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I. INTRODUCTION 

 

I.1. Molecular mechanisms governing neurosecretion competence 

 

I.1.1. REST/NRSF regulation of neurogenesis 

 

REST (also known as NRSF), a transcription repressor identified 

simultaneously by two laboratories in 1995 (Chong et al., 1995; Schoenherr and 

Anderson, 1995), was first recognized as the controller of a few neural cell-specific 

genes and then proposed to play the role of the master gene in the neuron 

differentiation program (Ballas and Mandel, 2005). The level of REST is high in stem 

cells and in non-neural cells, and this prevents the expression of many genes specific 

of neural cells. These genes, together with additional genes also repressed by REST, 

include in their promoter, or in other regulatory areas, one or more sequences known 

as RE-1, specific for the REST binding.  

 

 

 

 

The REST complexes repress neurogenesis by targeting and blocking the 

transcription of their substrates (from Coulson et al., 2005) 
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Bound REST works as a scaffold at two sites located near its N and the C termini, 

permitting the binding of co-factors and of numerous enzymes. Almost two thousand 

genes,  potential targets of REST, might thus be repressed in their transcription (Bruce 

et al., 2004; Otto et al., 2007). 

During differentiation of neural precursors, the level of the repressor drops due 

primarily to the increase of its proteasomic turnover, and this changes the state of the 

REST-dependent genes, making  possible the expression of hundreds of them. (See 

the detailed Figure-Abstract here above). 

 

I.1.2. The role of REST in cell function: from the molecular to the cellular studies. 

 

Extensive studies carried out since the discovery of REST revealed a number of 

interesting properties of the neuron differentiation and of the mechanisms involved in 

the latter process (reviews: Ballas and Mandel 2005; Ooi and Wood, 2007; 

Majumder, 2006). Concomitantly, REST was shown to play a critical role in the 

growth of tumors, not only neural, but also non-neural (reviews: Majumder, 2006; 

Tomasoni, Negrini et al., 2013). These studies, however, were mostly focused on 

molecular processes such as gene expression and its control. No major interest was 

paid to the role of REST in cell biology, in particular in the integrated processes that 

sustain the functioning of neural cells.  Indeed, only one such process, i.e. 

neurosecretion, was investigated in detail. In 2006 the group of Neal Buckley (Bruce 

et al., 2006) reported that the phenotype of the neurosecretory cell PC12, a 

pheochromocytoma cell similar to chromaffin cells (Greene and Tischler, 1976), was 

profoundly affected by the transfection of REST constructs, with down regulation of 

141 genes including a few coding for proteins of the secretory process, such as the 

two chromogranin cargo proteins  and one SNARE, SNAP25. The direct control of 

REST on these events was confirmed by the decrease, in the cells stably transfected 

with a repressor, of the dense-core vesicles, typical of catecholamine-secreting cells, 

and by the rescue of some repressed genes in these stably transfected cells re-

transfected with a dominant negative construct of the repressor. 
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I.2. The PC12 cell model 

 

I.2.1  Neurosecretion is a REST-dependent process.   
 

PC12 are peculiar in many respects (Greene and Tischler, 1976). Years ago 

their well known heterogeneity was shown to include clones that miss spontaneously 

the dense-core vesicles (Corradi et al., 1996; Pance et al., 1999). Pance et al. (2006), 

by studying one such defective clones, were able to find properties analogous to the 

PC12 transfected with the REST constructs of Bruce et al. (2006). However they 

failed to observe any rescue of the neurosecretory phenotype upon expression in the 

defective cells of dominant-negative REST constructs. The subsequent studies of 

D’Alessandro et al. (2008), carried out by the comparison of a wild-type clone of 

PC12 (referred to from here-on as wtPC12) with the defective PC12-27 clone initially 

characterized by Corradi et al.,  demonstrated that numerous neurosecretion genes are 

repressed by REST; that transfection of REST in the wtPC12 induced the repression 

of these genes accompanied by a decrease of the dense-core vesicles to 20% of their 

usual size; that the dominant negative construct of REST, when accompanied by the 

inhibitor of histone deacetylase, trichostatin A, did induce the rescue not only of 

single neurosecretion proteins but of whole dense-core vesicles (DCVs) that were 

discharged by exocytosis upon increase of the cytosolic Ca
2+

concentration. In 

conclusion, therefore, although some aspects of the process were still unclear, the 

cellular process neurosecretion was shown conclusively to be governed by REST. 

 

I.2.2    PC12-27 as a  high REST neural cell model  

 

In the course of a study on the heterogeneity of the PC12 cell line, a clone was 

isolated (named PC12-27: Clementi et al., 1992) that, although retaining various  

aspects of the neuroendocrine phenotype, is incompetent for regulated neurosecretion. 

Morphological, biochemical and molecular investigations of this clone (Corradi et al., 

1996; Borgonovo et al., 1998) provided evidence of its lack not only of both types of 

secretory vesicles, the clear vesicles and the DCVs (as shown in Figure 1), but also of 

components of the neurosecretory machinery, e.g. the SNARE proteins (syntaxin 1, 

SNAP 25 and VAMP2), the granins (chromogranin B-CgB- and secretogranin 2- 

SgII), and the Ca
2+

-sensor (synaptotagmin 1), together with the catecholamine uptake 
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and release processes. In contrast, the components of the other structures in the 

secretory pathway (i.e. ER, Golgi cisternae and TGN) were all apparently unchanged. 

Moreover, the ER-Golgi-TGN transport of proteins and the constitutive line of 

secretion were functional (Malosio et al., 1999). 

 

 

 

Figure 1. Ultrastructure of PC12-27 and wt PC12 cells processed by the quick 

freezing-freeze drying procedure (Grohovaz et al., 1996) (from Malosio et al., 

1999).  
The figure illustrates the electron microscopy of defective PC12-27 (A), where the 

cytoplasmic layer adjacent to the plasmalemma is devoid of vesicular profiles, and of 

wtPC12 (B) where the same layer contains many typical DCVs. Clear vesicles are 

present in wtPC12, however they cannot be identified without immunolabeling. Cells 

were processed by the quick freezing-freeze drying procedure (Grohovaz et al., 

1996). 

 

 

 Wild-type PC12 PC12-27 

ER markers:   

BiP + + 

calreticulin + + 

calnexin + + 

Golgi complex markers:   

mannosidase II + + 

βCOP + + 

Rab 6 + + 

Neurosecretion markers:   

Cytoskeleton:   

A 

B 
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neurofilament H subunit + + 

N-kinesin + + 

synapsin I + + 

Signaling:   

α-latrotoxin receptor + + 

N-type Ca
2+

 channel + + 

XLαs G protein + + 

tyrosine hydroxylase + + 

DCGs and cklear vesicle 

markers: 

  

DβH + - 

vAChT + - 

chromogranin B + - 

secretogranin II + - 

synaptophysin + - 

VAMP2 + - 

synaptotagmin I + - 

t-SNAREs:   

syntaxin 1A + - 

SNAP25 + - 

SNARE regulators:   

rbSec1/munc18 + - 

rab3A + - 

Membrane recycling:   

AP180 + - 

AP2 + + 

dynamin + +/- 

synaptojanin + + 

amphyphysin + + 

 

 

Table 1. Expression of markers of the ER, Golgi, DCGs, clear vesicles and of 

various properties of neurosecretory cells in the wtPC12  and PC12-27 clones 

(from Malosio et al., 1999) 

 

The REST dependence of neurosecretion, a typical process of neural cells, was 

not surprising. The project of my work in the laboratory was to investigate whether 

the REST dependence was limited to that process or concerned also other functions of 

PC12 cells. For these studies the laboratory did use the same wtPC12/PC12-27 clone 

model employed by D’Alessandro et al. in 2008. Our approach consisted in the 

comparative analysis of a typical neural cell clone, with the usual very low level of 

REST,  and of another PC12 clone,  with a REST level 50-80 fold higher. As already 

mentioned, these clones had been characterized in detail in previous studies (Clementi 
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et al., 1992; Corradi et al., 1996; Borgonovo et al., 1998; Malosio et al., 1999; 

D’Alessandro et al., 2008). Therefore they were a very favorable model for our 

investigation.  

 

 

I.2.3. Two new processes governed by REST: proliferation and NGF signaling/ 

neurite outgrowth. 

My study was focused in sequence on two functions, proliferation and neurite 

outgrowth. Mature neurons do not proliferate, however the other neural cells do 

during their whole life. Thus, low REST, which is shared by all neural cells, does not 

seem to prevent the process. The question investigated was whether REST has 

anything to do with proliferation and, in case, what are the mechanisms of its effects. 

Neurite outgrowth is in contrast a typical property of neural cells, taking place in 

response to appropriate growth factors. Beginning with the first paper dealing with the 

isolation of PC12 (Greene and Tischler, 1976), hundreds of papers have investigated 

the neurite outgrowth induced by long-term exposure to NGF. Among these papers 

was the paper by Leoni et al. (1999) demonstrating that PC12-27 cells lack this 

property. For quite some time the defective neurite outgrowth of PC12-27 cells  was 

attributed to the lack of the tyrosine kinase receptor of NGF, TrkA. A detailed 

investigation of the problem, however, had never been done. 

 

The results reported in this thesis bring new evidence in both the already 

mentioned areas, proliferation and NGF signaling. PC12-27 cells were found to grow 

much faster than the wtPC12, and this property was shown to depend on REST, due 

however to a mechanism different from the usual transcription repression, i.e. a 

posttranscriptional decrease of the GAP protein TSC2. The latter decrease is shown to 

operate not via the conventional TSC2 signaling way, i.e. via the decreased inhibition 

of Rheb and, as a consequence, via the increased activity of mTORC1. Rather, the 

decreased TSC2 induced by high REST is shown to operate via a decreased turnover 

of -catenin, with increased transcriptional activity of the latter. TrkA, on the other 

hand, was found to be expressed at the same level in both the wtPC12 and the PC12-

27 cells. Part of the signaling triggered by the neurotrophin, i.e. that mediated by the 

ERKs 1 and 2, was the same in the two clones. Missing in the PC12-27 cells was in 
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contrast the other NGF receptor, p75
NTR

, whose gene was found to be a typical target 

of REST endowed with two RE-1 sequences in its promoter. This result was 

unexpected because the role of p75
NTR

 has been considered for long time to consist 

primarily in the increased affinity of TrkA for its ligand, NGF. Our results 

demonstrate that, in contrast, p75
NTR

 is needed for a critical step of TrkA signaling, 

i.e. the activation of the PI3K-Akt cascade. Moreover, such activation is shown to be 

necessary for the neurotrophin to induce neurite outgrowth to occur.  

 

In conclusion, the two projects of our research have demonstrated  the critical 

role of REST in two cellular processes, proliferation and neurite outgrowth,  in which 

the dependence on the repressor was unknown. In addition, they have revealed the 

mechanisms by which these effects of REST take place, bringing new information in 

two fields of great importance, the multiplicity of the TSC2-dependent cascades and 

the signaling at NGF receptors, important in general for all neural cells. 
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II. RESULTS  

 

In this thesis we will report the results of two research lines both concerning the 

role of REST in important cellular function, proliferation (section III) and neurite 

outgrowth (section IV) of neural cells. In both cases our studies have identified the 

molecular mechanisms involved. 

 

 

III. Differential proliferation of PC12-27 with respect wtPC12. 

 

To investigate the role of REST in proliferation, and subsequently in neurite 

outgrowth, we took advantage of two PC12 clones extensively characterized in our 

laboratory: wtPC12 and PC12-27 (Malosio et al., 1999; Grundschober et al., 2002). 

Whereas the first expresses the very low levels of REST typical of mature neural 

cells, the second spontaneously expresses levels of REST 50 fold higher 

(D’Alessandro et al., 2008). The low and high REST levels account for full or 

defective competence for neurosecretion, respectively (D’Alessandro et al., 2008). 

 

 

III.1.  Proliferation of PC12-27 cells is faster than that of wtPC12. 

 

In addition to their distinct neurosecretory competence, the two clones revealed 

clear differences in shape, size and cytoskeletal organization (Fig. 1A). wtPC12 cells 

exhibited the quasi-spherical phenotype typical of the cell line during growth (Greene 

and Tischler, 1976), whereas PC12-27 cells appeared larger, spread out and strictly 

adherent to the culture surface (Fig. 1A). The distribution of actin, which was ordered 

and concentrated in the cortical cytoplasm of wtPC12 was, by contrast, mostly spread 

in thick fibers running through the whole cytoplasm in PC12-27 cells. Paxillin, an 

adaptor protein of the complex linking the actin cytoskeleton to the plasma membrane 

integrins, was also differently distributed in the clones, being concentrated, in wtPC12 

cells, in many discrete, small and closely adjacent puncta over the basal 

plasmalemma; and, in PC12-27 cells, much larger structures, prominent especially in 

finger-like protrusions surrounding the cell profile of PC12-27 cells (Fig. 1A). The 
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differences in surface area of attached wtPC12 and PC12-27 cells were quantified by 

patch-clamp cell capacitance assay (Racchetti et al., 2010).  

 

 

 

Fig. 1. PC12-27 cells reveal larger size and surface compared with wtPC12 cells. 

(A) wtPC12 and PC12-27 cells, fixed and dually stained with antibodies against 

paxillin (left) and phalloidin–FITC conjugate (middle), were analyzed by confocal 

microscopy and image deconvolution. Nuclei were stained with DAPI. Images on the 

right were obtained by merging the three individual channels. Scale bar: 10 μm (B) 

The surface area of attached wtPC12 and PC12-27 cells was evaluated by whole-cell 

patch clamp capacitance (Cm) assays. Data shown, expressed in pF, are means ± 

s.e.m. of the results in 13 wtPC12 and 6 PC12-27 cells. (C) The volume of wtPC12 
and PC12-27 cells was evaluated by cytofluorimetry. Representative histograms of the 

forward scatter (FSC) (left) and means ± s.e.m. of quantified results of four 

independent experiments (right) are shown. MFI, means fluorescence intensity. 

 



Results 

 

10 
 

 

 

 
 

Fig. 2. Differential proliferation of wtPC12 and PC12-27 cells. (A) wtPC12 and 

PC12-27 cell proliferation was measured daily by viable Trypan-Blue-assisted 

counting of triplicate wells. The data shown are means ± s.e.m. of nine independent 

experiments expressed as fold increases in cell number versus day 3. Proliferation was 

revealed also by two additional techniques. (B) Flow cytometry of wtPC12 and PC12-

27 cells labeled with the CFSE fluorescent dye: a representative day 5 histogram (left) 

and means ± s.e.m. of quantified results in three experiments with replicate wells 

(right) are shown. (C) Immunofluorescence confocal microscopy of the same cells 

dually stained in the nucleus with anti-Ki67 pAb and DAPI. ***P<0.001; **P<0.01; 

*P<0.05. Scale bars: 10 μm 
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When compared with wtPC12, PC12-27 cells showed almost double 

capacitance values (22.7±3.7 versus 11.4±2.0 pF, corresponding to 1634 versus 892 

mm
2
) (Fig. 1B). Likewise, when the cells were analyzed by flow cytometry, PC12-27 

cells reproducibly showed a significantly larger forward scatter (FSC), which is 

proportional to cell size (Fig. 1C). 

We also noticed that PC12-27 cells reproducibly reached confluence faster than 

wtPC12 cells. To investigate the possibility that high levels of REST confer a 

proliferative advantage, we analyzed the two clones by daily, viable Trypan-Blue-

assisted counting and established their single cell division rates by the 5-(6)-

carboxyfluorescein succinimidylester (CFSE) dilution assay. Compared with wtPC12 

cells we found that, starting by day 4 after seeding, PC12-27 cells accumulated to 

higher numbers (Fig. 1D), and this was due to a faster rate of their division on a per 

cell basis (Fig. 1D,E).  

 

To exclude the possibility that PC12 cells entering senescence might contribute 

to the observed differences, expression of Ki67, a indicator of active proliferation, 

was investigated. Fig. 1F shows that Ki67 immunolabeling was intense and followed 

the distribution of chromatin in the nuclei of both wtPC12 and PC12-27 cells, 

characterized by small and large areas, respectively. This result supports the notion 

that the growth advantage of PC12-27 over PC12 cells (depicted in Fig. 2A) is caused 

by increased proliferation of the former, rather than by premature senescence of the 

latter. Thus, low and high REST-expressing PC12 cells show differences not only in 

neurosecretion (D’Alessandro et al., 2008), but also in cell size, shape and 

proliferation rate. 

 

 

III.2.  The faster proliferation rate of high-REST PC12-27 cells reflects 

downregulation of TSC2 and increased β-catenin co-transcriptional activity 

 

The general phenotype of PC12-27 cells, combined with their faster rate of 

proliferation, was reminiscent of the phenotype previously reported for HeLa cells 

defective of rictor (Sarbassov et al., 2004). Rictor is a member of the mammalian 

target of rapamycin protein kinase complex 2 (mTORC2). Knockdown of rictor 

results in a defect of mTORC2 accompanied by overstimulation of mTORC1 with 
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ensuing inhibition and activation, respectively, of the signaling cascades governed by 

the two mTOR complexes (Sarbassov et al., 2004). To investigate whether mTORCs 

have a role in wtPC12 and PC12-27 cells, we assayed the phosphorylation of target 

proteins downstream of the two complexes. S6 and 4E-BP1, commonly used as 

readouts of mTORC1 activity, were phosphorylated in both wtPC12 and PC12-27 

cells, however, to a higher extent in the latter. By contrast, phosphorylation of Akt at 

S473, a readout of mTORC2 activity, and of the Akt substrate, glycogen synthase 

kinase 3 (GSK3) at S9, was lower in the high-REST PC12-27 cells when compared 

with the low-REST wtPC12 cells (data not shown). 

 

 
 

Fig. 3. In high-REST PC12-27 cells, reduced TSC2 levels correlate with -catenin 

nuclear accumulation. (A) Lysates and (B) nuclear and cytosolic fractions of 

wtPC12 and PC12-27 cells were analyzed by SDS-PAGE and western blotting. -

tubulin and the histone H2b were used for normalization. Representative western 

blots, with molecular size markers (indicated here and in the following figures in 

kDa), are shown to the left; means ± s.e.m. of the results of three independent 

experiments quantified by densitometry, on the right. a.u., arbitrary units. 
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Thus, in PC12-27 cells, the signaling of both mTORC1 and mTORC2 appears 

to be deregulated. To establish whether the proliferative advantage of PC12-27 cells 

was dependent on the increased activity of mTORC1, we investigated the effect of the 

inhibitory drug rapamycin. In spite of the marked inhibition of the mTORC1 

phosphorylation, the proliferation of high-REST PC12-27 cells was largely insensitive 

to the drug (data not shown). Because of the well-known inhibitory action of 

rapamycin on mTORC1, and in spite of the caveats associated with the use of 

pharmacological tools, these results strongly suggest that the faster proliferation of 

PC12-27 cells depends only to a minor extent on the kinase. Because of this, 

mTORC1 was not investigated any further. We therefore turned our attention to the 

regulatory steps upstream of mTORC1. A main controller of the latter kinase is the 

tuberous sclerosis (TSC) complex, which is composed of two proteins, TSC1 and 

TSC2. The complex, by its binding to the small GTPase Rheb, inhibits mTORC1. 

Concomitantly, the TSC complex promotes mTORC2 signaling (Huang et al., 2008; 

Huang and Manning, 2009; Laplante and Sabatini, 2009). The TSC1–TSC2 complex 

can have an impact on cell proliferation through its positive control of the turnover of 

--catenin (Mak et al., 2003; Jozwiak and Wlodarski, 2006; Barnes et al., 2010). We 

thus investigated the expression of the TSC complex and -catenin in wtPC12 and 

PC12-27 cells. Although TSC1 levels did not differ to a significant extent (data not 

shown), TSC2 levels were consistently and significantly lower (–45%) in PC12-27 

compared to wtPC12 cells (Fig. 3A). 

This was due to posttranscriptional event(s), because Tsc2 mRNA levels were 

similar in wtPC12 and PC12-27 cells (data not shown). In line with reduced TSC2 

levels, expression of -catenin was higher in PC12-27 cells when compared with 

wtPC12 cells, with significantly higher distribution to the nucleus (Fig. 3B). This 

correlated with a higher -catenin-dependent transcriptional activity (revealed by a 

luciferase reporter assay, Fig. 4A) and with the higher expression of known -

catenin–TCF-LEF target genes Myc, Rest (Willert et al., 2002; Nishihara et al., 2003) 

and (to a lower extent) also Ccnd1 (Fig. 4B). 
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Fig. 4. Increased -catenin-dependent transcription and proliferation in PC12-27 

cells. (A) -catenin co-transcriptional activity was evaluated by a luciferase reporter 

assay. wtPC12 and PC12-27 cells were transfected and the luciferase activity was 

measured 24 hours later. Results shown are means ± s.e.m. from three independent 

experiments. (B) Expression of -catenin target genes in wtPC12 and PC12-27 cells. 

mRNAs encoding Myc, cyclin D1 and REST were assayed by RT-PCR and values 

were normalized to the GAPDH housekeeping gene and then expressed relative to 

control wtPC12 cells. The results shown are means ± s.e.m. from three independent 

experiments. 
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Fig. 5.  The increased proliferation of PC12-27 cells depends on -catenin. (A) -

catenin co-transcriptional activity evaluated by the luciferase reporter assay: effects of 

quercetin (a blocker of β-catenin-dependent transcription, 100 μM) and endo-IWR1 

(that favors -catenin degradation, 10 μM) administered from the fourth and fifth day 

of culture. Nt, untreated cells. Results shown are means ± s.e.m. from three 

independent experiments. (B) Expression of Myc and Rest genes in PC12-27 cells, 

effects of quercetin and endo-IWR1, conditions and processing and presentation of 

the results as in 4B. Results shown are means ± s.e.m. from three independent 

experiments. (C) wtPC12 and PC12-27 cell proliferation measured daily by viable 

Trypan-Blue-assisted counting of triplicate wells as in Fig. 2A. Treatment with 

quercetin and endo-IWR1 as in A. Results shown are means ± s.e.m. from three 

independent experiments. Significance shown between PC12-27 cells without and 

with drug. ***P<0.001; **P<0.01; *P<0.05. 

 

 

 



Results 

 

16 
 

To investigate whether -catenin transcription activity was indeed responsible 

for the higher target gene expression and the proliferation advantage of PC12-27 cells, 

we adopted a pharmacological approach using two drugs known to operate by 

different mechanisms. We took advantage of quercetin, a blocker of the -catenin–

TCF-LEF transcription (Park et al., 2005) and of endo-IWR1, which favors -catenin 

degradation (Chen et al., 2009). In PC12-27 cells, both drugs inhibited to a significant 

extent the -catenin-dependent reporter gene expression (Fig. 5A) and the expression 

of Myc and Rest (Fig. 5B), whereas in wtPC12, these effects were smaller and non-

significant (not shown). Moreover, the two drugs abrogated the proliferation 

advantage of high-REST PC12-27 cells (Fig. 5C). Taken together, results obtained by 

the comparison of wtPC12 and PC12-27 cells link REST levels to TSC2 levels and to 

-catenin nuclear activity, which is critical for cell proliferation. 

 

 

 

III.3.  REST, TSC2 and -catenin, inter-connected in a feed-forward loop, 

control PC12 cell proliferation 

 

The results reported so far (Figs 1-5), which reveal differences in structure, 

signaling and proliferation between the two PC12 clones, the low-REST wtPC12 and 

the high-REST PC12-27, suggested that REST, TSC2 and -catenin might be 

interconnected in a signaling loop controlling proliferation of PC12 cells. In view of 

the considerable differences in gene expression existing between the two clones 

(Grundschober et al., 2002), however, the possibility of the results to be correlative, 

rather than conclusive, could not be excluded. To directly prove the link of REST, 

TSC2 and -catenin we carried out gene complementation and down-regulation 

experiments in wtPC12 cells.  

 

First, the cells were infected with lentiviral vectors encoding GFP (control cells) 

or for GFP–Myc-tagged REST, and then sorted by FACS. Forced REST up-regulation 

(Fig. 6A,B) caused a down-regulation of TSC2 with a gain of -catenin levels (Fig. 

6C) and activity (Fig. 6D,E). These changes were accompanied by changes of protein 

phosphorylation expected in low-TSC2 cells, i.e. increased phosphorylation of the 

mTORC1 targets, S6 and 4E-BP1, and decreased phosphorylation of the mTORC2 
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target Akt and of GSK3 (data not shown). REST-infected PC12 cells also revealed a 

proliferation advantage when compared with control-infected cells (Fig. 6F).  

 

 

 

 

Fig. 6. Expression of REST, TSC2 and -catenin, and of their targets. (A) 

Expression of Rest mRNA. (B) Levels of REST in the two infected cell populations, 

representative western blots also showing -tubulin used for normalization (left); and 

means ± s.e.m. of the results of three independent experiments quantified by 

densitometry (right). (C) TSC2 and -catenin in the two infected populations, 

presentation as in A. (D) -catenin co-transcriptional activity evaluated by the 

luciferase reporter assay in the two infected cell populations. Conditions and 
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processing and presentation of the results (from three independent experiments) as in 

Fig. 4A. (E) Expression of -catenin target genes. Conditions, processing and 

presentation of the data (from three independent experiments) as in Fig. 4B. (F)  

Proliferation of the two infected cell populations measured daily by viable Trypan-

Blue-assisted counting of triplicate wells; means ± s.e.m. from three independent 

experiments as in Fig. 1D. ***P<0.001; **P<0.01; *P<0.05. 

Journal of 
 

 

 

 

 

Fig. 7. TSC2 regulates -catenin levels and cell proliferation in wtPC12. wtPC12 

cells were stably transfected with the control construct (ctrl) or the shRNA TSC2 

construct (shTSC2). (A) Representative western blots of cells infected with the two 

constructs showing the levels of TSC2, -catenin and REST together with H2b and -

tubulin used for normalization (left); and means ± s.e.m. of the results of six 

independent experiments quantified by densitometry are shown on the right. (B) 

wtPC12, PC12-27, control and shTSC2 cells proliferation measured daily by viable, 

Trypan-Blue-assisted counts of triplicate wells; data are means ± s.e.m. from three 

independent experiments as in Fig. 1. Significance in A is shown between control and 

shTSC2-transfected cell populations. 

 

We next investigated the effects of TSC2 knockdown by shRNA and of over-

expression of a constitutively active form of -catenin. TSC2 down-regulation 

correlated with increased accumulation of REST and -catenin that proved to be 
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transcriptionally active (Fig. 7A). In addition, cells are accumulated to greater 

numbers compared with control wtPC12 and similarly to PC12-27 cells (Fig. 7B). 

 

 

 

 
 

Fig. 8. -catenin regulates REST and TSC2 levels and cell proliferation in 

wtPC12. wtPC12 cells were stably transfected with either an empty construct (ctrl) or 

a construct encoding an N-terminal-truncated form of -catenin (90cat). (A) 

Representative western blots of cells infected with the control and 90cat constructs 

showing the levels of 90cat-GFP and endogenous -catenin together with -tubulin 
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used for normalization (left); and comparison of the levels (means ± s.e.m.) of the two 

forms of -catenin, results of three independent experiments quantified by 

densitometry (right). (B) -catenin co-transcriptional activity evaluated by the 

luciferase reporter assay in the control- and 90cat-transfected cells. Conditions and 

processing/presentation of the results (from three independent experiments) as in Fig. 

4A. (C) Representative western blots of cells infected with the control and the 

90cat constructs showing the levels of REST and TSC2 together with -tubulin 

used for normalization (left); the means  s.e.m. of the results of three independent 

experiments about the REST and TSC2 levels quantified by densitometry are shown 

on the right.  (D) Control and 90cat-transfected cell proliferation measured daily by 

viable Trypan-Blue-assisted counts of triplicate wells. Comparison with non-

transfected wtPC12 and PC12-27 (left). The results are means  s.e.m. from three 

independent experiments. Significance shown is between control and 90cat. (E) 

Effects of quercetin (middle) and endo-IWR (right) employed as in Fig. 5, in the 

control and 90cat populations. The results are means  s.e.m. from three 

independents. Significance shown is between 90cat and 90cat + drug cell 

populations. ***P<0.001; **P<0.01; *P<0.05. 

 

 

In PC12 cells stably transfected with a -catenin construct, the expression of 

Δ90Cat  was reflected by gained -catenin co-transcriptional activity (Fig. 8A, B) 

and the levels of the REST protein were increased, whereas TSC2 levels were 

decreased (Fig. 8C). Moreover, the cells also revealed a proliferation advantage that 

was similar to that of PC12-27 cells when compared with parental and control cells 

(Fig. 8D). Interestingly, this advantage was largely abrogated by quercetin (Fig. 8E, 

left panel), but not by endo-IWR (Fig. 8E, right panel). Thus, forcing up-regulation of 

REST, down-regulation of TSC2 or increased transcriptional activity of -catenin 

promote reciprocal changes in their relative expression levels, and have an impact on 

wtPC12 cell proliferation. These results, which recapitulate in wtPC12 the properties 

of PC12-27 cells, directly link REST, TSC2 and -catenin in a feed-forward loop 

favoring PC12 cell proliferation.  

 

 

IV. Neurite outgrowth 

 

A key property of PC12 cells, based on which the cells have been often 

employed as a neuron cell model, is their response to NGF with the outgrowth of 

neurites (Greene and Tischler, 1976). This property is however absent in the high 

REST PC12-27 cells. The mechanism by which the high REST of PC12-27 prevents 
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the outgrowth response had never been thoroughly investigated. In this section, 

labeled IV, we will report our findings obtained about the mechanism by which high 

REST represses this process. 

 

 

IV. 1.  NGF receptor expression and signaling 

 

The first task of this study was the analysis of the expression and functioning of 

the NGF receptors, TrkA and p75
NTR

, compared in two PC12 clones, the wtPC12 and 

the high REST PC12-27. In contrast to previous hypotheses (Leoni et al., 1999; 

Schulte et al., 2010), the two clones, analyzed under resting conditions (10% serum in 

the medium), were found to be close both in terms of mRNA and protein of the TrkA 

receptor. In contrast p75
NTR

, which is prominent in wtPC12, was inappreciable in 

PC12-27 cells at both the mRNA and the protein level (Fig. 9A, B). These results 

could be due to a direct repression of p75
NTR

 expression by the high REST of PC12-

27 cells. In fact the gene of the receptor includes in its promoter two RE-1 (Tab. 1), 

the DNA sequence specific of REST binding (Wu and Xie, 2006). In contrast, no RE-

1 sequence is present in the promoter of TrkA (Bruce et al., 2004). TrkA and p75
NTR

 

were immunolabeled both before and after detergent permeabilization of the cells, to 

reveal their surface and total complement, respectively. 

 

 

Fig. 9. Expression of TrkA and p75
NTR

. The mRNA and protein of the two receptors 

were revealed in the two clones by RT-PCR (A) and western blotting (B). Notice the 

lack of p75
NTR

 in the PC12-27 clone. Here, and in the following figures, the number of 

gels analyzed quantitatively is given by the numbers over the panels; the numbers 

flanking the gels are the MDa of the immunolabeled proteins, given only in the figure 

showing the protein for the first time. The significance of the results, given as means 

of 6 experiments  s.e.m., is calculated with respect to the sample labeled 0 in each 

cell population. *P<0.05; **P<0.01;***P<0.001. 
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Tab.1  The two RE-1s (the DNA sequences specific of REST binding) present in 

the promoter of p75
NTR

 gene 

 

 

 

 

 

http://broad.mit.edu/~xhx/projects/NRSE/  
 

TTCAGCACTGGAGACTGAGGCC  
 

CCCAGACCCTAGGAGAGAGGCT  
 

Fig. 10. Surface 

immunolabeling of the two 

receptors in the wtPC12 and 

PC12-27 cells (A). The 

fractions of the total receptors 

distributed to the surface, given 

as percentages, are shown (B). 

Scale bars: 5 μm (left), and 10 

μm (right). 

http://www.broadinstitute.org/~xhx/projects/NRSE/NRSE20060716/html/nrse_chr17_44921277_m.html
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Fig. 10 shows that TrkA, expressed by all cells of the two clones, was mostly 

exposed at the cell surface while p75
NTR

, inappreciable in PC12-27 , was ~40% 

surface-exposed and ~60% retained within the wtPC12 cells. 

In order to investigate the repression of p75
NTR

 gene by REST, we analyzed the 

levels of the receptor after transient transfection of either the whole repressor or a 

mycREST dominant negative construct (DBD) of REST in wtPC12 and PC12-27 

cells, respectively. The results show the quantification of western blots that illustrate 

no appreciable variation of p75
NTR

 protein induced by the REST constructs in the two 

clones (Fig. 11).  

 

Fig. 11. Relative level of p75
NTR 

protein expression in PC12 and PC12-27 cells 

after transient transfection of mycREST (A) and DBD (B) constructs. The levels 

of the receptor, hardly appreciable in wt PC12 cells, decreased after over-expression 

of REST also in the ctrl cells transfected with the empty vector. In PC12-27 

transfected with a dominant negative construct of REST, no appreciable increase of 

the protein was observed. 

 

 

IV.2. The NGF signaling cascade: 

 

We next investigated the effects of NGF on its receptor signaling. During 

preliminary studies the effects on ERK 1 and 2 (ERK 1/2) and Akt phosphorylation 

induced in the wtPC12 and PC12-27 clones by various concentrations of NGF: 2, 25 

and 100 ng/ml were measured. At the low concentrations the effects induced by the 

neurotrophin were inappreciable or small. Only with the highest concentration many 

of the differences induced by NGF reached the level of significance. In view of these 

preliminary results, the subsequent studies were most often carried out using NGF at 
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100 ng/ml, a concentration widely employed in recent studies of the literature (see, 

among others, Koch et al., 2008; Miranda et al., 2001; Pincheira et al., 2009; Wang et 

al., 2013). 

 

 

IV.2.a.   TrkA auto-phosphorylation 

 

In a first series of phosphorylation studies the wtPC12 and PC12-27 cells were 

incubated in low (1%) serum medium for 24 hr before treatments, and then analyzed 

in the same medium. The time-course of the TrkA phosphorylation at various tyrosine 

residues during the first 20 min of NGF treatment is illustrated in Fig. 12.  

 

 

 

 

Fig. 12. NGF-induced TrkA 

auto-phosphorylation 

responses in wtPC12 and 

PC12-27 cells. The time-

course of the auto-

phosphorylations induced by 

NGF (100 ng/ml) at three 

sites of the TrkA receptor, 

Y751 is shown in the top, 

Y490 in the middle and 

Y670, Y674 and Y675, 

analyzed together, in the 

bottom (A). The time-course 

data of western blot are 

illustrated in quantitative 

terms in the panel below (B) 
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Figure 12 shows that in the wtPC12, the Y751 site was rapidly phosphorylated, 

reaching the highest level at 3 min and then declining to the resting level. In PC12-27 

cells the Y751 phosphorylation, evident at rest, failed to increase significantly during 

the stimulation. The phosphorylation of the Y490 site was well appreciable only in the 

wt cells, with the highest values at 5–10 min, whereas the phosphorylation of the 

Y670, Y674 and Y675, three sites of limited importance for TrkA signaling (Biarc et 

al., 2013) that were investigated together, was similar in the two clones, with only 

limited changes induced by NGF stimulation (Fig. 12). 

Considering togheter the data of Figs 9-12 we conclude that the level of TrkA is 

similar in the two, low and high REST PC12 clones. In contrast, the NGF-induced 

auto-phosphorylation of the receptor, especially that of the Y490 site, is defective in 

PC12-27 cells. This might be due to the lack of cooperation of TrkA with the other 

NGF receptor, p75
NTR

,
 
which lacks in the PC12-27 cells. 

 

 

IV.2.b.  Phosphorylation of ERK and Akt. 

 

We next investigated the two major signaling cascades triggered by NGF in 

PC12 cells, the ERK and the PI3K cascades, analyzed by measuring the specific 

phosphorylation of the ERK 1/2 and Akt kinases, respectively (Fig. 13, 14). The 

expression levels of ERK 1/2 were close in the wtPC12 and PC12-27 clones (Fig. 

14A), however their NGF-induced phosphorylation at the T202/Y204 sites exhibited 

different time-courses. In the wtPC12 cells the phosphorylation, low at time 0, 

reached at 3 min high levels that were maintained for the rest of the experiments (20 

min).  

 

 

Fig. 13.  Time course of the ERK signaling cascad in wtPC12 and PC12-27 cells. 

The time-course of the ERK 1/2 phosphorylation induced by NGF (100 ng/ml) at the 

T202/Y204 sites. 
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In PC12-27 cells, the resting level was higher than that of wtPC12. The NGF-induced 

increase occurred, however it was delayed, reaching top levels similar to those of 

stimulated wtPC12 only after 10 min and thereafter (Fig. 13). 

The investigation was pursued with longer treatments. In these cases, in addition 

to NGF, we investigated the effects of the classical blocker of the mTORC1 complex, 

rapamycin, and of the combination NGF/rapamycin. This approach intended to 

explore the possible role of a negative, mTORC1-induced feed-back that, in the case 

of insulin and various other growth factors, has been reported to affect the 

intracellular signaling cascades (Hsu et al., 2011; Huang and Manning, 2009). In 

neural cells, a mTORC1-induced feed-back had been demonstrated only in relation to 

a cAMP-induced differentiation (Chin et al., 2010). If the process exists also in 

relation to the NGF/TrkA system, a blocker of mTORC1 such as rapamycin was 

expected to block it and thus to increase the NGF-induced response. In contrast, the 

lack of effect of rapamycin would suggest the lack of the feed-back inhibitory 

process. 

 

 

 

Fig. 14 ERK and Akt(T308) phosphorylation responses: effects of NGF, 

rapamycin and both. A) The phosphorylation induced at the T202/Y204 sites of 

ERK 1/2 in wtPC12 and PC12-27 cells maintained for 1hr at rest (0), with NGF (N, 

100 ng/ml), rapamycin (R, 1 μM) and the two together (NR). (B) The responses 



Results 

 

27 
 

induced by the same treatments at the P-Akt(T308). In each cell sample the levels of 

the ERK (B), Akt and p75
NTR

 (C) proteins did not change during the experiments. The 

data on P-ERK 1/2(T202/Y204) and P-Akt(T308) are also shown in quantized terms 

on the right  of panels B and C. The numbers flanking the gels are the MDa of the 

immunolabeled proteins. The statistical analysis and the significance of the 

differences are shown by the asterisks as specified in the legend for Fig. 10. 

 

The ERK results obtained by 1 hr treatments with NGF, rapamycin and 

NGF/rapamycin are shown in Fig. 14A. Upon NGF treatment, the levels of ERK 1/2 

were unchanged whereas those of their phosphorylation were almost doubled in 

wtPC12 and significantly increased, although to a moderately lower extent, in PC12-

27 cells. In contrast, both the resting and the NGF-induced levels of ERK 1/2, 

phosphorylation appeared unchanged in both clones upon treatment with rapamycin 

(Fig. 14A). 

Also the levels of Akt were similar in the wtPC12 and PC12-27 cells, with no 

changes induced by the various treatments with NGF and rapamycin investigated 

(Fig. 14B). As far as the phosphorylations, that of Akt(T308), indicative of the PI3K 

cascade, increased slowly in the wtPC12 cells, whereas in the PC12-27 cells it 

remained apparently unchanged during the first 20 min of NGF treatment (data not 

shown). One hr (Fig. 14B) or longer (up to 48 hr, data not shown) treatments of 

wtPC12 cells with NGF induced significant increases of the Akt(T308) 

phosphorylation. Rapamycin alone, administered for 1 or 24 hr, modified neither the 

basal nor the NGF-induced Akt(T308) phosphorylation of wtPC12 (Fig. 14B and data 

not shown).  
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Fig. 15  Phosphorylation of two Akt targets, TSC2(S939) and GSK3β(S9), 

induced by NGF and rapamycin in wtPC12 and PC12-27 cells. The changes in 

phosphorylation of TSC2(S939) and GSK3b(S9) induced in the two cell clones by 1 

hr treatment with NGF (N, 100 ng/ml), rapamycin (R, 1 μM) or the two together. The 

numbers flanking the gels are the MDa of the immunolabeled proteins. Compared to 

the results of P-Akt(T308), shown in Fig. 14B, the changes of the two targets induced 

by rapamycin are larger, especially in the PC12-27 cells that are unresponsive to 

NGF. 

 

In the PC12-27 cells the basal phosphorylation of Akt(T308) was much lower 

than that of wtPC12. NGF and, to a lower extent, also rapamycin (administered alone 

or together for 1 (Fig. 14B) or 24 hr (data not shown) did apparently induce some 

increases of P-Akt(T308) which however remained statistically non significant (Fig. 

14B). 

Two targets of Akt, TSC2(S939) and GSK3β(S9), exhibited phosphorylation 

patterns different from those of Akt(T308). Specifically, the increases in the wtPC12 

cells were smaller, while those induced by rapamycin were larger than those of 

Akt(T308) (Fig. 14). In the PC12-27 cells, the resting phosphorylation of TSC2(S939) 

and GSK3β(S9) was low. In these cells no significant increase was induced by NGF. 

In contrast, rapamycin induced significant increases (Fig. 15). Taken together with the 

data of Fig. 14B, the data of Fig. 15 suggest that some mTORC1-induced feed-back 
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inhibition of the PI3K cascade may operate in PC12-27. In wtPC12 cells, however, no 

sign of the feed-back was appreciable. 

 

 

IV.2.c.     mTORC1 and mTORC2 

 

Our previous studies had shown mTORC1 to be moderately more active, and 

mTORC2 much less active in the high REST PC12-27 cells compared to the wtPC12 

cells (Section III.2 and Tomasoni et al., 2011). In order to investigate the possible 

involvement in these differences of the NGF receptor signaling and of its mTORC1-

dependent feed-back inhibition, we analyzed the direct read-outs of mTORC1 and 

mTORC2, P-S6(S235/236) and P-Akt(S473), respectively. The expression levels of 

the mTORC1 target, S6, were similar in the two clones. Its basal S235/236 

phosphorylation, moderately higher in the PC12-27 cells, was increased upon 1 and 

48 hr treatment with NGF, however only in the wtPC12 clone (Fig. 16A and data not 

shown). The mTORC1 blocker rapamycin, administered alone or together with NGF 

for 1 to 24 hr, dissipated completely the basal and largely also the NGF-stimulated 

phosphorylation of the mTORC1 read-out, S6(S235/236), as expected (Fig. 16A and 

data not shown). We conclude that the moderate differences of mTORC1 activity 

between wtPC12 and PC12-27 cells, already reported in the two resting clones 

(Tomasoni et al., 2011), were largely independent of their different NGF signaling. 

Fig. 14B had already shown the levels of Akt to be similar in the two clones. 

These levels were unchanged by 24–72 hr treatment with NGF, 24 hr treatment with 

rapamycin or by NGF associated to rapamycin during the last 24 hr (Fig. 16B and 

data not shown). 
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Fig. 16  Read-outs of mTORC1 (P-S6(S235/236)) and mTORC2 (P-

Akt(S473)) in wtPC12 and PC12-27 cells. (A,B) wtPC12 and PC12-27 cells were 

treated for 48 hr with no stimulant (0), with NGF (N, 100 ng/ml), with rapamycin in 

the last 24 hr (R, 0.1 μM) and with the two together (NR). The quantization of the 

data is on the right panels. The levels of the S6 and Akt proteins were not changed by 

the treatments. The numbers flanking the gels are the MDa of the immunolabeled 

proteins. Statistical analysis and significance of the differences is given as specified in 

the legend for Fig. 1. 

 

In terms of phosphorylation, the results with the direct mTORC2 read-out, 

Akt(S473) were quite different in wtPC12 and PC12-27 cells. In the wtPC12, 1 to 24 

hr treatment with NGF induced increases of 15–20-fold (Fig. 16B and data not 

shown). Treatment of wtPC12 with rapamycin induced increases similar to those 

induced by NGF. The two increases, however, were not additive when the cells were 

exposed to the combined NGF/rapamycin treatment (Fig. 16B and data not shown). In 

the PC12-27 clone, the resting phosphorylation of Akt(S473), distinctly lower than 

that of wtPC12, was not changed significantly by NGF. In contrast rapamycin did 

increase the P-Akt(S473) by over 5-fold. The combination with NGF did not change 

the increased P-Akt(S473) induced by rapamycin (Fig. 16B and data not shown). 
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IV.2.d.     PI3K dependence of the pathways 

 

In parallel experiments, the key role of the PI3K cascade in the control of 

mTORC2 was confirmed by the use of the PI3K inhibitor wortmannin.  In both the 

wtPC12 and PC12-27 clones treated with NGF for 48 hr, treatment with the drug (0.3 

mM) for the last 10 min attenuated considerably the P-TSC2(S939) and P-GSK3β(S9) 

and eliminates completely the P-Akt(S473) phosphorylation (Fig. 17). 

 

 

Fig. 17.  mTORC2 read-outs were analyzed after wortmannin treatment in 

wtPC12 and PC12-27 cells. The phosphorylation of Akt(S473) induced by NGF (N, 

100 ng/ml, 60 min) in wtPC12 cells was completely dissipated by the addition of 

wortmannin (NW, 0.3 mM) during the last 10 min. 

 

Summing up, the results show that p75
NTR

 has a role in the control of mTORC2 

activity, revealed by the direct read-out Akt(S473). The findings with PC12-27 cells 

strengthens, at the mTORC2 level, the non-significant rapamycin results of the PI3K 

cascade dependent phosphorylation of Akt(T308) illustrated in Fig. 14B. In these cells 

the low mTORC2 activity, unaffected by NGF, appears to be affected by the 

mTORC1-dependent feed-back inhibition process inhibited by rapamycin. 

 

 

IV.3.  Transient transfection of p75
NTR

 in PC12-27 increases mTORC2 activity 

 

In order to confirm the involvement of p75
NTR

 in mTORC2 activation and in the 

differentiation process, defective PC12-27 cells were transiently transfected with the 

full length receptor cDNA. Transient transfection resulted in great increases of the  P-
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Akt(T308) and P-GSK3β phosphorylations, the read-outs of the mTORC2 activity, 

whereas P-ERK was unchanged (Fig. 18). 

 

 

Fig. 18.  Transient transfection of p75
NTR

 in defective PC12 cells induces 

mTORC2 activation. Panel shows that transient transfection of full length receptor 

leads-out the phosphorylation of Akt(T308) and GSK3β(S9), whereas there is no 

difference in ERK activation. 

 

 

IV.4.  Generation and characterization of PC12-27/p75
NTR

 stable clones 

 

PC12-27 cells were stably transfected with a construct of p75
NTR

 human full 

length cDNA and the screening of the clones for p75
NTR

 expression was performed by 

western blot analysis. Figure 19 shows the western blot detection of positive clones, 

however their level of expression is variable. Taking into consideration the level of 

the receptor in PC12 wt, we did choose one of these sub-clones, sub-clone 8, that 

from here-on is named PC12-27/p75
NTR

. 

 
Fig. 19.  Expression of p75

NTR
 in the stably transfected PC12-27 sub-clones. As 

demonstrate, sub-clone 8 expresses level of p75
NTR

 comparable at those of PC12 wt, 

whereas sub-clones 1,2,3,5 and 10 over-express the receptor, and sub-clones 1,4 and 9 

express only low levels. 
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Fig. 20.  Expression of p75
NTR

 and time-course of TrkA auto-phosphorylation at 

the Y751 and Y490 sites in PC12-27 cells transfected with the vector, empty 

(PC12-27/Ctrl) or including the full length p75
NTR

 (PC12-27/p75
NTR

). (A) The 

western blot of p75
NTR

 in wtPC12, PC12-27/Ctrl and PC12-27/p75
NTR

 cells. 

Quantization of the data, documenting the similar levels of the receptor in the wtPC12 

and PC12-27/p75
NTR

 cells, is on the right. (B) Surface immunolocalization of p75
NTR

 

in the PC12-27/Ctrl and PC12-27p75
NTR

 cells. The quantization of the results is on the 

right. Scale bar: 10 μm. (C,D) The time-course of the TrkA auto-phosphorylation at 

the Y751 and Y490 sites induced by NGF (100 ng/ml) in the two transfected sub-

clones, PC12-27/Ctrl and PC12-27/p75
NTR

. The quantization of these data is shown 
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on the right. Statistical analysis and significance of the differences is given as 

specified in the legend of Fig. 10. 

 

 

IV.5.  NGF signaling in wtPC12 and PC12-27 cells: role of p75
NTR 

 

The sub-clone, PC12-27/p75
NTR

 exhibited a surface distribution of p75
NTR

  

similar to those observed in the wtPC12 (compare Fig. 20A,B to Fig. 10A,B). To 

exclude possible artifacts due to hyper/hypo-expression or altered distribution of the 

receptor, the sub-clone was selected for subsequent studies, using as control a PC12-

27 sub-clone transfected with the empty vector (PC12-27/Ctrl).  

 

 

 

Fig. 21.  Stable expression of p75
NTR

 and time-course of TrkA auto-

phosphorylation at the Y751 and Y490 sites in PC12-27 cells transfected with the 

vector, empty (PC12-27/Ctrl) or including the full length p75
NTR

 (PC12-

27/p75
NTR

). A is a time course of the NGF responses; B and C the responses to NGF , 

rapamycin and the two together, with the quantitation of the results below the Western 
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blots; D the same in the PC12-27/p75
NTR

, however in the presence of the TrkA 

inhibitor, Calbiochem 648450. 

 

During the first 20 min treatment of PC12-27/p75
NTR

 cells with NGF, the Y751 

phosphorylation of TrkA increased markedly (Fig. 20C), similar to the wtPC12 cells, 

whereas that PC12-27/Ctrl cells resembled that of the non-transfected PC12-27 cells, 

i.e. it did not change significantly. At the Y490 site the differences of phosphorylation 

observed between the cells transfected with and without p75
NTR

 were even larger. In 

the PC12-27/Ctrl cells this phosphorylation remained almost inappreciable, as in the 

non-transfected PC12-27 cells, whereas in the PC12-27/p75
NTR

 cells it increased 

significantly and rapidly upon NGF addition, reaching a maximum at 5–10 min, as in 

the wtPC12 (Fig. 20D). The study of the two cascades, of ERK and PI3K, confirmed 

the marked changes of the NGF signaling induced in PC12-27 cells by the expression 

of p75
NTR

. In the case of ERK the phosphorylation of ERK 1/2(T202 and Y204), 

induced by 1–20 min treatment with NGF, exhibited a faster rate in the PC12-

27/p75
NTR

 cells compared to the PC12-27/Ctrl cells (Fig. 21A), similar to the faster 

rate of the wtPC12 compared to the PC12-27 cells shown in Fig. 13. 

Also the responses induced in the PC12-27/Ctrl and PC12-27/p75
NTR

 cells by 1 

hr treatment with NGF, alone or with rapamycin, resembled the responses induced by 

the same treatments in the PC12-27 and wtPC12 cells, respectively. With rapamycin 

alone the changes were small and non significant in both transfected PC12-27 cell 

sub-clones (Fig. 21B). In contrast, in the case of P-Akt(T308), the increases in PC12-

27/p75
NTR

 cells induced by NGF were larger than in PC12-27/Ctrl (Fig. 21C). Also 

with the two Akt targets, TSC2(S939) and GSK3β(S9), the phosphorylations induced 

by NGF and also by rapamycin in the PC12-27/p75
NTR

 were distinctly larger than 

those in the PC12/Ctrl cells (Fig. 22). 
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Fig. 22.  Phosphorylation of two Akt targets, TSC2(S939) and GSK3β(S9), 

induced by NGF and rapamycin administered for 48 and 24 hrs, respectively, in 

PC12-27/Ctrl and PC12-27/p75
NTR

 cells. The results in the PC12-27/Ctrl cells 

resemble those obtained with the PC12-27 cells. The transfection of p75
NTR

 induces 

an increased phosphorylation that in the case of GSK3β(S9) occurs not only upon 

treatment with rapamycin (R, 1 μM) but also with NGF (N, 100 ng/ml). 

 

A question about the signaling of the PC12-27/p75
NTR

 cells was whether the 

increases of the ERK and PI3K cascades induced by the expression of p75
NTR

 were 

dependent on the transfected receptor only or on its cooperation with TrkA. To 

answer this question we repeated the experiments of Fig. 21B,C by employing PC12-

27/p75
NTR

 cells pretreated with a specific inhibitor of the TrkA receptor, Calbiochem 

648450 (Yamashita and Tohyama, 2003). Fig. 21D shows that the increased 

phosphorylation of Akt(T308) induced by NGF was prevented by the pretreatment of 

the cells with the drug. In order to be generated, the NGF-induced signal requires 

therefore the two receptors, TrkA and p75
NTR

, to be activated concomitantly. The 

cooperation with p75
NTR

, however, does not seem to occur only with TrkA. In fact, the 

responses triggered by rapamycin, alone or together with NGF, were apparently 

unchanged by the pretreatment of the PC12-27/p75
NTR

 cells with the TrkA inhibitor 

(Fig. 21D). In PC12 cells the site of action of the mTORC1-dependent feed-back 

inhibition, the process blocked by rapamycin, is unknown. In other cell types, 

however, this site has been proposed to coincide with the insulin receptor substrate 1 

(IRS1) (Tremblay et al., 2007). This or another post-receptor site may therefore 

operate in the cooperation of the feed-back inhibition with p75
NTR

. In conclusion, the 

re-establishment in the PC12-27 of a TrkA/p75
NTR

 ratio analogous to the ratio in 
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wtPC12 was found to rescue the NGF signaling from a partially inactive to a fully 

active state. 

 

 

IV.6.  mTORC1 and mTORC2 in PC12 cells: role of p75
NTR 

 

The lack of p75
NTR

 could be the cause of the different activity of mTORC1 and 

mTORC2 in PC12-27 cells. Fig. 23A shows that, with mTORC1, the change induced 

by the stable expression of the receptor was minor. With respect to the PC12-27/Ctrl 

cells the phosphorylation of the direct (S235/236) S6 read-out was in fact only 

moderately lower in the resting and NGF-treated PC12-27/p75
NTR

 cell and the 

inhibitory effect of rapamycin was also lower (Fig. 23A). The situation was 

profoundly different with mTORC2 (Fig. 23B). In the PC12-27/Ctrl cells the read-out 

P-Akt(S473) was similar to the non-transfected PC12-27 cells, i.e. it was 

unresponsive to NGF and and increased only little after treatment with rapamycin, 

(compare Fig. 23B to Fig. 16B). 
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Fig. 23.  mTORC1 and mTORC2 in the PC12-27/Ctrl and PC12-27/p75
NTR

 cells; 

effects of the TrkA inhibitor. (A) The expression of p75
NTR

 does not change the 

responses of the mTORC1 read-out, P-S6(S325-326) to 1 hr treatment with NGF (N, 

100 ng/ml). Rapamycin (R, 1 μM) induces inhibition of the mTORC1 read-out 

phosphorylation, which is more extensive in the PC12-27/Ctrl cells. (B) The p75
NTR

 

transfection induces the rescue of the mTORC2 read-out P-Akt(S473) 

phosphorylation which is increased markedly by both NGF (N,100 ng/ml) and 

rapamycin (R, 1 μM) The phosphorylation of another mTORC2 read-out, PKCa, was 

high in the PC12-27/p75
NTR

 cells already at rest, with no appreciable changes induced 

by the treatments. The quantized data of panels A and B in PC12-27/Ctrl and PC12-

27/p75
NTR

 cells are given on the right panels. (C) Two hr treatment with the TrkA 

receptor inhibitor, Calbiochem 648450 (I, 10 nM), removed the response triggered in 

the PC12-27/p75
NTR

 cells by 1 hr treatment with NGF (N,100 ng/ml), leaving 

however unchanged that triggered by rapamycin (R, 1 μM), administered alone or 

combined to NGF. These results demonstrate 1) that the NGF response is mediated by 

the cooperation of the TrkA and p75
NTR

 receptors; and 2) that the mTORC1.induced 

feed-back block by rapamycin cooperates with p75
NTR

 working however not at the 

TrkA receptor but at a post-receptor site. Statistical analysis of the differences on the 

right in panels A and B is given as specified in the legend for Fig. 10. 

 

In contrast, in the PC12-27/p75
NTR

 cells the phosphorylation of the read-out 

after NGF, rapamycin and the two together was much stronger, approaching values 

similar to those observed in the wtPC12 (compare Fig. 23B to Fig. 16B). Moreover, 

similar to the results of P-(T308)Akt (Fig. 21D), also the responses of the mTORC2 

read-out P-(S473)Akt induced by treatment with NGF in the PC12-27/p75
NTR

 cells 

were inhibited by the specific TrkA blocker drug, Calbiochem 648450 (Yamashita 

and Tohyama, 2003). In contrast, the responses to rapamycin, acting by removal of 

the mTORC1 feed-back inhibition, were unchanged (Fig. 23C). 

Together with the data of Fig. 21D these results confirm the cooperation 

between the TrkA and the p75
NTR

 signaling to be necessary for the mTORC2 

activation unless the signal is triggered not at the level of TrkA but at a post-receptor 

site. Summing up, the expression of p75
NTR

 in the PC12-27 cells appears to modify 
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both the signaling of NGF and the activity of mTORC2, bringing them to levels 

approaching those of wtPC12. 

 

 

IV.7. About the phenotype of PC12-27/p75
NTR

 cells 

 

We then investigated, in the PC12-27/p75
NTR

 cells, a few properties known to 

distinguish the PC12-27 from wtPC12 cells, i.e. the very high REST (D’Alessandro et 

al., 2008), the low TSC2 and the high β-catenin (Section III and Tomasoni et al., 

2011). The question was whether these properties also depend on the lack of the 

p75
NTR

 receptor. Figure 24A shows that this is not the case. In fact the levels of the 

three factors in the PC12-27/p75
NTR

 cell s were as high as in the PC12-27/Ctrl cells. 

Also a few functional properties dependent on the high β-catenin, i.e. the luciferase 

assay of its transcription activity, the expression of a transcription target, the cMyc 

oncogene, and the high cell proliferation (Section III and Tomasoni et al., 2011), were 

not changed significantly by the p75
NTR

 transfection (Fig. 24B-D). 

 

 

Fig. 24.  Phenotype of the PC12-27/Ctrl and PC12-27/p75
NTR

 cells. (A–D) No 

difference exists between PC12-27/Ctrl and PC12-27/p75
NTR

 in a number of 

important features: the levels of REST, TSC2 and β-catenin proteins (A); the β -

catenin-dependent transcription revealed by a luciferase assay (B); the expression of 
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the β-catenin-target gene, cMyc (C); the rate of cell proliferation (D). (E) Phase 

contrast images of the PC12-27/Ctrl and PC12-27/p75
NTR

 before and after a 48 hr 

treatment with NGF (100ng/ml). Scale bar: 20 μm. (F) The expression of two 

neuronal markers, Map2 and β -III tubulin, in PC12-27/Ctrl and PC12-27/p75
NTR

 cells 

incubated for 48 hr with no treatment, with NGF (N, 100 ng/ml), rapamycin (R, 0.1 

μM during the last 24 hr) and the two together. 

 

Finally, we investigated whether, and to what extent, the expression of p75
NTR

 

modifies two aspects of the phenotype sensitive to NGF that are greatly defective in 

PC12-27 cells, the outgrowth of neurites and the expression of neuron-type markers. 

Fig. 24E compares the morphology of the PC12-27/Ctrl and PC12-27/p75
NTR

 cells, at 

rest and upon 48 hr treatment with NGF. The flat structure of PC12-27/Ctrl cells, 

similar to that of the non-transfected PC12-27 cells (Section III and Tomasoni et al., 

2011) was hardly affected by the 48 hr treatment with NGF. In the PC12-27/p75
NTR

 

cells, on the other hand, the shape was not changed much, however the NGF-induced 

neurite outgrowth response was evident in terms of both number of neurites sprouted 

per cell and average neurite length (Fig.24E). In the resting PC12-27/Ctrl cells the 

levels of the two neuronal markers investigated, Map2 and β-III tubulin, were low. 

Treatment for 48 hr with NGF, 24 hr with rapamycin or the two together induced only 

small or no increases. In PC12-27/p75
NTR

 cells, the resting levels of the two markers 

were higher, however the increases induced by NGF and rapamycin were small and 

non significant (Fig.24F). 

 

 

IV.8. Stable silencing of p75
NTR

 by miRNA in PC12 cells: 

 

In order to investigate the possible involvement of the p75
NTR

 receptor in the 

regulation of the mTORC2 activity we carried out experiments in sub-clones of 

wtPC12 cells in which the expression of the receptor had been down-regulated by the 

stable transfection of a specific miRNA. Fig. 25 shows results with a wtPC12 sub-

clone with p75
NTR

 level reduced to approximately 20%, i.e. with a large decrease 

which however was lower than that of PC12-27 cells, where the receptor is 

inappreciable. 
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Fig. 25.  Phenotype of the PC12-27/Ctrl and PC12-27/p75
NTR

 cells. In the sub-

clone illustrated here, in which the level of the receptor was decreased of  about 80%, 

the decrease of the mTORC2 read-out P-Akt(S473) was decreased of about 35%. 

These changes were apparently ineffective on the PI3K cascade since the P-

Akt(T308) and P-GSK3β(S9) were unchanged, while the level of the neuronal marker 

MAP2 was significantly decreased. The general phenotype of the wtPC12 cells was 

apparently unaffected by the miRNA expression. Scale bar: 20 μm. 

 

The miRNA transfection did not modify the general phenotype of the wtPC12 

cells, that remained largely spherical, different from the flat shape of the PC12-27 

cells (Tomasoni et al., 2011). Likewise, the P-Akt(T308) and the P-GSK3β(S9) were 

unchanged. In contrast, the Akt(S473) phosphorylation was decreased of about 35%, 

suggesting the mTORC2 activity to be reduced (Fig. 25). 
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V. DISCUSSION 

 

The data reported in this thesis about the role of REST in PC12 cells are quite 

numerous and, in many respects, unexpected. The possibility that high REST induces 

proliferation of neurosecretory cells had been reported especially in relation to neural 

fast-growing and aggressive tumors (reviews: Coulson, 2005; Majumder, 2006; 

Negrini et al, 2013). In these cases, however, a precise mechanism of the REST 

stimulation had never been identified. The condition of PC12 cells is quite different 

from that of the above tumors. The cell line originates from a pheochromocytoma, a 

differentiated, slow-growing, non-aggressive tumor. Therefore the findings we did 

obtain by comparative investigation of the two PC12 clones, characterized one by the 

typical low level of REST and the other by a high level of the transcription repressor, 

had apparently little to do with those on tumors reported previously. Mechanistically, 

our findings appeared reasonable when we found the increase of REST to be 

accompanied by a decrease of TSC2, a GAP protein known to govern negatively the 

activity mTORC1. The mechanism by which the TSC2 decrease is induced by high 

REST is unclear. Certainly the effect is not due to the typical function of REST, the 

transcription repression, because the level of the TSC2 mRNA was not decreased in 

PC12-27 cells. At this stage we can only hypothesize that the decrease of the TSC2 

protein is due to its increased turnover induced by REST indirectly, via the activation 

of an ubiquitinase system that remains to be identified. 

 

V.1. REST, TSC2 and β-catenin govern proliferation working as a 

signaling/effector loop. 

 

However, the increased activity of mTORC1, was shown to account for only a 

minor fraction of the fast proliferation of the high REST PC12-27 cells. The major 

contribution to the proliferation was mediated in fact by the increase of -catenin, 

dependent of the decrease of its fast metabolism and as a consequence, of its 

localization to the nucleus. A negative control of the TSC complex on the -catenin 

metabolism had been reported (Jozwiak and Wlodarski 2006; Barnes et al., 2010), 

however this control pathway, at variance with the TSC complex-mTORC1 pathway, 
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had failed to become popular. In this case the REST-TSC2 was found to be 

particularly efficient because -catenin, together with its classical co-transcription 

targets, including cMyc and cyclin D1, was found to increase the transcription of 

REST. Thus REST, TSC2 and -catenin appear to control the proliferation of PC12 

cells working as a loop (Fig. 23). Evidently each of these factors has multiple 

functions, many of which previously known. Our work has now identified a new, 

important function, operative in neural cells, in which the three factors operate 

coordinately. Additional aspects of the data we have presented in the section III of this 

thesis can be found in the paper we have published about this work (see Tomasoni, 

Negrini et al., 2011). The model in Figure 26, taken from that paper, illustrates the 

REST control of proliferation as emerged from our studies. 

 

Fig. 26. A model of the feed-forward loop signaling paradigm governing 

PC12 cell proliferation and neurosecretion. The figure summarizes the results 

illustrated in Figs 1−7, emphasizing the coordinated regulation of the two cell 

functions. Changes of one (or more) of the interconnected factors, REST, TSC2 and 

β-catenin (β-cat), impact the whole signaling loop and affect both proliferation and 

neurosecretion as shown by the variable thickness of the connections. Other 

processes, not yet investigated, might be impacted as well. In low-REST cells (left) 

repression of TSC2 is weak, the TSC1−TSC2 complex reinforces the proteasome 

degradation of β-catenin, transcription of the β-catenin−TCF-LEF target genes, 

including the oncogenes and REST, is low. As a consequence proliferation of cells 

(dependent on β-catenin) is low whereas neurosecretion (repressed only marginally by 

low levels of REST) is high. In high-REST cells (right), repression of TSC2 is strong, 

with ensuing increase of β-catenin and of the β-catenin−TCF-LEF oncogene and 

REST transcription. As a consequence, proliferation is high whereas neurosecretion is 

repressed to a considerable extent by the high levels of REST (See the detailed Figure-

Abstract here above). 
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V.2. The regulation of neurite outgrowth was still largely unknown. 

 

The section IV of this thesis deals with another key issue in our neural cell 

investigation, i.e. the mechanism that govern the outgrowth of neurites. This property 

is general among neural cell lines. In most of them, however, the response visible 

upon stimulation with various factors, although present is quite small. In contrast, in 

the case of wtPC12 the outgrowth induced by long-term treatment with NGF is 

extensive, similar to the one occurring in the initial phase of in vitro differentiation of 

neurons. The difference between wtPC12 and  neurons appears in the subsequent 

phase, because neurons convert one of the neurites into  a typical axon, whereas 

wtPC12 don’t. Thus wtPC12 are a model of the initial phase of neural cell 

differentiation, that was employed in thousands of studies published in the last 30 

years. The high REST PC12-27 cells differ from their wt counterparts because their 

NGF-induced neurite outgrowth is almost non-existent. The comparative investigation 

of the two PC12 clones was therefore offering the possibility to clarify whether REST 

is involved in the control of the outgrowth and what is the mechanism of this control. 

 

V.3. A new role for p75
NTR

. 

 

The initial hypothesis put forth to explain the lack of outgrowth in the PC12-27 

cells (and in another clone that is now known to be of high REST as well, 

D’Alessandro et al., 2008) was the lack in the defective cells of the tyrosine kinase 

receptor of NGF, TrkA (Leoni et al., 1999).  This hypothesis appeared reasonable 

because TrkA is believed to govern almost completely the responses induced by the 

factor, with the second receptor, p75
NTR

, playing only minor roles: the increase of the 

TrkA affinity for their ligand or a number of other cooperative activities. When 

however we did investigate the expression of the NGF receptors in the high REST 

PC12-27 cells we were surprised to find that TrkA was unchanged, whereas p75
NTR

 

was almost non-existent. This finding, on the one hand, was reasonable because, from 

the data of the literature, the p75
NTR

 gene was shown to include two RE-1 sequences 

in its promoter; and because, on the other hand, the response to NGF of PC12-27 cells 

was not absent but specifically missing of one pathway, the PI3K-Akt pathway, and 
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not that of ERK1/2. The reinforcement by P75
NTR

 of the TrkA-induced activation of 

the PI3K-Akt cascade had been envisaged (Roux et al., 2001). However its 

consequences, in particular the activation of mTORC2 and  the key role of the two 

receptor cooperation in neurite outgrowth have never been reported. Our experimental 

approach permitted us to investigate comparatively the activation of the cascade 

pathway signaling not only in wtPC12 and PC12-27, but also in the latter stably 

transfected with either an empty vector or p75
NTR

 at levels analogous to those of the 

wtPC12. Taken together the results revealed without any doubt that TrkA activation in 

unable to trigger the PI3K-Akt cascade unless its works cooperatively with p75
NTR

; 

that the lack of this activation precludes the activation of mTORC2 (which depends 

on PI3K), and thus of the cascade of events governed by the latter kinase; and that one 

of the PI3K-dependent processes was just the neurite outgrowth. Clearly the PC12-27 

subclone transfected with p75NTR was not at all identical to wtPC12. The subclone, 

in fact, maintained its high level of REST and, among other things, showed to be 

more sensitive to the feed-back inhibition on the receptor signaling induced by the 

activation of the mTORC1 complex. Nevertheless the data we have obtained provided 

new information about the coordinate functioning of the two NGF receptors and about 

the intracellular cascades triggered by their activation. A partial presentation of the 

data of our Section IV, illustrating the events induced by NGF in cells expressing only 

TrkA or TrkA together to p75
NTR 

is shown in Fig. 24. 

 

V.4. Conclusion. 

In conclusion, our two subsequent investigation of two important chapters of 

cell biology, proliferation and neurite outgrowth in PC12 cells, have revealed new 

aspects of the role of REST in those neural cells. REST is not only a controller of a 

few properties specific of neural cells such as neurosecretion, but is involved in 

multiple functions and properties, not only proliferation and neurite outgrowth but 

probably many others, that remain to be investigated. A critical aspect for the future 

studies will be the choice of the cellular models that can influence significantly the 

effects of REST, making the various REST-sensitive genes available or not to the 

repression of the transcription factor. 
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VI.    MATERIALS AND METHODS 

 

VI.1.  Cell cultures. 

The rat pheocromocytoma wtPC12 and PC12-27 clones, and the various  

subclones, were grown in Dulbecco’s Modified Eagle’s medium (Lonza, Basel, 

Switzerland) supplemented with either 1% (starvation) or 10% horse serum 

(Euroclone) together with 5% fetal clone serum III (FCIII) (Hyclone Laboratories, 

Logan, UT). Starvation and complete medium were supplemented also with 2mM 

ultraglutamine and 100 U/ml penicillin and streptomycin (Lonza). All cells were 

grown at 37C, in a 5% C02 humidified atmosphere. 

 

VI.2.1.    Stable and transient transfections.  

For stable transfection of p75
NTR

, PC12-27 clone cells at about 40% 

confluence in 10 cm diameter dishes were treated with 10μl of lipofectamine 2000
 

TM
  reagent (Invitrogen) dissolved in 5ml of medium without antibiotics 

supplemented with 0.3 μg of plenty-OE-sRFP plasmid including the full length 

human p75
NTR

 together with 0.3 μg of pcDNA3.1Hygro(+) vector carrying the 

hygromicin resistance gene (Invitrogen). The controls received the vectors only. 

After 5 hour treatments the above medium was exchanged with the complete 

medium, and 48 hours after transfection the cells were split in 10 cm dishes at 1:8 

ratio for selection in complete medium supplemented with 500 μg/ml of hygromicin 

B (Invitrogen). Screening of the subclones for the expression of p75
NTR

 construct 

was performed by western blotting.  The wtPC12/miRNA-p75
NTR

 clones were 

produced by co-transfection of cells in 10 cm diameter dish with 9 μg of 

pRRLsinPPT plasmid including the p75
NTR

 miRNA, to downregulate the receptor, 

and 1 μg of pcDNA3.1Hygro(+), using the same procedure employed for the 

overexpression. The hygromicin B concentration used for the selection of these 

subclones was 200 μg/ml.  

 

Transient transfections of the PC12-27 clone with mycREST, DBD-REST and  

p75
NTR

 constructs were performed using cells at about 40% confluence in 10 cm 

diameter dishes containing 5ml of medium without antibiotics supplemented with 

10 μg of the plasmids and 10μl of lipofectamine 2000
 TM

. The controls received the 

vectors only. After 5 hours the media were exchanged with the complete medium, 
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and 48 hours after transfection the cells were used for protein extraction. The 

transfections were confirmed by RT-PCR and immunoblotting. 

 

VI.2.2.    Expression plasmids. 

The plenty-OE-sRFP vector including the full length human p75
NTR

 cDNA, 

and the pRRLsinPPT vector with the p75
NTR

 miRNA were both generous gifts of  

P.A.Barker (Montreal Neurological Institute, McGill University, Montreal, Quebec, 

Canada). The dominant negative construct of REST, corresponding to the sequence 

encoding the DNA-binding domain (amino acid residues 234-437) fused to a Myc 

epitope and inserted into the pAdTrack-CMV vector, was the generous gift of E. 

Cattaneo (Department of Pharmacological Sciences and Centre of Excellence on 

Neurodegenerative Diseases, University of Milan, Italy). The pcDNA3.1/Hygro(+) 

vector, used in the controls and for the co-transfections, was from Invitrogen. 

 

 

VI.2.3.    mRNA isolation and Real-Time PCR 

Total cellular RNA was extracted from cultured cells according to the RNeasy 

Mini Kit protocol (QIAGEN, Valencia, CA, USA), and its concentration was 

determined by spectophotometry. Total RNA (1-2 μg) was used to generate cDNA 

templates for RT-PCR, using the random hexamers provided  with the RevertAid 

First Strand cDNA Synthesis (from Thermo Scientific) kit. RT-PCR was performed 

on a LightCycler® 480 System (FastStart DNA Master SYBR Green I of Roche 

Apll. Sci.) according to a standard protocol, using 50 ng cDNA as template. Values 

are expressed either as fold of wt or as PC12-27/control (Ctrl) cell ratio. 

Primer sequences used for PCR amplification of human p75
NTR

 gene were the 

following: forward p75
NTR

: GTGGCCAGAATAACATTCCTATCGC; reverse 

p75
NTR

: GAAGGCAAGTTTTGGGGTGATGGTGC 

Primers were used at the final concentration of 500 nM. Values were 

normalized to the concentration of calmodulin mRNA.  

 

VI.3.1.    Protein Assays; Western Blotting   

In order to generate the total cell extracts, the cells of the various clones and 

subclones were washed in PBS and solubilised on ice in lysis buffer containing 1% 

Triton X-100, 50 mM Tris-HCl, pH 7.5, 250 mM NaCl, 5 mM EDTA, together with 
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phosphatase inhibitor (Roche) and protease inhibitor (Sigma) cocktails. The 

mixtures  were incubated for 15 min at 4C and then centrifuged at 14,000 rpm for 

15 min. The pellets were discarded and the supernatants recovered. To investigate 

the time-course of TrkA phosphorylation the incubated cells were transferred 

rapidly to ice and then suspended in ice-cold lysis buffer containing 10 mM Tris-

HCl pH 7.8, 150 mM NaCl, 1 mM EDTA, 1% (v/v) Nonidet P40, 1% (w/v) sodium 

deoxycholate, with protease and phosphatase inhibitors. The lysates were cleared by 

centrifugation at 16.000 g for 20 min at 4°C, and the supernatants were analyzed 

(Takahashi et al., 2011). 

 

Protein concentrations were determined by the BCA assay. Appropriate 

amounts (most often 30 μg) were separated by SDS-PAGE and then transferred  to 

nitrocellulose filters (Whatman) by overnight incubation at 250 mA. Filters were 

first blocked for 1 h at room temperature  (RT) with 5% non-fat dry milk in Tris 

Buffered Saline (TBST) containing 200 mM NaCl, 50mMTris pH7.4, with 0.5% 

Tween20; then incubated for 2h at room temperature or, alternatively, overnight at 

4C, with the primary antibody diluted in TBST-1% BSA-0.2% sodium azide; 

washed 5 times for 10 min in TBST, and then incubated for 1 h at room temperature 

with the appropriate peroxidase-conjugated secondary antibody (1g/ml) in 5% 

non-fat dry milk in TBST. Upon further 5, 10 min washings in TBST, they were 

finally developed with either the ECL chemiluminescence detection system 

(Amersham Pharmacia) or the Femto Signal (Pierce). Western blot bands were 

quantified by the ImageJ program (rsb.info.nih.gov/ij), normalized to markers that 

do not change their concentration during the experiment (β-tubulin, actin or 

GAPDH) that had been immunolabeled in parallel. Data are expressed as arbitrary 

units (a.u.). 

 

 

VI.3.2.   Immunofluorescence and bright field microscopy 

Cell monolayers plated on coverslips were fixed for 10 min at room 

temperature in 4% formaldehyde dissolved in PBS, quenched with 0.1 M glycine, 

then permeabilized for 20 minutes a room temperature in PBS containing 0.2% 

Triton X-100 and 1% BSA, and washed. They were then incubated with primary 

antibodies in dilution buffer (DB, containing PBS and BSA 1%) for 1 h at room 
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temperature. Then, they were extensively washed in PBS, exposed to fluorescence-

conjugated secondary antibodies in DB for 1 h at RT, washed again and finally 

mounted in gelvatol. In some cases nuclei were stained with DAPI. The cells were 

analysed in a Perkin-Elmer Ultraview ERS confocal and Delta Vision microscopes. 

Image deconvolution was performed in a wide-field microscope of the Delta Vision 

system. 

 

 

VI.3.3.    Antibodies and chemicals:  

The anti-p75
NTR

 extracellular domain (REX) rat polyclonal antibody (pAb) 

was a gift of L. Reichardt (Departments of Physiology, University of California, 

San Francisco). The other antibodies were from the following commercial sources: 

anti-P-Akt(S473), anti-P-Akt(T308), anti-GSK3β, anti-PGSK3β(S9), anti-TSC2, 

anti-PKCα(S660), and anti-S6 monoclonal antibodies(mAbs); anti-TrkA, anti-P-

TrkA(Y490), anti-ERK 1/2 and anti-P-ERK 1/2(T202/Y204), anti-P-TSC2(S939), 

anti-Akt and anti-P-S6(S235/236) rabbit pAbs, Cell Signaling; anti-P-TrkA(Y751) 

and anti-P-TrkA(Y670/Y674/Y675) rabbit pAb: Invitrogen; anti-TrkA C20 

extracellular domain rabbit pAb, anti-actin goat pAb: Santa Cruz; anti-p75
NTR

 

rabbit pAb, Promega; anti-REST rabbit pAb: Upstate; anti-βtubulin mAb and anti-

actin rabbit pAb: Sigma; anti--catenin mAb: BD Transduction; anti-Map2 mAb, 

Millipore; anti--III tubulin mAb, Covance; FITC-conjugated and TRITC-

conjugated goat anti-rabbit pAbs, and goat anti-mouse IgG subclasses: Southern 

Biotech.; horseradish peroxidase-conjugated goat anti-mouse and anti-rabbit pAbs: 

Bio-Rad. NGF was from Alomone; the BCA Protein Assay Kit from Pierce; 

rapamycin and the TrkA inhibitor 648450 from Calbiochem; the fluorescent DNA 

binding probe DAPI, wortmannin and other chemicals, from Sigma–Aldrich. 

 

VI.4.   Materials 

The ECL western blotting detection reagents and chemiluminescence films 

were from Amersham Pharmacia; the BCA protein protein assay kit and 

SuperSignal West Femto Maximum Sensitivity Substrate were from Pierce. The 

SDS-PAGE apparatus was from Hoefer. The Maxi Kit for EndoFree plasmid DNA 

purification and the RNeasy Mini Kit for total RNA isolation were from QIAGEN. 

The Mini Kit for plasmid DNA isolation and purification was from Promega. 
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Lipofectamine 2000
 TM

 for plasmid DNA transfection, the ThermoScript
 TM

 and the 

RevertAid First Strand cDNA Synthesis were from Thermo Scientific. Competent 

cell TOP10 was from Invitrogen; the 4’,6-diamidino-2-phenilindole-dihydrochloride 

(DAPI) from Sigma-Aldrich. 

 

VI.5.   Statistical analyses 

 

The significance of the data was assessed using the two-tailed unpaired t-test 

and the Anova test, making reference to unstimulated samples of both controls and 

variously stimulated cell preparations. Data shown are means ± s.e. The number of 

experiments is specified in the Figures or Figure legends. P<0.05 is considered 

significantly different. In the Figures, *** means P<0.001; **P<0.01; *P<0.05. 
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