of 

growth and death may, in the worst case, give rise to immortal cancer cells. 

DNA damage may also impair protein synthesis, arrest the cell cycle, 

ultimately leading to cell death - so the cytotoxicity of the DNA damage. 

 

2. Genome instability and its consequences 

Genome instability is a broad term encompassing many forms of genome 

aberrations, going from point mutations to chromosomal rearrangements or 

loss (Aguilera and Gomez-Gonzalez, 2008).  Although detrimental to the cell 

in most instances, these rearrangements and mutations can be of beneficial as 

they drive evolution at the molecular level, generating genetic variation



Genome instability and its consequences 

9 

 

 (Aguilera and Gomez-Gonzalez, 2008). Depending on the mechanisms 

involved, genome instability that can result in: a) mutations, including point 

mutations; b) microsatellite instability due to contraction or expansion; c) 

variation in the chromosome number caused by failures in the chromosome 

segregation apparatus or the mitotic checkpoint,  termed chromosome 

instability (CIN), (Aguilera and Gomez-Gonzalez, 2008); d) gross 

chromosomal rearrangement (GCR) such as duplications, deletions, 

translocations and inversions that involve changes in genetic linkage between 

at least two DNA fragments (Aguilera and Gomez-Gonzalez, 2008). In 

addition other types of genetic alternations may occur, including copy number 

variation (CNV), hyper-recombination, and loss of heterozygosity (LOH) 

(Aguilera and Garcia-Muse, 2013). Genomic instability is a major driving 

force for tumorigenesis, and it is a feature of almost all types of human cancers 

(Negrini et al, 2010). During cell division, genomic instability is associated 

with the failure of parental cells to duplicate accurately the genome and 

precisely distribute the genomic material to the daughter cells, which result in 

various forms of genome alterations in the daughter cells. Accumulation of 

these genomic alterations may cause dysregulation of cell division, imbalance 

in cell growth and cancer. Most tumors are genetically unstable, providing the 

genetic plasticity to drive the stepwise progression of genetic changes required 

for the development of malignancy. There are two main models, which could 

explain the cancer development, namely; a) mutator phenotype, and b) 

oncogene induced DNA damage.  

a) Mutator phenotype: The mutator phenotype hypothesis describes 

cancer as a process, where cells subsequently undergo multiple rounds of 

mutation and selection (Loeb LA., 2011). Misregulation or mutation in gene 

responsible for genome stability, could increase the possibilities that a
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 subsequent mutation will occur in an oncogene resulting in driver mutations, 

which confer a growth advantage (See Fig. 2).  

 

 

Figure 2: Mutator hypothesis shows that cancer cells exhibit a mutator 

phenotype (taken from Edward. J. Fox, 2013) 

Accordingly, studies in yeast (Kolodner, R. D, et al., 2002; Herr, A. J, et al., 

2011) and bacteria (Millerhe J. H., et al., 1999), indicated that many mutator 

mutations confer initial growth advantage compared to the wild type. Indeed, 

cancers are known to exhibit genome instability and mutations (Ellis NA, et 

al., 1995) in DNA repair and DNA maintenance genes are associated with 

hereditary cancers or with a mutator phenotype (Schmitt MW, et al., 2012). 

The concept of mutator phenotype in human cancer has been discussed for 

many years (Loeb, L. A., et al., 1974; Cleaver JE, 1968; Ellis NA, et al., 1995 

and cancers are known to exhibit genome instability  (Schmitt MW, et al.,

http://en.wikipedia.org/wiki/Genome_instability
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 2012). The marked heterogeneity of cancer and the Darwinian evolution of a 

tumor suggest that different regions within the tumor may have different 

mutations (See Fig. 3).  

Figure 3. Geographically delineated different mutations in different regions of 

the tumor Blue circle represent mutator mutations that result in an elevated 

mutation rate. Red circles indicate driver mutations that confer a phenotype 

that allows a given lineage to overcome a particular barrier to progression. 

Green bars represent passenger mutations accumulated as tumor progression 

proceeds which do not in themselves confer selected phenotypes, however do 

contribute significant genetic heterogeneity. Blue and red squares represent 

mutator and driver mutations that result in outcompeted lineages that do not 

progress to malignancy. (Adapted from Edward J. Fox et al., 2013).  

The mutator phenotype model suggests different approaches for therapeutic 

intervention: as the rate of mutation fuels the disease progression, strategies 

that attenuate the accumulation of mutation could dramatically slow the rate of 

development of early stage cancer. On the other hand, by inducing
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 excessive levels of mutation, it might be possible to treat certain tumors by 

lethal mutagenesis. 

 b) Oncogene induced DNA damaged model: This model developed 

initially from the observation that both precancerous and cancerous lesions 

exhibit a persistent DNA damage response indicating the presence of DSBs 

(Bartkova et al., 2005; Gorgoulis et al., 2005). This model proposes that 

oncogene-induced genome instability in the early stage of cancer development 

is due to DNA replication stress, resulting in DNA double strand breaks 

(Halazonetis et al., 2008). Common fragile sites (CFSs) are specific genomic 

sites that are particularly sensitive to DNA replication stress, suggesting that 

genome instability preferentially affect CFS in precancerous lesions and also 

in several models in which oncogenes have been activated. It is noteworthy 

that, both models (i.e., mutator hypothesis and oncogene induced DNA 

damage), stress genome instability as a vital factor for tumor development. 

 

3. Genome instability and its causes 

Accurate and complete replication of DNA in every cell cycle and repair of 

DNA lesion are critical for maintenance of genomic stability in the cell 

(Aguilera and Gomez-Gonzalez, 2008; Branzei and Foiani, 2008). Under 

physiological conditions, the genome has a natural tendency to undergo 

genome alternation by various types of endogenous and exogenous sources. 

Damage to DNA linked to various DNA metabolic pathways is another serious 

threat to genome integrity, being transcription and replication major sources of 

chromosome breakage. Replication dysfunction due to replication stress or 

replication errors seems to be the main cause of genome instability (Gorgoulis 

et al., 2005; Kunkel 2004; Aguilera and Gomez-Gonzalez, 2008; Halazonetis
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 et al., 2008). Mostly fragile site and highly transcribed regions are 

accountable for dysfunction of replication (Durkin and Glover, 2007; Aguilera 

and Garcia-Muse 2012).  

3.1 Replication dysfunction: a major culprit of genome 

instability 

  Although highly coordinated during the cell cycle, DNA replication is 

a particularly dangerous process, as it is very susceptible to endogenous and 

exogenous events that can interfere with the progression, stability and restart 

of replication forks (Branzei and Foiani, 2005). The replication fork must 

frequently overcome various structurally unrelated hurdles like DNA lesions,  

non-histone proteins tightly bound to DNA, peculiar DNA sequences causing 

secondary structures such as cruciform structures and possibly G-

quadruplexes, nucleotide pool imbalance and conflicts with the transcription 

machinery (Mirkin EV and Mirkin SM, 2007; Lambert S, Froget B, Carr AM, 

2007). If the fork is not able to bypass the lesion and restart the replication, the 

cell must depend on an incoming replication fork from the opposite side to 

complete replication. Replication difficulties or obstacles may have stronger 

consequences in DNA regions with a paucity of replication origins or forks 

that replicate at the end of S phase (Durkin and Glover 2007; Letessier et al., 

2011). Each replication fork is associated with a replisome, which consists of 

the replicative helicase and polymerases, primases and other accessory factors 

(Labib and Hodgson, 2007). All the above mentioned obstacles can impede 

replication by uncoupling the replicative polymerases, and helicases resulting 

in the production of large segments of ssDNA (“replication fork stalling”). In 

addition, replisome disassembly can occur with the consequent generation of 

SSBs and DSBs  (Sogo et al., 2002; Lopes et al., 2001; Cotta-Ramusino et al. 

2005). Processing of this aberrant structure is required before replication can
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 and this processing may lead to undesired recombination events, eventually 

leading to increased genome instability (Cotta-Ramusino et al., 2005; Branzei 

and Foiani, 2007 and Tourriere and Pasero, 2007).  

 Alternatively, a template strand switch mechanism may allow the 

bypass the replication-blocking lesion. This mechanism includes conversion of 

the fork to a Holliday junction (known as the ‘chicken foot’ structure) by 

branch migration (Postow et al., 2001; Sogo et al., 2002). In the chicken foot 

structure, an elongated lagging strand provides a template for extension of the 

leading strand beyond the point to the replication block of the parent template. 

After extension of the leading strand by DNA polymerase, the chicken foot 

structure can be reset by reverse branch migration into the fork, so that the 

lesion is bypassed. Alternatively this structure can be cleaved resulting in one- 

end double strand breaks (Jaktaji and Lloyd, 2003; Heller and Marians, 2006) 

and this one ended DSBs can restore replication and may result in a second 

Holliday junction.  

 There are several different pathways and processing mechanism of 

DSBs (Aguilera and Gomez-Gonzalez, 2008). DSBs can be repaired either by 

homologous recombination (HR) in a process which requires a homologous 

partner, or by non-homologous end-joining (NHEJ) in situations where no 

sister chromatid is available with a homologous DNA sequence (For details 

about the repair pathways, please see section: DNA repair pathways). The 

initially formed DSBs can be resected by nucleases followed by HR or 

synthesis-dependent strand annealing (SDSA), yielding interstitial deletions, 

duplications, reciprocal translocations and inversions; break-induced 

replication (BIR) results mainly in non-reciprocal translocations, but also 

interstitial deletions and inversions; repair by single-strand annealing (SSA) 

causes interstitial deletions. Conversely, direct repair by non-homologous end
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 joining (NHEJ), may lead to interstitial deletions, insertions, inversions and 

translocations, while de-novo telomere addition results in a terminal deletion. 

 

3.2 Fidelity of DNA replication 
  

  

 Watson and Crick showed that each strand of a parental DNA helix 

acts as template for daughter strands DNA synthesis following the rules of 

base complementarity (Watson and Crick, 1953).  In eukaryotic cells, DNA 

synthesis is catalyzed by replicative polymerases (B-family polymerases α, δ, 

and ε for nuclear DNA and A-family polymerase γ for mitochondrial DNA 

synthesis). High nucleotide selectivity is achieved by hydrogen bonding 

 

 
 

Figure 4. Strand slippage may result in Insertion and deletion (taken from W. 

H. Freeman Pierce, Benjamin. Genetics: A Conceptual Approach, 2nd ed., 

2005) 

 

between the template bases, solvent exclusion from the active site, and 

geometric selection of shape and size of the nascent base pair in the catalytic 

site (McCulloch and Kunket, 2008). All the four above mentioned

http://www.whfreeman.com/
http://www.whfreeman.com/
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 polymerases have high accuracy for the insertion of the correct nucleotide, 

generating ~ one error every 10,000 correct incorporation events (Scott D. 

McCulloch et al., 2008).  Moreover, insertions and deletions may result from 

strand slippage (See Fig.4). Remarkably, many mammalian DNA polymerases 

(pols δ, ε, and γ) have intrinsic 3´ exonucleolytic proofreading activity by 

extending mismatched primer termini less efficiently than the matched primer 

(Kunkel, 2004).  The intrinsic error rate for any given DNA polymerase is an 

important feature of DNA replication because uncorrected errors during DNA 

synthesis lead to the generation of mutations. The estimated base substitution 

error rate of the replicative polymerase in vivo is in the range of 10-7 to 10 -8 

(Schaaper, R. M, 1993; Loeb, L. A, 1991). 

 

3.2.1 Ribonucleotide misincorporation in DNA  

 Modification of nucleotides in DNA poses a threat to genome integrity 

of cell, often resulting in mutation or cell death. The presence of 

ribonucleotides in the DNA backbone appears to be one of the most common 

threats to genomic stability. Ribonucleotides are incorporated in DNA by 

DNA polymerase (Pol α, δ, and ε): Although DNA polymerases can 

discriminate ribonucleoside triphosphates (rNTPs) efficiently, they are 

incorporate into DNA likely because the cellular rNTPs concentration is 10 to 

100 fold higher compared to dNTPs concentration (Nick McElhinny SA et al., 

2010a). Studies of the yeast replicative polymerases estimate that more than 

104  rNTPs may be stably incorporated into the genome during one round of 

replication (Nick McElhinny SA et al., 2010a; Nick McElhinny SA et al., 

2010b). Ribonucleotide monophosphates (rNMPs) incorporated in the nuclear 

genome may promote genome instability in several ways. Primarily, compared 

to RNA, DNA is inherently more resistant to strand cleavage due to the 

absence of a reactive 2′ hydroxyl on the ribose ring. Therefore, RNA is 105 
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fold or more prone to hydrolysis than DNA (Li Y. and Breaker, 1999). 

Furthermore, the presence of rNMPs can cause a distortion of the DNA helix 

parameters (Jaishree et al., 1993; DeRose et al., 2012).  

 

3.3 Defective nucleosome assembly and remodeling 

Chromatin is the complex of DNA and cellular proteins, which form 

eukaryotic chromosomes. It is composed of an elementary repeating unit 

called the nucleosome, which is the major factor of DNA packaging in 

eukaryotic genomes. Nucleosomes are DNA-protein complexes, which are 

comprised of a core particle of 1.6 left-handed turns of DNA (roughly 146 bp) 

wound around a protein complex called the histone octamer. De novo 

nucleosome assembly strictly depends on DNA replication progression. 

Deregulation of nucleosome assembly causes replication and checkpoint 

defects, resulting in recombinogenic DSBs and ssDNA gaps (Ye X, 2003) as 

well as hyper-recombination (Prado F, 2005). The size and distribution of 

Okazaki fragments due to defects in chromatin assembly suggest that 

instability might be caused by dysfunctional lagging-strand processing (Smith 

DJ, 2012). Finally, we cannot exclude the fact that defects in DSB repair drive 

to nucleosome assembly dysfunctions, resulting in genome instability (Alabert 

C, 2012).  

 

3.4 Secondary Structures 

Right-handed double helical conformations are adopted by DNA in 

most cases, but specific sequences can also allow the formation of alternative 

DNA structures (Gacy A.M. et al., 1995; Mirkin and Mirkin, 2007; Mitas et 

al., 1995; Moore et al., 1999; Wells, 1996). Several factors can influence the 

formation of alternative DNA structures. Inverted repeats (IR) have the 

tendency to form ssDNA hairpins and dsDNA cruciform structures. Triple-
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helical DNA, called H-DNA, conformation can be adopted by mirror repeats 

(MR), whereas G-quadruplexes, the left-handed Z-DNA conformation and the 

slip stranded DNA conformation of S-DNA is the outcome of direct tandem 

repeats (DTRs) (Mirkin and Mirkin, 2007). Early studies show that 

trinucleotide repeats (TNR) are conserved in both mammals (Shiraishi et al., 

2001) and yeast (Cha and Kleckner, 2002; Lemoine et al., 2005; 

Raveendranathan et al., 2006). 

Instability in TNRs is directly related to secondary structure formation. 

These sequences can form stem-loops, hairpins and triplexes on the leading 

strand representing physical barriers that can perturb DNA synthesis by either 

causing slippage or fork stalling, which is enhanced under replication stress 

(Aguilera and Gomez-Gonzalez, 2008). Additionally, secondary structures on 

the lagging strand, have been shown to promote expansions (Aguilera and 

Gomez-Gonzalez, 2008). Regardless of the specific type of DNA structure 

present, these regions represent obstacles for normal fork progression, which 

ultimately may result in genomic instability. 

 

3.5 Challenges to replication machinery 

Replication fork encounters various numbers of challenges as it progresses 

along the chromosomes. Fragile sites are associated with chromosome 

breakage and genomic rearrangement, as they can induce fork stalling (Cha 

and Kleckner, 2002). These sites include tRNA genes (Deshpande and 

Newlon, 1996), slow replication zones (Cha and Kleckner, 2002), inverted 

repeats (Lemoine et al., 2005) and specialized protein-mediated replication 

fork barriers (Branzei and Foiani, 2007; Takeuchi et al., 2003). 
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3.5.1 Fragile sites 

Fragile sites were defined originally by Magenis and colleagues in 1970, 

describing the recurrent chromosome breakage on the long arm of human 

chromosome 16 (Magenis et al., 1970). Human chromosomes have nearly 120 

fragile sites that were observed and named according to the band chromosome 

(Debacker et al., 2007; Lukusa et al., 2008). Chromosomal fragile sites are 

heritable specific loci that preferentially show instability, visible as non-

random gaps and breaks on metaphase chromosomes. They are mainly 

associated with rearrangement (like translocations, integration of exogenous 

DNA and gene amplifications). Fragile sites are conserved among mammals 

(Arlt et al., 2003) and were also found in lower eukaryotes like the yeast S. 

cerevisiae (Cha and Kleckner, 2002; Ivessa et al., 2003; Lemoine et al., 2005; 

Anne Helmrick, 2008). Fragile sites are regions likely vulnerable to breakage 

after low replication stress and might be one of the driving force in cancer 

progression (Glover TW et al, 2013). Inhibition of DNA polymerase and 

decrease in the dNTP pools lead to replication stress and interference in the 

completion of replication (Ikegami et al., 1978; Wist and Prydz, 1979).  Based 

on the population frequency and mode of induction, the fragile sites are 

classified into “common fragile site” and “rare fragile sites”. 

3.5.1.1 Rare fragile sites 

Only less than 5% of the fragile sites in the human genome are rare 

(Kremer et al., 1991; Sutherland et al., 1998). According to normal Mendelian 

patterns of inheritance, the rare fragile sites are passed from parents to 

offspring. Fragile sites are usually associated with trinucleotide repeats 

(TNRs) or with long AT-rich repeats, and these repeats are mostly associated

http://www.ncbi.nlm.nih.gov/pubmed?term=Glover%20TW%5BAuthor%5D&cauthor=true&cauthor_uid=23410970
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with genetic disease (Durkin and Glover, 2007; Lopez Castel et al., 2010). 

Their fragility is linked to repeats expansion or contraction.  

3.5.1.2 Common fragile sites 

In contrast with rare fragile sites, common fragile sites account for 95% of all 

know fragile sites and are present in all individuals as a peculiarity of normal 

human chromosomes (Glover et al., 1984). Yeast also contains fragile site-like 

sequences, suggesting an evolutionary significance (Durkin and Glover, 2007).  

Common fragile sites (CFSs) are AT-rich sequences (See section: Secondary 

structure & fragile sites), but do not contain expansions of the specific 

repeated sequences seen in rare fragile sites (Debacker and Kooy, 2007). 

Genomic instability, a hallmark of cancer, occurs preferentially at CFSs. 

Common fragile site breakage has been identified after treatment with various 

replication inhibitors (Glover, T.W et al, 2007).  Several factors contribute to 

CFSs instability; these factors are both intrinsic characteristics of fragile 

regions and events that interfere with the replication process (See Fig 5). 

Recent studies suggest that transcription might contribute to the fragility of 

CFS. Mapping of the majority of CFS in the coding regions of a large number 

of genes and the finding that transcription of such genes requires a long time 

to be completed, suggest that in these regions transcription and replication 

may occur at the same time. In this case, the transcription machinery and 

replication forks may collide, resulting in replication fork impairment (A. 

Aguilera and T. Garcıa-Muse, 2012; A. Helmrich, M. Ballarino, and L. Tora, 

2011). Additionally, CFSs are also preferably involved in sister chromatid 

exchange (SCE), deletions and translocations (Glover, T.W et al., 1987; 

Glover, T.W, 1988; Wang, N.D, Testa, J.R., Smith, D.I, 1993; Chan, K.L et 

al., 2009). 
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Figure 5. Potential source underlying CFS fragility and the final impact on 

genome stability 

3.5.2 Replication fork barriers 

 During normal chromosome replication, replication fork can pause 

naturally where particular proteins are tightly bound to DNA (Labib et al., 

2007). These specific replication fork arrest sites are called “Replication Fork 

Barrier (RFB)”, and include DNA bases and intrinsic RFBs. Different forms of 

damaged DNA bases (See section endogenous and exogenous DNA damage) 

and bulky adducts are obstacles to replicative polymerase. In the presence of 

these obstacles replicative polymerases are unable to incorporate nucleotides. 

Inter-strand cross links (ICLs), are obstacles to replication fork progression, as 

they prevent the DNA duplex to unwind ahead of the work (Dronkert and 

Kanaar, 2001). Early studies showed that budding yeast cells have to face 

more than 1400 natural RFBs caused by DNA-proteins per 
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replication cycle (Ivessa et al., 2003). Replication fork arrest has been shown 

in yeast and bacteria system by introducing the exogenous protein binding 

sequences into the genome combined with the expression of the corresponding 

binding protein (Sofueva et al., 2011; Possoz et al., 2006).  These experiments 

show that the frequency of replication fork arrest is increased when the 

ancillary replicative helicase is lost (Sofueva et al., 2011) and the arrest is 

dependent on the strength of DNA-protein association (Dubarry et al., 2011). 

 

3.5.3 Transposable elements 
 

Repetitive elements are one of the substrates frequently involved in 

genomic rearrangement. As nonallelic homologous sequences, transposable 

elements (TEs) have the ability to intrfer with essential DNA repair processes 

often leading to genome alterations. There are varieties of rearrangements 

involving TE elements, ranging from mutations to inter-or intra-chromosomal 

alteration. There are approximately 25 distinct human genetic diseases that are 

related to TE element rearrangements resulting in genome instability.  The role 

of TE elements in the fragile site related genome rearrangements is still 

obscure, but recombination is a source of genomic rearrangement between TE 

elements (Lemoine et al., 2005). Retrotransposons are eukaryotic mobile 

elements that transpose through RNA intermediates and retrotransposon (RT) 

integration is a potential source of mutagenesis (Scholes et al., 2001).  

It has been shown that reduced levels of replicative DNA polymerase α in 

yeast causes chromosome translocations (Lemoine et al., 2005). Interestingly, 

the breakpoints of these rearrangement events were mapped within Ty 

elements, especially to those elements in a head-to-head conformation 

(Lemoine et al., 2005). Therefore, the elevated rate of breakage under 

replication stress at retrotransposons suggests that these sites may, in fact, be 

another type of fragile site. Recent studies in budding yeast demonstrated high 
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rates of chromosome aberrations with breakpoints corresponding to Ty or 

LTRs (Vernon et al., 2008). While the exact mechanism that generates 

chromosomal rearrangements at these sites remains unclear, two different 

models are likely to play a role.  

First, Ty elements transpose very near a second Ty element, producing 

an inverted repeat, which can form a secondary structure interfering with fork 

progression and generating a high rate of chromosome rearrangements 

(Lemoine et al., 2005). Second, retrotransposons are commonly dispersed 

repetitive sequences throughout the genome that, through ectopic 

recombination may give rise to GCR events (Lemoine et al., 2005; Umezu et 

al., 2002). Additionally, LTR sequences have been shown to insert at DSBs as 

a repair mechanism (Moore and Haber, 1996). Therefore, in addition to 

facilitating genomic rearrangements, they may also act as a marker for 

genomic sites that are prone to breakage (Admire et al., 2006).  

 

4. Transcription linked genome instability 

 “Transcription” is the synthesis of RNA from DNA. Increasing 

evidence in the last three decades has shown that transcription is an important 

source of genome instability. Studies in yeast (specifically in budding yeast), 

shows that transcription stimulates spontaneous mutation in eukaryotes (Datta, 

A and Jinks-Robertson, 1995), a phenomenon that is known as transcription 

associated mutation (TAM) (Datta, A and Jinks-Robertson, 1995; Beletski and 

Bhagwat, 1996), while the increased recombination induced by transcription is 

called transcription association recombination (TAR) (Thomas and Rothstein, 

1989; Nickoloff, 1992). TAR and TAM together are termed as Transcription-

associated genome instability (TAGIN) (Gaillard H. et al., 2013). Recent 

studies demonstrate that TAM primarily reflects damage to the non-
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transcribed strand (NTS) of the DNA template, whereas TAR is largely due to 

transcription-replication collision.  

 

Figure 6. Model to explain the R loop formation facilitate the exposure of NTS 

to genotoxic agents (adapted from Gaillard, H. 2013) 

 

TAM mechanism: TAM depends strictly on the transcription process itself and 

not on the potentially beneficial changes in the polypeptide sequence 

(Francino, M. P et al., 2001; Green, P et al., 2003; Mugal, C.F, 2009).  

 During transcription, the newly synthesized RNA molecule remains 

transiently paired with the transcribed DNA strand (TS) forming a 9-12 

nucleotides long RNA: DNA hybrid.  Hence, the short complementary non-

transcribing strand (NTS) remains unpaired and, therefore, single stranded 

increasing its vulnerability towards nucleolytic attack and DNA damaging 

agents. Moreover, the process of transcription triggers topological changes, 

including negative supercoiling behind the RNAP (RNA polymerase) (Liu, L. 

F. et al., 1987), which favors the formation of ssDNA containing vulnerable 

unpaired bases, and secondary structures such as stem-loops or other forms of 

DNA structure (See Fig. 6). Alternative mechanisms supporting TAM may be 

linked to the observation that some DNA repair machineries do not 

workproperly on non-B DNA structures. For example, high levels of 

transcription reduce the efficiency of MMR on plasmid-based microsatellite 

and increase the rate of DNA synthesis errors (Wierdl, M et al., 1996).   
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 TAR mechanism: TAR results from the collision between the 

transcription and replication machineries. Transcription interferes with 

replication fork progression, thus promoting recombination. Impaired 

replication fork progression which can be due to the formation of R-loops, or 

the collision between replication and transcription complexes can cause 

replication fork impairment, DSBs and TAR (Prado and Aguilera, 2005; 

Gottipati et al., 2008; Azvolinsky et al., 2009), leading to genome instability. 

Previous research showed in yeast that cotranscriptional R-loops are an 

important mediator of transcription-associated instability (Huertas P, Aguilera 

A. 2003). Transcription and co-transcription R-loops may determine some 

hotspot for genome instability for e.g., trinucleotide repeats (TNRs) (Grabczyk 

E et al., 2007; Lin Y et al., 2010) and fragile sites as well as sites of 

programmed instability, such as class switch recombination (CSR) in the 

immune system. Therefore, R-loops can be a principal cause of genome 

instability (Aguilera, A & García-Muse T, 2012).  

 

5. Telomeres and genome instability 

 Telomeres are the nucleoprotein complexes that stabilize the 

chromosomal ends preventing them from aberrant recombination and from 

being recognized as a double-strand breaks (Maser, R. S. and DePinho, 2004). 

Mammalian telomeres contain up to two thousand repeats of the 5’-TTAGGG-

3’ sequence (Moyzis R. K, et al., 1988). Telomeres have a unique structure 

whereby the terminal end of the DNA loops back and inserts it into the 

terminal telomeric repeat sequence, known as the “T-loop” (Griffith, J. D et 

al., 1999) via a short 3’ overhang with G rich tails invading the duplex and
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 forming a D-loop (displacement loop). Telomeric proteins stabilize the D-

loop structure and seem to function in protecting the telomere structure from 

nuclease degradation and recombination. Loss of telomeric DNA or telomere 

protection leads to telomere dysfunction and activation of the DNA damage 

response pathways (Karlseder J., Smogorzewska., Dai Y., Hardy S, and de 

Lange, T. 1999; Celli G. B, and de Lange T, 2005; Karlseder J, Smogorzewska 

A, and de Lange, T. 2002).  

 Several factors contribute to telomere shortening and telomere 

dysfunction, for example, oxidative stress (Kawanishi, S. and Oikawa, S. 

2004; Richter, T. and Proctor, C., 2007), stochastic deletion (Baird D. M et al., 

2003), or the “end-replication” problem of chromosomal ends (Ohki R, 2001). 

Since the DNA polymerase replicates the DNA only in 5’ to 3’ direction, 

normal lagging strand DNA replication fails to copy the 5’ end of the 

chromosome, thus leaving a gap between the final RNA priming event and the 

terminus (Harley C. B, 1990; Lindsey J et al., 1991): this leads to progressive 

telomere shortening of about 50-200 bps at each cell division (Harley C. B, 

1990), finally resulting in loss of DNA function. 

 Genome instability may arise due to the loss of telomere function, 

which further leads to dysfunction in genes responsible for genome stability. 

Due to the nature of chromosome ends which are sticky, end-to-end fusions 

may occur (with the formation of dicentric chromosomes and anaphase 

bridges. Anaphase bridges facilitate chromosome instability with fusion and 

rearrangements through “break fusion-bridge cycles” (BFB) (McClintock B, 

1941; Mathieu N et al., 2004). Several studies showed that genetic intra tumor 

heterogeneity is caused by break fusion-bridge cycles (Gisselsson D et al., 

2000; Gisselsson D et al., 2001).                     



DNA damage response 

 

27 

 

6. The DNA damage response 

 To counteract the effects of genomic DNA damage and to ensure a 

faithful duplication and inheritance of the genetic material, eukaryotic cells 

have evolved a complex network of cellular responses, collectively known as 

“DNA damage response” (DDR), which impacts on cell cycle progression, 

DNA repair, senescence and apoptosis (See Fig 7). I will discuss the DNA 

damage checkpoints and DNA repair pathways separately, although they share 

many components and functions.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. DNA damage response (taken from Stephen P. Jackson & Jiri 

Bartek, 2009) 

 

7. DNA damage checkpoints 

  Whenever there is a DNA break or a DNA lesion, DNA damage 

response (DDR) proteins sense the alterations and transmit a signal to 

activatesignaling pathways often called DNA damage checkpoints. A
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 checkpoint can be considered as a surveillance mechanism, which not only 

plays a regulatory role in the transition from on cell cycle phase to the next 

one, but also coordinate the crosstalks among various cellular processes, like 

DNA repair and apoptosis. Although the DNA damage checkpoint pathways 

may partially differ in various cell cycle phases, the general scheme of the 

DDR pathway is a highly conserved process (See Fig 8): the majority of its 

components shows a high degree of functional homology among eukaryotic 

organisms from yeast to man. (See fig. 8 for a comparison between yeast and 

human proteins) 

 

 

Figure 8. Schematic representation of DNA damage checkpoint proteins 

conserved from yeast to human (taken from Harrison, 2006) 

The DNA damage checkpoint works throughout the cell cycle and responds to 

almost all kinds of internal and external threats to the genome. There are three 

major DNA damage checkpoints in cells, which respectively delay the G1/S 

transition, arrest cells at G2-M phase or slow down S phase progression upon 

induction of DNA damage to allow time for repair. Early evidence shows that
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 dysfunction of all these checkpoint pathways leads to genomic instability. 

Within the DNA damage checkpoint signaling pathway, we can classify four 

groups of proteins that are often classified as sensors, mediator, transducers 

and effectors (See Fig. 9).  

 

7.1 Sensors of DNA damage 

 Ataxia-telangiectasia mutated (ATM or Mec1 in S. cerevisiae/yeast), 

and Ataxia-telangiectasia and Rad3-related (ATR or Tel1 in yeast) are the two 

apical kinases of the DDR pathways and they belong to the phosphoinositide-3 

kinase-related protein kinase (PIKK) family. 

   

Function Class Gene 

 

Sensors 

RFC-like 

PCNA-like 

RAD17, RFC2-5 

RAD9, RAD1, HUS1 (9-1-1) 

 

Mediators 

BRCT-containing 

DSB recognition/repair (MRN 

complex) 

BRCA1, 53BP1,TopBP1, MDC1, 

Claspin 

Mre11, RAD50, NBS1 

 

Transducers 

PI3 kinase-like protein 

PIKK binding protein 

Protein kinase 

ATR, ATM 

ATRIP 

CHK1, CHK2 

 

Effectors 

Transcription factor 

Phosphatase 

Protein kinase 

p53 

CDC25A, B, C 

CDKs, CDC7 

Figure 9. Classification of human genes involved in DNA damage checkpoint  

 

ATR/Mec1 is crucial for signaling ssDNA at DNA lesion and stalling 

replication fork, while ATM/Tel1 signals DSBs. After DNA damage, the first 

step is the recognition of the lesion and activation of the signaling cascade. 

The 9-1-1 and RFC-like complexes are responsible for the activation of the 
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checkpoint signal both in yeast and mammals (Parrilla-Castellar, ER, 2004; 

Melo J. and Toczyski D, 2002; Paulovich AG, 1998 and Longhese M.P, 

1998). The Rad9, Rad1 and Hus1 proteins form a heterotrimeric complex, the 

9-1-1 complex, whose structure resembles that of the proliferating cell nuclear 

antigen (PCNA)-sliding clamp (Shiomi Y, 2002). Additionally, the Rad17 

protein substitutes RFC1 in the interaction  with the other RFC subunits thus 

forming the RFC-like complex, which acts as a clamp loader complex to bring 

the PCNA-like clamp near the DNA lesion on damaged DNA (Griffith JD, 

2002; Kondo T, 1999; Green CM, 2000; Naiki T, 2000). Therefore, when 

DNA damage is occurring, the 9-1-1 complex is recruited to the damage site 

with the help of the Rad17 complex. Then, the chromatin bound 9-1-1 

complex is phosphorylated by the apical kinases ATR or ATM. ATR (in yeast, 

Mec1), and its interacting partner ATRIP (in yeast Ddc2) is recruited to the 

site of DNA damage independently on Rad17 and 9-1-1 complexes. 

Ddc2/ATRIP binds RPA-coated ssDNA and recruits Mec1/ATR to the site of 

DNA damage (Kondo T, 2001; Melo J. A, 2001). Alternativily, in response to 

DSBs, the MRN complex (Mre11, Rad50, Nbs1) acts as the main sensor 

recruiting the ATM apical kinase through  interaction with its Nbs1 subunit. 

 

7.2 Mediators: 

 The mediator proteins are, Breast cancer 1, early onset (BRCA1) and 

p53 binding protein 1 (53BP1), which are the homologs of Rad9 in the yeast 

S. cerevisiae (Schultz L.B, 2000; Wang B, 2002; DiTullio R.A, 2002; Ward 

I.M, 2003 and Saka Y, 1997),  the topoisomerase binding protein 1 (TopBP1) 

(Yamane K, 2002), the homolog of  yeast Dpb11, and the MRN complex 

(Goldberg M, 2003; Lou Z, 2003 and Stewart G.S, 2003), (MRX in yeast). 

BRCT domain mediator proteins help in targeting activated ATM to sites of 

DNA damage and multiprotein interactions controlled by these mediators
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 facilitate ATM signaling (Kitagawa R, 2004; Uziel T, 2003; Carson C.T, 

2003; Horejsi Z., 2004; D’Amours D, and Jackson S.P, 2002; Petrini J.H, and 

Stracker T.H, 2003).   

 

7.3 Transducers 

ATM and ATR 

 In mammalian cells the ATR and ATM apical kinases, activate the 

downstream effector kinases Chk1 and Chk2 and many other protein factors 

that modulate processes such as cell cycle, DNA replication, DNA repair and 

apoptosis, among which phosphatases of the Cdc25 family, activators of 

cyclin /Cdk complexes, the p53 transcription factor and others (Langerak and 

Russell, 2011). Yeast cells lack p53 and do not have a robust apoptotic 

pathway that can eliminate damaged cells. In yeast, Tel1 (the homolog of 

ATM) plays a minor role in DSB repair, but it is primarily involved in 

telomere maintenance. ATM is present as an inactive homo dimmer form and, 

upon DSBs formation, it undergoes a conformational change, which leads to 

intermolecular phosphorylation at serine1981, causing dimer dissociation. The 

activated monomer is now ready to act on its numerous downstream 

substrates, like p53, Nbs1, Brca1 and Smc1 (Bakkenist C J, 2003). 

 While ATM is mostly activated in response to DSBs, the ATR kinase 

plays an essential role in response to damage caused by UV irradiation and in 

replication stress. Moreover, ATR-knockout mice are embryonic lethal 

suggesting a role for ATR in normal cellular function. Known ATR targets are 

numerous, including the effector kinase Chk1, Rad17, TopBP1, RPA, ATRIP, 

9-1-1 and Claspin. 
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 7.4 Effectors 

 The apical ATM/ATR kinases and their effector kinases Chk2/Chk1 

through phosphorylation of multiple targets transiently delay cell cycle 

progression thus ensuring the accuracy of replication and transmission of 

DNA after DNA damage.  

 

7.4.1 G1 and G1/S cell cycle checkpoint 

 In response to DNA damage, G1 cells delay entry into S phase, to 

repair DNA lesions, thus preventing the replication of damaged DNA, which 

would lead to mutations or replication fork stalling or collapse (Liu et al., 

2012). There are two pathways that activate the G1/S checkpoint. The first 

pathway acting through Chk2 and Cdc25 blocks the loading of Cdc45 into the 

pre-replication complexes and, consequently, prevent the firing of replication 

origins. However, the arrest induced by Chk2-Cdc25 is only transient 

(Deckbar et al., 2011) and cells eventually enter S-phase. However, a second 

control pathway acts through the phosphorylation of p53 at serine 15 and 20 

within its amino-terminal transactivation domain. Meanwhile, the ubiquitin 

ligase for p53, Mdm2, is targeted by ATM (ATR) /Chk2 (Chk1) for 

phosphorylation, leading to a loss of its ability to ubiquitylate and degrade 

p53. All these modifications contribute to both the stability and activity of p53 

as a transcription factor (Bashkirov V. I et al., 2003). Activated p53 induces 

the transcription of p21, which is an inhibitor of cyclin E/Cdk2 complex. In 

addition, transcription of genes essential for DNA replication is suppressed as 

p21 inhibits phosphorylation of Rb protein, thus preventing the release and 

activation of the E2F transcription factor (Falck et al., 2001).
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7.4.2 Intra S-phase checkpoint 

 The intra S-phase checkpoint decreases the rate of DNA synthesis 

following DNA damage during replication and it monitors replication fork 

stalling or collapse. The RPA bound to the ssDNA accumulated in conditions 

of replication stress recruits the sensor kinase ATR through the RPA-ATRIP 

interaction (Petermann et al., 2010). Fully activated ATR phosphorylates Chk1 

that in turn phosphorylates effector proteins required to stabilize stalled forks, 

repair collapsed forks, and inhibit late origins firing to prevent further 

encounter of replication forks with DNA lesions (Ciccia and Elledge, 2010). 

Once DNA lesions are repaired by NHEJ or HR, forks may restart with the 

help of HR proteins (Budzowska and Kanaar, 2009). Alternatively, TLS 

polymerases are recruited to the lesions through the action of 

monoubiquitinylated PCNA and are able to bypass the lesions in DNA 

(Moldovan et al., 2007). If stalled forks cannot restart in time, DSBS may be 

generated, which are sensed and repaired as a canonical DSBs (Chanoux R.A 

et al., 2009). 

 

7.4.3 G2/M checkpoint 

 The G2 checkpoint acts mainly to prevent cells from entering M phase 

with damaged DNA and this is the last opportunity for the cells to repair the 

lesions before passing the genome to the daughter cells. In late S and G2, the 

sister chromatid is available for recombinational repair, providing the highest 

efficiency for lesion removal. Both ATR and ATM pathways are triggered in 

G2, and target Cdc25C blocking mitotic entry (Furnari et al., 1997). In 

addition, Chk1 facilitates G2 checkpoint by inhibiting Wee1 kinase 

(O’Connell et al., 1997). Meanwhile, many other inhibitors of cell cycle 

progression such as p21, Gadd45, and 14-3-3δ are upregulated by p53 and
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 Brca1, leading to the reinforcement and maintenance of the G2 checkpoint 

(Kastan M.B., et al., 2004).   

 

8. DNA damage repair pathways 

 
DNA is the target of several endogenous and exogenous damaging 

agents causing various kinds of lesions. Cells can either repair the damage and 

restore the DNA structure to a normal state, or activate ceratin pathways 

capable to tolerate the damage. Several DNA repair mechanisms exist capable 

to take care of a subset of lesions. Direct repair systems such as 

photoreactivation and demethylation, a base excision repair system (BER) 

mainly involved in repairing nitrogen base lesions and single strand breaks 

(SSB), nucleotide excision repair (NER), which repairs lesions causing large 

DNA distortions such as those caused by UV irradiation, mismatch repair 

(MMR) which repairs mismatched bases in the DNA double helix. Double-

strand break repair systems, such as NHEJ and HR which repairs DSBs. 

When a replicative polymerase is blocked by unrepaired DNA lesions, 

DNA damage tolerance mechanisms, also known as post replication repair 

(PRR), can take place. In fact, DNA repair mechanisms during replication are 

risky. PRR can be divided in two sub-pathways: translesion DNA synthesis 

(TLS) involving a variety of TLS polymerases and template switching (TS), a 

sort of error-free recombination pathway involving the temporary annealing of 

the two newly synthesized DNA strands. During PRR, DNA is synthesized 

past the damaged bases, and eventually the lesions can be repaired after the 

passage of the replication forks (Sale et al., 2012). During TLS, the high 

fidelity polymerases are replaced by specialized TLS polymerases that can



DNA damage repair pathways 

 

35 

 

proceed through the damaged site. TLS polymerases are error-prone because 

they lack exonuclease proofreading activities (Sale et al., 2012).  

 

8.1 Repair of single-strand DNA lesions 

8.1.1 Photoreactivation 

  Photoreactivation is one of the pathways able to remove UV-induced 

DNA lesions from the genome. It is also called light repair since the 

mechanism is dependent on a light source. Photoreactivation is found in many 

prokaryotic and eukaryotic organisms, but not in mammals. 

Cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts, two lesions 

caused by UV irradiation, have the ability to distort the DNA helix. CPD 

photolyase, specifically binds and repairs the pyrimidine dimers, while 6-4 

photolyase, can bind and cleave the 6-4 photoproducts (Thoma, 1999). 

 

8.1.2 Demethylation 

 The O6-methylguanine and O4-methylthymine are DNA lesions 

resulting from methylations events. The repair enzyme O6-methylguanine-

DNA-methyltransferase can directly reverse the lesion by removing the methyl 

group. In this process, a methyl group is transferred to a cysteine residue of the 

enzyme, resulting in enzyme inactivation (Sedgwick 2004). 

 

8.1.3 Base excision repair (BER) 

 Base excision repair (BER) is an error-free mechanism, which repair 

base modifications and oxidative damage (Fortini P et al., 2003). Specialized 

DNA glycosylases recognize the damaged DNA base and cleave the N-

glycosyidic bond between the base and the sugar component of the nucleotide 

(Lindahl et al., 1997), causing the formation of an AP (apurinic/apyrimidinic
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 site) or abasic site (See Fig 10). The AP site is cleaved by the AP 

endonuclease 1 (APE1) in the 5’ region, creating a single-strand break (SSB), 

flanked by 3’-OH and 5’-deoxyribose termini. In order to complete the repair 

process, the blocked termini must be restored to conventional 3’-OH and 5’-

phosphate ends, which are essential for DNA polymerase and subsequent 

DNA ligase reaction. BER can be divided in 2 sub-pathways: long patch BER 

in which DNA Polymerase ε can using the 3’OH terminus for extension and 

its strand displacement activity generates a 5’ single strand overhang which is 

then removed by the flap endonuclease Rad27. The final step is ligation by 

DNA ligase (Boiteux S. and M. Guillet, 2004). The second BER sub-pathway 

is a short-patch repair mechanism: in this case, DNA polymerase  is inserting 

one nucleotide and remove the 5’ extremity through its lyase activity, followed 

by ligation which is performed by XRCC1-Lig3 complex (Hoeijmakers J.H, 

2001). 

 

Figure 10. Simplified version of base excision repair (BER) (taken from 

http://www.web-books.com)
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8.1.4 Nucleotide excision repair (NER) 

 NER recognizes a variety of bulky helix distorting adducts 

caused by chemical mutagens (e.g. anticancer compounds), UV-induced 

dimers (6-4 photoproducts (6-4 PP) and cyclobutane pyrimidine dimers 

(CPDs), alkylated nucleotides, including O6-methyl-/or ethylguanine, N6-

methyladenine etc. The NER pathway (See Fig 11) is mediated by the 

sequential assembly of repair proteins at the site of DNA damage and is more 

complex compared to BER.  

The NER system consists of two related sub-pathways: a) 

Transcription Coupled Repair (TCR), which removes lesions in the transcribed 

strand of the active genes (Hanawalt et al., 2003) and is activated by stalling of 

RNA polymerases and b) Global Genome NER (GG-NER),   which is 

responsible for removing UV-induced lesions from the rest of the genome. 

Both the pathways share common mechanisms, but differ in the initial 

recognition steps. After detection of a photolesion, both the TC-NER and GC-

NER follow a three step mechanism, allowing excision of an oligonucleotide 

containing the lesion and completion of repair by a gap filling step which 

allows the recovery of the lost information (de Laat, et al., 1999). Factors that 

detect helix-distorting lesions during GG-NER and TC-NER are in yeast 

Rad4/Rad23 (XPC/h Rad23b in humans), Rad7/Rad16 (functional equivalent 

of mammalian UVDDB1/2) and Rad26-RNA Pol ΙΙ (CSB/RNA pol II). The 

complex Rad14-RPA (XPA/RPA) and Rad4/Rad23 work in common for both 

GG-NER and TC-NER, while Rad7/Rad16 is specific to GG-NER. Rad3 and 

Rad25, subunits of the TFIIH helicase, help to unwind the DNA before the 

incision step, which is carried out by the two structure- dependent 

endonucleases Rad1-Rad10 and Rad2 at the 5’ and 3’ side, respectively, of the 

damage. Rad14-RPA and Rad4-Rad23 complexes are also essential for 
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incision of the damage. In the final step, the replication machinery fills the gap 

and completes the repair (Prakash, S. and L. Prakash, 2000). 

 

 

 

Figure 11.  Schematic representation of normal pathway of nucleotide 

excision repair (NER) (taken from the book,” The pathway of double stranded 

break” by Emil Mladenov and George Ilakis, 2011) 

 

8.1.5 Mismatch repair (MMR) 

The MMR pathway plays an important role in repairing misincorporated base 

(base-base mismatches) during DNA replication (See Fig 12) that have 
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escaped from the proofreading activity of replication polymerases and in the 

repair of insertion and deletion loops (IDLs) resulting from polymerase 

slippage during replication of repetitive DNA sequences. Initial mismatch 

recognition is fulfilled by two MutS activities that function as heterodimers 

and recruit the MutL complex. The heterodimer Msh2 and Msh6, also known 

as MutSα, recognizes base mismatches and small IDLs (1-2 nucleotides), 

while the Msh2 and Msh3 heterodimer also knows as MutSβ, detects large 

IDLs. 

 

 

 

Figure 12. Schematic representation of mismatch repair (MMR) (taken from 

Kevin Aherns Biochemistry, 7th edition, 2012)
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The binding on either of the two complexes (Mutα or MutSβ) induces a 

conformational change that attracts the Mlh1-Pms1 complex (MutLα) to the 

lesion.  MutS/MutL complexes guide exonuclease 1 (EXO1) to the side of the 

damage. A nick on either side of the mismatch allows further processing by 

exonuclease such as Exo1 (Tran PT et al., 2004). On the lagging strand, nicks 

are likely due to the removal of Okazaki fragments. Then, the polymerases are 

thought to complete the repair process by performing the DNA synthesis and 

ligation steps (Harfe, B.D. and S. Jinks-Robertson, 2000).   

 

8.2 Repair of DNA DSBs 

 DSBs are among the most harmful types of DNA damage. Persistent or 

incorrectly repaired DSBs result in GCRs, which can lead to carcinogenesis 

through activation of oncogenes or inactivation of tumor-suppressor genes. 

Thus, the repair of DSBs is critical for cell survival and maintenance of 

genome stability (van Gent DC et al., 2001; Khanna KK, Jackson SP, 2001). 

There are two main mechanisms by which mammalian cells repair DSBs: 

homologous recombination (HR) and non-homologous end-joining (NHEJ). 

Homologous recombination is an error-free repair mechanism which utilizes 

the genetic information contained in the undamaged sister chromatid as a 

template (Li X et al., 2008); in contrast, NHEJ is often error-prone and 

involves elimination of DSBs by direct ligation of the broken ends (Lieber MR 

et al., 2010).     

 

8.2.1 Homologous repair (HR) 

 The HR mainly occurs in the S and G2 phase of the cell cycle (Durant 

and Nickoloff, 2005), since it uses the sister chromatid to copy the information 

required to repair the break. HR starts with DSB processing through 5’ to 3’ 

end resection (See Fig 13) which is initiated by the MRX complex (Mre11-
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Rad50-Xrs2) and its associated partner Sae2 (Nicolette ML et al., 2010). Then 

5’ to 3’ resection continues through the action of Exo1 exonuclease or Sgs1 

helicase and helicase/nuclease Dna2, in a second resection step called long 

range resection. After the resection step, 3’-single stranded overhangs 

(ssDNA) are rapidly coated with RPA protein to remove secondary structures 

that would interfer with the recruitment of the Rad51 recombinase. 

 

Figure 13. Schematic representation of DSB repair by homologous 

recombination (HR) (taken from Rass, E, 2009) 

In fact, in the next step RPA is replaced by the Rad51 protein in a Rad52-, 

Rad55-and Rad57-dependent manner, to form a Rad51 nucleoprotein filament. 

The filament, in concert with the Swi/Snf complex and Rad54,
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 directs the search for homology sequences and once the homology has been 

identified, it further proceeds with DNA strand invasion, where the damaged 

DNA strand invades the template DNA duplex. Annealing of the filament with 

the homologous template initiates DNA synthesis from the 3’end of the 

invading strand, which is carried out by DNA polymerase η, followed by 

successive ligation by DNA ligase I to yield a four-way junction intermediate 

structure, known as a Holliday junction (McIlwraith MJ et al., 2005). Finally, 

the Sgs1-Top3-Rmi complex resolves the join molecules (Heyer, W.D et al., 

2006; San Filippo J, 2008). 

 

8.2.2 Non-homologous DNA end-joining (NHEJ) 

            NHEJ is active during the whole cell cycle, but it is predominant in the 

G1 phase (Krokan HE et al., 2004). In mammalian cells, NHEJ starts with a  

 

                   

Figure 14. Schematic representation of the DSB repair pathway: non-

homologous end joining (NHEJ) (taken from Doherty and Jackson, 2001)
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limited processing of DNA ends by the MRN complex (Mre11/Rad50/Nbs1). 

Then, the proteins Ku-70 and Ku-80 bind the DNA ends and recruit the DNA 

dependent-protein kinase (DNA-PK).  Once bound to broken ends, DNA-PK 

activates itself and phosphorylates its targets, including RPA and Artemis. 

DNA ligase IV will then seal the break (See Fig 14). 

 

8.3 DNA damage tolerance pathway 

 

 The process of coping with DNA damage during replication (PRR) is 

referred to as a DNA damage tolerance pathway. This process is biologically 

important as the DNA repair pathways. Earlier studies in both yeast and 

mammalian cells suggested two major pathways for PRR: translesion 

synthesis (TLS) and a damage avoidance mechanism acting through template 

switching (TS) (Chang DJ et al., 2009; Branzei D and Foiani M, 2010; Lee 

KY et al., 2008; Klarer AC et al., 2011) (See Fig 15). During PRR the lesion is 

bypassed and left unrepaired but offering the possibility of being fixed in 

subsequent stages of the cell cycle by the DNA repair mechanisms described 

above (Budzowska and Kanaar, 2009). This temporary bypass and tolerance of 

a DNA lesion often come at a cost. There is an increased mutation rate at the 

lesion site due to the error-prone nature of this process (McCulloch and 

Kunkel, 2008). The predominant mechanism of DNA damage tolerance is 

translesion synthesis. Translesion synthesis is the replicative bypass of DNA 

damage by non-classical DNA polymerases. This process involves the 

incorporation of nucleotides directly across a DNA lesion which blocks DNA 

replication because by classical polymerases are unable to accommodate the 

lesion in their active site. This process is error-prone because the polymerases 

responsible for translesion synthesis have a reduced fidelity of nucleotide 

incorporation, a property that allows them to accommodate the structural 

distortions caused by various types of DNA lesions (Prakash S. et al 2005). In
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 fact, replication errors associated with translesion synthesis are believed to be 

responsible for almost all DNA damage-induced mutations (Guo C. et al., 

2009). Each of the TLS polymerases has different substrate specificities for 

different types of DNA damage (Sharma S, 2013; Lange SS et al., 2011; 

Makridakis NM et al., 2012). The non-classical polymerases involved in the 

translesion synthesis in eukaryotes are polymerase η, polymerase ι, 

polymerase ζ, polymerase κ, and the Rev1 protein.  

 

 Figure 15.Schematic representation of DNA damage tolerance 

pathway. (taken from Goshal G. et al., 2013): DNA damage tolerance pathway 

(DDT): lesions (yellow Square) in the DNA template blocks progression of 

high-fidelity replicative polymerase resulting in stalled replication forks. DNA 

damage tolerance mechanism mediates bypass of lesions by replicating over 

damaged DNA by low-fidelity DNA polymerases (translesion synthesis) or 

using the undamaged sister chromatid as a template (template switching). 

Template switching is mediated by structural rearrangement of the replication
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fork either by recombination or fork reversal. The key regulator of DDT 

pathway is the modification of PCNA. Under undamaged conditions 

replicative polymerase binds to unmodified PCNA during DNA replication. 

Upon genotoxic stress, PCNA is ubiquitinated at K164 to initiate DNA 

damage tolerance pathways. Monoubiquitination of PCNA promotes 

translesion synthesis, while polyubiquitination facilitates template switching. 

PCNA is monoubiquitinated by RAD18-RAD6 E3-ligase and 

polyubiquitinated by Rad5 (human homologue, SHPRH or HLTF). Following 

lesion bypass Usp1 deubiquitinates PCNA, thereby facilitating loading of the 

replicative polymerase to resume DNA synthesis. 

To employ these non-classical polymerases, the stalled classical polymerase at 

the site of DNA damage must be exchanged for a TLS polymerase. The non-

classical polymerase will then bypass the damage, and a second exchange will 

occur between the TLS and the classical polymerase. This switching event is 

mediated by replication factors at the replication fork, mainly by PCNA (de 

Saro 2009; Lehmann et al., 2007). The concerted actions of Rad6, the E2 

ubiquitinating conjugating enzyme and the E3 ubiquitinating ligase Rad18 is 

required for the monoubiquitination of Lys164 of PCNA which recruits TLS 

polymerases in response to stalled replication caused by DNA damage 

(Friedberg, Lehmann et al., 2005).  

 

9. S. cerevisiae as a model to study genome 

stability maintenance 

9.1 S. cerevisiae as a lab model 

 The yeast Saccharomyces cerevisiae, (budding yeast) is a unicellular 

eukaryotic organism and it belongs to the fungi kingdom (Kurtzman CP, Fell 

JW, 2005).  It has a haploid genome composed of a total of 13 Megabases 

(Mb), organized in 16 chromosomes. After its complete genome sequence, we 

know that SC DNA contains approximately 6000 open reading frames (ORFs) 

most of which encode specific proteins. Yeast is non-pathogenic and serves as
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 an ideal model organism in many aspects of eukaryotic biology, from gene 

structure to protein function (Botstein and Fink, 1988). Many pathways in 

eukaryotes are evolutionary conserved from yeast to multicellular organisms, 

including humans. Therefore, data obtained from yeast can in many cases be 

transferred and applied to human cells. Yeast has a short generation time, and 

it is relatively easy and cheap to use and maintain. In addition, budding yeast 

has a highly efficient DNA recombination system, making gene deletions, 

gene modifications and epitope tagging experiments relatively straightforward 

and efficient. 

 The yeast has become the ‘test bed’ for developing many new 

technologies, for example, synthetic genetic array (SGA) technology. The 

creation of a complete deletion collection of non-essential yeast genes allows 

genome-wide screenings to dissect cellular pathways, as well as to facilitate 

the structure-function analysis of genes and proteins. Interfering with the 

function of proteins in molecular complexes can be uncovered by synthetic 

genetic interactions, usually identified when a specific mutant is screened for 

second-site mutations or overexpression effects that either suppress or enhance 

the original phenotype.   

9.2 SGA technology 

 Synthetic genetic array (SGA) is a high-throughput technology, which 

is now quite routinely applied using yeast cells. The SGA analysis allows the 

systematic construction of double mutant strains (Tong et al. 2001), and the 

subsequent large scale analysis of synthetic genetic interactions (Tong et al., 

2004; Baryshnikova A, 2010). The query mutant strain is crossed with the 

array of approximately 5000 viable deletion mutants and the resulting diploids 

are transferred to a reduced nitrogen medium for sporulation. The haploid 

progeny is then put through a series of selection platings and incubations in
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 Figure 16. The Schematic representation of SGA technology for the selection 

of double mutant (taken from Baryshnikova A, 2010) 

 

order to select for the double mutant (See Fig 16); finally, the colonies are 

scored for growth defects by a computer software analysis. The SGA 

technology allows to identify genetic interaction networks, thus providing 

functional informations associated with the position and connectivity of a gene 

in the network. The methodology can be adapted to many different functions 
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because any genetic element marked by a selectable marker can be analyzed. 

In addition, using the SGA methodology, strains containing specific alleles, 

including temperature-sensitive alleles (ts-mutants), point mutants, or plasmid 

can be crossed with any ordered array of mutant strains, providing a 

systematic tool for genetic suppression analysis, dosage lethality and dosage 

suppression screens or plasmid shuffling. 

 

9.3 S. cerevisiae, the tool for studying genome instability 

 Saccharomyces cerevisiae proved to be a great model for several 

decades to study the function of genes and pathways (epistasis studies) 

involved in genome stability. For example, DNA damage repair and DNA 

damage checkpoint pathways are well conserved from yeast to human, and 

their analysis in yeast enable us to understand better the human counterparts. 

Multiple assays have been developed to study genome instability in yeast, like 

GCR assay (Schmidt KH et al., 2006; Christopher D. Putnam and Richard D. 

Kolodner, 2010), chromosomal loss assay (Klein HL, 2001), point mutation 

assay (Foster PL. 2006), spontaneous recombination assay (Spell RM, Jinks-

Robertson S, 2004) and repetitive sequences instability assay (Kenneth Larkin 

and Michael Schweizer, 1999). For example, the GCR assay allows to 

measure the rate of accumulation of spontaneous GCRs in S. cerevisiae and 

allowed to understand the involvement of many DNA replication, repair, 

recombination, checkpoints, telomere maintenance and chromosome 

remodelling proteins in genome integrity maintenance. Likewise, many other 

above-mentioned assays helped to identify and characterize a wide range of 

genome aberrations in yeast that proved to help our understanding of the role 

of specific genes in genome maintenance. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Schmidt%20KH%5BAuthor%5D&cauthor=true&cauthor_uid=16793418
http://www.ncbi.nlm.nih.gov/pubmed?term=Spell%20RM%5BAuthor%5D&cauthor=true&cauthor_uid=14769952
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Aim of the project  

 

 The integrity of the genome is crucial for normal cell cycle 

progression, and for the propagation of genetic information to subsequent 

generations and genome integrity can be threatened by several endogenous 

and exogenous factors. Therefore, different mechanisms must exist in the cell 

to overcome this challenges. In the last 20 years several studies have been 

successfully carried out to improve our understanding of the molecular 

mechanisms preserving genome integrity. Nevertheless, it is likely that not all 

the genes and pathways involved in genome integrity maintenance have been 

identified and fully characterized. 

 In the attempt to find out new genome stability genes, we developed a 

screening strategy based on the spontaneous accumulation of endogenous 

DNA damage. The screening relies on the overexpression of the DDC2 DNA 

damage checkpoint gene in the yeast deletion mutant collection: indeed, high 

Ddc2 levels affect the viability of strains experiencing endogenous DNA 

damage, and may allow the identification of new genome integrity mutants. 
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Main results 

 

1. The strategy behind the screening 

 The idea of the screening came from previous observations. Yeast 

strains suffering genome instability undergo spontaneous accumulation of 

endogenous DNA damage which can be detected by phosphorylation of the 

Rad53 checkpoint kinase, indicating a chronically activated DNA damage 

checkpoint response (Zhang et al., 2006a; Driscoll et al., 2007; Duro et al., 

2008; figure 17).  

 

Figure 17. Yeast strains deleted for genes which are known to be involved in 

the control of genome stability display chronic Rad53 phosphorylation. 

Protein extracts were prepared from exponentially growing cultures of the 

indicated strains and the phosphorylation status of Rad53 was analysed by 

SDS-PAGE and western blotting with anti-Rad53 antibodies. 

 

We designed a strategy to select this phenotype, in order to screen the yeast 

deletion collection for genome integrity genes, based on the accumulation of 

endogenous DNA damage.  
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 The rationale of the screening is based on the overexpression of the 

DDC2 gene. Ddc2 is the binding partner of the apical kinase Mec1, which is 

the main activator of the DNA damage checkpoint. It has been demonstrated 

that DDC2 overexpression in the presence of DNA damage leads to 

checkpoint hyper-activation, resulting in prolonged cell cycle arrest and cell 

death, while it has no effect on undamaged cells (Clerici et al., 2001). We 

confirmed the observation that  DDC2 overexpression increases the sensitivity 

of yeast cells to low doses of DNA damaging agents, and we speculated that a 

similar effect might be observed if some cell mutants will accumulate 

endogenous DNA damage (i.e., in the absence of any treatment with external 

DNA damaging agents). This hypothesis was confirmed by testing the effect 

of DDC2 overexpression in yeast strains bearing deletion of genes known to 

play a role in genome integrity maintenance: indeed, all the strains tested 

showed severe growth defects in response to DDC2 overexpression. Thus, we 

decided to screen the yeast deletion collection to identify strains which are 

unable to grow in DDC2 overexpression conditions, due to accumulation of 

endogenous DNA damage.  We chose to overexpress DDC2 under the control 

of the GAL1 promoter, which is induced in the presence of galactose on a 

multicopy plasmid in order to increase the sensitivity of the screen in the 

presence of moderate levels of DNA damage. We exploited for our screening 

the power of the SGA (Synthetic Genetic Array) technology (Baryshnikova A, 

et al., 2010a), by introducing the GAL1-DDC2 overexpressing plasmid in a 

yeast deletion collection.  

The procedure can be summarized as follows: mating of a query strain 

containing the plasmid with the deletion collection of the opposite mating type 

and selection of the diploids. After sporulation, selection of yeast haploid 

mutants with both the gene deletion and the plasmid (figure 18).  
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Figure 18. Overview of the screen for genome stability genes based on 

DDC2 overexpression 

The resulting colonies are then replicated in galactose containing medium to 

induce DDC2 overexpression and cell proliferation is assessed by checking the 

colony formation ability. Each mutant’s fitness is scored by measuring the size 

of the colony on galactose medium compared to the control experiment with 

the empty vector. The screening can be carried out only with a well equipped 

SGA platform and it was performed in Toronto in collaboration with G. 

Brown and C. Boone’s labs, recognized leaders in this field. 

 Processing of SGA data was done (figure 19) as follows: i) the 

galactose plates were photographed with a high-resolution digital camera; ii) 

the digital images of the plates were processed by image processing software 
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that identifies the colonies and measures their areas in terms of pixels; iii) the 

quantified colony size was converted in a ‘score’ number through further 

Bioinformatics analysis performed by Anastasia Baryshnikova (Baryshnikova 

et al., 2010b).  

 

Figure 19. Processing the SGA data by computational analysis and selection 

of putative positives 

 

2. Identification of new genes controlling genome stability by DDC2 

overexpression 

The SGA screening was performed twice. By merging the results obtained 

from both screenings, we obtained 354 putative positives which can be 

gathered in various cellular pathways represented in figure 20. Apart from 

known DNA damage response or genome stability genes, we identified genes 

involved in many pathways such as mitochondrial structure and function, 

peroxisomes biogenesis, ribosome biogenesis, protein sorting, cell wall, 

oxidative stress response, cytoskeleton, chromatin remodeling, autophagy, 

protein degradation, transcription regulation, RNA processing, plasma 

membrane transport, vacuolar function, meiosis and amino acid biosynthesis. 
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 Interestingly, we found many mitochondria, peroxisomes and oxidative 

stress genes, which together form the most represented category and which 

were not identified in previous screenings for genome integrity genes 

(Bonekamp NA. et al., 2009; Moldovan L. et al., 2004; Ouspenski II. et al., 

1999; Myung K. et al., 2001; Huang ME. et al., 2003; Measday V, et al., 2005; 

Pan X, et al., 2006; Storchov_a Z, et al., 2006; Andersen MP. et al., 2008; 

Smith S, et al., 2004; Yuen KWY, et al., 2007; Strome ED. et al., 2008; Ungar 

L, et al., 2009; Alabrudzinska M. et al., 2011; Stirling PC, et al., 2011; Zhang 

Y, et al., 2012). Surprisingly, we also obtained a set of genes growing better in 

GAL-DDC2 overexpression conditions, but this class of genes needs further 

investigation.  Moreover, many of the identified genes are still uncharacterized 

(20%), which paves the way for future studies. 

 

Figure 20. Schematic representation showing the putative roles of the 

positives genes identified in the SGA screening 
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3. Direct validation of putative positives 

The first 96 putative positive genes were directly validated by 

transformation and drop assays. Selected 96 candidate strains were retrieved 

from the Euroscarf deletion collection (Background: BY4741), and 

transformed with the GAL-DDC2 plasmid or with the empty plasmid, 

separately. Drop assays were performed with all the transformed strains on 

galactose containing plates to check the sensitivity to DDC2 overexpression, 

and on glucose containing plates as a control. We obtained a list of confirmed 

true positives: out of the 96 tested candidates, we were able to confirm 67% of 

them, while the remaining 33% were rejected as false positives. We conclude 

that the overall quality of the screening was good compared to previous 

screenings done using the SGA technology (Amy Hin Yan Tong, et al., 2001). 

In the case of the confirmed positives, the strains were appreciably sensitive to 

GAL-DDC2 overexpression in the presence of galactose, compared to the wild 

type control strains. Conversely, when the mutant strains showed a strongly 

reduced fitness in galactose both with the GAL-DDC2 plasmid and the empty 

vector or when the same growth was observed in the wild type control and in 

the mutant after DDC2 overexpression the candidate gene was discarded as a 

false positive (figure 21). 

 

Figure 21. LEFT: Example of a confirmed true positive candidate gene, 

showing the sensitivity to GAL-DDC2 overexpression compared to the wild 

type and empty vector controls.  MIDDLE: a non-confirmed false positive 

candidate gene shows the growth pattern of the wild type and empty vector 

control. RIGHT: a non-confirmed false positive candidate gene shows 

lethality also with an empty vector.  
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4. The GAL-DDC2 screen with essential genes: Preliminary results 

 Additionally, we decided to extend our search for genome integrity 

genes by including ~1000 genes which are essential for cell viability in yeast. 

To do this, we applied the same experimental approach except that we used a 

temperature sensitive (ts)-mutant collection of essential genes. The screening 

was performed at two different temperature 26oC and 30oC.  At present we 

only have preliminary results because the screening was performed only once. 

From the analysis at 26oC, we obtained 57 putative positives, which plays 

roles in different cellular pathways, such as genome maintenance, cell cycle, 

RNA processing, cell wall function, protein sorting and ribosome biogenesis 

(figure 22a). From the analysis at 30oC, we obtained 125 putative positives 

involved in various process, such as, DNA repair, protein degradation, 

transcription regulation, mitochondrial function, chromatin remodelling, 

plasma membrane transport, RNA processing, protein sorting, cell wall 

metabolism and cell cycle control (figure 22b).  Currently, we are repeating 

the screening to confirm these results.  

ts-mutant 26oC 

 

Figure 22a. Schematic representation of putative positive genes identified 

with the ts-mutant collection at 26 oC 
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ts-mutant 30oC  

 
Figure 22b. Schematic representation of putative positive genes identified 

with the ts-mutant collection at 30 oC 
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Conclusions and future perspectives 

 

Several pathways in cell are responsible for the maintenance of genome 

stability and if these pathways are unable to function properly or provide 

support to the normal cell function leads to “genome instability” a hallmark of 

cancer and various disease. In order to conclude the work in the thesis as 

summarize as follow:  

 

1. We identified the several novel genes which might play a vital role in 

the maintenance of genome stability. 

2. We identified several genes from ts-mutant screening which might play 

an important role in genome stability and maintenance. 

3. The DDC2 overexpression in yeast strains acts as a new tool for 

unveiling the new genes and pathways involved in the maintenance of 

genome stability. 

4. Our screening strategy is unique from many other genome instability 

screens because we selected the genes based on the endogenous DNA 

damage (i.e., without external genotoxic agents). 

 

 From the above conclusion, interestingly, it results in paved a way for 

future studies, where we are particularly interested in unveiling the biological 

and molecular function of ORF (i.e., from the list of confirmed true positives) 
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in genome stability using classical genome instability assays and test the 

sensitivity to different DNA damaging agents. At the same time it is also 

worth to investigate the contribution of series of peroxisome and mitochondria 

genes in the role of genome integrity maintenance by performing specific 

assays to detect the reactive oxygen species level and also to perform comet 

assay for detecting the DNA breaks and its frequency. Moreover, 

unexpectedly we identified some mutants which were growing better in DDC2 

overexpression condition, but this class of genes needs further investigation. 
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Summary 

 

Despite the need to maintain the integrity of the genome to guarantee the 

stability of genetic information, DNA is not an inactive storage molecule. 

Indeed, normal cellular metabolism entails complex DNA transactions to 

transcribe, duplicate and repair the genetic material; paradoxically, one of the 

major threats to genome integrity comes from the DNA and RNA metabolisms 

themselves. Here we provide a comprehensive overview of the mechanisms 

through which nucleic acid metabolism impacts on genome integrity, 

highlighting the frequent crosstalks among them and presenting recent studies 

that shed new light on some of these processes, such as ribonucleotides 

incorporation during genome replication, fragile sites expression and 

transcription-replication interference. We also discuss potential benefits, 

which might explain why some of the mechanisms that jeopardize the stability 

of the genome were not counter-selected during evolution. 
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Introduction: DNA damage and maintenance of genome integrity 
The integrity of DNA molecules, which are the major depositary of genetic 

information in living organisms, is continuously challenged by multiple 

endogenous and exogenous agents. First, as a consequence of its intrinsic 

instability in an aqueous environment, DNA molecules can undergo spontaneous 

hydrolysis, which results in depurination and subsequent formation of abasic sites, 

or deamination, yielding miscoding bases [1]. Second, DNA can be severely 

damaged by several byproducts of normal cellular metabolism. Reactive oxygen, 

nitrogen and carbonyl species, together with endogenous alkylating agents, 

estrogen and cholesterol metabolites can cause a wide spectrum of DNA lesions, 

such as DNA strand breaks, abasic sites, oxidized bases, DNA adducts, DNA 

cross-links and replication-blocking lesions [2]. Third, chemical or physical 

environmental agents–above all ionizing radiation (IR) and the ultraviolet (UV) 

component of sunlight, but also cigarette smoke and several chemotherapeutic 

agents – can cause hazardous alterations in DNA structure, such as bulky DNA 

adducts, double-strand breaks (DSBs) and single-strand breaks (SSBs),oxidative 

damage, interstrand or intrastrand crosslinks (ICLs) [3, 4]. DNA lesions are 

extremely harmful because they can be either mutagenic (alteration of the genetic 

information) or cytotoxic (impairment of cell viability). The extent of DNA 

damage occurring in living organisms is surprisingly high, since it was stimated 

that each cell experiences about 105 DNA lesions per day [1]. Therefore, a serious 

task posed to all cells is to maintain the integrity of the genome despite all the 

attacks to which it is continuously subjected, to ensure cell survival and preserve 

the genetic information that needs to be faithfully transmitted across generations. 

Increased genome instability causes the accumulation of a wide spectrum of 

genetic alterations, ranging from point mutations to gross chromosomal 

rearrangements. Different classes of genomic instability have been described: i) 

instability leading to mutations, including base substitutions, micro-insertions and 

micro-deletions; ii) mini- and micro-satellite instability (MIN), leading to 

expansion or contraction of repetitive DNA sequences; iii) gross chromosomal 

rearrangements (GCRs), including aberrations in chromosome structure like 

translocations, duplications, inversions or deletions; iv) chromosomal instability 

(CIN), defined as a persistently high rate of loss and gain of whole chromosomes, 

which results in aneuploidy [5]. Increased genome instability is a characteristic of 

most human cancers and it is considered a hallmark and a key driving force in 

tumorigenesis [6, 7] (Box 1). Despite the need to counteract all these genotoxic 

insults and maintain the integrity of the genome, DNA is anything but an inactive 

storage molecule. Instead, DNA undergoes complex transactions, which also 

constitute a very serious threat to genome integrity (summarized in Fig. 4): 
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indeed, the two main processes involving DNA, namely transcription and 

replication, are potential sources of chromosome breakage. In accordance with the 

oncogene-induced DNA damage model for cancer development (Box 1), 

replication stress and subsequent replication errors or failures appear to be the 

main origins of genome instability [5, 8–10]. Moreover, highly transcribed 

regions are often responsible for replication impairments [11]. In addition, 

specific chromosomal loci, such as fragile sites, repetitive sequences, DNA 

secondary structures-forming regions and telomeres pose specific challenges to 

genome integrity contributing to the onset of genomic instability [5, 12–14]. In 

recent years, new sources of genome instability arising from nucleic acid 

transactions were identified [11, 15, 16], and deeper insights were achieved on 

known factors, in some cases dramatically altering our perception of these 

processes in relation to genome integrity [17]. 
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Box 1 

Genome instability and cancer  

Cancer is a multistep process, characterized by the gradual accumulation of 

genetic alterations. Two main models were put forward to elucidate the 

process of tumorigenesis: the “mutator hypothesis” and the “oncogene-

induced DNA damage model”. According to the mutator hypothesis, at the 

beginning of carcinogenesis, due to endogenous or environmental DNA 

damage, a “mutator mutation” occurs in a gene responsible for genome 

integrity maintenance, resulting in an overall increase of the mutation rate. 

This enhanced mutagenesis will favour the occurrence of “driver mutations” in 

oncogenes or tumor suppressor genes [121], which provide a proliferative 

advantage and will thus be selected within the precancerous cell population, 

according to changes in the microenvironment. This is expected to be a 

positive feedback mechanisms, since in a genetically unstable cell new 

mutations may occur which further increase genomic instability. Subsequent 

multiple rounds of selection and mutation will direct the evolution of the 

tumor up to a malignant cancer [121]. The main argument against this model 

is that mutations in genome stability genes (also called “caretaker genes”) are 

usually recessive. Therefore, two independent mutations are needed to get an 

unstable genome, and the occurrence of this event before the onset of genomic 

instability is very unlikely [122]. Accordingly, high-throughput studies on 

cancer cell lines in many cases failed to detect mutations in known caretaker 

genes or to identify novel putative caretaker genes frequently mutated in 

tumors [6]. For this reason, an alternative model was proposed, the so-called 

“oncogene-induced DNA damage model for cancer development”, which still 

relies on genomic instability, but places oncogene driven replication stress at 

the first stage of tumorigenesis [10]. This model postulates the activation of an 

oncogene which deregulates entry into the cell cycle as the key initial step of 

cancer development. Activated oncogenes can induce a state of replication 

stress, causing frequent replication fork collapse which, in turn, leads to DSBs. 

Consistently, both precancerous and cancerous lesions exhibit a persistent 

DNA damage response indicative of DSBs [8]. The genomic instability thus 

generated can subsequently lead to the loss of growth restrictions (typically by 

checkpoints, apoptosis and senescence), which marks the transition from 

precancerous to cancerous lesion. These two apparently conflicting models 

can be reconciled taking into account the differences between hereditary and 

sporadic cancers, [6]. The mutator hypothesis, can explain very effectively the 

origin of hereditary cancers: here, a germline mutation in a genome stability 

gene is already present in all patient's cells, and therefore a single mutation is 

required to inactivate the other allele, resulting in genomic instability. And  
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1. The replication fork at the center of genome instability 
During replication, DNA is most vulnerable, and its integrity is jeopardized by a 

series of events that may perturb replication fork progression. Accordingly, 

replication failures emerged as one of the main sources of genomic instability, due 

to the generation of both ssDNA gaps and DSBs by multiple mechanisms [5] (Fig. 

1). Moreover, replication of a nicked template inevitably results in the generation 

of a DSB [18]. When a replication fork encounters an obstacle on the leading 

strand that prevents its progression (such obstacle may be a DNA adduct, a 

protein, a DNA secondary structure or the transcription machinery), uncoupling 

between replicative helicases and polymerases occurs and large ssDNA stretches 

are generated: this situation is defined as “replication fork stalling” [19]. If the 

replisome remains associated with the stalled fork, resumption of DNA synthesis 

can occur after removal of the obstacle. Conversely, if the stalled fork is not 

properly stabilized or the obstacle is not removed, the replisome disassembles, 

resulting in “replication fork collapse”, with the subsequent generation of ssDNA 

gaps and DSBs [20, 21]. Moreover, in case of replication fork stalling or 

uncoupling between leading-strand and lagging-strand synthesis [22], the fork can 

reverse forming a Holliday junction-like structure known as “chicken foot” [21, 

23]: this structure can revert back to a normal fork, it can be cleaved resulting in a 

DSB [24], or it can be processed by nucleases to generate a stretch of ssDNA [25] 

(Fig. 1). Alternatively, replication forks can encounter a lesion on the template 

strand which prevents DNA synthesis without impairing fork progression. If the 

lesion is on the lagging strand, a ssDNA gap is left between two neighboring 

Okazaki fragments; if the lesion is on the leading strand DNA, synthesis can 

resume past the obstacle, leaving a ssDNA gap behind [26]. DSBs are potential 

sources of GCRs, due to the different ways in which they are processed and 

repaired. Direct repair by non-homologous end joining (NHEJ) or DSB 

indeed, caretaker genes (mainly DNA repair or mitotic checkpoint genes) 

were often found mutated in hereditary cancers [6]. Instead, the 

oncogene-induced DNA replication stress model is best suitable to 

explain the genesis of sporadic cancers, not lastly due to the fact that 

activated oncogenes are generally dominant [123]. In this view, 

deregulation of a growth-regulating gene leads to replication stress and 

DNA damage, which cause genomic instability and subsequently all the 

other cancer hallmarks. Accordingly, in sporadic cancers the most 

frequently mutated or deregulated genes were found to be classical 

oncogenes or tumor suppressors [6]. It is worth noting that, despite 

differing in the initial event placed at the basis of carcinogenesis, both 

models rely upon genomic instability as a key factor for tumor 

development. 
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processing (resection) and subsequent channeling in a recombination-mediated 

repair pathway – such as classical homologous recombination (HR), synthesis-

dependent strand annealing (SDSA), break-induced replication (BIR) or single-

strand annealing (SSA) – may result in translocations, interstitial deletions, 

inversions, duplications and insertions [5]. Moreover, a DSB end can undergo de-

novo telomere addition by telomerase, resulting in a terminal deletion [27] (Fig. 

1). Also ssDNA generated at replication forks is a potential source of genomic 

instability. Indeed, experimental observations suggest that ssDNA itself can be 

recombinogenic, even without being converted to a DSB [28, 29]: therefore, the 

long ssDNA stretches generated as a consequence of a perturbed replication could 

be a source of hyper-recombination (Fig. 1). 
 

2. Unusual secondary structures 

 
The DNA structure described by Watson and Crick is the canonical right-handed 

double helical structure called B-form DNA. Non-B-form secondary structures 

have been found to occur at specific DNA sequences. Hairpins can form at 

inverted repeats or trinucleotide repeats (TNRs) on single-stranded DNA [30]; 

similarly, inverted repeats longer than 6 nucleotides can adopt a cruciform 

structure, which is made up of two hairpin-loop arms and a 4-way junction, 

resembling a Holliday junction [31]. Three-stranded triplex DNA structures are 

formed when a single-stranded DNA region binds in the major groove of purine-

rich double-stranded B-DNA, leaving its complementary strand unpaired [32]. 

Repetitive G-rich sequences can form G-quartets, in which 4 guanines are 

arranged in a planar square, and multiple stacks of G-quartets yield a G-

quadruplex (G4) DNA structure, which is usually stabilized by monovalent 

cations [13].  These non-canonical secondary structures are hotspots for genomic 

instability: hairpin formation is involved in TNRs instability [33]; triplex DNA 

structures are intrinsically mutagenic, likely because they cause DSBs that result 

in translocations [34]; cruciform structures formed at palindrome sequences are 

implicated in DSB-induced translocations [35]; G-quadruplexes stabilization 

induces DNA damage, and some rearrangement breakpoints have been mapped at 

sequences prone to G quadruplex formation [36, 37].  The main mechanism 

through which all these unusual secondary structures jeopardize genomic stability 

has been deduced through the observation that they can impair replication fork 

progression, inducing DSBs and ssDNA gaps [37–40]. Interestingly, non-

canonical secondary structures-induced genomic instability was detected also in 

non-proliferating cells, suggesting alternative mechanisms to replication fork 

impairment. DNA repair processes expose ssDNA tracts, favoring the formation 

of non-B-form secondary structures, which might interfere with the repair process 

itself, resulting in GCRs. Moreover, unusual secondary structures may be 

recognized as helix-distorting lesions, and cleavage by the repair machinery may 

occur, yielding deletions and GCRs. The ssDNA which is exposed after triplex 

DNA formation may itself be a recombinogenic intermediate. In addition, 
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noncanonical secondary structures seem to be more susceptible to DNA damage, 

likely because they impair nucleosome positioning [41]. Finally, unusual 

secondary structures interfere with transcription leading to accumulation of R-

loops (see ahead) which are linked to increased genome instability [11]. 

Importantly, telomeric regions are particularly prone to secondary structure 

formation, which is one of the causes of telomere instability. 

 
2.1.The two faces of G-quadruplexes 
 
Recent studies on G-quadruplexes (G4s) demonstrated their occurrence in vivo, as 

well as their concomitant physiological roles and detrimental effects on genome 

integrity [16, 42]. Importantly G4s formation requires DNA denaturation, thus 

connecting both their beneficial and harmful effects to ssDNA-exposing 

processes, such as replication, transcription and recombination. The main hazard 

associated to G4s resides in their ability to impede replication fork progression, 

and in their highly recombinogenic nature: indeed, G4-dependent GCRs have 

been observed [37, 43]. Nonetheless, G4-forming sequences are enriched at 

specific genomic regions, and specific helicases capable of unwiding G4s assist 

the replication process at these loci, to counteract G4-associated genomic 

instability [16]. Actually, it seems that cells have learned how to tolerate the 

deleterious effects of G4s in order to exploit their potential as regulators of 

genome function. For instance, G4s form at repeated telomeric regions, where 

they contribute to telomere capping, thus preventing their recognition as DSBs 

(see further) [44, 45]. Additionally, G4s occurring at non-coding RNAs 

transcribed from telomeric regions (TERRAs) are likely important for binding of 

telomere-capping proteins [46]. The striking observations that over 90% of 

replication origins in higher eukaryotes contain G4 motifs [47], and that G4s are 

bound by the Origin Recognition Complex [48] suggest that they are likely 

structural determinants of replication origins, and they may also act as regulators 

of origin efficiency. Furthermore, transcription-dependent production of 

RNA:DNA hybrids at C-rich template sequences, and the concomitant formation 

of G4s on the displaced untranscribed DNA strand (G-loops) seems to be a key 

determinant of immunoglobulin class switch recombination [49,50]. Finally, G4 

formation was proposed to regulate gene expression, both at the transcriptional 

level, since G4 motifs are enriched at human promoters and other gene regulatory 

elements [51, 52], and at the post-transcriptional level, due to the potential 

translation regulation ability of G4s observed in the 5’-UTR of many mRNAs 

[53]. 
 

3. Telomeres and genome instability 

 
The ends of linear eukaryotic chromosomes, called telomeres, are made up of 

long tracts of repeated sequences (referred to as TG repeats), extending from few 

hundreds bps in yeast to several Kbs in humans, and terminating in a 3' single-
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stranded overhang (also known as “G-tail”) [54]. These structures pose multiple 

problems for genome integrity. First of all, if not properly protected, they can be 

mis-recognized as DSBs (discussed further). Moreover, the semi-conservative 

mode of replication is responsible for the loss of single-stranded DNA on the 

lagging strand at the chromosome end (a situation known as “end-replication 

problem”) [54], which, together with resection of the 5' end to generate the 3' 

single-stranded overhang [55], results in loss of telomeric sequences at each round 

of replication (telomere erosion). To overcome these threats to genome integrity, 

multiple mechanisms exist to ensure proper telomere maintenance: on one hand, a 

nucleoprotein structure protects the telomere from unscheduled reactions and 

masks it from recognition by the DNA damage response (a phenomenon defined 

“telomere capping”); on the other hand, a specific complex named telomerase 

adds short TG-rich repeats to chromosome ends, restoring proper length [54]. 

Telomere erosion actually occurs in somatic cells due to insufficient expression of 

telomerase [56]. When a telomere shortens below a certain threshold, it loses its 

protective cap, it is recognized as a DSB, and repaired through the non-

homologous end joining (NHEJ) pathway [57]; the same effect is obtained after 

telomere uncapping, linked to defects in telomere-capping proteins [58]. 

 Typically, repair of an uncapped telomere results in telomere fusion, 

either with the sister chromatid, or with another uncapped chromosome end; 

alternatively, chromosome fusion may occur between the uncapped telomere and 

a DSB end, producing a translocation. These events may give rise to a series of 

chromosomal aberrations through a mechanisms named breakage-fusion-bridge 

(BFB). This mechanisms, which involves the fusion of two chromosomes 

resulting in a dicentric chromosome, followed by breaking during chromosome 

segregation, can generate translocations and gene amplification [14]. In addition 

to progressive telomere erosion, also sporadic telomere deletions occur, in which 

large tracts of telomeric repeats are lost in a single deletion event [59]. These 

events are due to the repetitive nature of telomeric sequences, and may result from 

unequal sister chromatid exchange or replication slippage [60]. Moreover, 

repetitive telomeric sequences are particularly sensitive to oxidative lesions [61] 

and are prone to formation of secondary structures [62]; both events lead to 

replication fork stalling, with subsequent DSBs and telomeric deletion events 

[63]. Furthermore, it was demonstrated that mammalian telomeric regions 

resemble fragile sites (see ahead), which are prone to breakage upon replication 

stress, again resulting in telomere loss and GCRs [64]. As in the case of telomere 

shortening, sporadic telomere deletions may as well trigger BFB cycles [65]. 

 

4. DNA replication fidelity 
The accuracy of DNA synthesis according to the Watson-Crick base pairing rules 

is a key aspect in the transmission of an intact genetic information. For this 

reason, multiple biochemical mechanisms ensure the fidelity of replicative 

polymerases (eukaryotic Pol α, Pol δ and Pol ε): selectivity for the insertion 

of the correct nucleotide is provided by base-base hydrogen bonding, water 
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exclusion from the catalytic site, and a steric selection on base pair shape and size 

within the active site [9]. Moreover, many DNA polymerases possess intrinsic 

proofreading activity, based on a higher efficiency of these enzymes in extending 

a matched primer compared to an unmatched one, and on an exonuclease activity 

that allows the excision of the mispaired nucleotide [9]. Despite these fidelity-

ensuring systems, errors in base incorporation may occur during replication [66]: 

it was estimated that the base substitution error rate of replicative polymerases in 
vivo is in the range of 10-7 to 10-8 [7]. Furthermore, insertions or deletions of 

single bases may result from strand misalignement, a process that is strongly 

favored during replication of repetitive sequences [67]. In addition, to replicate 

past a damaged template, cells in most cases use error-prone translesion synthesis 

(TLS) polymerases (namely Pol ζ, Pol η, Pol ι and Pol κ), which can 

accommodate helix distorting modified bases in their active site, at the expense of 

fidelity in nucleotide incorporation [68]. 

 
4.1. Ribonucleotides misincorporation in DNA 
Recently, another potential source of genome instability linked to replication was 

described. Replicative polymerases can incorporate at high rates ribonucleotides 

(rNTPs) instead of deoxyribonucleotides (dNTPs) during DNA synthesis; this is 

facilitated by the higher rNTPs levels over dNTPs in the cell (300-3,000 μM for 

rNTPs and 5-30 μM for dNTPs both in yeast and mammalian cells [69]). Recent 

in vitro estimates yielded a likely incorporation of one ribonucleotide every ~700 

bp of replicated DNA in budding yeast and ~1/ 7,600 in mammalian cells [70, 

71], which makes incorporation of ribonucleoside monophosphates (rNMPs) the 

most frequent DNA lesion. rNMPs embedded in DNA can jeopardize genome 

stability in multiple ways: first, due to the reactive hydroxyl group at the 2' 

position, RNA is 100000-fold more prone to hydrolysis than DNA under 

physiological conditions [72]. Moreover, the presence of rNMPs alters DNA helix 

parameters [73, 74], and this distortion may constitute an obstacle to replication 

fork progression, resulting in replication stress [71, 75, 76]. Indeed Pols α, δ 

and ε can replicate past a single ribonucleotide with reduced efficiency [77, 78]. 

Finally, it was directly demonstrated that increased ribonucleotide incorporation 

in DNA causes genomic instability at short tandem repeats in yeast, due to 

mutagenic enzymatic processing of the incorporated ribonucleotides by 

Topoisomerase I activity [79, 80]. Given the genotoxicity of chromosomal 

rNMPs, it is somewhat surprising that replicative polymerases did not evolve to 

avoid these misincorporation events in DNA. Conversely, the addition of rNMPs 

during DNA replication might have been tolerated due to possible physiological 

advantages. Indeed, this may be envisioned as a system to distinguish the parental 

and the newly synthesized DNA strand in eukaryotic cells. In fact, differently 

from what happens in E. coli and other Gram-negative bacteria, this distinction 

does not rely on DNA methylation as a strand discrimination signal. This 

hypothesis was proven true in the case of mismatch repair (MMR), where rNMPs 

processing by RNaseH activities on the daughter leading strand creates an entry 
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point for exonuclease activities involved in mismatch removal, thus ensuring that 

the new and not the template strand is corrected [81, 82]. It is tempting to 

envisage a role for genomic rNMPs in other processes requiring DNA strand 

discrimination, such as the nonrandom segregation of sister chromatids during 

stem cell renewal: indeed, mounting evidence suggests asymmetrical inheritance 

of DNA strands between the new stem cell and the committed-to-differentiation 

daughter cell [83,84]. In this regard, both the “immortal strand hypothesis” (the 

undamaged template strand is always retained in the stem cell to protect it from 

replication errors) [83] and the “silent sister hypothesis” (epigenetic differences 

due to asymmetric chromosome segregation determine the daughter cells’ fate 

after division of a stem cell) [84] postulate mechanisms of discrimination between 

DNA strands at the centromere, thus enabling strand-specific segregation of 

chromatids. Such mechanisms may (also) rely on rNMPs embedded in the 

daughter DNA strand. Moreover, hotspots of rNMPs incorporation, if found, 

might represent a form of “genomic imprinting” for specific loci, similarly to 

what happens for mating-type switch initiation in Schizosaccharomyces 
pombe, where the incorporation of two rNMPs at a specific position within the 

mat1 locus triggers a replication-coupled recombination event ultimately 

resulting in cell-type change [85]. 

 

5. Chromosomal fragile sites 
Chromosomal fragile sites are defined as specific loci which undergo frequent 

gaps or breaks under replication stress, and are hotspots of chromosome 

rearrangements in tumor cells [12, 86]. Fragile sites are conserved from yeast to 

mammals [12]. Chromosomal fragile sites have been divided in three classes with 

distinct features. Rare fragile sites are observed in less than 5% of the cases and 

are inherited in a mendelian fashion: they are constituted of microsatellite 

trinucleotide repeats (TNRs) or AT-rich minisatellite repeats, and are often 

associated with genetic diseases caused by repeat expansion [12, 33]. Common 

fragile sites (CFSs), instead, are present in all individuals, where they represent 

normal components of chromosome structure; they generally contain AT-rich 

sequences, but not nucleotide repeats [12, 87]. Recently, a third class was 

identified and named “early-replicating fragile sites” (ERFSs), which have 

opposite properties compared to CFSs (see below) [88]. The mechanisms 

underlying fragility of these sites and consequent genome instability differ for the 

three classes mentioned above (Fig. 2). 

 
 
5.1. Rare fragile sites 
The instability of TNRs and AT-rich minisatellites relies upon their ability to 

form unusual secondary structures (such as hairpins, stem-loops or DNA 

triplexes) during replication (Fig. 2A), which trigger microsatellite instability 

(MIN): in particular, hairpin structures at the 5’end of a displaced Okazaki 

fragment during lagging strand synthesis can promote repeat expansion [89]; 
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similarly, secondary structures on the lagging strand can cause replication 

slippage events, which result in repeat deletions [5]. Moreover, these secondary 

structures can be processed by nucleases yielding a DSB [90]. Additionally, they 

can perturb replication fork progression, possibly resulting in gaps or breaks [86]. 

 
5.2. Common fragile sites 
 CFSs are defined as chromosomal regions particularly susceptible to form 

breaks or gaps during early mitosis (an event defined as “fragile site expression”) 

following replication stress (such as treatment with the DNA polymerase inhibitor 

aphidicolin) [12]. The molecular mechanisms underlying CFSs fragility was not 

clearly understood until very recently, when the critical features of CFSs and the 

mechanisms leading to CFSs breakage have been reported [17, 91] (Fig. 2B). 

CFSs were initially described as late-replicating regions [92, 93]. Indeed, AT-rich 

sequences within CFSs are characterized by a high degree of DNA torsional 

flexibility, which has the potential to form secondary structures capable of 

impairing replication fork progression [94]. Therefore, a possible mechanism for 

CFSs instability predicts CFSs as slow-replication genomic regions which favor 

uncoupling between replicative helicases and polymerases (especially in 

conditions of replication stress). The subsequent generation of long ssDNA tracts 

allows secondary structure formation in AT-rich tracts, acting as replication fork 

barriers, ultimately resulting in fork stalling and/or collapse [12, 86]. 

 Further observations highlighted another feature of CFSs: a paucity in 

replication initiation. Due to the absence or low efficiency of replication origins, 

CFSs are often replicated from forks fired in flanking regions, resulting in 

incomplete replication followed by chromosome breakage under replication stress 

[95–97]. Interestingly, the density of initiation events is epigenetically 

determined, which accounts for cell-type differences observed in CFSs fragility 

[97]. Moreover, a correlation was found between the level of transcription of very 

large genes at CFSs and the instability of the corresponding site [98]; this 

mechanism likely relies on the interference between transcription and replication 

(see ahead). 

 Strikingly, recent reports revealed that CFSs expression is indeed an 

active mechanisms relying on the activity of the MUS81-EME1 resolvase 

complex, which cleaves replication intermediates at CFSs in late G2-mitosis, 

allowing separation of entangled chromatids and proper chromosome segregation, 

thus promoting rather than jeopardizing genome integrity [99, 100]. Attempts to 

segregate unresolved replication intermediates at CFSs give rise to the so-called 

ultra-fine DNA bridges (UFBs) in anaphase, where a backup mechanism, 

depending on BLM helicase in complex with TOPIIIa and RMI1/2, can dissolve 

the intertwined intermediates promoting chromosome segregation [101]. In case 

an unreplicated intermediate persists, completion of mitosis results in 

uncontrolled chromosome breakage and/or chromosome mis-segregation (Fig. 

2B). Interestingly, these breaks are detectable in the next G1 phase in the form of 

53BP1 nuclear bodies, where 53BP1 is thought to protect them from processing. 
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The exact function of these 53BP1 bodies is still unclear, as it is the mechanisms 

through which these breaks are eventually repaired [17, 102, 103]. Importantly, 

the mechanism of CFSs fragility is in line with the oncogene-induced DNA 

replication stress model for cancer development (Box 1). During the early stages 

of cancer development, oncogene activation induces replication stress, which may 

result in chromosome breakage, deletions and rearrangements particularly at 

CFSs, which precede and likely drive instability in other genomic regions [104]. 

The model is further reinforced by the finding that some CFSs lie within tumor 

suppressor genes, suggesting a mechanisms for inactivation of recessive tumor 

suppressor genes during tumor development [105]. 

 
5.3. Early-replicating fragile sites 
ERFSs were identified very recently in mouse B lymphocytes, and correspond to 

stalled and/or collapsed forks in the vicinity of early replication origins, resulting 

in chromosome breakage during normal replication and especially after 

replication stress [88]. ERFSs display opposite features than CFSs: they are 

detected at the beginning of S-phase, are enriched in GC content, repetitive 

sequences, genes and replication origins. Nevertheless, similarly to CFSs, they are 

often associated with active transcription, and their fragility is increased after 

oncogenic stress (Box 1), S-phase checkpoint inhibition and homologous 

recombination (HR) defects. A likely mechanisms for ERFSs fragility relies on 

higher origin activation as a consequence of replication perturbation, which is 

expected to increase the interference between transcription and replication at the 

highly transcribed genes clustered at ERFSs. In addition, depletion of the dNTPs 

pool due to a larger number of active origins could contribute to replication 

failures [88] (Fig. 2C). Strikingly, a substantial proportion of ERFSs identified in 

mouse B lymphocytes overlaps with rearrangements observed in human B cell 

lymphomas, pointing towards a conservation of this class of fragile sites in 

mammals [88], and a causative role for ERFSs in B-cells carcinogenesis. 

Interestingly, fragile sites corresponding to early-replicating regions had been 

previously identified in yeast cells defective in S-phase checkpoint, and named 

“compromised early origins” (CEOs) [106]. Such finding suggests that ERFSs 

may be a widespread feature of eukaryotic genomes. Moreover, given that the 

transcriptional landscape and the replication timing distribution changes among 

different cell types, it is postulated that cell-line specific ERFSs may account for 

rearrangements observed in other cancers [88].  Recent years, experimental 

evidence demonstrated unexpected connections between transcription and 

genomic instability [107]: indeed, high rates of transcription at a genomic locus 

correlate with increased mutations, a phenomenon known as “transcription-

associated mutation” (TAM) [108,109]. Similarly, highly transcribed regions 

show a greater recombination frequency, a phenomenon referred to as 

“transcription-associated recombination” (TAR) [110, 111]. Both outcomes are 

likely related to interference between transcription and replication, as well as to 

the generation of ssDNA [5] (Fig. 3). 
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As a consequence of local negative supercoiling during transcription, DNA-strand 

opening and ssDNA generation occurs behind an elongating RNA polymerase. 

Given that ssDNA is less stable and more susceptible to mutagenic damage from 

endogenous or environmental sources than dsDNA [1, 107], this is a potential 

mechanism for TAM, but likely not the only one, since it cannot explain the 

observation that the non-transcribed strand (NTS) is more prone to mutations than 

the transcribed strand (TS) [109, 112]. A further possibility involves the formation 

of R-loops, a three strand nucleic acid structure formed by annealing the just 

transcribed RNA on its template, resulting in an RNA:DNA hybrid plus a 

displaced DNA strand (ssDNA) [11]. Co-transcriptional R-loops occurrence is 

favored by negative supercoiling and high G content, both of which promote 

DNA 

duplex unwinding; moreover, uncoupling between transcription and mRNA 

processing and/or nuclear export (caused by defects in protein complexes 

involved in these activities) also stimulates R-loop formation [11, 113]. These 

structures may account for the preferential mutagenesis of the NTS, as the 

displaced NTS is single-stranded, while the TS forms the RNA:DNA hybrid. 

Moreover, since persistent RNA:DNA hybrids can induce replication [114], it was 

proposed [11] that R-loops might trigger unscheduled DNA synthesis, which is 

expected to be highly mutagenic, in agreement with the finding that break-

induced replication (BIR) is extremely inaccurate [115]. Collisions between the 

replication fork and the transcription machinery cause replication fork 

impairment, DSBs and TAR [116, 117]. Specifically, due to generation of positive 

DNA supercoiling by both processes, head-on collisions between transcription 

and replication have deleterious effects, since topological constraints are induced, 

which promote replication fork stalling and fork reversal. Such topological 

constrains may be further increased by the observed tethering of highly 

transcribed genes at the nuclear pore: this process, named “gene gating”, if on one 

side facilitates mRNA export, thus limiting R-loop formation, on the other 

induces torsional stress by restraining DNA mobility [118]. Moreover, other 

possible mechanisms for the induction of TAR and transcription-associated GCRs 

rely upon the ability of co-transcriptional R-loops to cause replication fork 

blockage in multiple ways: i) unrepaired damage on the displaced strand might 

impede DNA polymerase progression; ii) replication fork progression could be 

impaired by the RNA:DNA hybrid itself, or by a RNA polymerase blocked by the 

R-loop; iii) R-loop formation could allow the occurrence of secondary structures 

on the displaced NTS, resulting in a barrier to DNA polymerase; iv) torsional 

stress generated in front of a R-loop could cause replication fork reversal, thus 

generating a highly recombinogenic “chicken foot” structure. In all the indicated 

cases, the final outcome would be replication fork stalling and/or collapse, with 

generation of DSBs or ssDNA gaps capable of triggering hyper-recombination 

and GCRs [11]. Furthermore, it was suggested that the attempt to bypass a R-loop 

occurring between direct repeats through a template-switch mechanism, inevitably 

results in the deletion of the intervening region [113]. 
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7. Conclusions and prospects 
Physiological DNA and RNA transactions pose specific challenges to genome 

integrity: indeed, specific chromosomal regions (such as telomeres, sequences 

prone to secondary structure formation and chromosomal fragile sites) or 

processes (such as transcription and rNTP incorporation in the genome) interfere 

with DNA replication leading to DSBs and genomic rearrangements. It is worth 

noting that all the mechanisms described above cannot be considered as separate 

causes of genome instability. Rather, these processes are heavily intertwined and 

might be envisioned as different aspects of the multifaceted “dark side” of normal 

nucleic acid metabolism. An overview of the mechanisms and their interplay 

through which nucleic acid metabolism impacts on genome integrity is depicted in 

Figure 4. 

Despite recent insights, several aspects of this complex picture remain to be 

elucidated. In particular, random versus biased rNTPs incorporation in the 

genome needs to be assessed, and the putative detection of hotspots could open 

new perspectives on the physiological roles of rNMPs in the genome. Moreover, 

the exact nature and function of 53BP1 bodies arising after chromosome breakage 

at CFSs have to be investigated. Finally, the recently detected correlation between 

cotranscriptional R-loops and chromatin condensation [119] may suggest that R-

loops are not just transcriptional by-products, but they may have regulatory 

functions which deserve to be explored. The same studies may shed new light on 

the connection(s) between transcription, R-loops, chromatin condensation and 

CFSs, since high transcription levels and premature chromatin condensation were 

both shown to increase breakage at CFSs [87, 120]. These findings could also 

provide a deeper mechanistic understanding of CFSs fragility. The answer to 

these questions will give us a better picture of the interplay between nucleic acid 

metabolism and genomic integrity, and will impact on our understanding of the 

carcinogenic process and, possibly, on its treatment. 
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Figure legends 
Fig. 1. The replication fork at the heart of genome instability. 

Replication fork stalling and replication fork collapse are main sources of genome 

instability, due to the generation of both ssDNA gaps and DSBs by multiple 

mechanisms. Dependening on the different repair pathways to which they are 

channeled, ssDNA gaps and DSBs are sources of gross chromosomal 

rearrangements (GCRs), interstitial deletions, gene amplification or 

hyperrecombination (see main text for details). 
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Fig. 2. Mechanisms of instability at chromosomal fragile sites. 

A: Rare fragile sites. Microsatellite trinucleotide repeats (TNRs) or AT-rich 

minisatellite repeats are prone to formation of secondary structures (such as 

hairpins, cruciforms, triplexes and Gquadruplexes). These structures may induce 

replication slippage and expansion or contraction of the repeats (microsatellite 

instability), impair replication fork progression with the subsequent generation of 

ssDNA and DSBs, or can be cleaved by nucleases yielding DSBs and GCRs. 

B: Common fragile sites (CFSs). Different features contribute to the instability 

of CFSs, namely secondary structure formation, paucity in replication origin 

firing, and high rates of transcription. The combination of these elements results 

in replication fork impairment and in late replication of these regions. The 

MUS81-EME1 resolvase cleaves unreplicated intermediates preventing the 

formation of ultra-fine DNA bridges (UFBs) in anaphase, when the BLM helicase 

complex can still act to resolve entangled intermediates thus promoting 

chromosome segregation and preventing DSBs formation and consequent GCRs. 

C: Early-replicating fragile sites (ERFSs). Increased origin firing after 

replication stress in early 

S-phase and the interference between transcription and replication cause 

replication fork block and 

GCRs at ERFSs (see main text for details). 

 

Fig. 3. Transcription-associated genomic instability. 

Highly transcribed genes are a source of genomic instability, mainly due to the 

formation of cotranscriptional R-loops. These structures expose tracts of ssDNA 

(which is more susceptible to genotoxic lesions) and impair replication fork 

progression causing hyper-recombination, DSBs and subsequent GCRs (see main 

text for details). 

 

Fig. 4. Nucleic acid metabolism impacts on genome integrity through 

multiple interdependent mechanisms. 

A compendium of all the mechanistic causes of genome instability arising from 

normal DNA transactions (such as replication and transcription) is presented, 

highlighting the interconnections between these processes and their specific 

chromosomal outcomes. Polymerase errors, rNTP misincorporation during 

replication, intense transcription, telomeres, chromosomal fragile sites and DNA 

secondary structures threaten genome integrity, mainly by impacting on 

replication fork progression, with the subsequent generation of ssDNA gaps and 

DSBs. Specific classes of genomic instability due to nucleic acid metabolism 

include microsatellite instability (MIN), gross chromosomal rearrangements 

(GCRs), point mutations, hyper-recombination, gene amplification and interstitial 

deletions (see main text for details). 
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                              Fig. 1. The replication fork at the heart of genome instability. 

Replication fork stalling and replication fork collapse are main sources of genome 
instability, due to the generation of both ssDNA gaps and DSBs by multiple 

mechanisms. Dependening on the different repair pathways to which they are 
channeled, ssDNA gaps and DSBs are sources of gross chromosomal rearrangements 

(GCRs), interstitial deletions, gene amplification or hyper-recombination (see main text 
for details). 
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repeats are prone to formation of secondary structures (such as hairpins, cruciforms, 
triplexes and G-quadruplexes). These structures may induce replication slippage and 
expansion or contraction of the repeats (microsatellite instability), impair replication 

fork progression with the subsequent generation of ssDNA and DSBs, or can be cleaved 
by nucleases yielding DSBs and GCRs. 

B: Common fragile sites (CFSs). Different features contribute to the instability of CFSs, 
namely secondary structure formation, paucity in replication origin firing, and high rates 

of transcription. The combination of these elements results in replication fork 
impairment and in late replication of these regions. The MUS81- 

EME1 resolvase cleaves unreplicated intermediates preventing the formation of ultra-
fine DNA bridges (UFBs) in anaphase, when the BLM helicase complex can still act to 

resolve entangled intermediates thus promoting chromosome segregation and 
preventing DSBs formation and consequent GCRs. 

C: Early-replicating fragile sites (ERFSs). Increased origin firing after replication stress 
in early S-phase and the interference between transcription and replication cause 

replication fork block and GCRs at ERFSs (see main text for details).  
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Fig. 3. Transcription-associated genomic instability. 
Highly transcribed genes are a source of genomic instability, mainly due to the 

formation of cotranscriptional R-loops. These structures expose tracts of ssDNA (which 
is more susceptible to genotoxic lesions) and impair replication fork progression causing 

hyper-recombination, DSBs and subsequent GCRs 

(see main text for details). 
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Fig. 4. Nucleic acid metabolism impacts on genome integrity through multiple 
interdependent mechanisms. 

A compendium of all the mechanistic causes of genome instability arising from normal 

DNA transactions (such as replication and transcription) is presented, highlighting the 
interconnections between these processes and their specific chromosomal outcomes. 
Polymerase errors, rNTP misincorporation during replication, intense transcription, 

telomeres, chromosomal fragile sites and DNA secondary structures threaten genome 
integrity, mainly by impacting on replication fork progression, with the subsequent 
generation of ssDNA gaps and DSBs. Specific classes of genomic instability due to 
nucleic acid metabolism include microsatellite instability (MIN), gross chromosomal 

rearrangements (GCRs), point mutations, hyper recombination, gene amplification and 
interstitial deletions (see main text for details). 
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Appendix 

 

In this appendix I will summarize the results 

obtained during the first year of my Ph.D. 

program when I have been working on a project 

aimed at the identification of RNase H2 

interactors using the yesat two-hybrid 

technology. 
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Aim of the project 

 

Investigating the role of RNase H in the maintenance of genome stability 

in S. cerevisiae. 

Ribonucleases H are enzymes that cleave the RNA mojety in RNA/DNA 

hybrids that form during replication and repair and that may lead to DNA 

instability (Stein H, Hausen P. et al., 1969).  

Based on amino acid sequence and biochemical properties, two main types 

of RNases H are found in eukaryotes and classified RNase H1 or RNase H2. 

The two class of enzymes differ for their substrate specificity. In fact, RNase 

H1 requires at least four ribonucleotides for enzymatic activity, while RNase 

H2 is unique in its capacity to excise single ribonucleotides embedded in 

genomic DNA (Bjoern Hiller et al., 2012; Crouch RJ & Dirksen ML 1982; 

Lazzaro et al., 2012; Cerritelli SM & Crouch RJ. 2009 and Ohtani N. et al., 

1999).  Mutations in the RNASEH2A, RNASEH2B, RNASEH2C genes 

encoding the three subunits of the RNase H2 protein complex are the most 

frequent genetic alterations identified in Aicardi-Goutieres (AGS) patients, an 

autosomal recessive disorder phenotypically mimicking congenital viral 

infection with elevated interferon-α level in cerebrospinal fluid (Aicardi J, 

Goutieres F. 1984; Goutieres F, Aicardi J, Barth PG, Lebon P. 1998; Goutieres 

F. 2005, Crow etal., 2006; Crow and Rehwinkel , 2009). 
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Previous research carried out in our lab, showed that RNases H are 

important for removal of genomic rNTPs incorporated during replication in 

the yeast S. cerevisiae (REF), revealing new role for RNases H in genome 

stability maintenance mechanisms. We were thus interested in identifying 

potential physical and genetic interactors with RNases H in S. cerevisiae. To 

start addressing this question, I used the yeast two-hybrid system. 

RNase H in S. cerevisiae. To address this question, I used yeast two hybrid 

system. 

 
The yeast two-hybrid system 

 

The yeast two-hybrid system (Y2H) was originally developed by Fields and 

Song in 1989 and it is the most widely used method to identify an interaction 

between two proteins (Young K. 1998). The method is based on the properties 

of several transcription factors, such as the GAL4 protein, which consists of 

two separable domains responsible for DNA-binding and transcriptional 

activation: a N-terminal domain which binds to specific DNA sequences 

(binding domain/BD), and a C-terminal domain containing acidic regions, 

necessary to  activate transcription (activator domain/AD).  In the system we 

used, a LexA DNA-binding domain (BD) is fused to a protein “X” (bait), and 

the B42 activating region (AD) is fused to a protein “Y” (prey). Thus, if the 

proteins X and Y interact, the BD and AD domains are brought in closed 

proximity through the interaction between proteins X and Y resulting in the 

induced transcription of a reporter gene (fig. 1). Conversely, no reporter 

expression will be observed if the two transcription factor modules are not 

brought into close contact. 
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Basic steps to follow for two hybrid system: 

1. Construction of the BD-X fusion (Bait-LexA) plasmid  

2. Transformation of BD-X fusion plasmid into yeast 

3. Transactivation test of reporter gene of BD-X fusion plasmid in yeast  

4. Checking the expression of X protein from BD-X fusion plasmid 

5. Cross with yeast library carrying AD-Y prey plasmids 

6. Screening of putative positives for the activation of reporter genes 

7. Identification of false positives and analysis of true positives 

8. DNA seqence analysis of positives 

 

Merits and demerits of yeast two hybrid: 

 

Advantages of the yeast two hybrid system: 

1. Direct identification of DNA sequence of interacting protein 

2. Protein purification not necessary 

3. In vivo-protein in native conformation 

4. Detection of low affinity or transient interactions 

Disadvantages: 

1. Gene encoding target protein must be available 

2. Bait and prey must be soluble for nuclear localization 

3. Independent verification of interaction is recommended 

4. False positives can be found, as the bait or prey can transactivate per se 

the reporter gene. 

5. Stable expression of fusion protein might be a problem 

  

 In our yeast two-hybrid screening we used: plasmid pSH18-34 as a 

LacZ reporter plasmid with upstream 8 LexA operators; plasmid pEG202 as 

the bait plasmid (LexA-Bait fusion protein) and pJG4-5 as the prey plasmid 
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with B42 activation domain under the control of the GAL1 promoter. In this 

system, expression of the prey is induced in galactose containing media and it 

is repressed in glucose. We use the EGY48 (MAT alpha, his3, trp1, ura3, 

6LexAop-LEU2) yeast strain throughout the yeast two-hybrid procedure. 

 

The following steps have been carried out in thre yeast two-hybrid procedure:  

1. We started with the construction of our bait by cloning full length 

genes (RNH1, RNH201, RNH202 and RNH203) coding, respectively, 

for RNase H1 and the three subunits of RNase H2 in plasmid pEG202. 

The selected baits were constructed downstream to the LexA binding 

protein region in order to produce a LexA-Bait fusion protein. All the 

constructed genes in pEG202 were transformed in the EGY48 strain.  

2. We checked the expression of all fusion-proteins (LexA-Rnh1, LexA-

Rnh201, LexA-Rnh202, and LexA-Rnh203) with an empty vector as 

control. The fusion proteins were checked using antibody alpha-LexA 

(fig. 2).  

3. We checked the transactivation of reporter genes using a leucine assay 

(for the Leu2 reporter) and in X-gal (for the LacZ reporter) by 

transformating the constructed bait plasmid with reporter plasmid 

pSH18-34 and empty prey plasmid pJG4-5 (fig. 3) in EGY48 yeast 

strain. In leucine assays, we observed a very weak transactivation by 

LexA-Rnh1, weak transactivation by LexA-Rnh201, medium 

transactivation by LexA-Rnh202 and strong transactivation by LexA-

Rnh203 (fig. 4) compared to the positive and negative controls. In X-

Gal condition from the patch, we observed no transactivation by RNH1 

and RNH201 and very weak transactivationo with RNH202 and strong 

transactivation with RNH203 (fig. 5) compared to the controls 

(positive controls: EGY48 , pEG202-p53 pJG4-5-Ta-SV40, pSH18-34 
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and negative control: EGY48, pEG202 pSH18-34 pJG4-5 .We decided 

to start with RNH202 because it is coding for the catalytic subunit.  

4. To resolve the transactivation problem with leucine reporter, we 

decided to add X-Gal in the screening plates instead to do the patch 

assay. In this way the colonies growing in the absence of leucine and 

blue are the putative positives, while the transactivated colonies are 

white. 

 We found that the colonies were blue in positive control plates 

and RNH202 plated colonies were white (fig. 6), suggesting that the 

bait RNH202 is not transactivating enough the LacZ reporter and that 

RNH202 can be used for a two-hybrid screening. We performed the 

screening with bait RNH202 (fig. 7) by mating the yeast Mat a strain 

(Bait + DBD) with the Mat α strain (cDNA Library + AD) and 

subsequent growth on selective plates.  
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Main Results 

 

1. The number of diploids =  -H-U-T Raff  = 13000000  

2. The number of colonies obtained from a total  43 plates (-H-U-T-L Gal 

/ Raff + X-Gal) = 9249 

3. From 9249 colonies, 112 blue colonies were selected for isolation from 

–H-U-T-L Gal/Raff.  

10 blue colonies (i.e., 4, 7, 8, 15, 24, 29, 28, 37, 39 and 76) were selected 

which were showing higher blue staining in +L Gal/Raff + X-gal plates and 

white color in +L Raff + X-gal.  Unfortunately the other patches (other then 10 

selected blue colonies) were blue also in +L Raff + X-gal plates (fig. 8) 

compared to the controls used for the two-hybrid screening (positive controls: 

EGY48 , pEG202-p53 pJG4-5-Ta-SV40,pSH18-34 and negative control: 

EGY48, pSH18-34 pMH16-1 pSG4-5. Unfortunately, after purification and 

transformation of putative positives prey plasmid, they did not reconfirm the 

results. We decided to stop the project. 
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Figures 

 

 

 
 

Figure 1. Principle of the yeast two-hybrid system: The protein of interest 

(X-Bait protein) is fused to the DNA-binding domain (DNA-BD) of a 

transcription factor. Protein Y is fused to the transcriptional activation 

domain (TA-Prey protein). Both fusions are targeted to the nucleus. If 

protein X and Y interact, the transcription factor activity is reconstituted 

and activate the expression of a reporter gene. 
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Figure 2. Transformation of the pEG202 bait plasmid together with the 

pSH18-34 reporter plasmid and pJG4-5 empty prey plasmid in yeast EGY48 

 

 

 

 

Figure 3.  Analysis of the expression of Baits (RNH1, RNH201, RNH202 & 

RNH203) and no tag as control by western blotting. 
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Figure 4. Leucine assay: RIGHT: in the absence of –H-U-T-L Raff, 

transactivation of genes were as follows: a very weak transactivation of 

RNH1, weak transactivation of RNH201, medium transactivation of 

RNH202 and strong transactivation of RNH203 compared to both  positive 

(+ve) and negative (–ve) control. LEFT:  (-H-U-T-L Gal/Raff) shows higher 

transactivation of all baits compared to –H-U-T-L Raff plate (RIGHT) and 

MIDDLE plates (-H-U-T Gal/Raff), as control plate shows complete growth 

of all genes with control in the presence of leucine. 

 
 

 

 

 

 
 

Figure 5.  X-Gal assay shows no transactivation of RNH1 and RNH201,  

weak transactivationo with RNH202 and strong transactivation of RNH203 

compared to both +ve and -ve control 
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Figure 6.  In the plates it is possible to distinguish the positive blue control 

(left side), the middle is a negative control showing white color and RNH202 

(right side), shows white colonies 

 

 

 

 

Figure 7.  Screening of Bait (RNH202) Mat ‘a’with Mat ‘α’ yeast library in 

X-gal condition 

 

 

 

 



 

136 
 

  

Figure 8. Interaction of bait (RNH202)  wth prey after yeast two-hybrid 

screening;circles represents the interaction (blue color) in –H-U-T Gal and 

no inteaction (white color) in –H-U-T Raff  

 

 

-H-U-T Gal 

-H-U-T Raff 


