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ABSTRACT 

 

The role of oxytocin (OXT) in controlling social behavior suggests a link to neuropsychiatric 

conditions in which social behavior behavior is aberrant or even absent, such as autism.  

Mice lacking the OXT receptor (Oxtr-/-) display an autistic-like phenotype, including deficits in 

social interaction, impaired cognitive flexibility (murine correlates of autism core symptoms), 

increased aggression and susceptibility to seizure (common co-occurring conditions).  

The deficit in cognitive flexibility is particularly interesting, because it is present in few animal 

model of autism. For this reason we decided to investigate its underlying neurobiological and 

molecular mechanisms. 

First, we compared  Oxtr+/+and  Oxtr-/-  neuronal morphology and spine remodeling following a 

cognitive behavioral test. Interestingly, we highlighted, in the Oxtr-/- mice, an enhanced 

connectivity and overuse of the dorsolateral striatum, possibly arising from an hippocampal 

dysfunction, and we proposed it as substrate for habit-like symptoms and cognitive rigidity.  

Second, we investigated, at the molecular level, possible sources of this hippocampal 

dysfunction. In particular, we analyzed Oxtr-/-  hippocampal neurons for the expression of 

proteins involved in the setting and maintenance of  excitatio-inhibition (E-I) balance. We found 

an upregulation of several inwardly-rectifying K+ channels (belonging to Kir2 and Kir3 families), 

which could alter membrane excitability, and a lack of the physiological upregulation of the 

chloride transporter KCC2 during development, that may lead to aberrant GABAergic signaling 

in mature neurons. These data give important indications that the E-I balance is altered at 

multiple levels in Oxtr-/- hippocampal neurons, as an altered ratio between Glutamatergic and 

GABAergic synapses was also previously observed in these cultures. These observations are 

particularly intriguing, because an E-I imbalance has been frequently associated with several 

neurodevelopmental disorders such as autism.  

Third, we disclosed an OXTR-mediated pathway modulating KCC2 expression that may restore a 

correct E-I balance in hippocampal neurons.  

All this information could be useful to understand the pathophysiology of cognitive rigidity and 

to develop new therapies addressing specific symptoms of autism. 
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 I.  OXYTOCIN SYSTEM 

 

Oxytocin (OXT) derives its name from the Greek words ὀξύς, oxys, and τόκος, tokos, meaning 

"quick birth", since Sir Hanry Dale in 1906 found that extracts of the posterior pituitary have 

uterotonic activity . Few years later OXT was also found to induce milk ejection, but its role on 

the central nervous system (CNS) was far from being identified. Indeed, only in the late 1970's 

the OXT's action in coordinating a plethora of behavioral changes in the mother, necessary for 

the survival of the offspring (maternal behavior), started to emerge. From that time on, the 

involvement of OXT system in the modulation of many aspects of behavior, dealing with 

sociality, became clear (Dale 1906, Ott & Scott 1910, Ross & Young 2009). More recently 

broader effects of OXT on the CNS have been identified comprising also cognitive aspects, such 

as modulation of learning and memory. 

Nowadays great interest is emerging around the therapeutic potential of OXT for the treatment 

of mental disorders characterized by social deficits, such as social anxiety, borderline 

personality disorders, schizophrenia and autism (Meyer-Lindenberg et al 2011). 

For this reason, a greater understanding of oxytocinergic mechanisms modulating 

social/cognitive behaviors and of the neurobiological basis for its involvement in 

neuropsychiatric disorders is strongly needed. 

This section will introduce the oxytocin system with particular attention to its role and 

functioning at the central level. 

 

Oxytocin and its receptor 

Oxytocin is a nine-aminoacid neuropeptide in which the presence of a disulfide bond between 

cysteine residues in position 1 and 6 forms a cyclic structure with a 3-aminoacid C-terminal 

tail(Du Vigneaud et al 1953).  

OXT shares 7 out of 9 residues with vasopressin (AVP), the other neurohypophysial peptide. 

They differ in position 3 (Ile vs Phe) and in position 8 (Leu vs Arg), which justifies binding and 
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activation of different receptors with slightly different affinities and efficacies (Barberis et al 

1998, Caldwell et al 2008). 

Their genes also have very similar structures (see fig.1), and reside on the same chromosome (2 

in mice, 20 in humans), but with opposite orientation. It is thus believed that they originated 

from the duplication of a single ancestral gene, as long as 500 million years ago, followed by the 

inversion of one of the duplicates (Archer 1974). 

 

 

 

Figure 1. Oxt and Avp: genes organization, structures of precursor proteins and aminoacidic sequence of mature 

peptides (modified from Caldwell et al., 2008). 

 

The two genes are separated by an intergenic region (IGR), which differs in length among 

species and they show the same three-exons organization (Hara et al 1990). Exon 1 codifies for 

a signal peptide, for the nonapeptide and for the first 9 residues on Neurophysin. It also 

contains a GRK sequence (Gly-Lys-Arg), a signal involved in post-translational processing, where 

the glycine is important for the C-terminal amidation and the two basic aminoacids constitute a 

typical cleavage signal found also in other hormonal precursor. Exon 2 codifies for the central 

portion of neurophysin, highly conserved among species; finally exon 3 codifies for the c-

terminal region of neurophysin and in the AVP gene also for a short glicoprotein (Richter 1983, 

Rose et al 1996, Sausville et al 1985). 

 

Oxytocin receptors (OXTR) are G-protein coupled receptors (GPCR) belonging to the 

oxytocin/vasopressin receptor subfamily (Barberis et al 1998). Three vasopressin receptors 

(V1a, V1b and V2) and one oxytocin receptor (OXTR) have been distinguished on the basis of 

their binding properties and signal transduction. 
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Actually, the great homology between the OXT/AVP receptors and peptides leads to low 

binding selectivity. Indeed, AVP binds to OXTR with very similar affinity to that of OXT itself, and 

OXT binds to the AVP receptor subtypes expressed in the brain (V1AR and V1BR) with slightly 

lower affinity than AVP itself (Manning et al 2012, Mouillac et al 1995). 

Combined evidence from studies involving site-directed mutagenesis, photoaffinity labeling and 

molecular modeling indicate that the cyclic part of the OXT molecule interacts with 

transmembrane domains 3, 4 and 6, whereas the linear C-terminal part of the OXT molecule 

remains closer to the surface and interacts with transmembrane domains 2 and 3, in addition 

to the first extracellular loop (Chini & Fanelli 2000).  

The intracellular C-terminal domain includes several phosphorylation sites and it is important 

for signal transduction and internalization. In the extracellular N-terminal domain instead there 

are two (mouse, rat) or three (human, pig, sheep, bovine) potential N glycosilation sites.  

As many other GPCRs, oxytocin receptors and V1a and V2 receptors are able to form homo- 

and heterodimers in transfected HEK 293 and COS 7 cells (Devost & Zingg 2003, Terrillon et al 

2003).  

Moreover, OXTRs have a promiscuous coupling to Gαq/11 and GαI, which lead to the activation 

of different signaling pathways, having synergistic or opposing effects. In myometrial cells, 

OXTR coupling to both Gαq/11 and the small G proteins of Rho family induces uterine contraction 

(Sanborn 2001), whereas in neuronal cells OXT can inhibit or stimulate inward rectifier K+ 

currents, depending on which G protein pathway (PTX-resistant or sensitive, respectively) is 

activated (Gravati et al 2010). Similarly, in HEK 293 cells stably transfected with human OXTRs, 

the receptor coupling to Gαi is responsible for inhibiting cell growth, whereas receptor coupling 

to a different Gα subunit (possibly Gαq) has been linked to cell growth stimulation (Guzzi et al 

2002, Rimoldi et al 2003).  

This divergent pathway activation has been found to be influenced by the receptor localization 

in lipid rafts, specialized plasma membrane domains enriched in cholesterol, 

glycosphyngolipids, and lipid-anchored proteins (Rimoldi et al 2003), but also by the ligand 

itself. Indeed, it has been recently shown that atosiban, a peptidic OXT derivative, is at the 

same time an OXTR antagonist because of its antagonistic effect on OXTR-Gαq coupling, and an 

OXTR- GαI agonist, thus representing the first pharmacologically coupling-selective agonist of 

the human OTR (Reversi et al 2006). This phenomenon, called "functional selectivity", has been 

recently described also for other OXTR ligands (Busnelli et al 2012). 
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Oxytocin synthesis and release: where and when 

Oxytocin synthesis 

OXT and AVP are both synthesized as inactive pre-pro-hormones on the rough endoplasmic 

reticulum and immediately after their transcription they undergo a first proteolitic cleavage, 

which removes the signal peptide. Resulting pro-hormones are then glycosilated in the Golgi 

apparatus and accumulated in secretory vesicles in which they are transported down the axon 

toward the synapse, the site of release. During the transport inside vesicles pro-hormones are 

further cleaved originating the active nonapeptide and a carrier protein, Neurophysin 

(Brownstein et al 1980, Ivell & Richter 1984).  

Both neurohormones are mainly produced in the supraoptical (SON) and paraventricular (PVN) 

nuclei of the hypothalamus (for AVP the suprachiasmatic nucleus is also involved) by distinct 

populations of neurons (see fig.2). Two class of OXT-producing neurons have been identified: 

magnocellular neurons, residing in both SON and PVN, produce either nonapetides; 

parvocelluar neurons, which are located only in the PVN, synthesize exclusively OXT (Swanson 

& Sawchenko 1983). 

 

 

 

Figure 2. The oxytocin system. Oxytocin is mainly produced by magnocellular and parvocellular neurons in the 
hypothalamus. Magnocellular neurons reside in both SON and PVN and send their axonal projections to the 
posterior pituitary, where they release OXT in the systemic circulation, to exert its peripheral effects. They are also 
able of dendritic OXT release which is known to reach by diffusion distant target in the brain (dotted arrows). 
Parvocellular neurons are located exclusively in the PVN and projects to many region of the brain (red 
pathwways).(Meyer-Lindenberg et al 2011) 
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These two different populations of neurons are responsible for very different effects of OXT. 

OXT produced by magnocellular neurons is transported to the posterior pituitary and released 

in the systemic circulation in response to proper stimuli, thus mediating its well-known 

peripheral effects (Brownstein et al 1980, Poulain & Wakerley 1982). Conversely, parvocellular 

neurons spread their projections throughout the brain and the spinal cord, where OXT behaves 

like a classic neurotransmitter, by binding to its G-protein-coupled receptor OXTR (Buijs et al 

1985, Swaab et al 1975).  

Moreover magnocellular neurons are able to release OXT from their dendrites within PVN and 

SON themselves. Dendritically released OXT has been hypothesized to reach by diffusion the 

entire CNS with a decreasing gradient of concentration (Ludwig 1998, Ludwig & Pittman 2003). 

This intranuclear oxytocin release in magnocellular nuclei is involved in a critical 

neuroendocrine feedback regulation of oxytocin secretion itself (Moos & Richard 1989, 

Neumann et al 1996). 

Where: Site of oxytocin release and OXTR expression  

Sites of OXT-release in the CNS, as described by microdialysis experiments, are the septum 

(Demotes-Mainard et al 1986, Neumann & Landgraf 1989), the hippocampus (Landgraf et al 

1988, Neumann & Landgraf 1989), the central amygdala (Ebner et al 2005) and the brain stem 

(Landgraf et al 1990). Recently, Knobloch (Knobloch et al 2012) described in greater detail the 

localization of OXT-neurons' axons in the forebrain of rats exploiting a rAVV-expressing Venus 

under an OXT gene promoter injected in the PVN and SON. The most intensely innervated 

structures appeared to be the lateral septum, the paraventricular thalamic nucleus, the bed 

nucleus of the stria terminalis, the nucleus of the horizontal limb of the diagonal band and the 

island of Calleja in the olfactory system. Many OXT-fibers do also appear in the rest of the 

olfactory system as well as in many cortical areas (especially in the frontal association cortex), 

in the nucleus accumbens, in the medial and central amygdala and in the ventral hippocampus. 

Notably, no OXT-fibers have been found in the dorsal part of the hippocampus. 

The localization of OXT-fibers described by Knobloch is quite in accordance with precedent 

autoradiographic studies analyzing the localization of the oxytocin receptor (OXTR) in rat brain 

(Tribollet et al 1988). However, a high expression of the receptor does not always correspond 

to dense fiber innervation. In the lateral septum, for example, few binding sites were found in 

autoradiographic experiments (Tribollet et al 1989), but very dense innervation has been 



Introduction 

14 

observed in this area (Knobloch et al 2012). In the hippocampus the distribution of receptors 

seems to resemble that of fibers, at least the enrichment in the ventral part of this structure, 

even though autoradiographic experiments distinguish less substructures (De Kloet et al 1985, 

Snijdewint et al 1989, Tribollet et al 1988).  

Notably, AVP-fibers in the hippocampus target mainly the ventral part as well (Zhang & 

Hernandez 2013), where AVP-binding is more abundant too (Brinton et al 1984, Hernando et al 

2001). 

When: Stimuli to Oxytocin release 

It is a long known fact that labor, suckling, iperosmolarity and stressful events are the major 

triggers to oxytocin release (Neumann 2007). Each of these physiological processes raises a 

different neuronal activity pattern, determining a distinct pattern of neuropeptide secretion. 

For example, hyperosmolarity produces a small increase in the spontaneous firing rate of 

MCNs, whereas lactation induces explosive synchronized bursts of activity in these cells, which 

causes a pulsatile release of OXT into the circulation (Bourque & Renaud 1991). 

The activity of MCNs, and thus the OXT release, is regulated from afferents of many 

neurotransmission systems. Around 60% of the contacts onto MCNs are GABAergic (Decavel & 

Van den Pol 1990, Theodosis et al 1986) and could probably be negatively modulated by 

dendrite-released OXT (de Kock et al 2003). This synapses are capable of great plasticity, either 

short-termed (Baimoukhametova et al 2004) or long-termed (Brussaard & Herbison 2000), in 

response to particular stimulation and could be significantly increased in number by 

concomitant stimulation with OXT and estrogens (Theodosis et al 2006). 

A recent paper showed that the effects of GABA stimulation on MCNs depend on post-synaptic 

neurons' phenotype: on OXT-neurons GABA elicits normal inhibitory actions, whereas on  AVP-

neurons GABA is excitatory (Haam et al 2012).  

The principal excitatory neurotransmitter modulating OXT-neurons is Glutamate, which 

positively modulates OXT (and AVP) release (Gribkoff & Dudek 1990, van den Pol & Trombley 

1993). Other connections on MCNs are noradrenergic, around 10% of the total amount, which 

mainly arise from A1 and A2 cells groups in the medulla oblungata (Sawchenko & Swanson 

1982). There is also some evidence of the involvement of dopamine in the modulation of 

OXT/AVP release, through activation of D4 presynaptic receptors on GABAergic terminals 

impinging on MCNs (Baimoukhametova et al 2004). The resulting effect is a reduction in GABA 
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release and therefore an increased excitability of MCNs (Azdad et al 2003). Finally, MCNs are 

regulated by Acetylcholine which acts on presynaptic nicotinic receptors on both glutamatergic 

and GABAergic terminals mediating increased and decreased release, respectively (Li & Pan 

2001, Li et al 2001), thus mediating an increase in neuropeptides release. Moreover 

acetylcholine can directly activate MCNs through the activation of postsynaptic a7-containg 

nAchR (Zaninetti et al 2002). 

 

Roles of oxytocin 

Peripheral organs 

Peripherally, the role of OXT in reproductive functions is known since the beginning of 1900, 

when its ability to stimulate the contraction of uterine smooth muscle cells during labour and of 

myoepithelial cells in mammary glands during milk ejection was discovered (Dale 1906, Ott & 

Scott 1910). Moreover, in many species, OXT release is involved in penile erection and 

ejaculation (Argiolas 1992) and in the regulation of prostatic epithelial cell proliferation and 

migration (Nicholson 1996).  

OXT has also important function on other peripheral organs: on the ovary it stimulates estradiol 

and progesterone release from luteal cells (Wuttke et al 1998); on the kidney it induces water 

retention (Conrad et al 1993, Verbalis et al 1991); it promotes cardiomyocites differentiation 

acting on the hearth (Jankowski et al 1998); it regulates matrix deposition and reabsorption in 

bones (Tamma et al 2009) and in the tymus OXT has a role in non-self T-lymphocytes selection 

(Geenen et al 1999). 

Central nervous system 

The central OXT actions range from the modulation of neuroendocrine reflexes to the 

establishment of complex social behaviours related to reproduction and care of the offspring. 

In particular, OXT is involved in the modulation of behavioral and physiological responses to 

stress, acting as an anxiolytic factor both in rodents and in humans (Guzman et al 2013, Kirsch 

et al 2005, Legros 2001, Mantella et al 2003). This anxiolytic action is probably mediated by the 

activation of OXTR in the central amygdala, which is the region involved in emotional and fear 

memory. Indeed, oxytocin release in this area was found to attenuate passive fear responses 
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(freezing) but to increase active fear behaviors (risk assesment) (Gozzi et al 2010, Huber et al 

2005, Knobloch et al 2012).  

Moreover, OXT is implicated in feeding behavior, acting as a satiety hormone. Both 

magnocellular and parvocellular oxitocinergic neurons participate to the regulation of food 

intake and energy balance: the former, releases oxytocin from their dendrites, which then 

diffuses to hypothalamic targets involved in satiety as the ventromedial hypothalamus; the 

latter, likely relay leptin action to the caudal brainstem, in order to regulate feeding via 

autonomic functions including the gastrointestinal vago-vagal reflex (Matarazzo et al 2012, 

Sabatier et al 2013). In addition oxytocin seems to be involved in modulating food-related 

reward, limiting the intake of palatable foods both in rodents and in humans (Ott et al 2013, 

Sabatier et al 2013). Interestingly, recent evidences indicate also an OXT-mediated effect on 

feeding onset in newborn Magel2 mice (a murine model for Prader-Willi syndrome). Indeed, 

almost 50% of these mice die within P1, due to impaired feeding behavior, unless they are 

treated with a single injection of OXT (Schaller et al 2010). 

Even though OXT actions on stress response and feeding control are receiving more attention in 

the past few years, still what currently makes oxytocin most interesting for translational 

research and medicine is its role on sociability and cognition (Donaldson & Young 2008).  

The implication of OXT on learning and memory has been highlighted quite recently with 

studies on rodents and humans (Chini et al 2013), and its precise role is still controversial. On 

the contrary, extensive and long-standing evidence is available on all aspects of sociability that 

are modulated by oxytocin, i.e. maternal and affiliative behavior, sexual behavior and pair 

bonding, dominance hierarchy, territorial aggression, and finally social memory (Ross & Young 

2009). Interestingly, OXT seems to act as a social reinforcement through a coordinated action of 

OXTR and serotonin receptor, 5HT1B, in the nucleus accumbens (Dolen et al 2013).  

Such a profound implication of OXT system in social behavior, suggests a possible role for this 

peptide in the pathogenesis and/or as a future therapeutic treatment for social dysfunction in 

neuropsychiatric disorders such as autism. 
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 II.  AUTISM 

 

Autism was first described in the early 40's by the psychiatrist Leo Kanner and by the 

pediatrician Hans Asperger, who reported, independently, the cases of some children with 

defective sociability and insistence on sameness (Asperger 1938, Kanner 1943).  

Nowadays, Autism is considered a set of pervasive, early-onset neurodevelopmental conditions, 

most of which probably deriving from the interaction between genetic and environmental 

factors . It is characterized by deficits in the social sphere (communication and interaction), and 

by restricted interests and repetitive behaviors (Diagnostic and Statistical Manual of mental 

Disorders- DSM-V edition). Most autistic patients (more than 70%) present co-occurring 

neuropsychiatric conditions (Simonoff et al 2008), such as intellectual disability, depression, 

anxiety, hyperactivity and aggressive behaviors, including self-mutilation. Moreover, they 

frequently exhibit seizures or gastrointestinal disorders. The high frequency of these concurrent 

symptoms could be due to a shared pathophysiological mechanism or to a secondary effect of 

having autism (Lai et al 2013). 

Due to the high heterogeneity of clinical forms either in terms of causes, severity of symptoms 

or diversity of co-morbid features, the broader term of Autism Spectrum Disorder (ASD) is now 

preferred.  

 

Epidemiology 

ASD is not a rare syndrome, as believed in the past decades, the latest surveys indicated a 

median worldwide prevalence of 0.62-0.70%. The inflation in the reported prevalence during 

the last two decades could be due to improved awareness, earlier recognition of symptoms and 

broadening of diagnosis criteria; however an actual increase in ASD incidence cannot be ruled 

out. Moreover, a 2- to 5-fold male predominance has been consistently reported, thus implying 

an etiological role for sex-associated factors at genetic, environmental, but also endocrine and 

epigenetic levels(Elsabbagh et al 2012, Mattila et al 2011). 
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Various risk factors emerged by epidemiological studies, such as late reproductive age 

(Hultman et al 2011, Sandin et al 2012), complications during pregnancy (Gardener et al 2009) 

and exposure to chemicals, but none has proved to be necessary or sufficient for autism to 

develop (Rodier 2011). 

 

Disease evolution 

The onset of symptoms, characterized by a delayed or atypical development of social-

communication behaviors, occurs very early, in the age between 6 and 12 months, but is often 

recognized and diagnosed later, around 24-36 months of age. Early signs of autism are deficits 

or delay in the emergence of joint attention, pretend play and imitation, reduced affective 

behavior and attention to human faces, delayed verbal communication and response to own 

name (Ozonoff et al 2010, Zwaigenbaum et al 2009). 

Social-communication deficits of ASD patients are believed to depend, at cognitive level, on 

difficulties in mentalising, the ability to understand mental states in self and others (Boucher 

2012); therefore social deficits in autism arise from reduced ability to process information 

about others, as well as self-referential ones, limitating the potential of using self as a proxy to 

understand the social world (Lai et al 2013, Lombardo et al 2010).  

The disease progression is still a matter of debate and needs further studies using prospective 

and longitudinal methods (Happe & Charlton 2012). However some long-term follow-up studies 

of children diagnosed with autism, report a poor outcome in term of independent living, 

educational achievement, employment and relationships, which is strongly linked to the 

intelligence quotient (IQ). Moreover social and communication deficits, as well as restricted and 

repetitive behavior persist in adulthood (Billstedt et al 2007, Howlin et al 2004). Nevertheless, 

cross-sectional comparisons of younger and older ASD patients, give a more hopeful picture, 

indicating improvements in many symptoms, including restrictive and repetitive behaviors, with 

increasing age (Esbensen et al 2009, Seltzer et al 2003). 

Still mortality risk of middle-aged adults with ASD appears to be raised 2- to 5-fold, with most 

deaths associated with concurrent medical conditions, such as epilepsy or intellectual disability 

(Bilder et al 2013). 
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Etiology 

As previously mentioned, most conditions included in ASD are caused by a complex, often 

undetermined, interaction between genetic and environmental factors, but some monogenic 

syndromes are described as well: the Fragile X syndrome, which account for about 3% of ASD 

cases, tuberous sclerosis (TSC) responsible for 2% of ASD cases, Rett syndrome (1%) and 

neurofibromatosis type 1 (1%)(Betancur 2011, Kumar & Christian 2009).  

Genetic variants linked to ASD are estimated to be up to 1000. Both rare mutations with 

profound effects, as the ones responsible for syndromic forms of autism, or common 

polymorphism with lighter effects (fig. 3) have been described (Geschwind 2011, Murdoch & 

State 2013, State & Levitt 2011). Genome-wide association studies identified some important 

single nucleotide polymorphisms with high frequency in general population (<5%), but none of 

them have a such important effect to be deemed causal (Geschwind 2011).  

 

 

 

Figure 3. Towards identification of the genetic basis of ASD. Genetic studies found a great number of genes 
associated with ASD, with different incidence and risk effect. Common gene variants, which are defined by a minor 
allele frequency (MAF) of >5% in the general population, are typically associated with small risk (odds ratio <1.5) to 
develop ASD whereas rare and highly penetrant mutations carry the largest risk (Ghosh et al 2013). 
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Nonetheless, several polymorphisms are combined in many simplex and duplex families (with 

one or more than one member with autism, respectively), and could have an additive effect on 

risk (Murdoch & State 2013).  

Taken together the identified genetic causes of autism explain only about 15% of all cases 

(Betancur 2011). Nevertheless autism heritability, as calculated from twin studies, is around 

80% (Ronald & Hoekstra 2011), vs. about 15% in dizygotic twins, and relatives of ASD probands 

often show subclinical ASD features referred to as the broader autism phenotype (Happe & 

Charlton 2012). 

Thus, epigenetic mechanisms and specific gene-environment interplay must have a very 

important role (Corrales & Herbert 2011). 

 

Pathogenesis 

Studies using social perception and cognition tasks report consistently an hypoactivity in a 

network of brain regions, including medial prefrontal cortex, superior temporal sulcus, 

temporo-parietal junction, amygdala, and fusiform gyrus (Dichter 2012, Pelphrey et al 2011, 

Philip et al 2012).  

ASD patients often display a preference for processing local, rather than global, sensory-

perceptual information, which has, as neural base, an enhanced recruitment of primary sensory 

cortices, a reduced recruitment of association and frontal cortices involved in top-down 

control, and an enhanced synchronization of parietal-occipital circuits (Minshew & Keller 2010, 

Samson et al 2012). 

Many other abnormalities have been reported in autistic brains, such as reduced Purkinje cells 

in the cerebellar vermis, amygdala and fusiform gyrus (Schumann et al 2011) accelerated brain 

growth in infancy (Courchesne et al 2011), neocortical disgenesis (Casanova 2006) and signs of 

persistent neuroinflammation (Schumann et al 2011).  

Moreover, there are promising evidences showing an atypical development of the so-called 

"social brain" (Pelphrey et al 2011). 
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However, many evidences from electrophysiological, functional and structural neuroimaging, 

molecular genetics and information processing suggest that autism is characterized by atypical 

neural connectivity rather than by alterations in a discrete set of brain regions (Lai et al 2013). 

The way in which connectivity is altered is still matter of debate, with hypothesis of decreased 

fronto-posterior and enhanced parietal-occipital connectivity (Just et al 2012, Minshew & Keller 

2010) or reduced long-range and increased short-range connectivity (Belmonte et al 2004). 

Finally, other alterations reported quite consistently in autistic patients are distortion in 

GABAergic or serotoninergic systems, an imbalanced ratio between excitation and inhibition, 

which will be the focus of the subsequent chapter, and an atypical synaptogenesis, which will 

be also described below (Chugani 2011, Rubenstein 2010). 

 

Therapies 

Current therapies for people with autism rely greatly on behavioral and educational 

intervention, aimed at maximizing functional independence, improving social skills and 

communication and at fulfilling areas of strength (Kasari & Patterson 2012). 

The most commonly used drugs are antidepressants, anxyolitic and antipsychotics, but these 

are effective only to treat co-occuring conditions. Therefore there is a great need for new 

pharmacologic treatment addressing specifically the core symptoms of ASD (Ghosh et al 2013). 

Nowadays promising clinical results come especially from three new lines of research: 

acetylcholiesterase inhibitors, glutamatergic agents and oxytocin (Farmer et al 2013). In 

particular, acetylcholiesterase inhibitors seem to have a positive effect on cognition and 

communication and glutamatergic antagonists show quite reliable improvements on social 

withdrawal and stereotyped behaviors (Arnold et al 2012, Hardan et al 2012, Niederhofer 

2007a, Niederhofer 2007b). Finally, oxytocin, for its role in social and affiliative behavior, is 

strongly expected to be effective in autism treatment. Indeed, in clinical trials, OXT 

administration to ASD patients have been shown to increase social awareness and to reduce 

the severity of repetitive behaviors (Ellenbogen et al 2013, Guastella et al 2010, Hollander et al 

2007, Hollander et al 2003).  
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 III.  NEURONAL EXCITATION-INHIBITION (E/I) BALANCE 

 

E/I balance in neuropsychiatric disease 

Autism, as several other neuropsychiatric disorders, have been hypothesized to arise from an 

increased ratio between excitation and inhibition (E/I) within neural microcircuitry ((Markram & 

Markram 2010, Rubenstein 2010, Rubenstein & Merzenich 2003, Vattikuti & Chow 2010). This 

proposed neurophysiological substrate could be the consequence of a wide range of seemingly 

unrelated genetic abnormalities and could account for social and cognitive deficits observed in 

such disorders (Eichler & Meier 2008). Consistently, it is supported by diverse 

physiopathological findings: many autism-related genes are ion channels or synaptic proteins 

(Bourgeron 2009), frontal cortical hyperactivity is frequently reported in autistic children and 

seizures affect ≈ 30% of ASD patients.  

Notably, disease-relevant effects of impaired E/I balance could rely both on abnormal circuits 

development (Ramocki & Zoghbi 2008, Rubenstein 2010) and on real-time functioning (Yizhar 

et al 2011). Indeed, an elegant work by Yizhar and coworkers (Yizhar et al 2011) demonstrated, 

by means of combinatorial optogenetics, that acutely inducing an elevated E/I state in 

prefrontal cortical circuits leads to profound (but reversible) impairments in social and cognitive 

functions and that increasing cellular inhibition partially rescued the social deficit. 

This observation supports the desirable possibility that even E/I imbalances of developmental 

origin could be treated in adult age with good results. 

 

Setting and maintaining the E/I balance 

Physiologically, fluctuations in neuronal firing are means of information transfer in the brain, 

thus the E/I balance is continuously perturbed by development- or experience-dependent 

changes. As a consequence our brain needs to preserve functional stability by tightly regulating 

average firing rates without impairing information flow (Atallah & Scanziani 2009, Pouille et al 
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2009, Shu et al 2003). This is achieved thanks to an array of homeostatic feedback mechanisms 

which allows neurons and/or circuits to sense how active they are and to appropriately adjust 

their excitability (Davis 2006). Interferences with information transfer are prevented by 

differentiated temporal scale, being compensative mechanisms very much slower (Turrigiano & 

Nelson 2004). 

These homeostatic mechanisms act both at circuitry level, being central neurons embedded in 

complex networks of excitatory and inhibitory neurons, and at individual neuron or synapse 

level, by modulating intrinsic membrane excitability or synaptic strength, respectively (Marder 

& Goaillard 2006, Turrigiano 2011, Turrigiano & Nelson 2004). 

Synaptic strength is both modulated at presynaptic level, by controlling neurotransmitter 

release probability and reuptake mechanisms (Nicoll & Schmitz 2005), and at postsynaptic level, 

by changing the density and/or quality of neurotransmitter receptors present at the 

postsynaptic membrane (Bogdanov et al 2006, Borgdorff & Choquet 2002, Ehlers et al 2007). 

Intrinsic membrane potential and excitability is determined by electrochemical gradients of 

ions, mainly Ca2+, Na+, K+ and Cl-, which are maintained in turn by several transporters and 

channels that operate in either directions.  

Such a complex network of mechanism needs the correct functioning of a great number of 

protein. Consequently, dysfunctions in a wide variety of protein, especially during early 

development, could have detrimental effects on the E-I balance, thus affecting system stability 

and/or plasticity, (Davis 2006, Turrigiano 2011). 

During development, indeed, a complex sequence of events, aimed at the proper formation of 

neuronal networks, takes place: neurons migrate to their proper location, synaptic contacts are 

established and stabilized, coherent neuronal activity patterns appear and evolve and the E/I 

balance is set (Crepel et al 2007, Garaschuk et al 2000, Spitzer 2006). 

 

The switch of GABA 

In mature nervous systems the E/I ratio depends strongly on the balance between the 

prevalent excitatory and inhibitory neurotransmitter systems, Glutamate and GABA, 

respectively. On the other hand, in the earliest stages of brain maturation, GABAergic 

transmission have depolarizing effects (Rivera et al 1999), which seem to be extremely 
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important for the correct neural development (Ben-Ari et al 1989). Therefore, the switch in 

GABAergic polarity, from depolarizing (excitatory) to hyperpolarizing (inhibitory), and its proper 

timing is very relevant for the establishment of a correct E/I balance. 

 

 

 

Figure 4. Developmental switch of GABA actions, from excitatory to inhibitory, is due to the modulation of two 
Cl- transporters, KCC2 and NKCC1. In immature neurons the Cl- importer NKCC1 is highly expressed, determining 
elevated intracellular Cl- concentrations and, consequently,  depolarizing GABA actions (left panel). In mature 
neurons the expression of the Cl- exporter KCC2 become predominant, determining low intracellular Cl- 

concentration and, thus, hyperpolarizing actions of GABA. Modified from (Ben-Ari et al 2007)Ben-Ari et al., 2007. 

 

 

Two neuronal cathion-chloride cotransporters (CCCs), NKCC1 and KCC2, are responsible for this 

change, as they are able to modify Cl- electrochemical gradient by altering its intracellular 

concentration. In particular, the Cl- importer NKCC1 is responsible for the high [Cl-]i of immature 

neurons. The upregulation of the Cl- exporter KCC2, occurring during development gradually 

decreases [Cl-]i leading to the switch in GABA polarity (Rivera et al 1999). 

Consistently with their role in the E/I balance, CCCs are getting attention as therapeutic targets 

for the treatment of neuropsychiatric disorders such as epilepsy and autism (Lemonnier et al 

2012, Nardou et al 2011). 
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 IV.  DENDRITIC SPINE REMODELING 

 

Dendritic spines are small protrusions of dendritic membranes; they were first identified at the 

end of the 19th century by Ramon y Cajal thanks to the Golgi staining (Ramon y Cajal 1891) and 

since then neuroscientists never lost interest in them. Now we know that dendritic spines are 

the main site of neuronal connections, where about 90% of excitatory synapses are located 

(Harris 1999). They are present on both excitatory and inhibitory neurons throughout the 

nervous system and in a wide range of species (Shepherd 1996). Typically, each dendritic spine 

hosts a single excitatory synapse, located at the head, but they can also receive inhibitory input 

(Knott et al 2002). However, they are commonly considered the unitary postsynaptic 

compartment of excitatory inputs (Sala et al 2008). 

Spine morphology is highly heterogeneous and is linked to different functions; for instance 

"thin" spines are more responsive to changes in synaptic activity, whereas "mushroom-shaped" 

spines are more stable and contain stronger synapses (Segal 2005). Moreover, shape is not a 

static feature of dendritc spines, since it changes constitutively and upon stimulation, within 

hours or even minutes (Parnass et al 2000). 

 

Dendritic spine and neurological disease 

Since spine morphology and number are closely connected to neuronal function, alterations in 

their structure and dynamics may diversely affect neural circuits, thus contributing to the 

development of diverse cognitive impairments (Bhatt et al 2009). There are, indeed, some 

psychiatric and neurological diseases which are associated with altered spine morphology or 

density. For instance, schizophrenic patients display a reduced spine density in neocortical 

pyramidal neurons (Glantz & Lewis 2000). On the other hand, individuals with Fragile X 

syndrome (FXS) have greatly increased spine density and altered spine morphology towards a 

more immature, filopodia-like phenotype (Hinton et al 1991, Irwin et al 2001). Interestingly, 

Fmr1 knockout mice, a murine model of FXS, have overlapping alterations (1994, Verkerk et al 

1991).  
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Evidence that repeated exposure to psychostimulants, such as amphetamine and cocaine, can 

affect spine density at least for animal models has also been reported (Norrholm et al 2003, 

Robinson & Kolb 1999). 

Notably, slight changes in spine dynamics and turnover may accumulate over time and lead to a 

significant change in spine density only later in life or under specific stressors (Bhatt et al 2009). 

 

Spine remodeling during development 

Spinogenesis 

Dendritic spines appear on extending dendrites early in postnatal development, when neurons 

rapidly establish an enormous number of synaptic connections (Dailey & Smith 1996).  

During this period, dendrites extend great number of filopodia (long and thin protrusions 

without bulbous head), which undergo rapid extension and retraction allowing them to sample 

nearby axons (Portera Cailliau & Yuste 2001). Once they choose proper presynaptic partners, 

the contacts get stabilized through activity-dependent or -independent signaling and filopodia 

become shorter, driving the axon terminal closer to the dendritic shaft. Then, the maturation of 

an active synapse at the head, greatly slows down spine motility, stabilizing the structure 

(Dailey & Smith 1996, Fiala et al 1998). Not all the filopodia becomes spines with synapse, 

indeed absence of proper signals or presence of an alternative one, would lead to  filopodia 

withdrawal into dendritic shaft (Jontes & Smith 2000, Marrs et al 2001). Although it is widely 

believed that filipodia are precursors of dendritic spines, it is still not clear if they are necessary 

for the formation of all spines (Bhatt et al 2009). 

The extremely dynamic properties of spines during development, including fast spine turnover, 

rapid changes in shape and great motility, are vital for the formation and function of neural 

circuits (Dailey & Smith 1996). 

Pruning 

The rapid synaptogenesis occurring during early postnatal development in the cerebral cortex 

of mammals, including humans, is followed by a remarkable (about 50%) loss of 

spines/synapses (Huttenlocher 1979, Rakic et al 1986, Rakic et al 1994). This process of pruning 

and sculpting early established synaptic connections was observed already by Ramon y Cajal in 

1899, and it's thought to be fundamental for the maturation of the brain (Bhatt et al 2009). 
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Taking advantage of new in vivo two-photon (TP) imaging techniques spine dynamics during 

postnatal development have been extensively described in mice. In particular, the period of 

spine pruning was found to start before P14 (Grutzendler et al 2002, Holtmaat et al 2005, 

Majewska et al 2006) and to continue until four months of age, when a 25% of net spine loss is 

reported (Zuo et al 2005). Moreover, rate of spine elimination and formation (17% and 6% over 

two weeks, respectively) were successfully recorded.  

Stability 

It has been observed that in mature neurons spines undergo fewer transitions between 

categories (Dunaevsky et al 1999). However, the degree of spine plasticity in adulthood, once 

neural circuitry are formed and synaptic contacts stabilized, is still a matter of debate. Recent 

studies employing TP in vivo imaging to analyze spine stability in mouse cortex indicate that in 

mature adults (> 4 months age) a large percentage of dendritic spines likely persists throughout 

an animal's lifetime (Grutzendler et al 2002, Holtmaat et al 2005, Majewska et al 2006, Zuo et al 

2005). Although the majority of studies examine layer V pyramidal cells, there are some recent 

evidences on other cell types, including inhibitory neurons, and in other brain regions, such as 

hippocampus and olfactory bulb, which analogously reported a high degree of stability of 

dendritic spines in adulthood (Holtmaat et al 2005, Majewska et al 2006, Mizrahi 2007). 

Adult dendritic spines can thus represent a physical substrate for long-term information storage 

(Bhatt et al 2009). 

 

Experience-dependent spine remodeling 

Many lines of evidence indicate that experience-induced spine plasticity strongly depends on 

the stage of development. Indeed malleability of the nervous system seems to progressively 

diminish, as spine plasticity decreases (Bhatt et al 2009). Nonetheless, even "stable" adult 

spines undergo a small degree of turnover and maintain a certain level of shape plasticity 

(Grutzendler et al 2002, Holtmaat et al 2005, Majewska et al 2006, Zuo et al 2005). Therefore, 

changes in synaptic strength and in spine turnover may underlie various forms of learning and 

plasticity in the mature brain. The way and the extent to which experience can modify adult 

spines is still a matter of intense investigation.  
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 I.  RATIONALE 

 

The role of the oxytocin system in controlling social behavior suggests a natural link to 

neuropsychiatric conditions in which such behavior is aberrant or even absent. Autism is the 

most common of such disorders.  

Even if a strong genetic correlation between oxytocin and autism has not been reported so far, 

there are compelling reasons for a detailed investigation of OXT/OXTR involvement in autism. 

In particular, reduced levels of peripheral OXT have been found in ASD patients and OXT 

treatment is giving promising results in attenuating symptoms. 

Moreover, the transgenic mouse line lacking the oxytocin receptor (Oxtr-/-), generated in 

Nishimory laboratory (Takanayagi et al., 2005), shows a very interesting autism-like phenotype.  

This mouse displays strong impairments in many aspects of social behavior, including maternal 

and affiliative behavior, interest and memory for conspecifics and aggression. These deficits are 

thought to be murine correlates of the defective sociability and increased aggression observed 

in autistic patients. In addition, Oxtr-/- mice, tested in a T-maze test, show no learning defects, 

but an impaired reversal of learning, which is considered a sign of cognitive inflexibility (Sala et 

al 2011). This feature is, in our opinion, particularly interesting, because resistance to change 

represents one of the core symptoms of autism, but it is rarely described in animal models. 

Interestingly, the heterozygous Oxtr+/- mouse, which express 50% of the receptors, does not 

display any impairment in reversal of learning, indicating that a partial expression of oxytocin 

receptor is sufficient to maintain normal cognitive flexibility (Sala et al 2013). It is also relevant 

to note that the vasopressin V1aR seems to be involved in this process as well, because OXT 

and AVP, administered i.c.v.  are both able to fully revert this phenotype (Sala et al 2011). 

Finally, the Oxtr-/- mouse displays an enhanced susceptibility to PTZ-induced tonic-clonic 

seizures, which correlates with the increased ratio between Glutamatergic and GABAergic 

synapses observed in Oxtr-/- cultured hippocampal neurons (Sala et al 2011). This is a another 

very relevant feature of the autistic-like phenotype of Oxtr-/- mice. Indeed, seizures are 

frequent in autistic patients (Tuchman & Rapin 2002). 

Considering all these issues, the Oxtr-/- mouse can be considered a valid neurobiological model 

of autism. 
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 II.  AIMS  

 

While the social profile of Oxtr-/- mice has been extensively investigated, its cognitive deficits, 

and, more in general, the cognitive implications of OXT, has received far less attention. 

Consequently, we decided to clarify the neurobiological basis of cognitive autistic-like 

symptoms of the Oxtr-/- mouse, that is, in particular, its cognitive rigidity. 

 Firstly, we compared neuronal morphology of Oxtr+/+and  Oxtr-/-  mice, taking into 

account three brain regions, involved in different aspects of cognitive processes: the 

CA1 of hippocampus (CA1), responsible for spatial (place) learning (Hirsh 1974, Mishkin 

M. 1984, Moser et al 1994), the dorsolateral striatum (DLS), implicated in procedural 

(response/habit) learning (Packard M.G. 1987) and the orbitofrontal cortex (OFC), 

involved in cognitive flexibility (Dias et al 1997, Nonneman et al 1974, Ragozzino 2007). 

 Secondly, we analyzed how Oxtr+/+and  Oxtr-/-  neurons react to different cognitive tests, 

in term of dendrite and spine remodeling.  

 Finally, given the relevance of neuronal E-I imbalance in autism (Rubenstein & 

Merzenich 2003) and the previously reported imbalance between Glutamatergic and 

GABAergic synapses in Oxtr-/- hippocampal neurons, we investigated how the oxytocin 

system could be involved in the maintenance of this E-I balance and, thus, in the 

pathogenesis of ASD and/or in the emergence of autistic symptoms. 
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 I.  ANIMALS 

 

Oxtr+/+ and Oxtr-/- mice (Takayanagi et al 2005), carrying a C57BL/6 genetic background, were 

obtained from L. Young (USA) and stabulated in standard conditions, with ad-libitum access to 

food and water. Colony propagation have been carried on by heterozygous mating, and litters 

have been genotyped by PCR. The behavioral tests were started when the mice were 12 weeks 

old and completed before the mice reached the age of 17 weeks. 

 

 

 II.  ANALYSIS OF BEHAVIOR-RELATED CHANGES IN NEURONAL 

      MORPHOLOGY  
 

T-maze test and Golgi staining 

Three months old male Oxtr-/-and Oxtr+/+ mice were used in the behavioral studies. Animals 

were initially moved from the back-up colony to the behavior facility. After a week 

familiarization to the new environment, they were food deprived to 85% of their ad-libitum 

weight and, for the next 5 days, habituated to explore and find food across the T-maze 

apparatus (stem length: 41 cm; arm length: 91 cm; walls height: 19 cm; sections width: 11cm). 

Subsequently, mice started the acquisition phase of the test: they were trained to obtain food 

placed at the end of one arm (reinforcer) with ten daily sessions. The number of days taken to 

reach the criterion, i.e. 80% of correct choices for three consecutive days, was measured. Once 

completed this first phase mice were tested in the reversal procedure: the reiforcer position 

was switched to the opposite arm, animals were trained as above and again the number of days 

taken to reach the criterion was measured.  

Oxtr-/- and Oxtr+/+ mice were sacrificed and processed for Golgi staining and subsequent 

morphological analysis at different time point during behavioral testing (see fig.5), obtaining 5 

experimental groups for each genotype: 
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 "lab": age- and gender- matched mice at P90 from the back-up colony 

 "Environmental stimulus" (ES): lab mice moved to the behavioral facility for the 

familiarization period 

 "Habituation"(H): ES mice after the habituation to the T-maze, 

 "Learning"(L): H mice which completed also the acquisition phase of the T-maze test 

 "Reversal"(R): L mice after the reversal training in the T-maze  

 

 

Figure 5. Time-line of behavioral testing and experimental groups obtained (empty arrows). Mice started the 
behavioral protocol at three month of age (P90). The temporal sequence of behavioral tests is depicted along the 
time line, with indication of the duration of each phase(days). 

 

 

Animals of each experimental group (n=3-8) were intracardially perfused, under deep 

anesthesia, with 0.9% saline solution, 24 hours after the end of their training. Brains were 

impregnated for 6 days in Golgi-Cox solution and for 2 additional days in a 30% sucrose 

solution, then 100-µm-thick coronal sections were obtained using a vibratome, mounted on 

gelatinized slides and finally stained according to the protocol by Gibb and Kolb (Gibb & Kolb 

1998).  

Using a mouse brain atlas (“The mouse brain in stereotaxis coordinates” - Keith B.J. Franklin and 

Gorge Paxinos), the three brain regions of interest: CA1 of hippocampus (bregma -1,46mm/-

3,52mm), orbitofrontal cortex (OFC; bregma 2,58mm/2,00mm) and  dorsolateral striatum (DLS; 

bregma 1,18mm/-0,58mm) were identyfied (fig. 6). 
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Figure 6. Coronal brain sections highlighting the three brain regions taken into account. (a) The yellow line 
outlines hippocampal perimeter, the filled region represents the CA1 portion. (b) The whole striatal region is 
surrounded by a violet line. Violet filling indicates the dorsolateral part of this structure. (c) Orbitofrontalcortex is 
indicated by the green filling. (Modified from the "High Resolution Mouse Brain Atlas " Sidman et al.,  
http://www.hms.harvard.edu/research/brain/index.html) 

 

Within each region and for each animal, at least 3 Pyramidal (CA1 and OFC) or Medium Spiny 

neurons (DLS) showing intense and complete impregnation and no truncations were selected 

and acquired with a Axiovert  microscope (Zeiss) equipped with a Digital CCD Camera ORCA-AG 

(Hamamatsu). Brightfield images were acquired with a 63x magnification objective (NA=1.4) at 

several focal planes (0,5 μm apart one from the other) and then stacked together to have on 

focus all the dendrites of interest. 

Spines were counted on at least five II-IV order-dendrites per neuron. Protrusions longer than 2 

µm or with no evident connection with the dendritic shaft were excluded from the count. 

The software NeuronStudio was used to assess dendrite length, number of branches and to 

calculate spine density. 

 

 

 III. NEURONAL CULTURES  

 

Primary neuronal cultures were prepared from hippocampi of embryonic day 18 (E18) Oxtr+/+ 

and Oxtr-/- mice as described by Kaech and Banker (Kaech & Banker 2006), with slight 

modifications. Briefly, a pregnant mouse was sacrificed by cervical dislocation, embryos' brains 

were removed and hippocampi dissected out. Tissue dissociation was carried out with an 

enzymatic treatment (0.25% trypsin for 20 minutes at 37°C) followed by a mechanic trituration 

with a fire-smoothed Pasteur pipette. Dissociated cells were plated, at densities ranging from 

25 000 to 35 000 cells/cm2, in poly-L-lysine coated multiwell dishes (or glass coverslips) 

http://www.hms.harvard.edu/research/brain/index.html
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containing Neurobasal medium additioned with B27 supplement (2%, v/v), L-glutamine (2 mM), 

penicillin/streptomycin (100 U/ml) and  25µM Glutamate. Five hours after plating the medium 

was replaced with a glutamate-free one to avoid excitotoxicity. Neurons were than maintained 

at 37°C in a humidified atmosphere at 95% air and 5% CO2 up to DIV17, replacing half of the 

medium twice a week. 

 

Analysis of morphology  

GFP-transfection 

Two different preparation of both Oxtr+/+ and Oxtr-/- neurons, seeded on glass coverslips 25 000 

cells/cm2, were transfected at DIV7 with GFP-expressing vector (pLL3.7) using 

Lipofectamine2000 (LIPO; lifetechnologies).  

For each well of a 12-well dish, 2,5 µg of DNA were diluted in 50 µl of Neurobasal medium 

containing no additives; 2,5 µl of LIPO per well were diluted in equal volume of Neurobasal to 

maintain a 1:1 ratio (wt:vol).  

The DNA and the LIPO solutions were allowed to sit at room temperature (RT) for 5 minutes 

and then mixed together by gently pipetting. While the resulting mix was sitting at RT, half of 

the growth medium was removed from each well, transferred to a conical tube and mixed with 

equal volume of fresh complete Neurobasal medium (half-conditioned medium). 

After 15 minutes of RT incubation the DNA-LIPO mix was dropped on neurons, 100µl per well. 

Transfection medium was completely removed 1 hour after transfection and replaced by 

previously prepared half-conditioned medium. 

Imaging and morphological analysis 

Neurons were maintained until DIV17, then fixed with 4% paraformaldheyde-4% sucrose; 

coverslips were mounted on glass slides and imaged using a Zeiss 510LSM Meta laser scanning 

confocal microscope (Carl Zeiss). For the analysis of neuronal arborization images of at least 

three neurons were acquired with a 40x objective (NA = 1.3) on three focal planes (z-

step=0,5µm); for the analysis of spine density and morphology at least five neurons per 

genotype were acquired, a 63x objective was used and the focal planes were stacked together 

in a projection. Spine count was made manually, whereas dendritic length measurements and 

Sholl analysis were performed with NeuronStudio software. Spine morphology paramenter 
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(spine length, head diameter, and neck width) were measured using ImageJ software, then 

spine were assigned to different subclasses according to NeuronStudio criteria. 

 

Analysis of mRNA expression 

To evaluate the expression of OXT/AVP receptors, NKCC1/KCC2 transporters and members of 

the inward-rectifying K+ channel (IRK) family in our primary hippocampal neurons, total RNA 

was isolated, treated with DNAse, reverse transcribed into cDNA using a reverse transcriptase 

and, finally, resulting cDNA was used as templates for subsequent quantitative (Real-time PCR) 

and semi-quantitative PCR analysis. 

RNA isolation and purification 

Neurons' RNA content was isolated from 2,5*105 neurons, at the indicated DIV, using the Zymo 

microRNA extraction kit (Euroclone), following manufacturer instruction. 

RNA was eluted in 12µl of RNAse-free water and it's concentration and purity was assessed by 

measuring the optical density at 260 and at 280 nm wavelength with a nanodrop 

spectrophotometer. 

In each experiment equal amounts of RNA  per sample (typically around 200 ng) were used. 

Samples were diluted in DEPC-water to an equal volume (8µl), then 1µl of 10x DNAse reaction 

buffer (400mM Tris-HCl, pH 8.0; 100mM MgSO4 and 10mM CaCl2; Promega) and 1µl of RNase-

free DNase (Promega) were added and samples were incubated for 30 minutes at 37°C. The 

reaction was stopped by adding 1 µl of STOP solution (20mM EGTA, pH 8.0; Promega) and 

incubating 10 minutes at 65°C. This step ensured no genomic contamination would be carried 

on. 

cDNA synthesis 

RNA samples were firstly incubated at 65°C for 5 minutes with 500 ng oligo(dT)12-18 and 1mM of 

each dNTP to denature RNA secondary structure and then quickly chilled on ice to let primers 

anneal to RNA. Secondly, reaction mix was completed by adding to the tube: 5x First-Strand 

buffer (250mM Tris-HCl. pH 8.3; 375 mM KCl; 15mM MgCl2; Life Technologies), 5mM DTT, 40 

Units of Recombinant Rnase Inhibitor (RNase OUT; Life Technologies) and 200 Units of the 

enzyme Reverse Transcriptase (SuperScript III; Life Technologies). Retrotranscription was 
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carried out in a termalcycler (PTC-100, MJ Research) with the following protocol: 50 minutes at 

50°C for the extension and 15 minutes at 85°C to inactivate the enzyme. 

Finally, the obtained cDNA was cleaned from RNA complementary to the cDNA by adding 2 

Units of E.coli RNase H and incubating 20 minutes at 37°C. 

Reverse Transcription Polymerase Chain Reaction (RT-PCR) 

For the analysis of OXT/AVP receptors and inward-rectifying K+ channels expression cDNA 

samples were amplified by PCR using appropriate intron-spanning primers (see table 1). 

 

 

Gene Primer (Forward e Reverse) 
Amplicon length 

(Bp) 
Tm (°C) MgCl2 

Oxtr 
5’-TGTGCTGGACGAATTTCTTC-3’ 

150 60 °C 2,5 mM 
5’-GCCCGTGAACAGCATGTAGA-3’ 

V1ar 
5’-ATTGCTGGGCTACCTTCATCC-3’ 

532 60 °C 5 mM 
5’-CCTTGGCGAATTTCTGCGCT-3’ 

V1br 
5’-TCACCTGGACCACCATGGCC-3’ 

567 60 °C 5 mM 
5’-TAAGACGGAGAGTAGATGGACC-3’ 

V2r 
5’-TTCGTGCCTATGTCACCTGG-3’ 700 pre-mRNA 

512 V2aR 
455 V2bR 

62 °C 5 mM 
5’-TCAGGAGGGTGTATCCTTCAT-3’ 

GAPDH 
5’-GCCATCAACGACCCCTTCATTG-3’ 

598 63,9 °C 2,5 mM 
5’-TGCCAGTGAGCTTCCCGTTC-3’ 

Kir 2.1 
5’-GAGTAAGCAGGACATTGACAATG-3’ 

431 58 °C 2,5 mM 
5’-GATTCTCGCCTTAAGGGCC-3’ 

Kir 2.2 
5’-CTTCCTGAGCAGAGATGAG-3’ 

193 62 °C 2,5 mM 
 5’-GGACATGGGACCTATTGTGG-3’ 

Kir 2.3 
5’-ATGGGCAAGGAGGAGCTGG-3' 

466 60 °C 3,5 mM 
5’-GCATGCGCTCCAGATCCA-3’ 

Kir 3.1 
5’-ATCGAAGCTGCAGAAAATTACG-3' 

323 58 °C 2,5 mM 
5’-CCTAAAGGGGTGTTTTGCTATGT-3’ 

Kir 3.2 
5’-AGTGGCCATTCACCAGC-3’ 

552 62 °C 2,5 mM 
5’-GTGGGTGGAAAAGACCAG-3’ 

Kir 3.3 
5’-GCCTCGATGCCCATCTCTA-3’ 

242 62 °C 2,5 mM 
5’-TGCCTGCCTCCTCTTCTTCCA-3’ 

Kir 3.4 
5’-TCTGAAACAGCACTTCTTGC-3’ 

122 60 °C 3,5 mM 
5’-CCATGTCTTGATTCATAGCATT-3’ 

Table 1. RT-PCR primers sequences, amplicon length and reaction conditions used for each gene of interest. 
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In parallel, as internal control, the cDNA of an housekeeping gene, the GAPDH (glyceraldehyde-

3-phosphate-dehydrogenase) has been amplified using a couple of specific primers that 

produce a PCR product of 598 bp (see table 1). 

The PCR reaction solution and amplification cycles were adjusted for each gene in terms of 

melting temperature and Magnesium concentration in order to improve specificity and 

efficiency (see table 1). 

PCR products were loaded on 2% agarose 0,05% Ethidium Bromide gel and their size was 

determined by comparison with appropriate markers (BenchTop 100bp DNA Ladder; Promega) 

run on the same gel. 

Real-Time Polymerase Chain Reaction (Real-Time PCR) 

The expression of KCC2 and NKCC1 cotransporters in primary neuron cultures was 

quantitatively determined by Real-Time PCR using TaqMan technology (KCC2: Slc12a5 

#Mm00803929_m1; NKCC1: Slc12a2 #Mm00436554_m1; Life Technologies). 

Specific TaqMan Gene Expression Assays contain specific forward and reverse primers and a 

TaqMan probe, which binds to a sequence between that recognized by the primers. A 

fluorescent reporter dye (6-carboxy-fluorescein, FAM) is fused to the 5' end of the TaqMan 

probes and a quencher fluorescent dye (6-carboxy-tetramethyl-rhodamine, TAMRA) is attached 

to their 3' ends.  

As many amplicon are generated, as much TaqMan probes are degraded by the endonuclease 

activity of the polymerase and, proportionally, as much reporter fluorophore is distanced from 

the quencher, thus determining proportional increase in fluorescent signal. 

As reference gene, the housekeeping hypoxantine phosphoribosyltransferase 1(HPRT-1) gene 

was amplified in parallel using its specific TaqMan Assay (Hprt1 #Mm00446968_m1; Life 

Technologies). 

Reaction mixes, for each well of a 96-well reaction plate, were prepared as follows: 

 13 ng cDNA, 

 12,5 μl 2x Universal PCR Mastermix (Applied Biosystems), 

 1 μl di TaqMan Gene Expression (Applied Biosystems), 

 Nuclease-free water (Promega) to 25 μl 

The reference and target genes of each experimental point were amplified in separate tubes in 

triplicate. 
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Real-Time PCR was performed using the PCR System ABI 7000 (Applied Biosystems) equipped 

with ABI Prism 7900 sequence detection system, using an amplification protocol consisting of 

one first step at 50°C for 2 minutes followed by 40 cycles of 15 seconds at 95°c and 1 minute at 

60°C. 

Results were elaborated with ABIPrism1.0.1 software (Applied Biosystems) using the 

comparative threshold cycle (Ct) method. The Ct is defined as the cycle at which the 

amplification plot crosses a predefined threshold of fluorescence. The threshold was 

individuated as the value where all amplification plots begins their exponential phase in the 

first experiment and then maintained constant over experiments. 

Once logarithmic Ct values were obtained, they were normalized by subtracting the relative Ct 

values of the reference gene (Hprt-1): 

Cttarget - Ctreference = ΔCt 

Since our samples constituted a Time- course of neuronal development for each target gene 

the ΔCt was further normalized by the ΔCt value of the first time point (DIV1): 

ΔCt - ΔCtt0 = ΔΔCt 

Finally, to bring values back to linearity 2-ΔΔCt value was calculated for each time point and have 

been graphically indicated as fold increase over DIV1. 

 

Analysis of proteins expression 

Pharmacological treatments 

Oxytocin, Vasopressin, TGOT were purchased from Bachem. All drugs were pre-diluted in 

Neurobasal medium and then a applied to neurons at the indicated time and final 

concentration. Duration of treatments depend on the experiment and is always indicated. 

Western-blotting 

Neurons at the indicated DIV were lysed in ice-cold RIPA buffer (NaCl 150mM, TrisHCl 50 mM, 

pH 7.4, EDTA 1mM, Triton X-100 1% and NP-40 1%) with Protease Inhibitor Cocktail (Sigma) and 

Phosphatase Inhibitor (PhosSTOP, Roche).  
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Protein concentration was determined with the DC protein Assay kit (Bio-Rad) and samples 

were diluted in 3x-sample buffer (375mM Tris-HCl, pH6.8, 20% glycerol w/v, 9% SDS w/v, β-

mercaptoethanol 10% v/v and Bromophenol Blue 0.05% w/v).  

Alternatively neurons were lysed directly in Sample Buffer. 

Protein samples were separated in a 9% SDS-PAGE and then transferred onto a nitrocellullose 

membrane (Bio-Rad). To prevent aspecific binding membranes were incubated in 5% BSA for 1 

hour at 37°C, and then probed with the proper primary antibody (anti-KCC2, anti-p-eEF2, anti-

GAPDH and anti-β-tubulin) at the indicated dilution (see table 2). Secondary antibody 

conjugated with infrared-emitting-fluorophore were used (see table 2) and signals were 

detected and quantified using Odissey-LICOR scanner equipped with ImageStudio software. 

Kcc2 and p-eEF2 bands signal was normalized by GAPDH and Tubulin bands signal, respectively. 

 

Protein MW 
(kDa) 

Primary Antibody  Secondary Antibody 

140 
Rabbit Anti-Kcc2 (Millipore) 

 1:250 IRDye® 800CW Goat Anti-Rabbit (Li-Cor) 
 1:5000 

95 
Rabbit Anti-p-eEF2 (Cell Signaling Technology) 

1:500 

55 
Mouse Anti-Tub (Sigma-Aldrich) 

 1:30000 IRDye® 680RD Goat Anti-Mouse (Li-Cor) 
 1:7500 

37 
Mouse Anti-GAPDH (Santa Cruz)  

1:750 

Table 2. Primary and Secondary antibodies used for western blot analysis. The molecular weight (MW) of 

expected bands is reported in the first column. 
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 I.  ENLARGED ARBOR AND PROMINENT SPINE REMODELING 

     OF STRIATAL MSN IN THE OXTR-/- MICE 

 

Social and cognitive aspects of the Oxtr-/- mouse behavior have been investigated previously by 

different research groups including ours (Sala et al 2011). The phenotype that emerged from 

these studies, as described above, recapitulates pretty well autistic-like symptoms. 

While the social profile of this mice is extensively investigated, its cognitive deficits, and, more 

in general, cognitive implication of OXT system alteration, receive far less attention. 

In particular, the neurobiological basis of the cognitive flexibility deficit of the Oxtr-/- mouse 

have never been clarified.  

In the first part of my PhD project I analyzed morphological changes occurring to neurons after 

different cognitive tests, comparing Oxtr-/- mice with Wild-Type (Oxtr+/+) ones.  

Behavioral tests were organized as a sequence, thus each test represents the starting point and 

the control (basal level) for the subsequent (fig. 7). A group of animals (Oxtr+/+and Oxt-/-) was 

sacrified 24 hours after the end of each phase and neuronal morphology was assessed by using 

the Golgi staining. 

I focalized my analysis on three brain regions, particularly involved in different aspects of 

cognitive processes. I chose the CA1 of hippocampus (CA1), as it is responsible for spatial 

(place) learning (Hirsh 1974, Mishkin M. 1984, Moser et al 1994), the dorsolateral striatum 

(DLS), because it's implicated in procedural (habit/response) learning (Mishkin M. 1984, 

Packard M.G. 1987) and the orbitofrontal cortex (OFC), for its role in cognitive flexibility (Dias et 

al 1997, Nonneman et al 1974, Ragozzino 2007). 

 

Figure 7. Time-line of behavioral testing and experimental groups obtained (empty arrow). 



Results 

43 

Oxtr-/- mice have normal spine density in all considered areas, but an 

increased number of spine/neuron in DLS 

Firstly, spine density and dendritic arborization of normally stabulated Oxtr+/+ e Oxtr-/- mice 

(named "lab") were evaluated to compare basal levels of the two genotypes in term of 

neuronal morphology. 

As shown in the bar graphs in fig. 8 (a, c, j, k), no significant difference in spine density was 

observed between genotypes in any analyzed area. 

Moreover, the analysis of dendritic arborization in CA1 reveals no significant difference either 

in the overall dendrite length or in the number of branching points (Fig. 8 d-g).  

Conversely, in DLS, Oxtr-/- dendrites are significantly longer (Fig. 8 l), and have a more complex 

arborization, displaying an increased number of branching points (Fig.8 m).  

Plotting data of dendrite length and branching points in relation with the distance from soma 

it's possible to appreciate that the difference in dendrites length is evident between 50 and 100 

µm from soma (Fig. 8 n) and derives from a greater number of branching point in the first part 

of the dendritic arbor, closer to the soma (Fig. 8 o). 

 

Environmental Stimuli affect spine density in different brain areas in 

the two genotypes 

Since standard stabulation conditions give rather no stimuli to the animals, even a small change 

in the environment could represent for them an important alteration of the treadmill and 

therefore could possibly determine relevant morphological changes in their neurons. 

For this reason, we decided to test the effect of a simple change in the external environment on 

neuronal morphology, by moving mice cages to the behavioral facility of our department for a 

week and subsequently performing the Golgi staining. We called this step "environmental 

stimulus" (ES). 

Quite surprisingly, ES had important effects on spine density in both genotypes, but it 

interested different brain areas. In Oxtr+/+ mice spine density of CA1 apical dendrites raised by 

almost 50% of its basal value (lab: 0,7956 ± 0,04604 vs ES: 1,181 ± 0,07731 spine/µm) and no 

other area was affected (Fig.9 a). 
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Figure 8. Spine density and dendritic arborization in CA1 (a-i), DLS (j-q, s) and OFC (k, r) in Oxtr
+/+

 and Oxtr
-/-

 

mice. Neuronal morphology was evaluated on at least 3 neurons per area, in 3 brains per group. (a, c) Spine 

density of hippocampal neurons on apical and basal dendrites, respectively. (j, k) Spine density in striatal medium 

spiny neurons and in pyramidal cells of OFC, respectively. Images above graphs (in a, c, j, k) are representative 

dendrites of corresponding areas; scale bars = 5 µm. (b, r, s) Representative images of Golgi-stained CA1 

hippocampal pyramidal neuron, OFC pyramidal neuron and DLS medium spiny neuron, respectively. Scale bars = 

20 µm. Dendrite length and number of branching point per neuron are presented as mean value± SEM (d, g, l, m). 

Partial (e, h, n, o) and cumulative (f, i, p, q) dendrite length and branching point are plotted as function of the 

distance from soma . Statistical analysis was carried out using Student t-test. *p<0.05 versus matched Oxtr
-/-

. 
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Figure 9. Effects of ES on spine density in Oxtr+/+ (a) and Oxtr-/- (b) mice in CA1 (apical and basal dendrites), DLS 

and OFC. Values of spine density (n° of spines/µm) are presented as mean value± SEM. Statistical analysis was 

carried out using Student t-test. *p<0.05; **p<0.01 versus matched Oxtr-/-. lab: normally stabulated mice at P90 

from the back-up colony. ES (environmental stimulus): lab mice moved to the behavioral facility for one week to 

familiarize with the new environment. 

 

Conversely, in Oxtr-/- mice the only affected region is the DLS (Fig. 9 b), where we found a 20% 

decrease in spine density (lab: 1,343 ± 0,02769 vs ES: 1,092 ± 0,04826 spine/µm). 

 

Habituation to the T-maze apparatus: more complex stimuli 

determine extensive effects in Oxtr-/- mice 

After a week of familiarization to the behavioral facility (ES), the protocol for the cognitive test 

started with a 5-days period called "habituation"(H). During this phase animals undergo many 

different stimuli: food restriction, daily handling and exploration of the T-maze apparatus and 

finally the taste of a new food (subsequently used as reward). 

* 

** 

CA1 

 

DLS 

 

OFC 
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This complex phase produces dramatic effects on spine remodeling in Oxtr-/- mice. Indeed, as 

shown in fig. 10 a, spine density is increased in DLS by about 20% of the value observed after 

the previous phase (CA1. ES: 0,9400 ± 0,05769 vs H: 1,157 ± 0,05745 spine/µm; DLS. ES: 1,092 ± 

0,04826 vs H: 1,324 ± 0,03830 spine/µm) and an increasing trend was present in CA1 (apical 

dendrites) as well. 

No significant effects on spine density were observed in these two areas in Oxtr+/+ mice (fig. 10 

b), which conversely showed a 15% reduction in OFC values (ES: 1,217 ± 0,04455 vs H: 1,018 ± 

0,03244 spine/µm). 

 

 

Figure 10. Effects of the habituation period on spine density in Oxtr+/+ (a) and Oxtr-/- (b) mice in CA1 (apical and 

basal dendrites), DLS and OFC. Values of spine density (n° of spines/µm) are presented as mean value± SEM. 

Statistical analysis was carried out using Student t-test. **p<0.01 versus matched Oxtr-/-. ES (environmental 

stimulus): lab mice moved to the behavioral facility for one week to familiarize with the new environment. H 

(habituation): ES mice after the period of habituation to the T-maze.  

 

**

 **  
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 **  
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Decreasing trend of spine density along the T-maze test period in the 

two genotypes 

Once habituated to the apparatus and to the reward food, animals entered the acquisition 

phase of the T-maze test (also called learning, or L) which lasts from 4 to 7 days, until animals 

learn to find food in the baited arm.  

As shown in fig. 11 a-b the effect of the learning phase of the test on Oxtr+/+ and Oxtr-/- mice is 

similar: we observed a small but generalized decrease in spine density in every brain area. 

 

 

 

Figure 11. Effects of learning in a T-maze test on spine density in Oxtr+/+ (a) and Oxtr-/- (b) mice in CA1 (apical and 

basal dendrites), DLS and OFC. Values of spine density (n° of spines/µm) are presented as mean value± SEM. 

Statistical analysis was carried out using Student t-test. H (habituation): ES mice after the period of habituation to 

the T-maze. L (learning): H mice which completed also the acquisition phase of the T-maze test.  

CA1 

 

DLS 

 

OFC 
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Finally, we analyzed the effect on spine density of the reversal phase of the T-maze test (R), 

which ends within 7 days, whether or not the animals have reached the criterion.  

A significant decrease was highlighted only on apical dendrites of CA1 of Oxtr-/- mice (fig. 12 b.  

R vs L: 0,7547 ± 0,03849 vs 1,019 ± 0,02702 spine/μm). and for Oxtr+/+ also basal dendrites are 

similarly affected (fig. 12 a. R vs L: 0,8750 ± 0,03722 vs 0,9675 ± 0,02390 spine/μm). 

On the other hand, the reversal training produced no effect on spine density in DLS and OFC, 

either in Oxtr+/+ or in Oxtr-/- (fig. 12a-b).  

 

 

Figure 12. Effects of reversal in a T-maze test on spine density in Oxtr
+/+

 (a) and Oxtr
-/-

 (b) mice in CA1 (apical and 

basal dendrites), DLS and OFC. Values of spine density (n° of spines/µm) are presented as mean value± SEM. 

Statistical analysis was carried out using Student t-test. **p<0.01 versus matched Oxtr
-/-

. L (learning): H mice which 

completed also the acquisition phase of the T-maze test. R (reversal): L mice after the reversal training in the T-

maze. 
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Interestingly, the spine density level reached after the reversal phase by both genotype is 

significantly lower than the basal level of normally stabulated animals both in OFC and in DLS, 

whereas in CA1, on both basal and apical dendrites, spine density values after the reversal 

phase gets back to their initial level (Table 3). 

 

  Lab (sp/µm) Reversal (sp/µm) P value 

CA1 

 

Oxtr+/+ 
Apical: 0.7956 ± 0.04604 

Basal: 0.9400 ± 0.04173 

Apical: 0,8990 ± 0,02773 

Basal: 0,8750 ± 0,03722 

0,0759 

0,2930 

Oxtr-/- 
Apical: 0.8367 ± 0.02060 

Basal: .8483 ± 0.04622 

Apical: 0,7547 ± 0,03849 

Basal: 0.8740 ± 0.04883 

0,1109 

0,7613 

OFC 
Oxtr+/+ 1,120 ± 0,04209 0,8491 ± 0,03186 < 0,0001 

Oxtr-/- 1,154 ± 0,05134 0,7960 ± 0,04967 < 0,0001 

DLS 
Oxtr+/+ 1,350 ± 0,03971 1,147 ± 0,03862 0,0013 

Oxtr-/- 1,343 ± 0,02769 1,185 ± 0,04521 0,0114 

Table 3. Spine density of Oxtr+/+ and Oxtr-/- mice in CA1 (apical and basal dendrites), DLS and OFC at the first and 

last step of behavioral protocol. Level of spine density in the indicated brain regions of Oxtr+/+ and Oxtr-/- mice 

before the beginning of behavioral tests(lab) is compared to the level of spine density at the end of the last 

behavioral test (reversal) in genotype-matched animals. Values of spine density (n° of spines/µm) are presented as 

mean value± SEM. P values refers to a Student T-test comparision between these two groups (lab and reversal). 

 

 

 II.  HIPPOCAMPAL OXTR-/- NEURONS HAVE ALTERED 

       EXPRESSION OF PROTEINS INVOLVED IN THE E/I BALANCE  

 

Another interesting feature that emerged from the behavioral characterization of our autistic 

mouse model is its increased susceptibility to evoked seizures, which correlates also pretty well 

with the imbalance between excitatory an inhibitory synapses observed in Oxtr-/- hippocampal 

neurons in culture (Sala et al 2011). 

The alteration of the equilibrium between neuronal excitation and inhibition (E/I balance) have 

been frequently associated with neuropsychiatric disorders (such as schizophrenia, epilepsy 

and autism) in many different animal models (Rubenstein & Merzenich 2003, Yizhar et al 2011) 
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and also in human subjects (Eichler & Meier 2008), but it's neurobiological basis are still 

unclear. 

To investigate how the oxytocin system could be involved in the maintenance of this E/I 

balance, and thus in the pathogenesis of ASD (or in the control of its symptoms), we used, as a 

model, Oxtr-/- and Oxtr+/+ primary hippocampal cultures, in which the increased ratio between 

excitatory/inhibitory synapses was initially highlighted. 

Moreover neuronal culture represent a model of the earliest stages of development, when also 

small alterations could affect the formation of proper connections and the correct evolution of 

brain circuitry, having potentially dramatic neuropsychiatric consequences. Therefore this time 

window could be a huge source of information on possible pathologic mechanisms, and could 

also represent an excellent moment for a promising therapeutic strategy. 

 

Primary hippocampal neurons from Oxtr-/- mice show no alteration in 

spine density and dendrite arborization 

Data concerning neuronal morphology in hippocampus at basal level were further investigated 

on cultured hippocampal neurons. 

Neurons from Oxtr+/+ and Oxtr-/- E18 embryos were transfected with a GFP-expression vector 

(pLL3.7) at DIV7 and then analyzed at DIV17, when they reached an advanced maturation, 

synaptic contacts are established and spines are formed. The expression of soluble GFP allows a 

precise visualization of all neuronal processes and dendritic protrusion including spines and  

filopodia. 

The Sholl analysis reveals no difference either in dendritic arborization (Fig.13 a-f) or in spine 

density (Fig. 14 a), as observed on adult neurons with the Golgi staining. Spine morphology 

were also evaluated on cultured GFP-expressing neurons  but no difference emerged between 

the two genotypes (Fig.14 b-e). 
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Figure 13. Dendritic arborization of GFP-expressing neurons derived from Oxtr+/+ and Oxtr-/- mice. In (a, b) 

dendrite length and n° of branching points are presented as mean values ±SEM. (c-f) Partial (c, d) and cumulative 

(e, f) dendrite length and branching point are plotted as function of the distance from soma. (g, h) Representative 

images of GFP-transfected hippocampal neurons from Oxtr+/+ (g) and Oxtr-/- (h) mice. Statistical analysis was 

carried out using Student t-test. 

 

Figure 14. Spine density and morphology of GFP-expressing neurons from Oxtr
+/+

 and Oxtr
-/-

 mice. Spine density 

values (a) are reported as number of spine/10µm of dendrite (mean ±SEM). The classification of spines on 

morphological basis (b) is shown as percentage of total spines. Morphological parameters: spine length (c), head 

diameter (d) and neck width (e) are presented as mean values ±SEM. Statistical analysis was carried out using 

Student t-test. 
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Primary hippocampal neurons from Oxtr-/- mice express differently 

the receptors of the OXT/AVP family 

Firstly, we analyzed the expression of receptors of the OXT/AVP family in our neuronal cultures 

at three time points: DIV3, DIV6 and DIV11, to map their modulation during development. 

RT-PCR results (fig. 15) show that in Oxtr+/+ neuronal cultures Oxtr is already expressed at the 

earliest stage of development taken into account (DIV3), it is then upregulated until DIV6 and 

then seem to remain stable until DIV11, when neurons start to reach maturity. 

AVP receptors are closely related to oxytocin ones and, due to elevated homology between the 

two neuhypophyseal peptides, they are poorly selective. Consequently, OXT can bind and 

activate AVP-receptors, especially the V1a subtype(V1aR), with an affinity not so different from 

that of AVP. Therefore we cannot rule out the possibility that some physiological effect of OXT 

are mediated, or can be compensated, by the activation of AVP-receptors.  

For these reasons, we analyzed in our neuronal cultures also the developmental profile of AVP-

receptor expression, and were not surprised to observe important differences between Oxtr+/+ 

and Oxtr-/- neurons. 

 

 

Figure 15. RT-PCR analysis of OXT/AVP receptors expressio in Oxtr+/+ and Oxtr-/- neurons during development. 

Amplification of Oxtr (a), V1ar (b) V1br (c) and V2r (d) was conducted using specific intron-spanning primers' 

couples. As positive control a whole brain extracts from an adult Oxtr+/+ mouse was used (Brain). Molecular weight 

markers (Mw) are shown on the left. 
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In particular, V1aR is expressed in Oxtr+/+ neuronal cultures at early stages of in vitro 

development (DIV3 and DIV6), but then is downregulated within DIV11. On the contrary, in 

Oxtr-/- neurons we observed a gradual but very strong increase of V1aR expression during 

development (fig. 15 b). 

Another difference emerged in the expression of V1bR, which appears in Oxtr+/+ neurons  at 

DIV11, when it's still undetectable in Oxtr-/- (fig. 15 c). 

Finally, we analyzed the expression of V2R, even if it is described not to be present in CNS 

(Ostrowski et al 1992), to check eventual ectopic expression due to development in culture. 

In Oxtr+/+ neurons we detect only an aspecific band of around 700bp (fig. 15 d) at DIV3 and 

DIV11, which is compatible with an immature untranslated transcript. The same band appears 

also in Oxtr-/- neurons at all time points considered; however at DIV11 we observed also a labile 

band at around 450bp, consistent with the transcript coding for a splice variant of the V2 

receptor, named V2bR. 

 

IRK channels are upregulated in Oxtr-/- neurons 

An indication of the role of OXT system in modulating neuronal excitability emerged even 

before the behavioral characterization of Oxtr-/- mice, when in our lab (Gravati et al 2010) was 

described the OXTR ability to modulate several inwardly-rectifying K+ channels.  

This evidence suggested us to evaluate the expression of these channels in our cultures. In 

particular we examined the expression of GIRK channels, belonging to the Kir3 class (Kir3.1, 

Kir3.2 Kir3.3 and Kir3.4) and of three members of IRKs, belonging to the Kir2 class (Kir2.1, Kir2.2 

and Kir2,3). GIRKs are closed at resting membrane potential and get activated by certain GPCR, 

including OXTR, through a signaling pathway which involves the Gβϒ subunits released from a 

Gi/o tetrameric complex (Dascal 1997, Logothetis et al 1987, Reuveny et al 1994). Conversely, 

Kir2-class IRKs are constitutively open and can be closed by the phospholipase C β (PLCβ), 

activated by a Gq/11-coupled GPCR (Firth & Jones 2001, Uchimura & North 1990). 

Interestingly, as shown in fig. 16, our RT-PCR analysis reveal a generalized upregulation of all 

channels taken into account.  
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Figure 16. RT-PCR of Kir 3.1 (GIRK1), 3.2 (GIRK2), 3.3 (GIRK3), 3.4 (GIRK4), 2.1 (IRK 2.1), 2.2 (IRK 2.2), e 2.3 (IRK 

2.3) channels in Oxtr+/+and Oxtr-/- neurons. Total RNA of hippocampal neurons from Oxtr+/+ (WT) e Oxtr-/- (KO) 

mice was isolated at DIV11, retrotranscribed and amplified with specific intron-spanning couples of primers (see 

Table 1 in Material and methods section). As positive control a whole brain extracts from an adult Oxtr
+/+

 mouse 

was used (Brain). Molecular weight markers (Mw) are shown on the left. 

 

 

Developmental increase of KCC2 transcript and protein is lower in 

Oxtr-/- hippocampal cultures 

Early neuronal development is characterized by a complex sequence of events aimed at 

controlling synapse maturation, excitability and coordination of neuronal activity, which 

guarantees the proper  formation of neuronal networks and circuitries (Spitzer 2006). 

One of the most relevant events that happens to hippocampal neurons during this phase is the 

excitatory-to-inhibitory switch in GABA actions. This switch takes place by the end of the 

second postnatal week in rodents (Ben-Ari et al 1989, Cherubini et al 1991) and it is described 

also in neuronal cultures, around DIV11 (Ganguly et al 2001). Two neuronal cathion-chloride 

cotransporters (CCCs), NKCC1 and KCC2, are responsible for this change, since they are able to 

modify Cl- electrochemical gradient by altering its intracellular concentration. In particular, the 

ratio between NKCC1 and KCC2 expression (NKCC1/KCC2 ratio) is high in the first phase of in 

utero development, then, few days after birth, it gradually decreases producing the 

aforementioned switch in GABA polarity (Rivera et al 1999). 

Interestingly, some years ago it was observed in rats that the oxytocin released during labor is 

able to induce in the fetal hippocampus a temporary switch in GABA polarity (Tyzio et al 2006), 

but the underlying mechanism remain uninvestigated. 
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For this reason we analyzed the developmental profile of the expression of these two CCCs, 

NKCC1 and KCC2 in neuronal cultures from Oxtr+/+ and Oxtr-/- mice. Real Time PCR results 

displayed in fig.10a show that the decreasing trend in the expression of NKCC1 observed in 

Oxtr+/+ neurons was maintained in Oxtr-/- ones. On the contrary, the developmental 

upregulation of KCC2 transcript, which is massive in Oxtr+/+ cultures, as described (Rivera et al., 

1999), is lower and not significant in Oxtr-/- ones (fig. 17 b). 

 

 

Figure 17. Real Time analysis of NKCC1(a) and KCC2 (b) expression during in vitro development of Oxtr+/+ and 

Oxtr
-/-

 neurons. Abundance of transcripts for NKCC1 (a) and KCC2 (b) is normalized on that of the reference gene, 

Hprt1. Values of relative expression are presented on graphs as fold increase (mean ±SEM) over the level at DIV1. 

Three different neuronal preparations were analyzed for each genotype. Statistical analysis were performed using 

One-Way ANOVA with a Tukey post-hoc test. *p<0.05, ***p<0.001 versus DIV1 value. 

* 

* 
*** 

*** *** 
*** 
*** 
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The difference in the size of the KCC2 upregulation between Oxtr+/+ and Oxtr-/- neuronal 

cultures was further confirmed by Western blot analysis as shown in fig.18. 

Unfortunately, there are no commercially available specific NKCC1 antibody (Blaesse et al 

2009), therefore we didn't perform Western blot analysis of NKCC1 expression. 

 

 

Figure 18. Western Blot analysis of KCC2 expression during in vitro development of Oxtr+/+ and Oxtr-/- neurons. 

Representative KCC2 western blot analysis of neuronal lysates from Oxtr+/+ (a) and Oxtr-/- (b) neurons at the 

indicated DIV are presented in the upper panels. Values are normalized on corresponding GAPDH levels. 

Quantification of KCC2 protein expression (c) is presented as fold increase (mean ±SEM) over the level at DIV3. 

Two different neuronal preparations for each genotype. Statistical analysis were performed using One-Way 

ANOVA with a Tukey post-hoc test . *p<0.05 versus DIV3 value.  

 

 

OXT administration early during in vitro development increase KCC2 

protein level in Oxtr+/+ but not in Oxtr-/- hippocampal neurons  

To further examine the possible involvement of OXT in the modulation of KCC2 expression in 

developing neurons in culture we designed a treatment protocol which mimic the burst of 

maternal oxytocin release that takes place during labor. 

This protocol, hereafter called "Burst", consist in daily treatments with OXT (final concentration 

100 nM) during three days, from DIV3 to DIV5 (fig. 19 a). 
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We planned also a stronger treatment protocol, called "Chronic", consisting in daily treatment 

with 100 nM OXT, starting from DIV3 and continuing until the day of the lysis (fig. 19 b). The 

rationale of this second protocol is to either evaluate possible effects of a chronic therapy with 

OXT or take into account also the OXT produced in the newborn brain that could possibly reach 

the hippocampus. 

Neurons undergoing Burst and Chronic OXT treatment were lysed at different time points 

during in vitro development as indicated (fig. 19 a, b), and KCC2 expression was analyzed by 

western blot. 

 

   c       d 

 

Figure 19. Western Blot analysis of KCC2 expression during in vitro development of Oxtr
+/+

 and Oxtr
-/-

 neurons 

upon different OXT treatment protocols. A schematic representation of bust (a) and chronic (b) treatment 

protocols is shown in the upper panel. Blue arrow-heads (in a) indicate daily treatment with OXT (100nM) in the 

burst protocol; green arrow-heads (in b) represent daily treatments with OXT (100nM) in the chronic protocol. Red 

triangle below DIV numbers (both in a and in b) indicate the moments of lysates collection for subsequent KCC2 

western blot analysis. Quantification of KCC2 expression in burst- and chronic-treated Oxtr+/+ (a) and Oxtr-/- (b) 

neurons is shown in the lower panels. Values, normalized on corresponding GAPDH levels, are presented as fold 

increase (mean ±SEM) over DIV3. Two different neuronal preparations for each genotype were quantified. 

Statistical analysis were performed using unpaired Student t-test. *p<0.05 versus corresponding not treated 

sample. 
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In fig.19 (c) is represented the effect of the two treatment protocols on Oxtr+/+ neurons. Burst 

OXT treatment protocol produce a 50% increase in the KCC2 protein level at DIV6, 24 hours 

after the end of the treatment, which is maintained also later on (DIV11, DIV 14). On the 

contrary, Chronic OXT administration wasn't able to produce any significant effect on KCC2 

expression. 

Conversely, in Oxtr-/- neurons neither Burst nor Chronic OXT treatment were effective on the 

modulation of KCC2 protein level (fig.19 d). 

 

An acute treatment with OXT determines an increase of KCC2 protein 

level within 3 days 

Finally, we decided to verify if an acute treatment with OXT was sufficient to produce the 

increase in KCC2 level in Oxtr+/+ neurons. Preliminary experiments indicate that, at least at an 

intermediate stadius of maturation (DIV8), an acute administration of OXT (100 nM) 

determines an increase in KCC2 level, which is not detectable after 24 hours, but become 

significant within 72 hours after treatment (fig. 20). 

 

 

Figure 20. Western Blot analysis of KCC2 expression in Oxtr
+/+

 neurons upon OXT or BDNF treatment. Oxtr
+/+

 

hippocampal neurons were treated with OXT (10 or 100 nM) or with BDNF (50ng/ml) at DIV8 and then were lysed 

24 (a) or 72 (b) hours later. Replicates of each samples (number displayed in brackets) were obtained within the 

same preparation. KCC2 values were normalized to corresponding GAPDH ones and are presented as fold increase 

(mean ±SEM) over not treated sample. Statistical analysis were performed using One-Way ANOVA with a Dunnet 

post-hoc test . *p<0.05 versus not treated; **p<0.01 versus not treated. 

(4) 
(4) 

(3) (3) 

(4) 

(4) (3) 
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OXT treatment is able to increase the phosphorylation level of eEF2  

To better understand how the lack of OXTR could affect the expression of proteins involved in 

neuronal E/I imbalance we investigated the signaling pathways activated by OXT treatment in 

neuronal cultures from Oxtr+/+ and Oxtr-/- mice. 

We focused our attention on eEF2, an important regulator of protein synthesis, since it has 

been demonstrated that OXTR is able to induce its activation in myometrial cells. Moreover, 

several evidences suggested that eEF2 is able to regulate local dendritic protein synthesis in an 

activity-dependent manner (Chotiner et al 2003, Park et al 2008, Sutton et al 2007).  

The activation of eEF2 can be evaluated by monitoring its phosphorylation status, indeed eEF2 

phosphorylation at Thr56 inhibits general protein translation and elongation (Ryazanov et al 

1991, Ryazanov et al 1988). However an opposite effect of eEF2 phosphorylation has been 

described for some dendritic mRNAs such asCaMKII and Arc (Belelovsky et al 2005, Chotiner et 

al 2003, Marin et al 1997, Park et al 2008, Scheetz et al 2000). 

To test the ability of OXTR to modulate eEF2 activation we treated mature (DIV14) neurons, 

either Oxtr+/+ or Oxtr-/-, with OXT at different doses to obtain a dose-response curve. After 30 

minutes we lysed the cells and performed a western blot analysis of p-eEF2 level. 

In Oxtr +/+ neurons we observed a significant increase in the phosphorylation level of eEF2 after 

treatment with 10 nM OXT, wherease higher or lower dose failed to produce any significant 

change (fig 21 a). Conversely, in Oxtr-/- neurons OXT affect significantly p-eEF2 levels only at 

hogher doses, 1-10 µM, probably acting on other receptorf of the OXT/AVP family (Fig. 21 b). 

Since OXTR is a rather unselective receptor, we tested if also AVP could elicit an analogous 

enhancing effect on eEF2 phosphorylation in Oxtr+/+ neurons and, interestingly, that was exactly 

the case. Indeed, as shown in fig.21 c, 10 and 100 nM AVP increased eEF2 phosphorylation just 

as OXT 100nM did. Moreover, AVP treatment increases the phosphorylation of eEF2 on Oxtr-/- 

neurons as well, confirming the involvement of other receptors of the OXTR/AVP family in the 

induction of eEF2 phosphorylation (Fig.21 d). 
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Figure 21. Western Blot analysis of p-eEF2 levels in Oxtr
+/+

 and Oxtr
-/-

 neurons upon treatment with different 

OXTR agonists. Hippocampal neurons at DIV14 were treated with OXT, AVP or TGOT at the indicated doses and 

lysed 30 min later. Data were obtained from at least three different preparations. p-eEF2 values are normalized on 

corresponding β-tubulin ones and presented as fold increase (mean ±SEM) over corresponding not treated sample 

(NT). Statistical analysis were performed using One-Way ANOVA with a Dunnett post-hoc test . *p<0.05 versus not 

treated; *** p<0.001 versus not treated. 
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Consequently, we decided to verify if the increase in p-eEF2 level in Oxtr+/+ neurons was really 

OXTR-dependent by treating these neurons with TGOT, a selective OXTR agonist (see table 4). 

Unexpectedly, this treatment failed to produce any effect on eEF2 phosphorylation (fig. 21 e), 

thus excluding OXTR from being able to activate this pathway.  

Similarly, as shown in fig. 21 f, no effect was observed also when Oxt-/- neurons were treated 

with a selective dose of TGOT (10 nM). 

 

 

Peptide  Sequence Ki for (nM ± %CV): 

mOTR  mV1a mV1b 

OXT  Cys1, Tyr2, Ile3, Gln4, Asn5, Cys6, Pro7, Leu8, Gly-NH29 0.83 ± 17  20.38 ± 26 36.32 ± 7 

AVP Cys
1
, Tyr

2
, Phe

3
, Gln

4
, Asn

5
, Cys

6
, Pro

7
, Arg

8
, Gly-NH2

9
 0.87 ± 8  1.11 ± 27 0.43 ± 12 

TGOT Cys
1
, Tyr

2
, Ile

3
, Thr

4
, Asn

5
, Cys

6
, Gly

7
, Leu

8
, Gly-NH2

9
 0.04 ± 32 >1,000 >10,000 

Table 4. Nonapeptides used for treatments: aminoacid sequences and affinity for murine receptors expressed in 

the brain. Aminoacidic substitution with respect to the sequence of OXT are indicated in bold. Data are from 

(Busnelli et al 2013). 
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 I.  GENERAL ISSUES 

 

Social and cognitive aspects of the Oxtr-/- mouse behavior recapitulate the key features of the 

autistic phenotype, including both core symptoms (social interaction and communication 

deficits and repetitive behaviors) and some common co-occurring conditions (aggression and 

susceptibility to seizures) (Sala et al 2011). Even though a strong genetic correlation between 

oxytocin system and ASD has not been highlighted to date (with the exception of a common 

polymorphism with weak impact; (Wu et al 2005)), our model could be useful to understand 

the underlying mechanism of shared patophysiological aspects and to design proper 

treatments. Indeed, intranasal OXT treatment is currently tested on ASD patients, giving quite 

promising results (Ellenbogen et al 2013, Ellenbogen et al 2012, Guastella et al 2010). 

Given the well-known involvement of OXT in sociability, Oxtr-/- mice have been extensively 

characterized at the social level, highlighting deficits in a wide variety of behaviors, including 

social interaction, social memory, aggression and affiliative behavior (Sala et al 2011, 

Takayanagi et al 2005). 

On the contrary, less attention have been paid to the cognitive aspects of Oxtr-/- mice behavior, 

as, more in general, to the implication of OXT in cognitive processes.  

Our previous analysis of the Oxtr-/- mice revealed an important deficit in cognitive flexibility, 

that is the ability of modifying the behavior in response to changes in the environment. This 

aspect of the Oxtr-/- mouse phenotype is very relevant, since, in humans, impairments in 

flexibility, e.i. repetitive/compulsive behaviors, or as resistance to change, are typical symptoms 

of ASD, schizophrenia, anorexia nervosa, obsessive-compulsive disorders and attention deficit 

hyperactivity disorder (ADHD). Different forms of behavioral flexibility can be evaluated: in our 

mouse, in particular, we analyzed the reversal of learning, which is the ability of switching the 

stimulus-reinforcement association within a single dimension. This process could be tested in 

rodents with a T-maze test task, as we did for our experiments, by switching the previously 

learned position of the food reward on the other arm of the maze (Floresco & Jentsch 2011, 

Ragozzino 2002). A more complex version of the reversal of learning is the set-shifting. This 

cognitive process requires a change in the strategy used or a switch in the attention to the 
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variable of the stimulus which is relevant for the association with the reward (Dias et al 1996). 

More fundamental forms of flexibility exist as well, the response inhibition and the extinction 

learning. Response inhibition is the control and rapid suppression of an output action and is 

required, at some point, for all forms of behavioral flexibility (Eagle et al 2008); the process of 

extinction consist of the inhibition of a previously acquired association and imply a new 

learning rather than the erasure of the previous one (Bouton et al 2006, Robbins 1990).  

Anyway, most forms of flexibility seems to be stricktly connected to the learning strategy used. 

(Kleinknecht et al 2012). 

Oxtr-/- mice were tested in an appetitive-based T maze test. To solve this spatial learning task, 

mice have to learn the location of food in either arm of the maze (acquisition phase) and then 

they have to revert this learning, when food location is switched in the other arm (reversal 

phase). In the acquisition phase mice can use either an allocentric place strategy, based on 

spatial cues and orientation, or an egocentric procedural strategy, based on habits or motor 

sequences (Packard & McGaugh 1996, Restle 1957). The place learning was found to rely 

mostly on hippocampal funtion, whereas the dorsolateral portion of striatum mediate 

procedural learning (Hirsh 1974, Mishkin M. 1984, Packard M.G. 1987). Oxtr-/- mice did not 

display any deficit in the acquisition phase but were severely impaired in the reversal phase. 

The analysis of dendritic spines during the different phases of this test highlighted an enhanced 

connectivity and overuse of the dorsolateral striatum in Oxtr-/- mice, which could possibly 

mediate the emergence of habit-like symptoms and cognitive rigidity. On the other hand, such 

an overreliance on striatal function could represent a compensative mechanism for an 

impaired hippocampus, as it was demonstrated for Oprd1-/- mice (Le Merrer et al 2013). 

Discriminating the contribution of the hippocampal versus striatal strategy to the spatial 

learning of our mice could help us to clarify this issue. 

This could be done at the behavioral level using, for instance, a cross-maze test task supplied 

with cues, by switching the starting point (north to south) after learning takes place and then 

observing the trajectory followed by the animal. An animal who learned using a place strategy 

will orientate in the maze and reach the arm that was baited before; the one who used a 

procedural strategy will follow the same route he learned in the previous phase (i.e.: turn 

right), thus reaching the opposite arm (Block et al 2007). Alternatively, either approach could 

be highlighted, by using more specific learning tests in which the contribution of other cognitive 
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process is limited. For example, the hippocampal place learning greatly prevail in the object 

recognition test, while the accelerated rotarod test rely more on striatal motor learning (Le 

Merrer et al 2013). 

Furthermore, the presence of an hippocampal dysfunction could be confirmed at the molecular 

level, as well. The imbalance between excitatory an inhibitory synapses observed in Oxtr-/- 

hippocampal neurons (Sala et al 2011), represents, indeed, the first neurobiological substrate of 

such dysfunction. Present work highlights further aberrations of Oxtr-/- hippocampal neurons, 

concerning the expression of Kir channels, which are involved in membrane excitability, and 

KCC2, which is responsible for the switch of GABA action. Although electrophysiological 

confirmations are still needed, these data give important indications that the E-I balance is 

altered at multiple levels in Oxtr-/- hippocampal neurons, thus possibly impacting hippocampal 

functions. Importantly, we identified an OXTR-mediated pathway modulating KCC2 expression 

with long-term effect, thus possibly being able to restore a correct E-I balance. This observation 

is particularly intriguing, since E-I imbalance have been frequently associated with several 

neuropsychiatric disorders, such as autism, schizophrenia and epilepsy (Markram & Markram 

2010, Rubenstein 2010, Rubenstein & Merzenich 2003, Vattikuti & Chow 2010, Yizhar et al 

2011). This proposed neurophysiological substrate could be the consequence of a wide range of 

seemingly unrelated genetic abnormalities and could account for social and cognitive deficits 

observed in patients and in animal models of such disorders.  

 

 II.  STRIATAL OVERRESPONSIVENESS OF OXTR-/- MICE: 

The source of habit-like symptoms? 

Oxtr-/- mice didn't show any significant constitutive alteration in dendritic spine density in any 

of the region analyzed. However, neuronal morphology appeared to be altered in the 

dorsolateral striatum (DLS), where the MNS of Oxtr-/- mice have 20%  longer dendrites 

compared to Oxtr+/+ ones. As spine density in this area is not different between the two 

genotypes, longer dendrites imply a greater number of spine/neuron in  Oxtr-/- mice. 

The dorsolateral portion of striatum is involved in procedural (or response/habit) learning and 

memory (Lovinger 2010, Yin et al 2009). Thus, alterations in neuronal morphology in this area 
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could reflect modifications in motor learning skills and could be linked to repetitive behaviors 

typical of autistic patients (Langen et al 2013).  

This enlargement of MSN dendritic arbor may be likely attributable to alterations occurred 

during circuitry development and/or to compensatory mechanisms balancing alterations 

occurred in other areas. Consistently with our observation, an enlargement in MSN dendritic 

arbors was described also in the Nucleus Accumbens (NAcc; the ventral portion of striatum) of 

prenatally-Valproic acid-exposed rats, a typical ASD model (Bringas et al 2013). Interestingly, 

also the EmxCre/Metfx/fx mouse, another model of ASD, showed an analogous alteration of MSN 

morphology in the DLS. This mouse have forebrain-restricted deficiencies in the signaling of 

Met, the HGF (hepatocyte growth factor) receptor, which is, indeed, associated with ASD 

(Campbell et al 2008, Campbell et al 2006, Jackson et al 2009).  

The consistency of striatal neurons alteration among different ASD models suggests a 

prominent role of this region in the emergence of autistic-like symptoms.  

In particular, in the abovementioned studies the altered MSN arborization was interpreted, as a 

sign of the local hyperconnectivity, frequently reported in autism (Casanova 2006, Casanova et 

al 2002, Wass 2011).  

We hypothesized that the enlargement of MSN arbors in this area reflects an enhanced 

aptitude of this mice for procedural approaches to experience. Indeed, our subsequent 

observations, indicate a prominent use of DLS by Oxtr-/- mice in different behavioral paradigm. 

In particular, Oxtr-/- mice didn't show the expected hippocampal spine remodeling in response 

to an environmental stimulus (Jenkins et al 2004, Rinaldi et al 2010); on the contrary, they 

display only a striatal response. Notably, also the subsequent exposition to a new complex 

environment, during the habituation phase, produced a net change of spine density in striatum 

only in Oxtr-/- mice, confirming an overresponsiveness of this region in the knockout mice. 

 

The consequence of an hippocampal deficit? 

Recently, a similar "striatal preference" was described in mice lacking the delta opioid receptor 

(Le Merrer et al 2013). These mice were more prone to solve tasks using a response strategy 

and showed an enhanced motor skill learning; on the contrary, they were impaired in spatial 

learning tasks. Since the two systems (hippocampus and striatum) compete in driving learning 

behavior (Middei et al 2004, Schroeder et al 2002), authors hypothesize that compromised 
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hippocampal functions in Oprd1-/- mice facilitated the striatal-based procedural learning (Le 

Merrer et al 2013). 

Considering this issue, we postulate that the striatal overuse of our knock-out mouse could 

possibly arise from an hippocampal deficit, that we identified as the absence of an hippocampal 

response to spatial novelty exposition. The lack of impairment they showed in the acquisition 

phase of the T-maze task (Sala et al 2011) is not conflicting with this hypothesis, since the 

protocol used allows the use of either a place (hippocampal) or a response (striatal) strategy. To 

verify decisively the presence of an hippocampal impairment we are currently performing an 

object recognition task relying exclusively on hippocampal functions. This task has also the 

additional advantage of not being appetitive-driven. The lack of food or other kind of reward, 

indeed, prevents possible confounding effects on striatal circuits. As expected, preliminary 

results confirm the deficit in hippocampal functions, as Oxtr-/- mice perform worse than Oxtr+/+ 

ones in this learning task.  

 

Or both? 

A striatal compensation of hippocampal learning deficiencies could also represent the 

neurobiological basis for reduced cognitive flexibility of our mouse model. Indeed, it has been 

recently demonstrated that in mice (C57BL6) spatial cognitive flexibility requires a place 

learning strategy, which in turn needs an intact hippocampus (Kleinknecht et al 2012). Findings 

supporting this evidence have been reported also for rats, even though these animals with a 

prolonged training, manage to reverse a response learning (McDonald et al 2001, Ragozzino et 

al 1999). 

In humans the involvement of both hippocampal and striatal memory systems have been 

postulated to contribute to the emergence of habit-like symptoms in neuropsychiatric disorders 

(such as Tourette syndrome, eating disorders and ASD). A particularly interesting hypothesis is 

that functional and anatomical abnormalities in the hippocampus may be responsible, not only 

for deficits in hippocampal-dependent memory, but also for maladaptive and habitual 

symptoms of these disorders, by contributing to an overreliance on the habit learning system 

(Goodman et al 2013). Importantly, this would be in perfect agreement with what we observed 

in our ASD model. 
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 III.  ABERRATIONS IN HIPPOCAMPAL OXTR-/- NEURONS: 

Since in Oxtr-/- hippocampal neurons an imbalance between Glutamatergic and GABAergic 

synapses was previously described, we decided to verify if hippocampal dysfunctions could 

arise from alterations of the E-I balance in hippocampal neurons. 

A matter of E-I balance? 

Since dendritic spines are the main site of excitatory synapses, we started the evaluation of 

Oxtr-/- and Oxtr+/+ primary hippocampal cultures from the morphological characterization of 

dendritc arbors and spines. This analysis reveal no evident alterations in the morphology of 

neurons, confirming what we observed in adult neurons with the Golgi-staining. 

Developing and adult hippocampi do not express a high level of OXTR; consistently, we found 

low levels of OXTR in our wild-type hippocampal cultures. Nonetheless, the deletion of the 

OXTR was able to induce an hippocampal upregulation of V1aR in embryonal neurons as well as 

in the adult brain, as we previously reported (Sala et al 2011).  

Subsequently, we focused our attention on some of the proteins involved in the setting and 

maintenance of the excitation-inhibition balance. The first relevant finding observed is a 

generalized upregulation of Kir2 and Kir3 channels in Oxtr-/- hippocampal neurons. Indeed, 

these channels are important regulators of membrane excitability and resting potential.  

In Oxtr-/- cultures both Kir2 and Kir3 channels are concomitantly upregulated; since these 

channels  are in different conformations (closed and open, respectively) at resting potential, we 

cannot guess the prevaling effect on cell excitability without performing electrophysiological 

recordings. Several relevant neuronal features, other than excitability, have been correlated 

with Kir channels alterations (Ciruela et al 2010, Kleene et al 2010). Recently, for example, a 

Kir2 downregulation has been reported in the striatum of mice overexpressing the D2 

dopamine receptor(D2R); interestingly, these mice exhibit also reduced arborization of MSN in 

the dorsolateral striatum. Moreover, the authors demonstrated that the decrease in dendritic 

arborization is a direct consequence of reduced Kir2.1 expression, because the overexpression 
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of a dominant-negative form of this channel was sufficient to produce morphological 

alterations observed in the D2R-overexpressing mice (Cazorla et al 2012). This suggests that the 

enlargement of striatal MSN's arbor observed in Oxtr-/- mice could be a consequence of Kir2 

overexpression. However, to confirm this hypothesis  we would need to repeat the analysis of 

Kir channels expression in the same structure and developmental stage in which we observed 

the morphological alterations, i.e. in the adult striatum. 

Furthermore, the evidence of D2R overexpression causing Kir2 downregulation, is relevant also 

because dopamine receptors have been found to dimerize with oxytocin receptor (Romero-

Fernandez et al 2013). Consequently, the absence of OXTR in our model could possibly impact 

also dopamine receptor expression and, vice versa, D2R overexpression could affect OXTR 

density, giving a reasonable explanation to consistent finding in term of neuronal morphology 

and Kir channels expression. 

Proceeding with the evaluation of excitation-inhibition balance, we analyzed one of the most 

relevant events that happens in neurons during early development, the excitatory-to-inhibitory 

switch in GABA actions. This switch takes place also in hippocampal cultures, around DIV11 

(Ganguly et al 2001) and is mediated predominantly by an increased membrane expression of 

KCC2 protein (Rivera et al 1999).  

Consistently, Oxtr+/+ neurons showed a developmental increase in KCC2 expression, both at 

transcriptional and translational level. On the contrary, Oxtr-/- display only a partial non 

significant upregulation of this transporter during in vitro development. These data could 

indicate a delayed and/or incomplete switch of GABA actions, that needs electrophysiological 

confirmations. At least two different scenarios could be imagined: one in which only few 

hippocampal neurons display inhibitory action of GABA at the proper developmental stage; 

another one in which most neurons have an intermediate electrochemical gradient for chloride 

such that neither depolarization nor hyperpolarization of plasma membrane could be achieved 

upon GABAAR activation. Clearly, both scenarios imply important alteration in excitability and 

transmission among developing neurons, having potentially a great impact on brain circuitry 

formation. Indeed, on one hand, the excitatory action of GABA during development is 

necessary for system maturation (Ben-Ari 2002), on the other hand GABAergic inhibition in 

mature neurons is essential to prevent hyperexcitability and excitotoxicity. Moreover, the onset 

of GABAergic inhibition participates in the regulation of later stages of neuronal development 

(Liu et al 2006). 
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Noteworthy, KCC2 has been frequently associated with epilepsy (Huberfeld et al 2007, Munoz 

et al 2007, Palma et al 2006). Mice with heterozygous deletion of KCC2 gene have increased 

susceptibility to seizures (Woo et al 2002) and KCC2 reduction is often observed in ex vivo 

tissues from epileptic patients (Huberfeld et al 2007, Palma et al 2006). Therefore, our findings 

of dysregulated KCC2 expression in neurons from Oxtr-/- mice is consistent with the previously 

identified increase in seizure susceptibility of this mouse model (Sala et al 2011). 

 

Modulating the switch of GABA through an OXTR-mediated pathway? 

An association between oxytocin and the switch of GABA polarity had been also previously 

shown (Tyzio et al 2006). Indeed, Tyzio and coworkers identified a transient excitatory-to-

inhibitory switch of GABA action during labor, and demonstrated that it was mediated by the 

burst of maternal OXT release. Authors evaluated the possibility of an OXT-mediated 

modulation of KCC2 expression, by giving an OXTR antagonist to a pregnant rat (starting from 

E18) and subsequently evaluating KCC2 mRNA levels in the hippocampi of newborn pups 

immediately after birth. However, this transient receptor antagonism was not sufficient to 

produce any significant change, even though looking at their graph, a decreasing trend could be 

seen.  

Therefore, we decided to check if KCC2 expression could be modulated by OXTR, by treating 

our Oxtr+/+ and Oxtr-/- neurons with OXT. Interestingly, we found a 50% increase in the KCC2 

protein level in neurons exposed to three daily OXT treatment (100nM) starting from DIV3 (the 

"burst" protocol). Notably, this upregulation was observed, starting from 24 hours after the end 

of the burst protocol, but it was also maintained later on: at DIV11, five days after the end of 

treatments, and also in more mature neurons, at DIV14, even if at this time point it did not 

reach statistic significance. 

Quite surprisingly, chronic daily treatment with OXT failed to produce any increase in KCC2 

expression in our Oxtr+/+ neuronal cultures. Actually, this could have a simple explanation in the 

desensitization and internalization of OXTR due to sustained and prolonged activation (Conti, 

2009), as it has been recently described for chronic intranasal OXT administration (Huang et al 

2013).  
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Most importantly, when applied on Oxtr-/- neurons, neither burst nor chronic OXT treatment 

were able to modify KCC2 expression, indicating that OXTR is necessary for mediating this OXT-

induced effect. 

Finally, our preliminary results indicate that an acute OXT treatment (100 nM) is sufficient to 

produce the increase in KCC2 level in immature (DIV8) Oxtr+/+ neurons and that this 

upregulation needs more than 24 hours to take place. The long latency of this effect suggests 

that several transcription and/or translation steps may be necessary. 

On the contrary, OXT effect on the transient switch of GABA during labor is very rapid, 

suggesting a post-translational mechanism on CCCs function, possibly mediated by NKCC1, 

because this effect is occluded by the concomitant administration of Bumetanide, a selective 

NKCC1 blocker (Tyzio et al 2006). Considering these data together, we cannot exclude a double 

mechanism underlying OXT effects on this process: a rapid post-translational modulation of 

either NKCC1 or KCC2 function and a slower, long-lasting modulation of KCC2 expression.  

This link between our autism model and the CCCs is particularly relevant in light of positive 

results obtained by recent clinical trials in which Bumetanide was administered to infants with 

autism (Lemonnier & Ben-Ari 2010, Lemonnier et al 2012). 

Among the various OXTR-mediated signaling molecules that could be involved in KCC2 

modulation, we decided to start by analyzing the elongation factor eEF2. eEF2 has been 

associated with the synthesis of BDNF (Verpelli et al 2010), which is one of most important 

regulator of KCC2 expression (Aguado et al 2003, Carmona et al 2006, Ludwig et al 2011, Rivera 

et al 2002, Uvarov et al 2006). eEF2 is an important ubiquitary regulator of protein synthesis, 

and in neurons it is able to regulate local dendritic protein synthesis in an activity-dependent 

manner (Chotiner et al 2003, Park et al 2008, Sutton et al 2007). To the best of our knowledge, 

the effect of OXT treatment on eEF2 activity have never been studied in neurons; conversely, in 

myometrial cell, OXT was found to induce eEF2 activation by promoting its dephosphorylation 

(Devost et al 2008, Devost et al 2005). 

Our results indicate that in Oxtr+/+ neuronal cultures, both oxytocin and vasopressin actually 

inactivate eEF2, inducing its phosphorylation, and that the two peptides display similar dose-

response curves. Applying the same treatments on Oxt-/- neurons, we also observed increases 

in eEF2 phosphorylation, suggesting that this effect is OXTR-independent and could possibly 

rely on V1a/V1b vasopressin receptors activation. This hypothesis was also supported by the 
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lack of effect that we obtained by treating neurons with a selective OXTR agonist, Thr4Gly7-OT 

(TGOT, 10nM).  

It has been reported that some dendritic mRNAs such as CaMKII and Arc, are more efficiently 

translated when general protein synthesis is slowed down, i.e. when eEF2 is phosphorylated 

(Belelovsky et al 2005, Chotiner et al 2003, Marin et al 1997, Park et al 2008, Scheetz et al 

2000). However, this could not be the case for KCC2. Indeed, in Oxtr-/- neurons OXT is still able 

to elevate p-eEF2, whereas it has no effect on KCC2 expression, suggesting that eEF2 pathway is 

not involved in OXT-mediated KCC2 upregulation.  

Still, its participation in a functional modulation of CCCs cannot be ruled out.  

 

 

 IV.  CONCLUSIONS 

 

Taken together our data suggests a possible mechanism underlying the cognitive deficits of our 

murine model of ASD, the oxytocin receptor knock-out mouse. Since autism has highly 

heterogeneous etiology and clinical forms, unraveling the pathophysiology of shared behavioral 

aspects, could provide useful information for designing treatments aimed at controlling specific 

symptoms. In particular, we highlighted in the Oxtr-/- mouse a striatal overuse, possibly arising 

from hippocampal dysfunction, and proposed it as substrate for habit-like symptoms and 

cognitive rigidity of Oxtr-/- mouse. At the molecular level we identified in Oxtr-/- hippocampal 

neurons aberrations regarding the setting and maintenance of E-I balance, which could be the 

sources of functional deficits observed in the adult mouse. Particularly interesting is the lack of 

the physiological upregulation of KCC2 during development, that presumably leads to aberrant 

GABAergic signaling in mature neurons. Furthermore, we disclosed a long-term effect of OXT 

treatment on the modulation of KCC2 expression, in developing hippocampal neurons. It will be 

interesting to test if such OXT effect could rescue E-I balance impairment in other model of 

neuropsychiatric disease. 
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