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Introduction

Magnetism is a research field within condensed matter physics which keeps on suggest-
ing new ideas and results both for fundamental physics and technological applications.
In the last decades, molecular magnetism has allowed physicists and chemists to introduce
molecule-based materials among the most investigated systems in magnetism. Indeed
molecular magnetism requires an active collaboration between chemists and physicists:
The former are driven to synthesize molecular clusters of higher complexity and/or
symmetry, while the latter are encouraged to develop new theoretical models and ex-
perimental technique in order to investigate magnetic properties of these systems.

In addition, the increasing attention for nanoscience and nanotechnology have moved
the attention of the scientific research towards the interface between classical and quan-
tum physics. Molecular magnetism indeed focuses on molecules of the order of the
nanometer, whose behavior is at the crossing between classical and quantum regimes.
In fact, they can display hysteresis cycles as bulk magnetic materials, but also typical
quantum behaviors, such as coherent oscillations of the total-spin.

From a technological point of view, as we will see in the following section, hysteresis
cycles at a molecular level could be the starting point for the realization of high density
memory devices, by storing one bit of information in each single molecule. Furthermore,
due to the quantum nature of molecular magnets, it has been demonstrated that we
can define a quantum bit with a single molecule and that it can be implemented for
quantum computation algorithms . Molecular nanomagnets can also show an enhanced
magnetocaloric effect: Therefore they are considered promising materials for magnetic
refrigeration at low temperature.

0.1 State of the Art

Molecular nanomagnets (MNMs) are cluster containing a finite number of paramagnetic
ions (typically 3d ions), whose spins are strongly coupled by Heisenberg exchange in-
teractions. Magnetic cores of adjacent molecules are well separated from each other
by a surrounding of organic ligands, so that inter-molecular interactions are negligible.
Therefore, molecular crystals formed by these kind of metal-organic clusters behave like
an ensemble of non-interacting identical molecules and it is possible to obtain magnetic
properties of a single molecule from bulk measurements. MNMs present several advan-
tages both from a theoretical and experimental point of view: Not only it is possible to
describe their magnetic cores in detail with theoretical models, but it is also possible to
have an high degree of control of their chemical structure and resulting magnetic prop-
erties.

MNMs are of the order of the nanometer in size and their dimension has several
consequence on their magnetization behavior and dynamics. Hysteresis cycles are at
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xii Introduction

the basis of the implementation of magnetic materials in information storage applica-
tions. On the other hand, if we increasingly reduce the size of magnetic systems, we
finally reach the so-called superparamagnetic limit. In fact, in a particle with uniaxial
anisotropy, two possible orientation of the magnetization and dimensions of the order
of the nanometer, the thermal energy is usually of the same order of magnitude of the
anisotropy barrier. Therefore the particle can have enough thermal energy to overcome
the barrier, showing fluctuations of the magnetization and preventing its implementa-
tion for information storage applications. It has been shown [1, 2] that MNMs can show
slow magnetization dynamics with hysteresis cycles of pure molecular origin, below a
certain blocking temperature TB . Furthermore in these systems the reorientation of the
magnetization can be due not only to thermally activated process described by the Ar-
rhenius law (where the characteristic time is given by τ = τ0exp(U/KBT)), but also to
other phenomena of quantum origin like the tunneling of the magnetization.

0.1.1 Single-molecule magnets

The first systems showing this peculiar behavior have been Single-Molecule Magnets
(SMMs) Mn12 and Fe8. Both systems are characterised by an high spin ground state and
uniaxial magnetic anisotropy, which creates an energy barrier for the reorientation of the
magnetization. In absence of an applied magnetic field, levels belonging to the ground
state multiplet (which are well separated from the excited ones) are arranged within a
double-well potential created by the anisotropy barrier (see Fig. 1). Mn12 and Fe8 also
show thermally activated reorientation of the magnetization. The energy barrier is over-
come with Orbach multi-step relaxation processes [3]: Interactions with phonons can
promote the system to higher energy levels with higher quantum number M, towards
the top of the barrier. Therefore the energy barrier is overcome due to the absorption
and emission of resonant phonons, leading to a reorientation of the magnetization with
a characteristic time given by the Arrhenius law.

Figure 1: Molecular structure of Mn12 SMM (left) and its low-lying energy levels in the double-
well approximation (right).

Mn12 has been the first system where slow magnetization dynamics at low temper-
ature, which can reach the order of magnitude of a year, have been experimentally ob-
served with AC susceptibility and magnetization measurements. To the slow magneti-
zation dynamics of SMMs is also associated an hysteresis cycle of pure molecular origin
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(see Fig. 2), which allow one to store information in one single molecule, overcoming
the superparamagnetic limit. Furthermore, in the Fe8 cluster has been verified that the
characteristic time of relaxation becomes temperature independent below T = 0.36 K
[4], showing that the relaxation of the magnetization is due to pure quantum tunneling
across the anisotropy barrier. In Fig. 2 we report the hysteresis cycles of Fe8 measured
with a magnetic field applied along the easy axis at different temperatures: Indeed hys-
teresis cycles are temperature independent below T = 0.36 K. From the graphs in Fig.
2 it is possible to notice several jumps in the cycles, separated by plateaux, for specific
values of the applied magnetic field with regular spacing. These values of the applied
magnetic field correspond to anti-crossing fields, involving states belonging to different
sides of the energy barrier. At these anti-crossing fields the magnetization relaxes faster
due to pure quantum tunneling phenomena [5].

Figure 2: Molecular structure of Fe8 SMM (left) and its hysteresis cycles measured at different
temperatures with the magnetic field applied along the easy axis (right) [5].

SMMs show slow relaxation of the magnetization at very low temperatures (below
their so-called blocking temperature [2]), depending on their ground state and anisotropy.
Therefore, as far as slow relaxing MNMs are concerned, the competition to obtain higher
spin ground states and stronger anisotropy is expected to continue. Recently, after the
discovery of SMM behavior in a mononuclear Tb complex [6], an intense research activ-
ity has been focused on the design of high-symmetry environments for single lanthanide
ions [7, 8, 9] with the aim to reduce the efficiency of the tunneling mechanism of magnetic
relaxation and to increase the blocking temperature of the material. Moreover some of
these single-ion molecules preserve their SMM behavior also when grafted on surfaces
[10].

0.1.2 Beyond Single-Molecule Magnets

New families of MNMs came after SMMs with new and different properties. Among
these new species of MNMs, great interest have been raised by even numbered AF rings
with N = 6, 8, 10, 12 and 18, which have been synthesized with different transition metal
ions, e.g. Fe3+ (s = 5/2) [11, 12, 13, 14], Cr+3 (s = 3/2) [15], V3+ (s = 1) [16] and Cu2+

(s = 1/2) [17]. These rings are all characterised by a non-magnetic S = 0 ground state
and they can be considered model systems to study AF spin chains. Due to finite size
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effects, AF rings have a discrete energy spectrum and the lowest-lying excited states for
each total-spin S are known to be approximately given by the so-called Landè interval
rule [18]. Heterometallic rings with S 6= 0 can be obtained from an S = 0 homonuclear
ring by chemical substitution of one or two magnetic centers. For instance, Cr7M rings
(M = Zn, Cd, Mn, Ni) are derived from the spin-compensated neutral Cr8 ring [15] by
substitution of one divalent cation M = Zn, Cd, Mn, Ni for a trivalent Cr ion [19]. Cr7Ni
AF ring has been proposed as a good candidate for the implementation of qubits with
MNMs. In fact, it is characterised by a S = 1/2 doublet ground state and it can be can
be manipulated in times much shorter than the measured decoherence time [20, 21].
Furthermore, as we will see in Chapter 5, Cr7Ni rings can be also successfully grafted
on surfaces in an ordered fashion, preserving their magnetic properties. Heterometallic
rings have shown that the possibility to change the pattern of exchange interactions and
spin values in AF rings with chemical engineering represents a great opportunity to
study new quantum phenomena in MNMs. Now the attention is focusing on newly
synthesized AF rings, with a particular attention to their frustration-induced properties.
Thus, frustrated rings like Cr8Ni and Cr9, where frustration is due to the odd number of
interacting ions, have been taken into account. Their magnetic behavior can be compared
with the even numbered closed ring Cr8 and open rings Cr8Cd and Cr8Zn [22, 23].

Figure 3: Molecular structure of Cr8M ring: dark green: Cr, light pink: M (Cr, Zn, Cd, Ni), yellow:
F, red: O [23].

Other species of MNMs like the grid Mn[3x3] have allowed us to experimentally
observe from macroscopic measurements a pure quantum phenomena like coherent os-
cillations of the total-spin S, which cause fluctuation not only of the direction (as it hap-
pens in Mn12 or Fe8) but also of the modulus of the total-spin S [24]. Recently molecules
containing AF triangles have been taken into account for the implementation of quan-
tum gates [25], thus, trimers like Cr2Cu [26] have been completely characterised. Due
to their chirality properties, triangular MNMs like Cu3 have been also suggested as new
component in spintronic devices [27].

Molecular clusters can also show polyhedral structures: In particular, MNMs with
highly complex and symmetric structures like Mo72Fe30 belong to the family of highly
frustrated molecular magnets, where frustration, as we will also see in Chapter 3, is at
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the origin of several exotic phenomena [28, 29]. A toroidal arrangement of local magnetic
moments has been recently found in lanthanide based MNMs. It was first discovered in
Dy3 triangles [30] and has been recently observed in a Dy6 ring [31]. As we will see
in the following section the toroidal magnetic state seems to be promising for future
applications in quantum computing and information storage [32].

0.1.3 Technological Applications

MNMs are also interesting for their envisaged technological applications. For instance,
SMMs show hysteresis cycles of pure molecular origin due to their slow relaxation of
the magnetization. These features could allow us to store information in one single
molecule, with the aim of building high-density memories with nanometric molecules.
For future implementations of SMMs in information storage technologies, suppression
of quantum tunneling phenomena, which can cause the loss of information, and molecules
with higher blocking temperature are needed.

Due to their quantum behavior and properties, MNMs are considered valid candi-
date to realize qubits, the unit of quantum information, for quantum computation al-
gorithms [33]. Indeed, at low temperature systems like Cr7Ni exhibit two stable spin
states, which can be associated to the two logical states 0 and 1 of the qubit, and long
decoherence times [20, 21]. Quantum computation algorithms are based on sequences
of elementary logical operations on qubits, the so-called quantum gates, which can be
physically implemented with resonant electromagnetic pulses. One-qubit gates can be
realized with local magnetic fields, whereas two-qubit gates are based on the electronic
control of qubit-qubit interactions. Therefore spin entanglement between two interact-
ing molecules (usually AF rings) is a crucial resource for quantum information processes
[21]. It has been also demonstrated that a proper engineering of the intercluster link
would result in an effective coupling that vanishes when the system is kept in the com-
putational space, while it is turned on by a selective excitation of specific auxiliary states.
These feature would allow the performing of single-qubit and two-qubit gates without
an individual addressing of the rings by means of local magnetic fields [34].

Recently a scheme to efficiently exploit chains of MNMs as quantum simulators have
been developed, where the quantum simulator state is manipulated by sequences of
uniform electromagnetic pulses implementing quantum gates, performed in parallel on
the whole array [35]. In addition, the recent demonstrations that MNMs can be self-
assembled on surfaces without altering their properties, opened interesting possibilities
also for their implementation in superconducting stripline resonators. Indeed, the cou-
pling between the spin of MNMs and a high-finesse cavity resonant mode would pave
the way to the implementation of hybrid solid-state devices. A new scheme to perform
quantum information processing based on a hybrid spin-photon qubit encoding have
already been proposed [36].

Also the toroidal magnetic state seems to be promising for future applications in
quantum computing and information storage. A key property of toroidal magnetic mo-
ments is their insensitivity to homogeneous magnetic fields [37]. This means that the
two components of the toroidal magnetic state, corresponding to circular arrangements
of magnetic moments in opposite directions [30] will be much more protected against
the action of a magnetic field, compared to the spin projection eigenstates of a true spin
S = 1/2 [38]. Moreover, the toroidal magnetic moment interacts with a dc current pass-
ing through the molecule [39] or a time-varying electric field [40] via magneto-electric
coupling [41] and this allows the moment to be controlled and manipulated purely by
electrical means. MNMs have been also suggested as new component in spintronic de-
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Figure 4: Molecular structure of Cr7Ni-link-Cr7Ni dimers: light green: Cr, dark green: Ni, orange:
Cu, red: O, yellow: N. Rings linked with a single Cu2+ center (right) can be regarded as a three-
qubit system. Rings coupled through a dimetallic link (left) implement two-qubit systems with
switchable effective coupling [21].

vices, such spin-polarized [42] or magnon transistors [27].
As we will show in Chapter 4, MNMs can show an enhanced magnetocaloric effect

at low temperature and therefore are considered promising materials for magnetic re-
frigeration [43, 44, 45, 46].

0.2 Thesis overview

Main results

As pointed out in the previous sections, MNMs have attracted the attention of the sci-
entific community for two main reasons. First, they represent model systems to study
many quantum phenomena, such as quantum tunneling of the magnetization, quantum
oscillations of the total-spin, quantum entanglement and decoherence. Second, they are
interesting for their envisaged technological applications, including magnetic refriger-
ation, high-density memory storage and quantum information processing. Driven by
these motivations, the present Thesis focuses on the study of magnetic properties and
spin dynamics of different classes of molecular nanomagnets, with the purpose to un-
derstand their quantum behavior and their potential applications in future technologies.

The main results of the Thesis are summarized below.
Study of frustration induced static and dynamical properties in MNMs: Geomet-
rical magnetic frustration due to competing antiferromagnetic (AF) interactions is at
the origin of many exotic phenomena in MNMs. We have theoretically investigated
frustration-induced static and dynamical properties in the Ni7 MNMs and we have
shown that the high degree of frustration leads to a magnetic energy spectrum with
large degeneracies which result in an unusual behavior of the cluster. In particu-
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lar, the relaxation dynamics of the magnetization is characterised by several distinct
characteristic times. We have also discussed the possible interest of Ni7 for mag-
netocaloric refrigeration. With the study of the three systems Fe7, Fe6 an Mn6 we
have demonstrated that even if geometrical frustration is removed by structural dis-
tortions in the molecular structure of the cluster, competing AF interactions lead to
a low-spin ground state, low-lying excited levels and still to an unusual behavior.
In particular competing AF interactions are responsible for a multi-time scale relax-
ation dynamics at low temperature. This peculiar behavior has been verified in the
Fe7 cluster and probed by 1H-NMR. Indeed, the comprehension of relaxation mech-
anisms in MNMs is crucial in order to address the implementation of these systems
in the fields of quantum information processing or information storage.

Theoretical design of MNMs for magnetic refrigeration: Molecular nanomagnets
are promising materials for very-low-temperature magnetic refrigeration due to their
enhanced magnetocaloric effect. By explicitly considering Carnot refrigeration cy-
cles, we have theoretically shown that the best molecules for magnetic refrigeration
between T = 10 K and the sub-Kelvin region are those made of strongly ferromag-
netically coupled magnetic ions, contrarily to the established belief. This recipe will
provide a strong stimulus for designing new magnetic molecules for cryogenic tech-
nologies.

Study of local magnetic properties and anisotropy in Cr7Ni green rings: Cr7Ni is a
very promising system to encode a qubit, since it behaves as an effective spin 1/2 at
low-T and can be manipulated in times much shorter than the measured decoherence
time. 53Cr-NMR spectra collected at low temperature in a single crystal of Cr7Ni in
the S = 1=2 ground state have allowed us to establish the distribution of the local elec-
tronic moment in the ring. Indeed the latter plays a key role in the scheme proposed
for obtaining time dependent qubit–qubit couplings in the presence of permanent
exchange interactions between two AF rings. In addition with XMCD spectroscopic
technique and theoretical calculations we have investigated the origin of magnetic
anisotropy in Cr7Ni rings grafted on surfaces.

Complete characterization of Cr7M purple rings and of entangled Cr7Ni purple-
green dimer: Cr7M (M = Zn, Mn, Ni) purple rings have been originally synthesized
in order to facilitate the linking of two or more AF rings. Furthermore, the substi-
tution of bridging fluorides of green rings with alkoxide groups in purple rings can
reduce the hyperfine-induced decoherence, making them attractive candidates for
applications in quantum-information processing. Cr7Zn, Cr7Mn and Cr7Ni purple
rings have been completely characterised by comparing our theoretical calculations
with INS, EPR and specific heat experimental data. The characterization of single
purple rings represents a first step in the description of a new family of entangled
dimers obtained by linking together one purple and one green ring. EPR and specific
heat measurements on Cr7Ni purple-green dimer have allowed us to demonstrates
the presence of an effective interaction between the two rings. These dimers rep-
resent model systems to study spin entanglement and its application in the field of
quantum computation.

Organizational note

The present Thesis consists of six Chapters. The first two Chapters are devoted to a
brief introduction about the main theoretical models and experimental techniques for the
investigation of MNMs. The other four Chapters present the main results of this Thesis:
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Each Chapter concerns a different sub-group of MNMs or it describes peculiar properties
or applications of these systems. Chapter 3, 5 and 6 contains several sections and each
section is devoted to the study of a particular system. Sections of Chapter 3, 5 and 6
and Chapter 4 have appeared as refereed publications in scientific journals; co-authors
of the relevant articles are mentioned below. Chapter 6 presents results which haven’t
been published yet. Some variations have been made in the presentation of previously
published results, to maintain consistency of style and content structure through the
manuscript.

Chapter 1 - Theoretical Framework: In this Chapter we introduce the Spin Hamil-
tonian approach, which allows us to describe magnetic properties and coherent
dynamics of MNMs. The irreducible tensor operator techniques and several diag-
onalization method are also presented. We also introduce the quantum theory of
relaxation and the rate master equation formalism, in order to describe phonon-
induced irreversible relaxation dynamics in MNMs.
Chapter 2 - Experimental Techniques: Several experimental techniques are de-
scribed in this Chapter: Inelastic neutron scattering, nuclear magnetic resonance,
electron paramagnetic resonance and X-rays magnetic circular dichroism. We de-
scribe each experiment both from a phenomenological and theoretical point of
view.

Chapter 3 - Molecular Magnets with Competing AF Interactions: in this Chap-
ter we focus on four different MNMs with competing AF interactions. In Section
3.1 we analyze the static and dynamical magnetic properties of the Ni7 molecu-
lar nanomagnet, which is an excellent model system to investigate the effects of
magnetic frustration. This work on Ni7 has been published on Journal of Physics:
E. Garlatti, S. Carretta, M. Affronte, E. C. Sañudo, G. Amoretti, P. Santini, J. Phys.:
Condens. Matter 24, 104006 (2012). Section 3.2 is devoted to the magnetic charac-
terization of three different systems, Fe6, Mn6 and Fe7, as it appears on the paper
published on Dalton Transaction: K. Mason, J. Chang, A. Prescimone, E. Garlatti, S.
Carretta, P. A. Tasker, E. K. Brechin, Dalton Trans. 41, 8777 (2012). In section 3.3 we
investigate the phonon-induced relaxation dynamics in Fe7, which is also probed
by measurements of the nuclear spin-lattice relaxation rate 1/T1. The results of this
last section have been published as an article on Physical Review B: E. Garlatti, S.
Carretta, P. Santini, G. Amoretti, M. Mariani, A. Lascialfari, S. Sanna, K. Mason, J.
Chang, P. Tasker and E.K. Brechin, Phys. Rev. B 87, 054409 (2013).

Chapter 4 - Design of Molecular Nanomagnets for Magnetic Refrigeration: In
this Chapter we perform calculations in ideal model systems to understand the
characteristics of a MNM yielding an efficient magnetocaloric effect between T = 10
K and the sub-Kelvin region. By explicitly considering Carnot refrigeration cycles,
we theoretically show that the best molecules for magnetic refrigeration between
T = 10 K and the sub-Kelvin region are those made of strongly ferromagnetically
coupled magnetic ions, contrarily to the established belief. This Chapter is based
on the work by E. Garlatti, S. Carretta, J. Schnack, G. Amoretti and P. Santini that
will soon be published on Applied Physics Letters.

Chapter 5 - Local Magnetic Properties of Cr7Ni-green AF Ring: In this Chapter
we focus on a particular sub-group of MNMs, the so-called AF green rings. In
particular in Section 5.1 we present 53Cr-NMR spectra collected at low temperature
in a single crystal of Cr7Ni in the S = 1/2 ground state, with the aim of establishing
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the distribution of the local electronic moment in the ring. This analysis as been
published as a refereed paper on Journal of Physics: C. M. Casadei, L. Bordonali,
Y. Furukawa, F. Borsa, E. Garlatti, A. Lascialfari, S. Carretta, S. Sanna, G. Timco
and R. Winpenny, J. Phys.: Condens. Matter 24, 406002 (2012). Section 5.2 is devoted
to the experimental and theoretical determination of magnetic anisotropy of Cr7Ni
grafted on surfaces, using XMCD and theoretical calculations. These results have
appeared on Advanced Functional Materials: V. Corradini , A. Ghirri , E. Garlatti,
R. Biagi, V. De Renzi, U. del Pennino, V. Bellini, S. Carretta, P. Santini, G. Timco, R.
Winpenny, M. Affronte, Adv. Funct. Mat. 22, 3706-3713 (2012).

Chapter 6 - Spin Dynamics of Cr7M-purple Rings and of Entangled Dimers: In
this last Chapter we present a complete characterization of Cr7M purple AF rings.
Magnetic properties and spin dynamics of these systems are investigate with INS,
EPR and specific heat measurements and with theoretical calculations. The last
section of the Chapter is devoted to the analysis of a super-molecular system be-
longing to a new family of entangled AF rings. By means of EPR and specific heat
measurements we demonstrate the presence of an effective interaction between the
on Cr7Ni purple and one Cr7Ni green ring in a super-molecular dimer. This work
is currently in preparation for submission to scientific journals.





CHAPTER 1

Theoretical Framework

1.1 The Spin Hamiltonian

Magnetic Properties of MNMs can be accurately described by single-molecule Spin Hamil-
tonians (SHs). The SH formalism is based on the assumption that each magnetic ion in
the molecule can be represented by an effective spin si and it allows us to express all
the contributions to the energy of the system (exchange or dipolar interactions and local
crystal fields) in terms of spin operators only [47].

As we will show in the following sections, the irreducible tensor operator (ITO) tech-
nique and the Wigner-Eckart theorem [48] simplify the calculation of the Hamiltonian
matrix elements on the total-spin basis. The eigenvalues are usually expressed in terms
of the parameters characterizing the different contributions to the SH. These parame-
ters can be calculated directly or determined through the comparison with experimental
data.

The SH describing a MNM usually has three main contributions:

H = H0 +HCF +Hdip. (1.1)

The first term represents the isotropic Heisenberg (super)-exchange interaction, which
is usually the dominant one, the second term represents the effects of the local crystal
electric fields (CFs), produced by surrounding ligand charges, while the third term is the
classical dipole-dipole interaction. A fourth term representing the Zeeman interaction
with an external magnetic field can be added to Eq. 1.1. All the possible contribution to
the SH are described in the following section.

If the isotropic exchange interactions is largely dominant over all the other contribu-
tions (strong-exchange limit), the splitting within each total-spin multiplet will be much
smaller than the energy difference between two multiplets with different total-spin S.
Therefore to describe the behavior of the system we can consider only the ground state
multiplet and the SH will have only CFs and Zeeman terms acting on it. This particular
SH is called single-Spin Hamiltonian and it is easier to manage, since the Hilbert space as-
sociated to the molecule is reduced to the dimension of ground state total-spin multiplet,
dim(H) = 2S + 1. If the presence of the other excited multiplets cannot be neglected,
we have to consider a generalized SH, taking into account also the exchange interactions
between the magnetic ions.

1.1.1 Main contributions to the Spin Hamiltonian

In the following we briefly report all the possible contribution to the SH describing a
MNM with N magnetic centers.

1
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Exchange Interactions

The exchange interaction between the magnetic ions of a MNM can be decomposed in
four different contributions [47, 48, 2]:

Hex = H0 +HBQ +HAS +HAS , (1.2)

whereH0 is the Heisenberg-Dirac isotropic-exchange Hamiltonian,HBQ is the bi-quadratic
exchange Hamiltonian,HAS represents the antisymmetric exchange andHAN the anisotropic
exchange. In the conventional form these terms are expressed as:

H0 =
∑
i>j

Jijsi · sj , (1.3)

HBQ =
∑
i>j

jBQij (si · sj)2, (1.4)

HAS =
∑
i>j

Gij(si × sj), (1.5)

HAN =
∑
i>j

∑
α

Jαijs
α
i s
α
j , (1.6)

where si are spin operators of the ith ion in the molecule. Jij are the isotropic ex-
change parameters, jBQij are the biquadratic exchange interactions, Jαij are the parameters
associated to the components of the anisotropic exchange interactions and Gij(= −Gji)
are the antisymmetric parameters, i.e., antisymmetric vectors. For the sake of simplic-
ity, the low-symmetry contributions to HAN and multi-center interactions in HBQ are
omitted.

Dipolar intra-molecular interaction

When two interacting spins are sufficiently removed one from the other, their magnetic
interaction reduces to that of two magnetic dipole. Therefore between the magnetic cen-
ters in a MNM there is also a classical dipole-dipole interaction, usually evaluated within
this point-dipole approximation [49]. The magnetic dipole of a single ion in the molecule
is given by mi = −µBgisi, where µB is the Bohr magneton and gi is the spectroscopic
splitting tensor. The classical form of the interaction between two spins i and j can be
written as:

Hdip =
∑
i>j

si · Jdipij · sj , (1.7)

where the coefficients Jdipij are given by:

Jdipij =
µ2
B

R3
ij

[gi · gj − 3(gi · R̂ij)(gj · R̂ij)], (1.8)

and R̂ij is a unit vector parallel to the sisj direction.
From Eq. 1.8 we can see that for each couple of interacting dipoles we have a coef-

ficient matrix, which can be decomposed into an isotropic, anisotropic and antisymmetric
part, respectively given by:
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Jij =
1

3
Tr(Jdipij ), (1.9)

Ddip,αβ
ij =

1

2
(Jdip,αβij + Jdip,βαij )− δαβ

1

3
Tr(Jdipij ),

ddip,αβij =
1

2
(Jdip,αβij − Jdip,βαij ),

where α, β = x, y, z.
It is worth to note that the magnetic dipole-dipole interaction can be taken into ac-

count within the exchange contributions described in the previous subsection [1], since
both dipolar and exchange terms contain the same dependence on spin operators.

Crystal Fields

The Crystal field theory describe the influence of the electric field produced by surround-
ing ligand charges on the electronic structure of a given ion. The CF SH can be written
in terms of Stevens equivalent operators Oqk(si)[47]: these particular operators can be con-
sidered as effective-spin operators acting on a given total-spin multiplet. We have that
k = 2, 4 for d electrons [3] and k = 2, 4, 6 for f electron [50], while q = −k, ..., k:

HCF =

N∑
i=1

∑
k,q

bqk(i)Ôqk, (1.10)

For instance, the widely-used second order CF Hamiltonian, corresponding to a crystal
field with rhombic symmetry, in terms of the spin operators of the ith ion in the molecule,
becomes:

HCF =

N∑
i=1

{
di[s

2
i,z −

1

3
si(s1 + 1)] + ei(s

2
i,x − s2

i,y)

}
, (1.11)

The parameters di and ei are respectively the local axial and transverse CF parameters.

The general form a CF Hamiltonian acting on a total-spin multiplet S in the strong-
exchange limit can be written as a quadratic form [2]:

HCF = S ·D · S, (1.12)

where D, is a real symmetric tensor called fine-structure tensor or zero-field splitting ten-
sor. In fact the Hamiltonian in Eq. 1.12 is responsible for the splitting of the (2S + 1)
degenerate level of the total-spin multiplet, in absence of an external magnetic field.

If the coordinate axes x, y, z of the system are chosen parallel to the three orthogonal
eigenvectors of the tensor, D is diagonal and assumes the form:

HCF = DxxS
2
x +DyyS

2
y +DzzS

2
z, (1.13)

with Dxx +Dyy +Dzz = 0. Eq. 1.13 can be rewritten as

HCF = DS2
z + E(S2

x − S2
y), (1.14)

assuming

D =
3

2
Dzz E =

1

2
(Dxx −Dyy). (1.15)

The values of the parameters D ed E strongly depends on the symmetry of the sur-
rounding ligand charges around the magnetic center:
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• cubic symmetry: Dxx = Dyy = Dzz ⇒ D = 0, E = 0;

• axial symmetry: Dxx = Dyy 6= Dzz 6= 0⇒ D 6= 0, E = 0;

⇒ HCF = DS2
z ;

• rhombic symmetry: Dxx 6= 0, Dyy 6= 0, Dzz 6= 0⇒ D 6= 0, E 6= 0.

If the CF has axial symmetry the eigenvectors of Eq. 1.11 are the eigenstates of Sz
with eigenvalues given by:

W (E) = Dm2 − S(S + 1)

3
. (1.16)

If D > 0 the levels with lowest |mSz | are the most stable (easy plane), while if D < 0 the
levels with highest |mSz | lie lowest (easy axis). When also E 6= 0, if S is an integer the
degeneracy between the |mSz 〉 and the | − mSz 〉 states is removed, while they remain
degenerate in pairs if S is an half integer. This is due to time reversal symmetry and the
pairs of degenerate levels are called Kramers doublet [47].

The local crystal field parameters di and ei are connected to the correspondingD and
E parameters describing the ground state anisotropy by the following relations:

D =

N∑
i=1

Γidi (1.17)

E =

N∑
i=1

Γiei, (1.18)

where Γi are projection coefficients. The same projection procedure between the local
effects of the anisotropy and the strong-exchange limit can be done for the dipolar inter-
actions. All the details are reported in Ref.[51]

Zeeman effect

In presence of an external magnetic field, we have to take into account also the Zeeman
effect, which is responsible for further splittings of the energy levels. Within the SH
formalism, the Hamiltonian for the Zeeman effect is given by:

HspinZee = µB

N∑
i=1

B · g · si, (1.19)

where µB is the Bohr magneton, g is the spectroscopic splitting tensor and B represents
the external magnetic field.

For instance, if the magnetic field is along the z axis of the coordinate reference system
of the molecule, B = Bz ẑ, the SH becomes:

HZee = µB

z∑
i=1

gBzszi. (1.20)

otherwise, the external magnetic field is always expressed in spherical coordinates: Bx = Bsinθcosφ,
By = Bsinθsinφ,
Bz = Bcosθ,

(1.21)
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where θ represents the azimuthal angle between the z axis of the molecule and the field,
while φ identify its direction in the x,y plane.

Basis definition

In order to represent all the interactions described above and build the Hamiltonian
matrix, we have to choose a suitable basis set. The natural choice is represented by the
product states

|s1m1〉|s2m2〉...|sNmN 〉 (1.22)

as basis functions. Nonetheless, the Heisenberg-Dirac isotropic exchange is often the
dominant term in the SH in Eq. 1.1. Therefore the best basis set to build the Hamiltonian
matrix is represented by the eigenstates of the total-spin S =

∑
i si. To obtain the total-

spin S we also have to choose an appropriate coupling scheme of the single-site spins si.
For a cluster with N magnetic ions with spins s1, s2, ..., sN a successive coupling scheme
leads to the following basis vectors:

|s1s2(S̃2)s3(S̃3)...sN−1(S̃N−1)sNSM〉 = |(S̃)SM〉 (1.23)

where (S̃) represents the complete set of intermediate spin quantum numbers S̃k, with
k = 1, ..., N − 1. The first intermediate spin S̃2 = S12 is given by the coupling of s1 with
s2. Then S̃2 is coupled to s3 to have S̃3 = S123 and so on. The best choice for the coupling
scheme is the one which reflects the symmetry of the molecular system. Nonetheless, all
the possible coupling schemes are equivalent, since the corresponding representative
vectors are connected to each other by a given unitary transformation.

1.1.2 Irreducible Tensor Operators (ITOs)

The introduction of the Irreducible Tensor Operators (ITOs) simplifies the calculation of
the matrix elements on the total-spin basis: The spin operators si in the SH can in fact be
rewritten as ITOs T̂ kq with rank k = 1. The three components of the tensor, respectively
with q = 0,±1, corresponds to appropriate combinations of the operator si:

T̂
(1)
0 = sz, (1.24)

T̂
(1)
±1 = ∓ 1√

2
(sx ± sy).

Therefore in the SH will appear a sum of tensors T̂ kq , originating from the product of
single-spin operators. The tensor product between two ITOs with rank k1 e k2 produces
a set of (2k1 + 1)(2k2 + 1) operators:

T̂ (k1) ⊗ T̂ (k2) =
{
T̂ (k1)
q1 T̂ (k2)

q2

}
. (1.25)

Starting from this set it is possible to build an ITO with rank k defined as:{
T̂ (k1) ⊗ T̂ (k2)

}(k)

q
=
∑
q1,q2

〈k1k2q1q2|kq〉T̂ (k1)
q1 T̂ (k2)

q2 , (1.26)

with |k1 − k2| < k < k1 + k2.
The Wigner-Eckart Theorem it is exploited to calculate the matrix elements of ITOs on

the basis of the angular momentum. This theorem allows us to express all the matrix



6 1.1 The Spin Hamiltonian

elements in terms of Wigner’s 3j symbols and reduced matrix elements, which are both
easy to calculate and frequently reported in literature. The Wigner-Eckart theorem states
that:

In a standard representation {J, Jz}, whose basis vectors are denoted by |αjm〉, the matrix
elements 〈αjm|T̂ kq |α′j′m′〉 of the qth standard component of a given kth-order ITO T̂ k is equal
to the product of the Clebsch-Gordon coefficients by a quantity independent of m,m′ and q:

〈α; jm|T̂ (k)
q |α′; j′m′〉 =

1√
2j + 1

Cjmj′km′q〈α; j||T̂ (k)||α′; j′〉, (1.27)

or, in terms of Wigner’s 3j symbols:

〈α; jm|T̂ (k)
q |α′; j′m′〉 = (−1)j−m

(
j k j′

−m q m′

)
〈α; j||T̂ (k)||α′; j′〉, (1.28)

where 〈α; j||T̂ (k)||α′; j′〉, called reduced matrix element, is independent of m,m’,q, varies
from one tensor to another and depends on the indices α, j and α′, j′[48].

Exchange interactions

The SH in Eq. 1.3 represents isotropic exchange interactions as a scalar product between
the couples of spins si and sj : each scalar product si · sj behaves as a k = 0, q = 0 tensor
(i.e. a scalar quantity) and it has a rotational symmetry. Therefore the isotropic exchange
Hamiltonian in terms of ITOs becomes:

HIex = −
√

3
∑
i,j

Ji,j{T̂ (1)
1 (si)⊗ T̂ (1)

1 (sj)}(0)
0 = −

√
3
∑
i,j

Ji,j T̂
(0)
0 (11|ij) (1.29)

Since the ranks of the operators appearing in Eq. 1.29 is k = 0, we can expect that
for the isotropic exchange interaction the matrix elements will be non-zero only between
states with the same values of S and M .

The other exchange interactions Hamiltonians in terms of ITOs become:

HBQ = −
∑
i>j

jij

[
√

5T
(0)
0 (22|ij) +

√
3

2
T

(0)
0 (11|ij)

]
(1.30)

HAs = −i
√

2
∑
i>j

∑
q

(−1)qG
(1)
q,ijT

(1)
−q (11|jj) (1.31)

HAN =
∑
i>j

JaijT
0
0 (11|ij) +

∑
i,j

Juij
[
T−2

2 (11|ij) + T 2
2 (11|ij)

]
+
∑
i,j

JvijT
0
2 (11|ij) (1.32)

where

G
(1)
q,ij =

 ∓
(Gz,ij±Gy,ij)√

q if q = ±1

Gz,ij if q = 0

, (1.33)
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Jaij = − 1√
3

(
Jxij + Jyij + Jzij

)
(1.34)

Juij =
1√
2

(
Jxij − J

y
ij

)
Jvij =

1√
6

(
2Jzij − Jxij − J

y
ij

)
As it can be seen in Eqs. 1.30 and 1.32, both the biquadratic and the anisotropic

Hamiltonians contain a scalar rank-0 contribution, i.e. T (0)
0 (11|ij). This two terms can be

incorporated in the isotropic exchange Hamiltonian by defining the effective isotropic
parameters as J̃ij = Jij + 1

3 (Jxij + Jyij + Jzij).

Dipolar Interaction

The dipolar interaction can be expressed as a quadratic form (see Eq. 1.7). Developing
this quadratic form, it is possible to demonstrate that it can be rewritten in terms of
tensor products of operators with k = 1. Following the rules of the tensor product, the
Hamiltonian in Eq. 1.7 can be rewritten in terms 2nd-order ITOs:

Hdip =

N∑
i,j=1

√
2

3
Jzzij T̂

(2)
0 (11|ij) + (1.35)

+ [−Jxzij + iJyyij ]T̂
(2)
1 (11|ij) + [Jxzij + iJyyij ]T̂

(2)
−1 (11|ij) +

+

{
1

2
[Jxxij − J

yx
ij ]− iJxyij

}
T̂

(2)
2 (11|ij) +

{
1

2
[Jxxij − J

yx
ij ] + iJxyij

}
T̂

(2)
−2 (11|ij),

where Jαβij , with α, β = x, y, z are the components of the coefficients matrix Jdipij for each
couple sisj . Since the tensor operators in Eq. 1.35 have k = 2, the dipolar interactions
will mix states with different total-spin S following the selection rules: ∆S = 0,±1,±2
and ∆M = 0,±1,±2.

Crystal Fields

The exchange and dipolar contributions to the SH are two-bodies interactions, while
the CF Hamiltonian expresses the effect of the local crystal field anisotropy on a single
magnetic ion. In fact Stevens equivalent operators in the CF Hamiltonian (see Eq. 1.10)
acting on a single site j can be expressed in terms of ITOs with all ki’s equal to zero apart
from kj . For instance, the widely-used second-order Hamiltonian (Eq. 1.11) will only
contain 2nd-order ITOs:

HCF =

N∑
i=1

[
diT

(2)
0 (2|i) + ei

(
T

(2)
2 (2|i) + T

(2)
−2 (2|i)

)]
. (1.36)

Since the tensor operators in Eq. 1.36 have k = 2, the CF, as the dipolar interaction, will
mix states with different total-spin S following the selection rules: ∆S = 0,±1,±2 and
∆M = 0,±1,±2.
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Zeeman effects

In the SH for the Zeeman effect only appear single-spin operators si, which can be writ-
ten as appropriate linear combinations of 1st-rank ITOs (see Eq. 1.24). The Zeeman
Hamiltonian can be therefore expressed as:

HZee = µBg

7∑
i=1

{Bx[
1√
2

(T̂
(1)
−1 (1|i)− T̂ (1)

1 (1|i))] + (1.37)

+By[
i√
2

(T̂
(1)
−1 (1|i) + T̂

(1)
1 (1|i))] +Bz

ˆ
T

(1)
0 (1|i)}.

Recoupling

The tensor operators in the SHs in Eqs. 1.29, 1.35, 1.36 and 1.37 are the results of tensor
products between single-spin operators. It is possible to decompose each operator T̂ (k)

q

following the chosen coupling scheme for the total-spin S:

T̂ (k)
q =

{{{
T̂ (k1)(S1)⊗ T̂ (k2)(S2)

}(k12)

⊗ T̂ (k3)(S3)

}(k123)

⊗ ...

}(k)

q

. (1.38)

The Wigner-Eckart theorem simplifies the calculation of the ITOs matrix elements,
which can be expressed in terms of Wigner’s 3j symbols and reduced matrix elements
of the product tensors T̂ (k)

q in Eq. 1.38. The recoupling technique allows us to rewrite
the reduced matrix elements of these operators in terms of single-spin reduced matrix
elements and Wigner’s 9j symbols [52]. In the simple case of a spin dimer we have:

T̂ (k)
q =

{
T̂ (k1) ⊗ T̂ (k2)

}(k)

q
=
∑
q1,q2

〈k1k2q1q2|kq〉T̂ (k1)
q1 T̂ (k2)

q2 , (1.39)

whose matrix elements on the total-spin basis can be calculated with the Wigner-Eckart
theorem as:

〈s1s2SM |T̂ (k)
q |s1s2S

′M ′〉 = (−1)S−M
(

S k S′

−M q M ′

)
× (1.40)

×〈s1s2S||T̂ (k)||s1s2S
′〉.

With the recoupling technique the reduced matrix element can be written as:

〈s1s2S||T̂ (k)||s1s2S
′〉 =

√
(2S + 1)(2k + 1)(2S′ + 1)×

×

 k S S′

k1 s1 s1

k2 s2 s2

 〈s1||T̂ (k1)||s1〉〈s2||T̂ (k2)||s2〉,

where we find only single-spin reduced matrix elements, which are easy to calculate and
often reported in literature. In terms on single-ion spin operators with ki = 0, 1, 2 they
can be expressed as:

< S||Ŝ(0)||S > =
√

(2S + 1) (1.41)

< S||Ŝ(1)||S > =
√
S(S + 1)(2S + 1)

< S||Ŝ(2)||S > =
1

2
√

6

√
2S(2S + 3)(2S + 2)(2S + 1)(2S − 1).
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1.1.3 Spin Hamiltonian Diagonalization

In the previous sections we have described how to rewrite all the SH contributions in
terms of ITOs and how to calculate their matrix elements on the total-spin basis |(S̃)SM〉
exploiting the Wigner-Eckart theorem and the recoupling technique. Once the Hamilto-
nian matrix is obtained, we can diagonalize it in order to evaluate the energy spectrum
of the molecule. For the calculation of the matrix elements and the diagonalization of
the Hamiltonian matrix a specific Fortan90 code has been written for each analysed sys-
tem. The code is made of several different subroutines for the implementation of each
contribution to the SH and the calculation of reduced matrix elements, Wigner’s 3j and
9j symbols (the latter are obtained through the calculation of 6j symbols). In order to
diagonalize both real symmetric or complex hermitian SHs, Lapack diagonalization sub-
routines have been included in the code.

The dimension of the Hamiltonian matrices to be diagonalized for MNMs increases
dramatically with the increase in the number of magnetic centers. The dimension of
the Hilbert space associated to a molecule containing N magnetic ions (and thus the
dimension of the Hamiltonian matrix) is in fact given by

dim(H) =

N∏
i=1

(2si + 1). (1.42)

In the case of isotropic systems the matrices are reduced by classifying the states accord-
ing to the total-spin values. For a cluster exhibiting high symmetry, this problem can be
attacked more efficiently by taking advantage of the point group symmetry of the clus-
ter, which results in an additional reduction of the matrices. For the isotropic systems,
the Hamiltonian matrix is block-factorized according to the value of the total-spin S, its
projection M and the irreducible representation Γ of the point group of the cluster.

In the previous section we have shown that there are many other contributions to the
SH, which mix states with different total-spin S. In order to diagonalize the full matrix
of the system, one should exploit algorithms of parallel computing. Nevertheless, this
would be quite unuseful since the information contained in the most of experimental
data involves only levels thermally occupied at very low temperatures. Indeed, a per-
turbative approach can be applied, since in magnetic molecules the isotropic exchange is
almost always the dominant interaction. As a result, the problem can be solved by a two
step procedure. Initially, only the Heisenberg-Dirac Hamiltonian H0 is considered. The
eigenvalues and eigenvectors of the cluster are thus determined: The energy spectrum
consists of several spin multiplets separated by the isotropic exchange. The eigenvectors
of the isotropic exchange in terms of the basis vectors are:

|SM〉 =
∑
S̃

〈(S̃)SM |SM〉|(S̃)SM〉 =
∑
S̃

c(S̃)S |(S̃)SM〉 (1.43)

It follows from the above expression that the generic matrix element in Eq. 1.28 is:

〈S′M ′| T
(k)
1 (k1, k2, k̃2, ..., kN ) |SM〉 = (1.44)

= (−1)S
′−M ′

∑
S̃,S̃′

c(S̃)Sc(S̃′)S′〈S̃′S
′||T̂ (k)||S̃S〉

(
S k S′

−M q M ′

)
In order to reduce the dimension of the system representative matrix, a cut in the energy
diagram of H0 can be performed: Only eigenvectors of H0 with corresponding eigen-
values with energy up to the decided threshold value are to be retained. Within this
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reduced spin subspace all magnetic interactions can be evaluated. In fact, by means of
Eqs. 1.43 and 1.44 it is straightforward to calculate the matrix elements of anisotropic
interactions between any of the eigenvectors of isotropic exchange. Finally, the second
step of this procedure is to diagonalize the here determined complete SH with all the
anisotropic terms within the above-mentioned reduced spin subspace, where we take
into account also S-mixing effect [53]. The only approximation of this method consists
in neglecting the S-mixing between levels of the reduced spin subspace and the other
levels. This approximation can be always checked to produce an error smaller than the
experimental error by a little increase of the reduced spin subspace dimension.

The Lanczos Method

The Lanczos iteration [54] was conceived for tridiagonalizing Hermitian matrices. Ac-
tually, the Lanczos method is also particularly suited for the determination of extreme
eigenvalues and eigenvectors when the dimension of the Hamiltonian matrix prevents
the use of direct diagonalization methods, due to the overcome of computational and
storage capabilities. For finding the eigenvalues of a matrixH of dimensionN , the Lanc-
zos method requires the evaluation of a matrix-vector product H ·v as the only problem-
specific step. This matrix-vector product can be calculated particularly efficiently when
the matrix H is sparse. Storing such a matrix takes only O(N) memory and H · v can be
evaluated inO(N) time. Calculating the extreme eigenvalue requiresO(1) iteration, i.e.,
overall O(N) time. For comparison, a direct diagonalization takes O(N2) for storing a
matrix and O(N3) time to diagonalize. In the following we illustrate the basic steps of
the Lanczos Method.

If we want to determine the ground state |Ψ0〉 and its energy E0 for a HamiltonianH
we can apply the variational principle. The wavefunction functional is given by:

E [Ψ] =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

, (1.45)

which will be minimized for Ψ = Ψ0 with E [Ψ0] = E0. The functional gradient

δE [Ψ]

δ〈Ψ|
=
H|Ψ〉 − E [Ψ] |Ψ〉

〈Ψ|Ψ〉
= |Ψα〉 (1.46)

gives the direction of the steepest-ascent of the functional from the point |Ψ〉. Moving in
the opposite direction will thus result in a wavefunction with lower energy expectation
values: E [Ψ− αΨ] < E [Ψ] for small, positive α. To find the optimum value of α we
minimize E [Ψ− αΨ]. In order to do this, it is useful to introduce an orthogonal basis
in the space spanned by the two vectors Ψ and Ψα. From Eq. 1.46 we see that span
(|Ψ〉, |Ψα〉) =span (|Ψ〉,H|Ψ〉). Thus, as first basis vector, we normalize Ψ:

|v0〉 =
Ψ√
〈Ψ|Ψ〉

, (1.47)

for the second vector we orthogonalizeH|v0〉 to |v0〉

|ṽ1〉 = H|v0〉 − |v0〉〈v0|H|v0〉 (1.48)

and normalize to obtain |v1〉. With an = 〈vn|H|vn〉 and b21 = 〈ṽ1|ṽ1〉we thus have

H|v0〉 = a0|v0〉+ b1|v1〉 (1.49)
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with b1 = 〈v1|H|v0〉. We can then rewrite any normalized wavefunction in span (|Ψ〉,H|Ψ〉)
as

|v〉 = cos(θ)|v0〉+ sin(θ)|v1〉. (1.50)
To find the low-energy state on the subspace spanned by |v0〉 and |v1〉we can diagonalize
the Hamiltonian matrix on the two-dimensional subspace, which is given by:

Hspan(|Ψ〉,H|Ψ〉) =

(
a0 b1
b1 a1

)
. (1.51)

The variational state of lower energy

|Ψ(2)〉 = cos(θmin)|v0〉+ sin(θmin)|v1〉. (1.52)

can of course be used as the starting point for another steepest-descent minimization. Do-
ing this repeatedly we obtain a series of vectors with decreasing energy expectation
value, which rapidly converge to a minimum. Furthermore, the energy functional in
Eq. 1.45 has only minima for the ground states, all the other stationary point are saddle
point. We can thus expect a rapid convergence to the ground state.

If we apply the method of the steepest-descent L times, starting from a vector |v0〉, the
resulting vector will lie in

KL(|v0〉) = span(|v0〉,H|v0〉,H2|v0〉, ...,HN |v0〉), (1.53)

the so-called L + 1 dimensional Krylov space of H over |v0〉. Instead of repeatedly min-
imizing the energy in two-dimensional subspaces, we could directly find the state of
lowest energy in KL(|v0〉). To implement the idea, we construct on orthonormal basis
|vn〉 of the Krylov space. We start we the normal vector |v0〉, while the second vector is
constructed as in the steepest-descent method, with Eq. 1.48:

b1|v1〉 = |ṽ1〉 = H|v1〉 − a0|v0〉. (1.54)

The next basis vector is likewise constructed as H|vn〉 orthogonalized to all previous
vectors and normalized:

b2|v2〉 = |ṽ2〉 = H|v1〉 −
1∑
i=0

|vi〉〈vi|H|vi〉 = H|v1〉 − a1|v1〉 − b1|v0〉. (1.55)

The construction of the further basis vectors follows the same scheme:

bn+1|vn+1〉 = |ṽn+1〉 = H|vn〉 −
n∑
i=0

|vi〉〈vi|H|vi〉 = H|vn〉 − an|vn〉 − bn|vn−1〉, (1.56)

where an = 〈vn|H|vn〉 and b2n = 〈ṽn|ṽn〉. The Hamiltonian matrix constructed on this
basis set is therefore tridiagonal

H|vn〉 = an|vn〉+ bn|vn−1〉+ bn+1|vn+1〉, (1.57)

and this triadiagonalization is the essence of the Lanczos method. After L-step the
Hamiltonian on the L+ 1-dimensional Krylov space is given by:

HKL(|v0〉) =



a0 b1 0 0 ... 0 0
b1 a1 b2 0 ... 0 0
0 b2 a2 b3 ... 0 0
0 0 b3 a3 ... 0 0

... ... ...
0 0 0 0 ... aL−1 bL
0 0 0 0 ... bL aL


. (1.58)
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The numerical implementation of the whole method only requires keeping two N-dimensional
vectors in memory. After tens to hundred iterations, the lowest eigenvalue of the tridi-
agonal representation of H on the Krylov space gives an excellent approximation to the
ground state energy in the full Hilbert space [55].

Finite-Temperature Lanczos

The Finite-Temperature Lanczos is a method for the evaluation of finite-temperature
properties, based on the Lanczos diagonalization technique [56, 57]. This method allows
us to avoid the calculation of all eigenfunctions of the system, by applying a procedure
where the sampling over all states is reduced to a random partial sampling and only
approximate ground state and excited states wave functions, generated by the Lanczos
technique, are used for the calculation of the matrix elements.

For the evaluation of thermodynamic properties in MNMs, we have, for instance, to
calculate the partition function depending on temperature T and magnetic field B:

Z(T,B) =
∑
ν

〈ν|e−βH|ν〉, (1.59)

where |ν〉 is a vectors of an orthonormal basis of the molecule’s Hilbert space. Within
the Finite-Temperature Lanczos framework [56, 57], the unknown matrix elements are
approximated as:

〈ν|e−βH|ν〉 ≈
NL∑
n=1

〈ν|n(ν)〉e−βε
(ν)
n 〈n(ν)|ν〉. (1.60)

In order to implement this approximation, we have to perform NL Lanczos steps, span-
ning a respective Krylov space, with |ν〉 as initial vector of the iteration. As pointed out
in the previous section, with the Lanczos method the Hamiltonian is diagonalized in this
Krylov space, yielding NL Lanczos eigenvectors |n(ν)〉 with associated Lanczos energy
eigenvalues ε(ν)

n . The number of Lanczos steps NL is a parameter of the approximation,
which have to be large enough to converge to the extremal energy eigenvalues, but not
to large in order to avoid problems of numerical accuracy. A typical value is NL ≈ 100.

As a further step, the complete and thus very large sum over |ν〉 (ν = 1, ..., dim(H))
in Eq. 1.59, is replaced by a summation over a subset ofR random vectors. These vectors
are truly random and they do not need to belong to any special basis set:

Z(T,B) ≈ dim(H)

R

R∑
ν=1

NL∑
n=1

e−βε
(ν)
n |〈n(ν)|ν〉|2. (1.61)

The number of random starting vectors can be chosen rather small, e.g. R ≈ 20 with
NL ≈ 100. If we take also into account the symmetries of the system and their irreducible
representation Γ, we improve the accuracy of the approximation:

Z(T,B) ≈
∑

Γ

dim(H(Γ))

RΓ

RΓ∑
ν=1

NL∑
n=1

e−βε
(ν,Γ)
n |〈n(ν,Γ)|ν,Γ〉|2, (1.62)

where the H(Γ) are the mutually orthogonal subspaces of the full Hilbert space. It is
worth to stress that the pseudo energy eigenvalues ε(ν,Γ)

n have no spectroscopic meaning
in general: Very low-lying energy levels may coincide with the true ones due to the
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Figure 1.1: Magnetic susceptibility of the two ideal rings Fe8 (top panel) and Cr10 (bottom panel).
Simulations obtained with the Finite-Temperature Lanczos Method (red lines) are in excellent
agreement with exact calculations (black squares).

rapid convergence of the Lanczos method. However, this discrepancy is miraculously
compensated by the weights 〈n(ν,Γ)|ν,Γ〉.

An observable A can be calculated as:

A(T,B) ≈ 1

Z(T,B)

∑
Γ

dim(H(Γ))

RΓ

RΓ∑
ν=1

NL∑
n=1

e−βε
(ν,Γ)
n 〈n(ν,Γ)|A|ν,Γ〉〈n(ν,Γ)|ν,Γ〉. (1.63)

Therefore the Finite-Temperature Lanczos method can be applied to the study of very
large MNMs, in order to investigate their finite-temperature magnetic properties. Since
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Lanczos iterations consists of matrix-vector multiplications, they can be also parallelized
with OpenMP directives, in order to reduce the computational time. If we take into
account some ideal systems, which are large but still small enough to be diagonalized
exactly, we can try out the method and compare it with exact diagonalization techniques.
We have performed some tests on ideal Fe8 and Cr10 AF rings, reported in Fig. 1.1. We
can see that the agreement between exact calculations and Finite-Temperature Lanczos
results is very good, also with a small number of random sampling R ≈ 50.

1.2 Quantum Theory of Relaxation

The spin dynamics of MNMs can be described by the coherent evolution given by the
SH only on sufficiently short time-scales. In fact for time-scales much longer than the
characteristic coherence time τcoh, which depends on the specific system and on the
temperature, the observables are affected by the interactions of the electronic spins with
other degrees of freedom, like nuclear spins or phonons, which often behave like an heat
bath. They can cause decoherence of the time-evolution of the observables, leading to
an irreversible relaxation dynamics towards equilibrium. It is possible to study these
dynamics with the Master Equations formalism, which describes the ”coarse grained”
time-evolution of the matrix elements of the density operator ρ. The comprehension of
these decoherence mechanisms it is not only important from the point of view of the fun-
damental research, but it is also crucial in order address the implementation of MNMs
in the envisaged technological applications in the field quantum information processing
[58].

1.2.1 Master Equations Formalism

The Density Operator and the Liouville Equation

The macroscopic state of a quantum system can be defined as a mixed state or mixture of
microscopical pure states:

{|ψm〉εH,m = 1, 2, ...P rob(|ψm〉) = Pm} , (1.64)

whereH is the Hilbert space associated with the system and Pm indicates the probability
that the systems is in the state |ψm〉. A quantum system, which is initially in a pure
quantum state or in a coherent superposition of pure quantum states, if it interacts with
an unobserved environment (i.e. phonons), after a characteristic decoherence time it will
be found in a mixed quantum state.

All the information about the mixed state are contained in the associated density op-
erator, defined as:

ρ̂ : H −→ H (1.65)

ρ̂ =
∑
m

Pm|ψm〉〈ψm|,

which is a linear combinations of projection operators on the states |ψm〉, weighted with
their own probability Pm. In order to obtain the matrix form of ρ̂ we have to choose a
complete orthonormal basis set {|φm〉,m = 1, 2, ..., dimH} in H ; the density matrix will
be the representation of the operator ρ̂ on this basis set, where the matrix elements are
given by:

ρij = 〈φi|ρ̂|φj〉. (1.66)
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The density matrix is hermitian and of trace one; the diagonal elements ρii correspond
to the probabilities that the system is found in the corresponding state |φi〉.

In order to determine the time-evolution of the density matrix we have to define
the time evolution operator; given a time-dependent HamiltonianH(t), the time-evolution
operator transform the initial state |ψ(0)〉 in the state |ψ(t)〉:

|ψ(t)〉 = U(t)|ψ(0)〉. (1.67)

The operator U(t) can be obtained solving the equation:

i~
∂U(t)

∂t
= H(t)U(t), (1.68)

with U(0) = I.

If the density matrix at the time t = 0 is given by ρ(0), its time-evolution will be
obtained through the unitary transformation:

ρ(t) = U(t)ρ(0)U†(t). (1.69)

Differentiating Eq. 1.69, we get the Liouville Equation:

i~
∂ρ(t)

∂t
= [H(t), ρ(t)]. (1.70)

The time-evolution of the density matrix can be determined both from Eq. 1.69 and Eq.
1.70.

Since the Hamiltonian of the investigated systems are often given by H(t) = H0 +
V (t), where H0 is time-independent and V (t) can be considered a small perturbation, it
is useful to introduce the interaction notation. With this notation it is possible to separate
the ”fast” time-evolution due to H0, given by rapidly varying factors as e−

i
~E

0
nt, from

the ”slow” one due to V (t). In the interaction picture we have:

|ψ(t)I〉 = e
i
~H0t|ψ(t)〉, (1.71)

V (t)I = e
i
~H0tV (t)e−

i
~H0t,

ρ(t)I = e
i
~H0tρ(t)e−

i
~H0t.

The Liouville equation becomes:

i~
∂ρ(t)I
∂t

= [V (t)I , ρ(t)I ], (1.72)

whose integral form is given by:

ρ(t)I = ρ(0)I −
i

~

∫ τ

0

[V (τ)I , ρ(τ)I ]dτ. (1.73)

If the perturbation V (t) is small, ρ(t)I it is not so different from its initial value and it
can be replaced with ρ(0)I ; thus we obtain the integral form of the Liouville Equation in
first-order perturbation theory:

ρ(t)I = ρ(0)I −
i

~

∫ τ

0

[V (τ)I , ρ(0)I ]dτ. (1.74)



16 1.2 Quantum Theory of Relaxation

Considering two interacting systems φ e ϕ, if the initial state of the total system is
a pure quantum state in the composite space given by |ψin〉 = |φα〉|ϕβ〉 (with |φα〉 and
|ϕβ〉 initial pure states of the single subsystems), after their interaction the final state is
a pure state in the composite state, but it is not possible to assign a single state vector
to either of the two subsystems (principle of non-separability). If we also suppose that the
subsystem φ it is not observed after the interaction, we’ll find that the final state of the
subsystem ϕ will be a mixed quantum state: The non-observation of φ results in a loss of
coherence in the system ϕ.

When only one of the two interacting subsystems is observed, it is useful to deter-
mine the reduced matrix density ρ(ϕ, t), which characterizes only the observed system ϕ,
starting from the density matrix of the total system ρ(t). The matrix ρ(ϕ, t) is obtained
projecting the total density matrix ρ(t) on the observed subsystem ϕ:

ρ(ϕ, t) = Trφρ(t) =
∑
i

〈φi|ρ(t)|φi〉. (1.75)

If the reaction of the subsystem ϕ on the unobserved system φ after their interaction
cannot be neglected, ϕ is called open quantum system. The time-evolution of these kind of
systems, which are in a mixed state after the interaction with the unobserved one, can-
not be described by the Liouville Equations: The reduced density matrix of the observed
subsystem at a time t ρ(ϕ, t) cannot be expressed as a unitary transformation of the initial
matrix ρ(ϕ, 0). Open quantum systems can also have irreversible dynamics, as a conse-
quence of the interaction with the unobserved system (which can be, for instance, an
heat-bath). The operation described in Eq. 1.75, which consists of taking the trace over
all the unobserved variables, can be considered a ”quantum source” of irreversibility. It
is therefore necessary to introduce a formalism, based on the Liouville Equation, able to
describe the time-evolution of the reduced density matrix of an open quantum system,
interacting with a unobserved environment [59].

Theory of Relaxation

When a system is in a non-equilibrium state, its gradual evolution towards equilibrium,
due to its interaction with the environment, it is called relaxation process. All the relax-
ation phenomena are irreversible processes, which have to be described with a different
formalism in respect to the reversible processes described by the Schrödinger or the Li-
ouville Equations.

Consider a system S interacting with an unobserved systemR. ρ(t) is the density ma-
trix of the total system and the Hamiltonian is given byH = HS +HR +V (t), whereHS
and HR describe the two systems R and S, while V (t) represents their interaction. The
time-evolution of ρ(t) in the interaction picture is given by Eq. 1.72 or 1.73: Substituting
the latter in the former equation we get:

ρ̇(t)I = − i
~

[V (t)I , ρ(0)]− (
i

~
)2

∫ t

0

dt′[V (t)I , [V (t′)I , ρ(t′)I ]]. (1.76)

To obtain the reduced matrix density of the observed system S, we take the trace of ρ(t)
over all the variables of R:

ρ̇(t)SI = − i
~
TrR[V (t)I , ρ(0)]− (

i

~
)2

∫ t

0

dt′TrR[V (t)I , [V (t′)I , ρ(t′)I ]]. (1.77)

In order for an irreversible process to occur further conditions must be imposed on the
unobserved system, in order to prevent that the energy initially in the system S returns
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from R to S in any finite time.

First key-assumption

It is assumed that R has so many degrees of freedom that the effects of the interaction
with S dissipate away quickly and will not react back onto S to any significant extent,

so that R remains described by a thermal equilibrium distribution at constant
temperature, irrespective of the amount of energy diffusing into it from the system S.

Thus, we have that at any time t:

ρ(t)I −→ ρ(t)I = ρ(t)SI · ρ(0)R, (1.78)

with ρ(0)R given by:

ρ(0)R =
1

Z
e
− HRKBT . (1.79)

Therefore the observed system S interacts with an ”heat-bath” or energy ”reservoir”,
represented by the system R. The Eq. 1.77 becomes:

ρ̇(t)SI = − i

~
TrR[V (t)I , ρ(0)S · ρ(0)R] + (1.80)

− (
i

~
)2

∫ t

0

dt′TrR[V (t)I , [V (t′)I , ρ(t′)SI · ρ(0)R]].

The integral of Eq. 1.80 contains ρ(t′)SI : Thus the time-evolution of the system S de-
pends on its past history from t′ = 0 to t′ = t. However, in this time interval the motion
of the system S is damped by the coupling with the reservoir and damping destroys the
knowledge of the past behavior of the system.

Second key-assumption - Markoff approximation

It is assumed that ρ̇(t)SI only depends on ρ(t)SI , the value of the reduced density
matrix at present time. We therefore suppose that the system loses all memory of its

past.

In the Eq. 1.80 it is possible to substitute ρ(t′)SI with ρ(t)SI :

ρ̇(t)SI = − i

~
TrR[V (t)I , ρ(0)S · ρ(0)R] + (1.81)

− (
1

~
)2

∫ t

0

dt′TrR[V (t)I , [V (t′)I , ρ(t)SI · ρ(0)R]].

Let us assume that the interaction operator can be written in the form:

V (t)I =
∑
i

F (t)iQ(t)i, (1.82)

where the Fi are reservoir operators and theQi are operators acting only on the variables
of the dynamic system S. The integral form of the Liouville Equation for the reduced
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density matrix of S becomes:

ρ̇(t)SI = − i

~
∑
i

{Q(t)iρ(0)SITrR(F (t)iρ(0)R)+ (1.83)

− ρ(0)SQ(t)iTrR(F (t)iρ(0)R)}+

− (
1

~
)2
∑
ij

∫ t

0

dt′ {(Q(t)iQ(t′)jρ(t)SI +

− Q(t′)jρ(t)SIQ(t)i)TrR(F (t)iF (t)jρ(0)R) +

− (Q(t)iρ(t)SIQ(t′)j − ρ(t)SIQ(t′)jQ(t′)i)TrR(F (t′)jF (t)iρ(0)R)}

The expectation values of the operators F (t)i are given by:

〈F (t)i〉 = TrR(F (t)iρ(0)R) =
∑
N

〈N |F (t)i|N〉
∑
N

〈N |ρ(0)R|N〉, (1.84)

where |N〉 are eigenstates of HR which diagonalize ρR. If we assume that all the opera-
tors F (t)i have no diagonal elements in this representation, we have that:

〈F (t)i〉 = TrR(F (t)iρ(0)R) = 0, (1.85)

and the first term in Eq. 1.83 will vanish too.
Let us consider also the time correlation function:

〈F (t)iF (t′)j〉 = TrR(F (t)iF (t′)jρ(0)R), (1.86)

which characterize the correlation that exists on average between interactions occurring
at time t and t′. Since the reservoir R is assumed to be large enough to dissipate quickly
the effects of the interaction, it is expected that R will quickly forget its interaction with
the system S. The correlation function 〈F (t)iF (t′)j〉 will therefore be non-zero in a time
interval t − t′ < τ , where τ is typical of the reservoir and it is called correlation time. For
t− t′ > τ the interactions are progressively less correlated and become uncorrelated for
t− t′ � τ :

〈F (t)iF (t′)j〉 ≈ 0. (1.87)

Thus, the integral in Eq. 1.83 will be effectively non-zero in the time interval t − t′ < τ ,
that is between t′ = t− τ and t′ = t. The system is able to remember its past states only
for time intervals shorter than τ .

If the characteristic time τ � 1
γ , where 1

γ is the time required for ρ(t)SI to change
appreciably on a macroscopic scale, then ρ(t′)SI ≈ ρ(t)SI and the Markoff Approxima-
tion holds. The substitution of ρ(t′)SI with ρ(t)SI implies that the time-evolution of the
system it is not described in detail for time intervals comparable to τ : Using the Markoff
Approximation is like using a ”coarse grained” description of the evolution of S:

∆ρ(t)SI
∆t

=
ρ(t+ ∆t)− ρ(t)Si

∆t
, (1.88)

where ∆t� τ , but still sufficiently small that the change of ρ(t)SI is linear in ∆t.
All the previous consideration, summarized in Eq. 1.87, allow us to extend the upper

limit of the integral in Eq. 1.83 to infinity:

ρ̇(t)SI = − (
1

~
)2
∑
ij

∫ ∞
0

dt′′ {[Q(t)i, Q(t− t′′)jρ(t)SI ]〈F (t′′)iFj〉+ (1.89)

− [Q(t)i, ρ(t)SIQ(t− t′′)j ]〈FjF (t′′)i〉} .
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Secular Approximation

Let us introduce the notations:

Γ+
mkln =

1

~2

∑
ij

〈m|Qi|k〉〈l|Qj |n〉 × (1.90)

×
∫ ∞

0

dt′′e−iωlnt
′′
〈F (t′′)iFj〉,

Γ−mkln =
1

~2

∑
ij

〈m|Qj |k〉〈l|Qi|n〉 × (1.91)

×
∫ ∞

0

dt′′e−iωmkt
′′
〈FjF (t′′)i〉,

with
ωmn =

i

~
(Em − En)t. (1.92)

The matrix elements of the first derivative of the density operator ρ̇(t)SI on the eigen-
states |m〉 ofHS can be expressed as:

〈m′|ρ̇(t)SI |m〉 =
∑
nn′

< n′|ρ(t)SI |n〉 × (1.93)

×

{
−
∑
k

δmnΓ+
m′kkn′ + Γ+

nmn′m′Γ
−
mkln −

∑
k

δn′m′Γ
−
nkkm

}
×

× ei(ωm′n′+ωmn)t =

=
∑
nn′

< n′|ρ(t)SI |n〉Rm′mn′nei(ωm′n′+ωmn)t

The equations of motions of the reduced density matrix are called Generalized Master
Equation, and they describe the irreversible dynamics of the observed system S. Rm′mn′n
is called Relaxation matrix.

In the Eq. 1.93 all the exponentials vanish if

Em′ − Em − En′ + En = 0; (1.94)

and the Eq. 1.93 is often approximated as:

〈m′|ρ̇(t)SI |m〉 =
∑
nn′

〈n′|ρ(t)SI |n〉Rm′mn′n, (1.95)

where the summation runs only on the elements satisfying Eq. 1.94. This approximation
is called Secular Approximation and means that the ”coarse-grained” time derivative in
Eq. 1.88 is taken over time intervals ∆t which are long compared to a period of free
motion of the system:

∆t� 1

ωmn
. (1.96)

The Secular Approximation also allows us to decouple the time-evolution of the non-
diagonal terms of the density matrix from that of the diagonal ones.
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When all the indices m, m′, n, n′ satisfy this approximation, the matrix elements of
ρ̇(t)SI become:

〈m′|ρ̇(t)SI |m〉 = δm′m
∑
n 6=m

〈|n|ρ(t)SI |n〉 ·Wmn − γm′m〈m′|ρ(t)SI |m〉, (1.97)

where

Wmn = Γ+
nmmn + Γ−nmmn (real), (1.98)

γm′m =
∑
k

(Γ+
m′kkm′ + Γ−mkkm)− Γ+

nmm′n′ − Γ−nmm′n′ .

Within the Secular Approximation, the time-evolution of the non-diagonal elements
of the reduced density matrix is given by:

〈m′|ρ̇(t)SI |m〉 = −γm′m〈m′|ρ(t)SI |m〉, (1.99)

that in Schrödinger notation becomes:

〈m′|ρ̇(t)S |m〉 =
i

~
〈m′|[HS , ρ(t)s]|m〉+ (1.100)

+δm′m
∑
n 6=m

〈|n|ρ(t)S |n〉 ·Wmn − γm′m〈m′|ρ(t)S |m〉,

where the first term describes the motion of the unperturbed system.

Rate Master equation

Let us now consider the time-evolution of the diagonal terms of the reduced density
matrix, considering only the secular terms. It is worth noting that for the diagonal el-
ements of ρS the Schrödinger notation coincides with the interaction notation. Given
〈m′|ρ(t)S |m〉 = ρ(t)mm′ , we have that:

ρ̇(t)mm =
∑
n 6=m

ρ(t)nnWmn − ρ(t)mm
∑
k 6=m

(Γ+
mkkm + Γ−mkkm); (1.101)

substituting the index k with the index n in the second sum term, we obtain:

ρ̇(t)mm =
∑
n 6=m

ρ(t)nnWmn − ρ(t)mm
∑
n 6=m

Wnm. (1.102)

The Eq. 1.102 can be interpreted as follows: The diagonal element ρ(t)mm describe the
probability to find the system S in the state |m〉 at a time t. This probability increases in
time owing to transitions from all the other levels |n〉 to |m〉. It also decreases due to the
transitions from |m〉 to all the other states |n〉. Thus the rate of change of the diagonal
elements of ρ(t)S must contain two terms. The ”gain” term is obtained by multiplying
ρ(t)nn by the corresponding transition rate Wn→m summed over all the states |n〉. The
”loss” term is obtained by multiplying ρ(t)mm by the transition rate Wm→n and sum-
ming over all n. The parameters Wmn in Eq. 1.102 can therefore be interpreted as the
probability per unit time that a transition between the levels |m〉 and |n〉 of the system
S is induced by the interaction with the reservoir. The Eq. 1.102 is called Rate Master
equation.
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1.2.2 The Rate Matrix W

The main source of irreversible relaxation dynamics in MNMs is the interaction of the
electronic spins with the ”heat-bath” of phonons [60, 61]. The elements of the rate matrix
Wmn in Eq.1.102 will therefore represent the the probability per unit time that a transition
between the levels |m〉 and |n〉 of the Spin Hamiltonian is induced by the magneto-elastic
coupling with phonons [62, 61].

The main contribution to the spin-phonon coupling is due to the modulation of the
2nd-rank CF terms induced by phonons. Thus, the general form for the spin-phonon
coupling potential is given by:

V =
∑
1,N

∑
Q=−2,2

∑
k,σ

CQ(l,k, σ)OQ2 (sl)(ck,σ + c†k,σ), (1.103)

where CQ(l,k, σ) is the coupling constant between the Q-type electric quadrupole on
ion l and phonon modes of wave vector k and branch index σ. The calculation of all
the coupling constants cannot be performed exactly, since we don’t know the whole
phonons’ spectrum. We therefore adopt a Debye model to describe the lattice vibrations
and we assume that each magnetic ion in the molecular cluster experiences a spherically
symmetric magneto-elastic coupling, due to CF modulations induced by phonons.

The rate matrix in Eq. 1.102 can be then calculated in first-order perturbation theory
in terms of the coupling potential V in Eq. 1.103, leading to:

Wnm = γ2π2∆3
nmn(∆mn)

∑
i,j=1,n

q1,q2=x,y,z

〈m|Oq1,q2(si)|n〉〈n|Oq1,q2(sj)|m〉, (1.104)

where n(x) = (e−β~x − 1)−1, ∆mn = (Em−En)
~ and the quadrupolar operators are calcu-

lated as Oq1,q2(si) = 1
2 (sq1,isq2,i + sq1,isq2,i). The coefficient γ is the only free parameter

in Eq. 1.104 and it is proportional to the spin-phonon coupling strength. It will be esti-
mated from the comparison with NMR experimental data.

1.2.3 Correlation Functions

The dynamics of molecular observables near thermal equilibrium can be characterized
by the behavior of two-times correlation functions 〈∆A(t)∆B(0)〉, where ∆A = A − 〈A〉eq
and A is a generic observable. The same information on the dynamics of the system
can be obtained from their Fourier Transform SA,B(ω). In order to calculate these quan-
tities we have to know the time-evolution of the density matrix of the systems ρ(t)mn,
which can be determined with the Mater Equation formalism, described in the previous
sections. The Secular Approximation allows us to decoupled the time-evolution of the
non-diagonal terms of the density matrix from that of the diagonal ones (given by Eq.
1.102). Decoupling the evolution of these terms corresponds to separate the inelastic (IN)
contributions of the spectral composition of SA,B(ω) from the quasi-elastic (QE) ones.

The fluctuation-dissipation theorem can be exploited in order to calculate the Fourier
Transform of the correlation function SA,B(ω):

SA,B(ω) =
2KBTχ

′′
A,B(ω)

ω
= 2KBTR̃

,
A,B(iω), (1.105)

where χ′′A,B(ω) is the imaginary part of the susceptibility and R̃,A,B(iω) is the real part
of the Laplace Transform of the relaxation function RA,B(t) = limε→0

1
ε (A − 〈A〉eq). εB
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is a perturbation which has been ”switched-off” at t = 0 [50]. It is therefore possible
to obtain both the IN and QE part of RA,B(t) solving the Master Equations system in
first-order perturbation theory [59, 63]:

RQEA,B(t) = β
∑
m,n

peqm(Bmm − 〈B〉eq)νmn(t)(Ann − 〈A〉eq), (1.106)

RINA,B(t) =
∑
k 6=l

ei∆klte
− t
τkl

peql − p
eq
k

E
(0)
k − E

(0)
l

BlkAlk, (1.107)

where the summation runs over the eigenstate |m〉 of the observed system’s Hamil-

tonian, with eigenvalues E(0)
m , peqm = 1

Z e
−βEm , ∆lk =

E
(0)
l −E

(0)
k

~ and Blk = 〈l|B|k〉.
ν(t) = eWt is the propagator which gives the time evolution of the QE part of the density
matrix, where W is the rate matrix, while the IE propagator is given by

Γnm(t) = ei∆nmte−
t

τnm , (1.108)

with τnm = − 1
2 (Γnn + Γmm).

Taking the real part of the Laplace Transform of Eq. 1.106 we obtain:

R̃,QEA,B (iω) = β
∑
mn

peqm(Bmm − 〈B〉eq)× (1.109)

× Re

[(
1

iω −W

)
nm

]
(Ann − 〈A〉eq),

We can now express the Fourier Transform of the two-times correlation function as:

SA,B(ω) =
∑
mn

peqm(Bmm − 〈B〉eq)× (1.110)

× Re

[(
1

iω −W

)
nm

]
(Ann − 〈A〉eq),

which can also be written as:

SA,B(ω) =

dim(H)∑
i=1

A(λi, T, B)
λi

λ2
i + ω2

(1.111)

where λi = 1

τQEi
are the eigenvalues of −W. The Fourier Transform of the two-time cor-

realation function is therefore given by a sum of lorentzians centered at zero frequency
and with width λi(T,B), and decays as a sum of exponentials with characteristic times
τQEi . Here the A(λi, T, B) coefficients represent the weights of the possible lorentzians
[61]. Each τQEi refers to a particular spin-bath relaxation channel, given by the corre-
sponding eigenstate |wi〉 of W: The composition of |wi〉 in terms of the molecular eigen-
states gives the complete relaxation path. Further information on the spin-bath dissi-
pation channels is contained in the N level lifetimes τ lifei defined as τ lifei = [−Wii]

−1 =
[
∑
jWj←i]

−1: This is the inverse of the sum of all transition rates between the considered
i level and all other ones according to the selection rules imposed by spin-bath interac-
tion. The two sets of τQEi and τ lifei times contain complementary information on the QE
part of relaxation dynamics.



CHAPTER 2

Experimental Techniques

The coherent and time-reversible spin dynamics of MNMs described through Schrödinger
equations only occur on very short timescales (usually ns or µs). In this time window,
high frequency techniques such as inelastic neutron scattering probe the spin dynam-
ics. Conversely, on longer timescales, the interactions of spins with other degrees of

Figure 2.1: Typical time scales of spin dynamics in MNMs. On the right side we report the main
experimental techniques able to probe the spin dynamics in the respective time window.

freedom leads to an irreversible dynamics, described by master equations, and con-
sequently to decoherence and relaxation phenomena. Relaxation dynamics in MNMs
are probed by low-frequency techniques such as NMR or AC susceptibility, or, at even

23
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longer timescales, from macroscopic measurements (see Fig. 2.1). In this Chapter we re-
port a brief description of some of the main experimental techniques that can be applied
to investigate both statical and dynamical properties of MNMs.

2.1 Inelastic Neutron Scattering

Inelastic Neutron Scattering (INS) is an experimental technique largely used to study
spin dynamics of MNMs. It has many advantages respect to other spectroscopy tech-
niques, since the energy spectrum of molecular clusters can be obtained from the tran-
sitions induced by interactions with neutrons, without the application of any external
magnetic field. It also allows us to observe transition between different total-spin multi-
plets and the Q-dependence of the cross-section (where Q is the momentum transferred
to the neutron during the scattering event) gives also information on the eigenfunctions
of the system. From the analysis of INS experimental data is possible to extract all the
parameters of the Spin Hamiltonians of MNMs (e.g. isotropic exchange and CF pa-
rameters). Furthermore, from high resolution INS experiments it is possible to extract
the energy splitting induced by anisotropy effects. They have also proved to be sen-
sitive enough to allow the determination of parameters related to spin operators with
rank k > 2 [64]. Recently developed INS instruments also yields the four-dimensional
inelastic-neutron scattering function in vast portions of reciprocal space and enables the
spin dynamics to be determined directly. Indeed, measurements of the scattering func-
tion over a large solid angle of wave vectors in high-quality single crystals of MNMs
permit to directly determine real-space dynamical two-spin correlations, which are the
key quantities characterizing the magnetic dynamics [65].

2.1.1 Scattering by Magnetic Interactions

The magnetic scattering involves the interaction of the magnetic moment of a neutron
with the magnetic field generated by the unpaired electrons of an atom. The relationship
between the angular momentum of a particle and its magnetic moment is given by:

µ̂e = −γµBσ̂, (2.1)
µ̂n = −γµnmσ̂,

where µB and µnm are respectively the electronic and nuclear Bohr magnetons, σ are
Pauli operators and γ are the gyromagnetic factors (γ = −2 for electrons and γ = −1.91
for neutrons). The unpaired electrons of an atom have both orbital and spin angular
momenta. In the INS magnetic theory for MNMs we will only consider the spin angu-
lar momentum and spin-only magnetic scattering events. In fact magnetic ions in our
investigated systems very often show a partial quenching of the orbital angular momen-
tum, caused by crystal fields. Furthermore we often consider atoms where the unpaired
electrons have wave functions localized around the atomic sites.

In the simple case of a single neutron with magnetic moment µn in presence of a
magnetic field H, generated by the unpaired electrons of an atom, the Hamiltonian can
be expressed as:

H =
p̂2

2mn
− µ̂n ·H. (2.2)

The first term represents the kinetic energy of the neutron, while the second term, which
represents the magnetic interaction, can be written as −γµnmσ̂ · H. The magnetic field
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generated by an electron moving with ve is given by:

H = 5×
(
µ̂e ×R

|R|3

)
+
−e
c

ve ×R

|R|3
, (2.3)

where R is the distance between the electron and the point where we measure the field.
Thus, the magnetic interaction becomes:

−γµnmσ̂ ·H = γµnm2µBσ̂ · 5 ×
(
σ̂e ×R

|R|3

)
− e

2mec

(
p̂e ·

σ̂ ×R

|R|3
+
σ̂ ×R

|R|3
· p̂e
)
, (2.4)

where the first part is a dipolar term, while the second one represents the interaction
with the neutron, due to the translational motion of the electron; σ̂e and p̂e represent
respectively the spin and momentum operators of the electron.

If we therefore take into account an INS experiment where the magnetic ions of the
system interact magnetically with the neutron beam, the differential cross-section will
be expressed as:

d2σ

dΩdE′
=
( m

2π~2

)2

(2γµnmµB)2
∑
λλ′σσ′

k′

k
pλpσ | 〈k′λ′σ′|

∑
i

σ̂ · 5 ×
(
σi ×R

|R|3

)
− (2.5)

− 1

2~

(
p̂i ·

σ̂ ×R

|R|3
+
σ̂ ×R

|R|3
· p̂i
)
|kλσ〉 |2 δ(~ω + Eλ − Eλ′).

k and k′ represent respectively the initial and final wave vectors of the neutron, |λ〉 and
|λ′〉 are the initial and final state of the system with energies Eλ e Eλ′ and occupation
probability of the initial state given by pλ = e−βEλ

Z . |σ〉 and |σ′〉 are the initial and final
polarization states of the neutron with initial occupation probability given by pσ , while
the Dirac Delta guarantees the energy conservation, being ~ω the energy gained/lost by
the neutron in the interaction with the system. The summation over i in the interaction
potential runs over all the lattice sites and over all the unpaired electrons of the system.

The matrix elements of the magnetic interaction potential become [66]:

〈k′|σ̂ · 5 × (σi×R|R|3 )|k〉 = 4πeiQ·riσ · [Q̃× (σi × Q̃)], (2.6)

〈k′|p̂i · σ̂×R|R|3 |k〉 =
4π

|Q|
eiQ·ri σ̂ · (Q̃× p̂i),

where ri is the position vector of the ith electron, Q = k − k′ and Q̃ = Q
|Q| . If we define

the operator:

Q̂⊥ =
∑
i

eiQ·ri [Q̃× (σi × Q̃)− i

~|Q|
Q̃× p̂i], (2.7)

which shows how neutrons are sensitive only to the perpendicular component of the
exchanged wave vector, the cross-section can be written as:

d2σ

dΩdE′
=
( m

2π~2

)2

(2γµnmµB)2(4π)2
∑
λλ′σσ′

k′

k
pλpσ × (2.8)

×〈λσ|(σ̂ · Q̂⊥)+|λ′σ′〉〈λ′σ′|Q̂⊥ · σ̂|λσ〉δ(~ω + Eλ − Eλ′).

Since for non-polarized neutron σ = σ′ and∑
σ

pσ〈|σ̂ασ̂β |σ〉 = δα,β , (2.9)
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the differential cross-section becomes:

d2σ

dΩdE′
=

(
γe2

mec2

)2
k′

k

∑
λλ′

pλ〈λ|Q̂+
⊥|λ
′〉〈λ′|Q̂⊥|λ〉δ(~ω + Eλ − Eλ′). (2.10)

Exploiting the identities:

Q̂⊥ = Q̃× (Q̂× Q̃), (2.11)

Q̂+
⊥Q̂⊥ =

∑
αβ

(δα,β − Q̃αQ̃β)Q̂+
α Q̂β ,

where α and β run over x, y, z, we finally obtain:

d2σ

dΩdE′
=

(
γe2

mec2

)2
k′

k

∑
αβ

(δα,β − Q̃αQ̃β)
∑
λλ′

pλ〈λ|Q̂+
α |λ′〉〈λ′|Q̂β |λ〉 × (2.12)

× δ(~ω + Eλ − Eλ′).

As we have previously pointed out, several systems contain magnetic ions subjected
to a quenching of the orbital angular momentum caused by the crystal fields, thus we
only take into account spin-only scattering events. The operator Q̂ is therefore given by:

Q̂ =
∑
d

eiQ·Rd

∑
ν(d)

eiQ·rν σ̂ν , (2.13)

where the sum over d runs over all the atomic sites with position vector Rd and the sum
over ν runs over the unpaired electrons within each magnetic ion, with position vector
rν . Due to the interactions between the unpaired electrons of the magnetic ions, we can
define a total-spin Sd characterizing the state of the molecule. The matrix elements of
the operator Q̂ are found to be proportional to the total-spin operator Sd:

〈λ′|Q̂|λ〉 =
∑
d

eiQ·RdFd(Q)〈λ′|Ŝd|λ〉, (2.14)

where Fd(Q) is the form factor, defined as the Fourier Transform of the spin density ρs(r)
associated to the ion on the dth site of the system:

Fd(Q) =

∫
eiQ·rρs(r)dr. (2.15)

Therefore we find that the differential cross-section for the spin-only magnetic scattering
has the following expression:

d2σ

dΩdE′
=

(
γe2

mec2

)2
k′

k

∑
αβ

(δα,β − Q̃αQ̃β)× (2.16)

×
∑
λλ′

pλ
∑
dd′

F ∗d (Q)Fd′(Q)eiQ·(Rd′−Rd) ×

× 〈λ|Ŝαd |λ′〉〈λ′|Ŝ
β
d′ |λ〉δ(~ω + Eλ − Eλ′).
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2.1.2 Cross-section for Powders Samples

INS experiments are often performed on powders samples of MNMs. In order to com-
pare the experimental data with our theoretical calculations it is therefore necessary to
find a theoretical expression of the differential cross-section averaged over all the possi-
ble orientations of the vector Q in respect to the reference system of the molecule. The
formula obtained starting from Eq. 2.16 is [67]:

d2σ

dΩdE′
=

A

Nm

k′

k
e−2W

∑
nn′

e−βEn

Z
Inn′(Q)δ(~ω − En′ + En), (2.17)

where A is a constant, Nm the number of magnetic ions and e−2W the Debye-Waller
factor. The Inn′(Q) function is defined as:

Inn′(Q) =
∑
ij

F ∗i (Q)Fj(Q){2

3
[j0(QRij) + C2

0j2(QRij)]s̃zi s̃zj + (2.18)

+
2

3
[j0(QRij)−

1

2
C2

0j2(QRij)](s̃xi s̃xj + s̃yi s̃yj ) +

+
1

2
j2(QRij)[C

2
2 (s̃xi s̃xj − s̃yi s̃yj ) + C2

−2(s̃xi s̃yj + s̃yi s̃xj )] +

+ j2(QRij)[C
2
1 (s̃zi s̃xj − s̃xi s̃zj ) + C2

−1(s̃zi s̃yj + s̃yi s̃zj )]}.

In Inn′(Q), Rij gives the relative position of the magnetic ions i and j, while j0 and
j2 are the spherical Bessel functions of 0th and 2nd-order respectively:

j0 =
sin(QRij)

QRij
,

j2 =

(
3

QRij
− 1

)
sin(QRij)

QRij
− 3cos(QRij)

QRij
. (2.19)

The Ckq are given by:

C2
0 =

1

2

[
3(
Rijz
Rij

)2 − 1

]
,

C2
2 =

R2
ijx −R2

ijy

R2
ij

,

C2
−2 = 2

RijxRijy
R2ij

,

C2
1 =

RijxRijz
R2ij

,

C2
−1 =

RijyRijz
R2ij

. (2.20)

In the Eq. 2.18 there are also the matrix elements of spin operators, written on the
basis set |n〉 of the total Spin Hamiltonian of the system:

s̃αi s̃γj = 〈n|sαi |n′〉〈n′|sγj |n〉 α, γ = (x, y, z). (2.21)

The spin operators in Eq. 2.18 are 1st-rank operators: This implies that the selection rules
for the allowed magnetic transitions are: ∆S = 0,±1 and ∆M = 0,±1.
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Eq. 2.18 represents a general form of the formula reported in [67] and it can be used
whatever are the symmetry and the anisotropy of the investigated molecule [68]. If
the molecule has an axial symmetry, we can only consider the terms where there are
products as s̃αi s̃γj with α = γ [67].

Instrumental resolution and Other Contributions

The implementation of Eq. 2.18 allows us to estimate the Spin Hamiltonian parameters
and to find out the eigenstates involved in the detected magnetic transitions, by compar-
ing the data with our theoretical calculations. However we have to take into account the
resolution of the instrument, which very often has a gaussian form. We find that:

δ(~ω − En′ + En)⊗Rgauss = Rgauss(~ω) =
1

σ
√

2π
e
−(~ω−E

n′+En)2

2σ2 , (2.22)

where Rgauss is the instrumental resolution. The implemented expression for the cross-
section is therefore given by:

d2σ

dΩdE′
=

A

Nm

k′

k
e−2W

∑
nn′

e−βEn

Z
Inn′(Q)

1

σ
√

2π
e
−(~ω−E

n′+En)2

2σ2 . (2.23)

To each magnetic peak is associated a gaussian function, whose width at half maximum
equal to the instrumental resolution. σ is found by fitting the elastic peak with a gaussian
function, to each of the considered wave-length:

fgauss(x) =
A0

σλ
√

2π
e
−(x−x0)2

2σ2
λ + offset. (2.24)

Together with the inelastic peaks, INS data also contain an elastic and a quasi-elastic
contributions. The elastic contribution is due to neutron diffraction, i.e. incident neu-
trons do not transfer/gain momentum Q to/from the sample (k = k′). Quasi-elastic
neutron scattering is instead characterized by energy transfers being small compared to
the incident energy of the scattered neutrons. In order to reproduce the experimental
curves, it is therefore necessary to add to the inelastic cross-section a gaussian and a
lorentzian function respectively for the elastic and quasi-elastic scattering:

ffitt(~ω) =
d2σ

dΩdE′
+

A0

σλ
√

2π
e
−(x−x0)2

2σ2
λ +

P0

1 + (~ω−P1

P2
)2
.

The parameters of the gaussian and lorentzian functions are different for each considered
wave-length and temperatures.

2.1.3 IRIS Neutron Scattering Spectrometer @ ISIS

INS experiments have been performed at the ISIS pulsed Neutron and Muon Source
of the Rutherford Appleton Laboratory (Didcot, UK) with the IRIS spectrometer. IRIS
is a high-resolution quasi/in-elastic neutron spectrometer with high-resolution, long-
wavelength diffraction capabilities [69]. It is an inverted or indirect geometry spectrom-
eter, such that neutrons scattered by the sample are energy-analysed by means of Bragg
scattering from a crystal-analyzer array. Since the neutron source is a pulsed one, the
time-of-flight technique is used for data analysis. IRIS can be considered as consisting of
two parts: The primary and the secondary spectrometer.
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The Primary Spectrometer - Beam Transport

The primary spectrometer is illustrated in Fig. 2.2. The neutron beam transport from
the moderator to the sample position, is achieved using a neutron guide. The majority
of the guide section consists of accurately aligned nickel plated glass tubes (approx. 1m
long), while it is terminated by a 2.5m-long converging nickel-titanium supermirror. The
supermirror component not only helps focus the beam at the sample position, but also
serves to increase the incident flux.

Figure 2.2: The IRIS primary spectrometer [69].

After leaving the moderator and depending upon the incident energy, each neutron
either passes or is absorbed by one of the two disc-choppers. The two choppers are used
to define the range of neutron wavelengths incident upon the sample during the exper-
iment. They are located at 6.3 m and 10 m from the moderator respectively and operate
at either 50, 25, 16.6 or 10Hz. The choppers themselves are constructed from neutron
absorbing material, with a small adjustable aperture, through which neutrons may pass.
The lower and the upper limits of the incident wavelength band are therefore defined
by adjusting the chopper phases, and hence opening times of each aperture, respect to
t0 (the moment at which neutrons are produced by the target). Wavelength-bands selec-
tion effectively defines the energy resolution and energy-transfer range covered during
an inelastic scattering experiment.

The Secondary Spectrometer

The secondary spectrometer (Fig. 2.3) consists of a 2 m diameter vacuum vessel con-
taining two crystal analysers arrays (pyrolytic graphite, muscovite mica or fluorinated
mica), two 51-elementZnS scintillator detector banks and a diffraction bank at 2θ = 170◦

containing ten 3He gas tubes. Incident and transmitted beam monitors are also located
before and after the sample position respectively. The pyrolytic graphite analyzer bank
is cooled to ∼ 10 K to reduce background contributions from thermal diffuse scattering.
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Figure 2.3: The IRIS secondary spectrometer [69].

Principle of Operation

During INS experiments, the scattered neutrons are energy-analysed by means of Bragg-
scattering from a large array of single crystals. Only those neutrons with appropriate
wavelength/energy to satisfy the Bragg condition are direct towards the detector bank.
By recording the time of arrival of each analysed neutron in a detector relative to t0, we
can investigate the energy gain/loss processes occurring within the samples.

Figure 2.4: An indirect-geometry inelastic neutron scattering spectrometer [69].

The two disc-choppers are used to define the finite range of neutron energies incident



Experimental Techniques 31

upon the sample (S):

E =
1

2
mnv

2 (2.25)

p = mnv =
h

λ
,

wheremn is the mass of the neutron. Consequently, the time-of-flight, t1, of each neutron
along the primary flight path L1, is variable. However, since only those neutrons with a
final energy E2, that satisfy the Bragg condition

λ = 2dsin(θ), (2.26)

are scattered toward the detector bank D, Eqs. 2.25 and 2.26 can be re-written as:

E2 =
1

2
mn

(
L2

t2

)2

=
1

2
mnv

2 = (2.27)

=
l

2mn

(
h

λa

)
=

l

2mn

(
h

2dasin(θ)

)
,

where da is the d-spacing of the analyzing crystal.
The distance from he sample position to the detector bank (i.e. the secondary flight

path L2) is accurately known. Consequently, the time t2, which is the time it takes for a
detected neutron of energy E2 to travel a distance L2, can be calculated using:

t2 =
2mnL2dasin(θ)

h
(2.28)

Interactions within the sample lead to a loss/gain in neutron energy, thus a distribu-
tion of arrival times will result. By measuring the total time-of-flight t = t1 + t2, having
an accurate knowledge of t2, L1 and L2, the energy exchange within the sample can be
determined:

∆E = E1 − E2 =
1

2
mn

[(
L1

(t− t2)

)2

+

(
L2

t2

)2
]
. (2.29)

2.2 Nuclear Magnetic Resonance

Magnetic resonance is a phenomenon found in magnetic systems that possess both mag-
netic moments and angular momentum. As we will see, the term resonance implies that
we are in tune with a natural frequency of the magnetic system, in this case correspond-
ing to the frequency of gyroscopic precession of the magnetic moment in an external
static magnetic field. Because of the analogy between the characteristic frequencies of
atomic spectra, and because the magnetic resonance frequencies fall typically in the ra-
dio frequency region (for nuclear spins) or microwave frequency (for electron spins), we
often use the terms radio frequency for the nuclear magnetic resonance (NMR) or microwave
spectroscopy for the electronic paramagnetic resonance (EPR).

Nuclear moments are much smaller than electronic moments, being µB
µN
≈ 103, where

µB and µN are the Bohr and nuclear magnetons respectively. In fact, if the two-level sys-
tem given by a single proton with I = 1

2 is taken into account, the two states mI = + 1
2

and mI = − 1
2 are separated by an energy ∆E = γNµNB, with γN the proton gyromag-

netic ratio, which is tiny. For a proton in a typical laboratory magnetic field B0 ≈ 1 T the
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splitting between mI = + 1
2 and mI = − 1

2 would be ≈ 10−7 eV, which is equivalent to a
temperature ≈ 1 mK. Therefore at room temperature and at magnetic fields of the order
of 1 T, the nuclei will show only a minute tendency to line up with the applied magnetic
field on average, in account of the thermal randomizing energy, much greater than the
alignment energy. As a result, any effect due to the magnetism of the nuclei requires a
resonance technique such as NMR to be detected.

Spin dynamics in MNMs can be probed by NMR. In fact, as we will see in the fol-
lowing sections, there exists a link between the electronic spins fluctuations due to their
interactions with phonons and the measured longitudinal spin-lattice relaxation rate 1

T1

of 1H nuclei [70, 71]. Furthermore, due to their hyperfine interactions with all the inter-
nal fields generated by the unpaired electrons in the molecule, other nuclei with I 6= 0,
such us 53Cr and 19F, can be considered a powerful local probe of magnetic properties in
MNMs.

In the following we report a brief introduction to magnetic resonance in order to
better understand both NMR and EPR phenomena, considering a simple quantum me-
chanical description [72].

2.2.1 Simple Resonance Theory

A nucleus may consist of many particles coupled together so that in any given state the
nucleus posses a total magnetic moment µ and a total angular momentum I, such as:

µ = γI, (2.30)

where γ is the nuclear the gyromagnetic ratio. Within the quantum mechanic frame-
work, µ and I are treated as (vectors) operators. Thus we can define the angular mo-
mentum operator as:

Î = ~I. (2.31)

Î2 then has eigenvalues I(I + 1), where I can be integer or half-integer. The components
Iz commutes with Î2 and its eigenvalues m may be any of the 2I + 1 values −I, ...,+I .
The relation between the magnetic moment and the nuclear angular momentum can
thus be expressed as:

〈Im|µx′ |Im′〉 = γ~〈Im|Ix′ |Im′〉, (2.32)

where µx′ and Ix′ are the components of µ and I along the arbitrary x′ direction.
The application of an external magnetic field H = H0ẑ produces an interaction en-

ergy of the nucleus given by the Zeeman Hamiltonian:

H = −µ ·H = −γ~H0Iz, (2.33)

with eigenvalues
E = −γ~H0m. (2.34)

To detect the presence of such a set of energy levels we have to exploit spectral absorp-
tion. What is needed is to have an interaction that can cause transitions between levels.
To satisfy the conservation of energy, the interaction must be time dependent and of such
an angular frequency

~ω = ∆E, (2.35)

where ∆E is the energy difference between the initial and final nuclear Zeeman ener-
gies. In order to induce the magnetic resonance, an alternating magnetic field is applied
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perpendicular to the static field, which therefore adds a perturbative term to the Hamil-
tonian:

H1 = −γ~H0
xIxcos(ωt). (2.36)

The operator Ix, being a 1st-rank tensor (vector) operator, permits transitions only be-
tween levels adjacent in energy (m→ m± 1), holding ~ω = ∆E = γ~H0 or ω = γH0.

Let us suppose now to have a macroscopic system of I = 1
2 nuclei. Since there are

many nuclei in the system, we specify the number of nuclei in the two possiblemI = + 1
2

(|+〉) and mI = − 1
2 (|−〉) states with N+ and N− respectively. The probability per unit

time of a transition between |+〉 and |−〉 induced byH1 is given by:

|〈+|Ix|−〉|2 = |〈−|Ix|+〉|2 (2.37)

and is independent of whether the transition is from the lower to the upper level or vice
versa, and occurs at a rate W which is proportional to the size of the RF power used in
H1 to excite transitions. If N−(t) is the number of spins in the lower level at a time t,
WN−(t) will be the number of spins excited per unit time to the higher level. A similar
consideration can be done for the spins in the higher level, thus having

dN+

dt
= WN−(t)−WN+(t) (2.38)

dN−
dt

= WN+(t)−WN−(t).

By defining n(t) = N+(t)−N−(t), the solution of the two equations above can be written
as:

n(t) = n(0)e−2Wt, (2.39)

which means that an initial difference in population tends exponentially towards zero in
account of a stimulated electromagnetic transition. At a time t the energy of the system
is:

E(t) = N−E− +N+(E− + ~ω) (2.40)

with rate of absorption given by

dE

dt
= WN+(t)~ω −WN−(t)~ω = ~ωWn(t) (2.41)

and will tend to zero with a time constant of 1
2W , as the populations of the upper and

lower levels become progressively equalized. This implies that it is necessary to have a
population difference for the system to absorb energy.

Nuclear spins also interact with the thermal motion and excitations of the sample.
Thus, once the perturbation H1 is switched-off and the absorption of energy is over, the
polarization of the spin system will return back to the equilibrium value following a
Boltzmann distribution: (

N−
N+

)
0

= e
−∆E
KT = e

−γ~H0
KT . (2.42)

As a result, the polarization would tend to the Boltzmann distribution as

n(t) = n0(1− e
−t
T1 ), (2.43)

where T1 is called spin-lattice relaxation time and measures the time constant of the inter-
action of the nuclei with the environment [72, 73].
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We may now combine the two rate equations for n(t) to find the transition rate due
to both thermal processes and transitions induced by the alternating field:

dn

dt
= −2Wn(t) +

n0 − n(t)

T1
, (2.44)

which has a stationary solution when dn(t)/dt = 0, leading to:

n(t) =
n0

1 + 2WT1
(2.45)

and
dE

dt
= n(t)~ωW = n0~ω

W

1 + 2WT1
. (2.46)

From the above equation it follows that the rate of absorption is proportional to W , but
for large perturbing alternating field becomes proportional to 1

T1
and independent of the

precise value of W : This is known as saturation.
In a typical NMR experiment, the weak polarization of nuclear spins produced by an

applied magnetic field H0-e.g. along z-axis- is destroyed by the RF excitations induced
by the alternating field inH1. Once the RF field is switched-off, the weak interactions of
the nuclei with the surroundings will force the nuclear magnetization to the equilibrium
value with a time constant T1. As a consequence, we expect that:

dMz

dt
=
M0 −Mz

T1
, (2.47)

with Mz = γ~n(t)/2 and M0 is the thermal equilibrium magnetization. The magneti-
zation M is also driven by torque due to the magnetic field H0 to precess around its
direction, thus having:

dMz

dt
=
M0 −Mz

T1
+ γ(M×H0)z. (2.48)

Furthermore we wish to express the fact that in thermal equilibrium under a static field,
the magnetization will wish to be parallel H0. That is, the x- and y-components must
have a tendency to vanish. Thus

dMx

dt
= γ(M×H0)x −

Mx

T2
(2.49)

dMy

dt
= γ(M×H0)y −

My

T2
,

where T2 is the spin-spin relaxation time and causes differences in precession frequency
due to interactions of the observed spin with the spins of its neighbors. It can also be due
to inhomogeneities of the applied magnetic field H0. Eqs. 2.48 and 2.49 are known as
the Bloch Equations. A microscopic explanation of Bloch Equations will be given in Par.
2.2.3.

2.2.2 Nuclear Hamiltonian and Hyperfine Interactions

The generalized Hamiltonian for a system of nuclear magnetic moments in presence of
an applied magnetic field is given by:

Hnuclear = HZee +Hn−n +Hn−e +HEFG, (2.50)
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where the first term is the Zeeman coupling between the nuclei and the applied mag-
netic field. The other three terms represents the so-called sources of internal fields, which
can cause a sizeable spread and/or shift of the resonance conditions. The second term
describes the classical nucleus-nucleus dipolar interaction, given by:

Hn−n =
1

2

∑
j

∑
k

[
µj · µk
r3
jk

− 3 (µj · rjk) (µk · rjk)

r5
jk

]
, (2.51)

where the nuclear moments are µj = γN~I and rjk is the distance between nuclei j and
k. The local dipolar field at each nuclear site due to all the other surrounding nuclei
may either add or be opposite to the applied magnetic field, resulting in a spread of the
resonance condition over a range of ∼ 1 ÷ 10 Gauss. The evaluation of the line shape
and width in presence of nuclear dipolar interaction is based on the theory of the second
and higher moments by Van Vleck [73].

The last two terms account respectively for the hyperfine interactions, the coupling
between the nuclear and electronic magnetic moments, and the interactions between the
nuclear quadrupolar moment (which is non-zero only if I > 1/2) and the electric field
gradient due to non-spherical charge distribution surrounding the nucleus.

Hyperfine interactions

When the electrons belong to atoms far away form the nuclear site, their contribution
to the hyperfine field can be calculated through the classical expression of the magnetic
dipolar contribution, evaluated within the point-dipole approximations:

Hdip
n−e = −µ0

4π

(
µe · µn
r3

− 3 (µe · r) (µn · r)

r5

)
, (2.52)

where r is the distance between the moments. Since the two dipole moments are differ-
ent, this interaction can be described as a local magnetic field generated at the nuclear
site by the thermal average of the electronic moment 〈µe〉 [73]:

Hloc = 〈µe〉
1− 3 cos2 θ

r3
, (2.53)

where θ is the angle between the vector r and the quantization axis along the applied
magnetic field.

When the nuclear and the electronic magnetic moments belong to the same atom or
to different atom whose electronic wavefunctions have a non-zero overlap, the point-
dipole approximation doesn’t hold anymore and the hyperfine interaction term must
therefore be averaged over the electronic wavefunction. We have a direct hyperfine in-
teraction if the magnetic moments belong to the same atoms and a transferred hyperfine
interaction if they belong to different atoms. Let us consider the Hamiltonian in Eq. 2.50
for a single nucleus, neglecting the nucleus-nucleus interaction Hn,n, the classical dipo-
lar contribution ofHe−n andHEFG:

Hnuclear = −γN~
∑

i=x,y,z

IiH0,i +

N∑
j=1

I ·Aj · 〈sj〉. (2.54)

The first term is the Zeeman interaction with the external magnetic field, while the sec-
ond term describes the hyperfine field due to the nearby electronic magnetic moments
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(labeled by the index j = 1, ..., N ). The quantity Aj is called hyperfine ctensor and it
represents the strength of the coupling between the nuclear spin and the jth electronic
moment. The term 〈sj〉 is the thermal average of the electronic spin of the jth electron.
The coupling constant for the direct hyperfine interaction between a nucleus and an
electron described by the wavefunction ψ is given by:

Aψ =
2

5
gµBγN~〈

1

r3
〉ψ, (2.55)

where 〈 1
r3 〉ψ is the expectation value of the operator 1

r3 over the electronic state ψ. Eq.
2.55 is characteristic of p-type wavefunctions and doesn’t hold for s-type ones. This
problem has been overcome by E. Fermi [74] by a renormalization procedure, leading to
the direct contact hyperfine constant:

As =
8

3
πgµBγn~ |ψ(0)|2s (2.56)

where |ψ(0)|2s is the normalized probability of finding an s electron at the nuclear site.
The transferred hyperfine interaction occurs when the atom to which the nucleus

belongs binds to a magnetic atom. The overlap between the electronic wavefunctions
involved in the bond partially polarizes the formerly S = 0 electronic shells yielding a
non-zero hyperfine field at the nucleus. The ith component of the transferred hyperfine
constant can be written as:

Ai = At +Aσ
(
3 cos2 θi,σ − 1

)
+Aπ

(
3 cos2 θi,π − 1

)
, (2.57)

where i = x, y, z. The constant At accounts for the isotropic contribution due to the s-
electrons polarization. The anisotropic terms Aσ

(
3 cos2 θi,σ − 1

)
and Aπ

(
3 cos2 θi,π − 1

)
describe the contribution due to pσ and pπ bonds. The angles θi,σ and θi,π are the an-
gles between the directional p bonds and i the axis. The anisotropic contribution to the
transferred hyperfine field is often much smaller than the isotropic term and it can be
therefore often neglected.

For a general review of the hyperfine interactions in magnetic materials we refer the
reader to the seminal paper by Freeman and Watson, Ref. [75].

2.2.3 Redfield Theory

Thermal fluctuations of the electronic spins are responsible for fluctuations in the hyper-
fine dipolar field and thus for the nuclear spin-lattice relaxation. The spin lattice relax-
ation rate 1/T1 is therefore a powerful probe of the electronic relaxation times τQEi in
MNMs. By the same density matrix formalism applied in Section 1.2 to the spin-phonon
coupling, it is possible to describe the behavior of nuclei interacting with electronic spins,
in the presence of an external magnetic field, i.e. NMR experiments. We follow the the-
ory of relaxation processes of Redfield [71], which is closely related to the treatment of
relaxation due to Wangsness and Bloch [76], to describe an ensemble of non-interacting
nuclei in an external static magnetic field, coupled to the perturbative fluctuating field
produced by electronic spins. This fluctuating field is different at each nuclear site, thus
for each nucleus we have:

Hnuclear = H0 +H1(t) == −γN~H0Iz − γN~Hhyp(t) · I,
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where H0 is the static magnetic field along the z-axis, the Larmor frequency is given by
ωL = γNH0 and Hhyp(t) is the fluctuating hyperfine field:

Hhyp(t) = −~γe
N∑
i=1

1

r3
i

[
δsi(t)− 3ri

(
δsi(t) · ri

r2
i

)]
. (2.58)

The index i labels the N magnetic ions, si represents their spin operators, ri their dis-
tances from the proton and δsi(t) = si(t) − 〈si〉. In Redfield’s theory of relaxation pro-
cesses [71] it is assumed that the ensemble average of the Hamiltonian H1(t) vanishes,
i.e. H1(t) doesn’t produce an average frequency shift. If this is not so, it’s possible to
redefine H0 in order to include the very-small average shift 〈H1〉. For this reason the
Hamiltonian H1(t) responsible for the nuclear relaxation in Eq. 2.58 contains fluctua-
tions δs(t) and not s(t).

To interpret NMR data, we have to describe the time evolution of the expectation
values 〈Ir〉 of the x, y and z components of the nuclear spins:

d〈Ir〉
dt

=
∑
α,α′

1

~
[ρ,H0]αα′ (α

′|Ir|α) +
∑

α,α′,β,β′

Rαα′,ββ′ρββ′ (α
′|Ir|α) , (2.59)

where the first term is the driving term of Bloch equations describing the torque due
to the external field, while the second one describes the relaxation dynamics through
the relaxation matrix Rαα′,ββ′ . By exploiting the secular and Markov approximations,
the Redfield theory yields exponential time-decays of the longitudinal and transverse
nuclear magnetization with characteristic rates given respectively by [72]:

1

T1
= γ2

N [kxx(ωL) + kyy(ωL)] , (2.60)

1

T2
=

1

2T1
+ γ2

Nkzz(0), (2.61)

where kqq(ω) is the Fourier transform of the correlation function of Eq. 2.58 (q = x, y, z)
given by

kqq(ω) =
1

2

∫ +∞

−∞
Hhyp,q(t)Hhyp,q(t+ τ)e−iωtdτ, (2.62)

which can be calculated in terms of the Fourier transform of the cross correlation func-
tions in Eq. 1.111). These formulas hold if T1, T2 � 2π/ωL (secular regime) and T1, T2

are longer than the electronic relaxation times (Markov regime). In addition, fluctuations
of the three components of Hhyp are assumed independent. The last assumption is not
correct when the hyperfine field has a dipolar origin as in the present case. We have
calculated the generalized coupled differential equations for the decay of the nuclear
magnetization. We have numerically checked that in the experimental conditions of this
work it is still possible to decouple the equations as in Redfield’s theory and calculate the
relaxation rates as in Eqs. 2.60 and 2.61. Taking as inputs the positions of the magnetic
ions and nuclei in the molecule, we can calculate the 1/T1 and 1/T2 of a MNM as:

1

T1
=

∑
i,j=1,N
p,p′=x,y,z

Cp,p
′

i,j

[
S
spi ,s

p′
j

(ωL) + S
spi ,s

p′
j

(−ωL)
]
, (2.63)
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1

T2
=

1

2T1
+

∑
i,j=1,N
p,p′=x,y,z

Kp,p′

i,j

[
S
spi ,s

p′
j

(0)
]
, (2.64)

where the Cp,p
′

i,j and Kp,p′

i,j are geometric coefficients of the hyperfine dipolar interaction
between magnetic ions and nuclei [70].

2.3 Electron Paramagnetic Resonance

Electron paramagnetic resonance (EPR) is a powerful spectroscopic technique to study
systems containing atoms or molecules with unpaired electrons (such as transitions ions,
lanthanides and radicals) [3]. It is very similar to the NMR technique, since both deal
with the interaction between electromagnetic radiation and magnetic moments, but in
the case of EPR, the magnetic moments arise from electrons rather than nuclei. EPR spec-
troscopy induces transitions between |SM〉 states of the Spin Hamiltonian of a MNM,
which have been split by an external magnetic field. It provides information on the
chemical environment of the paramagnetic center(s) in the molecule, which are asso-
ciated to the spectroscopic splitting tensor g, the zero-field splitting tensor D and its
related local parameters di and ei, described in Chapter 1. An important information
which can be obtained from the EPR spectra is the anisotropy of these tensors. It can be
obtained directly not only from experiments performed on single crystals but also from
systems in which the tumbling rate of the paramagnetic centers is slow compared to
the EPR time-scale and all the orientations of the magnetic molecules are present (as in
polycrystalline powders). Furthermore, we will consider only the EPR spectra of mag-
netically non-diluted systems, where the hyperfine structure is wiped out by the dipolar
and exchange interactions between the magnetic centers and is not experimentally avail-
able.

In order to understand EPR experiments we can refer to the simple resonance theory
described in Section 2.2.1, substituting the nuclear magnetic moments with those of the
electrons. For a static magnetic field parallel to the z axis of the g tensor, in the case of
an electronic spin multiplet with S = 1/2, the transition energy between the levels with
m = −1/2 and m = 1/2 is given by:

~ω = gzµBH. (2.65)

The resonances are in the microwave range, and in this spectral region it is difficult to
continuously sweep frequency over a large range. Therefore the resonance is measured
by using a fixed frequency and sweeping the magnetic field. In general an EPR spec-
trum is rather complex, with lines due to different electronic transitions. The magnetic
field at which these lines occur alter with the frequency of the applied radiation and, if
anisotropy is present, it will also depend on the orientation of the the external magnetic
field with respect to the crystal axes. Therefore the Spin Hamiltonian formalism, which
was originally introduced to understand EPR spectra, is a powerful theoretical model
which gives a complete description of the experimental data taking into account both
the magnetic field dependence and anisotropy effects.

Eq. 2.65 is sufficient for multiplets S if the zero field splitting is absent. In Fig.
2.5 we show the spectra of polycrystalline powders of a compound with S = 1/2 and
anisotropic g.

For gx = gy = gz only one line is observed like in a single crystal. For gx = gy =
g⊥; gz = g// two features are observed, that corresponding to g// being less intense be-
cause the crystallites with the z axis parallel to the applied field are less numerous than
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Figure 2.5: Polycrystalline powder EPR spectra of a system with S = 1/2 characterised by gx 6=
gy 6= gz (top), gx = gy 6= gz (middle), and isotropic g value (bottom)[2].

those with the x or y axes parallel to the field. For gx 6= gy 6= gz three lines are observed.
The three g values are easily obtained from the spectra, but it is impossible to know
their orientation in the molecular frame. For this, single-crystal experiments are needed.
When S ≥ 1 additional splitting of the energy levels and consequently additional lines
in the EPR spectra may appear, due to the effects of the crystal field. Furthermore, if we
are not in the strong exchange limit, we have to consider the generalized Spin Hamilto-
nian in order to take into account also those electronic transitions which involve levels
belonging to different total-spin multiplets.

2.3.1 Interpretation of EPR Spectra

Following the linear-response theory [50], given a time-dependent perturbation H1 =

−Âf(t) with Â hermitian operator, we find that the absorption observed in a resonance
experiment is proportional to the imaginary or absorptive part of the susceptibility:

χ′′AA = π
∑
α,α′

〈α|A†|α′〉〈α′|A|α〉(nα − nα′)δ(~ω −∆αα′), (2.66)

where ∆αα′ = Eα′ − Eα and nα is the Boltzmann population of the eigenstate |α〉 of
the unperturbed Hamiltonian H0. The term 〈α|A†|α′〉〈α′|A|α〉 in Eq. 2.66 represents the
transition intensity between the energy levels α and α′. In an EPR experiment the time-
dependent perturbation H1 is the microwave oscillating magnetic field, perpendicular
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to the applied static magnetic field H. EPR measurements are very often performed on
polycrystalline powders. An EPR powder spectrum can be considered as the summation
of the spectra corresponding to every orientation {θ, φ} of the applied magnetic field
direction with respect to the principal coordinate system of the EPR center. If we take
into account this orientation dependence, the transition intensities between two energy
levels n and m are given by [77, 78]:

Inm = (1− sin2 θ cos2 φ)S∗x,nmSx,nm + (2.67)

− sin2 θ sinφ cosφ
[
S∗x,nmSy,nm + S∗y,nmSx,nm

]
+

− cos θ sin θ cosφ
[
S∗x,nmSz,nm + S∗z,nmSx,nm

]
+

+ (1− sin2 θ sin2 φ)S∗y,nmSy,nm +

− cos θ sin θ sinφ
[
S∗y,nmSz,nm + S∗z,nmSy,nm

]
+

+ (sin2 θ)S∗z,nmSz,nm,

with Sk,nm = 〈n|Sk|m〉, where |n〉 and |m〉 are the eigenvectors corresponding to levels
n and m respectively and Sk is a total-spin operator Sx, Sy or Sz . With Eq. 2.67 we can
reproduce the EPR absorbance spectrum of our system for a given {θ, φ} direction as a
function of the applied magnetic field. In order to compare the powders data with our
theoretical calculations we have to spherically average over all the possible directions
{θ, φ}. Furthermore, the experimental data are usually reported as the derivative of the
absorbance, thus we have to derive the so obtained results. We will therefore find the res-
onance fields where the derivative of absorbance shows a zero (corresponding to a peak
in the absorbance spectrum). The broadening of the lineshape of EPR resonance peaks
is mainly due to hyperfine interactions of electronic spins with the surrounding nuclei,
which decrease the life times of the initial and final states of the transitions through re-
laxation mechanisms. If for instance we consider a gaussian line-shape LSgauss we have:

δ(~ω −∆αα′)⊗ LSgauss = LSgauss(~ω) =
1

σ
√

2π
e
−(~ω−∆

αα′ )
2

2σ2 , (2.68)

2.4 X-Rays Magnetic Circular Dichroism

Due to its high sensitivity and its chemical selectivity, X-rays absorption (XAS) and X-
ray magnetic circular dichroism (XMCD) are powerful techniques to measure the mag-
netic properties of MNMs also grafted on surfaces as thin or monolayers. XAS provide a
unique probe of the electronic and magnetic properties of transition-metal ions with sen-
sitivity down to sub monolayer coverage. The intensity, lineshape and polarization de-
pendence of dipole-allowed 2p→3d transitions give element-selective information about
the spin state, oxidation and crystal field. Therefore XMCD is a very powerful tool to
study magnetic anisotropy in MNMs. In the following a simple X-ray absorption theory
is provided.

The properties of 3d-electrons are best probed in an X-ray absorption experiment by
excitation of 2p core electrons to unfilled 3d states as illustrated in Fig. 2.6. In prin-
ciple, L-edge X-ray absorption spectra contain contributions from both p→d and p→s
transitions, but in practice the p→d channel dominates. The sum of the line intensities,
denoted I(L3) and I(L2), respectively, is directly proportional to the number of d holes
(see Fig. 2.6-a), through the so-called sum rules (see following section).

The use of circularly polarized X-rays allows to study anisotropy effects of transi-
tion metal ions. The underlying physics is usually explained within the framework of
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Figure 2.6: Electronic transitions in conventional L-edge X-ray absorption, (b) and (c) X-ray mag-
netic circular dichroism for spin and orbital moments respectively, illustrated in a one-electron
model [79].

the following two-step picture. In the first step, right or left circularly polarized photons
transfer their angular momentum, +~K and -~K, respectively, to the excited photoelec-
tron. If the photoelectron originates from a spin-orbit split level, e.g. the p3/2 level
(L3 edge), the angular momentum of the photon can be transferred in part to the spin
through the spin-orbit coupling. Right circularly polarized photons transfer the opposite
momentum to the electron than left circularly polarized photons, and hence photoelec-
trons with opposite spins are created in the two cases. Since the p3/2(L3) and p1/2(L2)
levels have opposite spin-orbit coupling (l+s and l-s, respectively), the spin polarization
will be opposite at the two edges. In the first (absorption) step, spin-up and spin-down
are defined relative to the photon helicity or photon spin.

The magnetic properties enter in the second step. Since spin flips are forbidden in
electric dipole transitions, spin-up (spin-down) photoelectrons from the p core shell can
only be excited into spin-up (spin-down) d hole states. Therefore, the spin-split valence
shell acts as a detector for the spin of the excited photoelectron. The quantization axis
of the detector is given by the magnetization direction which, for maximum dichroism
effect, needs to be aligned with the photon spin direction. As illustrated in Fig. 2.6 we
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shall denote the differences of the line intensities recorded with right and left circular
polarization, i.e. the XMCD intensities, as A (L3 edge) and B (L2 edge), respectively.
Note that A and B have opposite sign, reflecting the opposite spin-orbit coupling of the
p3/2 and p1/2 levels. Sum rules link the spin moment quantitatively to the measured
intensity A-2B, as discussed below. Similarly, if the d valence shell possesses an orbital
moment, as shown in Fig. 2.6-c, it will act as an orbital momentum detector for the
excited photoelectron. By summing over the L3, i.e. (l+s), and L2, i.e. (l-s), intensities
it is apparent that the spin s is eliminated and one measures the orbital moment of the
valence shell. This is expressed by the orbital moment sum rule which links the orbital
moment in the d shell to the dichroism intensity A+B. For more detailed reviews on XAS
and XMCD refer to Ref.[79].

2.4.1 Sum Rules

The usual XMCD analysis is based on the exploitation of the so-called sum rules, which,
in principle, enable the element- and shell-specific measurement of the orbital and of
the spin moments separately. Yet, the effective application of these rules faces several
drawbacks: The non-negligible presence of the magnetic dipole term, the evaluation
of the correct number of 3d holes, and the problem of the j-j mixing effect [80, 81, 82].
Therefore, in order to verify the applicability of sum rules to MNMs, it is important to
test them on benchmark samples and to compare with theoretical results. For instance,
the validity of the sum rules for Cr8 [82], Cr7Ni [83], CrxInNi [84] and Cr2Cu [26] has
already been discussed and verified. The mean value of the spin (mS) and orbital (mO)
moments (along the z direction) from XMCD data can be calculated as:

mO

µB
= −4qNeff

3r
(2.69)

mS

µB
= − (6p− 4q)Neff

r
Sc+

7〈TZ〉
µB

,

where r is the integral of the whole absorption spectrum, A and B are the intensities of
the dichroic signal at the L3 and L2 edges, respectively, and p = A and q = A + B, Neff
is the number of effective 3d-holes and 〈TZ〉 takes into account magnetic dipolar effects
[80]. SC is a spin correction factor which takes into account the partial L2 and L3 mixing.
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Molecular Magnets with Competing AF Interactions

A new route in molecular magnetism is based on magnetically frustrated MNMs. In
fact, geometrical magnetic frustration is at the origin of many exotic phenomena [85].
It occurs when the presence of competing interactions forbids the simultaneous mini-
mization of all individual two-spin terms [86], as it happens in an antiferromagnetically-
coupled system of three spins in a triangle. MNMs with competing antiferromagnetic
(AF) interactions can display geometrical frustration, but the effects of frustration on
their static and dynamical properties are still largely unexplored. They also represent
ideal systems to study the interplay between frustration and quantum effects due to
their zeroth-dimensional character [87]. Magnetically frustrated MNMs have also been
proposed for technological applications in magnetocaloric refrigeration (see Chapter 4),
due to their large energy degeneracies and hence large field-induced entropy variations.

An interesting example is provided by the ”Moebius strip” odd-membered Cr8Ni AF
ring [88], where a large number of frustrated classical spin configurations coalesce quan-
tum mechanically into a single nondegenerate ground state, with the spins resonating
among these energetically equivalent classical states. Another famous example of frus-
trated MNMs is Fe30, a large molecule where the 30 Fe3+ (s = 5/2) ions occupy the ver-
tices of an icosadodecahedron and experience nearest-neighbor AF coupling. Interesting
physical properties characterize this mesoscopic system [28, 29], but unfortunately exact
calculations are not possible because of the large Hilbert space.

In this Chapter we focus on four different MNMs with competing AF interactions:
Ni7 (Sec. 3.1), Fe6, Mn6 (Sec. 3.2) and Fe7 (Sec. 3.3). A great advantage of these clusters
is their relatively small Hilbert space compared to other frustrated clusters (e.g. Fe30),
which allow us to perform exact calculations. In these systems a complex spectrum with
low-spin ground state, large degeneracies and/or many low-lying excited levels results
from competing AF interactions [87]. The consequences on their static magnetic behavior
are discussed in the following. We also investigate the effect of frustration on relaxation
dynamics of Ni7 and Fe7.

3.1 Magnetic Properties and Relaxation Dynamics of a Frustrated Ni7
Molecular Nanomagnet

In this Section we focus on Ni7 [89], a frustrated MNM, whose core consists of a pair
of corner-sharing tetrahedra (see Fig. 3.1). Its structure resembles a piece of bulk py-
rochlores, which are characterised by spins on a lattice of corner-sharing tetrahedra, and
where frustration may lead to large ground state degeneracies [90, 91]. As we will show,
also in Ni7 frustration leads to large degeneracies in the energy spectrum which cause
unusual static and dynamical magnetic properties. The consequences of the spectral

43



44 3.1 Magnetic Properties and Relaxation Dynamics of a Frustrated Ni7 MNM

structure on the magnetocaloric effect will also be discussed in view of possible applica-
tions of frustrated MNMs in magnetic refrigeration.

Figure 3.1: (a) The molecular structure of Ni7 (red: O, white: H, grey: C, cyan: N, green: Cl).
The large yellow spheres represent Ni ions. Oxygen ions transmit antiferromagnetic superex-
change interactions between adjacent Ni ions. (b) The magnetic core of Ni ions arranged on two
corner-sharing tetrahedra. Dashed lines represent exchange interactions. Two different exchange
constants characterize the interaction between spins in the external triangles (J1) and between the
central and the external spins (J2).

Each Ni2+ ion in the Ni7 cluster is described in terms if its total spin s = 1 (the orbital
moment being nearly quenched) and in the Hamiltonian 1.1 only the leading interactions
are considered: Anisotropic terms are neglected and isotropic exchange is limited to
nearest neighbors, for which oxygen bonds provide effective superexchange bridges.
Anisotropy is expected to produce fine effects, some of which are discussed in Section
3.1.3 assuming a typical strength for local crystal fields. The exchange interaction is
parametrized by two constants J1 and J2 describing respectively the coupling within the
two external triangles and with the central spin (Fig. 3.1). The gyromagnetic tensors
gi are assumed diagonal and isotropic, which is normally a good approximation. The
Hamiltonian then reduces to:

H = J1 [s1 · s2 + s2 · s3 + s1 · s3] + J1 [s4 · s5 + s5 · s6 + s4 · s6] + (3.1)

+ J2

[
s7 ·

6∑
i=1

si

]
− gµBB ·

7∑
i=1

si,

and can be analytically diagonalized by choosing the following basis states:

|S12SAS45SBSABSM〉 = |S̃SM〉. (3.2)

The quantum numbers in this coupling scheme refer to the total squared spin of the
pairs (1, 2) and (4, 5) (e.g. S2

12 = [s1 + s2]
2

= S12 (S12 + 1), the total squared spin of
the upper triangle (SA), of the lower triangle (SB), of the two triangles (SAB) and of the
whole molecule (S), whereas M refers to the z component of the total spin. On the basis
of the molecule’s structure we expect J1 and J2 to be positive (antiferromagnetic) and of
a similar order of magnitude. The gyromagnetic factor for Ni2+ is usually slightly larger
than 2.
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3.1.1 Magnetization

The temperature dependence of the magnetic susceptibility was measured on microcrys-
talline powders (squares in Fig. 3.2). A fitting of the calculated magnetic susceptibility χ
to experimental data yields J1 = 18 K, J2 = 26 K and g = 2.2, and in the following we will
use these values. For the fitting procedure we have exploited the Van Vleck formula [47]:

χ(T ) =
1

Z

µ2
BNAg

3KBT

∑
i

e−βEiSi (Si + 1) (2Si + 2) , (3.3)

where Z is the partition function, Ei are the eigenvalues of Eq. 3.1 with total-spin Si.

Figure 3.2: Calculated (line) and measured (squares) temperature dependence of χT and χ (inset).
The parameters used in Eq. 3.1 are J1 = 18 K, J2 = 26 K and g = 2.2.

The corresponding spectrum is shown Fig. 3.3. The ground manifold comprises nine
multiplets of total spin S = 1, for a total 27 levels. At high T the square of the effective
molecular moment χT tends to that of seven non-interacting spins. The decrease by
lowering T reflects the AF character of the couplings, and as T→ 0 the molecule responds
like a single moment gµBS with S = 1.

While the zero-field susceptibility does not display any specific feature associated
with the frustrated geometry, the latter causes an unusual magnetization process in finite
fields. The field splits the multiplets into their M components as illustrated in Fig. 3.4.

While in nanomagnets field-induced crossings usually involve a pair of levels, re-
sulting in a staircase magnetization process with equal jumps, a characteristic feature of
frustrated systems like Ni7 is the presence of ground state level crossings involving more
than two levels. For instance, 25 levels cross at BC ≈ 6.8 T: Nine |S = 1,M = 1〉, twelve
|S = 2,M = 2〉 and four |S = 3,M = 3〉 states. This situation is caused by the linear
dependence on S of the zero-field energies of the lowest S = 1–3 manifolds (Fig. 3.3). The
resulting magnetization experiences a double jump by 2gµB at BC (see Fig. 3.5), while
the usual two-level crossings yield jumps by gµB .
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Figure 3.3: Spectrum of Eq. 3.1 for J1 = 18 K, J2 = 26 K and B = 0. The 37 = 2187 energy levels are
arranged into multiplets of given total spin S with degeneracy 2S + 1. Several distinct multiplets
with the same value of S are degenerate due to frustration. The numbers indicate the number of
these multiplets for the lowest group of states for any given S. For instance, the ground manifold
has S = 1 and includes nine distinct multiplets, for a total degeneracy of 27.

Figure 3.4: Field dependence of the lowest-lying levels of Eq. 3.1. The field removes the degener-
acy on M, but not that between different multiplets. Thus, the ground state between 0 and 6.8 T is
ninefold-degenerate.

We have also calculated the magnetization of the cluster as a function of the applied
magnetic field: :

M(B) = −µB
7∑
i=1

gi (〈si,x〉 sin(θ) cos(φ) + 〈si,y〉 sin(θ) sin(φ) + 〈si,z〉 cos(θ)) , (3.4)
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Figure 3.5: Calculated field dependence of the magnetization per molecule at T = 0 K. Note the
two anomalous jumps by 2gµB at B = 6.8 and 19 T. The inset focuses on the first of these jumps
and shows that it is still well recognizable in a realistic experimental condition, T = 0.3 K.

where the thermal average of single-ion spin operators are evaluated as

〈si,k〉 =
1

Z

N∑
j=1

〈j|si,k|j〉e−βEj(B). (3.5)

We would like to stress that for the an isotropic Hamiltonian as the one in Eq. 3.1 the
magnetization doesn’t depend on the orientation (θ, φ) of the applied magnetic field. Ni7
magnetization displays a plateau between B = 19 and 105 T. This plateau also exists for J1
= J2, and it is wider the larger J2/J1. It is associated with the large exchange gap between
the lowest S = 5 and the lowest S = 6 sets of manifolds (Fig. 3.3). The plateau is a sort
of molecular counterpart of the well-known plateaus characterizing some bulk systems
with magnetic frustration such as pyrochlores [87, 92]. It is interesting to compare the
behavior of Ni7 with that of the highly studied frustrated nanomagnets with icosado-
decahedral symmetry. For the latter a triple jump in the magnetization is theoretically
predicted for large fields close to the saturation field [29] and it can be interpreted in
terms of a multiple crossing between a set of states with independent localized magnons
(in a ferromagnetic background) and the fully ferromagnetic state. In Ni7 this type of
multiple crossing near saturation is missing, the double jumps occur at low field and do
not correspond to a simple picture of localized excitations.

3.1.2 Magnetocaloric effect

The method of adiabatic demagnetization has been successfully used over the last decades
to reach temperatures in a sub-Kelvin range. This technique relies on the thermal re-
sponse of a magnetic system to an adiabatic variation of the applied field. Such a re-
sponse can be quantified in terms of the so-called cooling rate:

R =

(
∂T

∂B

)
S

= − T

C(T,B)

(
∂S(T,B)

∂B

)
T

, (3.6)
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where C is the magnetic specific heat. In the simplest case of an ideal paramagnetic
salt, isoentropic curves in a T–B plane are straight lines (S = S(T/B) ) and R = T/B.
Hence, during adiabatic demagnetization T decreases linearly with B. In order to obtain
a large cooling power the density and the size of these paramagnetic moments should
be maximized, but residual interactions between different moments set a limit to the
reachable power. Interactions alter the simple shape of the paramagnetic isoentropic
curves and, for large-enough densities, eventually cause magnetic phase transitions. The
transition temperature sets a lower bound to the lowest temperatures achievable with
paramagnetic salts.

Figure 3.6: Intensity plot showing the value of the magnetic entropy S as a function of T and B.
The two crossings causing double magnetization jumps at BC = 6.8 and 19 T lead to a large cooling
rateR for BC . R can be visually estimated by the slope of isoentropic (i.e. isocolour) lines.

The main objective in the field of magnetic refrigeration is to find an optimal ma-
terial with high cooling rate down to very low temperatures, where this technique has
its major applications. One possibility is to consider bulk compounds with frustrated
magnetic interactions, as frustration may keep the system a paramagnet (albeit not a
simple one) as T→ 0 [93]. Another possibility is to exploit the superparamagnetism of
nanosized magnetic particles [94]. Magnetically frustrated nanomagnets may offer at the
same time the advantages of general frustrated systems (i.e. the large degeneracies and
hence the potentially large field-induced entropy variations) and those of nanomagnets
(i.e. the lack of complex cooperative behavior and the high degree of flexibility in the
chemical synthesis). This issue has been investigated in [45] for model Hamiltonians de-
scribing nanomagnets of icosahedral symmetry, for which an enhanced magnetocaloric
effect with high cooling rates is predicted in the vicinity of the saturation field. In the
case of Ni7 one might exploit the crossings involving double magnetization jumps (e.g.
the one at BC = 6.8 T in Fig. 3.4), where several levels meet and hence a large modulation
of the entropy is produced by a small variation of B near Bc. Indeed, Fig. 3.6 shows that
R is particularly large close to BC = 6.8 T and 19 T, for instance R = 6.3 K T−1 on the
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isoentropic path with S = 3 (values of R for paramagnetic salts are typically below 2 K
T−1). With respect to systems like Fe30, for which the fields useful for magnetocaloric
applications are large, being near the saturation field [45], here relatively small fields are
exploited. Thus, the system looks promising even if a precise estimation of the actual
usefulness would require fixing the precise type and size of the small anisotropic terms
in the Spin Hamiltonian, which have been neglected here. Indeed, such terms may pro-
duce fine splittings dependent on the direction of B (see Section 3.1.3) which modify the
shape of the isoentropic curves as T→ 0. By tentatively assuming the form of anisotropy
described in Section 3.1.3 one finds that cooling rates remain satisfactory, of the order of
a few K T−1, and depend on the field direction.

For a deeper investigation on the magnetocaloric effect in MNMs and their applica-
tions for magnetic refrigeration see Chapter 4.

3.1.3 Quantum oscillations of the total spin

Small anisotropic terms in the Spin Hamiltonian, which have been neglected in Eq. 3.1,
may produce remarkable quantum effects at field-induced level crossings. There is at
present no experimental determination of the anisotropy in Ni7 as large-enough single
crystals have not yet been produced. Considering the C3 symmetry of the molecule, the
dominant effects of magnetic anisotropy can be described by adding to Eq. 3.1 an axial
term of the form

HCF = d1

6∑
i=1

s2
i,z + d2s

2
7,z (3.7)

where the z axis is parallel to the C3 axis. Higher-order single-ion axial terms have van-
ishing matrix elements because s = 1 for the Ni2+ ions. In the following we assume d1

= d2 = dCF = -1 K, which is a reasonable value for Ni2+ in a distorted octahedral envi-
ronment. Fig. 3.7 illustrates the effect of this axial term on the energy levels of Ni7. Each
multiplet is split into a singlet (M = 0) and one or more doublets (M =±q) and the degen-
eracy between different spin multiplets is partially removed. In particular, the presence
of CF anisotropy has important consequences close to the ground state crossing fields Bc.
Fig. 3.7 shows that for a generic direction of B these crossings turn into anti-crossings
(ACs). The AC splittings reflect the fact that at the AC field the involved states are super-
positions of different total-spin states. Physically, quantum oscillations of the length of
the total spin take place [95], i.e. at the AC field the total spin of each molecule oscillates
along the direction of the applied field. These oscillations occur also at zero temperature
and are absent in the classical version of the model. Interestingly, the frequency of these
quantum oscillations can be tuned by changing the direction of the applied field and can
be made much larger than the expected decoherence frequency. This phenomenon has
been investigated in AF rings [95] and grids [24] where it involves a conventional cross-
ing between a single pair of levels whose total spin S differs by one. Here, conversely,
at BC = 6.8 and 19 T the ACs involve many levels belonging to spin multiplets with S
differing also by two. For instance, Fig. 3.7 shows that the AC at 6.8 T involves many
degenerate levels having total spin ranging from S = 1 to 3. The presence of these ACs
could be demonstrated by macroscopic single-crystal torque measurements as the ACs
cause marked peaks in the field dependence of the magnetic torque at the Bc [96]. Fig.
3.8 demonstrates that in Ni7 these peaks could be easily detected experimentally. Torque
is the tendency of the magnetic field to rotate the magnetization and it’s given by

τ = M×B. (3.8)
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Figure 3.7: Field dependence of the lowest-lying levels of Eq. 3.1 in presence of the crystal field
term in Eq. 3.7. The field makes an angle of 15◦ with the anisotropy axis. The bottom panel shows
a zoom onto the anticrossing region. Labels identify the dominating component of eigenfunctions.

In the case of Ni7 we assume to apply the field in the xz-plane, thus the torque is given
by:

τy = B (Mz sin(θ)−Mx cos(θ)) (3.9)

Torque measurements allow one to have a macroscopic evidence of the quantum oscil-
lations of the length of the total-spin at the ACs fields, since it is proportional to the
magnetic response perpendicular to the direction of the applied magnetic field. If the
field is applied along the z-axis, the torque is proportional to 〈Sx〉, the thermal average
of the x component of the total-spin of the cluster. Since oscillations of the length of the
total-spin do reflect on 〈Sx〉 and thus on the magnetization, the torque will display a
peak at the ACs fields.
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Figure 3.8: Field dependence of the magnetic torque calculated for different directions of B. θ is
the angle between the applied field and the anisotropy axis z (see the main text).

3.1.4 Relaxation dynamics

The relaxation dynamics in MNMs is described by Eqs. 1.102 and 1.104 (see Section 1.2),
which imply a multi-exponential relaxation to equilibrium with n possible characteristic
times τi = 1

λi
, n being the dimension of the Hilbert space (n = 2187 in Ni7) [61]. The

frequencies λi are the eigenvalues of the rate matrix in Eq. 1.104. The specific relax-
ation paths which characterize the dynamics depend on the starting out-of-equilibrium
configuration (setting the initial condition ρmm (t = 0) in Eqs. 1.102), but also on the spe-
cific observable monitored during relaxation. We have already discussed in Section 1.2.3
that relaxation dynamics can be described in terms of the equilibrium dynamical cross-
correlation between the fluctuations of two generic observables A and B. A particularly
important case in MNMs is A = B = M, with M the total molecular magnetization.
Its time autocorrelation could be directly probed by macroscopic AC-susceptibility mea-
surements, which can sense relaxation times longer than about 10−4s. Relaxation times
in a generic MNM are usually too fast for AC susceptibility, but system-specific dynami-
cal correlation functions can be sensed indirectly by µSR or NMR techniques through the
longitudinal relaxation time of nuclear (or muon) spins (see Section 2.2). In the following
we focus on the case A = B = M. A multi-exponential relaxation yields in frequency
space a sum of Lorentzians as in Eq. 1.111:

SM,M(ω) =

dim(H)∑
i=1

A(λi, T, B)
λi

λ2
i + ω2

(3.10)

Fig. 3.9 shows that, for a typical value of γ in Eq. 1.104 [61], for B→ 0 and T between 1
and 10 K the frequencies having appreciable weights A (λi, T, B) in Eq. 3.10 are roughly
in the range 10−10– 10−5 THz, corresponding to times τi between 10 ms and 100 ns. The
large degeneracies associated with frustration make the spectrum in Fig. 3.9 atypical.
In most MNMs a single frequency dominates at low T, meaning that fluctuations inM
decay through a single relaxation path. By increasing T, more and more frequencies get
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appreciable weight. Conversely, Ni7 displays already at low T a band of nearly equally
weighted frequencies whose value increases by increasing T as ω0exp (−∆/KBT ). This
is a fingerprint of a multi-step Arrhenius relaxation process crossing an energy barrier
∆. Unlike SMMs, where ∆ in the (single) Arrhenius process is the anisotropy barrier,
here ∆ = 10 K is the exchange energy gap between the set of S = 1 ground states and the
set of S = 2 excited states with lowest energy (Fig. 3.3). Indeed, fluctuations of M for
KBT � ∆ decay by a two-phonon process in which the molecule first absorbs a phonon
bringing it from S = 1 to 2 states, and then emits a phonon by decaying back to the S = 1
manifold. Intra-S = 1 spin–phonon processes involve vanishing gaps (or very small gaps
if anisotropy is included Fig. 3.7) and hence there are no phonons to activate them (the
phonon density of states vanishes for E→ 0). The presence of many distinct S = 1 and 2
multiplets involved in the two-phonon process leads to several distinct frequencies with
the same T dependence but with slightly different prefactors ω0. For KBT approaching
∆ excited sets of states become increasingly populated, and more frequencies λi acquire
appreciable weight.

Figure 3.9: Intensity plot showing the calculated weights A (λi, T,B) of the magnetization auto-
correlation (Eq. 3.10) for B→ 0 versus 1/T (x axis). The y axis is log10 (λi) (in THz). The plot maps
A (λi, T,B) /χT , i.e. for each value of T the spectra have been normalized by χT (Fig. 3.2), which
is proportional to the size of equilibrium fluctuations. Frequencies weighting less than 1.5% at the
given T do not appear. The parameter describing the spin–phonon coupling strength in Eq. 1.104
sets the timescale of the relaxation dynamics. Thus, changing γ produces a vertical translation of
the plot. Here we have chosen γ = 10−7 THz−2.

The effect of a finite field B is shown in Fig. 3.10. The field produces a Zeeman
splitting of the various sets of degenerate multiplets in theirM components. The T de-
pendence of the relaxation for B = 3 T shows an overall increase of the rates λi at low T,
where the Arrhenius T dependence is lost. This is due to the activation of spin–phonon
processes involving direct transitions within the set of low-lying S = 1 states. Such pro-
cesses become likely in finite B because the phonon density of states at the Zeeman split-
tings becomes sizeable. The spectrum remains anomalous for the presence of a whole
band of relevant frequencies at low T from which a single mode tends to emerge at
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higher T. This is opposite to what is usually expected in MNMs. Fig. 3.10 also shows
how the band of processes relevant at low-T evolves for fixed T = 0.5 K as a function of
B. One can clearly see how B first accelerates and then decelerates the dynamics, which
becomes again slow at the crossing (BC = 6.8 T). Indeed Fig. 3.4 shows that the spectrum
at BC is structured into well-separated groups of levels as for B = 0 and hence a similar
slow dynamics is recovered.

Figure 3.10: Top: intensity plot showing the calculated weights A (λi, T,B) /χT of the magneti-
zation autocorrelation (Eq. 3.10) for B = 3 T versus 1/T (see caption of Fig. 3.9). Bottom: the same
weights as a function of B for fixed T = 0.5 K.

3.1.5 Conclusions

We have analysed the static and dynamical magnetic properties of the Ni7 MNM, which
is an excellent model system to investigate the effects of magnetic frustration. The lat-
ter leads to a magnetization process displaying two double jumps and a large plateau.
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These jumps are associated with multiple level crossings induced by the external field,
and involve states with three different total-spin quantum numbers. If a realistic de-
gree of anisotropy is included, the crossings turn into anticrossings for a generic ori-
entation of the field. Physically this effect corresponds to quantum oscillations of the
total-spin length among the three different values, which could be detected by measur-
ing the macroscopic torque at the anticrossing fields. We have discussed the possible
interest of Ni7 for magnetic refrigeration, and we have analysed its relaxation dynamics
induced by the spin–phonon coupling. The temperature and field dependence of these
dynamics is again atypical and reflects the large degeneracies of the underlying energy
levels.

3.2 [M III
3 ] Triangles Linked with ”Double-Headed” Phenolic Oximes

Magnetic properties of three different compounds, Fe7, Fe6 and Mn6, characterised by
competing AF interactions are reported in this section. In each compound the metallic
skeleton of the cluster is based on a trigonal prism in which two [MIII

3 O] triangles are
tethered together via three helically twisted double-headed oximes. Both the identity
of the metal ion (Fe3+ or Mn3+) and the length of ligands units have a major impact
on the nuclearity and topology of the resultant cluster. Fe7 magnetic core consists of
seven AF-coupled Fe3+ ions arranged on two corner-sharing tetrahedra. Fe6 and Mn6

cores contain two AF triangles weakly interacting with each other (only in the case of
Fe6 the two triangles are parallel). Even if in these three clusters geometrical frustration
is removed by structural distortions of their molecular structure, there are still many
competing AF interactions. For further details on the structures of these cluster see insets
in Figs. 3.11, 3.13, 3.14.

3.2.1 Magnetic Measurement

The magnetic properties of Fe7, Fe6 and Mn6 have been investigated by measuring the
temperature-dependence of their magnetic susceptibilities (Figs. 3.11, 3.13, 3.14). All the
compounds are characterised by a monotonic decrease of χT down to low temperatures,
suggesting the presence of sizeable AF interactions. Indeed this is also reflected in the
fact that the room temperature values of χT are significantly smaller than that corre-
sponding to non-interacting ions, especially in Fe7 and Fe6. As a first approximation,
the magnetic properties of Fe7, Fe6 and Mn6 can be modeled by the isotropic Heisenberg
Spin Hamiltonian:

H =
∑
i>j

Jijsi · sj + gµBB ·
∑
i

si (3.11)

(si = 5/2 for Fe3+ and si = 2 for Mn3+). The last term accounts for the Zeeman interac-
tion with the applied magnetic field B. The patterns of exchange constants are illustrated
in the insets of Figs. 3.11, 3.12, 3.13, 3.14. Given that Fe3+ is characterised by a half-
filled d-electron shell, anisotropic exchange and crystal field interactions in Fe7 and Fe6

are expected to be small and Eq. 3.11 should provide a very good description of these
molecules. Conversely, further anisotropic terms could be important in Mn6, especially
to describe the low-temperature behavior. In the Zeeman term we have assumed g = 2,
consistent with the typical behavior of Fe3+ (for Fe7 and Fe6) and with the values ob-
served in a family of structurally related MnIII6 compounds (for Mn6) [97]. The simplest
conceivable models of these molecules are characterised by two exchange constants only,
one describing intra-triangle exchange coupling and one describing the other bonds (see
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insets in Figs. 3.11, 3.13, 3.14). However, these models are not adequate to describe
the observed magnetic behavior. Indeed, the structures of Fe7, Fe6 and Mn6 allow for
several distinct exchange parameters. In the following we therefore describe the sim-
plest models that allow for a satisfactory fit of the temperature-dependence of magnetic
susceptibility.

Fe7

Figure 3.11: (a) Measured temperature dependence of the magnetic susceptibility of Fe7 (black
squares), also reported as χT (black triangles). Red lines represent calculations with J1 = 58 cm−1,
J2 = 63.2 cm−1, J’2 = 63.8 cm−1, J3 = 53.3 cm−1 and g = 2. Inset: schematic representation of
the seven Fe3+ ions and of the exchange couplings. (b) Exchange energy of the lowest total spin
multiplets calculated with the Spin Hamiltonian in Eq. 3.11 and the above exchange constants.
The ground state energy is set to zero.

The low temperature value of χT in Fe7 points to a low total-spin S ground state
and to the presence of low-lying excited states. Indeed the measured values are smaller
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Figure 3.12: Top-panel: Measured field-dependence of the magnetization of Fe7 (squares) at dif-
ferent temperatures. Lines represent calculations with J1 = 58 cm−1, J2 = 63.2 cm−1, J’2 = 63.8
cm−1, J3 = 53.3 cm−1 and g = 2. Bottom panel: Fe7 magnetization at T = 4.2 K as a function of the
applied magnetic field up to 15 T.

than those corresponding to an isolated |S = 3/2〉multiplet, but higher than those of an
isolated |S = 1/2〉 doublet. In addition, the χT (T ) curve at low temperature has a nearly
linear behavior. Fig. 3.11 shows that magnetic measurements can be well reproduced by
a model characterised by strong AF exchange couplings both within the upper and lower
Fe triangles and between these triangles and the central Fe ion. Indeed the presence of
these competing interactions leads to a low-spin ground multiplet and to several low-
lying excited manifolds (Fig. 3.11-b). The fitting of the magnetic data of Fe7 within the
present model is not unique and the parameters are correlated; indeed the data can be
acceptably reproduced by several regions of the parameter space. For instance, a very
good agreement with the data is obtained with J1 = 58 cm−1, J2 = 63.2 cm−1, J’2 = 63.8
cm−1, J3 = 53.3 cm−1. For this particular family of parameters the order of magnitude
of the Fe–Fe superexchange couplings are consistent with the model introduced by C.
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Cañada-Vilalta et al. [98] (see also [99, 100]) to explain magneto-structural correlations
in molecular clusters containing Fe3+ ions.

For Fe7 also magnetization measurements have been performed. Within the model
base on Eq. 3.11 it is possible to reproduce field-dependent magnetization curves at
different temperatures (Fig. 3.12 top panel). Small deviations from experimental data
at very low temperature could be due to small anisotropy effects. Low temperature
magnetization data saturates to 3µB until high fields (Fig. 3.12 bottom panel), confirming
the large energy gap between the lowest S = 5/2 sextet and the ground state. Therefore
from these magnetic measurements we can conclude that the energy spectrum of Fe7

has a low-spin ground state |S = 3/2〉 with a very small gap (of a few K) with the first
excited doublet |S = 1/2〉, low-lying |S = 3/2〉 excited multiplets and a very large gap
(higher than 30 K) with the first excited |S = 5/2〉multiplet.

As already pointed out, the fitting of the magnetic data of Fe7 within the model of
Eq. 3.11 is not unique. The Table below reports the different regions of the parameters
space where it is possible to find acceptable fits. To better understand the relationships
between inter- and intra-triangle parameters, the exchange constant J1 is taken as a refer-
ence and the other parameters are reported as ratios of J1 (see inset of Fig. 3.11). In order
to have a low-spin ground multiplet (S = 1/2 or S = 3/2) as suggested by the low tem-
perature value of χT, J3/J1 < 2 is required. Due to the small structural differences within
each triangle, we have constrained the ratios between intra-triangle constants J2/J1 and
J’2/J1 between 0.5 and 2. In all the regions it is possible to adjust parameters and ratios in
order to fit both susceptibility and magnetization data. The set of parameters reported
in the main article belongs to region 2, where there is the best overall agreement be-
tween the values of the exchange constants and the expectations based the model of C.
Cañada-Vilalta et al. [98].

J1 J3/J1 J2/J1 J’2/J1

Region 1 30 - 36 cm−1 1.1 - 1.4 1.7 - 2 1.7 – 1.2

Region 2 47 – 70 cm−1 0.6 – 0.9 0.8 – 1.3 0.8 – 1.2

Region 3 100 – 120 cm−1 0.2 1.7 – 1.8 0.6 – 0.7

Region 4 50 – 70 cm−1 0.4 – 0.6 1 – 1.6 0.5 – 0.8

Region 5 40 – 55 cm−1 0.5 – 0.6 0.9 – 1.4 1.6 - 2

Region 6 90 – 110 cm−1 0.2 – 0.3 0.5 0.6 – 0.8

Region 7 70 – 90 cm−1 0.2 1.2 – 1.3 0.8 – 1.3

Table 3.1: Regions of the parameters space where it is possible to find acceptable fits of magnetic
data of Fe7.

Investigations on relaxation dynamics of Fe7 probed by NMR will be discussed in
Section 3.3

Fe6 and Mn6

The low temperature value of χT in Fe6 suggests a non-magnetic S = 0 ground state very
close to a magnetic S = 1 triplet. The observed magnetic behavior of Fe6 is reproduced
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Figure 3.13: (a) Measured temperature dependence of the magnetic susceptibility of Fe6 (black
squares), also reported as χT (black triangles). Red lines are obtained with J1 = 43 cm−1, J2 = 56
cm−1, J3 = 0.6 cm−1 and g = 2. Inset: schematic representation of the six Fe3+ ions and of the
exchange couplings. (b) Exchange energy of the lowest total spin multiplets calculated with the
Spin Hamiltonian in Eq. 3.11 and the exchange constants reported above. The ground state energy
is set to zero.

by assuming strong AF coupling within the two triangles and weak intertriangle inter-
actions (see Fig. 3.13). Best fits are obtained with a unique set of parameters: J1 = (43 ±
4) cm−1, J2 = (56 ± 5) cm−1, J3 = (0.6 ± 0.05) cm−1. The order of magnitude of intratrian-
gle exchange couplings are again in agreement with the Cañada-Vilalta model [98]. The
inter-triangle interaction is small, but consistent with other clusters with similar Fe–Fe
superexchange bridges [101, 102]. Hence, this system is also characterised by the pres-
ence of competing interactions. The presence of strong AF interactions in both Fe7 and
Fe6 explains the large room temperature reduction of the effective moment in these com-
pounds with respect to that of uncoupled ions. Fig. 3.13-b shows that the present model
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is characterised by a singlet ground state and by an excited triplet well separated from
the other excited levels.

Figure 3.14: (a) Measured temperature dependence of the magnetic susceptibility of Mn6 (black
squares), also reported as χT (black triangles). Red lines are calculated with J1 = 18 cm−1, J2 =
13 cm−1. Inset: schematic representation of the six Mn3+ ions and of the exchange couplings. (b)
Exchange energy of the lowest total spin multiplets calculated with the Spin Hamiltonian in Eq.
3.11 and the above exchange constants. The ground state energy is set to zero.

The temperature dependence of the magnetic susceptibility of Mn6 can be repro-
duced with Eq. 3.11 with a unique set of parameters, as shown in Fig. 3.14-a. The model
is characterised by sizeable AF exchange interactions within the two Mn triangles, J1 =
18 (±2) cm−1, J2 = 13 (±2) cm−1, and by vanishing coupling between the triangles. The
use of g-values other than 2 does not improve the fit. The resulting energy of the lowest-
lying multiplets is reported in Fig. 3.14-b as a function of their total spin. The presence
of low-lying magnetic states is necessary to account for the measured low temperature
susceptibility. As stated above, sizeable anisotropic interactions can be expected in Mn6,
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but single-crystal measurements are needed to address this issue.

3.3 Relaxation Dynamics in a Fe7 Nanomagnet

In this Section we investigate the spin dynamics of the Fe7 molecular nanomagnet. As
explained in the previous section, its magnetic core consists of seven AF-coupled Fe3+

ions arranged on two corner-sharing tetrahedra(see inset of Fig. 3.11). We have theo-
retically predicted frustration effects in a similar system, Ni7, reported in Section 3.1,
which displays a large ground state degeneracy and unusual static and dynamical mag-
netic properties. A great advantage of these two clusters is the relatively small Hilbert
space compared to other frustrated clusters. Indeed, this makes (virtually) exact calcu-
lations feasible. The possibility to neglect the effects of anisotropies on Fe3+ ions makes
Fe7 even more appealing than Ni7 in order to study frustration-induced properties. Un-
fortunately, the magnetic core of the Fe7 cluster shows small structural distortions (the
upper and the lower triangles are not exactly equilateral and they are slightly different
from each other). Even if these distortions lead to a removal of frustration, there are
still many competing AF interactions leading to a low-spin ground state multiplet with
a complex pattern of low-lying excited levels (see Fig. 3.11-b) This yields a multiple-
time-scale relaxation dynamics at low temperatures. Such behavior is one of the main
features we expect in a frustrated MNM, as we have seen in the case of Ni7. Conversely,
single-molecule magnets like Fe8 [61] and AF rings like Cr8 [103] are characterised by a
single dominant relaxation time.

Phonon-induced relaxation dynamics in MNMs can be probed by the proton spin-
lattice relaxation rate 1/T1, measured by nuclear magnetic resonance (NMR) [61, 104].
In fact the interpretation of 1H nuclear magnetic resonance measurements allows the
determination of the coupling strength of the magneto-elastic interaction and to calcu-
late, for instance, magnetization relaxation times. In this work we have measured the
temperature dependence of 1/T1 for two different values of the applied magnetic field.
NMR measurements on MNMs are often affected by the so-called wipeout effect [105]:
At low-temperatures it is possible to have an NMR signal loss, due to the enhancement
of the protons transverse relaxation rate 1/T2 over the limit of the experimental signal
detection capability. As a consequence, not all the protons contribute to the molecular
1/T1. Within our theoretical framework it is possible to reproduce this wipeout effect by
a novel approach, identifying which protons are probed by NMR.

3.3.1 Theoretical model

The magnetic properties of the Fe7 cluster can be described by the Spin Hamiltonian in
Eq. 3.11 and the exchange parameters have been determined by magnetic measurements
of susceptibility and magnetization (see Section 3.11). To explain the observed magnetic
behavior, four distinct exchange couplings are needed, reflecting the small structural
distortions in the cluster (see Fig. 3.15-b). As already pointed out in the previous section,
we have found that the energy spectrum of Fe7 must have precise characteristics in order
to reproduce the features of the magnetic data (see Section 3.11). As we will show in
the following, these characteristics are the same responsible for the multiple-time scale
relaxation dynamics of the cluster. As shown in Fig. 3.11-b, Fe7 energy spectrum has a
low-spin ground state |S = 3/2〉with a very small gap (of a few K) with the first excited
doublet |S = 1/2〉, low-lying |S = 3/2〉 excited multiplets and a very large gap (higher
than 30 K) with the first excited |S = 5/2〉 multiplet. Fig. 3.16 shows the calculated
magnetic field dependence of the lowest lying energy levels.
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Figure 3.15: a) Molecular structure of Fe7 (red: O, cyan: H, grey: C, yellow: N). The large green
spheres are Fe3+ ions. b) Magnetic core of Fe7. Lines represent exchange interaction; the four dif-
ferent exchange parameters J1 (Dashed line), J2 (Solid line), J ′2 (Dash-Dotted line) and J3 (Dotted
line) reflect the different Fe-Fe superexchange paths.

To study the relaxation dynamics of Fe7, we focus on the quasi-elastic components
which can be probed by NMR measurements [61, 106]. Within this framework, the
coarse-grained time evolution of the cluster is given by the master equations in Eqs.
1.102, where the rate matrix is given by Eq. 1.104 (see Section 1.2). As pointed out in Sec-
tion 1.2.2, the spin-phonon coupling strength γ is the only free parameter of our model
and it can be determined from NMR experimental data1.

In Section 1.2.3 we have seen that relaxation dynamics towards equilibrium can be
described in terms of dynamical correlation functions between the fluctuations of molec-
ular observables. We have also shown that in the theoretical framework given by Eq.
1.102, the Fourier transform of the correlation function can be expressed as a sum of
Lorentzians [61], as in Eq. 1.111.

3.3.2 Relaxation Dynamics

Within the theoretical framework illustrated in the previous section, we can investi-
gate the relaxation dynamics of the Fe7 cluster by applying Eq. 1.111 to the most in-
teresting observables. Here we focus on the relaxation of the cluster magnetization
(A = B = M =

∑
i s
z
i ) and on single-site spin observables siz , where z is the direc-

tion of the external field. In Fig. 1.2 we report the calculated relaxation rates spectra of
M as a function of temperature for three different values of the applied fields (0.01 T
and the two fields used in NMR measurements).

The only free parameter of the model, the spin-phonon coupling strength γ, has been
determined from the analysis of 1/T1 NMR data, that will be discussed in the next sec-
tion. It is worth to stress that this parameter merely fixes the overall scale factor of the
relaxation dynamics timescales (a change of γ only leads to rigid vertical shifts in Figs.
3.17, 3.18), whereas the temperature and field dependence of the relaxation rates comes
directly from the calculations.

The rates λi(T ) having appreciable weight in the spectra are roughly in the range

1A magneto-elastic coupling with a single site-independent parameter γ leads to a non-ergodic spin dy-
namics. Thus, we have chosen slightly different coupling constants for each Fe3+ ion and we have checked
that the results don’t depend qualitatively on the choice of the specific pattern of coupling constants [107].
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Figure 3.16: Magnetic field dependence of the lowest lying energy levels of the Fe7 calculated
with Eq. 3.11. The magnetic field is applied along the z-axis. The ground state energy is set to zero
for each value of Bz .

10−9 - 10−1 THz up to T = 30 K, corresponding to relaxation times between 1 ms and
10 ps. Relaxation dynamics become faster as the applied magnetic field increases, espe-
cially at low temperature. The most interesting feature of the Fe7 relaxation dynamics
is that several rates have appreciable weights, even at rather low temperatures. Con-
versely, in most MNMs a single rate dominates at low temperature. This multiple-time
scale dynamics is a peculiar characteristic of Fe7, due to the effects of AF competing in-
teractions on the energy spectrum. Since there is a complex pattern of low-lying excited
levels, the spin-phonon interactions can induce many relaxation processes, with different
paths and different characteristic times τ (i)

rel. For different values of the applied field, we
have analysed the dominant relaxation processes at low temperatures by inspecting the
eigenvectors of Eq. 1.102 and the matrix elements of Eq. 1.104. In fact, the former give
information about the starting and the final levels of the processes and the latter are the
transition probabilities. In small field (Fig. 3.17 top panel) we have found that the two
dominant relaxation rates at T . 2.5 K follow the Arrhenius law λ = λ0exp(−∆/kBT ),
where the amplitude λ0 sets the time-scale and reflects the magneto-elastic coupling
strength γ and ∆/kB is the height of the barrier hampering the relaxation ofM. These
two relaxation processes involve levels of the ground state manifold S = 3/2 and of the
lower-lying S = 1/2 and S = 3/2 multiplets. In fact, the dominant relaxation time has
∆/kB ≈ 5.8 K and it corresponds to an Orbach process [3] involving the ground state
and the third excited manifold with S = 3/2, which has energy ≈ 5.8 K in zero field (see
Fig. 3.11-b). The second important relaxation process is characterised by a smaller en-
ergy barrier ∆/kB ≈ 4.4 K and it involves levels belonging to the third excited multiplet
with S = 3/2 and E3 = 3.3 K and to the sixth excited one with S = 3/2 and E6 = 7.5 K
in zero field. At 2.5 K< T < 4 K the rate corresponding to the slowest relaxation process
follows an Arrhenius law with ∆/kB ≈ 35 K. This corresponds to an Orbach relaxation
process involving the first excited multiplet with S = 1/2 and energy E1 = 2.1 K and
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Figure 3.17: Calculated weights A(λi, T,B) of the magnetization autocorrelation as a func-
tion of the inverse temperature for the three values of the applied magnetic field, B = 0.01 T,
B = 0.35 T and B = 1.5 T respectively. The y-axis is log10(λi), the greyscale shows the weights
A(λi, T,B)/χT . When ωL (red line) intersects the rates λi with significant weight, 1/T1 displays
a peak (see Fig. 3.19).

the S = 3/2 multiplet lying at about E13 = 37.5 K in zero field (see Fig. 3.11-b). This
process gives a very small contribution to the relaxation dynamics of the Fe7 cluster, at
odds with many MNMs where the slowest relaxation process is the dominant one. At
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higher temperatures several characteristic rates have an appreciable weight and the tem-
perature dependence is not of the Arrhenius type. By increasing the applied field (see

Figure 3.18: Calculated weights A(λi, T,B) of the magnetization autocorrelation as a function of
the applied magnetic field at T = 1 K. The y-axis is log10(λi), the greyscale shows the weights
A(λi, T,B)/χT .

Fig. 3.17 bottom panels), the multiple-times character of the relaxation dynamics become
more pronounced. Moreover, the Arrhenius T -dependence of the dominant rates is lost
even at low temperatures, while in most MNMs relaxation times at low temperatures
follow the Arrhenius law even in a moderate applied magnetic field[61, 103]. We have
found that the two dominant relaxation rates at low temperatures correspond to direct
processes involving levels of the ground multiplet, split by the Zeeman interaction with
the field. The slowest relaxation process is still of the Arrhenius type and has a slightly
larger weight. At B = 1.5 T an even slower relaxation process occurs, but it doesn’t
follow the Arrhenius law. We have also calculated the magnetic field dependence of the
relaxation rates at T = 1 K, reported in Fig. 3.18. We have confirmed that the multiple-
times scale dynamics at low temperature is still present even with high applied magnetic
fields (e.g. up to B = 6 T as shown Fig. 3.18), with the two dominant relaxation rates
increasing with the magnetic field.

We have verified that the multiple-time-scale relaxation dynamics is found also using
sets of exchange parameters belonging to other regions of the parameters space, where
it is possible to find acceptable fits of Fe7 susceptibility and magnetization (see Section
3.11). In fact, as already mentioned in Section 3.3.1, the characteristics that the energy
spectrum must have in order to reproduce the magnetic data are the same responsible
for the multiple-time scale relaxation dynamics. Indeed, the two dominant frequencies
in the spectrum of fluctuations of the cluster magnetization correspond to relaxation
processes involving levels of the ground state manifold S = 3/2 and of the lower-lying
multiplets. We can therefore conclude that the multiple-time scale dynamics does not
depend on the specific choice of the parameter set used to interpret magnetic data.
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3.3.3 NMR Experiments

The phonon-induced relaxation dynamics of the Fe7 cluster has been probed by NMR.
The theoretical model reported in the previous sections depends on the single free pa-
rameter γ, the spin-phonon coupling strength, which fixes the scale factor of the relax-
ation dynamics timescales. This parameter can be determined from the interpretation
of the proton spin-lattice relaxation rate 1/T1, obtained from NMR experiments. In fact,
thermal fluctuations of the electronic spins generate fluctuations in the local hyperfine
field at the nuclear site, causing relaxation of the nuclear spins. Thus from 1H NMR mea-
surements it is possible to probe the relaxation dynamics of the cluster and determine
the parameter γ.

We have measured the nuclear spin-lattice relaxation rate 1/T1 on a polycrystalline
sample of Fe7 as a function of temperature and for two values of the applied magnetic
field, B = 0.35 T and B = 1.5 T. Experimental results are shown in Fig. 3.19. The
temperature dependence of 1/T1 shows a peak at about 8− 10 K, whose height and po-
sition depends on the applied magnetic field. As shown in Fig. 3.19, the peak lowers
and moves to higher temperatures by increasing the field. The quantity MH

xy(0)T , deter-
mined atB = 0.35 T from theMH

xy(t)T relaxation curve, is proportional to the number of
protons resonating at the irradiation frequency. Results as a function of temperature are
shown in the inset of Fig. 3.19. MH

xy(0)T decreases by lowering the temperature due to
the so-called wipeout effect, experimentally observed in other MNMs and qualitatively
explained in Ref. [105].

Figure 3.19: Scatter: 1H NMR 1/T1 data on Fe7 powders as a function of temperature at two
different applied magnetic fields. Line&Scatter: calculations exploiting equation (2.63) and taking
into account the wipeout effect. Inset: fraction of protons probed by NMR (scatter) deduced by the
initial transverse nuclear magnetization at B = 0.35 T (see Section 3.3.3). Line: fraction of protons
taken into account in our calculations determined as described in Section 3.3.3.

The theoretical model illustrated in Section 1.2 and in Section 2.2.3 has been applied
to the interpretation of 1H NMR data on Fe7. In order to reduce the computational effort,
a truncation in the molecule Hilbert space is necessary to perform the diagonalization
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of the rate matrix W. The reduction to the subspace spanned by the lowest total-spin
manifolds (up to 200 K) allows us to calculate the temperature dependence of 1/T1 in
the most interesting region, i.e. where it displays a peak, up to T = 30 K. Since 1/T1

measurements have been made on Fe7 powders, to reproduce the experimental data we
average over all the possible orientations of the applied external field.

From our theoretical model it is also possible to understand the origin of the peak
in the temperature-dependence of 1/T1, which has been experimentally observed in the
Fe7 nanomagnet as in other MNMs. First of all, we have also investigated the relaxation
of single-site observables (szi ) and the decay of the hyperfine field fluctuations. We have
found that the corresponding spectra are very similar to those of the cluster magnetiza-
tionM in Fig. 3.17 and are characterised by the same dominant relaxation times. We can
now exploit Eq. 1.111 to rewrite (for each hydrogen) the autocorrelation of the transverse
components of the hyperfine field fluctuation (Eqs. 2.60 and 2.61) as a sum of lorentzians
evaluated at the Larmor frequency ωL. In the case of homometallic AF rings only a single
lorentzian dominates the sum [61, 106] and 1/T1 displays a peak at the temperature at
which the relaxation rate of this lorentzian matches ωL. In the present case the relaxation
dynamics is not mono-lorentzian but the different relevant rates are close to one another
when they approach ωL at T close to 10 K (see Fig. 3.17). Therefore, a single-peak in the
1/T1 curve results also in the present case. Since the spin-phonon coupling strength γ
sets the range of the characteristic relaxation times, it is possible to determine its value
by fitting the position of the peak in 1/T1(T ).

As mentioned above, 1/T1 data on Fe7 are also affected by the wipeout effect [105],
i.e., a gradual loss of the 1H NMR signal intensity is observed on decreasing the temper-
ature. This signal loss is associated with the enhancement of the transverse relaxation
rates of the probed protons over the limit fixed by the experimental setup; they become
so fast that the transverse nuclear magnetization decays irreversibly before it can be ob-
served in a pulsed NMR experiment. In our experimental conditions the minimum T2

that we can measure in the investigated range of frequencies can be considered around
10− 12 µs. We have taken into account the wipeout effect in our calculations by mimick-
ing what actually happens in the NMR experiments. For each hydrogen in the molecule
we use Eqs. 2.63 and 2.64 to calculate 1/T1 and 1/T2 as a function of the temperature,
the orientation and the modulus of the applied magnetic field. Then, to determine the
experimental 1/T1, i.e. averaged over all the protons in the molecule not affected by
wipeout, we take into account only the hydrogen nuclei whose transverse relaxation
rate is lower than a fixed threshold, 1/T2 < 1/T thresh2 . Thus, in the calculation of 1/T1

we consider only the protons actually probed by NMR measurements. We let vary the T2

threshold by an amount of 20%, with the aim of improving the final fits, thus obtaining
1/T thresh2 = 86.6 ms−1, corresponding to T threshold2 = 11 µs, a value that falls perfectly in
the experimentally estimated range. By fitting the peak position of 1/T1(T ) at B = 0.35
T, it is possible to determine the spin-phonon coupling strength, yielding γ = 1.5× 10−6

THz−2. With the same parameter we have also reproduced the position and height of
the peak in 1/T1(T ) at B = 1.5 T, confirming the correctness of the value of γ. Fig.
3.19 demonstrates the good agreement between the experimental results and our calcu-
lations. To check the reasonableness of our approach for mimicking the wipeout effect,
we have estimated the temperature-dependence of the fraction of probed hydrogens by
measuring the transverse nuclear magnetization at time 0, obtained by the extrapolation
at zero time of the transverse nuclear magnetization MH

xy(t) recovery curve (see the in-
set of Fig. 3.19). Indeed, the product MH

xy(0)T is proportional to the number of probed
nuclei and can be compared with the number of 1H included in our calculation by the
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method described above. These measurements have been performed at 0.35 T because
wipeout is generally known to be stronger at small fields. The inset of Fig. 3.19 shows
that our modeling captures the wipeout effect. It is worth noting that the conditions for
the validity of the approximations underlying the present calculations (see Section 2.2.3)
are fulfilled except for the very low temperature region.

3.3.4 Conclusions

We have investigated the phonon-induced relaxation dynamics of the Fe7 cluster, an
excellent model system to study the effects of competing AF interactions on the spin
dynamics of MNMs. We have found that several relaxation times τ (i)

rel contribute to the
decay of the molecular magnetization even at low temperature. We have also verified
the multiple-times character of the relaxation dynamics is a direct consequence of the
structure of the energy spectrum and that it is due to the topology of the competing AF
interactions.

We have measured the temperature dependence of the spin-lattice relaxation rate
1/T1 by 1H NMR measurements. The interpretation of these data has allowed us to de-
termine the spin-phonon coupling strength γ and to set the scale factor of the relaxation
dynamics timescales. By means of Redfield’s approach [71] to the theory of relaxation
processes, we have developed a model to calculate the nuclear spin-lattice relaxation
rate 1/T1 taking into account also the wipeout effect. Our calculations are in very good
agreement with experimental results.

In order to probe the multiple-times character of the relaxation dynamics of the Fe7

cluster at low temperature, AC susceptibility experiments could be preformed. In fact,
the graph in Fig. 3.18 shows that the low temperature relaxation times can be detected
by AC susceptibility measurements with very high frequency (of the order of 100 KHz)
performed in small magnetic field, thus stimulating further experimental works on the
cluster.





CHAPTER 4

Design of Molecular Nanomagnets for Magnetic
Refrigeration

MNMs are now considered promising materials for very-low temperature magnetic re-
frigeration, since they exhibit an enhanced magnetocaloric effect (MCE) [43, 44, 45, 46].
The MCE observed in these systems is in fact significantly larger than that displayed
by other envisaged candidates, like lanthanide alloys and garnet [108] or superpara-
magnetic nanoparticles [94]. In addition, the possibility of grafting MNMs to surfaces
opens the perspective of building micron- and submicron-sized cooling devices for all
those instruments where local refrigeration down to very low temperatures is needed
[109, 110, 111].
The temperature range where MNMs display a large magnetic entropy variation upon
application of a magnetic field of few Tesla is below T ' 10 K. This feature makes them
appealing for low temperature cryogenic applications. In fact, they have been suggested
as a valid alternative to the expensive 3He -4He dilution refrigerators, thus covering a
temperature range below that achieved with liquid Helium cryostats (i.e., T < 4.2 K or
T < 2 K) [112, 46]. However, this temperature range could in principle be expanded
up to about 10 K. If magnetic refrigeration with MNMs could be used for cooling appli-
cations starting from these temperatures, refrigeration techniques based on liquid 4He
could be completely bypassed, with resulting technological and economical advantages.
During the last years, the pivotal idea in the search for new magnetocaloric materials
based on MNMs has been to increase the maximal entropy difference between zero and
applied field ∆Smax =MaxT (S0(T ) − SB(T )). The established recipe is to synthesize
molecules characterised by negligible magnetic anisotropy, by a high-spin ground state
and by low-lying excited multiplets [112, 46, 113]. These features guarantee a very large
field-induced entropy variation at low temperature. Magnetic anisotropy can be con-
trolled through the use of isotropic metal ions (like Mn2+, Fe3+ or Gd3+), whereas opti-
mal multiplet structures can be obtained if the interactions between spins in the clus-
ter are either weakly ferromagnetic or with competing antiferromagnetic (AF) terms
[114, 115], like in the Fe14 molecule [116]. The most recent works on the MCE in MNMs
involve clusters containing 4f ions or 3d-4f heterometallic complexes [117, 118, 119, 109,
120]. In these systems it is possible to exploit the large magnetic moments of Rare Earths
(RE) ions and it is also easy to have weak ferromagnetic interactions. A crucial point
is that even if ∆Smax is large it is not obvious that this entropy difference can be really
exploited in refrigeration cycles (typically non-regenerative Carnot cycles at low temper-
atures). Indeed, the performance of the cycles that can be actually implemented with a
given magnetic material also largely depends on the shape of the zero-field and in-field
S(T ) curves.
In this Chapter we explicitly consider Carnot cycles and perform calculations for ideal
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model systems to understand the characteristics of a MNM yielding an efficient MCE
between T ' 10 K and the sub-Kelvin region. Temperatures much larger than 10-15 K
cannot be achieved because at these temperatures the vibrational part of the specific heat
overwhelms the magnetic one in this kind of systems. We show that, contrarily to the
common belief, the best molecular MCE refrigerants in this temperature range are those
based on molecules containing magnetic ions so strongly ferromagnetically interacting
to reach the so-called strong-exchange limit. One important consequence of this result is
that molecules without RE ions can be excellent magnetocaloric materials. This is partic-
ularly important in view of the fact that 4f elements are increasingly rare and expensive.
Indeed, the research for ”RE-free” materials for magnetic refrigeration is an increasing
trend also in room-temperature applications [121], where 3d transition metals are the
natural (and cheaper) alternative to REs.

4.0.5 The Magnetocaloric Effect

As already explained in Section 3.6, the MCE consists of a thermal response of a magnetic
material to an isothermal/adiabatic variation of the applied magnetic field. In the first
case the system responds with an isothermal magnetic entropy variation ∆S(T,∆H),
while in the second case it responds with an adiabatic temperature change ∆Tad(T,∆H).
For magnetic refrigeration it is necessary to subject the refrigerant to a cyclic repetition
of magnetization and demagnetization processes. For applications below about T = 20
K, a non-regenerative Carnot cycle is the most efficient [122]. It consists of an adiabatic
(1-2) and an isothermal magnetization at Thot (2-3), followed by an adiabatic (3-4) and an
isothermal demagnetization at Tcold (4-1) (Fig. 4.1) [123].

Figure 4.1: Schematic representation of a Carnot cycle in a (S,T,H) phase diagram. The grey area
represent the heat absorbed by the refrigerant during the isothermal demagnetization Qc.

During this last process the refrigerant absorbs heat from the so-called load. The per-
formance of a Carnot cycle can be therefore described by its temperature span ∆Tspan =
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Thot−Tcold (coinciding with the modulus of ∆Tad in the cycle) and by the heat absorbed
by the refrigerant during the isothermal demagnetization Qc=Tcold∆Scold [124]. In fact, a
large Qc guarantees an high cooling power of the thermodynamic cycle. In addition, an
useful Carnot cycle must have a relevant ∆Tspan, since Tcold represent the temperature at
which it is possible to cool down the load (in cryogenic applications it should be in the
sub-Kelvin region), while Thot must be reached by another refrigeration technique (the
higher Thot the better). Clearly, these two observables strongly depend on the character-
istics of the material and on its state diagram (S, T,H).

4.1 Ideal Model systems

As explained before, the two classes of systems which are currently considered for mag-
netic refrigeration with MNMs are: i) clusters with competing antiferromagnetic interac-
tions like the Fe14 molecule [116]; ii) clusters with weak ferromagnetic interactions like
the compounds involving RE [117, 109, 120]. Both kinds of systems are characterised by
a high-spin ground multiplet with low-lying excited manifolds leading to a large value
of ∆Smax. To rationalize the efficiencies of these different classes in realizing Carnot
refrigeration cycles, we have studied several ideal models containing all the key char-
acteristics common to the large variety of real molecules which can be of interest for
MCE. We have considered as a starting point the real cluster Fe14: In fact in this system
the competition between many AF interactions and a negligible anisotropy provide an
unusually large MCE [116]. Our ideal models represent the building blocks of the Fe14

magnetic core, but, to reduce the computational effort and to calculate exactly both the
energy spectra and MCE observables, they have s = 3/2 (instead of Fe3+ s = 5/2 ) and
a lower number of magnetic centers. The Hamiltonian has only two exchange parame-
ters and no magnetic anisotropy (as in Eq. 4.1). In Fig. 4.2 we report the scheme of the
exchange interactions of all the investigated model systems.

Figure 4.2: Scheme of the exchange interactions of the four ideal model systems.

Model a) has a topology which is equivalent to that of Fe14 cluster, since it has an anal-
ogous exchange interaction scheme which produces a qualitatively similar spectrum.
Even if in model a) the number of involved ions is lower (10 instead of 14 in order to
reduce the computational effort), we can still identify the same key 3D graph-theoretic
motifs as in Fe14: 1) the “bipyramid” (square-based instead of hexagonal-based), where
the ions in the base are arranged on a ring and they all interact with the two vertices; 2)
the upper and the lower dimeric (instead of triangular) caps, orthogonal to each other,
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where each ion of the dimer interacts with two ions of the base and with the respective
vertex of the bipyramid. The other models (Fig. 4.2-b÷d) have simpler and simpler
exchange interactions schemes.

In the following section we focus on the simplest model, model d), which allows
us to explore quantitatively the different regimes as a function of only two parameters,
exploiting exact calculations. The model system is a square-based pyramid composed
of five spins s = 3/2 connected by two distinct exchange interactions J1 and J2 (see Fig.
4.3). The corresponding Hamiltonian is

H = J1

∑
i=2,5

si · si+1 + J2

∑
i=2,5

s1 · si + gµBBSz, (4.1)

where in the first sum s6 = s2, Sz is the z-component of the total spin, B is the applied
magnetic field and µB is the Bohr magneton. Since molecules with negligible anisotropy
are the best candidates for MCE [46, 112], the single-ion zero-field splitting terms have
been neglected.

Figure 4.3: Scheme of the exchange interactions of the model d).

When J1 is positive and both J1 and J2 are sizeable, the model displays competing
interactions (case i)). Conversely, when J1 and J2 are both small and negative the model
system is representative of case ii). In addition, the ferromagnetic strong-exchange limit
corresponds to J1 and J2 large and negative. All the results discussed in Section 4.2 for
this simple model are sound, they do not qualitatively depend on the value of the spins
and are analogous to those obtained with all the other more complex model systems that
we have investigated (see Section 4.2.1).

4.2 Results on Model d)

Fig. 4.4 shows the calculated value of ∆Smax as a function of J1 and J2. It is evident
that the largest entropy variations are achieved for the two classes of systems i) and ii)
mentioned above. It is important to note that when there are competing interactions
large values of ∆Smax occurs only close to defined ratios of the exchange parameters
(see the straight dark regions in the right half of Fig. 4.4). The ferromagnetic strong-
exchange limit (bottom-left part of the figure) is characterised by a value of ∆Smax which
is significantly smaller than those of the two previous cases.

This picture would suggest that systems i) and ii) are the ideal candidates for MCE.
However, as discussed above, the shape of the S(T ) curves plays a key role in determin-
ing the actual cycles which can be implemented with these systems. In particular, the
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Figure 4.4: Calculated dependence of ∆Smax on the two exchange parameters J1 and J2. The
darkest regions correspond to the largest maximal entropy variations.

entropy variation ∆Smax can be fully exploited only in cycles with very narrow tempera-
ture span ∆Tspan centered at the temperature corresponding to ∆Smax, because otherwise
it is not possible to perform the two adiabatic paths of the Carnot cycle. The actual en-
tropy variation ∆Scold that can be induced in a cycle (proportional to Qc) and the ∆Tspan
can only be evaluated by considering the whole S(0, T ) and S(B, (T) curves. Fig. 4.5
reports the study of the main MCE observables as a function of J1 and J2. Panel a) dis-
plays the calculated entropy variation which can be exploited in an optimized Carnot
cycle with Tcold= 1 mK 1 and Thot= 10 K. It is evident that the heat Qc (∝ ∆Scold) absorbed
by the refrigerant in each cycle is large when both J1 and J2 are strong and negative,
i.e., in the ferromagnetic strong-exchange limit (hereafter iii)). Conversely, in the regions
corresponding to i) and ii) the entropy variation is very small or zero, implying that
the Carnot cycle is inefficient or cannot be implemented at all. We stress that the re-
ally non-interacting case (J1 = J2 = 0) provides the best thermodynamic cycles, but it
is extremely fragile with respect to J1 and J2. In fact, even small values the exchange
parameters strongly deteriorates its refrigeration performances2.

This behavior can be understood by inspecting Fig. 4.6, where the S0(T ) and SB(T )
curves are reported for three representatives sets of parameters. Even if the zero-field
entropy and ∆Smax are much larger for the parameter sets belonging to families i) and ii),
the slope of the SB(T ) curve is significantly smaller in iii) yielding to much more efficient
Carnot cycles. This different behavior is due to the presence of a large number of low-
lying excited levels in i) and ii). Indeed, on the one hand they lead to large values of the
low temperature entropy and of ∆Smax, but on the other hand these levels strongly affect
and increase the slope of SB(T ). Fig. 4.6 also reports the best Carnot cycles for cases i)
and iii), while for case ii) the cycle in the considered temperature interval cannot be even
implemented. The parameter region J1 � 0 and J2 � 0 corresponds to the strong-
exchange limit in which spin number 1 is locked antiparallel to the others. Hence, it is

1Tcold= 1 mK has been assumed as a reference value for ultra-low temperatures, the actual achievable value
of Tcold depends also on the here-neglected magnetic anisotropy and inter-molecular dipolar interactions.

2The dimension of the central black point is indeed smaller than the width of the axes.
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Figure 4.5: Study of the main MCE observables as a function of J1 and J2 with ∆B = 7 T. The
greyscale reports the values of a) the entropy variation for a Carnot cycle with Tcold = 1 mK and
Thot = 10 K; b) the same with Tcold = 1 mK and Thot = 4.2 K c) the minimal value of Tcold for a
Carnot cycle with Thot = 10 K; d) zoom of panel c near the non-interacting limit.

analogous to the case iii) but the efficiency is significantly smaller because the total spin
of the ground multiplet is diminished by 2s with respect to the fully ferromagnetic case.

By considering cycles with a smaller ∆Tspan (Tcold= 1 mK and Thot= 4.2 K) the qualita-
tive picture does not change but the performance of i) and ii) improves (see Fig. 4.5-b)),
because the smaller temperature variation allows one to use a larger part of the maxi-
mal entropy variation. It is worth to note that in this case, efficient MCE systems would
be found also in presence of competing interactions, but only for specific values of the
ratio J2

J1
(see the very narrow lines in the bottom right part of Fig 4.5-b)). These situ-

ations require an extreme degree of chemical control and thus are probably unrealistic.
Conversely, the performance of molecular nanomagnets with strong ferromagnetic inter-
actions does not depend on the precise values of the parameters. Figs. 4.5-c) and 4.5-d)
show the lowest value of Tcold which can be reached in a Carnot cycle with Thot= 10 K as
a function of J1 and J2. While in the ferromagnetic strong exchange limit it is possible
to have Tcold → 0, in the case of competing interactions or in the presence of small ferro-
magnetic couplings this is generally not true because of the shape of the SB(T ) curves.



Design of Molecular Nanomagnets for Magnetic Refrigeration 75

Figure 4.6: S(T ) curves for cases i) (panel a)), ii) (panel b)) and iii) (panel c)) with B = 0 T and B
= 7 T. The shaded areas in panel a) and c) represent the best Carnot cycles with Tcold = 1 mK and
Thot = 10 K for cases i) and iii) respectively. The horizontal arrow in panel b) shows that for case
ii) it is not possible to build a closed Carnot cycle able to reach Tcold = 1 mK from Thot = 10 K.

4.2.1 Results on Other Model Systems

The same calculations reported in the previous section have been performed for all the
other ideal systems. Fig. 4.7, Fig. 4.8 and Fig. 4.9 show some of the main MCE observable
calculated as a function of J1 and J2 for the model systems in Fig. 4.2-a, 4.2-b and 4.2-c
respectively. In panel a) we report the value of ∆Smax, while panel b) shows the entropy
variation ∆Scold which can be exploited in an optimized Carnot cycle with Tcold and Thot
= 10 K (both with ∆B = 7 T). Calculations for model a) are particularly time consuming,
due to its larger Hilbert space. In order to reduce the computational efforts we have
also exploited the finite-temperature Lanczos method (see Section 1.1.3) to calculate its
observables. Calculations on model b), c) and d) can be performed exactly. The results
shown in Fig. 4.7, Fig. 4.8 and Fig. 4.9 confirm the conclusions reported in Section
4.2 for the 5-sites simple model. The largest entropy variations are always found for
systems with competing AF interactions with defined ratios of the exchange parameters
(class i)), or with weak ferromagnetic interactions (class ii)). On the other hand, the
largest Qc (proportional to ∆Scold ) which can be exploited in Carnot cycle with Tcold
= 1 mK and Thot = 10 K are obtained in the ferromagnetic strong-exchange limit. As
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pointed out in Section 4.2, the truly non-interacting case (J1 = J2 = 0) provides the best
thermodynamic cycles, but it is extremely fragile with respect to J1 and J2 in every
model systems. Indeed, the dimension of the central black point is indeed smaller than
the width of the axes in Figs. 4.7-b, 4.8-b and 4.9-b.

4.2.2 Analysis of ∆Smax graphs

Figs. 4.4, 4.7-a, 4.8-a and 4.9-a show that in the AF-F and AF-AF quarters of the ∆Smax
graphs as a function of J1 and J2 there are many “dark lines”. We have verified that
these regions of the parameter space correspond to ratios J2/J1 in which the ground
state multiplet is degenerate with the first excited one (the multiplets involved always
have consecutive total-spin values, S and S+1). In these particular configurations the
large number of degrees of freedom, due to degenerate low-lying levels, increases the
total magnetic entropy of the system, leading to an enhanced entropy variation ∆Smax.
The darkest line in the AF-F quarter of each ∆Smax graph corresponds to the ratio −rmax
= J2/J1 leading to the maximum possible degeneracy in the ground state, i.e. when the
two highest total spin multiplets are degenerate. This maximum possible degeneracy
can’t be achieved in the AF-AF quarter, but we anyway find high degeneracy and a
large ∆Smax at the same rmax. Fig. 4.10 shows the energy of the ground state of each
total-spin multiplet as a function of the ratio J2/J1, respectively for model a), b), c) and
d) (for the sake of simplicity one of the parameters has been set to J1 = 1 cm−1).

As expected, the number of line/ number of degenerate configurations in the AF-F
and in the AF-AF quarters strongly depends on the topology of the exchange interac-
tions, on the number of sites and on the local spin value (and therefore on the Hilbert
space dimension and on the number of total-spin multiplets). The starting point to pre-
dict the number of lines is the determination of the ground state multiplet when J2 = 0
(SJ2=0
GS ), which depends on the local spin value and on the exchange interactions scheme.

In the AF-F configuration, we know that it is possible to have the highest total-spin mul-
tiplet Smax as a ground state, when the ferromagnetic parameter J2 is stronger than the
AF J1, J2 ≥ −rmaxJ1 (leading to configurations where all the spins are parallel). There-
fore the number of “lines” NAF-F in the AF-F quarter is given by:

NAF−F = Smax − SJ2=0
GS , (4.2)

(if the ground state with J2 = 0 is degenerate, we take SJ2=0
GS equal to the highest value

of the total-spin). Thus the number of lines corresponds to the number of degenerate
configurations between two consecutive total-spin multiplets S and S+1 occurring from
the ground state SJ2=0

GS to Smax when increasing the ratio J2/J1.
In the AF-AF configuration the highest total-spin multiplet in the ground state SAF−AFmax

is achieved when the AF parameter J2 is stronger enough than the AF parameter J1,
J2 ≥ rmaxJ1 (in model d) this situation corresponds to a configuration where all the
spins in the squared base are anti-parallel to the vertex spin and parallel to each other).
Therefore the number of “lines” in the AF-F quarter is given by:

NAF−AF =
(
SAF−AFmax − SJ2=0

GS

)
− 2

(
SJ2=0
GS − Smin

)
= SAF−AFmax +SJ2=0

GS − 2Smin, (4.3)

where the term 2
(
SJ2=0
GS − Smin

)
takes into account the degenerate configurations in-

volving the SJ2=0
GS and multiplets with lower total-spin values (which occur twice).

Model a) has a higher degree of frustration and a higher number of ions in respect of
all the other models, leading to a much more complex behavior of the low-lying levels
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Figure 4.7: Study of some MCE observables as a function of J1 and J2 for the 10-sites ideal model
system (Fig. 4.2-a). The greyscale reports a) ∆Smax and b) the entropy variation ∆Scold for a Carnot
cycle with Tcold = 1 mK and Thot = 10 K, both calculated with ∆B = 7 T.

Figure 4.8: Study of some MCE observables as a function of J1 and J2 for the 7-sites ideal model
system (Fig. 4.2-b). The greyscale reports a) ∆Smax and b) the entropy variation ∆Scold for a Carnot
cycle with Tcold = 1 mK and Thot = 10 K, both calculated with ∆B = 7 T.

Figure 4.9: Study of some MCE observables as a function of J1 and J2 for the 6-sites ideal model
system (Fig. 4.2-c). The greyscale reports a) ∆Smax and b) the entropy variation ∆Scold for a Carnot
cycle with Tcold = 1 mK and Thot = 10 K, both calculated with ∆B = 7 T.
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Figure 4.10: Energy of the ground state of each total-spin multiplet as a function of the ratio J2/J1
respectively for model a), b), c) and d). The straight black lines indicate the ratios ±rmax.

as a function of J2/J1. In fact, different degenerate configurations have similar param-
eter ratios and they also have excited multiplets very close in energy (see Fig. 4.10 for
model a)). This “band-like” behavior of the ground states of the total-spin multiplets
leads to very close and often unresolved lines in the ∆Smax graph (the “darkest lines”
corresponding to ±rmax = 3 are anyway well recognizable in the ∆Smax graph, see Fig.
4.7-a).

4.3 Fe14 and Fe14-like systems

In order to understand the behavior of the reference system Fe14, whose large Hilbert
space makes almost impossible to diagonalize its Hamiltonian, we have also studied
two ideal clusters with si = 1 and si = 3/2, Ni14 and Cr14. Even if they have a smaller
Hilbert space than Fe14, we have to use Lanczos diagonalization techniques to study
their energy spectrum (see Sec. 1.1.3), in order to speed up our calculations. DFT and
Monte-Carlo calculations show that Fe14 has four distinct antiferromagnetic exchange
interactions, whose competition leads to an high spin ground state and low-lying excited
levels (for further details see Ref.[125]).

We study the ideal systems Ni14 and Cr14 with a two exchange parameters model:
J1 = J3 for the weak interactions (within the 6-sites ring and between the triangular caps
and the ring) and J2 = J4 for the strong ones (apical ions with the ring and with the
triangular caps respectively), as shown in the inset of Fig. 4.11. This choice is justified
by the values obtained with DFT and Monte-Carlo calculations [125] and it has already
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Figure 4.11: Particular of the ground state of the total-spin multiplets of Ni14 (from S = 6 to S =
10) as a function of J2/J1. We highlight the region around J2/J1 = 3 where we find the best RCP.
Inset: exchange interaction scheme of Fe14 with the two parameters model.

been used in the two parameters model of Ref.[116], to explain experimental data. We
keep J1 = 8.7 cm−1, corresponding to the strongest between the two weak interactions
in Fe14[125], in order to evaluate the MCE in the worst possible case. Then we study the
ground state of each total-spin multiplet as a function of J2/J1. We report our results for
Ni14 in Fig. 4.11. The graph shows that when J2/J1 = 3 the ground states of the total-spin
multiplets S = 10 and S = 9 are degenerate and they have the lowest energy. Thus the
system has an highly-degenerate ground state. In addition, as we can see from Fig. 4.11,
for a range of values around J2/J1 = 3, the ground states of some high spin multiplets
(from S = 6 to S = 10) are really close in energy to each other (the gaps are less than 1
cm−1). Thus the system also has low-lying excited states. We have confirmed this result
with Cr14, where the total-spin multiplets S =15 and S = 14 form an highly degenerate
ground state when J2/J1 = 3. This behavior is also similar to that shown by our model
a) in Fig. 4.10, which indeed has a topology which is equivalent to that of Fe14 cluster.
Therefore we can conclude that this ”band-like” behavior of the energy spectrum is due
to the topology of the exchange interactions and it doesn’t depend on the value of the
local spin si and on the number of magnetic ions. Thus we can expect Fe14 to have a
similar structure of the energy spectrum and we can consider model a) as a good ideal
model system to better understand the effects of the topology on the MCE.

4.4 Discussion and Conclusions

All the results discussed above have been obtained by assuming a magnetic field vari-
ation range 0-7 T, but we have checked that the same conclusions can be drawn if the
maximum field is restricted to 1 T. In addition, the presented findings do not depend on
the values of the local spin s, indeed the increasing of s only leads to an overall improve-
ment of the performances of these systems for magnetic refrigeration. Increasing the
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number of magnetic ions allows to boost the entropy variations and thus to improve the
performances of the refrigerant. The precise topology of the exchange interaction does
not play a key role in classes of systems ii) and iii), while it is crucial in the case of MNMs
with competing interactions. We have checked that the conclusions drawn in this work
are confirmed also by increasing the number of spins (see Sec. 4.2.1). It is worth to note
that an increase in the number of spins per molecule also rises the magnetic contribution
to the specific heat.
As already discussed in literature [46], the presence of magnetic anisotropy is harmful
for exploiting MNMs for MCE applications, hence S ions (with orbital angular momen-
tum L=0) like Mn2+ or Fe3+ have to be used in the design of molecules for magne-
tocaloric applications. An alternative possibility would be to exploit magnetic organic
radicals, which are magnetically isotropic and are typically characterised by very strong
exchange couplings. In addition, anisotropy effect due to Dzialoshinski-Moriya interac-
tion can also be controlled by choosing systems with exchange bonds characterised by
inversion symmetry. Anyway, in S ions the Dzialoshinski-Moriya energy scale is of the
order of 0.1÷1% of Heisenberg one, and it can therefore be considered as a small pertur-
bation. The presence of inter-molecular dipolar interactions may limit the value of the
achievable Tcold, since it is not possible to go below the temperature range set by the or-
der of magnitude of these interactions via adiabatic demagnetization. If the energy scale
of the dipolar coupling is too large for the specific MCE application, one can diluted the
molecular cooler by mixing it with a non-magnetic analog or by using bulkier ligands
[126].
In conclusion, we have considered explicitly Carnot cycles and performed calculations
in ideal model systems to understand the characteristics of a MNM yielding an efficient
MCE between T ' 10 K and the sub-Kelvin region. We have demonstrated that the best
molecular MCE refrigerants in this temperature range are those based on molecules con-
taining magnetic ions strongly ferromagnetically coupled, contrarily to the common be-
lief. Hence, molecules without RE ions can be excellent magnetocaloric materials. This
recipe will be a stimulus for designing new MNMs for magnetic refrigeration, which
represents an intriguing field requiring a close collaboration between physicists and
chemists.



CHAPTER 5

Local Magnetic Properties of Cr7Ni-green AF Ring

In this Chapter we focus on a particular subgroup of MNMs, the so-called antiferromag-
netic (AF) rings [127, 11]. They have an almost coplanar ring shape with a number N
of transition metal ions connected by bridging ligands, which mediate nearest-neighbor
superexchange interaction J. Even numbered AF rings with N = 6, 8, 10, 12 and 18 have
been synthesized with different transition metal ions, e.g. Fe3+ (s = 5/2) [11, 12, 13, 14],
Cr+3 (s = 3/2) [15], V3+ (s = 1) [16] and Cu2+ (s = 1/2) [17]. A common feature of all even
numbered AF rings is to have a spin singlet S = 0 ground state since they have dominant
AF exchange couplings. Due to the finite size effects, AF rings have a discrete energy
spectrum and the lowest-lying excited states for the total-spin S are known to be approx-
imately given by the so-called Landè interval rule [18]. An external magnetic field lifts
the degeneracy of the MS levels thus inducing successive ground-state crossovers. Fur-
thermore, intramolecular anisotropic interactions lead to uniaxial anisotropy and zero
field splitting of the total spin multiplets.

One of the most studied AF ring is the homometallic Cr8. It is formed of eight Cr3+

ions (s = 3/2) which indeed display at low temperature a total S = 0 ground state with
zero expectation value of the local spins. When one Cr3+ ion is replaced by a diamagnetic
ion (e.g. Cd2+) or by a different magnetic ion (e.g. Ni2+ with s = 1) the ground state
becomes magnetic and there is a redistribution of the local spin density. There exist two
main families of these AF rings. The first one and the most studied is that of AF Cr7M
green rings, where M is a divalent ion, e.g. NiII , MnII , ZnII , CoII , CuII ). They are
indeed green in colour, and the transition metal ions form an almost regular octagon,
with the divalent metal site disordered about the eight sites. Each edge of the octagon
is bridged by one fluoride and two pivalates [19]. The other family is that of AF Cr7M
purple rings, which are indeed purple in solution and solid state. The main difference
with the green ones is that purple rings have five bridging alkoxide groups within the
ring, with only three bridging fluorides. Seven of the eight edges of the octagon have two
bridging pivalate ligands attached, however the eighth edge has only a single bridging
pivalate and a bridging fluoride [128].

In this Chapter we investigate magnetic properties of AF green Cr7Ni rings. Local
spin density in the Cr7Ni is studied with 53Cr-NMR and we also investigate the the
origin of the magnetic anisotropy in Cr7Ni clusters grafted on surfaces. Spin dynamics
of Cr7M purple rings will be discussed in the following Chapter.

5.1 Local Spin Density in the Cr7Ni AF Molecular Ring and 53Cr-NMR

In this section we present 53Cr-NMR spectra collected at low temperature in a single
crystal of the heterometallic AF ring Cr7Ni in the S = 1/2 ground state, with the aim
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of establishing the distribution of the local electronic moment in the ring. 53Cr-NMR
has been measured in a previous work on Cr7Cd and the local spin density in the ring
has been determined unambiguously with excellent agreement with theory [129]. In this
cluster, where the Heisenberg interaction between nearest-neighbor magnetic centers is
interrupted by the s = 0 Cd2+ ion, the local spin density in the ground state turned out
to be rather uniformly distributed over the ring with an alternated staggered orientation
due to the AF coupling. Thus it appears of interest to investigate how the single Cr3+

ion spin moment is distributed in an heterometallic ring where one Cr ion is replaced by
a different magnetic ion rather than a diamagnetic one, like Cr7Ni heterometallic ring.
During the last few years it has been shown that Cr7Ni is a very promising system to
encode a qubit [20]. Indeed, it behaves as an effective spin 1/2 at low-T and can be
manipulated in times much shorter than the measured decoherence time [21]. These
molecular rings can be linked to each other either directly or through magnetic ions to
form dimers; the resulting inter-ring magnetic coupling is sizeable and can be tuned
by choosing the linker [34]. The site dependence of the local spin density plays a key
role in the scheme proposed for obtaining time dependent qubit–qubit couplings in the
presence of permanent exchange interactions [20].

Figure 5.1: Schematic representation of the Cr7Ni heterometallic ring. Only the Cr3+ magnetic
ions and the F− bridging ligands are shown for simplicity.

In this work 53Cr-NMR signals in Cr7Ni in its S = 1/2 ground state have been ob-
served, which give a determination of the local spin density of each ion. However, due
to intrinsic difficulties of the 53Cr-NMR measurement (low gyromagnetic ratio and low
sensitivity), only one out of the three expected 53Cr-NMR signals was detected down to
100 mK while the 61Ni signal was too weak to be detected at any temperature. Never-
theless, the distribution of the local spin moments could be calculated theoretically as
a function of the external magnetic field at low temperature and we could prove that
the observed 53Cr-NMR spectrum arises from three almost equivalent 53Cr nuclei in the
ring. The comparison with the theoretical results gave an excellent agreement by assum-
ing a core polarization hyperfine field slightly smaller than the one observed in Cr7Cd.
In particular, since the measurements were performed in a good quality single crystal,
we could verify the theoretical prediction about anisotropy which yields different local
spin densities for different orientations of the external field. This result gives total con-
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fidence about the theoretical calculations which show that the redistribution of the local
spin density in the heterosubstituted Cr7Ni ring is similar to the one observed in the
heterometallic Cr7Cd ring where the heterocenter is diamagnetic.

5.1.1 Experimental Results

The 53Cr-NMR spectrum was collected at 1.6 K with a homemade high power pulsed
NMR spectrometer. Typical spectra measured at several resonance frequencies and by
applying the magnetic field perpendicular to the plane of the ring (H // molecular z-
axis) are shown in Fig. 5.2-a. Increasing the resonance frequency the peak position in the
spectrum shifts to higher magnetic field. In Fig. 5.2-b the resonance frequency is plotted
as a function of the peak position in terms of the magnetic field. This figure reports the
data collected by applying the magnetic field perpendicular to the plane of the ring (H
// z-axis) and parallel to the plane of the ring (H ⊥ z-axis) (Cr7Ni crystals have one ring
for unit cell, thus all the rings in the crytsalline sample are coplanar). Different data sets
are shown, corresponding to different experimental runs. The data for both orientations
show a linear behavior with slope given by the gyromagnetic ratio of the 53Cr nuclear
isotope (9.54% abundance), i.e. γ/2π = 2.406 MHzT−1.

Figure 5.2: (a) Representative 53Cr-NMR spectra at 1.6 K obtained by sweeping the magnetic
field at constant frequency. The field is applied perpendicular to the ring’s plane. (b) Plot of the
resonance frequency versus magnetic field at the center of the NMR line. We plot the data for two
orientations of the magnetic field with respect to the plane of the ring in the single crystal. The
straight lines are the best fits used to determine the slope of the curve.

The NMR line is very broad and the width slightly increases with increasing magnetic
field (Fig. 5.2-a). In these experiments we have measured the central line transition (Iz =
+1/2→ -1/2) of the 53Cr (I = 3/2) NMR spectrum which is shifted only in second order
by the quadrupolar interaction, whereby the shift is inversely proportional to the applied
magnetic field [130]. Thus the second order quadrupole broadening would be inversely
proportional to the applied field. The observed slight increase of the NMR width in
Fig. 5.2-a indicates that a magnetic rather than quadrupole broadening mechanism is
dominant at high magnetic fields. The magnetic broadening mechanism is most likely
due to non-negligible contributions from the anisotropic hyperfine fields at the nuclear
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sites which can be different for the different 53Cr sites in the ring and for different rings
in the crystal. It is also possible that the broadening of the lines is due to a mosaic spread
of our single crystals, often present in nanomagnets. The NMR signal at 1.6 K can be
observed only at high fields. In fact, at low temperatures Cr7Ni behaves as an effective
spin S = 1/2 and if a high external field is applied along the z-axis only one level of the
doublet |S = 1/2;M = ±1/2〉 is thermally populated [95]. Thus, low temperatures and
high fields are required to stabilize the local spin configuration and to observe the NMR
signal in the magnetic ground state [129, 131].

5.1.2 Analysis of the Data and Discussion

The 53Cr-NMR frequency is expected to be proportional to the vector sum of the external
magnetic field H and the internal field due to the hyperfine interaction (see Section 2.2.2).
By considering the case of the internal field being parallel (or antiparallel) to the external
field and by considering only the dominant isotropic core polarization hyperfine contact
term A one can write:

νL =
γ

2π
(H + g〈s〉A) , (5.1)

where γ is the 53Cr nuclear gyromagnetic ratio, g is the Cr3+ Landè factor and 〈s〉 is the
local expectation value of the Cr3+ electronic moment. If 〈s〉 is field independent, Eq. 5.1
predicts the linear H dependence of the resonance frequency observed in Fig. 5.2.

In order to compare the experimental data to the local spin density in the ring we
turn now to the theoretical calculation of the local spin density 〈s〉 in the ground state
of the ring. Low-temperature properties of the Cr7Ni AF ring can be described by the
following Spin Hamiltonian:

H =

N∑
i=1

Ji,i+1si · si+1 +

N∑
i=1

di

[
s2
i,z −

1

3
si (si + 1)

]
+ (5.2)

+

N∑
i>j=1

Dij [2si,zsj,z − si,xsj,x − si,ysj,y]− µB
N∑
i=1

giH · si,

where si is the spin operator of the ith magnetic ion (si = 3/2 for Cr3+ ions and si = 1
for the Ni2+ ion). The first term represents the Heisenberg nearest-neighbor exchange
interaction, with the usual cyclic boundary condition N + 1 =1, N being the number of
ions in the molecule (here N = 8). The second term accounts for uniaxial local crystal
fields (z being the axis perpendicular to the plane of the ring) and the third term is the
axial contribution to the dipolar anisotropic intracluster spin–spin interaction, where
Dij is evaluated within the point-dipole approximation. The last term is the Zeeman
coupling to an external field. The parameters of the above Hamiltonian were determined
by means of inelastic neutron scattering and thermodynamic measurements (JCr-Cr = 16.9
K; JCr-Ni = 19.6 K; dCr = -0.35 K and dNi = -4 K) [95, 68, 132].

In AF rings the dimension of the spin Hilbert space is large (e.g., 49152 for Cr7Ni).
Thus, in order to diagonalize the Hamiltonian in Eq. 5.2, we have followed the two-step
perturbative technique described in Section 1.1.3, also including the often-neglected S-
mixing effects [53]. Our calculations show that the reduction to the subspace spanned
by the lowest spin exchange manifolds (up to 150 K) allows us to reproduce properly the
low-temperature properties, reducing the computational effort. The calculated eigen-
states and eigenvalues of the Hamiltonian in Eq. 5.2 have been used to evaluate the
magnetic field dependence of the thermal averages of the local spin operators si,α (α =
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x, y, z), as in Eq. 3.5. If the magnetic field is applied along the z-axis perpendicular to
the ring’s plane (θ = 0) only 〈si,z〉 6= 0, while if the magnetic field is applied parallel to
the ring’s plane (θ = π/2) only 〈si,k〉 6= 0, where k denotes the magnetic field in-plane
direction.

Theoretical calculations are summarized in Fig. 5.3. The decrease of the local spin
density at 1.6 K for fields below about 4 T is due to the reduction of the Zeeman splitting
and to the consequent increasing population of the higher energy level of the S = 1/2
doublet (|S = 1/2;M = −1/2〉). The results at T = 0.1 K (see the dashed lines in Fig.
5.3) show a nearly constant 〈s〉 value down to low fields. From the inspection of Eq. 5.1
and of the experimental data in Fig. 5.2 it is clear that the observed 53Cr-NMR signal
must be ascribed to the nuclear sites 2, 4, 6 of Fig. 5.1. In fact the core polarization field
is opposite to the local spin direction (A is negative in Eq. 5.1). Thus, since the local
field of the observed NMR line adds to the external field (Fig. 5.2-b) it must arise from a
negative (i.e. opposite to H) g〈s〉 value in Fig. 5.3. Note that in the present convention
g〈s〉 (not -g〈s〉) is the magnetic moment in Bohr magnetons (see equation Eq. 5.1).

Figure 5.3: Theoretical results regarding the local spin density in the Cr7Ni heterometallic ring at
T = 1.6 K (solid lines) and T = 0.1 K (dashed lines) obtained by assuming in the Hamiltonian Eq.
5.2 the following parameters: JCr-Cr = 16.9 K; JCr-Ni = 19.6 K; dCr = -0.35 K and dNi = -4 K (previously
determined by means of inelastic neutron scattering and thermodynamic measurements [95, 68,
132]). The numbering of the sites is shown in Fig. 5.1. Fig. a) shows the local spin values in the
case of the magnetic field oriented perpendicular to the plane of the ring while Fig. b) refers to the
case of the applied field oriented parallel to the plane of the ring.

The calculated electronic magnetic moments g〈s〉 expressed in Bohr magnetons at T
= 1.6 K are reported in Tab. 5.1 for the cases of the magnetic field applied parallel and
perpendicular to the molecular ring plane. The comparison between results with two
orthogonal directions of the applied magnetic field directly shows that the Cr3+ spins are
characterised by a sizable local easy-axis anisotropy. The orientation dependence of the
local spin moment for each Cr3+ ion originates from single-ion and dipolar anisotropies
(d and Dij terms in the Hamiltonian) and reflects the mixing between different total spin
multiplets (S-mixing) [53]. Indeed, even if the ground state is an isotropic S = 1/2 , the
S-mixing mixes it with an anisotropic S = 3/2. One can object that the S-mixing of Cr7Ni
ground state is small, and indeed it is of the order of 1%. However, the contribution of
the S-mixing to expectation values of the local spin operators on the eigenstates of the
total Hamiltonian (which are ingredients in calculating the local magnetic moments, as
w can see from Eq. 3.5) is larger. We can write expectation values on the basis of total
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Hamiltonian {|j〉} as:

〈j|sk|j〉 =
∑
α,β

cαcβ〈α|sk|β〉, (5.3)

where |α〉 and |β〉 states belong the total-spin basis and cα and cβ are the components of
the state |j〉 on the states |α〉 and |β〉. Thus, cα, cβ and 〈α|sk|β〉 are the three ingredient
to be inspected in order to quantify the contribution of the S-mixing to the expectation
values of the local spin operators. Therefore this contribution isn’t of the order of magni-
tude of the S-mixing: Indeed it depends both on the matrix element 〈α|sk|β〉 and on the
components (and not their squared modulus) of the ground state on the total-spin basis.
It is also worthwhile to observe that the anisotropy effects responsible for S-mixing do
not lead to an anisotropy barrier hampering the reversal of the molecular magnetization
at low temperatures, like, e.g., in molecular nanomagnets such as Mn12 and Fe8 [2].

H ⊥ z H // z

Cr1 0.88 1.25

Cr2 -0.67 -1.07

Cr3 0.82 1.19

Cr4 -0.66 -1.07

Cr5 0.82 1.19

Cr6 -0.67 -1.07

Cr7 0.88 1.25

Ni -0.49 -0.80

Table 5.1: Theoretical electronic magnetic moment expectation values in Cr7Ni at T = 1.6 K and H
= 5 T corresponding to Fig. 5.3. The values listed are the electronic magnetic moments expressed
in Bohr magnetons (g = 1.98 for the Cr3+ ions and g = 2.2 for the Ni2+ ion).

In Fig. 5.4 we have plotted the experimental results for the two orientations of the
magnetic field by including the data obtained on different samples and in different runs.
We also show the theoretical curves obtained by using Eq. 5.1 (at two different tempera-
tures) and the theoretical values of 〈s〉 in Fig. 5.3. The only fitting parameter is the core
polarization constant A. By choosing A = -11 T/µB the agreement is very satisfactory for
both field orientations.

The value of the core polarization field A = -11 T/µB obtained for 53Cr in Cr7Ni can
be compared to the one obtained in C7Cd (i.e. A = -11.05 T/µB) by fitting the data of
[129], in the case of the field being applied perpendicular to the plane of the ring, in
the same way as done here. The two values are practically identical in agreement with
the notion that the 3d wavefunction of the Cr3+ ion is not affected by the heterometallic
substitution. It should be noticed that a higher value (i.e. A = -12.38 T/µB) was obtained
in Cr7Cd directly from the NMR data without using the theoretical results for the g〈s〉
distribution in the ring [129]. This higher value is very close to the estimated theoret-
ical value for a 3d core polarization field in the isolated Cr atom, i.e. A = -12.5 T/µB
[130, 75]. We suggest that the smaller value (i.e. A = -11.05 T/µB) obtained by using
the theoretically calculated spin densities is an indication of a slight delocalization of the
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Figure 5.4: 53Cr-NMR of a Cr7Ni single crystal at T = 1.6 K: Resonance frequency versus ap-
plied magnetic field. (a) The magnetic field is applied perpendicular to the crystallographic z axis,
namely parallel to the plane of the ring. (b) The magnetic field is applied parallel to the crystal-
lographic z-axis, namely perpendicular to the plane of the ring. Solid lines show the theoretical
predictions at T = 1.6 K obtained by using Eq. 5.1 with A = -11 T/µB and the g〈s〉 calculated in
Fig. 5.3. Dashed lines represent the theoretical predictions at T = 0.1 K.

3d wavefunction of the Cr3+ ion in the ring. Finally, one can compare our results with
the first principle calculations of the contact field for Cr3+ reported in [58], namely -25
T/3µB = -8.3 T/µB . By comparing the results for the Cr 2, 4, 6 sites in the two different
orientations of the magnetic field in the single crystal (see Fig. 5.4), it was also possible to
experimentally confirm the easy-axis anisotropy for the local spin moments of Cr3+ pre-
dicted by the theoretical calculations based on the Hamiltonian previously determined
by neutron spectroscopy and magnetic measurements (Tab. 5.1). In fact, the 53Cr-NMR
frequency is higher when the magnetic field is applied parallel to the crystallographic
z-axis, due to the larger absolute value of the local spin density (see Eq. 5.1). From the
inspection of Fig. 5.4 it is also clear that the signals due to sites 1, 7, 3, 5 (see Fig. 5.1) are
difficult to detect at T = 1.6 K since the expected resonance frequency is low in the whole
magnetic field range. At very low temperature, where the spin density 〈s〉 remains con-
stant down to low values of H, the expected resonance frequency would be higher (see
the dashed lines in Fig. 5.4). We did try to detect the signals at T = 100 mK by using a di-
lution refrigerator but the radiofrequency probe head did not have sufficient sensitivity.
Furthermore, it would be interesting to be able to follow the NMR signal at low fields
where the 〈s〉 values decrease due to the thermal population of the first excited level. Un-
fortunately, thermal fluctuations are likely to decrease the nuclear spin lattice, T1, and
spin–spin, T2, relaxation times making the signal too broad to be observed. Also, second
order quadrupole effects may shift and broaden the signal at low magnetic fields [130].
One possibility would be to synthesize 53Cr isotopically enriched samples to improve
the S/N ratio of the NMR signal.

5.1.3 Conclusions

In conclusion we have shown that the 53Cr-NMR signal observed at high magnetic field
values and at T = 1.6 K in Cr7Ni is in excellent agreement with the local spin density
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distribution calculated theoretically including effects due to the anisotropy, which could
be evidenced by using a single crystal in the NMR experiment. The core polarization hy-
perfine constant turns out to be almost the same in Cr7Cd and Cr7Ni indicating that the
heterometallic substitution in the Cr8 ring does not affect the local 3d wavefunction at
the Cr3+ site. The main result appears to be the fact that the local spin density redistribu-
tion in the heterometallic rings is rather uniform for both the diamagnetic substitution
(i.e. Cr7Cd) and the magnetic substitution (i.e. Cr7Ni). However, although we have
similar staggered spin moment distributions for both cases, the absolute values of the
spin moments are different. In the case of Cr7Cd the spin moments of the Cr3+ ions are
slightly smaller (∼2 µB) than 3 µB which is the value expected for Cr3+ isolated ions
[129]. On the other hand, for Cr7Ni each Cr3+ spin moment is much smaller (∼1 µB)
than 3 µB . This indicates that the disconnection of the magnetic interaction due to a
diamagnetic ion leads to a larger perturbation that destroys the spin singlet state of the
mother material, i.e. Cr8, with S = 0 ground state characterised by local 〈s〉 = 0 values.

5.2 Magnetic Anisotropy of Cr7Ni Spin Clusters Grafted on Surfaces

In this section we address the problem of the experimental and theoretical determina-
tion of magnetic anisotropy in isolated molecular spin clusters. To this end, the case of
molecular Cr7Ni rings sublimated in ultrahigh vacuum conditions and assembled in an
ordered fashion on Au(111) surface is addressed and investigated using X-ray magnetic
dichroism (XMCD) and theoretical calculations.

Figure 5.5: STM image of one complete self-assembled monolayer of Cr7Ni-bu (upper panel) and
Cr7Ni-thiobu (lower panel) deposited by sublimation on Au(111) surface. Tunneling conditions:
2 V and 20 pA. Scan area 90 × 50 nm 2 .

Since we investigate Cr7Ni magnetic properties, we can take advantage of several
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special conditions. Firstly, the extra magnetic ion (Ni2+) unbalances the Cr ring magne-
tization and acts as local probe inside the ring, as demonstrated in previous works [95].
So far XMCD has been used to measure the total molecular magnetization, i.e., consid-
ering the features of the ground state multiplet of the whole molecule [133, 134]. Yet,
X-ray photons interact with single transition metal ions having their own local magnetic
anisotropy projected on the molecular states that, in turns, may have different type of
anisotropy one to another. So, the actual alignment of the magnetization of single ion de-
pends on the features of the dominant multiplets at working conditions and it indirectly
reflects the characteristics of the whole spin cluster, besides the local environment. This
issue is somehow masked in homometallic molecules but it can be properly addressed
in heterometallic ones, such as Cr7Ni rings [135] and Fe3Cr [136, 137]. Interestingly, the
chemical specificity of XMCD allows to elucidate this interplay between the magnetiza-
tion of the single ion and that of the entire molecule. While the importance of magnetic
anisotropy for large spin single molecule magnets is well recognized, it is worth noting
that the control and the understanding of magnetic anisotropy is also relevant for the
spin manipulation in molecular qubits like the F Cr7Ni.

Secondly, Cr7Ni rings can now be successfully assembled in ordered fashion on Au(111)
surface by UHV sublimation [138]. Namely, no changes are observed on the chemical
features and only minor variations are observed on magnetism of isolated Cr7Ni rings
that lay all flat and well packed (hexagonal arrangement) on gold surface (Fig. 5.5) [138].
Moreover, for the experimental investigation different types of molecule-surface interac-
tion have been used, namely two different functionalizations of the rings deposited on
Au(111) and HOPG substrates.

Since the ground state of Cr7Ni is an isotropic doublet, experiments have been per-
formed at finite temperature and magnetic field in such a way that the first excited S =
3/2 multiplet, with in-plane anisotropy, is the dominant one. Spin Hamiltonian simu-
lations are then used to clarify the alignment of the Ni magnetization and the interplay
between the local and the molecular magnetic anisotropy.

5.2.1 Experimental Results

In Fig. 5.6 the Cr and Ni L2,3 XAS and XMCD spectra for the two monolayers (MLs) (i.e.,
Cr7Ni-bu and Cr7Ni-thiobu) on Au(111) and the Cr7Ni-bu ML on the HOPG surface are
compared with those of the corresponding microcrystalline thick film (TF). Remarkably,
both the XAS and XMCD spectral line-shapes for MLs perfectly resemble those of the
TFs, demonstrating that deposition by sublimation does not affect the valence electronic
structure of the Cr and Ni ions, namely oxidation state, local environment and crystal-
field intensity at the Cr and Ni sites. More specifi cally, for all samples the Cr absorption
spectra present eight features characteristic of Cr3+ in a nearly Oh environment, whereas
Ni spectra present two peaks at the L3 edge and a partially resolved doublet structure
at the L2 edge, characteristic of a high-spin Ni2+ ion in nearly Oh symmetry [139]. In
these molecular rings, when an external magnetic field H is applied, there is a competi-
tion between the antiferromagnetic coupling between nearest-neighboring ions and the
Zeeman interaction, tending to align the magnetic moments along the field direction.
The XMCD spectra of Fig. 5.6-b provide information on this competition. The nega-
tive dichroic signal at the Cr L3 edge and the positive one at the L2 edge [L3(−), L2(+)]
implies that the total magnetic moment of the Cr ions is parallel to H. Conversely, the
opposite behavior of Ni [L3(+), L2(−)], for either powders and MLs, implies that at 8K
the magnetic moment of the Ni ion is antiparallel to H.

Fig. 5.7-a,b show the Cr-L2,3 and Ni-L2,3 absorption spectra taken using both photon
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Figure 5.6: Cr (left) and Ni (right) L2,3 XAS (a) and XMCD (b) spectra, measured at 8 K and 5
T on 1 ML of Cr7Ni-bu and Cr7Ni-thiobu on Au(111), 1 ML of Cr7Ni-bu on HOPG deposited by
sublimation. The spectrum of Cr7Ni-bu powders is also shown for comparison.

helicities (upper panel), the relative dichroic signal and its integral (lower panel) mea-
sured for 1 monolayer (ML) of Cr7Ni-bu on Au(111) at 8 K and 5 T. In Fig. 5.7-c,d, the
XMCD spectra of Cr and Ni are displayed at three temperatures: 8 K, 15 K, and 25 K.
Similar measurements were performed also for the other ML samples and for the TFs.
We observe that, while the total Cr magnetic moment is always parallel to H , for Ni the
magnetic moment is antiparallel to H at 8 and 15 K but it becomes parallel to H at 25 K
(see Fig. 5.7-d). These results can be quantitatively analysed exploiting XMCD sum rules
for each type of magnetic ion, as in Eq. 2.69. Here a spin correction factor SC= 1.75 (as in
Ref. [82, 83, 84, 26]), and for what concerns the 3d-hole numbers, the nominal values Neff
= 7 for Cr3+ and Neff = 2 for Ni2+ have been used. For the general case of 3d metals, the
dipolar term TZ is expected to be different from zero, however, in the case of Cr3+ ions
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in Oh symmetry, it results negligible [80] allowing the application of the isotropic sum
rules for Cr. On the contrary, for 3d8 metal, e.g., Ni2+ ions, TZ is not negligible even in
Oh symmetry. On the basis of theoretical calculations [80] in the spin moment sum rule
we consider a negative 7TZ term of -0.06µB , which is about 1/30 of the mS value: 7TZ
/ mS = -0.03.

Figure 5.7: Upper panels: Cr (a) and Ni (b) L2,3 XAS spectra taken with σ↑↑ and σ↑↓ circularly
polarized light and the XAS integral (dashed line) at 5 T and 8 K for 1 ML Cr7Ni-bu on Au(111).
XMCD spectra (σ↑↓-σ↑↑) and their integrals (continuous lines). The parameters p , q , and r are the
values used for the sum rules analysis. Lower panels: Cr (c) and Ni (d) XMCD spectra measured
at 8 K, 15 K, and 25 K in 5 T magnetic field.

The q value of the dichroic signal at the Cr-L2,3 edges is related to the orbital moment
mO of the Cr3+ ions. Its vanishing value indicates a complete quenching of mO due to
crystal field effects. On the contrary mO of Ni2+ ions is only partially quenched. This
occurs for all the MLs and powders investigated. For all systems the mO value derived
by the sum rules is about 10÷15% of mS , for all the spanned temperatures and magnetic
field H . Thus Cr ions have a nearly spin-only gyromagnetic factor ( gCr = 2.0), whereas
for Ni gNi = 2.25 ± 0.05. These values are very close to the ones derived for the pristine
(bulk) Cr7Ni-piv derivative and, incidentally, confirm that neither thermal sublimation
nor the interaction with the Au surface affects the degree of quenching of the orbital
momentum.

Fig. 5.8 displays the behavior of the Cr and Ni magnetic moments, for 1 ML of Cr7Ni-
bu on Au(111) and the corresponding thick films (TF), as a function of an external mag-
netic field H at different temperatures. It is worth noting that the Cr total magnetic
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moment is larger in the ML than in the TF and it is parallel to H, at all the temperatures
considered. A different behavior is observed for Ni in the ML: Negative values, i.e., mo-
ment antiparallel to H , are observed at 8 and 15 K, while as temperature increases, an
inversion in the sign of the Ni dichroism at 25 K occurs. This behavior reproduces that
observed in the TF, and shows that the increasing temperature induces different align-
ment of the Ni magnetization to the external field. A very similar behavior has been
observed also for 1ML of Cr7Ni-thiobu on Au(111) and ofCr7Ni-bu on HOPG.

5.2.2 Spin Hamiltonian and Numerical Simulations

We can describe the magnetic properties of each Cr7Ni ring by the Spin Hamiltonian (sCr
= 3/2 and sNi = 1):

H =

7∑
i=1

Ji,i+1si · si+1 +

7∑
i=1

di

[
s2
i,z −

1

3
si (si + 1)

]
+ µB

7∑
i=1

giH · si, (5.4)

where the first term represents the dominant isotropic nearest-neighbor antiferromag-
netic exchange interaction, the second term accounts for axial anisotropy (being z’ the
axis perpendicular to the ring plane) and the last one is the Zeeman coupling to an exter-
nal field µ0H . Since XMCD results show that the degree of orbital momentum quenching
is the same as in the original Cr7Ni-piv molecule, the gyromagnetic factors gi have been
fixed to 1.98 (Cr3+ ) and 2.2 (Ni2+ ) [139, 140].

Figure 5.8: Total magnetic moments derived by using the sum rules for 7Cr and 1 Ni with (open
symbols) and without (filled symbols) considering Tz, plotted as a function of the applied mag-
netic field at 8 K, 15 K, and 25 K and compared with the results of spin-Hamiltonian calculation
(continuous lines). 1ML Cr7Ni-bu on Au(111) (left panel) and Cr7Ni-bu powders (right panel) are
reported.
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As shown in Fig. 5.8 , the experimental results on TF samples (right panel) are well
reproduced by Eq. 5.4 , using JCr-Cr = 1.46 meV = 16.9 K and JCr-Ni = 1.69 meV = 19.6
K, values obtained from bulk measurements [95, 68, 132]. The temperature dependence
of magnetic moments measured on the ML is slightly different: Reasonably the direct
interaction of molecules with the gold surface induces a slight change in the J’s constants.
So, the experimental data for 1 ML of Cr7Ni-bu on Au(111) in the left panels of Fig. 5.8
are well fitted by using exchange constants JCr-Cr = 1.14 meV = 13.2 K and JCr-Ni = 1.32
meV = 15.3 K in Eq. 5.4 , which present a small but sizeable reduction (22%) for both
J’s constant with respect to the (TF) bulk. The uncertainty on the TF and ML fitting
parameters is of the order of 10% as variations within this range keep the fit acceptable.
It is important to note that both TF and ML data are well reproduced by assuming the
same dCr = -0.03 meV = -0.35 K and dNi = -0.35 meV = -4 K in Eq. 5.4 , as derived from
bulk measurements1, i.e., changes in d’s values make the fit systematically worse.

It is worth to stress that the structure of the low-energy levels of the grafted rings,
shown in Fig. 5.9 , is not modified by the reduction of the exchange coupling constants
and it remains practically the same as in the original Cr7Ni rings in bulk crystals. This
small reduction of J’s values only leads to a small compression of the spectrum (e.g., the
ground-doublet to first excited-quartet gap ∆1/2−3/2 becomes about 11 K instead of 14
K).

Figure 5.9: Zeeman plot (magnetic field dependence) of the low-lying energy levels calculated for
1 ML of Cr7Ni-bu on Au(111). Parameters used in calculations are JCr-Cr = 1.14 meV and JCr-Ni =
1.32 meV. Arrows indicate the occupancy calculated at 5 T and 8 K for different multiplet.

1The axial dipole-dipole interaction and single ion axial anisotropies have similar effects: Therefore, d pa-
rameters have been rescaled to dCr = -0.037 meV = -0.43 K and dNi = -0.43 meV = -5 K, in order to reproduce
the effects of the whole anisotropy.
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Diagonalization of Spin Hamiltonian

The theoretical evaluation of the temperature and magnetic field dependence of Cr and
Ni magnetic moments required the diagonalization of Eq. 5.4. If the magnetic field
µ0H was along the z’- axis (θ = 0), the total spin operator Sz′ commuted with the Spin
Hamiltonian. Thus Eq. 5.4 could be exactly diagonalized within each block with fixed
M, where M is the eigenvalue of Sz′ . However when the magnetic field µ0H was along
a different direction (θ 6= 0), [

∑
i gisi ·H,Sz′ ] 6= 0 and diagonalization of Eq. 5.4 was

obtained by a solution scheme based on an irreducible tensor operators (ITOs) formalism
(see Section 1.1.2). Using these two diagonalization methods it is possible to obtain both
eigenvalues and eigenstates of Eq. 5.4 at the different θ’s from which one can estimate
the local magnetization at single Cr and Ni sites. It was verified that for θ = 0 both
methods yield the same results.

5.2.3 Angular Dependence of X-Rays Dichroism

In the experimental setup the magnetic field direction is always parallel to the beam,
whereas the angle θ between the surface normal and H can be varied between 0◦ and
75◦ (Fig. 5.10-b). The dependence of the XAS and XMCD spectral shape on θ has been
studied for all MLs and for the TFs, and it is shown in Fig. 5.10-a for Cr and in Fig.
5.10-c÷e for Ni. The information on the magnetic moment anisotropy of Cr (Fig. 5.10-a)
is averaged over seven ions and it results practically zero. Conversely, the Ni XMCD
signal shows a clear dependence on θ: In the case of 1 ML of Cr7Ni-bu and 1 ML of
Cr7Ni-thiobu (Fig. 5.10-c,d) on Au(111), a strong angular dependence is observed with
40% reduction passing from θ = 0◦ to θ = 75◦ , while for Cr7Ni-bu on HOPG a modest
angular dependence (12% reduction) is observed. No dependence on θ is observed in the
case of randomly oriented polycrystalline thick film. These findings confirm that, in the
case of deposition on gold, the molecular rings lay flat on the surface, with their z’- axis
perpendicular to the latter [138]. In the case of graphite, the molecular rings tend to be
less oriented, representing an intermediate situation between gold and bulky powders,
where rings are randomly oriented.

Again, XMCD sum rules have been used to derive the mS and mO moments for each
type of magnetic ion as a function of θ. The results are reported in Table 1 and Fig. 5.11.
As expected the mS of the 7Cr ions does not change with θ whereas the Ni magnetic mo-
ment decreases as θ increases indicating the magnetic moment of Ni preferentially aligns
along the z’- axis. Summing up the 7Cr and the Ni magnetic moments, the total magneti-
zation of the Cr7Ni ring results lower at θ = 0◦ than at θ = 75◦ (see Table 1 ), indicating an
easy plane anisotropy for the ring magnetization in this experimental conditions, i.e., T
= 8K and µ0H = 5 T. The angular dependence of the different magnetic moments for the
Ni ion, each Cr site, the 7Cr complex and the whole Cr7Ni ring, have been theoretically
evaluated by Eq. 5.4 at T = 8 K as a function of the applied magnetic field (Fig. 5.12).
These calculations show that single ion magnetic moments have alternating signs with a
negative sign for Ni (meaning that the Ni moment is anti-parallel to the field direction).
The absolute value of the magnetic moment for each Cr ion depends on its distance from
the Ni one (see inset in Fig. 5.12). For instance, the two Cr ions right next to it have the
largest moments. In summary, Fig. 5.11-a÷c shows a very good agreement between
calculations and experimentally derived θ dependence of the different moments.

Exploiting the parameters obtained by fitting the sum rule results, it is possible to
understand the origin of the easy plane anisotropy of the Cr7Ni ring. The effective mag-
netic anisotropy of each total-spin multiplet in molecular nanomagnets can be evaluated
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Figure 5.10: XMCD spectra at the Cr (a) and Ni (c) L2,3 edges measured on 1 ML of Cr7Ni-bu on
Au(111) for different angles θ of the applied magnetic field; (d) 1 ML of Cr7Ni-thiobu on Au(111)
and (e) 1 ML of Cr7Ni-bu on HOPG. The values indicated are the total magnetic moments derived
by sum rules (the error bar is ± 0.05 µB ( ± 0.02 µB ) for Cr (Ni) edge). b) Experimental geometry
with the two limit situations: θ = 0 (H and beam normal to the surface) and θ = 75◦ .

Figure 5.11: Total magnetic moment derived by the sum rules for 7Cr (a), Ni (b), and the whole
Cr7Ni (c) with (open symbols) and without (filled symbols) considering Tz, compared with the
results of the spin-Hamiltonian calculations (continuous lines).

by projecting single-ion crystal field terms on the chosen multiplet, thus evaluating their
effective zero-field splitting parameter D:

D = dCr

7∑
i=1

Γi + dNiΓNi, (5.5)

(see Section 1.1.1). In the experimental conditions ( µ0H= 5 T and T = 8 K) the two mainly
populated multiplets are the ground S = 1/2 doublet and the first-excited S = 3/2 quartet
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Sum rules Angle θ Summary

0◦ 45◦ 45◦

mS -0.16 -0.135 -0.1

mO -0.02 -0.015 -0.01

Ni mt -0.18 -0.15 -0.11 easy axis

7Cr mt 1.33 1.33 1.34

Cr7Ni mt 1.15 1.18 1.23 easy plane

Table 5.2: Ni and 7Cr spin, orbital and total magnetic moments, experimentally derived by the
sum rules for 1 ML of Cr7Ni-bu on Au(111) as a function of θ, the angle between the direction of
the beam (which coincides with H) and the normal to surface at 8 K and magnetic field 5 T.

(see Fig. 5.9). Our calculations indicate that for the S = 3/2 multiplet all Γi coefficients
are negative while they vanish in the ground doublet for the time-reversal symmetry
(indeed the ground state S = 1/2 doublet is isotropic, only the S-mixing with the S =
3/2 excited multiplets can lead to some anisotropy effects (see Section 5.1.2). Hence, the
resulting easy plane anisotropy of the whole Cr7Ni ring at T = 8 K and H = 5 T is mainly
determined by the effective magnetic anisotropy of S = 3/2 multiplet for which D > 0
(all the d parameters and projection coefficients in Eq. 5.5 are negative). Indeed, in zero
field, anisotropies cause a splitting between the |3/2,±1/2〉 and the |3/2,±3/2〉 states
with a gap of 0.15 meV (or 1.7 K) and the |3/2,±1/2〉 state is the lower in energy (see Fig.
5.9 ).

5.2.4 Conclusions

Deep analysis of the angular dependence of XMCD spectra of ordered MLs of Cr7Ni
molecular rings allowed us to elucidate the relationship between the magnetization of
the single ions and that of the entire molecule. This study is in line with the recent use of
XMCD technique on heterometallic molecular systems [133, 134] but here we can exploit
the advantage that the deposition by sublimation induces an ordered self-assembling
with an alignment of the Cr7Ni rings on the surface. Experimentally, at 8 K and 5 T, the
magnetic moment of Ni tends to align along the z’- axis perpendicular to the ring plane,
whilst the total magnetic moment of the molecule prefers to align within that plane. This
apparent discrepancy is reconciled as follows: Both Ni and single-Cr magnetic moments
have easy-axis anisotropy [weak for Cr: dCr = -0.03 meV and stronger for Ni: dNi = -
0.35 meV in Eq. 5.4 ]. Projecting these anisotropies on the S = 3/2 multiplet, which
dominates in our experimental conditions, we obtain an easy-plane anisotropy for the
magnetization of the whole molecule, in perfect agreement of our experimental findings.
These results evidence that X-ray dichroism probe magnetic features of single ion whilst
the magnetic anisotropy of molecular cluster results from projection of these anisotropies
on the dominant multiplet at fixed experimental conditions (temperature and magnetic
field). Whilst this finding is probably not particularly surprising, our description of this
interplay involves the use of the XMCD sum rules, diagonalization of Spin Hamiltonian,
projection of local anisotropies on molecular multiplets and ab initio DFT calculations
(for details on DFT calculations see Ref. [141]). So, remarkably the overall theoretical
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Figure 5.12: Angular dependence of the total magnetization calculated by Spin Hamiltonian at 8
K for the Ni, for each Cr site, for the 7Cr and for the whole Cr7Ni ring. Inset: the ring structure
showing the different Cr positions with respective numbers.

description turns out to be self-consistent and perfectly fits the experimental results that,
in turns, provide, to our knowledge, the first direct observation of such interplay. More
specifically this work elucidates the origin of magnetic anisotropy in antiferromagnetic
Cr7Ni, evidencing a weak anisotropy of the magnetic moments at the Cr sites, that is a
further element for the easy manipulation of the molecular spin as required for the use
of these molecular spin clusters for quantum information processing.





CHAPTER 6

Spin Dynamics of Cr7M purple Rings and of Entangled
Dimers

In this Chapter we investigate magnetic properties and spin dynamics of Cr7M purple
rings. As already explained in the introduction of Chapter 5 the main differences be-
tween purple rings and the green ones are in the super-exchange paths between neigh-
bouring 3d ions. Indeed purple rings have five bridging alkoxide groups within the ring,
with only three bridging fluorides (see Fig. 6.1). Seven of the eight edges of the octagon
have two bridging pivalate ligands attached, however the eighth edge has only a single
bridging pivalate and a bridging fluoride [128]. Thus purple rings have a lower num-
ber of super-exchange paths involving magnetic ions F−. The substitution of bridging
fluorides with alkoxide groups can reduce the hyperfine-induced decoherence, making
them attractive candidates for applications in quantum-information processing [58].

Figure 6.1: Molecular structure of a Cr7M purple ring: magenta = Cr, green = M (Zn, Mn, Ni), red
= O, yellow = F.

In this Chapter we also introduce a new family of entangled dimers formed by one
AF purple ring and one green ring. The AF exchange coupling between two such rings is
tailored by super-molecular chemistry and is small enough to leave unaltered the mag-
netic properties of each ring but sufficiently large to induce finite-temperature entan-
glement in experimentally reachable conditions. Spin entanglement between two Cr7Ni
purple rings has been experimentally demonstrated, for example, through magnetic sus-
ceptibility as an entanglement witness [142, 143]. In addition these rings represent model

99
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systems to study spin entanglement and its application in the field of quantum compu-
tation [21].

In Section 6.1 we first characterize Cr7M (M = Zn2+, Mn2+, Ni2+) purple rings through
inelastic neutron scattering (INS) and confirm our results with specific heat and electron
paramagnetic resonance (EPR) measurements. The comparison with these experimental
results allows us to determine the Spin Hamiltonian parameters and to study the spin
dynamics of the rings. In Section 6.2 we also study specific heat and EPR spectra of an
entangled Cr7Ni purple - Cr7Ni green dimer, demonstrating the presence of an effective
entanglement between the two rings.

6.1 Spin dynamics of Cr7M purple Rings

Cr7M (M = Zn2+, Mn2+, Ni2+) purple AF rings represent a valid alternative to green rings
in the field of quantum information processing, since the substitution of bridging fluo-
rides with alkoxide groups can reduce the hyperfine-induced decoherence. Cr7M purple
rings have been originally synthesized in order to facilitate the linking of two or more
AF rings. Indeed the presence of a terminal ligand in purple rings, which could either be
a fluoride or a water molecule, represents a new opportunity for linking AF rings [128].
A hydroxide-bridged version of Cr8 rings was first synthesized, which is purple in color
due to replacing of all fluoride bridges with alkoxide within the coordination sphere of
Cr3+ ions [144]. In Cr7M purple rings a Cr3+ ion is replaced by a divalent ion MII (M
= Zn2+, Mn2+, Ni2+) and only five bridging fluorides are replaced by alkoxide groups.
The replacement of a magnetic ion in a cyclic structure allows one to modify the topol-
ogy of the exchange interactions, which plays a key role in determining the macroscopic
behavior of the system [132].

In the following we investigate magnetic properties and spin dynamics of Cr7M
purple rings with INS, specific heat and EPR. Experimental data have been interpreted
within the Spin Hamiltonian formalism.

6.1.1 Spin Hamiltonian

Magnetic properties and spin dynamics of Cr7M (M = Zn, Mn, Ni) purple rings can be
described by the Spin Hamiltonian (sCr = 3/2, sZn = 0, sMn = 5/2 and sNi = 1):

H =

7∑
i=1

Ji,i+1si · si+1 +

7∑
i=1

di

[
s2
i,z −

1

3
si (si + 1)

]
+

7∑
i=1

ei
(
s2
i,x − s2

i,y

)
+ (6.1)

+

N∑
i>j=1

Dij [2si,zsj,z − si,xsj,x − si,ysj,y] + µB

7∑
i=1

B · gi · si.

The first term represents the dominant isotropic nearest-neighbor antiferromagnetic ex-
change interaction, the second term accounts for axial crystal field anisotropy (being z
the axis perpendicular to the ring plane) while the third one for the rhombic crystal field
anisotropy. The last two terms are the axial contribution to the dipolar anisotropic inter-
action, where Dij is evaluated within the point-dipole approximation, and the Zeeman
coupling to an external field, where we take into account the possible anisotropy of the g
tensor. The Spin Hamiltonian in Eq. 6.1 has been used to have a first insight into purple
rings magnetic properties: Future and more detailed studies will be performed taking
into account different couplings constants J for O-based and F-based exchange bridges.
In this model we only distinguish between Cr-Cr and Cr-M exchange interactions.
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As already pointed out for Cr7Ni in Chapter 5, the large Hilbert space of AF rings
forces us to implement the two-step perturbative technique described in Section 1.1.3 in
order to diagonalize the Spin Hamiltonian in Eq. 6.1. This technique allows us to include
also the often-neglected S-mixing effects [53]. Our calculations show that the reduction
to the subspace spanned by the lowest spin exchange manifolds (up to 150 K) allows us
to reproduce properly INS data, specific heat and EPR spectra.

6.1.2 Inelastic Neutron Scattering

INS experiments on Cr7Zn and Cr7Mn purple rings have been performed at ISIS pulsed
Neutron and Muon Source of the Rutherford Appleton Laboratory (Didcot, UK) with the
IRIS spectrometer (see Section 2.1.3), which works in indirect geometry and with time-
of-flight techniques. In our experiments we have fixed the final energy of the neutrons
to E2 = 1.843 meV and set the frequency of the two disc choppers to 25 Hz ( -0.7 < E
< 3.54 meV). The explored scattering vector range is 0 < Q < 3.5 Ȧ. The two different
crystal analysers arrays have allowed us to perform both lower-resolution (pyrolytoc
graphite analysers σ = 0.22 µeV) and higher-resolution (mica analysers σ = 0.11 µeV)
measurements. Data have been collected at three different sample temperatures: T =1.6-
1.8 K, 7 K and 20 K. INS experiments on Cr7Ni have been performed at the Institute Laue-
Langevin in Grenoble. On Cr7Mn and Cr7Ni we have also performed measurements
of the Q-dependence of the main inter-multiplet transitions. These data allow us to
distinguish between magnetic and vibrational transitions, and also to characterize the
magnetic transition itself.

Figure 6.2: INS data (scatter) and calculations (solid lines) on Cr7Zn purple ring. Left panel:
low-resolution/high energy spectrum at T = 1.8, 7, 20 K; right panel: high-resolution/low-energy
spectrum at T = 1.8 K.

In Figs. 6.2, 6.3 and 6.4 we report experimental data (scatter) and our calculations
(solid lines) of INS on Cr7Zn, Cr7Mn and Cr7Ni respectively. Left panels show low-
resolution/high energy spectra, where the peaks at E > 0 correspond to inter-multiplet
magnetic transitions, due to neutrons that have transferred energy to the system. From
the interpretation of these data it is possible to determine the coupling constants of the
dominant Heisenberg exchange interaction (first term in Eq. 6.1), which are responsible
for the inter-multiplet energy gaps. Peaks in low temperature spectra (T = 1.6-1.8 K) are
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due to transitions involving the ground state as the initial state, while new peaks appear
at higher temperature (T = 7, 20 K), corresponding to transitions involving excited levels
as initial states. Right panels in Figs. 6.2 and 6.3 show high-resolution/low-energy spec-

Figure 6.3: INS data (scatter) and calculations (solid lines) on Cr7Mn purple ring. Left panel:
low-resolution/high energy spectrum T = 1.6, 7, 20 K; right panel: high-resolution/low-energy
spectrum at T =1.6 K.

Figure 6.4: INS data (scatter) and calculations (solid lines) on Cr7Ni purple ring. Left panel:
low-resolution/high energy spectrum at T =2.2, 6, 12 K; right panel: high-resolution/low-energy
spectrum T = 2.2 K.

tra of Cr7Zn and Cr7Mn respectively, where the peaks are due to intra-multiplet mag-
netic transitions in the ground state. In these spectra at E ∼ 0 we can see the elastic peak
(usually gaussian-shaped with σ given by the instrumental resolution), whereas mag-
netic transitions can be found at both E > 0 and E < 0. In the latter case the transition is
due to neutrons that have gained energy from the system. From the comparison of these
data with our calculations it is possible to determine the zero-field splitting parameters
of the Spin Hamiltonian in Eq. 6.1, such as local crystal field parameters di. In the right
panel of Fig. 6.4 we show an high-resolution/high-energy spectrum of Cr7Ni purple. In
fact, since Cr7Ni has a S = 1/2 Kramer’s doublet as a ground state, its INS spectra at B =
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0 T don’t show any intra-multiplet magnetic transition at low energy. Therefore we have
investigated the main peak at E ∼ 1.5 meV with an higher resolution, in order to resolve
the transitions involving the ground state doublet as the initial state and the split levels
of the S = 3/2 excited multiplet as final states.

Since our INS experiments have been performed on powders samples, we have ex-
ploited Eq. 2.18, integrated over the Q interval corresponding to the experimental condi-
tions, to simulate the spectra at different temperatures. The analysis of the experimental
data have started with the simulation of low-resolution/high-energy spectra, which has
allowed us to fix the exchange coupling constants JCr-Cr and JCr-Ni in Eq. 6.1 by fitting
the peak positions of the inter-multiplet magnetic transitions. Then, from the compari-
son of our calculations with high-resolution spectra, we have determined the zero-field
splittings due to local crystal fields. The latter and in particular the rhombic parameters
ei have been determined from a simultaneous fitting of high-resolution INS and EPR
spectra, reported in the following section. Indeed INS doesn’t allow us to distinguish
between zero-field splittings induced by di or ei. For INS simulations we have assumed
isotropic g tensor for both Cr and M ions: gCr = 1.98, gMn = 2 and gNi = 2.2. First of all
we have determined the parameters of the Spin Hamiltonian in Eq. 6.1 relative to Cr3+

ions, JCr-Cr and dCr, from the data on Cr7Zn ring. In fact, since Zn2+ is a non-magnetic
ion, all the magnetic properties of Cr7Zn come from Cr3+. In the analysis of Cr7Mn and
Cr7Ni we have kept the same values of JCr-Cr and dCr, and determined JCr-M and dM from
the comparison of INS data with our calculations. All the parameters of the Spin Hamil-
tonian in Eq. 6.1 for Cr7M purple rings are reported in Tab. 6.1. Our calculations are
shown as solid lines in Figs. 6.2, 6.3 and 6.4 and are in very good agreement with exper-
imental data. Small differences between the peak positions of our simulated spectra and
INS data are due to the fact that in our model we are not taking into account different
coupling constants for O-based and F-based exchange bridges.

Cluster JCr-Cr JCr-M dCr eCr dM eM

(K) (K) (K) (K) (K) (K)
Cr7Zn 20 � -0.26 -0.09 � �

Cr7Mn 20 12 -0.26 -0.09 0.06 -0.008

Cr7Ni 20 30 -0.26 -0.09 -6 �

Table 6.1: Spin Hamiltonian parameters of Cr7M rings from INS and EPR.

In order to simulate properly the measured spectra we have also take into account the
instrumental resolution (see Section 2.1.2): High-resolution data can be effectively de-
scribed by gaussian-shaped peaks with σ given by the instrumental resolution, whereas
in high-energy data the J-strain1 leads to an increase of the width of the magnetic peaks.

In Fig. 6.5 we report the energy spectra of Cr7Zn, Cr7Mn and Cr7Ni respectively, cal-
culated with Eq. 6.1 taking into account exchange interactions only. From the spectra we
can see that all the rings have the same magnetic ground state as their green analogues:
S = 3/2 for Cr7Zn, S = 1 for Cr7Mn and S = 1/2 for Cr7Ni, well separated in energy
(more than 10 K) from the first excited muliplet. We can also easily identify a parabolic
band, formed by states with minimal energy for each S value. The levels belonging to

1The J-strain is due to the presence in the sample of slightly different rings with slightly different exchange
constants J.
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Figure 6.5: From top to bottom: energy spectra of Cr7Zn, Cr7Mn and Cr7Ni purple rings, calcu-
lated with Eq. 6.1 taking into account exchange interactions only.
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Figure 6.6: Energy spectrum obtained with Eq. 6.1 and the parameters in Tab. 6.1 for Cr7Mn
purple ring. The arrows identify the the transitions extracted from INS spectra labeled with the
corresponding energy.

this parabolic band have energies that closely follow the Landé interval rule:

ES = ∆10 [S(S + 1)− S0(S0 + 1)] / [S1(S1 + 1)− S0(S0 + 1)] , (6.2)

where S0 is the spin of the ground state and ∆10 is the energy of the first excited multi-
plet, with spin S1 > S0.

Figure 6.7: Energy spectrum obtained with Eq. 6.1 and the parameters in Tab. 6.1 for Cr7Ni
purple ring. The arrows identify the the transitions extracted from INS spectra labeled with the
corresponding energy.
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Figure 6.8: Energy spectrum obtained with Eq. 6.1 and the parameters in Tab. 6.1 for Cr7Zn
purple ring. The arrows identify the transitions extracted from INS spectra labeled with the corre-
sponding energy.

If we also take into account the splittings due to local crystal field anisotropy we can
identify the initial and the final state of each magnetic transition in the INS spectra. In
Figs. 6.6 and 6.7 we report the low-energy spectra of Cr7Mn and Cr7Ni respectively,
where we have also labeled the transitions extracted from INS spectra with the corre-
sponding energy. Indeed, Cr7Mn and Cr7Ni have very similar high-energy spectra. In
both rings the most intense peak corresponds to a transition involving the ground state
and the first excited multiplet of the parabolic band (black arrows). The main peak in
the Cr7Mn spectrum is at E ∼ 1.5 meV = 17.4 K and it involves levels of the S = 1 ground
state and of the S = 2 first excited multiplet, which are both split by anisotropy effects
(see Fig. 6.3-left panel). Cr7Mn also has an intra-multiplet transition at E ∼ 0.06 meV =
0.7 K within the S = 1 ground state (blue arrow). The main peak of Cr7Ni spectrum is
at about E = 1.5 meV = 17.4 K too (see Fig. 6.4) and it involves the S = 1/2 ground state
doublet and the two levels of the S = 3/2 multiplet (respectively with M = ±1/2 and M
= ±3/2), which are split by crystal field anisotropy effects, as we can easily see from the
high-resolution spectrum in Fig. 6.4-right panel. In both Cr7Mn and Cr7Ni spectra other
peaks at higher energies (E = 2.3 meV = 26.7 K and E = 2.5 meV = 72.5 K respectively)
appear by increasing the temperature, involving the first excited and the second excited
multiplet of the parabolic band (red arrows).

Fig. 6.8 reports the low-energy spectra of Cr7Zn and the transitions extracted from
INS spectra. Cr7Zn low-resolution/high-energy spectrum (see Fig. 6.2-left panel) shows
a main transition at E∼ 2.3 meV = 26.7 K, involving the S = 3/2 ground state and the first
excited multiplet of the parabolic band with S = 5/2, which are both split by anisotropy
effects and separated by an high energy gap (black arrow in Fig. 6.8). There is another
transition at E ∼ 1.04 meV ∼ 12 K (red arrow in Fig. 6.8), involving the ground state
and the the first excited multiplet with S = 1/2. By increasing the temperature another
peak appears in the spectrum, involving the first excited multiplet with S = 1/2 and the
first excited one with S =3/2 (E ∼ 1.65 meV ∼ 19.15 K, green arrow ). Cr7Zn also has an
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intra-multiplet transition at E ∼ 0.09 meV = 1.04 K within the S = 3/2 ground state (blue
arrow).

A stringent test for the spectroscopic assignment of the observed transitions is pro-
vided by the Q dependence of their intensity, which is essentially determined by the
geometry of the cluster and the composition of the spin wave functions. In Figs. 6.9 and
6.10 we report the Q dependence of the main magnetic transition of Cr7Mn and Cr7Ni
respectively. Experimental data (scatter) are compared with our calculations (solid lines)
obtained with Eq. 2.18. In both rings peaks at E ∼ 1.5meV correspond to excitations in-

Figure 6.9: Q dependence of the main peak at E = 1.5 meV appearing in the Cr7Mn inelastic spectra
shown in Fig. 6.3-left panel, compared with theoretical estimates (solid lines) at two different
temperatures T = 1.8, 7 K.

Figure 6.10: Q dependence of the main peak at E = 1.52 meV appearing in the Cr7Ni inelastic
spectra shown in Fig. 6.4-left panel, compared with theoretical estimates (solid lines) at T = 2 K.

volving adjacent levels of the parabolic band. Indeed they have similar Q dependencies,
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with an oscillatory behavior and a pronounced maximum at a Q value related to the ra-
dius of the ring [145, 67]. Q dependencies data are well reproduced by our calculations,
obtained with the parameter reported in Tab. 6.1, thus confirming our description and
the assignment of the observed magnetic transitions.

6.1.3 Specific Heat and EPR

The description of AF purple rings obtained with Eq. 6.1 and the parameters in Tab. 6.1
from the comparison with INS data have been refined by comparing our calculations
with EPR measurements and confirmed by specific heat data (specific heat experiments
have been performed on Cr7Zn and Cr7Mn only, data on Cr7Ni purple ring have already
been published in Ref.[143]). In Figs. 6.11 and 6.12 we report both EPR (left panel) and
specific heat (right panel) data for Cr7Zn and Cr7Mn respectively. In Fig. 6.13 Cr7Ni
purple ring EPR data (left panel) are compared with Cr7Ni green ring EPR results.

EPR measurements on polycrystalline powders of Cr7M purple rings (see Figs. 6.11,
6.12 and 6.13, left panels) are well reproduced by the Spin Hamiltonian in Eq. 6.1 and
parameters in Tab. 6.1 exploiting Eq. 2.67, as we can evince from the comparison of
experimental data (black lines) and our calculations (red lines). Analysis of the EPR
data allows an estimate of local crystal field parameters, in particular the rhombic ones
reported in Tab. 6.1, and of the gyromagnetic tensor components. 5.1 and 5.2

Cr7Zn purple Q band spectrum can be well reproduced considering an isotropic Cr
gyromagnetic tensor gxxCr = gyyCr = gzzCr = 1.98, as expected for Cr3+ ions. The Q band
spectrum (ν = 34.1212 GHz) contains a large number of features, showing contributions
from ground state and first excited total-spin multiplets, with a sharp resonance at B ∼
1.2 T, close to g = 2. To reproduce all the features of the spectrum it is necessary to as-
sume a rhombic parameter eCr = -0.09 K ∼ 1/3 dCr. The large rhombic character which
emerges from the fit of EPR data was not found in green rings, where local crystal fields
have axial symmetry (see results reported in Sections 5.1 and 5.2). This difference is
likely to reflect a different site-dependence of the actual principal axes of the local crys-
tal field, rather than an intrinsically larger local rhombicity. These axes are assumed to
be site-independent in our model Hamiltonian. This is a good approximation in green
rings, where the local easy-axis of Cr ions is always close to z. Conversely, the envi-
ronment of Cr ions in purple rings is much less regular, and local easy-axes are likely
to lie along very different directions. In our Hamiltonian principal axes are assumed
site-independent and with easy-axis perpendicular to the ring. The large rhombic terms
which we find in this common reference frame might then simply reflect a large tilt of
some of the actual local easy axes with respect to z. Thus, our model Hamiltonian must
not be seen as an actual faithful representation of the local crystal fields. but rather as
an effective model with the minimal number of free parameters. In fact, in EPR data
anisotropy is sensed mainly through the first-order splitting of the low-lying S = 3/2
multiplet, and two parameters are enough to fully characterize this splitting. Consid-
ering only one dCr and one eCr, our results represent an ”averaged” anisotropy, coming
from ligand cages of the ”green type” (eCr = 0) and other possible local configurations
where eCr can be similar or even larger than dCr. In addition, the EPR spectrum of Cr7Zn
shows contribution from the ground state multiplet S = 3/2 and from the first excited
one with S = 1/2. The latter, since S-mixing effects are small, is an isotropic multiplet
and is not affected by crystal fields effects due to dCr or eCr. Thus, anisotropy effects in
low temperature properties of Cr7Zn come from the ground state anisotropic quartet S
= 3/2. When we take into account a single total-spin multiplet, EPR spectra can be cal-
culated including crystal field effects with the weighted sum given by Eq. 5.5 and thus
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Figure 6.11: Left panel: Experimental (black line) and calculated (red line) EPR Q band (ν =
34.1212 GHz) at T = 5 K of Cr7Zn purple ring. Right Panel: specific heat of Cr7Zn purple ring as a
function of temperature for different applied magnetic fields.

Figure 6.12: Left panel: Experimental (black line) and calculated (red line) EPR Q band (ν =
34.1580 GHz) at T = 5 K of Cr7Mn purple ring. Right Panel: specific heat of Cr7Mn purple ring as
a function of temperature for different applied magnetic fields.

are not sensitive to differences between local anisotropies. Future ab initio calculations
[146] will allow us to confirm this scenario and to have a deeper insight onto local crystal
fields of purple rings.

Cr7Mn purple Q band spectrum can be well reproduced considering an isotropic
gyromagnetic tensor for both Cr and Mn gxxMn = gyyMn = gzzMn = 2, as expected for S ions like
Mn2+. In order to reproduce all the features of the spectrum we have to include also a
small rhombic parameter to the local crystal field of the Mn ion, eMn = -0.008 K.

The Cr7Ni purple ring spectrum is characteristic of a ground-state doublet (Fig. 6.13-
left panel), with lines sharper than those measured in Cr7Ni green (Fig. 6.13-right panel):
This might be due to the F-substitution, that reduces the hyperfine-induced decoherence.
Since the spectrum involve the ground state doublet only, it doesn’t give us enough in-
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Figure 6.13: Experimental (black line) and calculated (red line) EPR Q band (ν = 34.1587 GHz) at
T = 5 K of Cr7Zn purple (left panel) and green ring (right panel).

formation to determine the rhombic parameter of the Ni ion, which have been set to
zero. The spectrum can be reproduced by assuming a slightly anisotropic Ni gyromag-
netic tensor: gxxNi = gyyNi =2.16 and gzzNi = 2.22.

Specific heat of the two Cr7M purple rings has been measured at low-temperature
and with different applied magnetic fields. Theoretical curves have been calculated as:

C

R
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∑
iE

2
i e
−βEi

∑
i e
−βEi −

(∑
iEie

−βEi
)2

(
∑
i e
−βEi)

2 , (6.3)

where the sums run over all the eigenvalues of the Spin Hamiltonian in Eq. 6.1 with the
parameters of Tab. 6.12. We have also taken into account the vibrational contribution to
the specific heat, calculated as:

Cvib
R

(T ) =
243rT 3

(Θ + δT 2)3
, (6.4)

where r is the number of atoms per molecule and ΘD = Θ + δT 2 is the Debye temper-
ature. Graphs in Figs. 6.11 and 6.12 show that with the Spin Hamiltonian parameters
obtained from the comparison with INS and EPR data we can also simulate specific heat
measurements with a very good agreement with experiments. At high temperature the
vibrational contribution to the specific heat dominates in both rings. At low fields (B = 0
- 0.5 T) Schottky anomalies are visible for both Cr7Zn and Cr7Mn below T = 1 K, which
are mainly due to intra-multiplet energy splittings in the ground states. By increasing
the magnetic field, Schottky anomalies move to higher temperatures and become less
sharp, due to further splittings induced by higher magnetic fields.

6.1.4 Conculsions

Cr7Zn, Cr7Mn and Cr7Ni purple rings have been completely characterised. Magnetic
transitions have been measured with inelastic neutron scattering in polycrystalline sam-

2For specific heat calculations we have assumed isotropic g tensors: gCr = 1.98 and gMn = 2.
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ples. Spin Hamiltonian parameters have been determined from the comparison of our
calculations with INS data. The spectroscopic assignment of the main magnetic transi-
tions have been confirmed by the Q dependence of the INS peaks for Cr7Mn and Cr7Ni.
The set of parameters obtained from INS have allowed us to reproduce also EPR and
specific heat measurements with a very good agreement between experiments and cal-
culations. From EPR data we have also determined gyromagnetic tensor components.

Purple rings have the same structure of the energy spectra shown by their green ana-
logues: They have the same magnetic ground state and the states with minimal energy
for each S values form a parabolic band, which closely follows the Landé interval rule.
Purple rings are characterised by stronger exchange interactions (both for Cr-Cr and Cr-
M couplings), inducing wider gaps between different total-spin multiplets. Local crystal
field parameters in purple rings have the same order of magnitude as in green ones, lead-
ing to similar intra-multiplet splittings. However they have a stronger rhombic character
due to the lower symmetry of the local surrounding of Cr3+ ions.

As we will explain in the following section, purple and green rings can be also di-
rectly linked together. Thus, this characterization of single purple rings represents a first
step in the description of these new purple-green entangled dimers.

6.2 Entanglement in a Cr7Ni purple - Cr7Ni green Dimer

In this Chapter we start the characterization of a new family of entangled AF rings.
These new super-molecular clusters are obtained by linking a green and a purple single
rings together. As already explained in the introduction of this chapter, the AF exchange
coupling between two such rings is tailored by super-molecular chemistry and is small
enough to leave unaltered the magnetic properties of each ring but sufficiently large to
induce finite-temperature entanglement in experimentally reachable conditions. Cr7Ni
green dimers have been already synthesized and characterised [21]. The novelty of Cr7M
purple ring is that the rings can be directly linked together without requiring additional
magnetic ions in the linker. In the Cr7Ni purple dimer, for instance, the magnetic cou-
pling between the rings arises from the pyridyl groups that link directly the Ni ions [143].
As we can see form Fig.6.14, in purple-green dimers the divalent MII ion of the purple
ring directly interact with the M ion and with a Cr ion of the green one.

All the possible combinations of Cr7M purple - Cr7M’ green dimers have been syn-
thesized (with M,M’ = Zn, Mn or Ni). In the following we start our investigations on
these new dimers from the characterization of Cr7Ni purple-green dimer. Magnetic
properties of Cr7Ni green rings have been already widely investigated. As reported
in the previous section, Cr7Ni purple ring has been completely characterised from INS,
EPR and specific heat data. Since the coupling between the rings is small enough to leave
unaltered the magnetic properties of each ring, from the comparison of our calculations
with EPR and specific heat measurements we can determine the AF exchange interaction
between the two rings.

6.2.1 Theoretical Description

Purple and green single rings are described by Eqs. 6.1 and 5.2 respectively. The micro-
scopic intermolecular coupling between the two rings in the dimer is described by an
isotropic Heisenberg term given by:

Hpg = Jpgs
p
Ni · (s

g
Ni + sgCr) , (6.5)
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Figure 6.14: Molecular structure of a Cr7M purple-green dimer: magenta = Cr, green = M (Zn,
Mn, Ni), red = O, yellow = F. The dimer is obtained by linking a green (left) and a purple (right)
single rings. The divalent MII ion of the purple ring interact with the M ion and with one Cr ion
of the green one.

where sni are single ion spin operators of the ith ion of the ring n, projected onto the
product Hilbert space Hp ⊗Hg .

In order to calculate the low-energy properties of the dimer, we first diagonalize
the single-ring Hamiltonian. The coupling Hamiltonian Hpg is then represented on the
product basis |ip〉 ⊗ |jg〉, being |ip〉 and |jp〉 the single-ring eigenstates of the respective
Hamiltonians. Since Jpg � JCr-Cr, JCr-Ni of both rings, the low-energy eigenstates are
well approximated by truncating the product basis to include only the two lowest-lying
multiplets of the single rings.

The presence of a sizeable exchange interaction between the two rings leads to en-
tangled states for the super-molecular dimer. States that cannot be written as product
states, are entangled states. Thus, if a generic state of the dimer can be written as:

|ψ〉pg =

(∑
i

ci|ip〉

)
⊗

∑
j

cj |jg〉

 , (6.6)

where |ψ〉p =
∑
i c
p
i |ip〉 and |ψ〉g =

∑
j c
g
j |jg〉 are states of the single rings, the state is not

entangled.

6.2.2 EPR and Specific Heat

In Fig. 6.15 we report EPR (left panel) and specific heat (right panel) measurements
and calculations for Cr7Ni purple-green dimer. Specific heat theoretical curves have
been calculated with Eqs. 6.3 and 6.4, while for the EPR spectrum simulations we have
exploited Eq. 2.67. As we can see from the graphs, both data set can be well reproduced
with the well-known single ring Hamiltonians in Eqs. 6.1 and 5.2 and with a Jpg = 0.75 K
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Figure 6.15: Left panel: Experimental (black line) and calculated (red line) EPR Q band (ν =
34.1587 GHz) at T = 5 K of Cr7Ni purple-green dimer. Right Panel: specific heat of Cr7Ni purple-
green dimer as a function of temperature for different applied magnetic fields.

for the exchange Hamiltonian in Eq. 6.5, thus demonstrating the presence of an effective
interaction between the two rings. Furthermore, if we compare the EPR spectrum in
Fig. 6.15 with single ring spectra in Fig. 6.13, we can see that the dimer spectrum shows
new features in respect to the mere sum of the two single rings spectra. These EPR
and specific heat measurements can be therefore considered as a first evidence of the
entanglement between the two dimers.

Figure 6.16: Left panel: Magnetic field dependence of the lowest-lying energy levels of the Cr7Ni
purple-green dimer. Right Panel: energy of the ground state multiplet as a function of the applied
magnetic field.

In Fig. 6.16 we show the calculated energy levels of the Cr7Ni purple-green dimer
as a function of the applied magnetic field. In the low-energy spectrum there are three
distinct groups of levels (see Fig. 6.16-left panel). The lowest-lying ones correspond to
states where both rings are in their S = 1/2 ground states: Thus, the ground state of
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the dimer is a S = 1 state, split by single rings anisotropies into |S = 1,M = ±1〉 and
|S = 1,M = 0〉 states, with a first excited singlet S = 0 (see Fig. 6.16-right panel). The
|S = 1,M = 0〉 and the S = 0 states are entangled Bell states. In fact, they can be written
as:

|S = 1,M = 0〉 =
1√
2

(| ↑〉| ↓〉+ | ↓〉| ↑〉) (6.7)

|S = 0〉 =
1√
2

(| ↑〉| ↓〉 − | ↓〉| ↑〉) ,

where | ↑〉 and | ↓〉 are the spin-up and spin-down states of the S = 1/2 ground state
of each ring. At higher energy there are two other groups of levels: The levels of the
second group correspond to states where one ring is still in its S = 1/2 ground state and
the other one is in the first excited multiplet S = 3/2, whereas the levels of the third group
are states where both rings are in the first excited multiplet S = 3/2.

6.2.3 Conclusion

Cr7Ni purple-green dimer has been studied and characterised. EPR and specific heat
measurements have allowed us to estimate the AF exchange interaction between the
two rings. The very good agreement of our calculations with experimental data demon-
strates the presence of an effective interaction between the two rings, leading to entan-
gled states for the super-molecular dimer. This analysis represents a first step in the
characterization of these new family of dimers. Other combinations of Cr7M purple -
Cr7M’ green dimers, already synthesized, will be investigated and new measurements
and calculations will be performed, in order to describe and quantify the entanglement
in these super-molecular systems and to study their application in the field of quantum
computation.
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In this Thesis magnetic properties, spin and relaxation dynamics of Molecular Nano-
magnets (MNMs) have been investigated. MNMs have been described with the Spin
Hamiltonian theoretical approach and their relaxation dynamics have been studied with
the Master Equations formalism. Specific Fortran90 codes have been developed in or-
der to build the Spin Hamiltonian of each system with the irreducible tensor operators
technique and different diagonalization methods have been implemented. Relaxation
dynamics have been investigated by assuming a magneto-elastic spin-phonon coupling
within these molecules, which is responsible for an irreversible dynamics toward equi-
librium, described by Rate Master Equations. Several experimental technique have been
applied to the study of these molecules: Inelastic neutron scattering (INS), nuclear mag-
netic resonance (NMR), electron paramagnetic resonance (EPR) and X-rays magnetic
circular dichroism (XMCD). In this Thesis proper computational techniques have been
developed in order to simulate the experimental behavior of MNMs. In fact, from the
comparison of theoretical calculations with experimental data it is possible to obtain the
parameters of the Spin Hamiltonian and to study static and dynamical properties of the
system.

In particular, we have studied frustration induced properties in MNMs, since geo-
metrical magnetic frustration due to competing antiferromagnetic (AF) interactions is at
the origin of many exotic phenomena. We have analysed the static and dynamical mag-
netic properties of the Ni7 molecular nanomagnet, which has been an excellent model
system to investigate the effects of magnetic frustration. The latter leads to a magne-
tization process displaying two double jumps, associated with multiple level crossings
induced by the external field, involving states with three different total-spin quantum
numbers (whereas in other MNMs crossing involves only two states). We have also
verified that if we include crystal field anisotropy the crossings turn into anticrossings.
Physically this effect corresponds to quantum oscillations of the total-spin length among
the three different values, which could be detected by measuring the macroscopic torque
at the anticrossing fields. We have also analysed Ni7 relaxation dynamics induced by
the spin–phonon coupling. The temperature and field dependence of these dynamics is
again atypical and reflects the large degeneracies induced by frustration of the underly-
ing energy levels.

With the study of the three cluster Fe7, Fe6 and Mn6 we have shown how AF com-
peting interactions lead to low-spin ground states and low-lying excited levels. Further-
more, we have investigated the phonon-induced relaxation dynamics of the Fe7 cluster,
to study the effects of competing AF interactions on the spin dynamics of MNMs. We
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have found that several relaxation times contribute to the decay of the molecular mag-
netization of Fe7 even at low temperature. We have also verified the multiple-times
character of the relaxation dynamics is a direct consequence of the structure of the en-
ergy spectrum and that it is due to the topology of the competing AF interactions. We
have measured the temperature dependence of its spin-lattice relaxation rate 1/T1 by
1H NMR measurements, in order to determine the spin-phonon coupling strength and
to set the scale factor of the relaxation dynamics timescales. We have also developed a
model to calculate the nuclear spin-lattice relaxation rate 1/T1 taking into account also
the wipeout effect.

MNMs can also display an enhanced magnetocaloric effect (MCE) and they are con-
sidered promising materials for magnetic refrigeration. Within the established recipe
to synthesize MNMs with an enhanced MCE, clusters with competing AF exchange in-
teractions are among the best candidates, together with 3d-4f heterometallic complexes,
due to their large maximal entropy variation ∆Smax. The crucial point of our work has
been to show that even if ∆Smax is large it is not obvious that it can be fully exploited
in refrigeration cycles. In this work we have considered explicitly Carnot cycles and
performed calculations in ideal model systems to understand the characteristics of a
MNM yielding an efficient MCE between T = 10 K and the sub-Kelvin region. We have
demonstrated that the best molecular MCE refrigerants in this temperature range are
those based on molecules containing magnetic ions strongly ferromagnetically coupled,
contrarily to the common belief. Hence, molecules without RE ions can be excellent
magnetocaloric materials.

In this Thesis another important sub-group of MNMs have been studied: AF rings.
We have carried on the investigation of Cr7Ni green cluster. Cr7Ni is a very promising
system to encode a qubit, since it behaves as an effective spin 1/2 at low temperature and
can be manipulated in times much shorter than the measured decoherence time. In this
work we have studied Cr7Ni with 53Cr-NMR, with the aim of establishing the distribu-
tion of the local spin density in the ring. Indeed the latter plays a key role in the scheme
proposed for obtaining time dependent qubit–qubit couplings in the presence of perma-
nent exchange interactions between two AF rings. 53Cr-NMR signal observed at high
magnetic field values and at T = 1.6 K on Cr7Ni is in excellent agreement with the local
magnetic moments calculated theoretically. The local spin density distribution in Cr7Ni
is rather uniform, with a staggered spin configuration along the ring. Furthermore, from
the comparison between results with two orthogonal directions of the applied magnetic
field we have evinced that the Cr3+ spins are characterized by a sizable local easy-axis
anisotropy.

Cr7Ni AF rings can be also successfully grafted on surfaces in an ordered fashion.
We have investigated the origin of magnetic anisotropy of these rings using XMCD
compared with our theoretical calculations. Deep analysis of the angular dependence
of XMCD spectra of ordered monolayers of Cr7Ni rings have allowed us to elucidate
the relationship between the magnetization of the single ions and that of the entire
molecule. Experimentally, at 8 K and 5 T, the magnetic moment of Ni tends to align
along the axis perpendicular to the ring plane, whilst the total magnetic moment of the
molecule prefers to align within that plane. This apparent discrepancy is due to the fact
both Ni and single-Cr magnetic moments have easy-axis anisotropy. Projecting these
anisotropies on the S = 3/2 multiplet, which dominates in our experimental conditions,
we obtain an easy-plane anisotropy for the magnetization of the whole molecule, in per-
fect agreement of our experimental findings. Experimental and theoretical results have
evidenced a weak anisotropy of the magnetic moments at the Cr sites, that is a further
element for the easy manipulation of the molecular spin as required for the use of these
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molecular spin clusters for quantum information processing.
In the last part of this Thesis we have introduced AF purple rings and Cr7Ni purple-

green dimers. Cr7M (M = Zn, Mn, Ni) purple rings have been originally synthesized
in order to facilitate the linking of two or more AF rings. Furthermore, the substitu-
tion of bridging fluorides of green rings with alkoxide groups in purple ring can reduce
the hyperfine-induced decoherence , making them attractive candidates for applications
in quantum-information processing. Cr7Zn, Cr7Mn and Cr7Ni purple rings have been
completely characterized. Intra-multiplet and inter-multiplet magnetic transitions have
been measured with INS in polycrystalline samples. Spin Hamiltonian parameters have
been determined from the comparison of our calculations with INS and EPR data and the
same set of parameters have allowed us to reproduce also specific heat measurements
with a very good agreement between experiments and calculations. From EPR data we
have also determined gyromagnetic tensor components. Purple and green rings can be
also directly linked together. Thus, the characterization of single purple rings represents
a first step in the description of these new purple-green entangled dimers. EPR and spe-
cific heat measurements on Cr7Ni purple-green dimer have allowed us to estimate the
AF exchange interaction between the two rings. The very good agreement of our cal-
culations with experimental data demonstrates the presence of an effective interaction
between the two rings, leading to entangled states for the super-molecular dimer.
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