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ABSTRACT 

Impairment of synaptic function can lead to neurological and psychiatric disorders 

collectively referred to as synaptopathies. SNAP-25, a SNARE protein controlling 

synaptic vesicle exocytosis and fundamental presynaptic functions, is implicated in 

several brain pathologies and, indeed, brain areas of psychiatric patients often display 

reduced SNAP-25 expression.  

We observed that halved SNAP-25 levels at 13–14DIV not only fail to impair synaptic 

transmission, but instead enhance evoked glutamatergic neurotransmission. This effect 

is probably dependent on presynaptic voltage-gated calcium channel activity and it is 

not followed by changes in spontaneous quantal events or in the pool of readily 

releasable synaptic vesicles. Notably, synapses of neurons with reduced SNAP-25 

levels show paired-pulse depression as opposed to paired-pulse facilitation occurring in 

their wild-type counterpart. These phenotypes disappear with synapse maturation, 

where instead a reduction of evoked glutamatergic transmission and mEPSC amplitude 

emerge in heterozygous neurons thus suggesting the onset of a postsynaptic defect. In 

fact, it has been recently reported that a peculiar postsynaptic SNARE complex is 

required for long-term potentiation; however, the role of SNAP-25 in this process is not 

completely understood. We recently demonstrated that acute down-regulation of SNAP-

25 in vitro affects spine morphogenesis through binding to p140Cap, thus suggesting 

that the protein may exert a structural role at the postsynaptic level. Here we 

demonstrate that in vivo acute down-regulation of SNAP-25 in CA1 hippocampal 

neurons affects spine number and morphology and causes a specific reduction of the 

postsynaptic protein PSD-95. Consistently, hippocampal neurons from SNAP-25 het 

mice show a flawed maturation of postsynaptic specializations, reduced densities of 

dendritic spines and defective PSD-95 clustering. These effects do not stem from 

impaired presynaptic function, but as a direct consequence of reduced SNAP-25 levels 

in the postsynaptic compartment. By co-immunoprecipitation and LUMIER Assay, we 

show that SNAP-25, PSD-95 and p140Cap are part of the same molecular complex in 

the brain, with p140Cap being intrinsically capable to bind either to SNAP-25 and PSD-

95. These data provide new mechanistic insights as to SNAP-25 involvement in 

synaptopathies that go beyond the protein’s known roles in presynaptic function.
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INTRODUCTION 

 

1- THE SYNAPSE 

 

Chemical synapses are complex cellular junctions specialized for communication 

between neurons. Charles Sherrington originally introduced the term ‘synapse’ more 

than 100 years ago.  

For the most part, synapses are formed as either  axo-dendritic or axo-somatic contacts, 

in which the axon of the cell of origin makes its functional contact with the dendrite or 

the soma of the target cell; contacts between adjacent cell bodies (soma-somatic) or 

overlapping dendrites (dendro-dendritic) are more rare. The  synapse is a complex of a 

presynaptic element, a postsynaptic element and a cleft. Information arrives at a 

presynaptic terminal in the form of an action potential and is transmitted to the 

postsynaptic cell via a chemical neurotransmitter. 

Synapses are the most complex subcellular compartments of neurons, indeed. The 

synapse proteome - the set of proteins in the presynaptic and postsynaptic compartments 

- is much more complex than anticipated based on earlier pharmacological and 

electrophysiological studies. Proteomic studies show that between 1,000 and 2,000 

proteins are present in rodent synapses, and these are organized into multi-protein 

complexes and molecular networks. This molecular complexity is also found in human 

synapses. Synapses are also greatly complex cell biological machines. Synaptic 

transmission is dependent on a spatially and temporally coordinated cascade of 

biochemical and cell biological processes that control presynaptic action potential 

generation, ion channel activation, synaptic vesicle trafficking and fusion, 

neurotransmitter receptor activation, and postsynaptic signal propagation, as well as 

numerous other collateral processes that are necessary to establish synapses, to modify 

their efficacy on short-term and long-term time scales, and to provide them with the 

necessary metabolic support. 

 

Nowadays it is accepted that the correct development and functioning of the synapse 

requires the fundamental role of glia. The concept of “tripartite synapse” began with a 

series of evidences that revealed the existence of bidirectional communication between 



3 
 

neurons and astrocytes (Bezzi and Volterra 2001; Perea et al. 2009). The signaling 

pathway between neurons and astrocytes at the “tripartite synapse” is reciprocal; 

astrocytes sense neuronal activity by increasing intracellular levels of calcium and 

respond by releasing a variety of different molecules (Santello et al., 2012). However, 

not all the synapses are tripartite, in the hippocampus only 40% is enfolded by 

astrocytes (Perea et al., 2009, Halassa et al., 2009) 

. 

 

Fig. 1: A) Cartoon of a synapse. B) Hippocampal synapse at electron microscopy. C) Visualization of  

pre- and postsynaptic specializations. From Sudhof, 2012. 

 

 

1.1 THE PRESYNAPTIC TERMINAL 

 

At the presynaptic terminal, neurotransmitters are packaged into synaptic vesicles 

(SVs); when an action potential opens presynaptic voltage-gated Ca2.1 channels, the 

neurotransmitters are released by calcium-triggered exocytosis into the synaptic cleft 

thus leading to postsynaptic receptors activation. SV exocytosis is restricted to the small 

section of the presynaptic plasma membrane containing an electrondense material called 

the “active zone”, which contains clustered Cav2 (P/Q and N-type) voltage-gated Ca2.1 
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channels (Benarroch, 2013). Presynaptic active zones perform four principal functions 

in neurotransmitter release. First, they dock and prime synaptic vesicles; note, however, 

that SNARE and synaptic membrane (SM) proteins which are the core fusion proteins 

of synaptic vesicles, are not enriched in the active zone. Second, active zones recruit 

voltage-gated Ca2+ channels to the presynaptic membrane to allow fast synchronous 

excitation/release coupling. Third, active zones contribute to the precise location of pre- 

and postsynaptic specializations exactly opposite to each other via trans-synaptic cell-

adhesion molecules. Finally, active zones mediate much of the short- and long-term 

presynaptic plasticity observed in synapses, either directly, by responding to second 

messengers such as Ca2+ or diacylglycerol whose production causes plasticity, or 

indirectly, by recruiting other proteins that are responsible for this plasticity. All of 

these functions aim to finely control neurotransmitter release and allow presynaptic 

vesicle exocytosis, which occurs with the required speed and plasticity needed for the 

information transfer and computational function of a synapse (Owald and Sigrist, 2009; 

Sudhof, 2012). 

When a nerve terminal is stimulated, not all vesicles can be released immediately. The 

existence of two distinct presynaptic pools of transmitter, a “readily releasable” fraction, 

which is depleted at high frequencies of stimulation, and a “non-readily releasable” 

fraction has been indeed demonstrated. Current research suggests that the readily 

releasable pool (RRP) is the vesicle sub-population that is immediately available for 

release upon stimulation (usually being thought to include vesicles docked at the active 

zone and primed for release). A much bigger population of vesicles constitutes the 

reserve pool (RP); these vesicles are thought of residing at some distance away from the 

active zone, and requiring some form of transport or change in docking state to become 

fusion competent (for reviews see Rodesch and Broadie, 2000; Rizzoli and Betz, 2003; 

Neher and Sakaba, 2008). 

All presynaptic functions, directly or indirectly, involve synaptic vesicles. Synaptic 

vesicles undergo a trafficking cycle in the nerve terminal that can be divided into 

sequential steps: First, neurotransmitters are actively transported into synaptic vesicles 

(step 1), and synaptic vesicles cluster in front of the active zone (step 2). Then synaptic 

vesicles dock at the active zone (step 3), where the vesicles are primed (step 4) to 

convert them into a state of competence for Ca2+-triggered fusion-pore opening (step 5). 

After fusion-pore opening, synaptic vesicles are recycled probably by three alternative 

pathways: (a) Vesicles are reacidified and refilled with neurotransmitters without 
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undocking, thus remaining in the RRP (step 6, called “kiss-and-stay”); (b) vesicles 

undock and recycle locally (step 7, called “kiss-and-run”) to reacidify and be refilled 

with neurotransmitters (back to steps 1 and 2); or (c) vesicles are taken up via clathrin-

coated pits (step 8) and reacidified and refilled with neurotransmitters either directly or 

after passing through an endosomal intermediate (step 9) (Sudhof, 2004; 

JahnandFasshauer, 2012). 

 

 

Fig. 2: The synaptic vesicles cycle: synaptic vesicles are filled with neurotransmitter. Active vesicles 

dock to release sites in the active zone. Vesicles are primed to acquire release readiness of the exocytotic 

complex. After exocytosis, the vesicle proteins probably remain clustered and they are then retrieved by 

endocytosis. Synaptic vesicles are regenerated within the nerve terminal, probably involving a passage 

through an endosomal intermediate. Actively recycling vesicles are in slow exchange with the reserve 

pool. From Jahn and Fasshauer, 2012. 

 

 

1.2 THE POSTSYNAPTIC TERMINAL 

 

Studies around the postsynaptic compartment began in 1907, when the British 

physiologist J. Langley introduced the concept of receptor molecules to explain the 

specific and potent actions of certain chemicals on muscle and nerve cells (Purves et al., 

Neuroscience, 3rd ed., 2004). Neurotransmitters released from the presynaptic terminal 

of a chemical synapse bind to receptors in the postsynaptic membrane. The receiving 

synapse can be excitatory or inhibitory. On the postsynaptic side of the most part of 

excitatory synapses, multiprotein complexes make up a region known as the 

postsynaptic density (PSD) which mediate clustering of receptors and cell-adhesion 
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molecules and orchestrate the coupling of diverse signaling components (Kim and 

Sheng, 2004).   

Ongoing research has focused on the identification of the protein components that are 

part of this huge macromolecular signaling complex. In general, one can subdivide these 

proteins into classes of (1) cell-adhesion proteins, (2) cytoskeletal proteins, (3) 

scaffolding and adaptor proteins, (4) membrane-bound receptors and channels, (5) G-

proteins and modulators and (6) signaling molecules including kinases/phosphatases 

(Sala et al., 2008). Large PSDs are especially characteristic of glutamatergic excitatory 

synapses. PSDs are either located directly on the dendritic shaft or at the tip of tubular, 

thin, stubby or mushroom-shaped dendritic spines and lie just below the postsynaptic 

membrane. They form a 30nm- to 40nm-thick protein meshwork with a diameter of a 

few hundred nanometers (Boeckers, 2006). The maintenance of the synaptic structure 

requires a constant replacement of proteins, lost by degradation, with newly synthesized 

ones. During constitutive replacement, however, the synaptic strength must be 

preserved, which is particularly important when it relates to the exchange of scaffold 

proteins such as PSD-95 (see below), because these proteins offer the necessary binding 

sites that regulate the receptor number at synapses. In line with these observations, 

synaptic PSD-95 clusters may be stable for days, yet individual PSD-95 molecules 

exchange with a half-life of less than one hour (Gray et al., 2006). 

Throughout the brain and spinal cord, the amino acid glutamate mediates the vast 

majority of excitatory neurotransmission. Glutamate acts on various membrane 

receptors, in particular ionotropic glutamate receptors (iGluRs), which form cation-

permeable ion channel receptors and can be subdivided into three large families: AMPA 

receptors (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid), kainate receptors 

and NMDA receptors (N-methyl-D-aspartate) (Paoletti et al., 2013). These receptors 

show a different permeability to Na+ or Ca2+ related to the family and the subunit 

composition of the receptor. Another group of receptors called metabotropic receptors 

act through secondary messengers (mGluR). 

NMDA receptors require, to be activated, a strong AMPAR-mediated membrane 

depolarization, to remove the Mg2+ that blocks the resting channels (Dingledine et al., 

1999). To date, seven different subunits have been identified. The GluN1 subunit, four 

distinct GluN2 subunits (GluN2A, GluN2B, GluN2C and GluN2D), which are encoded 

by four different genes, and a pair of GluN3 subunits (GluN3A and GluN3B), arising 
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from two separate genes (Paoletti et al., 2013). Different combinations of these subunits 

produce a variety of postsynaptic responses. 

In the mammalian central nervous system, AMPA-type glutamate receptors are 

responsible for fast excitatory synaptic transmission. AMPARs are tetramers made up 

of combinations of four subunits: GluA1, GluA2, GluA3, and GluA4 (Dingledine et al., 

1999, Isaac et al., 2007). 

Kainate-type glutamate receptors are expressed throughout the mammalian central 

nervous system (CNS) and affect neural circuit activity through the modulation of 

excitatory and inhibitory tone, neuronal excitability, synaptic development and various 

other aspects of brain function (Copits and Swanson, 2013). 

Metabotropic receptors are composed by a 7-fold transmembrane peptide (mGlu1-8). 

They are coupled to G-proteins and act through second messengers into the cytoplasm. 

Metabotropic glutamate receptors can also modulate the release and/or actions (directly 

or indirectly) of other neurotransmitters (Coutinho and Knopfel, 2002). 

 

It is widely believed that synapses constitute key loci for modifying neuronal network 

function and glutamate receptors are fundamental players in the establishment of 

synaptic plasticity, classically defined as a series of changes in the strength of synaptic 

connections, resulting in the final adaptations of neural networks to several stimuli 

(Bliss et al., 1973). Many synapses in the mammalian CNS exhibit long-lasting forms of 

synaptic plasticity that are plausible substrates for more permanent changes in behavior. 

Synaptic plasticity is thus believed to be the cellular correlate of learning and memory. 

Long-term potentiation (LTP) and long-term depression (LTD) at glutamate excitatory 

synapses represent the most widely studied mechanisms of synaptic plasticity, and 

provide either a learning-based synapse reinforcement or a weakening, respectively 

(Isaevoli et al., 2013). LTP is induced by AMPA-mediated depolarization that results in 

Mg2+ elimination from the NMDA channel. Removal of Mg2+ allows Ca2+ to enter the 

postsynaptic neuron and the resulting increase in Ca2+ concentration within the dendritic 

spines of the postsynaptic cell turns out to be the trigger for LTP (Malenka and Bear, 

2004). Long-lasting changes have been described to occur by means of PSD scaffolding 

proteins. Although scaffolding proteins may not directly modify the amplitude or the 

frequency of excitatory post-synaptic currents, they have been found to affect synaptic 

strength (Iasevoli et al., 2013) 
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Fig. 3: LTP guides clustering of receptors in the membrane following AMPA-mediated depolarization. 

The stimulus activate NMDA receptors and induce LTP. Scaffold proteins such as PSD-95 are 

responsible for the postsynaptic remodeling. From Iasevoli et al., 2013. 

 

 

1.3 DENDRITIC SPINES  

 

Dendritic spines are the specialized subcellular compartments that characterize dendritic 

arbors. They are the main site of synaptic input for excitatory neurons. Spines act as 

subcellular compartment that locally control the signaling mechanisms and they are 

crucially involved in receiving and processing synaptic information. Neurotransmitter 

receptors are largely restricted to the surface of spines and concentrated in the 

membrane area facing the presynaptic element (Halbach, 2009). Concerning the 

hippocampus, it has been shown that dendritic spines are the predominant sites of 

excitatory synapses on CA1 pyramidal neurons (Megias al., 2001), where most spines 

are contacted by a single presynaptic bouton (Andersen, 1990). Thus, hippocampal 

spines rarely have inhibitory or peptidergic modulatory synapses, instead, the 

modulatory synapses tend to be located on neighboring dendritic shafts or cell soma 

(Sorra and Harris, 2000). 

 

From a structural point of view, a dendritic spine consists of a head that is connected to 

the dendritic shaft by a narrow neck. Depending on the shape, the dendritic spines can 

be subdivided into different categories. 1) Mushroom spines with a large head and a 

narrow neck. 2) Thin spines with a smaller head and a narrow neck. 3) Stubby spines 

without an obvious constriction between the head and the attachment to the shaft (Peters 
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and Kaiserman- Abramof, 1970; Halbach, 2009; Rochefort and Konnerth, 2012). Spine 

neck allows the formation of an isolated biochemical and electrical compartment, which 

enables each synapse on a single spine to function and be regulated independently (Lai 

and Ip, 2013). By using glutamate uncaging on single spines, it has been demonstrated 

that spine morphology correlates directly with the number of AMPA receptors, and that 

the spine–neck geometry is an important determinant of NMDA receptor-dependent 

calcium signalling in spine head and dendritic shaft (Rochefort and Konnerth, 2012). 

The size of dendritic spines varies among brain areas, as well as between species 

(Rochefort and Konnerth, 2012). Interestingly, spines are present at the squid giant 

synapses (Young, 1973) but are rarely found in other lower organisms, suggesting that 

they may have developed early in evolution in order to implement more complex 

nervous systems functions (Sala et al., 2008). 

 

Although de novo formation of dendritic spines in adult mice has been described, most 

spines are thought to arise from dendritic filopodia during early postnatal life. Filopodia 

are more prominent in the developing brain at early postnatal stages and diminish with 

adulthood. One prevailing view is that filopodia represent the spine precursors during 

synapse formation. The long necks of filopodia would render them highly mobile and 

hence facilitate the search for presynaptic partners during synaptogenesis (Lai and Ip, 

2013). Dendritic filopodia have a network-like organization of actin filaments 

(Korobova and Svitkina, 2010), which provide the structural basis for spine formation 

and elimination (Cingolani and Goda, 2008). When a presynaptic terminal encounters a 

filopodium, a cluster of actin filaments appears at the contact site in the filopodium. The 

stabilization of filopodia to form new synaptic contacts is based on a rapid and 

persistent reorganization of the spine actin cytoskeleton (Luscher et al, 2000; Jourdain 

et al, 2003; Nikonenko et al, 2003; Honkura et al, 2008). This mainly consists of a 

reduced depolymerization rate from the pointed end of the filament, at the core of the 

spine, with polymerization continuing at the barbed end, in the spine periphery 

(Okamoto et al, 2004; Ramachandran and Frey, 2009). Early spines are often very long 

and have filopodia-like shape but, later during development, their mean length 

decreases and the number of filopodia is greatly reduced. Three major changes can be 

observed during the maturation process: an increase in spine density, a decrease in 

overall length and a decrease in the number of dendritic filopodia with a simultaneous 

decrease in spine motility (Sala et al., 2008). 
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It is well known that the morphological changes of dendritic spines occurring both 

during development and plasticity phenomena require the active remodeling of actin 

cytoskeleton.  In a recent work to which I contributed, it has been shown that proteins 

involved in the regulation of the actin cytoskeleton dynamics affect the spine growth. 

These proteins act as actin anti-capping or capping proteins. These proteins, which are 

fundamental in orchestrating the processes which control neuronal connectivity and 

plasticity, have been recently detected in dendritic spines (Menna et al., 2011). In 

particular, we found a prominent role of the actin capping protein Eps8, which absence 

impairs spine enlargement and plasticity (Menna et al., 2013). Many other different 

proteins are involved in spine dynamics, for reviews see Sala et al., 2008 and Koleske, 

2013. 

 

Dendritic spines are not static; they change morphology continuously, even throughout 

adulthood, reflecting the plastic nature of synaptic connections. Activity patterns that 

induce LTP cause enlargement of spine heads, suggesting that changes in dendritic 

spine morphology play an important role in memory formation (Houtulainen and 

Hoogenrad, 2010).  

One mechanism which regulates spine morphology is the local addition or removal of 

synaptic membrane and turnover of postsynaptic receptors, which associates with the 

rapid formation of new spines depending on NMDA receptor activation. This is 

confirmed in dissociated hippocampal neurons upon the induction of chemically-

induced LTP (cLTP) with glycine (Lu et al., 2001), a protocol which triggers rapid 

enlargement of the spine heads. Spine enlargement precedes the increase in AMPA 

receptor insertion and larger spines are associated with larger postsynaptic densities, 

greater glutamate-induced currents and calcium influx (Lai and Ip, 2013). Therefore, 

during LTP, activation of NMDA receptors increases connectivity of specific neurons 

through modulation of dendritic spines in three different ways: the enlargement of pre-

existing spines, the stabilization of newly-formed spines, and the formation of new 

spines (Lai and Ip, 2013). 

Enlargement of dendritic spines is not the only morphological modification observed 

after LTP. For example, mobilization of recycling endosomes and vesicles and 

amorphous vesicular clumps into spines have been observed within minutes after the 

induction of LTP (Park et al., 2006). Electron microscopy analysis has shown that the 

size of the PSD is perfectly correlated with the size of the presynaptic bouton and the 
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number of vesicles it contains (Harris et al. 1992). Therefore, PSD enlargement induced 

by LTP might presumably induce an enlargement of the presynaptic active zone and 

increase in the number of presynaptic vesicles (Sala et al., 2008). 

 

 

Fig. 4: Left, actin and microtubule cytoskeleton organization in a mature dendritic spine from cultured 

hippocampal neurons visualized by platinum replica electron microscopy. Axonal cytoskeleton, purple; 

dendritic shaft, yellow; dendritic spine, cyan. Right, diagram of a mature mushroom-shaped spine 

showing the postsynaptic membrane containing the postsynaptic density (PSD; blue), adhesion molecules 

(gray) and glutamate receptors (reddish brown), the actin (black lines) and microtubule (yellow) 

cytoskeleton, and organelles. Dendritic spines exhibit a continuous network of both straight and branched 

actin filaments (black lines). Modified from Houtulainen and Hoogenraad, 2010. 

 

 

1.4 PSD-95 

 

PSD-95 (95kDa) is the most abundant protein of the postsynaptic density; it forms the 

core of the scaffold at excitatory synapses (Boeckers, 2006).   

PSD-95/SAP90 is a member of the membrane-associated guanylate kinase family 

(MAGUK), which has master-organizing roles in the multimerization and clustering of 

protein complexes within the PSD. PSD-95 protein contains in its structure three 

repeated PDZ (PSD-95/disc large/zonula occludens-1) domains, one SH3 (Src 

homology 3), and one guanylate kinase (GUK) domain (Zhang et al., 2013). PDZ 

domains are peptide-binding domains located at the C-terminus of MAGUK proteins, 

which may enable PSD-95 to interact with several binding partners within the PSD, 

such as NMDAR and serotonin receptor subunits, as well as other tyrosine kinase 
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receptors and ion channels, cell adhesion molecules, and cytoplasmic proteins (de 

Bartolomeis et al., 2013). Thus, by assembling in multimers with other PSD proteins, 

PSD-95 enables the formation of extensive protein complexes that organize receptors 

and signal transduction proteins in the PSD.  Indeed, affinity-purified PSD-95 

complexes have been described to include (AMPAR) subunits (GluA1, GluA2, GluA3, 

GluA4), NMDAR subunits (GluN1, GluN2A, GluN2B), scaffolding proteins (PSD-93, 

Shank2, Shank3, Homer, SAPAP1, SAPAP2, SAPAP4), G-protein regulators (such as 

SynGAP or BRAG1), and other PSD proteins (Dosemeci et al., 2007). PSD-95 is thus 

well positioned to link and coordinate multiple pathways regulating synapse structure 

and function, such as those that control activity-dependent spine growth and protein 

trafficking. Given its functions, PSD-95 has been implicated in synaptic plasticity 

processes and in the interplay among glutamatergic, dopaminergic, and serotonergic 

signaling pathways (de Bartolomeis et al., 2013). 

Furthermore, PSD-95 is highly stable at the synapse, consistent with a role in forming 

and maintaining the PSD (Bresler et al., 2001 and 2004; Gray et al., 2006; Sturgill et al., 

2009). Overexpression of PSD-95 increases spine maturation and stability (Nikonenko 

et al., 2008). Consistently, acute knockdown of PSD-95 arrests the functional and 

morphological development of glutamatergic synapses (Ehrlich et al., 2007), while 

PSD-95 mutant mice exhibit variations in spine densities in several brain regions 

(Vickers et al., 2006). In addition, PSD-95 has also been proposed to affect synapse 

maturation and stabilization and, thus, synapse number (El-Husseini et al., 2000; 

Ehrlich et al., 2007). Activity-dependent spine growth is positively and negatively 

regulated by PSD-95, phosphorylated at Ser73 site by CaMKII (calcium calmoduline 

kinase II), which has been reported to slow down both the growth of apical spines and 

the strength of synaptic currents (Steiner et al., 2008).  

A growing number of studies have implicated PSD-95 in animal models of psychosis, 

and in the pathophysiology of schizophrenia, as demonstrated by postmortem human 

brain analyses. Early works demonstrated an increase in thalamic PSD-95 gene 

expression in schizophrenic patients, with a concurrent decrease in NMDAR NR1 

subunits in the same region (Clinton et al., 2003). Postmortem studies indicated that 

young schizophrenic patients have decreased PSD-95 thalamic levels and increased 

NMDAR NR2B subunits (Clinton et al., 2004). No diagnostic changes for NR1 were 

found in any area while a region-specific decrease in PSD-95 was found in the dentate 

molecular layer of the hippocampus in both schizophrenia and bipolar disorder relative 
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to major depressive disorder (Toro and Daikin, 2005). Moreover, it has been observed 

that pluripotent stem cells from peripheral fibroblasts of schizophrenia patients show 

decreased PSD-95 protein amounts and reduced neurite number when differentiated into 

neurons (Brennand et al., 2011). Different studies suggest the implication of PSD-95 

also in autism spectrum disorders (Feyder et al., 2011). 

 

 

Fig. 5: Three-dimensionally reconstructed dendritic segment. Black: PSD-95 at the tip of the spines. 

Modified from Nikonenko et al., 2008. 

 

 

2- SYNAPTOPATHIES 
 

The highly organized synaptic structure results from a protracted developmental 

program in the course of which synapses are assembled and stabilized in the mature 

brain, while retaining sufficient flexibility to exhibit plasticity of structure and function. 

The ability of synapses to maintain their individual characteristics is very much 

dependent on the network of interactions within these complexes. The accumulation of 

synapses on neuronal processes indicates that synapses, although well served by 

transport links, operate remotely from the biosynthetic processes occurring at the cell 

body. Owing to this ‘isolation’, a number of underpinning processes evolved at 

synapses. These include local membrane and protein turnover, high efficient local 

mRNA translation, compartmentalized metabolic capability and a host of local 

modulatory signal cascades supported by synaptic protein scaffolds, which together 

compose a picture of staggering molecular complexity. In spite of their partial autarky, 

synapses are still dependent on the biosynthetic and metabolic support of the cell body. 

Therefore, more general cellular dysfunctions can become manifest as perturbed 

synaptic function and thus represent synaptopathies, although synapse function itself is 

not primarily affected (Brose et al., 2010). Synaptopathies can arise from large numbers 

of mutations in the synaptome and disruption of these genes play a role in a remarkable 

number of brain diseases (Bayes et al., 2011).  
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Here I will only give some examples of postsynaptic proteins involved in 

synaptopathies. 

SHANK3, a synaptic scaffolding protein enriched in the postsynaptic density of 

excitatory synapses, and  Neuroligin 3 and 4, cell-adhesion proteins on the postsynaptic 

membrane that mediate the formation and maintenance of synapses between neurons, 

are two major proteins found mutated in autism (see for a review Sudhof, 2008 and 

Guilmatre et al., 2013) a pathology which affects about 0.7% of children, characterized 

by deficits in social communication, absence or delay in language, and stereotyped and 

repetitive behaviors.  

Polymorphisms and frame shift mutations of Disrupted in schizophrenia 1 (DISC1) 

have been linked to schizophrenia. DISC1 protein is known to interact with several 

regulators of spine morphogenesis. It has also a function as molecular organizer in 

spines and provides a structural link between surface receptors, including glutamatergic 

receptors, and intracellular signaling networks (Hayashi-Takagi et al., 2010).  

A clear modification in spines shape and density also accompanies alterations of 

cognitive functions (Penzes et al., 2011). Post-mortem human brains of patients affected 

by autism showed an increase in spine density on apical dendrites of pyramidal neurons 

from frontal, temporal and parietal lobes (Hutsler et al., 2010). Similar to autism, in 

another form of intellectual disability, the fragile X syndrome, the brain is characterized 

by elevated spine density (Pfeiffer et al., 2010). Gray matter loss, which is accelerated 

during periadolescence, and a consequent reduction in spine density (Selemon et al., 

1999) occur in schizophrenia. Finally, in AD, dendritic spine loss is observed in the 

hippocampus and throughout the cortex, the principal areas affected by Alzheimer’s 

disease–related pathologies (Walsh et al., 2004). 

 

Fig. 6:  Estimated lifetime of dendritic spines number in the in a normal subject (black), in autism (ASD, 

pink), in schizophrenia (SZ, green) and in Alzheimer’s disease (AD, blue). Bars indicate the beginning of 

the disease. It is possible to observe in ASD an excessive number of spines, due to incomplete pruning or 
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exaggerated spine formation. On the contrary, in schizophrenia there is an exaggerated elimination of 

spines during adolescence. In AD, spines are lost in late adulthood, suggesting alterations in mechanisms 

of spine maintenance. From Penzes et al., 2011. 

 

 

3- SNAP-25 

 

SNAP-25 is a SNARE protein controlling neurotransmitter release and negatively 

modulating voltage gated calcium channels (Stein et al, 2009; Verderio et al., 2004, 

Pozzi et al., 2008). Moreover, SNAP-25 has been recently found to play a crucial role in 

the postsynaptic compartment (Selak et al., 2009, Lau et al., 2010, Jurado et al., 2013, 

Tomasoni et al., 2013). 

  

 

3.1- PROTEIN STRUCTURE 

 

SNAP-25 is a hydrophilic protein of 206 amino acids abundantly expressed in mouse 

brain but not in non-neuronal tissue (Oyler et al., 1989). SNAP-25 has been 

demonstrated to be extensively, but differently distributed both in the nervous system as 

well as in endocrine and neuroendocrine cells (Jacobsson et al., 1994, Bark et al., 1995; 

Jacobsson et al., 1996; Gonelle- Gispert et al., 1999; Jacobsson et al., 1999). The gene 

expression is correlated to neuronal maturation (Catsicas et al., 1991). SNAP-25 

associates with the plasmamembrane through palmitoyl residues that are thioester-

linked to four closely spaced cysteine residues at the center of the protein. The amino- 

and carboxy-terminal domains are highly conserved. The SNAP-25 gene is a single gene 

covering more than 80kb of genomic DNA and the polypeptide is encoded for by eight 

different exons spaced by large intron sequences (Bark, 1993). Obligate alternative 

splicing of exon 5 generates SNAP-25a or SNAP-25b mRNA (Bark and Wilson, 1994). 

The nine amino acids that distinguish SNAP-25b from SNAP-25a are included in the 

SNAP-25 region that spans the last part of the N-terminal SNARE motif and the first 

part of the linker that separates the N- and C-terminal α-helices. Thus, the different 

amino acids participating in forming the four α-helix coil–coil structure in the SNARE 

complex could possibly interfere with SNARE complex stability or ability to interact 

with accessory proteins (Bark, 1993; Bark and Wilson, 1994). Studies of gene 
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expression of the alternative SNAP-25 variants in mouse brain have demonstrated that 

the two mRNAs are differently expressed during development and have a distinct 

neuroanatomical distribution. SNAP-25a is mostly expressed at early stages of brain 

development (Oyler et al.,1991; Bark et al., 1995; Boschert et al., 1996), while in the 

postnatal period, when developing axons approach their target cells, SNAP-25b 

expression is noticeably up regulated (Catsicas et al., 1991; Oyler et al., 1991; Bark et 

al., 1995; Boschert et al., 1996), consistent with its well-known role in neurite 

outgrowth and in synaptogenesis (Osen-Sand et al., 1993; Shirasu et al., 2000). 

 

 

3.2- SNAP-25 IN NEUROTRANSMITTER RELEASE:  

ROLE AS A SNARE PROTEIN 

 

SNAP-25 plays a key role in neurotransmitter release by participating to the formation 

of the SNARE (soluble N-ethylmaleimidesensitive factor attachment protein receptor) 

complex through its SNARE motifs. The synaptic proteins synaptobrevin (also referred 

to as VAMP2), syntaxin1 and SNAP-25 belong to the SNARE protein family. Their 

defining feature is an extended coiled-coil stretch, which is referred to as a SNARE 

motif. In syntaxin, synaptobrevin and in most of the other SNAREs, the SNARE motifs 

are connected by a short linker to a carboxy-terminal transmembrane region (TMR). 

SNAP-25 deviates from this general structure: two of its SNARE motifs are connected 

by a linker region that is palmitoylated, whereas a TMR is lacking. SNAP-25 has been 

primarily studied in the presynaptic plasma membrane. At this site, on contact, SNARE 

proteins complex is initiated amino-terminally and proceeds towards the C terminus in a 

zipper-like fashion, thus pulling the synaptic vesicle and the presynaptic membranes 

together (Stein et al., 2009; Jahn and Fasshauer, 2012). 
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Fig. 7: Left, ribbon plot of the synaptic SNARE complex. Adapted from Stein et al., 2009. Right, SNARE 

proteins bound to permit the docking of vesicles to the membrane. From Fasshauer et al., Neuronal 

SNARE proteins, 2013. 

 

Although the formation of the SNARE complex is the first step leading to vesicles 

fusion, it is not sufficient per se to generate the release of the neurotransmitter: indeed 

other proteins (i.e. Munc13, Munc18; Rim, Rab3) and cofactors (i.e. NSF, α/βSNAP) 

are required (Chua et al., 2010), but their role will not be discussed here.  

A special mention, instead, regards synaptotagmin, a synaptic vesicle protein that 

functions as Ca2+-sensor for fast Ca2+-triggered exocytosis. Synaptotagmin contains two 

domains that mediate Ca2+-dependent binding directly to both membrane lipids and 

SNAP-25, one located around the center and another at the C-terminal end of the 

SNARE bundle (Chua et al., 2010; Mohrmann et al., 2013). Recently it has been 

discovered that the interaction with the central SNARE motifs of SNAP-25 is essential 

for vesicle docking, priming, and fast fusion-triggering exocytosis. Mutations in this 

interaction site led to more pronounced phenotypes in the context of the adult neuronal 

isoform SNAP-25b than in the embryonic isoform SNAP-25a. Moreover, the C-

terminal binding interface only plays a subsidiary role in triggering, but is required for 

the full size of the readily releasable pool (Mohrmann et al., 2013). 

 

 

3.3- SNAP-25 IN NEUROTRANSMITTER RELEASE:  

ROLE AS A CALCIUM CHANNELS MODULATOR 

 

Multiple evidences indicate an additional function of SNAP-25 in the modulation of 

various ion channels. In particular, the interaction of SNAP-25 with different types of 

voltage-gated calcium channels (VGCCs), including N-type (Sheng et al., 1996), P/Q-

type (Rettig et al., 1996; Martin-Moutot et al., 1996) and L-type (Wiser et al., 1999) has 

been demonstrated in non-neuronal cells.  

These interactions occur through a specific channel region known as the synaptic 

protein interaction (synprint) site. This interaction has been shown to alter channel 

function by reducing N-type channel current (Wiser et al.,1996), inhibiting L-type 

channel currents (Ji et al., 2002), or reducing the activity of P/Q type Ca2+ channels by 

negatively shifting the steady state voltage dependence of inactivation (Zhong et al., 

2001). 
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Fig. 8: Transmembrane topology of the N-type calcium channel α1- subunit illustrating major protein 

interactions sites. The domain II – III linker region of vertebrate N-type channels contains a synaptic 

protein interaction site that interacts with syntaxin1, synaptotagmin1, and SNAP-25. From Zamponi et al., 

2003. 

 

In Verderio et al. 2004, it was reported for the first time the occurrence of a correlation 

between the levels of SNAP-25 and the extent of depolarization-induced neuronal 

calcium influx. Indeed, it was demonstrated that SNAP-25 is expressed at almost 

undetectable levels in GABAergic neurons, which are instead characterized by a higher 

calcium responsiveness to depolarization. Moreover, exogenous expression of SNAP-25 

in GABAergic neurons was found to reset the calcium responsiveness to levels 

comparable to those of glutamatergic neurons. These data suggests that different levels 

of SNAP-25 expression in excitatory versus inhibitory neurons may profoundly 

modulate neuronal responses to synaptic stimuli in a dose-dependent manner, and that 

SNAP-25 is involved in the regulation of neuronal excitability (Verderio et al., 2004). 
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Fig. 9: A-B) Double labeling of hippocampal neurons for SNAP-25 and for GABA (A) or the vesicular 

GABA transporter v-GAT (B). SNAP-25 immunoreactivity is lacking from neuronal processes positive 

for GABA or for v-GAT. C-D) Quantitative analysis of [Ca2+]i responses recorded in the dendrites (C) 

and soma (D) of glutamatergic and GABAergic neurons after exposure to 10-20-30mM KCl. Modified 

from Verderio et al., 2004. 

 

In a subsequent paper from our laboratory, Pozzi et al. studied how variations of the 

endogenous levels of SNAP-25 could modulate calcium responsiveness, using primary 

hippocampal cultures from SNAP-25 wild-type and transgenic mice. 

Immunocytochemistry and western blotting analysis revealed that cultures from SNAP-

25 heterozygous mutants display levels of SNAP-25 intermediate between SNAP-25 

KO and wild-type neurons, confirming previously reported data (Washbourne et al., 

2002). As hypothesized, the magnitude of calcium response following a depolarizing 

stimulus was found to be inversely proportional to the amount of SNAP-25. 

 

 

Fig. 10: Top, immunofluorescence for SNAP-25 (red) in hippocampal cultures established from Wt (+/+), 

heterozygous (+/-), and KO (-/-) mice. Bottom, analysis of calcium responses measured in cultures upon 

30mM KCl depolarization. Notably, the increase in responses is inversely proportional to SNAP-25 

levels. From Pozzi et al., 2008. 

 

SNAP25 phosphorylation of the serine in position 187 (Ser187) by PKC was found to 

be crucial for the negative regulation of VGCCs (Pozzi et al., 2008). Because Ser187 

phosphorylation is transiently induced by neuronal activity (Pozzi et al. 2008), these 

data revealed that SNAP-25 provides a negative feedback mechanism for controlling 

neuronal excitability. 
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Fig. 11: Left, western blot analysis of SNAP-25 phosphorylation in hippocampal cultures in control 

conditions or after stimulation with 1µM PMA (PKC activator) for 30 min. Right, time course of SNAP-

25 phosphorylation in cultures exposed to 30mM KCl for 5 min, immediately solubilized (KCl), or 

washed and solubilized after 30 or 60 min. From Pozzi et al., 2008. 

 

 

Cultured glutamatergic and GABAergic neurons showed markedly different VGCC 

properties, which are affected by SNAP25 level of expression, confirming the 

hypothesis that the regulation of SNAP-25 may have a crucial role in the control of 

neuronal network activity (Condliffe et al., 2010). It is also possible that the effects of 

reducing endogenous SNAP-25 expression have a greater impact on VGCC regulation 

than on the function of the protein as a SNARE. Several finding where reduction of 

SNAP-25 do not affect SNARE-dependent neurotransmission (Bronk et al., 2007; 

Delgado-Martinez et al., 2007) support this idea. 

Finally, we have recently demonstrated that halved SNAP-25 levels at 13-14 DIV 

hippocampal neurons enhance evoked glutamatergic neurotransmission possibly, due to 

increased presynaptic VGCCs activity, and affect short-term presynaptic plasticity. 

Indeed, synapse between heterozygous neurons show paired-pulse depression as 

opposed to paired-pulse facilitation occurring in their wild-type counterparts (Antonucci 

et al., 2013; see also Result section of this thesis). 

 

 

3.4- A NOVEL POSTSYNAPTIC ROLE FOR SNAP-25 

 

Despite the established role at the presynaptic compartment, new roles are emerging for 

SNAP-25 at the postsynaptic terminal in the last years. 

The protein lacks a selective pre- or postsynaptic distribution, being instead more 

diffusely localized throughout the neuronal plasma membrane; some recent evidence 

locate SNAP-25 in the postsynaptic terminal either by immunofluorescence (Selak et 

al., 2009, Tomasoni et al., 2013), or ground state depletion (GSD) microscopy which 

allows protein localization with a precision up to 20nm (Tomasoni et al., 2013). SNAP-
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25 immunoreactivity can be detected, although it is not specifically enriched, in 

dendritic protrusions of cultured hippocampal neurons. Also by coimmunoprecipitation, 

bimolecular fluorescence complementation (BiFC) and biochemical fractionation it is 

possible to appreciate a relation with postsynaptic proteins (Selak et al., 2009; 

Tomasoni et al., 2013 but see Kerti et al., 2012).  
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Fig. 12:  A) Labeling of hippocampal cultures, transfected with GFP, for SNAP-25 (blue) and for the 

post-synaptic marker GluR2/3 (red). Scale bar 1µm (three left panels) and scale bar 2.5µm (two right 

panels). B) Ground State Depletion images displaying endogenous SNAP-25 immunoreactivity. Left 

panel: axonal and dendritic processes labeled for SNAP-25 in neurons transfected with GFP. Scale bar 

3µm. High magnification panels show SNAP-25 immunoreactivity in dendritic protrusions. Scale bar 

1.5µm. Modified from Tomasoni et al., 2013. C) In mature hippocampal neurons, SNAP-25 (blue) and 

GluK5 (yellow) colocalize in roughly 50% of immunolabeled puncta. D) SNAP-25 

coimmunoprecipitated GluK5, GRIP and PICK1 from hippocampus homogenate. E) Demonstration of 

SNAP25-GluK5 interaction by bimolecular fluorescence complementation (BiFC). BiFC takes advantage 

of the fact that when the two non-fluorescent amino- and carboxy-terminal fragments of yellow 

fluorescent protein (YFP) are brought into close apposition they interact leaving to the irreversible 

formation of a fluorescent protein. HEK cells were cotransfected with GluK5 and SNAP-25 fusion 

proteins to which the N-terminal (VNT) and C-terminal (VCT) domains of the YFP. Double 

immunolabeling, using antibodies against myc (green) and SNAP-25 (red), was also performed to check 

for the levels of protein expression. Single confocal images showing that cotransfection of GluK5VNT 

and SNAP-25VCT leads to the reconstitution of Venus in those cells where both proteins are expressed. 

Modified from Selak et al., 2009. F) SNAP-25 as well as markers of the presynaptic (synaptophysin, 

alpha 1A subunit of calcium channels) and postsynaptic (PSD-95) compartment were analyzed by 

western blotting in various subcellular compartments. H, Homogenate; Syn, synaptosomes; TIF, Triton 

X-100 Insoluble Fraction; PSD, Post-Synaptic Density. 

 

Nowadays a number of studies demonstrate a functional role of SNAP-25 in the 

postsynaptic terminal. Selak and colleagues showed that SNAP-25 regulates the 

membrane insertion and removal of the kainate receptor (KAR) containing the subunit 

GluK5. The interaction of SNAP-25 with GluK5 and PICK1 reduces the GluK5 

stability on the membrane, favoring KAR internalization. Indeed, postsynaptic long-

term depression (LTD) of KAR-mediated excitatory postsynaptic currents was 

prevented by disrupting the interaction between SNAP-25 and GluK5 (Selak et al., 

2009). The mechanism by which SNAP-25 exerts its function on KAR is not however 

completely understood, even if the SNARE function seems not to be involved. A 

working hypothesis is that PICK1 may favor GluK5 phosphorylation by PKC, which 

may induce a conformational change facilitating the association of GluK5 with SNAP-

25, while decreasing GRIP binding affinity (Selak et al., 2009). Since SNAP-25 and 

GluK5 co-localize almost exclusively in the association with the plasma membrane, it is 

even possible that SNAP-25 could play a role in the lateral movement or sorting of 

activated KARs into the lateral plasma membrane invaginations representing endocytic 

‘‘hot spots’’ (Lu et al., 2007).  

 



23 
 

 
Fig. 13: Cartoon to illustrate the putative role of mGluRs, SNAP-25, PICK1 and PKC in long-term 

synaptic kainate receptor internalization. From Selak et al., 2009. 
 

 

Another key study revealed the importance of SNAP-25 in regulating NMDA receptor 

insertion in the membrane, through PKC-mediated phosphorylation (Lau et al., 2010). It 

is known that PKC enhances NMDA receptor (NMDAR)-mediated currents and 

promotes NMDAR delivery to the cell surface via SNARE-dependent exocytosis. 

SNAP-25 has been discovered to be a target of PKC on its residue Ser187 and favors 

NMDAR incorporation into the membrane through its SNARE properties. SNAP-25 is 

therefore involved in the potentiation of the synapse. Given that LTP-inducing protocols 

can induce SNAP-25 phosphorylation (Genoud et al., 1999), high frequency stimulation 

protocols may act via phosphorylation of SNAP-25 to promote insertion of NMDARs 

thus eliciting LTP. 

Based on these results, it is conceivable that postsynaptic SNAP-25 may be important 

for regulating a dynamic equilibrium among the glutamate receptors at a given synapse, 

thereby leading to adequate tuning of neurotransmission also at postsynaptic level.  
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Fig. 14: Proposed model showing that activation of PKC phosphorylates SNAP-25 and promotes 

insertion of new NMDA-, but not AMPA-, channels at the cell surface. This is consistent with trafficking 

of AMPARs and NMDARs in distinct postsynaptic vesicles and delivery to the plasma membrane via 

distinct pathways of exocytosis. From Lau et al., 2010. 

 

Interestingly, the effects on KAR and NMDAR specifically require SNAP-25 

phosphorylation, without implication of SNAP-23. SNAP-23 shows 58% aminoacidic 

identity with SNAP-25 and it is ubiquitously expressed. Similarly to SNAP-25, SNAP-

23 is localized to the plasma membrane (Wang et al., 1997). SNAP-23 regulates a wide 

variety of diverse membrane-membrane fusion events outside of the CNS, such as 

exocytosis from mast cells, insulin-dependent GLUT-4 release from adipocytes and 

degranulation in platelets (Suh et al., 2010). Nevertheless, SNAP-23 has also been 

detected in cortical neurons and in purified synaptic vesicles (Takamori et al. 2006, 

Bragina et al. 2007). SNAP-23 can support synaptic vesicle fusion in the absence of 

SNAP-25 and may function in a SNARE complex driving asynchronous and/or 

spontaneous neurotransmitter release (Chieregatti et al., 2004). SNAP-23 is enriched in 

dendritic spines, co-localizes with constituents of the postsynaptic density in neurons 

and has a role in the postsynaptic glutamate receptor trafficking. In fact, surface 

NMDAR and NMDA receptor currents are reduced in SNAP-23 heterozygous mice, in 

particular SNAP-23 reduction suppresses plasma membrane expression of NR2B by 

inhibiting the recycling of internalized receptors, without interacting directly with the 

NMDAR (Suh et al., 2010). However SNAP-23 roles do not seem to overlap with 

SNAP-25 ones, for example, differently from SNAP-25, SNAP-23 is not required for 

AMPA-mediated LTP in both slices and cultured neurons (Jurado et al., 2013). 

 

It has recently been shown that acute SNAP-25 downregulation results in LTP 

impairment, possibly due to defective NMDA receptors trafficking (Jurado et al., 2013; 

see also Lau et al., 2010). It is noteworthy that a similar reduction of SNAP-25 

expression does not detectably impair presynaptic neurotransmitter release, probably 

because the presynaptic SNAP-25 concentrations far exceed the needs of the 

presynaptic release machinery (Sharma et al., 2011). 

Because postsynaptic SNAP-25 may be critical for NMDAR trafficking, it was 

correctly hypothesized that the SNAP-25 knock down (KD) impaired LTP by reducing 

the surface levels of NMDAR. In fact, reduced levels of NMDARs were found in the 

dendrites of SNAP-25 KD cells. Furthermore, AMPAR/NMDAR ratios in SNAP-25 

KD in acute slices were significantly higher than in control cells (Jurado et al., 2013). 
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Fig. 15: A) Scatter plot of individual LTP experiments in control and SNAP-25 KD CA1 pyramidal cells. 

B) Normalized levels of GluN1 on dendrites of hippocampal cultured neurons. C) Ratio of AMPAR- to 

NMDAR-mediated EPSCs is increased in SNAP-25 KD cells. Representative EPSCs recorded at -60mV 

and +40mV are shown. Modified from Jurado et al., 2013. 

 

Interestingly, Jurado and colleagues indicated SNAP-47 as the protein responsible for 

AMPAR delivery during LTP. In neurons, SNAP-47 shows a widespread distribution 

on intracellular membranes and it is also enriched in synaptic vesicle fractions. In vitro, 

SNAP-47 can functionally substitute for SNAP-25 in SNARE complex formation and it 

also substituted for SNAP-25 in proteoliposome fusion. However, neither complex 

assembly nor fusion was as efficient as with SNAP-25 (Holt et al., 2006). Importantly, 

the SNAP-47 KD did not alter basal AMPAR- or NMDAR-mediated synaptic responses 

or basal AMPAR surface expression. SNAP-47 specifically participates in the fusion 

machinery during LTP and the interaction of SNAP-47 with other SNARE proteins to 

form SNARE complexes is critical for AMPAR exocytosis during LTP, but not for 

constitutive basal AMPAR exocytosis (Jurado et al., 2013). Thus, several evidence 

accumulated indicating that SNAP25 may exerts a fundamental role at the postsynaptic 

compartment by affecting glutamate receptors insertion. 

 

A recent paper of our group suggested that SNAP-25 might have also a structural role in 

the postsynaptic compartment. In fact, acute down-regulation of the protein expression 

in vitro was found to lead to an immature phenotype of dendritic spines (Tomasoni et 

al., 2013). Conversely, over-expression of SNAP-25 resulted in an increase in the 

density of mature spines. The regulation of spine morphogenesis by SNAP-25 depends 

on the protein's ability to bind both the plasma membrane and the adaptor protein 

p140Cap (Tomasoni et al., 2013). p140Cap has been discovered as a regulator of Src 

tyrosine kinase, which associates with microtubules and with the actin binding protein, 
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cortactin. Consistently, p140Cap plays a crucial role in regulating actin cytoskeleton 

and spine formation (Jaworski et al., 2009). There is the possibility that SNAP-25, 

present at the plasma membrane of new dendritic spines, allows pl40Cap relocalization 

at a site where, in the presence of the appropriate molecular components necessary for 

spine formation, the process of spine morphogenesis may start. 

 

 

          

Fig. 16: Top, PSD-95 immunocytochemical staining of rat hippocampal cultures silenced for SNAP-25 

and transfected with a scramble or silencing sequence for SNAP-25 and GFP; RFP alone or SNAP-25-

GFP and RFP, Scale bar 10µm (scale bar inset 2.5µm). Bottom, quantitative analysis of spine density, 

subdivided in filopodia-like or mushroom type. Modified from Tomasoni et al., 2013. 

 

 

 

3.5- SNAP-25 IN NEUROPSYCHIATRIC DISORDERS 

 

In the last years, data accumulated suggesting that SNAP-25 is involved in different 

neuropsychiatric and neurological disorders; alterations in SNAP-25 isoform expression 

have been linked to diseases with developmental onset such as schizophrenia, attention 

deficit/hyperactivity disorder and epilepsy. Recent genetic studies of human populations 

and of some mice models suggested that alterations in SNAP-25 gene structure, 

expression and/or function might contribute directly to these distinct neuropsychiatric 

and neurological disorders. Further studies are required to clarify if the changes in 

SNAP-25 expression may represent a cause or a consequence of such pathologies. 
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ADHD 

Attention-deficit/hyperactivity disorder (ADHD) is one of the most prominent 

neuropsychiatric disorders developing during childhood, which affects roughly 3% - 7% 

school-aged children in the U.S. (CDC 2013). It is a psychiatric disorder of the 

neurodevelopmental age characterized by significant problems of attention, 

hyperactivity and/or impulsivity that are not appropriate for a person's age. Nowadays it 

is know that the disorder is marked by disruption of catecholamine signaling, with 

mainstay treatments for the disorder targeting the dopamine and noradrenaline 

transporters and the α2a adrenoreceptor (Arnstenet al., 2011). Also the genetic 

component is non deniable, in fact ADHD is clearly inheritable (Faraone et al., 2005) 

and genetic association studies suggest that allelic variations in the SNAP-25 gene might 

confer susceptibility to ADHD (Barr et al., 2000; Feng et al., 2005; Caylak, 2012). A 

latest study shows that DNA variations at SNAP-25 confers risk to ADHD and reduces 

the expression of the transcript in the inferior frontal gyrus, a region of the brain that is 

critical for the regulation of attention and inhibition (Hawi et al., 2013). 

The Coloboma mouse model has been fundamental to unveil the role of SNAP-25 as a 

susceptibility gene for ADHD. The Coloboma mouse bears a semi-dominant mutation 

(cm/+) in which the heterozygous form results in the mutant type while the homozygous 

is lethal. The mutation is a 0.2Cm deletion encompassing genes including SNAP-25 5 

(Hess et al., 1994) and it is used as a model for ADHD (Wilson 2000; Faraone et al. 

2005; Russell, 2007). In Coloboma mutant mice (Cm/+), deletion of the SNAP-25 gene 

results in 50% lower amounts of the SNAP-25 mRNA and protein expression compared 

to wild-type mice. Coloboma mice exhibit normal circadian rhythm and, as children 

with ADHD, they are hyperactive during their active phase, with locomotor activity 

averaging three fold the activity of control littermates (Hess et al.,1992). 

Notably, a similar phenotype has been observed in mice heterozygous for SNAP-25. At 

seven postnatal weeks, SNAP-25 het mice show a moderate hyperactivity, which, 

however, disappears in adult animals, which are instead characterized by impairments in 

associative learning and memory (Corradini et al., 2012). ADHD children display 

impaired associative implicit learning, mediated by frontal-striatal-cerebellar circuits, 

but normal spatial contextual learning depending upon the medial temporal lobes 

(Barnes et al., 2010). Under this respect, an analysis of the structure and function of the 

synapses where SNAP-25 expression is in fact lower, using SNAP-25 heterozygous 
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mice, , could be useful for identifying the substrate of impaired forward signaling even 

if compensated by later network maturation (Corradini et al., 2012). 

 

SCHIZOPHRENIA 

Schizophrenia is a mental disorder characterized by problems with thought processes 

and by poor emotional response, affecting approximately 24 million of the population 

worldwide (WHO 2013), with the onset of symptoms in late adolescence or early 

adulthood. Schizophrenia is often described in terms of positive and negative 

symptoms. Positive symptoms include hallucinations, delusions, disordered thoughts 

and speech. Negative symptoms include reduced interest or motivation and cognitive 

impairment. The neuropathophysiology of the disorder remains unclear, although, as in 

the case of ADHD, alterations in dopaminergic and serotoninergic circuitry, as well as 

in glutamatergic transmission, have been strongly implicated. The morphological 

correlates of schizophrenia are subtle, and range from a slight reduction in brain size to 

localized alterations in the morphology and molecular composition of specific neuronal, 

synaptic, and glial populations in the hippocampus, dorsolateral prefrontal cortex, and 

dorsal thalamus (Harrison and Weinberger, 2005).  

Twin studies show unequivocally that schizophrenia is predominantly a genetic 

disorder, with estimated risk of heritability around 80% (Harrison and Weinberger, 

2005). However, neither a gene has been found to be a causative allele nor the 

mechanism by which it predisposes to schizophrenia has been identified. Many genes 

have been recognized as susceptibility genes in this disease because of genome-wide 

association studies (Giusti-Rodriguez and Sullivan, 2013). Among them, the 

chromosome region which includes the SNAP-25 gene (20p12.3-11) emerged as a 

strong candidate region for schizophrenia (Lewis et al., 2003; Corradini et al., 2009). 

Consistently, SNAP-25 levels are lower in the hippocampus (Young et al. 1998; 

Thompson et al. 2003) and in the frontal lobe (Thompson et al., 1998) of patients with 

schizophrenia. Decreases in the mRNA level were also found in various parts of the 

brains in post mortem studies of patients with bipolar affective disorder (Scarr et al., 

2006).  

Recently, more attention has been given to polymorphisms associated with the disease. 

Point of variation or polymorphisms are the source of genetic variation that contribute 

to differences between individuals. There are several types of polymorphisms, one 

commonly studied type are the single-nucleotide polymorphisms (SNPs). A SNP 

http://en.wikipedia.org/wiki/Symptom#Positive_and_negative_symptoms
http://en.wikipedia.org/wiki/Symptom#Positive_and_negative_symptoms
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consists in a DNA sequence variation that occurs when a single nucleotide (A,T,C,or G) 

in the genome sequence is altered; to be classified as polymorphism, the variation must 

occur in at least 1% of the population. Carroll and colleagues demonstrated that ADHD 

and schizophrenia shares the same SNPs mutations of SNAP-25 (Carroll et al., 2009). 

Recent studies have found another SNP mutated in the 3’UTR SNAP-25 gene, which 

alteration is supposed to influence NMDA receptors trafficking (Kovács-Nagy et al., 

2009; Lochmann et al., 2013). 

 

EPILEPSY 

Epilepsy is one of the most common neurological disorders that affects 50 million 

people worldwide of all ages (WHO 2012). It is a common and diverse set of chronic 

neurological disorders characterized by seizures. It is a paroxysmal behavioral generally 

caused by an excessive disorderly discharge of cortical nerve cells of the brain and can 

range from clinically undetectable (electrographic seizures) to convulsions. In many 

cases, a cause cannot be identified; however, factors that are associated include brain 

trauma, strokes, brain cancer, drug and alcohol misuse among others. Clinical 

manifestations of epilepsy are varied and despite availability of a number of 

antiepileptic drugs, about one-third of epileptic patients are resistant to treatment.  

As for schizophrenia or other psychiatric disorders, also for epilepsy it is difficult to 

find a genetic correlate, but some animal models provides some insights that alterations 

in SNAP-25 could be involved in the insurgence of epilepsy. The mutant mouse 

Coloboma (Cm/+), already discussed as a model of ADHD, display robust cortical-

cortical spike-wave discharges and increased thalamic T-type currents (Zhang et al., 

2004), two typical features of absence epilepsy (Tsakiridou et al., 1995; Coenen and 

Van Luijtelaar, 2003). 

SNAP-25 is expressed at much higher levels at excitatory respect to inhibitory synapses 

(Verderio et al., 2004; Bragina et al., 2007). Thus, hyperexcitability could result from 

perturbations of the processes that balance the developmental assembly of inhibitory 

and excitatory circuits. 

Since the phosphorylation of SNAP-25 plays an important role in synaptic function, a 

mutant mouse, substituting Ser187 of SNAP-25 with Ala (Kataoka et al., 2011) was 

generated. The most striking phenotype of SNAP-25 S187A/S187A mice was the 

abnormal behavior possibly attributed to increased anxiety. SNAP-25 S187A/S187A 

mice froze very readily in response to environmental change. Dopamine and serotonin 
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release in amygdala was markedly decreased in SNAP-25 S187A/S187A mice, possibly 

due to a lack of phosphorylation-dependent enhancement of monoamine release. In 

addition, the mutant mice sometimes exhibited spontaneously occurring convulsive 

seizures. 

A recent study from our lab revealed behavioral alterations in SNAP-25 heterozygous 

mice. In particular, SNAP-25 reduction was found to be associated with diffuse network 

hyper-excitability, which does not lead to spontaneous convulsive behavior (Corradini 

et al., 2012). The data are in line with the significantly higher incidence of epilepsy in 

pathologies characterized by SNAP-25 alterations. In particular, the incidence of 

epilepsy is about six times higher in schizophrenic patients than in controls (Chang et al. 

2011) and ADHD children are 3 fold more likely to have epilepsy (Davis et al. 2010), 

also showing higher occurrence of subclinical epileptiform activity (Richer et al. 2002; 

Becker et al. 2004). 
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AIM OF THE PROJECT  
 

 

SNAP-25 is a member of the SNARE protein complex that participates in synaptic 

vesicle exocytosis. Previous studies of our group have demonstrated that SNAP-25, 

which is expressed at high levels in glutamatergic, but not GABAergic terminals of 

hippocampal neurons (Verderio et al., 2004), regulates intracellular calcium dynamics 

by negatively modulating neuronal voltage-gated calcium channels upon SNAP-25 

activity-dependent phosphorylation on Ser187 (Pozzi et al., 2008, Condliffe et al., 

2010). The regulation of the intracellular calcium concentration at the presynaptic level 

is fundamental for neurotransmission. In the last years, evidence are accumulating 

suggesting that SNAP-25 might also play a crucial role at the postsynaptic level. In 

particular it has been shown that SNAP-25 promotes NMDA receptors insertion in the 

postsynaptic membrane via SNARE-dependent exocytosis upon NMDA application 

(Lau et al., 2010), and it is also critical for the synaptic removal of kainate receptors 

(Selak et al., 2009). Moreover, acute down-regulation of SNAP-25 prevents LTP, 

possibly due to defective NMDA receptors trafficking (Jurado et al., 2013). In addition, 

it has been recently shown by our group that SNAP-25 has also a structural role in the 

morphogenesis of dendritic spines, through binding to the postsynaptic protein p140Cap 

(Tomasoni et al., 2013). These data open the possibility that SNAP-25 may play a dual 

role during postsynaptic maturation: one dealing with receptors trafficking and the other 

involved in the structural organization of the dendritic spines, possibly through the 

formation of a synaptic proteins network. 

 

Based on these considerations, the main objectives of this project were: 

 

1) To investigate whether changes in VGCC current densities affect neurotransmission 

in developing hippocampal cultures from SNAP-25 wild-type (wt), heterozygous (het) 

mice and upon acute down-regulation of the protein, through the analysis of 

spontaneous and evoked currents as well as short-term plasticity.  

 

2) To evaluate whether reduced levels of SNAP-25 impact spine formation and 

morphology in vivo, and to assess whether this might result from an impairment in the 



32 
 

stability of fundamental postsynaptic components, which may possibly interact with 

SNAP-25 in a spine complex proteins network. 

 

3) To define whether the occurrence of possible postsynaptic alterations result from 

presynaptic defects caused by the reduction of the protein expression or whether pre and 

postsynaptic defects occur independently one from the other.



33 
 

EXPERIMENTAL PROCEDURES 

 

Animals 

All the experimental procedures followed the guidelines established by the Italian 

Council on Animal Care and were approved by the Italian Government decree No. 

27/2010. All efforts were made to minimize the number of subjects used and their 

suffering. SNAP-25 wild type and SNAP-25 heterozygous male mice (Washbourne et 

al., 2001) were housed in cages with free access to food and water at 22°C and with a 

12-h alternating light/dark cycle. Genotyping was performed by PCR as described in 

Washbourne et al., 2001. 

 

Cell cultures 

Mouse hippocampal or rat hippocampal and cortical neurons were prepared from E18 

fetal SNAP-25 heterozygous (Het) or wild type (wt) littermates C57BL/6 mice as 

described by Banker & Cowan (1977) and Bartlett & Banker (1984) with slight 

modifications. Briefly, hippocampi were dissociated by treatment with trypsin (0.125% 

for 15 min at 37°C), followed by trituration with a polished Pasteur pipette. The 

dissociated cells were plated onto glass coverslips coated with poly-L-lysine at density 

of 400 cells/mm2. The cells were maintained in Neurobasal (Invitrogen, San Diego, CA) 

with B27 supplement and antibiotics, 2mM glutamine, and 12.5µM glutamate (neuronal 

medium). 

HEK293 cells are a kind gift from Dr.ssa G. Pietrini (CNR Institute of Neuroscience, 

Milan, Italy) and were manteined in culture medium (DMEM (Gibco) with antibiotics, 

1% glutamine and 10%FCS). 

 

Mixed cell cultures 

Primary hippocampal GFP-positive neuronal cultures were prepared from the 

hippocampi of E18 fetal C57BL/6 GFP transgenic mice (Okabe et al., 1997), with the 

GFP gene controlled by the actin promoter. To isolate the neuronal type of interest 

among wild type or SNAP-25 heterozygous neurons GFP-positive neurons were co-

cultured with SNAP-25 Het or wt neurons in a ratio of 1 to 10 or 10 to 1.  
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Lentiviral constructs 

A short hairpin RNA construct directed against SNAP-25 was generated by PCR and 

subcloned into a lentiviral vector plasmid (pLKO.1-puro-CMV-tGFPTM, Sigma-Aldrich, 

Israel). As a control, we generated in a similar way a scrambled shRNA sequence. The 

effective and scrambled U6-shRNA expression cassettes were co-expressed with EGFP 

driven by CMV promoter. High titer lentiviral vectors were produced by a transient 

transfection of the third generation transfer, packaging and envelope plasmid set into 

293FT cell line (Invitrogen, Carlsbad, CA, USA), and allowed to express and form viral 

particles for 48h. The medium was collected; the viral particles were purified and 

concentrated by multiple centrifugation steps, dissolved in sterile PBS, aliquoted and 

stored at -80 °C until further use. Viral titer was determined using the FACS analysis. A 

titer higher than 108 TU/ML was used for future experiments. 

 

DNA constructs and expression 

Neuronal cultures were transfected at 17DIV with pEGFP-C1 (Clontech, Palo Alto, CA) 

or pSUPER-DsRed plasmid (obtained from pSUPER-GFP, Oligoengine, Seattle, USA) 

and FU(PSD95:EGFP)W (Minerbi et al., 2009). Silencing of SNAP-25 was achieved 

via transfection of a pSUPER construct (Verderio et al., 2004, Condliffe et al., 2010). A 

nonspecific siRNA duplex of the same nucleotides but in an irregular sequence 

(scrambled SNAP-25 siRNA) was prepared using oligonucleotides 5-

GATCCCCGAGGAGTTATGCGATAGTATTCAAGAGAATGATAGCGTATTGAG

GAGTTTTTGGAAA-3-and5-

AGCTTTTCCAAAAACTCCTCAATACGCTATCATTCTCTTGAATACTATCGCA

TAACTCCTCGGG- 3-that were annealed and ligated into the pSuper vector as 

described previously (Verderio et al., 2004; Condliffe et al., 2010). Botulinum toxin 

type E light chain cDNA is a kind gift from prof. Thierry Galli (ISERM, Paris, France). 

SNAP-25-GFP tagged construct was obtained as in Verderio et al., 2004. 

For LUMIER assay, mouse SRCIN1 was PCR amplified using Phusion Hot Start II 

High-Fidelity DNA Polymerase (Thermo Scientific) and the following primers: 5- 

GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGGGAACGCTCCGTCCCA

AG-3 and 5-

GGGACCACTTTGTACAAGAAAGCTGGGTCGGAAGGAGATGGAAGAATTCCT

TGC-3. The PCR product was inserted into pDONR221 using the BP clonase, 

(Invitrogen), amplified and further shuttled into the LUMIER prey vector (FireV5DM). 
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Human full-length cDNA clones of SNAP-25, PSD-95 and CTTN where available as 

entry clones and shuttled into the respective LUMIER bait (PAReniDM) and prey 

(FireV5DM) vectors. 

 

Real-Time PCR 

Total RNA was extracted using TRI REAGENT (Sigma) according to the 

manufacturer's instructions, including DNase I genomic DNA degradation step. Total 

RNA was reverse-transcribed using high capacity cDNA reverse transcription kit 

(Applied Biosystems). Real-time PCR analysis was performed using the PCR System 

STEP-ONE plus (PE Applied Biosystems, Foster City, CA, USA). Q-PCR reactions 

were carried out in a total volume of 01μL on 01ng of cDNA using the following 

Taqman® assays (Applied Biosystems): synaptosomal-associated protein 25, SNAP-25 

(Mm00456921_m1), glyceraldehyde-3-phosphate dehydrogenase. GAPDH 

(Rn01775763_g1).  The relative mRNA levels were calculated using the comparative 

Ct method, using GAPDH as a normalizer. To test knock-down levels of SNAP25 

mRNA, primary neuronal culture was transduced (MOI 20) with the indicated viral 

vectors at 8 DIV. Transduced cells were selected using puromycin (2g/ml), mRNA 

was extracted and reversed triscribed into cDNA. Relative SNAP-25 expression level 

was determined by Q-PCR. 

 

Mortality assay 

Neuron viability was analyzed by simultaneous fluorescence staining of viable and dead 

cells with  calcein-AM (0.5 mg/ml, Invitrogen, Life Technologies Ltd., Paisley, UK), 

propidium iodide (PI) (1μg/ml, Molecular Probes, Life Technologies Ltd., Paisley, UK) 

and Hoechst (8.1 μM, Molecular Probes, Life Technologies Ltd., Paisley, UK). 

Incubation was performed for 20 min in neuronal medium at 37°c and 5% C02.  

Calcein-AM emits green fluorescence signal in viable cells. Conversely, PI reaches 

nuclei of dead cells only, where emits red fluorescence. Fluorescence images were 

acquired by Leica DMI 4000B microscope. The percentage of neuronal death was 

calculated as the ratio of  PI positive and calcein negative  dead cells relative to the total 

number of Hoechst stained neurons. 
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Immunocytochemical staining 

Neuronal cultures were fixed with 4% paraformaldehyde + 4% sucrose, or with 100% 

cold methanol, depending on the markers. The following antibodies were used: rabbit 

anti-SV2A (1:1000; Synaptic Systems, Goettingen, Germany), guinea pig anti-Bassoon 

(1:300; Synaptic Systems, Goettingen, Germany), guinea pig anti-vGLUT1 (1:1000; 

Synaptic Systems, Goettingen, Germany), mouse anti-PSD95 (1:400; UC Davis/NIH 

NeuroMab Facility, CA), rabbit anti-GFP (1:400; Invitrogen, San Diego, CA), mouse 

anti-beta III tubulin (1:400; Promega corporation, Madison, USA), rabbit anti-tubulin 

(1:80; Sigma-aldrich, Milan, Italy), rabbit anti-MAP2 (Millipore, Billerica, MA, USA), 

mouse anti-SNAP-25 (1:1000; SMI81 Sternberger Monoclonals, Baltimore MD). 

Antibody against the BonT/E cleaved portion of SNAP-25 is a kind gift from O. 

Rossetto (University of Padua, Italy). Secondary antibodies were conjugated with 

Alexa-488, Alexa-555 or Alexa-633 fluorophores (Invitrogen, San Diego, CA).  Images 

were acquired using a Leica SPE confocal microscope equipped with an ACS APO 

63X/1.30 Oil objective. Colocalization of two or three selected markers was measured 

using the boolean function “AND” for the selected channels. The resulting image was 

binarized and used as a colocalization mask to be subtracted to single channels. The 

number of the puncta resulting from colocalization mask subtraction were measured for 

each marker. A colocalization ratio was set as colocalizing puncta / total puncta number. 

 

Immunohystochemical staining 

Experiments were performed on C57BL/6 mice. Animals were anaesthetized with 

chloral hydrate (4%; 1 ml/100 g body weight, i.p.) and perfused with 4% 

paraformaldehyde. The brain was postfixed and coronally cut with a Vibratome in 

50µm thick serial sections. Immunofluorescence staining was carried out on free-

floating sections as described in Frassoni et al., 2005. Free-floating sections were 

processed for rabbit anti-GFP (1:400, Invitrogen, San Diego, CA) followed by 

incubation with secondary antibody Alexa-488 fluorophore (Invitrogen, San Diego, CA) 

and mounted in Fluorsave (Calbiochem, San Diego, CA, USA). Sections were 

examined by means of a Zeiss LSM 510 META confocal microscope (Leica 

Microsystems, Germany). The images were acquired using a 40X oil immersion lens 

(numerical aperture 1.0) with additional electronic zoom factor up to 4. Up to 10 

different neurons were acquired and analysed for each animal. 
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Western blot 

Homogenates from cortices, hippocampi and cerebellum from 8 months old wt and 

heterozygous mice or 3 months old mice injected with virus were analyzed by Western 

blotting using mouse anti-SNAP-25, 1:1000000 (SMI81, Abcam, Cambridge, UK), 

rabbit anti-vGlut1 (1:2000; Synaptic System, Gottingen, Germany), rabbit anti-p140Cap 

(1:4000; kind gift from prof. Paola Defilippi, University of Turin, Italy), rabbit anti-

calnexin 1:2000 (Sigma-Aldrich, St Louis, MO), mouse anti-sintaxin 1A (1:1000, 

Synaptic System, Gottingen, Germany), mouse anti-PSD95 (1:10000; UC Davis/NIH 

NeuroMab Facility, CA), rabbit anti-GFP (1:4000, Invitrogen, San Diego, CA). 

Membranes were washed and incubated for 1 hour at room temperature with the 

secondary antibody IRDye 680-conjugated goat anti-mouse (LI-COR Biosciences, 

Lincoln, NE; diluted 1:10000). Blots were scanned using an Odyssey Infrared Imaging 

System (LI-COR Biosciences). The intensities of immunoreactive bands were measured 

using LI-COR Image Studio, version 2.0 with local background subtracted. For each 

sample, calnexin was used as a loading control. 

 

Co-immunoprecipitation  

Brain tissues were frozen in liquid nitrogen. Proteins were extracted from mice brain 

with lysis buffer (1% Triton X-100, 150mM sodium chloride, 50mM Tris–HCl pH 7.5, 

protease inhibitors (Roche, Basel, Switzerland), 1 mM phenylmethylsulphonyl fluoride, 

1mM Sodium Vanadate, 1mM Sodium Fluoride, 1mM DTT). For Immunoprecipitation 

(IP) assays 5mg of total extract were immunoprecipitated for 2 hours at 4°C with 

specific or unrelated antibodies in presence  of Dynabeads® Protein G (Invitrogen). The 

proteins were resolved by reducing SDS–polyacrylamide gel electrophoresis and 

transferred to nitro- cellulose filters, which were incubated with the indicated antibodies 

and developed with ECL system. The following antibodies were used: PSD-95 (1:4000, 

monoclonal; UC Davis/NIH NeuroMab Facility, CA); SNAP-25 (1:10000, polyclonal, 

Synaptic System, Gottingen, Germany); mouse monoclonal to p140Cap for western blot 

was homemade produced as described in Di Stefano et al., 2007.  

 

LUMIER assay  

The Lumier assay was performed as described previously (Petrakis et al., 2012). 

Briefly, PSD-95, SRCIN1, SNAP-25, CTTN were cloned into the bait PA-Renilla 

luciferase vector and/or into the prey firefly luciferase vector using the gateway 



38 
 

technology (Invitrogen). Vectors were co-transfected into HEK293 cells using jetPEI 

transfection reagent (Polyplus) and 48h after transfection lysed in HEPES-lysis buffer 

(50mM HEPES, 150mM NaCl, 10% glycerin, 1% NP-40, 20mM NaF, 1.5mM MgCl2, 

1mM EDTA, 1mM DTT, 1x Benzonase, 1x Protease Inhibitor Cocktail –EDTA 

(Roche), 1mM PMSF). 384-well high-binding white microplates (Greiner) were coated 

with sheep-gamma globulin (Dianova) and rabbit anti-sheep IgG (Dianova). Bait and 

prey protein expression was confirmed by measuring Renilla and Firefly luciferease 

activity of the crude lysates. Baits were immunoprecipitated from cell extracts via the 

PA-tag and immunoprecipitation and co-immunoprecipitation evaluated by Renilla and 

Firefly activity, respectively. Luciferase activities were determined using the Dual-Glo 

Luciferase Kit (Promega) in a luminescence plate reader (TECAN Infinite M1000). To 

determine background protein binding, bait protein binding to empty prey vectors, as 

well as prey protein binding to empty bait vector were determined as well. 

 

Proximity Ligation Assay  

Proximity Ligation Assay was performed according to the manufactures protocol using 

custom blocking solutions during antibody incubations (Olink, Bioscience). Briefly, rat 

cortical neurons were grown at low density (34000 cells/cm2) on coverslips for 2DIV 

before AraC (5µM, Sigma) was added to inhibit glial growth and enable signal 

quantification per neuronal cell. Cells were grown further till 14-DIV and then fixed 

with 4% PFA, washed with PBS and permeabilized with 0.2% TX-100 in PBS for 2 

minutes. Afterwards, cells were washed with PBS-T (0.05% Tween-20) and blocked 

with 1% BSA PBS-T for 30 min. Primary antibodies were diluted in 1% BSA PBS-T 

and incubated for 60 min at 37°C before the cells were washed three times with PBS-T. 

PLA probes PLUS (anti-rabbit) and MINUS (anti-mouse) were diluted 1:5 in 1% BSA 

PBS-T and incubated for another 60 min at 37°C before the Ligation and Amplification 

Reactions were performed as described in the PLA assay protocol. PLA signals were 

detected using the 20x or 40x objective of a Zeiss Imager Z1 fluorescence microscope 

and quantified using the “find maxima” function of ImageJ. Cell numbers were 

determined from intact DAPI signal and fragmented nuclear signals resulting from 

dying glia cells excluded. To exclude an effect of AraC on protein interactions, PLA 

was performed initially on neuronal culture grown without the addition of AraC (not 

shown). The following antibodies were used for PLA: rabbit anti-PCLO (1:500, 

Synaptic Systems, Goettingen, Germany), mouse anti-PSD-95 (1:500, Synaptic 
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Systems, Goettingen, Germany) and rabbit anti-SNAP-25 (1:100, Synaptic Systems, 

Goettingen, Germany). 

 

Cell culture electrophysiology  

Whole-cell patch-clamp recordings of EPSCs were obtained from 13/14 or 20/21 -old 

neurons using a Multiclamp 700A amplifier (Molecular Devices) and pClamp-10 

software (Axon Instruments, Foster City, CA). Recordings were performed in the 

voltage-clamp mode. Currents were sampled at 5 kHz and filtered at 2-5 kHz. External 

solution [Krebs' Ringer's-HEPES (KRH)] had the following composition (in mM): 125 

NaCl, 5 KCl,1 .2 MgSO4, 1.2 KH2PO4, 2 CaCl2, 6 glucose, and 25 HEPES-NaOH, pH 

7.4. Only cells obtained from wt and het embryos that had resting membrane potentials 

< -50 mV were considered for experiments. Resting membrane potentials were 

measured immediately upon breaking into whole-cell mode by setting the current to 0 

pA. No differences were found between neuronal genotypes. Cells were then voltage-

clamped at a holding potential of -70 mV, unless otherwise noted. Recordings of 

mEPSCs were obtained in presence of Tetrodotoxin (TTX, l µM, Tocris, Bristol, UK) to 

block spontaneous action potentials propagation. Recording pipettes, tip resistances of 

3-5 M were filled with the intracellular solution of the following composition (in mM): 

130 potassium gluconate, 10 KCl, 1  EGTA, 10 Hepes, 2 MgCl2, 4 MgATP, 0.3 Tris-

GTP. Off-line analysis of miniature events was performed by the use of Clampfit- 

pClamp-10 software and events had to exceed a threshold of 10 pA to be taken into 

account. 

For evoked currents, recording pipettes obtained as described above, were filled with 

the intracellular solution of the following composition (in mM): 130 K-gluconate, 10 

KCl,1 EGTA, 10 HEPES, 2 MgCl2, 4 MgATP, and 0.3 Tris-GTP. The inhibitory or 

excitatory nature of the presynaptic neurons was routinely determined at the end of each 

experiment by application of selective receptor blockers (100μM APV+ 20μM CNQX 

or 20μM bicuculline) to unambiguously identify the presynaptic neuronal phenotype. 

Also reversal potential was kept in consideration to identify and distinguish excitatory 

vs inhibitory cells (closed to -50 mV for eIPSCs and + 5mV for eEPSCs). We tested 

synaptic connectivity by applying at least 15 sweeps, each of them separated by 5 sec. 

Paired pulse ratio (PPR=P2/P1) was recorded by applying pairs of action potentials 

separated by inter-stimulus intervals (ISIs) of 50/100/150 ms and presented every 5 sec. 

RRP sizewas evaluated exposing neurons for 4 sec to hypertonic solution containing 4-5 
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M sucrose with a puffer pipette. The ionophore calcimycine (40μM) was applied for 90 

seconds. In siRNA experiments, acute downregulation of SNAP-25 was carried out at 

DIV 10 and measurement of PPR was performed at DIV 14. 

For chemical LTP experiments, recordings of EPSCs were performed using the same 

intracellular solution of miniature events while glycine (100 µM, Sigma-Aldrich, Milan, 

Italy) was applied  for 3 minutes at room temperature in Mg2+-free KRH also containing 

TTX (0.5 µM), bicuculline (to block GABA-A receptors, 20 µM, Tocris, Bristol, UK) 

and strychnine (1 µM, Sigma-Aldrich, Milan, Italy). 

 

Fluorescence recovery after photobleaching (FRAP) 

FRAP experiments were performed by maintaining coverslips in a 37°C heated chamber 

with 5% CO2 in their own growth medium. Live imaging was performed with a 

confocal microscopy Leica SP5 using a HCX PL APO 63X/ 1.4 OIL objective. 

Photobleaching was obtained using a 488nm laser light at 100%. Images were collected 

every 500ms. The region of interest (ROI) placed over the spine was used for both 

photobleaching and fluorescence recovery analysis. Analysis was performed on the first 

40sec of acquisition. Each image at each time point was corrected for the background 

and for the ongoing bleaching and normalized according to this formula:  ((Ft-Fb)/(Fr-

Fb))/ (Fa-Fb), where Ft is the fluorescence of a ROI at time t; Fb is the fluorescence of 

the background; Fr is the fluorescence of the reference ROI at time t and Fa is the 

fluorescence of the ROI immediately before photobleaching. The data obtained were 

fitted with a single exponential using the Leica SP5 software. 

 

Golgi staining 

Mice were deeply anesthetized with avertin (0.2ml/10g body weight, i.p.) and perfused 

transcardially with 0.9% saline solution. The brains were removed and stained by 

modified Golgi-Cox method described by Glaser and Van der Loos (1981). Coronal 

sections of 100µm thickness from the dorsal hippocampus were obtained using a 

vibratome (VT1000S, Leica, Wetzlar, Germany). These sections were collected on 

clean, gelatin-coated microscope slides and treated with ammonium hydroxide for 30 

min, followed by 30 min in Kodak Film Fixer, and finally were rinsed with distilled 

water, dehydrated and mounted with a xylene-based medium.  
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Lentiviral injection 

C57BL6 mice (Janvier labs) were deeply anaesthetized (100 mg/kg Ketamine 

(KETAVET, INTERVET), 10 mg/kg Xilazina (Rompun, BAYER) in physiologic 

solution) and placed on a stereotaxic frame (Kopf). The viral suspension was delivered 

via glass needle attached to a 10μl Hamilton syringe. Bilateral injection (2μl/each) was 

performed in the CA1 area of dorsal hippocampus (coordinates of injection: 

anteroposterior -2.0, lateral ±1.5, dorsoventral -1.1 from dura madre surface) at a rate of 

1μl/min. Coordinates of injection were calculated from the Bregma level according to 

Paxinos and Franklin Mouse Brain Atlas (Paxinos and Franklin, 1997) under 

microscope guide (L-0940SD, INAMI). The needle remained in place for an additional 

5 minutes to facilitate the controlled delivery of the virus. The titer of the SNAP-25-

shRNA virus is 2.3*10^9 tu/ml and for the scramble 5*10^8 tu/ml. Stereotaxic 

injections into the gustatory cortex were performed as described in Elkobi et al., 2008. 

 

CTA learning 

Taste learning paradigms are discussed in details in Gal-Ben-Ari and Rosenblum, 2011. 

Briefly, rats were habituated to get their daily water ratio once a day for 20 min from 

two pipettes, each containing 5 ml of water for three days. On the fourth (conditioning) 

day, they were allowed to drink 0.3% NaCl (Sigma) solution (prepared in tap water-the 

water mice usually drink) instead of water from similar pipettes for 20 min, and 40 min 

later were injected with LiCl (0.14M for strong CTA; 2% b.w).  They were given 20 

min access to water on days 5 and 6. On day 7 (memory test) mice were subjected to a 

multiple choice test situation involving two pipettes with 5 ml each of conditioned taste 

solution (NaCl) and two with 5ml each of water. The mice tested again for one more 

day (Day1).  The behavioral data are expressed in terms of preference- the volume of 

NaCl consumed divided by the total fluid consumed (NaCl/ml water plus ml taste). 

 

Statistical analysis 

Analysis was performed using ImageJ software (NIH, Bethesda, Maryland, USA). 

Statistical analysis was performed using SigmaStat 3.5 (Jandel Scientific), with 

statistical tests used based on initial testing distribution normality. Data are presented as 

mean ± SEM. Differences were considered to be significant if p<0.05 and are indicated 

by an asterisk; those at p<0.01 are indicated by double asterisks; those at p<0.001 are 

indicated by triple asterisks.  
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RESULTS 
 

 

SECTION I:  

REDUCED SNAP-25 LEVELS IMPACT NEUROTRANSMISSION IN 

DEVELOPING HIPPOCAMPAL CULTURES 

 

Spontaneous and evoked synaptic currents in developing excitatory and inhibitory 

neurons  

It has been demonstrated that SNAP-25 negatively modulates voltage-gated calcium 

channels (VGCC) (Pozzi et al., 2008, Condliffe et al., 2010). In a first study, to which I 

contributed, we aimed to investigate whether changes in VGCC current densities affect 

neurotransmission in developing (13-14 days in vitro, DIV) hippocampal cultures from 

SNAP-25 wild-type (wt) and heterozygous (het) mice. As indicated from previous 

studies (Washbourne et al., 2002, Sharma et al., 2011), we found no differences in 

miniature excitatory and inhibitory spontaneous synaptic currents (mEPSC or mIPSC) 

neither in frequency nor in amplitude in het neurons relative to wt (Fig.17 A and B). 

Depolarization of presynaptic glutamatergic or GABAergic cells in synaptically 

connected neurons evoked unitary EPSCs or IPSCs, respectively. Evoked EPSCs were 

significantly larger in het cultures compared to wt. On the contrary, in gabaergic 

neurons a slight, but significant reduction in IPSCs has been observed (Fig. 17C). The 

small reduction in eIPSC amplitude recorded in het neurons could be endorsed to the 

SNARE properties of SNAP-25. Actually, SNAP-25, although being expressed at very 

low levels in most GABAergic terminals, appears to be part of the SNARE complex in 

GABAergic neurons. 
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Fig. 17: A-B) Representative traces of mEPSC and mIPSC in wt and het neurons, followed by the 

analysis of frequency and amplitude. C) Analysis of EPSC and IPSC in wt and het cultures. 

 

Increased glutamatergic transmission depends on an alterated regulation of VGCC 

We analysed various parameters to determine the basis of the enhanced glutamatergic 

transmission. We investigated possible modifications in the synapse number, which did 

not differ between wt and het cultures as revealed by the analysis of the density of the 

puncta positive for SV2A (i.e. SV2A puncta/µm), a vesicular protein presents either in 

excitatory or inhibitory synapses. We could also exclude an imbalance between 

excitatory and inhibitory synapses, because the ratio v-Glut1/v-GAT was the same 

between genotypes (Fig. 18A and B). v-Glut1 is the vesicular transporter of glutamate, 

instead v-GAT is the vesicular transporter of the neurotransmitter GABA, so they 

univocally mark excitatory or inhibitory synapses, respectively. 
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Moreover, enhanced EPSCs amplitude was not due to changes in the readily releasable 

pool of synaptic vesicles, as revealed by hypertonic sucrose application (Fig. 18C). 

When a hypertonic solution is first applied, the quantal release rate jumps rapidly to a 

relatively high level and then declines approximately exponentially to a low, steady 

level. The readily releasable pool is defined as those quanta that are released during the 

transient burst of exocytotic activity following application of hypertonic solution 

(Rosenmund and Stevens, 1996). Both in wt and het cultures there was no difference 

considering the RRP charge. 

Finally, the charge transfer at glutamatergic synapses induced by 40mM calcimycin was 

lower, although not significantly, in het neurons with respect to wt (Fig. 18D). 

Calcimycin is a divalent cation ionophore, allowing ions to cross cell membranes, 

which are usually impermeable to them. It causes calcium dependent exocytosis 

bypassing voltage-gated Ca2+ channels thus allowing a direct evaluation of the efficacy 

of SV fusion machinery downstream of Ca2+ influx into the presynaptic boutons 

(Tokuoka and Goda, 2006). The reduction observed in het cultures suggests a 

requirement of presynaptic calcium channels in the SNAP-25-dependent effects. 
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Fig. 18: A) Representative image of wt and het neurons stained for βIIItubulin (green) and SV2A (red) or 

v-Glut1 (blue) and v-GAT (red). Scale bar: 10µm. B) Quantification of SV2A puncta / µm and the v-

Glut1/v-GAT ratio. C) Sucrose-evoked response and relative RRP charge in wt and het. D) Charge 

transfer in calcimycin experiment. 

 

 

Altered short-term plasticity at SNAP-25 het synapses  

Short-term synaptic plasticity regulates the activity of neural networks and information 

processing in the nervous system and typically reflects a presynaptic change in 

neurotransmitter release (Catterall el al., 2008). The direction of short-term plasticity 

(depression or facilitation) correlates with the initial efficacy with which synapses 

transduce action potentials into neurotransmitter release. Synapses with a high release 

probability are more likely to show depression (called pair-pulse depression, PPD), 

consistent with a depletion of vesicles from the readily releasable pool or an activity-

dependent inhibition of the release machinery. Synapses with an initially low release 

probability do not exhaust their releasable pool of vesicles in response to the first action 

potential, so a lingering effect of the first stimulation can potentiate the response to 

subsequent stimuli (pair pulse facilitation, PPF) (Sippy et al., 2003). Calcium is heavily 

involved in this phenomenon because the source and regulation of the residual Ca2+ 

initiates the process and the effector mechanism responds to residual Ca2+ and enhances 

neurotransmitter release. Paired-pulse ratio (PPR) is the fraction between the entities of 

the response to the second respect to the first stimulus. 

Given that alteration in presynaptic release in het neurons seemed to be ascribed to an 

alteration in calcium channels, we tested short-term plasticity in wt and het neurons. 

Fig. 19 shows PPF occurring in wt, whereas in het the same protocol (two consecutive 
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stimuli delivered with an inter-spike interval of 50ms) resulted in PPD. In contrast, only 

a slight, although significant, reduction in PPR occurred at het inhibitory synapses, 

which were characterized, as their wt counterpart, by prevalence of PPD. 

 

 

Fig. 19: PPR at glutamatergic and gabaergic synapses. 

 

To further confirm that the actual presynaptic reduction of SNAP-25 was responsible 

for the shift from PPF to PPD, paired recordings were carried out from mixed cultures 

of wt hippocampal neurons, from genetically modified mice constitutively expressing 

GFP under the beta-actin promoter (Okabe et al., 1997), and neurons heterozygous for 

SNAP-25, originating from the same strain of mice, but not expressing GFP (Fig. 20A). 

In this set up wt-GFP neurons were plated with het neurons, thus, it is possible to 

stimulate a neuron of one genotype and see the effects on the synaptically-connected 

neuron of the other genotype, isolating the preysinaptic from the postsynaptic 

component (Fig. 20B). 

Recordings revealed that PPR was strongly dependent on the genotype of the 

presynaptic neuron. In particular, wt-GFP presynaptic neurons invariably produced 

facilitating EPSCs, whereas presynaptic het neurons induced depressing glutamatergic 

responses (Fig. 20C). 

 

 

Fig. 20: A) Merged bright field and fluorescence image of a mixed culture (wt-GFP with het neurons). 

Scale bar:10µm. B) Short-term plasticity in pairs where either the presynaptic [2] or the postsynaptic [1] 
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neuron was het for SNAP-25. C) Representative traces and mesurement of PPR when the het neuron is at 

the postsynapse [1] or at the presynapse [2]. 

 

 

Evoked response and paired pulse facilitation are restored in mature cultures 

During in vitro maturation, SNAP-25 levels increase in wt, as known by literature (Bark 

et al., 2004), but also in het cultures. Probably due to this fact, some of the 

electrophysiological alterations we observed disappeared in 21DIV het cultures. 

Consistently, no differences in evoked response (Fig. 21A) and PPR (Fig. 21B) have 

been found in 21 DIV in excitatory and inhibitory synapses.  

 

 

Fig. 21: Evoked response (A) and pair-pulse ratio (B) evaluated in excitatory and inhibitory terminals in 

wt and het cultures at 21DIV. 

 

Interestingly, on the contrary, 21DIV SNAP-25 het networks showed a significant 

reduction in both frequency and amplitude of miniature excitatory postsynaptic current 

(mEPSC) relative to wt age-matched cultures (Fig. 22). These results suggested that 

reduced levels of SNAP-25 might affect synapse function at later stages of 

development. Two processes might therefore take place in neurons developing in the 

presence of reduced SNAP-25 levels, the first occurring at the presynaptic level at early 

developmental stages, when the protein is significantly reduced, and a second 

happening at later stages of maturation and mainly affecting the postsynapse.  
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Fig. 22: Representative traces of mEPSCs from 21DIV wt or het neurons followed by the corresponding 

quantitative analysis of miniature frequency (frequency (Hz) wt=7.23±0.78; het=2.56±0.32; Student t-

test, p= <0.001) and amplitude (Amplitude (pA) wt=37.67±2.3; het=29.61±0.99, cumulative probability; 

Kolmogorov-Smirnov test, p<0.05; number of neurons: wt=17, het=10; 2 independent experiments).   

 

 

Acute down-regulation of SNAP-25 changes paired pulse ratio 

So far, we have demonstrated that reduction of presynaptic SNAP-25 in developing 

cultures leads to an alterated synaptic trasmission, i.e. an increase in evoked response 

and a shift from PPF to PPD. However, we also observed a recovery of normal 

excitatory neurotrasmission and short-term plasticity in mature cultures. We then aimed 

to demonstrate that the effects previously described are effectively dependent from a 

reduction of SNAP-25 at a presynaptic level. 

To address this issue, SNAP-25 has been acutely downregulated by transfection of rat 

hippocampal neurons with a cDNA codifying a small RNA interference sequence 

(Condliffe et al., 2010) (siRNA) (Fig. 23A). This treatment reduces the protein 

expression of about 60% (Grumelli et al., 2010). Dual whole-cell recordings were 

performed from synaptically connected neurons. Results show that acute reduction of 

SNAP-25 in the presynaptic glutamatergic neuron leads to PPD instead of PPF (Fig. 

23B) Importantly, no changes were present when scramble or SNAP-25 siRNA was 

transfected in the postsynaptic neuron (Fig. 23C). Therefore, even acute reductions of 

SNAP-25 in wt presynaptic neurons switch PPF to PPD at glutamatergic synapses. 
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Fig. 23: A) SNAP-25 staining in neurons co-transfected with either SNAP-25 siRNA plus GFP or 

scramble sequence plus GFP. Large arrows point to neurons transfected with either siRNA (top panels) or 

scramble (bottom panels) constructs. Small arrows point to non-transfected neurons. Scale bar: 20µm. B) 
PPR in scramble presynaptic versus SNAP-25 siRNA presynaptic. C) PPR in SNAP-25 siRNA 

postsynaptic versus scramble siRNA postsynaptic. 

 

 

Taken together, these data demonstrate that reductions of SNAP-25 in developing 

neurons (14DIV) alter neurotransmission, and it is a clear presynaptic, SNAP-25-

dependent effect. Moreover, there is a hint that in more mature cultures (21DIV) the 

defect involves the postsynaptic compartment. 

 

 

SECTION II:  

REDUCED SNAP-25 INCREASES PSD-95 MOBILITY AND IMPAIRS 

SPINE MORPHOGENESIS 

 

Acute reduction of SNAP-25 expression in CA1 alters spine morphology 

As extensively described in §3.4 of the Introduction, new roles are emerging for SNAP-

25 in the postsynaptic compartment. I have already mentioned that postsynaptic SNAP-

25 regulates surface NMDAR levels and plays a role in LTP induction in the CA1 
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hippocampal neurons (Jurado et al., 2013). Given that activity-driven changes of 

synaptic efficacy underlying LTP require proper dendritic spine morphogenesis, we 

used a lentiviral approach to induce in vivo silencing of SNAP-25 by expressing short 

hairpin RNA (shRNA) specific for SNAP-25. The construct has EGFP as a marker, and 

as control we expressed scrambled shRNA-EGFP (Fig. 24A). At first, we validated the 

SNAP-25-shRNA lentiviral constructs either in mice primary neuronal cultures by real 

time-PCR analysis (Fig. 24B) or in vivo by evaluating CTA (conditioned taste aversion) 

memory which has been previously demonstrated to be impaired in SNAP-25 het mice 

(Corradini et al., 2012). CTA is a form of associative learning in which an animal 

rejects a food that has been paired previously with a toxic effect (e.g., a sucrose solution 

paired with a malaise-inducing injection of lithium chloride). The indicated vectors 

were injected into the gustatory cortex, which resides within the insular cortex, and the 

rats were tested for CTA memory. Rats injected with scrambled lentiviral vectors 

displayed a normal CTA, while the LV- SNAP-25 shRNA injected rats did not (Fig. 

24C), thus indicating that acute down-regulation of SNAP-25 into the gustatory cortex 

is sufficient to affect CTA and that this shRNA sequence is specific in either mice or 

rats.  

 

Fig. 24: A) Schematic representation of lentiviral constructs. B) Silencing efficiency of SNAP-25 shRNA 

determined by Q-PCR. C) Acute down-regulation of SNAP-25 in the gustatory cortex affects CTA 

memory. Control group (n=4) demonstrate low preference/high avoidance from the conditioned taste 

whereas the shRNA injected group (n=4) show high preference/low avoidance demonstrating an impaired 

CTA memory during two consecutive test days (Test day: wt=6.3±0.05, het=32.8±0.15; p=0.127 T-test. 

Day 1: wt=10.6±0.06, het=34.5±0.11; p=0.087 T-test).   
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Then to evaluate whether SNAP-25 is required for dendritic spine morphogenesis in 

vivo, we injected mice in the CA1 region of the hippocampus. We quantified by 

confocal microscopy the spine morphology of CA1 neurons positive for the fluorescent 

reporter GFP, which allows the unambiguous identification of cells expressing SNAP-

25-shRNA. Mice were perfused 15 days after lentiviral vector injection and the brains 

were sectioned and immunostained for GFP (Fig. 25A low mag image). Spine density 

and morphology were analyzed on secondary and tertiary branches of apical dendrites in 

the stratum radiatum (SR; Fig 25A high mag image). SNAP-25 knockdown caused a 

significant decrease in spine density on CA1 dendrites in LV-shRNA-SNAP-25 neurons 

with respect to the LV-Scramble-SNAP-25 controls (Fig. 25B). Such a decrease was 

accompanied by a significant reduction in the number of mushroom spines and an 

increase in the number of thin spines (Fig. 25C), that suggest a reversal toward a more 

immature phenotype. 

 

 

Fig. 25: A) Representative images of a coronal slice showing the CA1 area of an hippocampus injected 

with the lentiviral vector (low magnification, left) and the secondary branches of apical dendrites of 

scramble and shRNA SNAP-25 treated mice (high magnification, right). Scale bars 20µm, 10µm 

respectively. B) Quantification of spine density in the CA1 field of scramble and shRNA SNAP-25 

treated mice. A reduction in spine densities was found (number of spines per µm: scramble=0.89±0.03; 

shRNA SNAP-25=0.60±0.02; p= <0.001; Student t-test; comparison between animals: scramble: 

0.88±0.04, n=7; shSNAP-25:0.59±0.04, n=6, p<0.001, Student t-test). C) Quantitative analysis of 

mushroom-type and thin filopodia-like spines percentage. Of note, SNAP-25-shRNA neurons show a 

decrease in mature spine number (mushroom-type) which is accompanied by an increase in thin spine 

number (filopodia-like) (percentage of spines: mushroom: scramble=71.9±1.4; shRNA SNAP-

25=53±1.7; p=<0.001, Student t-test. Filopodia: scramble=28.1±1.4; shRNA SNAP-25=47±1.7; p= 

<0.001; Student t-test). Number of examined cells: scramble=38, shRNA SNAP-25= 36. 7 scramble and 6 

shRNA SNAP-25 animals were analyzed and all data are expressed as mean±SEM.  
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To characterize the underlying molecular mechanisms, we decided to investigate a panel 

of synaptic proteins from the LV-shRNA or LV-scramble SNAP-25 injected area. 

Quantitative western blotting analysis carried out on the dorsal hippocampus of LV-

shRNA SNAP-25 mice showed a consistent reduction in the levels of expression of the 

postsynaptic protein PSD-95 along with SNAP-25  whereas no virtual changes occurred 

in vGlut-1 and syntaxin1A (Fig. 26).  

 

 

Fig. 26: Exemplificative western blot of synaptic proteins from the injected LV hippocampal area. Note 

the reduction of SNAP-25 and PSD-95 in SNAP-25-shRNA LV treated versus scramble treated animals. 

No change is evident in syntaxin1A and vGlut1 expression levels.     

 

 

These results indicate that in vivo down-regulation of SNAP-25 directly affects spine 

morphology and PSD-95 expression. 

 

Defective postsynaptic maturation of glutamatergic synapses in SNAP-25 

heterozygous cultures 

The alteration in spine morphology and the consequent reduction of a key postsynaptic 

protein such as PSD-95 prompted us to hypothesize an alteration in the maturation of 

the synapse itself. To investigate if reduced SNAP-25 expression impairs the proper 

maturation of glutamatergic synapses, we used primary hippocampal cultures prepared 

from SNAP-25 heterozygous (het) embryos. In these neurons, a 50% reduction of 
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SNAP-25 levels was detected by quantitative immunocytochemistry in the somato-

dendritic region and around 30% at axonal varicosities (Fig. 27A and B). 

 

 

Fig. 27: A) Representative images of 21 DIV wt and het neurons stained for SNAP-25 (upper panel), 

Map2 and Bsn (lower panel). Scale bar, 10µm (upper panel) and 5µm (lower panel). B) Quantitation of 

SNAP-25 signal has been carried out in the somatodendritic and axonal compartments respectively. The 

histogram shows the reduction of SNAP-25 signal in both compartments (Somatodendritic area: wt 

21DIV= 1±0,069; het 21DIV=0,48±0,022. Mann-Whitney Rank Sum Test, p= <0,001. Axonal 

varicosities: wt 21DIV= 1±0,032; het 21DIV=0,69±0,026. Student t test, p= <0,001. Data represents 

mean±SEM. Number of cell analyzed: 7 wt and 8 het). 

 

 

Immunocytochemical stainings for the synaptic vesicle protein SV2A, for the active 

zone component Bassoon and for the postsynaptic scaffold protein PSD-95 were 

performed at 14 and 21DIV and percentages of colocalization among these proteins 

were quantified. Since the levels of SV2A do not differ between wt and het cultures we 

used this protein as a reference marker (Antonucci et al., 2013; see above). The 

percentage of juxtaposed pre- and postsynaptic terminals relative to the total presynaptic 

sites (SV2A&PSD-95/SV2A), the percentage of synapses showing immunoreactivity 

for the all three markers (SV2A&PSD-95&Bsn/SV2A) and the percentage of mature 

presynaptic terminals (SV2A&Bsn/SV2A) were quantified (Fig. 28A-C). The increase 

in the first two parameters occurring in wt cultures between 14 and 21DIV (Fig. 28B) is 

consistent with the physiological maturation of neuronal cultures and the increasing 

number of synaptic contacts, while the lack of increase in the percentage of 

SV2A&Bsn/SV2A colocalizing puncta is in line with the earlier maturation of 

presynaptic relative to postsynaptic terminals, which is completed already at 14DIV 

(Garner et al., 2006). A similar analysis carried out in het cultures revealed a lack of 

postsynaptic maturation between 14 and 21DIV (Fig. 28C).  
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 Fig. 28: A) Representative images of 14DIV and 21DIV wt cultures stained for the presynaptic markers 

SV2A (red), Bassoon (blue) and the postsynaptic protein PSD-95 (green). Scale bar: 5µm. B-C) 

Quantification of the percentage of colocalizing puncta of juxtaposed pre- and postsynaptic terminals 

relative to the total presynaptic sites (SV2A&PSD-95/SV2A), the percentage of synapses showing 

immunoreactivity for the all three markers (SV2A&PSD-95&Bsn/SV2A) and the percentage of mature 

presynaptic terminals (SV2A&Bsn/SV2A) during development, in wt (B) and het (C) cultures at 14 and 

21 DIV.  Postsynaptic maturation occurs in wt cultures between 14DIV and 21DIV (wt 14DIV= 

SV2A&PSD-95/SV2A: 34.1±3.0; SV2A&PSD-95&Bsn/SV2A: 12.9±1.4; SV2A&Bsn/SV2A: 49±4.0, 

number of fields analyzed: 31; 21DIV= SV2A&PSD-95/SV2A: 58.8±2.7; SV2A&PSD-95&Bsn/SV2A: 

23.4±1.5; SV2A&Bsn/SV2A: 51.4±3.2; number of fields analyzed: 27; Mann-Whitney rank sum test p= 

<0.001; 3 independent experiments). A lack of postsynaptic maturation occurs in het cultures during 

development (het 14DIV= SV2A&PSD-95/SV2A: 28.5±3.0; SV2A&PSD-95&Bsn/SV2A: 13.5±1.8; 

SV2A&Bsn/SV2A: 44.3±4.5, number of fields analyzed: 20; 21DIV= SV2A&PSD-95/SV2A: 32.2±2.7, 

SV2A&PSD-95&Bsn/SV2A: 13.3±2.3; SV2A&Bsn/SV2A: 47.7±6.0, number of fields analyzed: 15; 

Mann-Whitney rank sum test p=0.397, p=0.881, p=0.726 respectively; 3 independent experiments). 

 

In order to exclude the possibility that the alteration of PSD-95 density might result 

from a progressive decline of neuronal viability in culture, cell mortality was 

quantitatively assessed by propidium iodide (PI) and calcein staining. While calcein 

emits green fluorescence signal in viable cells, PI reaches nuclei of dead cells only. 

Quantification of PI-positive/calcein-negative cells relative to the overall nuclei (labeled 

with Hoechst) indicated no difference in the extent of cell death between wt and het 

cultures, at both 14DIV and 21DIV (Fig. 29).  

 

 

Fig. 29: Representative images of 14DIV wt and het cultures stained with propidium iodide (red), calcein 

(green) and Hoechst dye (blue). Propidium iodide positive cells relative to the overall Hoechst positive 

nuclei were counted (normalized data). The histogram shows no difference in the extent of cell death 

between wt and het cultures. (wt 14DIV=1.00±0.12, number of fields analyzed: 44; het 

14DIV=1.22±0.13, number of fields analyzed: 52; p=0.429; wt 21DIV=1.00±0.11, number of fields 

analyzed: 37; het 21DIV=0.84±0.08, number of fields analyzed: 44; Mann-Whitney Rank Sum Test 

p=0.418, 4 independent experiments). Scale bar: 40µm. 
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As already presented, a difference in mEPSC frequency and amplitude occurs in 

primary hippocampal mature cultures (see above), thus confirming that morphological 

and functional postsynaptic defects become evident only at later stages during neuronal 

development. 

We then performed a morphological analysis of dendritic spines also in culture, in wt 

and heterozygous GFP-transfected neurons at 21DIV. The results showed a significant 

reduction in the number of mushroom spines and a parallel increase in the density of 

thin, filopodia-like protrusions (Fig. 30A and B). Concomitantly, a significant reduction 

in the number of PSD-95 puncta per unit length (Fig. 30C and D) and a smaller PSD-95 

cluster size (Fig. 30C and E) were detected in het cultures relative to wt.   

This data indicate that neuronal cultures constitutively developing in the presence of 

reduced protein levels show a defective maturation of the glutamatergic postsynaptic 

compartment, which resembles the spine defect of CA1 interfered neurons.  

 

 

Fig. 30: A) 3D reconstruction of dendritic shaft of neurons from 21DIV wt or het cultures transfected 

with GFP. Scale bar 2µm.  B) Quantification shows a reduction of the number of total protrusions in het 

neurons with respect to wt (number of protrusions per micron, wt=0.58±0.02, number of examined 

dendrites: 83, number of neurons: 37; het=0.43±0.02, number of examined dendrites: 87; number of 

neurons: 45; Mann-Whitney rank sum test p= <0.001; 3 independent experiments). The decrease in 

mature spine number (mushroom-type) is accompanied by an increase in thin spine number  (filopodia-

like) (number of mushroom spines per micron, wt: 0.31±0.02, number of examined dendrites: 63; number 

of neurons: 37; het: 0.16±0.01, number of examined dendrites: 84; number of neurons: 45; number of 

filopodia-like spines per micron, wt: 0.06±0.01; het: 0.11 ±0.01; Mann-Whitney rank sum test p= <0.001; 

3 independent experiments). C) Representative images of 21 DIV wt and het cultures transfected with 

GFP and immunostained for PSD-95 (red). D) Quantification of PSD-95 positive puncta per unit length 

of parent dendrite (µm) (wt= 0.64±0.04, number of examined dendrites: 88, number of neurons: 34; het= 

0.44±0.02, number of examined dendrites: 68, number of neurons: 33; Mann-Whitney rank sum test 

p<0.001; 3 independent experiments). E) Quantification of PSD-95 puncta size reveals a significant 

reduction in het neurons (in µm2, wt=0.101±0.004, number of puncta: 433; number of analyzed neurons: 
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10; het=0.086±0.005, number of puncta: 354, number of analyzed neurons: 7; Mann-Whitney rank sum 

test p=0.003; 3 independent experiments). Data are expressed as mean±SEM. Scale bar 2µm. 

 

As mentioned before, SNAP25 gene has been associated with different psychiatric 

diseases and SNAP-25 levels are lower in the hippocampus and in the frontal lobe of 

patients with schizophrenia (Young et al. 1998; Thompson et al., 1998 and 2003). 

Moreover, a reduction in spine density and morphological alterations in dendritic spines 

of schizophrenic patients has been reported (Penzes et al., 2011; Bennett, 2011). We 

then aimed to assess whether reduction of SNAP-25 impacts spine morphogenesis also 

in brain of het mice. Spine density and length were measured from the second and third 

branches of apical dendrites in the CA1 area of wt and SNAP-25 het mice, using Golgi-

Cox labeling (Glaser and Van der Loos, 1981, Fig. 31A). Indeed, a reduction of spine 

density, accompanied by morphological abnormalities, was observed in the hippocampi 

of adult SNAP-25 het mice (Fig. 31B-C), indicating that genetically reduced SNAP-25 

levels lead to dendritic spines defects also in vivo.  

 

 

Fig. 31: A) Representative images of a coronal slice showing the dorsal hippocampus a wt mice (low 

magnification, left) and of secondary branches of apical dendrites of wt and het mice (high magnification, 

right) stained with the Golgi-Cox method. Scale bars: 100µm, 10µm respectively. B) Quantification of 

spine density and length in the CA1 field of wt and het mice and relatively single-mouse means 

distribution. A significant reduction in spine density accompanied by an increase in spine length was 

evident in heterozygous mice with respect to wt mice (number of spines per micron wt=1±0.02; number 

of examined dendrites: 292; het=0.85±0.01; number of examined dendrites: 259; p= <0.001; spines 

length: wt=1±0.01; number of examined dendrites: 547; het=1.16±0.02; number of examined spines: 446; 
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p= <0.001, Mann-Whitney rank sum test; 6 wt and 5 het mice).C) Mean spine density and length for each 

animal (spine density: wt=1±0.03, het=0.86±0.02; p= 0.004, T-test; spine length: wt=1±0.03, 

het=1.2±0.04; p= 0.001, T-test). All data normalized and expressed as mean±SEM. 

 

 

The postsynaptic defect of SNAP-25 het neurons does not stem from a defective 

presynaptic function  

Since SNAP-25 plays crucial roles in the presynapse, the possibility exists that the 

postsynaptic defects might have resulted from a functional alteration at the presynaptic 

level (see Section I), in turn leading to altered postsynaptic development. To address 

this possibility, we used mixed cultures of het and wt-GFP neurons. Cultures were then 

maintained for three weeks before functional and morphological analysis. We generated 

two complementary experimental conditions. By plating wt-GFP and SNAP-25 het 

neurons in a 1:10 ratio (wt-GFP/het), the formation of networks in which several het 

neurons impinged on a postsynaptic wt-GFP cell (Fig. 32A) was favored. Conversely, 

plating SNAP-25 het and wt-GFP neurons at an opposite ratio (het/wt-GFP), favored the 

formation of networks in which het neurons received most synaptic inputs from wt-GFP 

cells (Fig. 32A’). Given the large excess of presynaptic inputs from het neurons in the 

former setting, it would be reasonable to conclude that postsynaptic alterations in the 

wt-GFP neurons would be the result of defective presynaptic function of SNAP-25 het 

neurons. In contrast, in the latter setting, given the large excess of presynaptic inputs 

from wt neurons, it would be reasonable to conclude that a postsynaptic defect in 

SNAP-25 het neurons would point to a cell-autonomous, postsynaptic failure.  

Interestingly, no difference in PSD-95 density has been detected in wt-GFP neurons 

surrounded by het neurons (Fig. 32B), whereas RFP transfected SNAP-25 het neurons 

receiving synaptic inputs from wt-GFP neurons (het-RFP/wt-GFP) showed a significant 

reduction of PSD-95 puncta density relative to RFP-transfected wt neurons receiving 

from wt-GFP cells (wt-RFP/wt-GFP) (Fig. 32B’).  
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Fig. 32: A-A’) Schematic representation and representative images of the two experimental settings used 

for mixed wt-GFP/het neurons. Scale bar: 20µm. B-B’) Left, representative images of wt-GFP/het mixed 

cultures transfected with GFP or RFP as indicated and stained for PSD-95. Right, analysis of density of 

PSD-95 puncta in wt-GFP/het mixed cultures.  Results show no difference in PSD-95 density in wt 

neurons surrounded by either het or wt neurons (B, PSD-95 puncta per unit length: wt-

GFP/wt=1.00±0.08, number of examined dendrites: 45, number of neurons: 16 ; wt-GFP/het=1.13±0.08, 

number of examined dendrites: 63, number of neurons: 27; Mann-Whitney rank sum test p=0.481 ) 

whereas a significant decrease of the density of PSD-95 puncta is observed in het neurons surrounded by 

either wt or het neurons (B’, PSD-95 puncta per unit length: wt-RFP/wt-GFP=1.00±0.07, number of 

examined dendrites: 9, number of neurons n=4; het-RFP/wt-GFP=0.6±0.07, number of examined 

dendrites: 21, number of neurons: 8; normalized values; Mann-Whitney rank sum test  p= <0.001). Data 

are normalized and expressed as mean±SEM. Scale bar: 2µm. 

 

Consistently, electrophysiological analysis showed that mEPSC frequency (Fig. 33A) 

and amplitude (Fig. 33B) of wt-GFP neurons grown together with a majority of het 

neurons (wt-GFP/het) did not differ with respect to control cultures of wt neurons. 

However, mEPSC frequency and amplitude of het neurons cultured together with a 

majority of wt-GFP neurons (het/wt-GFP) were significantly reduced with respect to 

control cultures.  

 

 

Fig. 33: A) mEPSC recordings of wt-GFP surrounded by het neurons or of het neurons surrounded by wt-

GFP neurons reveal a significant reduction in mEPSC frequency in the latter condition. B) A reduction of 

mEPSC amplitude, is also evident (frequency (Hz) control=6.22±0.67, number of cells: 13; wt-

GFP/het=6.53±0.92, number of cells: 10; het-/wt-GFP=4.14±0.64, number of cells: 9; control vs het/wt-

GFP p= 0.02, wt-GFP/het vs het/wt-GFP  p=0.03, Mann-Whitney rank sum test; amplitude (pA), 

control=19.78±1.01; wt-GFP/het=19.04±1.6; het/wt-GFP=17.01±1.08; control vs het/wt-GFP p= 0.005; 

wt-GFP/het vs het/wt-GFP p=0.005; Kolmogorov Smirnov test; 3 independent experiments). 
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These data fully recapitulate the postsynaptic functional defects of SNAP-25 

heterozygous cultures and rule out the possibility that functional defects in spines are 

secondary to presynaptic alterations. 

 

Lack of plasticity occurring in networks constitutively developing in the presence 

of reduced SNAP-25 levels   

Synaptic plasticity is defective in neurons where the expression of SNAP-25 is acutely 

down regulated (Jurado et al., 2013). We then asked whether neuronal networks 

constitutively developing in the presence of reduced SNAP-25 were able to compensate 

for this failing or display defective plasticity as well and, in the latter case, whether this 

could be univocally ascribed to a postsynaptic failure. Neuronal cultures were subjected 

to a chemical LTP protocol (Lu et al., 2001) consisting of an application of high-dose 

glycine (100µM) for 3 min, which was followed by washout. Glycine acts as a co-

activator of synaptic NMDA receptors, prolonging the opening time of the channel. To 

avoid glycine receptors activation strychnine has been added to all solutions. 

Stimulation with glycine leads to enhancement of NMDAR transmission without 

incurring in LTD phenomenon, as it happens giving extracellular NMDA (Liu et al., 

2013). This protocol permits to study the structural rearrangements occurring during 

synaptic plasticity processes, the so-called activity-driven structural plasticity. To this 

end, we stained for PSD-95, v-Glut1 and βIIItubulin after a 1-hour recovery period. In 

line with previous reports, application of chemical LTP protocol results in a significant 

increase in the size of PSD-95 positive puncta and in a higher extent of colocalization of 

PSD-95 and v-Glut1 staining, in line with a potentiation of synaptic connections 

(Menna et al., 2013).  

Notably, in neurons heterozygous for SNAP-25, this protocol did not induce any 

significant increases in either the size of PSD-95 positive puncta or the colocalization of 

pre and postsynaptic markers (Fig. 34A and B), whereas unmistakable increases were 

observed in wt neurons. 
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Fig. 34: A) Representative images of wt and het cultures before and after performing a chemical LTP 

procedure. Cultures were stained for IIItubulin (red), PSD-95 (green) and v-Glut1 (blue). Scale bar 

depicts 2µm. B) Extent of potentiation is represented by the quantification of the mean size of PSD-95 

positive clusters and by the PSD-95&vGlut1 colocalization area. Potentiation occurs in wt but not het 

cultures (PSD-95 size: wt ctr:1.00±0.05, wt LTP: 1,26±0.04, het ctr: 1.00±0.03, het LTP: 0.99±0.03. 

PSD-95&v-Glut1 size: wt ctr:1.00±0.03, wt LTP: 1,23±0.04, het ctr: 1.00±0.03, het LTP: 1.01±0.03. 

Number of analyzed fields: wt ctr: 46, wt LTP: 50, het ctr: 62, het LTP: 75. Mann-Whitney rank sum test, 

p= <0.001; 3 independent experiments). Data are expressed as mean±SEM; normalized values. 

 

Electrophysiological recordings of mEPSCs also confirmed the lack of potentiation in 

SNAP-25 het cultures. Indeed, while both frequency (Fig. 35A and B) and amplitude 

(Fig. 35A and C) of mEPSCs significantly increased 35 minutes after glycine 

application in SNAP-25 wt neurons, no potentiation occurred in SNAP-25 het neurons 

(Fig. 35A-C).  

Therefore, a clear deficit in the ability of SNAP-25 het neurons to undergo this form of 

LTP is also detectable in neuronal networks chronically developing in the presence of 

reduced SNAP-25. 

 

 

Fig. 35: A) Representative mEPSC traces. Differently from wt, het neurons are unable to undergo LTP.  

B) mEPSC frequency (normalized values): wt pre gly:  1± 0.06 (n=29), wt post 5': 1.4±0.17 (n=20); wt 

post 30': 1.59±0.20 (n=17); wt post 45': 1.73±0.27 (n=10); het pre gly: 1±0.06 (n=15); het post 5': 

1.00±0.13 (n=14); het post 30': 1.11±0.20 (n=10); het post 45': 1.10±0.19 (n=10). wt pre gly vs wt post 5': 

p<0.021, wt pre gly vs wt post 30': p<0.012, wt pre gly vs wt post 45': p<0.014. Mann-Withney rank sum 

test. C) mEPSC amplitude (normalized values): wt pre gly: 1±0.02; wt post 5': 1.03±0.03; wt post 30': 

1.04 ±0.04; wt post 45': 1.15±0.05; het pre gly: 1±0.02; het post 5': 1.02±0.03; het post 30': 0.96±0.04; het 

post 45': 1±0.03. wt pre gly vs wt post 45': p=0.001. Student t-test. n is the number of cells. 4 independent 

experiments. 
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We then tested the ability of wt-GFP neurons cultured together with het neurons (wt-

GFP/het) or het neurons cultured together with wt-GFP neurons (het/wt-GFP) to 

undergo synaptic potentiation. These experiments indicated that wt-GFP neurons 

receiving synaptic inputs from SNAP-25 het neurons (red dots), when subjected to a 

chemical LTP protocol, display potentiation levels similar to their control counterparts 

(black dots). By contrast, SNAP-25 het neurons receiving synapses from wt neurons 

(grey dots) did not exhibit such potentiation (Fig. 36).  

 

       

Fig. 36: mEPSC frequency and amplitude recorded from neurons in mixed cultures experimental settings 

were normalized to values obtained before glycine application. Note that wt-GFP neurons surrounded by 

het neurons undergo LTP, whereas het neurons surrounded by wt-GFP neurons fail to potentiate 

(frequency (Hz) pre-gly: control=0.99±0.09 (n=16), wt-GFP/het=0.96±0.2 (n=5), het/wt-GFP=1.06±0.11 

(n=8); 20±5min: control=1.30±0.1 (n=15), wt-GFP/het=1.19±0.07 (n=3), het/wt-GFP=0.88±0.13 (n=8); 

60±5min: control=1.27±0.1 (n=7), wt-GFP/het=1.18±0.10 (n=2), het/wt-GFP=0.83±0.13 (n=5); n is the 

number of cells; ctr vs ctr 20min: p=0.04, Mann-Withney rank sum test,. Amplitude (pA) pre-gly: 

control=0.99±0.04, wt-GFP/het=0.99±0.07, het/wt-GFP=0.97±0.09; 20±5min: control=1.17±0.06, wt-

GFP/het=1.13±0.10, het/wt-GFP=0.88±0.12; 60±5min: control=1.34±0.08, wt-GFP/het=1.23±0.07, 

het/wt-GFP=0.84±0.09; ctr vs ctr 20min: p=0.03, ctr vs ctr 60min: p=0.2; Mann-Withney rank sum test; 3 

independent experiments). Data are expressed as mean±SEM.  
 

These results indicate that genetic, moderate reductions of SNAP-25 levels impair 

synaptic plasticity and that a cell autonomous, postsynaptic defect is responsible for this 

defect. 

 

PSD-95-dependent spine formation requires postsynaptic SNAP-25 

PSD-95 is a major organizer of the postsynaptic density, playing a crucial role in 

determining spine size and morphology (reviewed in Sheng and Kim, 2011; see §1.4 of 

the Introduction). Our data so far suggest that SNAP-25 reductions may affect the 

localization and/or stabilization of PSD-95 in dendritic protrusions, possibly impacting 

synapse morphology and strength during development and plasticity.  

Consistent with this possibility, we performed, in primary cultures, acute down-

regulation of SNAP-25 expression by a cDNA codifying a siRNA sequence (see above) 

resulting in a significant reduction of PSD-95 area (Fig. 37A and C) which is 
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accompanied by a prominent alteration in the morphology of dendritic spines (Fig. 37A, 

see also Tomasoni et al., 2013). Conversely, overexpression of PSD-95, a procedure 

which results in the marked increase in spine volume and the enlargement of the 

postsynaptic densities (Nikonenko et al., 2008), induced the formation of significantly 

smaller PSD-95 positive puncta in SNAP-25 siRNA-treated neurons relative to 

scramble-transfected neurons (Fig. 37B-C). Therefore, postsynaptic SNAP-25 is 

required for proper PSD-95 accumulation and spine morphogenesis. 

 

 

Fig. 37: A) Representative images of neurons transfected with GFP and a scramble construct or a 

construct silencing SNAP-25 (siRNA), fixed and stained for PSD-95 (red) and relative 3D reconstruction. 

Note the different spine morphology and PSD-95 size in neurons transfected with siRNA in comparison 

to scramble transfected neurons. B) Representative images of neurons transfected with a scramble 

construct or a construct silencing SNAP-25 (siRNA) co-transfected with PSD-95-GFP. C) The histogram 

shows a statistically significant decrease of PSD-95 puncta size in siRNA-, relative to scramble- treated 

neurons, and PSD-95-GFP transfection fails to rescue a normal size of PSD-95 (in µm2, 

scramble=0.17±0.01, number of analyzed puncta: 152, number of analyzed neurons: 21; siRNA SNAP-

25=0.10±0.01,  number of analyzed puncta: 97, number of analyzed neurons: 20; scramble PSD-95-

GFP=0.74±0.02, number of analyzed puncta: 203, number of analyzed neurons: 24; siRNA SNAP-25 

PSD-95-GFP=0.45±0.02, number of analyzed puncta: 296, number of analyzed neurons: 28. Mann-

Whitney rank sum test p= <0.001; 3 independent experiments). Data are expressed as mean±SEM. Scale 

bar: 2µm for A and B. 

 

 

Given the essential role of SNARE proteins in trafficking and fusion of secretory 

organelles we asked whether such a process could play a role during spine formation. 

To investigate this issue, neurons were co-transfected with GFP and a cDNA codifying 

for the botulinum neurotoxin type E (BoNT/E) light chain (LC), which cleaves SNAP-

25 at its N-terminal side and prevents the protein entering in the fusion complex (Keller 

and Neale, 2001). Botulinum toxins (BoNTs) are produced by anaerobic Clostridium 

bacteria and include seven serotypes. BoNTs are composed of a light chain and a heavy 

chain connected via a disulphide bond. The heavy chain contains a receptor-binding 

domain that targets neurons and a membrane translocation domain that relocates the 
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LCs into the cytosol. LCs act as proteases cleaving proteins required for synaptic 

vesicle exocytosis (Peng et al., 2013). 

We decided to transfect neurons with the cDNA for BoNT/E light chain, rather than 

using the toxin itself, because we aimed to define whether the SNARE function of 

dendritic SNAP-25 may play a role during spine formation and PSD-95 accumulation at 

the synaptic level. Treatment of neuronal cultures with BoNT/E would not discriminate 

between the specific dendritic effect at the level of single neuron rather than the 

generalized block of neuronal activity.  First, we validated BoNT/E transfection and the 

specificity of the antibody recognizing the BoNT/E-cleaved SNAP-25 fragment in HEK 

cells co-transfected with a SNAP-25 full length cDNA, because these cells do not 

express the protein constitutively (Fig. 38A). Then, BoNT/E transfected neurons were 

stained with PSD-95 and the BoNT/E-cleaved specific SNAP-25 antibodies, and either 

the density and morphological parameters of dendritic spines were evaluated (Fig. 38B). 

Results show that the spine density and PSD-95 size did not change in BoNT/E 

transfected neurons with respect to controls. These data indicate that the fusion activity 

of SNAP-25 is not required for PSD-95 accumulation and spine morphogenesis and 

suggest that the protein may instead play a scaffolding role at the postsynapse (Fig. 

38C-D, see also Tomasoni et al., 2013). However we cannot exclude the possibility that 

expressed BoNT/E did not completely shear off all the SNAP-25 protein into the cell. 

Residual protein might be indeed important for neuronal health (Peng et al., 2013), 

although the small residual amount is likely not sufficient to maintain the SNARE 

properties of SNAP-25 (Peng et al., 2013). 
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Fig. 38: A) Representative images of HEK cells transfected with SNAP-25-GFP alone or SNAP-25-GFP 

plus a cDNA codifying the light chain of the Botulinum toxin E (BonT/E) and stained with an antibody, 

which specifically recognizes the BonT/E-cleaved SNAP-25 (red), and an antibody that recognizes only 

the full length SNAP-25 (blue). B) Representative images of 21DIV neurons transfected with GFP alone 

(ctr) or with GFP plus a BonT/E cDNA and stained with an antibody which specifically recognize only 

the BonT/E-cleaved SNAP-25 (red). C) Quantification of the size of PSD-95 positive puncta of control or 

BonT/E transfected neurons (in µm2, ctr=0.20±0.01, number of analyzed puncta: 100; 

BonT/E=0.19±0.01, number of analyzed puncta: 93; p=0.244, Mann-Whitney rank sum test). D) 

Quantification of the spine density in ctr and BonT/E transfected neurons (per µm, ctr=0.62±0.03, number 

of analyzed spines: 40,; BonT/E=0.68±0.04, number of analyzed spines: 36; p=0.374, Mann-Whitney 

rank sum test). These results indicate that the fusion activity of SNAP-25 is not required for PSD-95 

accumulation and spine morphogenesis. Number of analyzed neurons: ctr=20; BonT/E=15; 3indipendent 

experiments, all data are expressed as mean±SEM. 

 

 

Since PSD-95 continuously migrates between synaptic and extrasynaptic pools (Bresler 

et al., 2001; Gray et al., 2006), we then reasoned that SNAP-25 could operate at the 

spine by restricting, either directly or indirectly, PSD-95 mobility. We therefore 

measured the dynamics of synaptic PSD-95 upon acute reduction of SNAP-25 

expression by siRNA, using fluorescence recovery after photobleaching (FRAP) 
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analysis. This technique employs irradiation of a fluorophore in a living sample with a 

short laser pulse to degrade it and thereby abolish fluorescence, followed by time-

resolved image recording of the sample. If the protein of interest, which is conjugated to 

the fluorophore, moves through the sample, a recovery of fluorescence can be observed. 

To carry out PSD-95 FRAP experiments, four to five days after transfection, we 

selected spines with similar morphologies in siRNA- or scramble- treated cultures, in 

order to rule out the possibility that differences in PSD-95 mobility might have been 

due to the comparison of mature and immature thin, filopodia-like protrusions which 

were more abundant in the siRNA-treated neurons. PSD-95-GFP bleaching, followed 

by temporal analysis of fluorescence recovery over the next 40 seconds (Fig. 39A), 

revealed a significantly larger mobile fraction of PSD-95 in acutely SNAP25-

downregulated cells compared to scramble control cells (Fig. 39B).  

 

 

Fig. 39: A-B) FRAP measurements of PSD-95-GFP in spines of siRNA-treated or scramble-treated 

neurons. A) Representative images of the same area before photobleaching (Pre-bleaching), at t= 0sec and 

40sec after photobleaching of scramble- and siRNA-treated neurons. Neurons were maintained at 37°C 

during the experiment. B) Left, FRAP curves of PSD-95-GFP in spines over a 40sec period. The curves 

were fit to single exponential equations. Right, histogram showing the increase of mobile fraction of 

PSD-95-GFP in siRNA-treated spines with respect to scramble-treated spines (Scramble=39.72±2.09, 

number of analyzed spines: 58; siRNA SNAP-25=55.81±3.30, number of analyzed spines: 52; Mann-

Whitney rank sum test p= <0.001; 4 independent experiments). Data are normalized and expressed as 

mean±SEM. 

 

These data point out that SNAP-25 affects PSD-95 localization and mobility through a 

mechanism that does not involve its fusion activity, but rather implicates a scaffolding, 

protein-protein interaction role. 

 

SNAP-25 is part of the postsynaptic protein complex with p140Cap and PSD-95  

To assess whether SNAP-25 controls PSD-95 mobility through direct participation to 

the PSD complex, immunoprecipitation of PSD-95 from brain lysates was performed. 

Fig. 40 shows that SNAP-25 and the spine protein p140Cap (Jaworski et al., 2009; 

Tomasoni et al., 2013) were coimmunoprecipitated with PSD-95.  
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Fig. 40: Brain extracts immunoprecipitated with a PSD-95 antibody or an unrelated one, and run on SDS 

PAGE. Western blot was performed with antibodies to p140Cap, PSD-95 and SNAP-25. p140Cap clearly 

coimmunoprecipitates with PSD-95. It is also possible to see a faint band for SNAP-25, this suggests an 

indirect relation. 
 

Proximity Ligation Assay (PLA) has next been performed in rat cultured neurons to 

evaluate an in-situ complex formation. The PLA assay principle relies in the use of 

primary antibodies raised in different species recognizing the target antigen or antigens 

of interest. Species-specific secondary antibodies, called PLA probes, each tagged with 

a unique short DNA strand, bind to the primary antibodies. When the PLA probes are in 

close proximity, the DNA strands can interact through a subsequent addition of two 

other circle-forming DNA oligonucleotides. After joining of the two added 

oligonucleotides by enzymatic ligation, they are amplified via rolling circle 

amplification using a polymerase. After the amplification reaction, several-hundredfold 

replication of the DNA circle has occurs, and labeled complementary oligonucleotide 

probes highlight the product. The resulting high concentration of fluorescence in each 

single-molecule amplification product is easily visible as a distinct bright spot when 

viewed with a fluorescence microscope. This technique is able to recognize proteins 

distant up to 40nm (Sodeberg et al., 2006). 

PLA revealed indeed a significantly higher signal for SNAP-25 and PSD-95 compared 

to PSD-95 and the merely presynaptic protein Piccolo (Fig. 41). This suggests that PSD-

95 and SNAP-25 can be part of the same complex in their natural cellular environment.  
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Fig. 41: Representative images obtained from Proximity Ligation Experiment. Rat neurons where 

incubated with primary antibodies against PSD-95/PCLO or PSD-95/SNAP-25 after which PLA probes 

where added, ligated, amplified and detected with a Cy3 probe. Right, quantification of PLA signals per 

neuron. PLA signals: 21.1±0.9 per nucleus in PSD-95/PCLO stained cells (34 analyzed cells); 88.3±6.3 

per nucleus in PSD-95/SNAP-25 stained cells (32 analyzed cells); p=< 0.0001, unpaired t-test. 
 

To further probe the possible existence of a postsynaptic protein network including 

SNAP-25, we applied a LUminescence-based Mammalian intERactome (LUMIER) 

assay (Barrios-Rodiles et al., 2005; Petrakis et al., 2012) to test the following protein-

protein interactions: SNAP-25 and PSD-95; PSD-95 and p140Cap (SRCIN1); PSD-95 

and cortactin (CTTN). The well characterized protein:protein interaction as Bcl2-BAD 

(Chen et al., 2005) served as a positive controls. The bait protein fused to a protein-A 

tag and linked to a Renilla Luciferase and the prey protein fused to a Firefly Luciferase 

were coexpressed in HEK293 cells for 48h. After cells lysis, protein complex formation 

was assessed by Firefly Luciferase activity of the co-immunoprecipitated prey fusion-

protein (Fig. 42).  

Results indicated that SNAP-25 and PSD-95 were unable to interact directly, whereas 

both p140Cap and cortactin specifically interact with PSD-95 (Fig. 42). Given p140Cap 

interacts with SNAP-25 (Jaworski et al., 2009) and cortactin (Damiano et al., 2012), an 

indirect association between SNAP-25 and PSD-95 potentially mediated by p140Cap 

may occur at the postsynaptic level. 
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Fig. 42: Left, scheme representing the LUMIER co-immunoprecipitation assay. Right, interactions 

between the tested proteins in HEK293 cells as detected by LUMIER assay. The green bar indicates a 

specific interaction, evaluated in term of firefly luciferase activity. Red bars are controls. 

 

 

Together, these data indicate that SNAP-25 is part of the postsynaptic density, where it 

associates with PSD-95, likely through the postsynaptic proteins p140Cap and cortactin, 

and that lowering its expression reduces the immobile fraction of PSD-95 at the spine 

and leads to defects in spine formation and function (Fig. 43).  

 

 

Fig. 43: Left, interaction hypothesis according to LUMIER assay results and literature. Right, our 

proposed model of interaction in the postsynaptic compartment: SNAP-25 and PSD-95 interact likely 

through another protein, such as p140Cap. 
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DISCUSSION 

 

In this study, we have demonstrated that the SNARE protein SNAP-25 may exert a dual 

role during excitatory synapse development. Indeed, at earlier developmental stages it 

plays a crucial role at the presynaptic level by regulating short-term plasticity whereas 

later in development it is required for the proper formation of the postsynaptic 

compartment. These phenomena occur in vitro and in vivo. In particular, by using 

mixed neuronal cultures we have shown that reduced levels of SNAP-25 in the 

presynaptic compartment impair short-term plasticity, whereas reduction of protein 

levels in the postsynaptic compartment leads to a defective maturation of postsynaptic 

specializations, reduced densities of dendritic spines and defective PSD-95 clustering. 

In vivo acute down-regulation of SNAP-25 in CA1 hippocampal neurons affects spine 

number and morphology and causes a specific reduction of the postsynaptic protein 

PSD-95. We also found that SNAP-25, PSD-95 and p140Cap are part of the same 

molecular complex in the brain. 

 

SNAP-25 is a regulator of neurotransmission in developing cultures 

Control of neurotransmitter release is essential for communication in the nervous 

system and for preventing synaptic dysfunctions. Activity-dependent presynaptic 

processes producing various forms of short-term plasticity are believed to control 

several essential neural functions, such as information processing, working memory and 

decision-making (Deng and Klyachko, 2011). 

SNAP-25 is a member of the SNARE protein superfamily that participates in synaptic 

vesicles exocytosis and in negative regulation of voltage gated calcium channels (Pozzi 

et al., 2008, Stein et al., 2009). We found an increased glutamatergic transmission and a 

reduction in the ability to undergo short-term plasticity due to reductions in SNAP‑25 

expression. This defect could have direct consequences for brain function and for the 

progression of neuropsychiatric disorders. Indeed, presynaptic abnormalities were 

described at excitatory hippocampal synapses in a mouse model of Fragile X syndrome, 

leading to defects in short-term plasticity and information processing (El-Idrissi et al., 

2010, Deng et al., 2011). Reduced SNAP-25 levels, leading to abnormal presynaptic 

short-term plasticity at glutamatergic terminals, at least at early developmental stages, 

might therefore contribute to cognitive impairments in intellectual disability syndromes. 
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Moreover, analysis of allele frequencies of two genetic variants in SNAP-25 indicated 

that SNAP-25 might be directly involved in intellectual disability syndromes (Rizzi et 

al., 2012). 

SNAP-25, as other SNAREs, is abundant in neuronal cells but only a few of SNARE 

complexes are reported to be required to drive the fusion of a single synaptic vesicle 

(Mohrmann et al., 2010). One possible explanation of their abundance, as suggested in 

Kochlamazashvili and Haucke, 2013, might be that SNARE proteins, in addition to 

forming trans-SNARE complexes, assemble with other proteins, regulating 

neurotransmission in other ways than the fusion of vesicles. In fact, SNAP-25 can 

negatively modulate Cav2.1-type voltage-gated calcium channels (VGCC) (Pozzi et al., 

2008; Condliffe et al., 2010); notably this effect can be reversed by overexpression of 

synaptotagmin1, which might associate with SNAP‑25 (Catterall and Fee, 2008). 

Conversely, the inhibitory effects of syntaxin1 on Cav2.2 channels can be reversed by 

co-expressing SNAP-25 (Catterall and Fee, 2008). Therefore, it is possible to speculate 

that differential distribution of SNAP‑25 between free, SNARE‑, synaptotagmin1‑ and 

VGCC-bound forms might regulate evoked neurotransmission.  

Our data indicate that the augmented glutamate release is due to the lack of the 

regulation of VGCCs as revealed by recordings on neuronal cultures treated with 

calcimycin that permits calcium-dependent exocytosis bypassing VGCC. One might 

speculate that reduced SNAP‑25 expression in heterozygous animals as well as in 

schizophrenic or ADHD patients would be sufficient to sustain SNARE-mediated 

synaptic vesicle fusion but not to regulate efficiently VGCCs, thus leading to increased 

calcium influx at the presynaptic terminals, facilitated neurotransmission and alteration 

in short-term plasticity. Additional levels of regulation could be enforced by 

developmental switching between alternatively spliced ‘a’ and ‘b’ isoforms of 

SNAP‑25 (Bark et al., 2004), age-dependent alterations in the presynaptic protein 

turnover and post-translational modifications (Kochlamazashvili and Haucke, 2013).  

 

Reduced levels of SNAP-25 in heterozygous cultures affect the maturation of 

postsynaptic terminals and PSD-95 dynamics  

SNAP-25 levels increase during development both in wt (Bark et al., 2004) and in het 

neurons (Antonucci et al., 2013). Our data indeed suggest that a mere 20% reduction of 

protein content is sufficient to induce a change of PPF (Antonucci et al., 2013). The 

reasons of such an increase are not known, one might speculate that this phenomenon is 



71 
 

due to an augmented protein synthesis or a reduction in protein degradation, to 

homeostatically compensate the lack of one producing allele; otherwise, this could be 

due to post-translational mechanisms that improve the rate of mRNA translation. 

Nevertheless, the developmentally regulated increase of SNAP-25 protein content, 

which occurs in het cultures, could be the reason why evoked response and pair pulse 

facilitation are restored in mature cultures. Notably, we have some indications that the 

reduction of SNAP-25 levels in het cultures could not involve the axon termini and the 

somato-dendritic region at the same extent (see Fig. 27 of the Result section) with the 

somato-dendritic regions being more affected. In fact, mature het cultures display a 

reduction in both frequency and amplitude of mEPSCs and are unable to undergo a 

common form of experimentally induced potentiation. Morphologically, het neurons 

revealed a lower density of spines that display also an immature feature. These facts 

unmask an alteration at the postsynaptic terminal, which become evident at a later stage 

of development. We hypothesized a dual effect of a genetic reduction of SNAP-25, 

which leads to a presynaptic defect during early phases of development, at least in 

culture, and turns to be a postsynaptic impairment in more advanced stages of 

development. This hypothesis is confirmed by the analysis of synaptic markers in wt 

and het cultures at 14 or 21 days in vitro. At DIV14, there was no difference between 

the genotypes, but at DIV21 het neurons failed the physiological maturation of synaptic 

contacts, in particular we found a reduction of the postsynaptic protein PSD-95. 

Variations in dendritic spine number and morphology occur both during development 

and in adulthood, allowing the establishment and remodeling of neuronal circuits. Spine 

structural plasticity is tightly coordinated with synaptic function, with spine 

enlargement occurring during long-term potentiation and spine shrinkage during long-

term depression (reviewed in Kasai and Fukuda, 2010).  

Although different models concerning the dynamic aspects of synaptogenesis have been 

proposed, presynaptic differentiation appears to occur slightly faster than postsynaptic 

development (Friedman et al., 2000; Okabe et al., 2001). Cycling of synaptic vesicle 

protein transport vesicles (STVs) at predefined sites along the axon appears to 

selectively attract dendritic filopodia and initiate synapse formation (Sabo et al., 2006). 

Furthermore, although it is clear that vesicular glutamate release is not required  for 

excitatory synapse formation (Craig et al., 1994; Verhage et al., 2000; Varoqueaux et 

al., 2002; Harms and Craig 2005), the number of synapses formed in the absence of 

neurotransmitter release is dramatically decreased (Bouwman et al., 2004),  
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Given that SNAP-25 plays a critical role at the presynaptic terminal during synaptic 

vesicle fusion and considering the possible role of presynaptic function in the 

maturation of the postsynaptic compartment, the postsynaptic effects observed here 

might have been the result of SNAP-25–related alterations in presynaptic release 

(Washbourne et al., 2002). By taking advantage of mixed cultures of wt and het 

neurons, we demonstrated that postsynaptic defects in SNAP-25 het neurons do not 

stem from alterations in the presynaptic terminal, but are instead related to a cell-

autonomous impairment at the postsynaptic compartment. 

 

Genome-wide linkage scan analysis for schizophrenia susceptibility genes suggested the 

chromosomal region 20p12.3-11, containing Snap25, as a candidate region for the 

disease (Lewis et al., 2003) and SNAP-25 levels have been found to be lower in the 

hippocampus  and in the frontal lobe of patients with schizophrenia (Thompson et al., 

1998; Young et al., 1998; Thompson et al., 2003). Notably, a profound reduction in 

spine density on pyramidal neurons in the superior temporal gyrus and in subicular and 

CA3 dendrites has been described in schizophrenic patients (Kolomeets and 

Orlovskaya, 2005; Steen and Mull, 2006; Sweet and Henteleff, 2009; reviewed in 

Penzes et al., 2011). Consistently, heterozygous mice exhibit, at seven postnatal weeks, 

a moderate hyperactivity, which, however, disappears in adult animals, which are 

instead characterized by impairments in associative learning and memory (Corradini et 

al., 2012). Notably, mice injected with viral vector harboring shRNA to SNAP-25 to the 

gustatory cortex demonstrated an impaired taste memory similarly to injected with viral 

vector expressing shRNA to PSD-95 (Elkobi et al., 2008). It has been recently 

demonstrated that acute down-regulation of SNAP-25 leads to an impairment in long-

term potentiation possibly due to altered NMDAR trafficking (Jurado et al., 2013). 

Activity-dependent changes of synaptic strength require not only receptors trafficking, 

but also structural changes at the postsynaptic level that were not addressed by Jurado 

and colleagues. Rescuing the phenotype by using lentiviral vectors encoding the full 

length SNAP-25 would further support the hypothesis. 

During development and synaptic potentiation processes, synapse formation is directed 

by reciprocal signaling between pre- and postsynaptic neurons. Synaptic adhesion 

complexes and secreted factors act as synaptic organizing proteins that stabilize early 

synaptic contacts via recruitment of synaptic vesicles to the presynaptic active zone and 

NMDA receptors to the postsynaptic density. PSD-95 binds NMDA receptors 
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(Niethammer et al., 1996; O’Brien et al., 1998) and also interacts with AMPA receptors 

via TARPs (Chen et al., 2000; Nicoll et al., 2006). PSD-95 appears very early at nascent 

synapses (Friedman et al., 2000; Bresler  et al., 2001) where it clusters NMDA receptors 

(O’Brien et al., 1998; Lee and Sheng, 2000) and controls synaptic AMPA receptors 

number, thus determining synaptic strength (Schnell et al., 2002; Stein et al., 2003; 

Ehrlich et al., 2004). SNAP-25, in particular, has been reported to play a role in the 

removal of kainate receptors from the postsynaptic membrane (Selak et al., 2009) as 

well as in the insertion of NMDA receptors in neuronal plasma membrane (Lau et al, 

2010). However, the molecular mechanism through which SNAP-25 acts in receptor 

trafficking at the postsynaptic terminal is still not known. A possible mechanism 

involves a PKC dependent phosphorylation of SNAP-25 (Lau et al., 2010), another 

possibility may rely on other interacting proteins at the postsynapse. In particular, our 

group has recently reported that SNAP-25 directly interacts with p140Cap at spine level 

and acute down-regulation of p140Cap as well as of SNAP-25 leads to an alteration in 

spine structure (Tomasoni et al., 2013). Here we have shown that acute down-regulation 

of SNAP-25 leads to PSD-95 destabilization, thus suggesting that SNAP-25 may 

cooperate with p140Cap and PSD-95 to regulate spine formation and structural 

plasticity. As a further support to this hypothesis, we found that overexpression of PSD-

95 in the absence of SNAP-25 failed to induce larger spines and PSD-95, p140Cap and 

SNAP-25 co-precipitate in brain homogenates suggesting that they form a synaptic 

protein network. Indeed, we have demonstrated by LUMIER assay that p140Cap is able 

to bind PSD-95, whereas SNAP-25 and PSD-95 do not interact directly. Given SNAP-

25 interacts with p140Cap a possibility emerges that a synaptic protein network 

involving SNAP-25, p140Cap and PSD-95 is localized at the postsynaptic 

compartment. The integrity of this macromolecular complex appears to be fundamental 

for both structural and functional synaptic plasticity. An indisputable role of p140Cap in 

the formation of this protein network would be obtained by co-immunoprecipitation 

experiments from brain homogenates of p140Cap KO and wt mice. It also would be 

interesting to expand the number of protein interactions analyzed with LUMIER assay 

to better characterize the postsynaptic complex where SNAP-25 is located.  

In recent years evidence has accumulated suggesting a role for SNAREs at the 

postsynapse (Ovsepian and Dolly, 2011). Given the essential role of SNAREs in 

trafficking and fusion of vesicles, we have used BONT/E to investigate if the SNARE 

properties of SNAP-25 could play a role during spine formation. Our data indicate that 
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BoNT/E cleavage of SNAP-25, which does not prevent SNAP-25:p140Cap interaction 

(Tomasoni et al., 2013), does not affect PSD-95 clustering and number, thus strongly 

suggesting that it is the protein interaction with p140Cap and not its SNARE activity 

that may account for the spine defect. Although it is not possible to quantify the residual 

full-length protein, it is likely that BoNT/E did not completely eliminate all the SNAP-

25 present in the neuron. This small protein residue, which is not however able to 

sustain SV exocytosis, is important for the health of the neuron. In fact, a recent study 

demonstrate that a complete elimination of SNAP-25 after BoNT/E somministration 

causes neurodegeneration (Peng et al., 2013), a phenotype we did not observe.  

 

These data provide new mechanistic insights as to SNAP-25 involvement in 

synaptopathies that go beyond the protein’s known roles in presynaptic function, 

indicating a protein’s role as a postsynaptic structural hub. Indeed, the activity-driven 

spine remodeling is defective in neuronal networks constitutively developing in the 

presence of reduced levels of SNAP-25, as it might presumably occur in human 

pathologies, such as schizophrenia, where both a reduction of SNAP-25 expression 

(Thompson et al., 2003) and reduction in dendritic spine density (Penzes et al., 2011) 

have been described.    
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Reduced SNAP-25 alters short-term plasticity
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SNAP-25 is a key component of the synaptic-vesicle fusion
machinery, involved in several psychiatric diseases including
schizophrenia and ADHD. SNAP-25 protein expression is lower
in different brain areas of schizophrenic patients and in ADHD
mouse models. How the reduced expression of SNAP-25 alters
the properties of synaptic transmission, leading to a pathological
phenotype, is unknown. We show that, unexpectedly, halved
SNAP-25 levels at 13–14 DIV not only fail to impair synaptic
transmission but instead enhance evoked glutamatergic neuro-
transmission. This effect is possibly dependent on presynaptic
voltage-gated calcium channel activity and is not accompanied by
changes in spontaneous quantal events or in the pool of readily
releasable synaptic vesicles. Notably, synapses of 13–14 DIV
neurons with reduced SNAP-25 expression show paired-pulse
depression as opposed to paired-pulse facilitation occurring
in their wild-type counterparts. This phenotype disappears with
synapse maturation. As alterations in short-term plasticity
represent a new mechanism contributing to cognitive impair-
ments in intellectual disabilities, our data provide mechanistic
clues for neuronal circuit alterations in psychiatric diseases
characterized by reduced expression of SNAP-25.
Keywords: SNAP-25; short-term plasticity; glutamatergic
transmission
EMBO reports advance online publication 4 June 2013; doi:10.1038/embor.2013.75

INTRODUCTION
SNAP-25 (synaptosomal-associated protein of 25 kDa) is a
SNARE protein that participates in the regulation of synaptic-
vesicle (SV) exocytosis [1–3] and negatively modulates voltage-
gated ion channels (VGCCs) [4–7]. Consistently, silencing
endogenous SNAP-25 results in increased VGCC activity in
glutamatergic neurons [8,9].

The SNAP-25 gene has been associated with schizo-
phrenia [10,11], as SNAP-25 protein levels are lower in
hippocampi and frontal lobes of schizophrenic patients [12–14].
Also, case control or family-based studies indicated that the
SNAP-25 gene is associated with attention deficit hyperactivity
disorder [15,11] and, indeed, reduced SNAP-25 expression has
been found to mediate hyperactivity in mice [16,17]. Furthermore,
reduction of SNAP-25 levels is responsible for the massive
neurodegeneration in mice genetically devoid of the SV protein
cystein spring protein alpha [18].

Despite the involvement of reduced SNAP-25 in psychiatric
defects, the underlying cellular mechanisms are at present
unknown. We then investigated whether halved SNAP-25
expression results in altered neurotransmission and plasticity in
neuronal networks. We demonstrate that in developing
hippocampal neurons of SNAP-25 heterozygous mice glutamate
release probability is increased, heavily impacting short-term
plasticity phenomena.

RESULTS AND DISCUSSION
Glutamatergic currents in developing neurons
SNAP-25 modulates VGCC current density in glutamatergic
neurons [8]. To investigate whether the changes in VGCC
current densities in neuronal cell bodies affect neurotrans-
mission, synaptic properties were investigated in SNAP-25þ /þ

and SNAP-25þ /� hippocampal cultures (here in defined as wild
type (wt) and het, respectively) at 13–14 days in vitro (DIV). We
recorded miniature excitatory (mEPSCs) or inhibitory (mIPSCs)
currents (Fig 1A–B), holding neurons at the reversal potential for
GABA (g-aminobutyric acid)- and glutamate-mediated responses
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(–70 andþ 5 mV, respectively) in the presence of 1 mM tetrodo-
toxin. Frequency and amplitudes of both mEPSCs and mIPSCs
were not significantly different in het neurons relative to wt, in line
with previous reports [19,3,18] (mEPSC frequency: 1.41±0.20
versus 1.17±0.16 Hz, wt versus het; mIPSC frequency:
1.30±0.17 versus 1.47±0.24 Hz, wt versus het. mEPSC and
mIPSC amplitude distributions were not significantly different).

Depolarizations of presynaptic glutamatergic or GABAergic
cells in synaptically connected neurons evoked unitary
EPSCs or IPSCs, respectively. Notably, evoked EPSCs were

significantly larger in het cultures as compared with wt
(eEPSCs: 0.26±0.01 versus 0.45±0.04 nA, wt versus het;
Po0.05; Fig 1C,E). Conversely, a slight, although significant,
reduction of evoked IPSC amplitude was recorded in het neurons
relative to wt (0.52±0.03 versus 0.36±0.03 nA, wt versus het,
Po0.05; Fig 1D,E).

Glutamate-receptor sensitivity was not affected by reduced
SNAP-25, as indicated by unaltered mEPSC amplitudes (Fig 1A)
and by similar intracellular Ca2þ transients in response
to 30mM AMPA (a-amino-3-hydroxy-5-methyl-4-isoxazolepropio-
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Fig 1 | Enhanced evoked glutamatergic transmission in het cultures at 14 div. (A–B) Traces of mEPSCs and mIPSCs from wt or het neurons followed

by the analysis of frequency and amplitude ((A) frequency, t-test, P¼ 0.399; N¼ 4; amplitude: KS-test not significant; (B) frequency, t-test, P¼ 0.49,

N¼ 4; amplitude: KS-test not significant). (C–D) Traces of eEPSCs (C) and eIPSC (D) from wt or het neurons. (E) Analysis of eEPSCs: wt (n¼ 10)

versus het (n¼ 10), t-test, Po0.01, N¼ 4; eIPSCs: wt (n¼ 13) versus het (n¼ 8), t-test, Po0.01, N¼ 3). Error bars indicate s.e.m. KS-test,

Kolmogorov–Smirnov test; wt, wild type. **Po0.01.
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nic acid) or 100 mM NMDA (N-methyl-D-aspartic acid)
stimulation (AMPA: wt¼ 1±0.066, het¼ 0.899±0.078; NMDA:
wt¼ 1±0.039, het¼ 0.919±0.046, normalized value; Fig 2A).
Conversely, stimulation with 30 mM KCl induced a higher Ca2þ

response in het neurons compared with wt (normalized het
F340/380: 1.2±0.06, Po0.05).

Increased glutamatergic neurotransmission in het neurons did not
result from a higher number of synaptic contacts, as indicated
by the comparable density of excitatory or inhibitory synapses
formed along dendrites (SV2 puncta/20mm: wt¼ 8.20±0.66;
het¼ 7.96±0.82; % of SV2; vGAT/vGlut puncta: wt¼ 0.68±

0.14, het¼ 0.70±0.10; Fig 2B–D). Moreover, enhanced EPSC
amplitudes were not owing to changes of the readily releasable
pool of SVs, as revealed by hypertonic sucrose applications,
inducing Ca2þ -independent release [20] (charge transfer,
wt¼ 1.59±0.23 nC; het¼ 1.71±0.23 nC, Fig 2E). Finally, the
charge transfer at glutamatergic synapses induced by 40 mM
calcimycin, which causes calcium-dependent exocytosis bypass-
ing activation of VGCCs [21], was lower, although not
significantly, in het neurons with respect to wt (wt¼ 0.29±

0.38 nC, het¼ 0.22±0.57 nC, Fig 2F), suggesting a requirement of
presynaptic calcium channels in the SNAP-25-dependent effects.

The observation that reductions of SNAP-25 levels do not
significantly affect neurotransmission in inhibitory neurons (see
also Sharma et al [18]) is in line with the finding that het excitatory,
but not inhibitory, neurons show enhanced voltage-gated calcium

currents [8]. The small reduction in eIPSC amplitude recorded in
het neurons could be ascribed to the SNARE properties of
SNAP-25. Indeed SNAP-25, although being expressed at very
low levels in most GABAergic terminals in situ [22–25], appears to
be part of the GABAergic SNARE complex [26,27].

Short-term plasticity at SNAP25þ /� synapses
A simple form of short-term synaptic plasticity associated to
presynaptic release properties is the paired-pulse ratio (PPR) of
two consecutive synaptic responses. Paired-pulse facilitation (PPF)
occurs at low-probability synapses, requiring accumulation of
intra-terminal Ca2þ to reliably induce SV fusion. Conversely,
paired-pulse depression (PPD) results from a prompt depletion of
the readily releasable pool of transmitter at high-probability
synapses. Both PPF and PPD rely on Ca2þ -dependent mechan-
isms triggering fusion of docked SVs [5] and indeed neurons might
change use-dependent plasticity depending on extracellular
calcium concentration, presynaptic calcium accumulations and
expression of calcium-binding proteins [28–30].

At 13–14 DIV, when excitatory synapses in wt cultures were
stimulated by two consecutive stimuli delivered with an inter-spike
interval of 50 ms, PPF prevailed. Conversely, in neurons obtained
from het mice, identical protocols induced PPD of EPSCs
(PPR: 1.14±0.04 versus 0.68±0.03, wt versus het; Fig 3A,C).
Notably, a similar reduction in PPR was obtained in wt
glutamatergic neurons following elevation of extracellular calcium
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concentration to 4 mM (PPR: wt, 4 mM Ca2þ ¼ 0.82±0.021;
N¼ 3 independent experiments; one-way analysis of variance
Kruskal–Wallis one-way analysis of variance on Ranks, Po0.01).
In contrast, only a slight, although significant, reduction in PPR
occurred at het inhibitory synapses, which were characterized, as
their wt counterpart, by prevalence of PPD (wt¼ 0.54±0.025,
het¼ 0.46±0.017, Fig 3B,C). Plotting PPRs as a function of inter-
stimulus interval showed that the inter-spike interval of 50 ms is the
most effective in inducing PPD (PPR ISI 100: wt¼ 1.30±0.16,
het¼ 0.96±0.02; PPR ISI 150: wt¼ 1.46±0.25, het¼ 0.95±0.08,
N¼ 2 independent experiments; Fig 3D).

In acute hippocampal slices from adult wt or het mice, 10 EPSCs
at 30 Hz evoked in CA1 pyramidal neurons by Schaffer-collateral
stimulation revealed the absence of a shift from PPF to PPD.
However, at 30 Hz EPSCs facilitated significantly less in het
neurons (area of normalized EPSC amplitudes versus stimulus
number: 14.6±0.7 and 12.6±0.6 wt and SNAP-25þ /� ,

respectively; supplementary Fig 1 online), going in the same
direction of cultured hippocampal neurons.

As a further confirmation that presynaptic reduction of
SNAP-25 is responsible for the shift from PPF to PPD, paired
recordings carried out from mixed cultures of het and wt
green fluorescent protein (GFP) neurons (Fig 3E) revealed that
the direction of PPR depended on the genotype of presynaptic
neurons (Fig 3E-G). Indeed, wt (GFPþ ) presynaptic neurons
invariably produced facilitating EPSCs, whereas presynaptic
het neurons induced depressing glutamatergic responses
(Fig 3F(1),(2), respectively; (pre)-wt-GFP-positive¼ 1.44±0.2;
(pre)-het¼ 0.85±0.2; Fig 3G).

SNAP-25 expression increases in wt [31] and in SNAP-25 het
cultures during maturation in vitro (Fig 3H). Notably, at 21
DIV, when SNAP-25 expression was significantly increased,
differences in evoked responses (eEPSC and eIPSC) and in short-
term plasticity disappeared (eEPSC (nA): wt¼ 0.360±0.023,
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het¼ 0.266±0.0157; PPR in EPSCs: wt¼ 1.10±0.06, het¼
0.97±0.03; PPR of IPSCs: wt¼ 0.70±0.02; het¼ 0.62±0.01,
Fig 3I–J). Accordingly, depolarization-induced Ca2þ responses in
het neurons were comparable to those of wt neurons (DF340/380:
wt¼ 1±0.041, het¼ 1.012±0.042, Fig 3K, compare with
Fig 2A), indicating that neurotransmission and short-term plasticity
defects can be fully recovered in parallel with increases in protein
expression. The milder phenotype observed in het hippocampal
slices, as compared with cultured neurons, might be owing
therefore to upregulation of protein expression, which occurs also
in vivo during postnatal development [32].

Notably, the recovery of the presynaptic altered phenotype in
het neurons at 21 DIV is associated with the development of
postsynaptic defects as indicated by the significantly lower
amplitude of eEPSCs at 21 DIV (Fig 3I), which is accompanied
by reduced PSD-95 density and altered spine maturation (Fossati
et al, unpublished work). Two processes might therefore take
place in neurons developing in the presence of reduced SNAP-25

levels, the first occurring at the presynaptic level at early
developmental stages, when the protein is substantially reduced,
and a second occurring at later stages of maturation and mainly
impacting the postsynapse. Notably, het mice, at the age of 7
weeks, show motor hyperactivity, a phenotype that is rescued in
the adult animal [32], while adult SNAP-25 heterozygous mice
seem defective in different forms of associative learning [32].

Downregulation of SNAP-25 changes PPR
Recovery of normal excitatory neurotransmission and short-term
plasticity on SNAP-25 developmental increase prompted us to
provide a direct demonstration that the switch from PPF to PPD is
a direct consequence of SNAP-25 reduction at the presynaptic
level. Acute protein downregulation by double-stranded small
interfering RNA oligonucleotides (siRNAs) was carried out and
dual whole-cell recordings were performed from connected
neurons. siRNA, but not scramble oligonucleotide, application
reduced SNAP-25 levels, leaving B40% residual (Fig 4A and
Grumelli et al [33]). Notably, acute reduction of SNAP-25 by
siRNAs in the presynaptic glutamatergic neuron reduced PPR
(scramble siRNA, presynaptic¼ 1.28±0.13, Fig 4B (2), SNAP-25
siRNA, presynaptic¼ 0.79±0.12, Fig 4B (1), untreated control¼
1.11±0.069, Fig 4B,D). Importantly, no reductions were present
when scramble or SNAP-25 siRNA was transfected in the post-
synaptic neuron (scramble siRNA, postsynaptic¼ 1.508±0.29,
SNAP-25 siRNA, postsynaptic¼ 1.57±0.21, Fig 4C,E). Therefore,
even acute reductions of SNAP-25 in wt presynaptic neurons
switch PPF to PPD at glutamatergic synapses.

To directly assess whether varied levels of SNAP-25 expression
correlate with different PPR ratio, we used three different siRNA
oligonucleotides to achieve controlled SNAP-25 downregulation
(Fig 4F,G). Different concentrations of oligonucleotides were
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transfected in rat hippocampal neurons at DIV 10 and the extent of
protein reduction was assessed by quantitative western blotting,
after electrophysiological recording at DIV 14. A correlation
between PPR values and levels of residual SNAP-25 was present,
with 20–25% reductions of SNAP-25 being sufficient to shift PPF
to PPD (Fig 4H).

CONCLUSIONS
Activity-dependent presynaptic processes producing various forms
of short-term plasticity are believed to control several essential
neural functions, such as information processing, working memory
and decision making. Presynaptic abnormalities were reported at
excitatory hippocampal synapses in a mouse model of Fragile X
syndrome, leading to defects in short-term plasticity and information
processing [34,35]. These changes were associated with
exaggerated calcium influx in presynaptic neurons during high-
frequency stimulation [34]. Reduced SNAP-25 levels, leading to
abnormal presynaptic short-term plasticity at glutamatergic
terminals, at least during early developmental stages, might
therefore contribute to cognitive impairments in intellectual
disability syndromes. Interestingly, analysis of allele frequencies of
two genetic variants in SNAP-25 indicated that SNAP-25 might be
directly involved in intellectual disability syndromes [36].

METHODS
Animals. All the experimental procedures followed the guidelines
established by the Italian Council on Animal Care and
were approved by the Italian Government decree No. 27/2010
(supplementary Information online).
Cell cultures. Hippocampal neurons were established from E18
fetal het or wt littermates C57BL/6 mice or from E18 fetal rats as
described by Bartlett [37] with slight modifications (supplementary
Information online). Primary hippocampal GFP-positive neuronal
cultures were prepared from the hippocampi of C57BL/6 GFP
transgenic mice at embryonic day 18.
Acute downregulation of SNAP-25 expression. Silencing of
SNAP-25 was achieved via transfection of a pSUPER
construct [8,25]. A nonspecific siRNA duplex of the same
nucleotides but in an irregular sequence (scrambled iSNAP-25
siRNA) was prepared (supplementary Information online).
In a different set of experiments, three different double-stranded
siRNA oligonucleotides were used to achieve controlled
SNAP-25 downregulation.
Immunocytochemical staining. Immunofluorescence staining
was carried out using the following antibodies: rabbit anti-SV2A,
rabbit anti-vGAT guinea pig anti-vGLUT1, mouse anti-SNAP-25,
mouse anti-bIIItubulin. Secondary antibodies were conjugated
with Alexa-488, Alexa-555 or Alexa-633 fluorophores.
Quantitative western blotting. Homogenates from hippocampal
cultures were separated by electrophoresis, blotted on nitro-
cellulose membrane and analysed by western blot by using
monoclonal antibodies against SNAP-25 and beta-III-tubulin.
Membranes were washed and incubated for 1 h at room
temperature with the secondary antibody IRDye 680-conjugated
goat anti-mouse (1:10,000). Blots were scanned using an Odyssey
Infrared Imaging System (LI-COR Biosciences).
Calcium imaging. Hippocampal cultures of 13 or 21 DIV were
loaded with 5 mM Fura-2 pentacetoxymethylester in KRH for
45 min at 37 1C, washed in the same solution and transferred to the

recording chamber of an inverted microscope (Axiovert 100; Zeiss,
Oberkochen, Germany) equipped with a calcium imaging unit.
After a period for baseline acquisition, neurons were stimulated
with different drugs (supplementary Information online).
Cell culture electrophysiology. Whole-cell patch-clamp record-
ings of EPSCs and IPSCs were obtained from 13–14-day-old
neurons using a Multiclamp 700A amplifier (Molecular Devices)
and pClamp-10 software (Axon Instruments, Foster City, CA).
Currents were sampled at 5 kHz and filtered at 2–5 kHz. mEPSCs
or mIPSCs were recorded in presence of tetrodotoxin (lmM).
Evoked currents were recorded in isolated pairs of neurons in
low-density cultures. Neurons were held at � 70 mV, and eEPSC
or eIPSC evoked by a 100-mV depolarization pulse in the
presynaptic cell lasting 1 ms. Readily releasable pool size was
evaluated exposing neurons for 4 s to hypertonic solution
of sucrose. The ionophore calcimycine was applied for 90 s.

Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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Actin-based remodelling underlies spine structural

changes occurring during synaptic plasticity, the process

that constantly reshapes the circuitry of the adult brain in

response to external stimuli, leading to learning and

memory formation. A positive correlation exists between

spine shape and synaptic strength and, consistently,

abnormalities in spine number and morphology have

been described in a number of neurological disorders.

In the present study, we demonstrate that the actin-

regulating protein, Eps8, is recruited to the spine head

during chemically induced long-term potentiation in

culture and that inhibition of its actin-capping activity

impairs spine enlargement and plasticity. Accordingly,

mice lacking Eps8 display immature spines, which are

unable to undergo potentiation, and are impaired in

cognitive functions. Additionally, we found that reduction

in the levels of Eps8 occurs in brains of patients affected by

autism compared to controls. Our data reveal the key role

of Eps8 actin-capping activity in spine morphogenesis and

plasticity and indicate that reductions in actin-capping

proteins may characterize forms of intellectual disabilities

associated with spine defects.

The EMBO Journal advance online publication, 17 May 2013;

doi:10.1038/emboj.2013.107
Subject Categories: cell & tissue architecture; neuroscience
Keywords: actin-capping activity; activity-dependent

plasticity; Eps8; learning and memory defects; spine

morphogenesis

Introduction

The establishment of synaptic contacts between appropriate

neurons is the basis for the formation of neural networks.

Filopodia are thought to play an active role in synaptogen-

esis, guiding the co-ordinated growth of pre- and postsynaptic

partners and functioning as initial bridges between neurons

(Dailey and Smith, 1996; Ziv and Smith, 1996; Fiala et al,

1998; Dunaevsky et al, 1999; Okabe et al, 2001; Evers et al,

2006). Subsequently, through the actions of synapse-inducing

factors and neuronal activity, filopodia switch to more stable

structures, the dendritic spines, which gradually gain a

typical mushroom-like structure with a prominent head and

a thin neck, and ultimately become the dominant forms in

adults (Harris et al, 1992; Fiala et al, 1998; Jontes and Smith,

2000; Bhatt et al, 2009; Hotulainen et al, 2009; Hotulainen

and Hoogenraad, 2010). This process is associated with the

assembly of pre- and postsynaptic components (Craig et al,

2006; Arikkath and Reichardt, 2008; Yoshihara et al, 2009;

Hotulainen and Hoogenraad, 2010). There is a positive

correlation between spine shape and dimensions and

synaptic strength (Yuste and Bonhoeffer, 2001; Kasai et al,

2003); also, abnormalities in spine number and morphology

have been observed in a number of neurological disorders

(van Spronsen and Hoogenraad, 2010), thus linking spine

morphogenesis with plasticity processes eventually leading to

memory formation. Consistently, spine abnormalities and

excessive synaptic growth have been reported in subjects

with autism (Hutsler and Zhang, 2010; Toro et al, 2010;

Penzes et al, 2011).

The process of spinogenesis is controlled by actin, which,

besides providing the structural basis for spine formation and

elimination, also regulates spine shape (Matus, 2000;

Cingolani and Goda, 2008). During development and

plasticity, the stabilization of filopodia to form new synaptic

contacts is based on a rapid and persistent reorganization of

the spine actin cytoskeleton (Luscher et al, 2000; Jourdain

et al, 2003; Nikonenko et al, 2003; Honkura et al, 2008). This

mainly consists of a reduced depolymerization rate from the

pointed end of the filament at the core of the spine, with

polymerization continuing at the barbed end in the spine

periphery (Fukazawa et al, 2003; Okamoto et al, 2004;

Ramachandran and Frey, 2009).

It has been proposed recently that spine formation

and enlargement of spine heads may rely on actin remodel-

ling processes similar to those occurring in lamellipodia

(Hotulainen and Hoogenraad, 2010). The latter process
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mainly involves the activity of the branched actin filament

nucleator Arp2/3 complex, working in concert with actin-

capping proteins. These latter proteins, by binding to the

barbed ends of densely packed, plasma membrane-localized

actin filaments, control not only their lifetime but also the

architecture of the resulting meshwork (Akin and Mullins,

2008). Indeed, when capping activity is high, newly

nucleated branched filaments become rapidly capped; this

also causes a local increase in the concentration of available

actin monomers, which further feeds Arp2/3 nucleation/

branching activity, ultimately promoting the generation of a

dense and highly branched dendritic array of short actin

filaments. Conversely, when capping activity is low, local

monomer availability is reduced, as G-actin becomes

incorporated into long and uncapped actin filaments

(Mogilner and Rubinstein, 2005; Akin and Mullins, 2008;

Korobova and Svitkina, 2008).

In support of this possibility, a branched actin filament

network is detectable in the distal regions of the spine head

(Korobova and Svitkina, 2010); furthermore, the Arp2/3

complex is concentrated within spines (Racz and Weinberg,

2008), where it appears to be an important molecular signal

for regulating spine size and synaptic plasticity (Wegner et al,

2008; Nakamura et al, 2011). Platinum replica electron

microscopy analysis has revealed that spine heads also

contain large amounts of capping proteins (Korobova and

Svitkina, 2010). Also, the actin-capping protein CP has been

found to be essential for spine development (Fan et al, 2011).

However, since CP forms a complex with other proteins, such

as twinfilin (Falck et al, 2004), and also mediates membrane

attachment of actin (Amatruda et al, 1992; Schafer et al,

1992), the direct demonstration that the actin-capping

activity is, in fact, a crucial function required for spine

formation is still missing.

Eps8 is a multimodular protein involved in actin remodel-

ling through several activities, including regulation of Rac, a

pivotal GTPase involved in the control of actin dynamics and

direct interaction with actin. Through the latter property, in

particular, Eps8 exerts both actin barbed end capping and

actin bundling activities (Disanza et al, 2004, 2006). Eps8 is

reported to be expressed at elevated levels in a range of

human malignancies (Welsch et al, 2010; Abdel-Rahman et al,

2012), while loss of Eps8 causes intestinal defects and

improved metabolic status in mice (Tocchetti et al, 2010).

Notably, Eps8 plays a unique and nonredundant role in the

polarized migration of dendritic cells. Consequently, Eps8 KO

dendritic cells are delayed in reaching the draining lymph

node after inflammatory challenge and Eps8 KO mice are

unable to mount a contact hypersensitivity response (Frittoli

et al, 2011). In brain, Eps8 has been localized postsynaptically

in the dendritic articulations of cerebellar granule neurons

(Offenhäuser et al, 2006; Sekerková et al, 2007) and in axons

of cultured hippocampal neurons, where it controls filopodia

formation (Menna et al, 2009). Here we show that the actin-

capping protein, Eps8, is recruited to the spine head during

chemically induced LTP and that inhibition of its capping

activity impairs spine enlargement and plasticity.

Accordingly, mice lacking Eps8 display immature spines,

are impaired in cognitive function and show an abnormal

EEG profile characterized by spike activity. Finally, we show

that reduced levels of Eps8 are present in the brain of patients

affected by autism.

Results

Eps8 knockout (Eps8 KO) mice are impaired in learning

and memory

Eps8 KO mice were subjected to a series of behavioural tests

to evaluate learning and memory.

Radial maze performance, in terms of mean total number of

errors, days to reach the criterion and percentage of animals

that reached the criterion over 30 days, is shown in Figure 1A.

Eps8 KO mice exhibited a worse performance, in compar-

ison with the wild-type (wt) group, as indicated by the higher

number of errors and by the calculated area under the curve

(AUC), which revealed a significant increase of this para-

meter. Consistently, Eps8 KO mice needed significantly more

days than controls to reach the criterion (Figure 1A, right).

In the T-maze task, wt mice performed statistically better

during acquisition compared to Eps8 KO mice (Figure 1B,

left). Conversely, no significant difference was detected in the

reversal phase (Figure 1B, right).

When tested for novel object recognition (Figure 1C), no

significant difference was detected in the amount of time that

the mice spent exploring the two objects during the familiar-

ization (T1) phase, indicating that both genotypes had the

same motivation to explore the object. However, during T2

(novel object recognition phase), Eps8 KO mice spent sig-

nificantly less time exploring the novel object compared to

the familiar one, as shown by a significant decrease in the

discrimination index (Figure 1C). This was not due to altered

sensorial parameters, as all mice appeared healthy, displaying

normal motor activity and sensory abilities (Supplementary

Table 1). Long-term memory was altered in Eps8 KO mice, as

shown by the significant reduction of the mean value of step

through latency compared to wt mice in the passive avoid-

ance task (Figure 1D).

Furthermore, when tested for sociability, differently from

wt mice, which spent longer time to explore the compartment

with the stranger mouse than the empty cage, Eps8 KO mice

were significantly less social and spent the same amount of

time in the two compartments (Figure 1E).

Finally, 2-h cortical EEG recordings revealed that Eps8 KO

mice displayed frequent spikes of high amplitude (Figure 1F),

which, however, did not lead to spontaneous seizures, either

spontaneously or even after mice handling. The mean num-

ber and the mean amplitude of spikes were significantly

higher than in wt mice (Figure 1F).

These data indicate that Eps8 KO mice show defects in

learning and memory, social behaviour and EEG.

No alterations of the gross anatomy were observed in the

brain of Eps8 KO mice. Indeed, the cortex, hippocampus and

cerebellum displayed normal architecture and all layers were

preserved (Supplementary Figure 1A–L). Therefore, exclud-

ing developmental defects (e.g., cortical displacement of

neurons, lamination defects), no compensatory elevation of

Eps8L family members has ever been detected in different

tissues of Eps8-null mice (Frittoli et al, 2011; Zampini et al,

2011) and, accordingly, was not detected in the hippocampus

(Supplementary Figure 1M).

Excessive synaptic growth and abnormal spine

morphology in the hippocampus of Eps8 KO mice

We have previously shown that Eps8 controls filopodia

formation during neuronal development and that the lack

Eps8 controls synaptic plasticity
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Figure 1 Eps8 KO mice are impaired in learning and sociability. (A and B) Eps8 KO mice are impaired in spatial learning. (A) Eight-arm radial
maze. (Left) Eps8 KO mice show a delayed learning in terms of increased number of errors statistically evaluated as the area under the curve
(AUC); (Right) A lower number of Eps8 KO mice reaches the criterion within 5 days evaluated as number of days taken to reach the criterion.
(B) T-maze task. During the acquisition phase (left), Eps8 KO mice exhibit a delayed learning in terms of increased number of days to reach
the criterion but normal learning during reversal phase (right). The number of days to reach the criterion during both phases is illustrated in the
flanking graph. (C) Novel object recognition test. Eps8 KO mice show no net preference between novel and familiar objects, as shown by the
lower discrimination index. (D) Passive avoidance task. A reduced step-through latency is detected in Eps8 KO mice compared to wt animals.
(E, E0) Sociability test. Eps8 KO mice spend significantly less time exploring a conspecific than an empty cage in a social choice paradigm, as
shown by the significantly lower difference score. (F) EEG. Eps8 KO mice display abnormal EEG profile. (Left) EEG recordings of two
representative mice (one for each genotype) for 120 s. KO mouse shows higher spike activity. The mean number of spikes recorded for 2 h in
Eps8 KO mice is higher compared to wt (centre) and the spike amplitude was larger than wt (right). Increments above a threshold determined
according to the increments distribution through an unsupervised approach (Manfredi et al, 2009) and whose amplitude was greater than twice
the background were considered as spikes. Data are shown as mean±s.e.m. of ten animals for each genotype and each test. Statistical
assessments were performed by Student’s t-test comparing wt and KO mice (*Po0.05, **Po0.01). n.s., not significant.
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of Eps8 results in increased formation of protrusions from both

the axon and dendrites (Menna et al, 2009). Since filopodia

represent the precursors of pre- and postsynaptic compartments

during the process of hippocampal synaptogenesis (Fiala et al,

1998), we investigated whether Eps8 KO adult brain is

characterized by a higher number of synaptic contacts

compared to wt. Figure 2A shows the CA1 hippocampal region

of wt and Eps8 KO mouse brain, stained for the synaptic vesicle

protein synaptobrevin/VAMP2 and the glutamatergic postsy-

naptic protein PSD-95. A significantly higher number of both

pre- and postsynaptic puncta were detected in the hippocampi

of Eps8 KO mice relative to control (Figure 2B).

Ultrastructural analysis of synaptic terminals revealed nor-

mal numbers and dimensions of synaptic vesicles (SVs) and a

normal size of synaptic boutons (Supplementary Figure 1N–P),

thus indicating that lack of Eps8, although affecting synapse

number, does not prominently impact the structural organiza-

tion of the presynaptic compartment. Conversely, analysis of

dendritic spines by Golgi-Cox staining revealed that Eps8 KO

mice displayed a clear alteration in the morphology of

spines, which appeared thinner and were significantly longer

relative to wt (Figure 2C and D). A significantly higher

number of protrusions per unit length was detected on

secondary branches of CA1 neuronal dendrites in the Eps8

Figure 2 Excessive synaptic growth and spine abnormalities in the hippocampus of Eps8 KO mice. (A, B) Representative fields of the CA1
hippocampal region of a wt and Eps8 KO mouse brains, stained for the synaptic vesicle protein synaptobrevin/VAMP2 and the glutammatergic
postsynaptic protein, PSD-95. Quantitation of either pre- or postsynaptic areas reveals a larger number of synaptic contacts in Eps8 KO
hippocampus. Scale bar, 5mm. (C) Details of CA1 apical dendrites from wt and Eps8 KO hippocampi stained with Golgi-Cox technique. Scale
bars, 10mm. (D, E) Quantitation of spine length and density in wt or KO animals under control conditions (naı̈ve) or after application of the
novel object recognition test (obj) (length, D, wt spines¼ 0.91±0.010mm; KO spines¼ 1.12±0.012mm; total number of examined spines: 551,
wt and 506, Eps8 KO; number of independent experiments: 3) (density, E, wt naive¼ 0.789±0.017 spines per mm of parent dendrite; wt
obj.¼ 1.07±0.016 spines per mm; KO naive¼ 1.09±0.024 spines per mm; KO obj.¼ 1.08±0.016 spines per mm total number of examined
dendritic branches: 321 wt ctr, 242 wt obj, 105 KO ctr, 361 KO obj; number of independent experiments: 3). Note that Eps8 KO mice display
denser and longer spines, which fail in undergoing further increase in number after the object recognition test. Mann–Whitney rank sum test
Po0.001. All data are expressed as mean±s.e.m. Six animals for each condition have been analysed.
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KO group compared with the wt (Figure 2E, compare the first

and third columns).

Given that mutant mice are impaired in learning and

memory and in consideration of the abnormal spine features,

we investigated whether learning-dependent spinogenesis

processes occur properly in Eps8 KO mice. We found that

Eps8 KO mice lacked structural dendritic plasticity, i.e.,

increases in spine density, which typically develop in the

hippocampus during memory formation (Restivo et al, 2006).

Figure 2E shows that mutant mice, trained for object recogni-

tion and processed for Golgi-Cox 24 h after training, did not

display any increase in spine number, which was instead

clearly detectable in wt mice. These results indicated that

Eps8-null mice have a defect in spine formation and learning-

dependent spinogenesis in the hippocampus.

Excessive synaptic growth and abnormal spine

morphology in Eps8 KO hippocampal cultures

To gain insights into the cellular and molecular mechanisms at

the basis of abnormal spine morphology and plasticity defects

occurring in Eps8 KO mice, we analysed synapse density and

dendritic morphology in primary hippocampal cultures estab-

lished from E18 wt or mutant mice. Quantification of pre- and

postsynaptic puncta in 21 DIV cultures revealed that, similar

to what occurred in vivo, Eps8 KO cultures displayed a

significantly higher synapse density than wt cultures, mea-

sured as number of vGlut1 or PSD-95 positive contacts per

unit length of tubulin-positive dendrites (Supplementary

Figure 2A). Similarly to the in vivo situation (Supplementary

Figure 1), ultrastructural analysis of 21DIVold wt and Eps8 KO

cultures did not reveal any gross alteration of the presynaptic

compartment, including SV size and number (not shown).

Transfection of cultures with a vector coding for red fluores-

cence protein, which fills all neuronal processes and allows a

direct examination of dendritic morphology, revealed that

Eps8 KO neurons, similar to Eps8 KO brain sections, are

characterized by a higher density of spines, which appeared

significantly longer than wt (Figure 3A). Indeed, the morphol-

ogy of spines changes, as the number of thin spines is

significantly increased while the number of mushroom type

decreases (Figure 3A). Notably, however, most of these pro-

trusions, although appearing immature and filopodia like,

displayed PSD-95 and bassoon staining, thus indicating that

they represent bona fide synaptic contacts (Figure 3A).

Fluorescence recovery after photobleaching (FRAP) mea-

surements of PSD-95-GFP in wt or mutant neurons revealed a

significantly higher PSD-95 mobile fraction in Eps8 KO spines

with respect to wt, thus indicating that the dynamics of PSD-

95 are altered in mutant neurons (Supplementary Figure 2B).

Consistent with the possibility of a functional defect, minia-

ture excitatory postsynaptic currents (mEPSCs), recorded in

the presence of 1mM TTX, displayed a significantly reduced

amplitude in Eps8-null neurons with respect to wt

(Supplementary Figure 2C). Despite the increase in synapse

density, no changes in mEPSC frequency were detected

(Supplementary Figure 2C). This could result from the re-

duced mEPSC amplitude, which would cause many of the

events falling below detection. We cannot, however, exclude

a role of Eps8 in reducing presynaptic release probability.

A branched actin filament network containing the

Arp2/3 complex and capping proteins, the conventional

lamellipodial markers, is a dominant feature of spine heads

(Svitkina et al, 2010). The possibility, therefore, has been

raised that high capping and branching activity may be

required for spine head enlargement during development

and plasticity (Hotulainen and Hoogenraad, 2010). We,

therefore, hypothesized that the ability of Eps8 to cap actin

filaments in the spine head may be required for spine

formation. It has been previously shown that the capping

activity of Eps8 is primarily mediated by the amphipathic H1

helix, while the globular H2–H5 core is responsible for

bundling (Hertzog et al, 2010). We then took advantage of

the Eps8 capping mutant Eps8H1, in which the hydrophobic

residues in the amphipathic helix, H1, critical for actin

capping, were mutated while leaving intact the actin

bundling activity (Hertzog et al, 2010). A total of 10–11 DIV

hippocampal cultures were transfected with constructs ex-

pressing either the Eps8 wt protein or its actin-capping

mutant, Eps8H1. Figure 3B shows that overexpression of

Eps8 induced a potent increase in mature spine density,

also promoting the formation of larger spines. Conversely,

expression of the H1 actin-capping mutant did not result in

spine enlargement, clearly indicating that the actin-capping

activity is required for the process. No changes of spine

length are observed (data not shown). Notably, Eps8-induced

spines appeared positive for the presynaptic active zone

protein Bassoon (Bsn) (Figure 3B) and displayed significantly

larger PSD-95 puncta compared to neurons transfected with

either RFP or the H1 mutant, as indicated by immuno-

fluorescence staining and by IMARIS reconstruction

(Supplementary Figure 3A and A0). These results indicate

that the actin-capping activity of Eps8 is required for proper

mushroom-type spine formation. However, we cannot ex-

clude that the bundling activity of Eps8 might play a role in

the filopodia protrusion from the dendritic shaft, a step that

precedes the transition from filopodia to mature spines.

Lack of Eps8 precludes synaptic potentiation in

hippocampal cultures

We then aimed to define whether Eps8 KO neurons in culture

are able to undergo synaptic potentiation, or, like their in vivo

counterpart, show defects in structural plasticity. To address

this issue, a chemically-induced form of LTP was applied to

cultures. Selective activation of synaptic NMDA receptors

was achieved by briefly (3 min) elevating the concentration

of the NMDA receptor co-agonist glycine in the perfusion

solution to suprasaturating levels (100 mM, Lu et al, 2001).

The potential activation of glycine receptors was avoided by

including strychnine in all of the solutions. Following

washout of glycine, insertion of AMPA receptors in the

spine head accompanied by LTP of mEPSCs occurs (Lu

et al, 2001). In line with previous reports, application of

the protocol to wt neurons resulted in a significant increase

in both density and size of the PSD-95 positive puncta and

density of synaptic contacts (Figure 4A and B). Furthermore,

a significant increase in the extent of colocalization between

PSD-95 and vGlut1 staining was detected, in line with synap-

tic strengthening occurring during potentiation phenomena

(Fortin et al, 2010). Notably, in neurons devoid of Eps8,

application of the same protocol did not induce any

significant increase in either the density or the size of PSD-

95 positive puncta, or any increase in the colocalization

extent of pre- and postsynaptic markers (Figure 4A and B).

Both wt and Eps8 KO cultures displayed normal input

Eps8 controls synaptic plasticity
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resistance before and after LTP protocol application, thus

confirming that the protocol did not impact neuronal health

(input resistance: wt¼ 224±7 MO; KO¼ 210±3 MO; access

resistance: wt¼ 15±2 MO; KO¼ 13±2 MO; membrane

capacitance: wt¼ 42±3 pF; KO¼ 41±10 pF. Number of cells

examined, 12 wt and 10 KO).

The lack of potentiation in Eps8 KO neurons was

also confirmed by electrophysiological recordings of

mEPSCs after the application of the glycine protocol.

Figure 4C and D show that, differently from wt neurons,

which display a significant increase of mEPSCs frequency and

amplitude (Lu et al, 2001), mutant neurons fail to undergo

potentiation (mEPSC frequency, during GLY: wt¼ 1.561±

0.1054, n¼ 13 Eps8, KO¼ 0.8319±0.07001, n¼ 16,

***Po0.001; 10-min wash: wt¼ 1.559±0.1604, n¼ 9 Eps8,

KO¼ 0.7738±0.1193, n¼ 8, **P¼ 0.0016; 20-min wash:

wt¼ 1.300±0.1449, n¼ 5 Eps8, KO¼ 0.7250±0.1750,

n¼ 6, P¼ 0.217; 30-min wash: wt¼ 1.356±0.1410, n¼ 5

Eps8, KO¼ 0.7460±0.3230, n¼ 5, *P¼ 0.036; 40-min wash:

wt¼ 1.390±0.1860, n¼ 5 EPS8, KO¼ 0.7220±0.2215, n¼ 5,

Figure 3 The actin-capping activity of Eps8 is required for spine formation. (A) Eps8 wt and KO neurons transfected with RFP and stained for
the presynaptic protein Bassoon (Bsn, blue) and for the postsynaptic marker PSD-95 (green). Eps8 KO neurons display more abundant and
longer protrusions (total number of examined protrusions: 260 wt, 146 Eps8 KO; number of independent experiments: 3). (B) Analysis of spine
width and density in neurons transfected with RFP, with the cDNA for wt Eps8 (Eps8WT-EGFP) or with the construct for Eps8 devoid of
capping activity (Eps8 H1-EGFP) reveals that Eps8wt but not Eps8H1 increases spine number and size (total number of examined neurons: 15
for RFP, 29 for Eps8 wt and 18 for Eps8 H1; total number of examined spines: 145 for RFP, 553 for Eps8 wt and 105 for Eps8 H1; number of
independent experiments: 5). Scale bars depict 5 mm in all panels.
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*P¼ 0.0491; mEPSC amplitude, during GLY: wt¼ 1.200±

0.07783, n¼ 13 Eps8, KO¼ 1.093±0.04924, n¼ 15,

P¼ 0.2418; 10-min wash: wt¼ 1.100±0.0773, n¼ 9 Eps8,

KO¼ 1.019±0.1084, n¼ 7, P¼ 0.5414; 20-min wash:

wt¼ 1.066±0.1054, n¼ 7 Eps8, KO¼ 0.7750±0.075, n¼ 5,

P¼ 0.0893; 30-min wash: wt¼ 1.116±0.0457, n¼ 5 Eps8,

KO¼ 0.6775±0.08664, n¼ 5, **P¼ 0.0021; 40-min wash:

wt 1.180±0.06042, n¼ 5 Eps8, KO¼ 0.6680±0.07761,

n¼ 5, ***P¼ 0.0008). The lack of potentiation was

also confirmed by two independent paired recordings

experiments, where stimulation of the presynaptic neuron

(three 50-Hz, 2-s trains of depolarizations at 20-s intervals)

during brief perfusion with Mg2þ -free solution (Arancio et al,

1996) induced potentiation of the excitatory current in wt but

Figure 4 Lack of Eps8 impairs long-term potentiation. (A) Representative images of wt and KO cultured neurons before and after application of
chemical LTP. Neurons are stained for tubulin (green), PSD-95 (red) and v-Glut1 (blue). Scale bars 10 and 2 mm for higher-magnification
images. (B) Quantification of potentiation, as represented by number per unit length of PSD-95 (left), synapse density (middle), mean size of
PSD-95 (right). Potentiation occurs in wt but not Eps8 KO cultures (Mann–Whitney rank sum test, Po0.001). Data are expressed as
mean±s.e.m.; normalized values (total number of examined neurons for analysis of PSD-95 or synapse density: 35 wt ctr and 36 wt LTP; 33 KO
ctr and 75 KO LTP; total number of fields for analysis of PSD-95: 46 wt ctr and 59 wt LTP; 72 KO ctr and 90 KO LTP; size number of independent
experiments 5). (C, D) Electrophysiological analysis of LTP. (C) Representative mEPSCs traces before and after the induction of chemical LTP, in
wt and KO neurons. (D) Analysis of mEPSC frequency and amplitude at different recording times (5 min before LTP application, 5, 10, 20, 30
and 40 min after LTP application) shows that KO neurons are unable to undergo LTP. Graphs indicate the mEPSC mean frequency and
amplitude 45 min after the application of LTP. Scale bars, 10 pA and 250 ms (total number of examined neurons: 13 wt and 16 KO; number of
independent experiments: 5).
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not Eps8 KO neurons (eEPSC amplitude, wt¼ 1.350±0.05

Eps8, KO¼ 0.7750±0.0125).

Acute downregulation of Eps8 expression by siRNA simi-

larly prevented synaptic potentiation (Supplementary

Figure 3B and B0). These data indicate that Eps8 is required

for LTP expression in hippocampal cultures and suggest that

the protein may play a role in stabilizing the actin cytoskeleton

during spine remodelling. In further support of this hypothesis,

endogenous Eps8 is recruited to the spine head upon applica-

tion of LTP, as indicated by increased protein localization in

RFP-labelled dendritic protrusions (Figure 5A and B).

Inhibition of Eps8 capping activity impairs spine

enlargement and plasticity

Since Eps8 is recruited to the spine head after chemical LTP

induction (Figure 5A and B) and the actin-capping activity of

Eps8 is required for proper spine formation during neuronal

development (Figure 3B), one could hypothesize that the

capping activity of Eps8 is crucial for the process of structural

plasticity. The Eps8 wt protein or its actin-capping mutant,

Eps8H1, was then exogenously expressed in hippocampal

neurons and cultures were exposed to chemical LTP.

Representative images of this experiment are shown

Figure 5 The acute inhibition of Eps8 actin-capping activity precludes potentiation. (A) Representative examples of dendrites of mice hippocampal
neurons transfected with RFP, exposed to chemical LTP and stained for Eps8. Note that Eps8 immunoreactivity at the spine head increases after
potentiation. Scale bar, 2mm. (B) Quantitation of Eps8 immunofluorescence at the spine head in vehicle-treated and glycine-treated (100mM)
neurons (Mann–Whitney Rank Sum Test, P¼ 0.013) (total number of examined neurons: 16 untreated neurons and 12 gly-treated neurons; number
of independent experiments: 3). (C) Quantitation of spine density under the different experimental conditions shows that potentiation is prevented
by overexpression of Eps8 but not by its actin-capping mutant (total number of examined neurons: 15 ctr and 18 LTP for RFP, 29 ctr and 25 LTP for
Eps8 wt and 18 ctr and 24 LTP for Eps8 H1; number of independent experiments: 5). (D) The proline rich consensus site of Abi1 (PXXDY) competes
with Abi1 for binding to Eps8. Equal amounts of His-Eps8 (0.2mM) were incubated with 0.2mM immobilized GST-Abi1 in the absence or in the
presence of 20 and 100mM of either PXXDY or PAADA synthesized peptides. 2mM GST-Cdc42 was used as a control. Proteins were analysed by
immunoblotting with the indicated antibodies. (E, F) mEPSC frequency (E) and amplitude (F) in neurons exposed to chemical LTP and
intracellularly perfused via the patch pipette with either the scrambled or the blocking peptide (the blocking peptide competes with Abi1 for binding
to Eps8 and therefore inhibits the Eps8 capping activity). Note that neurons intracellularly perfused with the blocking peptide (grey column, white
dots) are defective in potentiation, measured as mEPSC frequency or amplitude. Synaptic potentiation occurs in neurons intracellularly perfused
with a scramble peptide (black dots) (total number of examined neurons: 6 for both conditions; number of independent experiments: 3). (G, H)
mEPSC frequency (G) and amplitude (H) in Eps8 KO neurons exposed to chemical LTP and intracellularly perfused with either the scrambled or the
blocking peptide. Note that mEPSC frequency and amplitude of KO neurons do not change upon glycine administration with or without injection of
the blocking peptide. (I–L) Normalized mEPSC frequency (I) and amplitude (L) in WTand KO neurons before and after blocking peptide injection.
Note that injection of the blocking peptide does not affect per se basal synaptic activity.
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in Supplementary Figure 4A–C. Quantitative analysis

(Figure 5C) demonstrates that high Eps8 capping activity

impaired actin cytoskeleton remodelling and spine formation,

possibly due to the blockade of actin barbed ends and altered

actin dynamics. Indeed, exogenous expression of the Eps8

actin-capping-deficient mutant, Eps8H1, which has no effect

on actin polymerization (Menna et al, 2009), did not prevent

spine remodelling (Figure 5C).

To demonstrate more directly that the actin-capping activity

of Eps8 is required for plasticity, we injected the postsynaptic

neuron with a synthetic peptide (blocking peptide), which

prevents Eps8 from capping actin filaments by competing with

Abi1 for binding to Eps8 (Mongiovı́ et al, 1999). Direct

competition could be observed in in vitro binding assay

using recombinant purified proteins (Figure 5D). LTP was

induced 10 min after injection, while mEPSCs were recorded

during the entire procedure. Injection of the blocking, but not

of a scrambled peptide, impaired synaptic potentiation

induced by glycine treatment (Figure 5E and F, mEPSC

frequency, 40-min wash: wt¼ 1.260±0.1060, blocking

peptide¼ 0.9833±0.2215 unpaired t-test, *P¼ 0.0486;

mEPSC amplitude, 40-min wash: wt¼ 1.180±0.06042, block-

ing peptide¼ 0.6680±0.07761, Kolmogorov–Smirnov test

**P¼ 0.0028; number of cells examined: 6 for both condi-

tions; number of independent experiments: 3). Injection of

either the blocking or the scrambled peptides in Eps8 KO

neurons following glycine administration does not have any

effect (Figure 5G and H). Furthermore, injection of these

peptides does not change per se the mEPSC frequency and

amplitude in either wt or Eps8 KO neurons (Figure 5I and L).

Notably, the lack of Eps8 had no effect on rac activation in

15 DIV hippocampal neurons (Supplementary Figure 4D) and

in the brain (Menna et al, 2009), suggesting that Eps8

primarily functions as a capper in this system (Vaggi et al,

2011) and ruling out the possibility that the LTP impairment in

Eps8 KO neurons could be due to a deregulation of rac activity

or its downstream pathway, WAVE/SCAR and Arp2/3.

Altogether, these results univocally demonstrate that the

capping activity of Eps8 is essential for LTP-mediated synapse

formation and strengthening.

Eps8 is expressed at lower levels in brains of patients

affected by autism

Eps8 capping activity is regulated by the neurotrophic factor

BDNF (Menna et al, 2009). BDNF has been demonstrated to be

required for spine maturation and dendritic LTP (An et al,

2008; Tanaka et al, 2008), and is critical for synaptogenesis,

synaptic plasticity and memory formation (Chapleau et al,

2009; Cunha et al, 2010). Furthermore, the balance between

the BDNF precursor, proBDNF, and mature BDNF, which

controls spine formation (Koshimizu et al, 2009), has been

found to be disrupted in the brain tissue of autism patients

(Garcia et al, 2012). Given the established spine pathology in

autism spectrum disorder (Hutsler and Zhang, 2010; Penzes

et al, 2011), we examined Eps8 levels by quantitative western

blotting in postmortem fusiform gyrus tissues from 11 patients

with autism and 13 controls. We found a substantial reduction

of Eps8 in autism patients compared to controls (Figure 6A–C).

No differences in the expression of the SNARE protein,

SNAP-25, were detected in the same samples (Figure 6D–F),

supporting the specificity of the Eps8 deficit. By leading to

changes in spine density and dynamics, a decrease in Eps8

expression in the brain of autism patients could contribute to

the morphological, cognitive and behavioural defects of this

disorder. The cognitive and social impairments and the altera-

tions in spine number and morphology we observed in Eps8

KO mice support this hypothesis.

Discussion

There is substantial evidence that actin-based remodelling

underlies spine structural changes and memory stabilization

(Lamprecht and LeDoux, 2004; Hotulainen and Hoogenraad

2010). For instance, blockers of actin polymerization suppress

LTP (Krucker et al, 2000; Fukazawa et al, 2003; Okamoto

et al, 2004; Ramachandran and Frey, 2009); also, LIMK1

Figure 6 Eps8 expression levels are reduced in brains of patients
affected by Autism. (A, B) Quantification of Eps8 protein expression
in fusiform gyrus (FG) of autism and control samples by
Western blotting. Each sample was normalized to b-actin.
*Po0.05, two-tailed Student’s t-test. Bars indicate mean±s.e.
Autism, n¼ 11; control, n¼ 13. (C) Representative western blot of
fusiform gyrus showing autism (A) and control (C) cases. Lanes
2–5: standard curve consisting of different amounts of total protein
from a single normal human cortex sample. Lanes 6–13: 35mg of
total protein from each autism and control sample. Blots were
run twice with two different Eps8 antibodies and gave similar
results. (D, E) No change in SNAP-25 levels in fusiform gyrus
of autism subjects compared to controls. Quantification of SNAP-
25 protein expression in fusiform gyrus (FG) of autism and control
samples determined by western blotting. Each sample was normal-
ized to b-actin. P¼ 0.67, two-tailed t-test. Bars indicate mean±s.e.
Autism, n¼ 11; control, n¼ 13. (F) Representative western blot of
fusiform gyrus showing autism (A) and control (C) cases. Lanes
1–4: standard curve consisting of different amounts of total protein
from a single normal human cortex sample. Lanes 5–12: 3mg of total
protein from each autism and control sample.
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knockout mice, which do not regulate the activity of the

actin-severing protein cofilin, have enhanced hippocampal

LTP (Meng et al, 2002); finally, mice lacking the actin-

regulating protein WAVE-1 displayed changes in spine

density and abnormalities in synaptic plasticity (Soderling

et al, 2007), while Abi2 knockout mice exhibit deficits in

learning and memory (Grove et al, 2004). Here, we provide a

direct demonstration that the actin-regulating protein Eps8,

required for optimal actin-based motility and intestinal

morphogenesis (Croce et al, 2004; Disanza et al, 2004;

Disanza et al, 2006), critically involved in the formation of

axonal and dendritic actin filopodia during neuronal

development (Menna et al, 2009; Vaggi et al, 2011), is

required for the process of spine morphogenesis during

neuronal development and synaptic plasticity.

Dendritic protrusions vary in shape and length. Filopodia,

thin and mobile structures, are more abundant at early

developmental stages, when they sample potential presynap-

tic partners, eventually mediating the formation of synaptic

contacts. This process coincides with the transition from

filopodia to spiny protrusions occurring during development

(Ziv and Smith, 1996; Yoshihara et al, 2009; Hotulainen and

Hoogenraad, 2010). Further modifications of spine size and

shape occur during synaptic plasticity, a process that

constantly reshapes the circuitry of the adult brain in

response to external stimuli, leading to learning and

memory formation. It is known that the morphology of

dendritic protrusions is directly linked to their function,

with the spine head size being directly correlated with the

density of glutamate AMPA receptors, and, therefore, with

synaptic strength. Accordingly, immature spines are

characterized by highly dynamic and less stable PSD-95

clusters (Tsuriel et al, 2009; Zheng et al, 2010). Notably,

Eps8 knockdown leads to the formation of thinner and

longer spines, characterized by a decreased synaptic

strength and less stable PSD-95 dynamics, thus suggesting

that the capping protein Eps8 is required for spine maturation

and function involving both scaffolding proteins and

receptors. Given that immature spines have impaired

synaptic signalling and display defects in synaptic plasticity,

the ratio of mature to immature spines could play a crucial

role in neuronal function and connectivity. In line with this,

dendritic spines in Eps8 KO neurons are unable to undergo

potentiation.

It has been recently proposed that the mechanisms under-

lying spine head expansion during synaptic plasticity may

share similarities with the process controlling lamellipodia

formation, which involves a concomitant action of actin-cap-

ping proteins and Arp2/3-mediated actin nucleation and

branching, eventually leading to spine head expansion

(Hotulainen and Hoogenraad, 2010). The only evidence

suggesting that actin-capping proteins may regulate synaptic

plasticity comes from the study of Kitanishi and coworkers,

who identified the F-actin-capping protein CapZ (Schafer et al,

1995), previously shown to regulate growth cone morphology

and neurite outgrowth (Davis et al, 2009), among the proteins

whose expression is regulated by neuronal activity (Kitanishi

et al, 2010). Activity-dependent CapZ accumulation at the spine

supported the possible role of the protein in the regulation of

actin dynamics in response to synaptic inputs and eventually

in synaptic plasticity. Despite this evidence, a direct

demonstration that the capping activity of actin-regulating

protein is in fact required for the process of spine expansion

occurring during synaptic plasticity was totally missing.

In the present study, we demonstrate that Eps8, through its

actin-capping activity, controls spine morphogenesis and

synaptic potentiation. Eps8 is the founding member of a

unique family of capping proteins capable of side binding

and bundling actin filaments. The protein has been detected

in many regions of the grey matter, including the olfactory

bulb, anterior olfactory nuclei, basal forebrain, cerebral

cortex, hippocampus, septal nuclei, amygdala, thalamus,

hypothalamus, colliculi, pontine nuclei, cerebellum, cochlear

nuclear complex and inferior olive, while the white matter

was generally unstained (Sekerková et al, 2007). Besides the

cerebellum, Eps8 is expressed at higher levels in neurons in

layers II and III of the cerebral cortex and in the

hippocampus, two areas classically implicated in higher

cognitive functions (Offenhäuser et al, 2006). Eps8 has

been detected by western blotting in synaptosomal fractions

from hippocampus (Menna et al, 2009) and cerebellum

(Offenhäuser et al, 2006). By immunoelectron microscopy,

Eps8 was localized postsynaptically in the dendritic

articulations of cerebellar granule neurons (Offenhäuser

et al, 2006; Sekerková et al, 2007), although the protein

expression in axons of cultured hippocampal neurons

(Menna et al, 2009) and of granule cells in situ (Sekerková

et al, 2007) suggests probable multiplicity of Eps8 functions

at the synapse. In line with a role of Eps8 in spine

morphogenesis and plasticity, mice lacking Eps8 display

immature spines and are impaired in cognitive functions.

The identification of Eps8 capping activity as necessary for

the process of spine morphogenesis comes from two lines of

evidence. The first relies on the demonstration that a well-

characterized Eps8H1 mutant, specifically devoid of actin-

capping activity, is unable to support proper spine formation.

The Eps8H1 mutant allowed us to dissociate the Eps8 capping

from bundling activity: indeed, while the Eps8 bundling

activity is mainly mediated by a compact four-helix bundle,

which contacts three actin subunits along the filament, the

actin-capping activity of Eps8 is mainly mediated by a

amphipathic helix that binds within the hydrophobic pocket

at the barbed ends of actin, thus blocking further addition of

actin monomers (Hertzog et al, 2010). In the Eps8H1 mutant,

the hydrophobic residues critical for actin capping were

mutated, while leaving intact the actin bundling activity. As

a further support, acute inhibition of the protein capping

activity, obtained through neuronal intracellular perfusion

with a blocking peptide, resulted in impairment of plasticity

phenomena, thus univocally demonstrating that Eps8

controls spine formation and activity-driven potentiation

through the capping of actin filaments. While the present

manuscript was under revision, a paper has been published

(Stamatakou et al, 2013) showing that acute Eps8 reduction

in primary cultures impacts spine formation and plasticity,

the former, in particular, through the protein capping activity.

Stamatakou et al did not observe any changes in mEPSC

amplitude upon LTP, leading them to conclude that Eps8 is

required for LTP-mediated synapse formation, but not LTP-

induced synaptic strengthening. Our in vitro and in vivo data

support that Eps8 is needed for LTP-induced synaptic

strengthening. The differences observed may be due to

residual Eps8 levels in the experimental conditions of the

Stamatakou’s study.
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End capping of cytoskeletal filaments is a key mechanism

for regulating filaments’ elongation and disassembly, as well

as the organization of the cytoskeletal architecture. It is

therefore conceivable that the lack of Eps8, either genetic or

consequent to siRNA knockdown, impairs actin organization

and remodelling in the dendritic spines. As a further support

to the view that a proper process of spine morphogenesis is

required both during development and during plasticity phe-

nomena, alterations of the spine actin structure and its

dynamic regulation have been observed in a number of

neurological disorders characterized by intellectual disability

(ID), such as autism spectrum disorder (ASD), mental retar-

dation and fragile X syndrome (van Spronsen and

Hoogenraad, 2010; Penzes et al, 2011). Mutations in specific

synaptic genes including the Akt/mTOR pathway (Kelleher

and Bear, 2008; Bourgeron, 2009) involved in regulation of

spine protein synthesis, the Neurexin–Neuroligin–Shank path-

way (Jamain et al, 2003; Durand et al, 2007) associated with

synaptogenesis and excitation-inhibition imbalance, and Ras/

Rho GTPase pathway (Pinto et al, 2010) implicated in spine

formation and stabilization have been identified in subjects

with ASD. Furthermore, overabundant and immature spines

have been reported in ASD (Hutsler and Zhang, 2010). Taken

together, these findings suggest a major role for dendritic

spine abnormalities in the pathogenesis of these diseases.

We show here that reduced levels of the actin-capping

protein, Eps8, occur in brains of patients affected by autism.

Together with previous evidence that capping protein (CP)

levels are significantly lower in fetal brains of Down syndrome

than in controls (Gulesserian et al, 2002), our data suggest

that reduction in actin-capping proteins may characterize

cognitive impairments associated with spine defects.

Interestingly, alterations in BDNF isoform levels have been

found in autism patients (Garcia et al, 2012). Since the actin-

capping activity of Eps8 in neurons is regulated by BDNF

(Menna et al, 2009), the possibility arises that BDNF controls

actin-capping and spine morphogenesis via Eps8 during

synaptic plasticity and learning and that defects in this

network may be involved in the pathogenesis of autism.

Materials and methods
See also Supplementary data for ‘In vitro binding assay’,
‘Immunofluorescent staining on sections’ and ‘Golgi staining’.

Animals
All the experimental procedures followed the guidelines established
by the Italian Council on Animal Care and were approved by the
Italian Government Decree No. 27/2010. All efforts were made to
minimize the number of subjects used and their suffering. Eps8 wild-
type (WT) and Eps8 knockout (KO) mice (Croce et al, 2004) were
housed in cages with free access to food and water at 221C and with a
12-h alternating light/dark cycle. Genotyping was performed by PCR.

Behavioural tests
All behavioural tests are shortly described below. Full details are
available in details in the Supplementary Methods.

T-maze. Animals (10 Eps8 KO and 10 Eps8 wt) were food deprived
until reaching 85–90% of their free-feeding body weight. Mice were
habituated to a black wooden T-maze (stem length 41 cm; arm
length 91 cm) and processed as described in Braida et al (2004).

Radial maze. Working memory was studied in 10 Eps8 KO and 10
Eps8 wt mice using a computerized wooden eight-arm radial maze
according to Braida et al (2004).

Passive avoidance. Passive avoidance task was carried out in 10
Eps8 KO and 10 Eps8 wt mice as previously described (Braida et al,
2004) and described in detail in Supplementary data.

Object recognition. The test was conducted on 10 Eps8 KO and 10
Eps8 WT over a two-day period in an open plastic arena
(60�50� 30 cm), as previously described (Pan et al, 2008;
Corradini et al, 2012 (see Supplementary data for details).

Sociability test. The test was performed on 11 wt and 15 Eps8 KO
animals as described in Sala et al, 2011.

EEG
Electroencephalogram (EEG) activity was recorded, in a Faraday
chamber, using a PowerLab digital acquisition system (AD
Instruments, Bella Vista, Australia; sampling rate 100 Hz) in freely
moving mice (n¼ 10 mice per genotype) previously submitted to
surgical implantation of electrodes (See for details Supplementary
data).

Cell cultures
Primary cultures of mouse hippocampal neurons were established
from E18 fetal, Eps8 KO or wild type (wt) littermates C57BL/6 mice as
described by Banker and Cowan (1977) and Bartlett and Banker
(1984) with slight modifications. Briefly, hippocampi were
dissociated by treatment with trypsin (0.125% for 15 min at 371C),
followed by trituration with a polished Pasteur pipette. The dissociated
cells were plated onto glass coverslips coated with poly-L-lysine at
density of 400 cells/mm2. The cells were maintained in Neurobasal
(Invitrogen, San Diego, CA) with B27 supplement and antibiotics,
2 mM glutamine and 12.5mM glutamate (neuronal medium).

cDNA constructs and expression
Neuronal cultures were transfected at 10DIV with pEGFP-C1
(Clontech, Palo Alto, CA, USA) or pSUPER-DsRed plasmid (obtained
from pSUPER-GFP, Oligoengine, Seattle, USA). The Eps8 WT or the
capping mutant H1 are cloned in pEGFP vector as described
(Disanza et al, 2006; Hertzog et al, 2010). Two different double-
strand small interfering RNA (siRNA) oligonucleotides (Stealth
RNAi; called 1525 and 1158) against mouse Eps8 were used
according to Menna et al (2009). Hippocampal neurons were
transfected by using Lipofectamine 2000 (Invitrogen).

Immunofluorescence staining of dissociated neurons
Neuronal cultures were fixed with 4% paraformaldehyde and 4%
sucrose or with 100% cold methanol. The following antibodies were
used: mouse anti-VAMP2 (1:1000; Synaptic System, Goettingen,
Germany), guinea pig anti-Bassoon (1:300; Synaptic System,
Goettingen, Germany), guinea pig anti-vGLUT1 (1:1000; Synaptic
System, Germany), mouse anti-PSD-95 (1:400; UC Davis/NIH
NeuroMab Facility, CA, USA), rabbit anti-GFP (1:400; Invitrogen,
San Diego, CA), mouse anti-beta III tubulin (1:400; Promega
Corporation, Madison, USA). Secondary antibodies were conju-
gated with Alexa-488, Alexa-555 or Alexa-633 fluorophores
(Invitrogen, San Diego, CA, USA). Images were acquired using a
Zeiss LSM 510 META confocal microscope producing image stacks.
Pixel size was 110 nm� 110 nm, and acquisition parameters (i.e.,
laser power, gain and offset) were kept constant among different
experimental settings. For the analysis of synaptic puncta only
clusters lying along secondary dendritic branches were counted.
The detection threshold was set to 2.5-fold the level of background
fluorescence referring to diffuse fluorescence within dendritic
shafts. The minimum puncta size was set at four pixels
(0.048 mm2). Colocalization of two or three selected markers was
measured using the boolean function ‘and’ for the selected chan-
nels. The resulting image was binarized and used as a colocaliza-
tion mask to be subtracted to single channels. The number of the
puncta resulting from colocalization mask subtraction were mea-
sured for each marker. A colocalization ratio was set as colocalizing
puncta/total puncta number. The total area of the measured synap-
tic puncta represents synaptic area. For each cell, three or four
dendrites were analysed from maximum projection images.
Filopodia were defined as thin protrusions without a distinguish-
able head, stubby spines as short protrusions without a neck,
and mushroom spines as protrusions with a short neck and a
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distinguishable head. Synapses were defined by the apposition of
presynaptic and postsynaptic markers, such as vGlut1 or Bsn
and PSD-95. Fluorescence images processing and analyses were
performed with ImageJ Software (National Institutes of Health).

Cell culture electrophysiology
Whole-cell voltage-clamp recordings were performed on rat em-
bryonic hippocampal neurons or on wt and Eps8 mice null hippo-
campal neurons maintained in culture for 13–15 DIV. Miniature
activity was recorded as described in Antonucci et al (2012) (see
Supplementary data for details).

For glycine-induced LTP experiments, recordings from each neu-
ron lasted at least 60 min and each cell was continuously perfused
(1 ml/min) from a computer-controlled perfusion system with a
solution containing (in mM) 125 NaCl, 5 KCl, 1.2 KH2PO4, 2 CaCl2,
6 glucose, and 25 HEPES-NaOH, TTX 0.001, Strychnine 0.001 and
bicuculline methiodide 0.02 (pH 7.4). Solution with glycine
(100mM) was applied for 3 min and then washed out for at least
45 min. The patch pipette electrode contained the following solution
(in mM): 130 CsGluconate, 8 CsCl, 2 NaCl, 10 HEPES, 4 EGTA, 4
MgATP and 0.3 Tris-GTP.

The Eps8-capping inhibitor peptide (blocking peptide) was dis-
solved in the intracellular solution and injected into neurons via the
patch pipette. Glycine was applied at least 10 min after the injection
of inhibitor peptide or its inactive control.

Analysis of human brain tissue samples
Eleven postmortem brain samples from subjects with autism and
thirteen control brain samples were provided to us by the Autism
Speaks’ Tissue Program (Princeton, NJ, USA) via the Harvard Brain
Bank (Belmont, MA, USA) and the University of Maryland Brain and
Tissue Bank (Baltimore, MD, USA). Clinical information about each
tissue sample was obtained through the Autism Tissue Program
online portal (http://www.atpportal.org). There were no statistically
significant differences between groups for age at death or PMI.
Fusiform gyrus brain tissue was chosen, because this area is
hypoactivated during face discrimination tasks in subjects with
autism (Schultz et al, 2000). The diagnosis of autistic disorder was
confirmed using the Autism Diagnostic Interview-Revised (Lord
et al, 1994) postmortem through interviews with the parents and/
or caregivers. Samples were stored at � 801C before use. Protein
extraction was performed as previously described with minor
modifications (Fahnestock et al, 2001; Garcia et al, 2012).
Approximately 100 mg of tissue was homogenized on ice without
thawing using a sonic dismembrator in homogenization buffer (HB)
(0.05 M Tris pH 7.5, 0.5% Tween-20, 10 mM EDTA, 1 complete, Mini,
EDTA-free tablet (Roche, Cat. no. 11 836 170 001) per 10 ml of HB,
2mg/ml pepstatin, 2mg/ml aprotinin, 50 mM sodium fluoride, 2 mM
sodium orthovanadate, 2.5 mM sodium pyrophosphate, 1 mM
b-glycerophosphate, 0.5% sodium deoxycholate). The homogenate
was incubated for 15 min on ice and then centrifuged at 12 000� g
for 20 min at 41C. Supernatants containing solubilized protein were
aliquoted and stored at � 801C before use. Protein concentrations
were determined using a DC protein assay kit as described by the
manufacturer (Bio-Rad Laboratories, Mississauga, Ontario, Canada).

Western blotting analysis on human brain tissue samples
Western blotting was carried out as previously described with slight
modifications (Fahnestock et al, 2001; Kawaja et al, 2011; Garcia et al,
2012). Samples containing 35mg protein were resolved in
10% sodium dodecyl sulphate-polyacrylamide gels under reducing
conditions. After transfer onto polyvinylidene diflouride membranes

for 2 h at 250 mA at 41C, blots were blocked for 1 h at room
temperature in a 1:1 solution of phosphate-buffered saline (PBS)
pH 7.4 and Odyssey Blocking Buffer (BB) (Cedarlane, Burlington,
Ontario, Canada) and then incubated with rabbit polyclonal or
mouse monoclonal Eps8 primary antibodies (dilution 1:1000) and
b-actin antibodies (Sigma, diluted 1:5000) at 41C overnight in BB:PBS
(1:1), 0.5% Tween-20 (PBS-T). Subsequently, membranes were
washed and incubated for 1 h at room temperature in PBS-T with
the secondary antibodies IRDye 680-conjugated goat anti-rabbit and
IRDye 800CW-conjugated goat anti-mouse (LI-COR Biosciences,
Lincoln, NE, USA; diluted 1:8000). All blots were scanned using an
Odyssey Infrared Imaging System (LI-COR Biosciences). Blots were
run twice with two different Eps8 antibodies. Each western blot
contained a standard curve consisting of different amounts of protein
per lane (from 5 to 80mg) to ensure that the sample loading amount
was in the linear range of detection for Eps8 (Fahnestock et al, 2001;
Kawaja et al, 2011; Garcia et al, 2012). The intensities of
immunoreactive bands were measured using LI-COR Odyssey
Software, version 2.0 with local background subtracted. Eps8 pixel
values were normalized to b-actin values for each sample.

Statistical analysis
Morphological analysis of spine parameters and synapse density
was performed using ImageJ software (NIH, Bethesda, MD, USA).

n refers to the number of elements analysed. Statistical analysis
was performed using SigmaStat 3.5 (Jandel Scientific) or PRISM 5
software (GraphPad, Software Inc., San Diego, CA, USA). After
testing whether data were normally distributed or not, the appro-
priate statistical test has been used, see figure legends. Data are
presented as mean±s.e.m. from the indicated number of elements
analysed. For behaviour, the continuous data were analysed using a
paired Student’s t-test and the categorical data were analysed using
Fisher’s exact probability test. The AUC was calculated for the total
number of errors in completing the maze. The differences were
considered to be significant if Po0.05 and are indicated by an
asterisk; those at Po0.01 are indicated by double asterisks; those at
Po0.001 are indicated by triple asterisks.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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Abstract

Actin-capping and anti-capping proteins are crucial regulators of actin dynamics. Recent studies have indicated that these proteins
may be heavily involved in all stages of synaptogenesis, from the emergence of filopodia, through neuritogenesis and synaptic
contact stabilization, to the structural changes occurring at the synapse during potentiation phenomena. In this review, we focus on
recent evidence pointing to an active role of actin-capping and anti-capping proteins in orchestrating the processes controlling
neuronal connectivity and plasticity.

Introduction

Neural circuits are defined by the structure of axons and dendrites,
with single axons contacting and controlling the function of multiple
targets, and individual dendrites integrating inputs from several
sources. The molecular processes involved in establishing proper
neuronal connectivity are not exclusively activated during brain
development, because, even in the adult brain, continuous remodel-
ling, accompanied by synapse formation and elimination, underlies the
process of memory formation (Chklovskii et al., 2004; Bruel-Junger-
man et al., 2007; Fu & Zuo, 2011). Deciphering the molecular
mechanisms by which neurite extension and synaptogenesis occur is
therefore critical to our understanding of brain ontogenesis, synaptic
remodelling, and plasticity.

It is widely accepted that filopodia, which are highly motile, narrow
extensions containing bundles of filamentous actin, play important
roles at initial stages of synaptogenesis (Fiala et al., 1998; Craig et al.,
2006; Geraldo & Gordon-Weeks, 2009). Also, growth and stabiliza-
tion of filopodia for the formation of new synaptic contacts occur
during long-term potentiation (Luscher et al., 2000; Jourdain et al.,
2003; Nikonenko et al., 2003). Filopodia emerge from all neuronal
compartments: those extending at the tips of axonal growth cones
mainly mediate neurite navigation and axonal pathfinding (Koleske,
2003). Filopodia emerging from developing axons, which are
characterized by the presence of actively recycling synaptic vesicles,
are thought, instead, to represent precursors of presynaptic boutons
(Chang & De Camilli, 2001; Matteoli et al., 2004). On the other hand,
dendritic filopodia may serve as precursors of new spines in the
context of activity-dependent synaptogenesis (Jontes & Smith, 2000;
Wong et al., 2000; Portera-Cailliau et al., 2003; Yuste & Bonhoeffer,
2004; Knott & Holtmaat, 2008). The transition from filopodia to
spines upon contact with a presynaptic bouton has been directly

demonstrated (Ziv & Smith, 1996; Kayser et al., 2008; Heiman &
Shaham, 2010; Arstikaitis et al., 2011).
It is generally thought that filopodial actin filaments originate from

the lamellipodium, a flat membrane protrusion that is almost
invariably seen at the leading edge of migratory cells. The diverse
morphological features of lamellipodia and filopodia are mirrored by
their architecturally diverse actin backbones. An extended meshwork
of actin filaments of variable length and orientation supports the
former protrusions, whereas filopodia are composed of bundles of long
and linear actin filaments.
A number of actin-binding proteins have been implicated in

regulating the equilibrium between filopodia and lamellipodia (Gupton
et al., 2007; Drees & Gertler, 2008; Le Clainche & Carlier, 2008). In
particular, the formation of lamellipodia mainly involves the activity
of a minimal key set of actin regulatory proteins (see below), and of
the Arp2 ⁄ 3 complex, a branched actin filament nucleator that works in
concert with actin-capping proteins. These latter proteins, by binding
to the barbed ends of densely packed, plasma membrane-localized
actin filaments, control not only their lifetime, but also the architecture
of the resulting meshwork (Akin & Mullins, 2008). Filopodial
initiation and extension requires, instead, the coordinated and balanced
activities of actin-capping and anti-capping proteins that, together with
linear filament elongators, including formin and vasodilator-stimulated
phosphoprotein (VASP) family proteins, promote the formation of
long filaments; the latter then converge to form bundles, which
subsequently become tightly cross-linked through the action of
proteins such as fascin (Mejillano et al., 2004; Mogilner & Rubin-
stein, 2005; Drees & Gertler, 2008; Mattila & Lappalainen, 2008;
Ridley, 2011) (Fig. 1).
Given that the mechanisms regulating the formation of neuronal

filopodia directly impact on neuronal connectivity and network
plasticity, we focus here on recent evidence pointing to an active
role of actin-capping and anti-capping proteins in orchestrating the
formation of neuronal filopodia, as well as in controlling neuritogen-
esis and spine morphology.
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The formation of filopodia in neurons: a role for
actin-capping and anti-capping proteins

The core structural and dynamic components of filopodia are actin
filaments, whose dynamic formation and topological organization are
controlled by ensembles of actin-binding proteins. The actin regula-
tory machinery responsible for filopodia consists of different classes of
proteins, such as F-actin nucleators (e.g. Arp2 ⁄ 3, formins), filament
bundlers (e.g. fascin), membrane-deforming factors (e.g. BAR domain
proteins), regulators of actin polymerization (e.g. Ena ⁄ VASP family
proteins, profilin, and actin-capping proteins) or disassembly (e.g.
ADF ⁄ cofilin), and actin-associated motors (e.g. myosin II and myosin
X) (Ono, 2007; Le Clainche & Carlier, 2008; Chesarone & Goode,
2009).
The mechanism of filopodia formation is a controversial topic

(Svitkina et al., 2003; Vignjevic et al., 2006; Gupton et al., 2007;
Mattila & Lappalainen, 2008; Faix et al., 2009; Mellor, 2010). Two
alternative models have been suggested: the convergent elongation
model proposes that Arp2 ⁄ 3-seeded actin filaments are elongated by
factors, such as Ena ⁄ VASP family proteins, that also protect them
from capping, and are assembled into filopodial bundles by fascin; in
contrast, the de novo nucleation model proposes that linear filament
nucleators and elongators, such as formin and Ena ⁄ VASP family
proteins, assemble into submembranous complexes, thereby promot-
ing the processive elongation of parallel actin filaments, which are
cross-linked into filopodial actin bundles. It must be pointed out that
these two models are not necessarily exclusive, as both mechanisms
may operate in cells in response to distinct sets of conditions, such as
the abundance of specific cytoskeletal components, different signalling
pathways, and diverse microenvironmental conditions, including the
composition of the extracellular matrix in which cells are embedded.
The activity of actin-capping proteins, according to the convergent

elongation model, is crucial for controlling the resultant architectural
organization of actin in these protrusions. When the capping activity is
high, newly nucleated branched filaments become rapidly capped; this
also causes a local increase in the concentrations of available actin
monomers, which further feed Arp2 ⁄ 3 nucleation ⁄ branching activity,
ultimately promoting the generation of a dense and highly branched

dendritic array of short actin filaments at the leading edge of
lamellipodia. Conversely, when capping activity is low, local mono-
mer availability is reduced, as G-actin becomes incorporated into long
and uncapped actin filaments (Mogilner & Rubinstein, 2005; Akin &
Mullins, 2008; Korobova & Svitkina, 2008). Factors such as VASP
family members or ill-defined components of the filopodia tip
complex may then promote the transient association of actin filaments,
which can be further stabilized by other bundlers, such as fascin, thus
permitting the formation of actin bundles and filopodia (Mogilner &
Rubinstein, 2005). According to the de novo nucleation model,
formins (Pellegrin & Mellor, 2005; Schirenbeck et al., 2005; Yang
et al., 2007; Block et al., 2008) or VASP tetramers, particularly when
clustered along the plasma membrane (Breitsprecher et al., 2008,
2011; Hansen & Mullins, 2010), may be responsible for promoting
filopodial initiation. Also in this case, however, filaments must be
protected from cappers, which have been shown, in the case of the
capping protein (CP), to compete, either directly or indirectly, with
VASP as well as with formins for barbed-end binding (Breitsprecher
et al., 2008).
Actin-capping proteins appear to play a role in regulating lamel-

lipodia and filopodia formation in neurons. Gelsolin, for example,
which severs actin filaments in a calcium-dependent manner and caps
the plus ends of severed filaments, preventing the addition of actin
monomers, appears to function in the initiation of filopodial retraction
and in its smooth progression (Lu et al., 1997). Another example is
the actin-capping and regulatory protein Eps8, which is regulated,
unlike gelsolin, not by calcium levels, but by protein–protein
interactions and phosphorylation (see below). Eps8 is the prototype
of a family of proteins involved in the regulation of actin remodelling
(Offenhauser et al., 2004). It is able to activate Rac, which in turn
regulates the actin cytoskeleton. Moreover, Eps8 directly controls
actin dynamics and the architecture of actin structures by capping
barbed ends and cross-linking actin filaments, respectively (Croce
et al., 2004; Disanza et al., 2006). The barbed-end-capping activity of
Eps8 resides in its conserved C-terminal effector domain, and it is
functional when the protein is associated with Abi1 (Disanza et al.,
2004). Conversely, Eps8 must associate with insulin receptor tyrosine
kinase substrate of 53 kDa (IRSp53), also known as binding partner of
the brain-specific angiogenesis inhibitor 1 (Abbott et al., 1999; Oda
et al., 1999), to efficiently cross-link actin filaments (Disanza et al.,
2006). These multiple actin regulatory roles of Eps8 in vitro are
reflected by the observation that, in vivo, Eps8 is required for optimal
actin-based motility, intestinal morphogenesis, and filopodia-like
extension (Croce et al., 2004; Disanza et al., 2004 and 2006). In
hippocampal neurons, overexpression of Eps8 causes the formation of
flat, actin-rich protrusions along axons, which resemble lamellipodia
extensions; on the other hand, protein silencing leads to increased
filopodia formation in the axonal and dendritic compartments (Menna
et al., 2009; Fig. 2A). Using fluorescence recovery after photoble-
aching measurements of actin in developing neurons, which allows
measurement of fluorescence recovery as an indication of the
movement of fluorophores after perturbation by photobleaching, we
show here that the process of Eps8 removal is accompanied by an
alteration in actin dynamics at the growth cone, as indicated by the
reduction in the half-time of recovery (t1 ⁄ 2) after photobleaching
(Fig. 2B and C). Interestingly, the increased axonal filopodia forma-
tion in Eps8 null hippocampal neurons is significantly reduced upon
interference with VASP functions through dominant-negative ap-
proaches, suggesting functional competition between the capping
activity of Eps8 and the actin-regulatory properties of VASP (Menna
et al., 2009).

Capping protein
ATP-actin

Fascin

ADP-actin

Arp2/3 complex

Formin

Ena/VASP

Fig. 1. Actin-binding proteins regulate the equilibrium between lamellipodia
and filopodia. Left: the lamellipodial structure is maintained by the concerted
actions of actin-capping and branching proteins. Right: filopodia formation is
favoured by the removal of capping proteins and by the concomitant activity of
actin-cross-linking (bundling) proteins.
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The regulation of capping activity in filopodia formation:
intrinsic and extrinsic cues

In a simplified view, actin-capping proteins can be seen as inhibitors,
whereas bundling proteins are among the necessary components for
filopodia formation. Consistent with this picture, removal of CP, even
in non-neuronal cells, causes an increase in the number of filopodia
(Mejillano et al., 2004; Applewhite et al., 2007), whereas cells devoid
of the actin cross-linker fascin show a reduced amount of filopodia
(Vignjevic et al., 2006). Eps8 can efficiently cap barbed ends when
bound to Abi-1 (Disanza et al., 2004), whereas it cross-links actin
filaments, particularly when it associates with IRSp53, a potent
inducer of filopodia via its ability to bind actin filaments and deform
the plasma membrane (Scita et al., 2008). Consistent with its dual
function, the role of Eps8 in filopodia formation is cell context-
dependent. In HeLa and other epithelial cell lines, overexpression of
Eps8 promotes the formation of filopodia (Disanza et al., 2006),
whereas in primary hippocampal neurons, genetic removal of Eps8
increases the formation of axonal and dendritic filopodia (Menna
et al., 2009). By the use of a combination of in vivo and in vitro
experiments, together with a system of ordinary differential equations,
a mathematical model was recently generated that allowed us to
explain how filopodia are formed in different cellular contexts (Vaggi
et al., 2011). This study showed that the biochemical activities of
Eps8 as a capper and bundler are a function of the dynamic
interactions established by Eps8, IRSp53 and VASP with actin
filaments. Eps8 therefore represents a molecular switch in the
transduction of signalling, directing the cells towards either reduced
or increased formation of filopodia, mainly depending on the relative
concentrations of the components of the protein network underlying
filopodia formation (Vaggi et al., 2011).

One open question is how extracellular cues are translated into
changes in the protein network, which operate in a dynamic interplay
to control the actin cytoskeleton remodelling that is important for
filopodia formation. Different cues in the extracellular environment
have been found to modulate the dynamics of lamellipodia and
filopodia, inducing either increased protrusions or collapse (McAll-
ister, 2007; Lundquist, 2009; Mai et al., 2009; Valiente & Martini,
2009). However, the signalling pathways by which these stimuli
impact on actin dynamics are largely unknown. In sensory neurons,
nerve growth factor (NGF) promotes the formation of axonal filopodia
and branches. With the use of chicken sensory neurons and live
imaging of enhanced yellow fluorescent protein–actin dynamics, it has
been found that NGF induces the formation of microdomains of
phosphatidylinositol 3,4,5-trisphosphate and actin patches from which
filopodia could emerge. However, NGF does not directly promote the
emergence of filopodia from patches themselves (Ketschek & Gallo,
2010). The cytoskeletal proteins downstream of NGF–phosphoinosi-
tide 3-kinase signalling are presently not characterized, although the
bundling protein fascin might be implicated (Ketschek et al., 2011).
More detailed insights into the signal transduction process by which

an extracellular cue may regulate the formation of axonal filopodia
have been obtained for the neurotrophin brain-derived neurotrophic
factor (BDNF), a protein secreted by synaptic targets to modulate
neuronal survival and differentiation, and which induces filopodia
formation (Fass et al., 2004; Gehler et al., 2004; Chen et al., 2006). In
particular, a direct link between extracellular BDNF and axonal
filopodia formation was shown to involve Eps8 capping activity.
BDNF, through the activation of Trk receptor tyrosine kinases and
activation of mitogen-activated protein kinase (MAPK) signalling,
was found to induce phosphorylation of Eps8, thus inhibiting the

A B

C D

Fig. 2. Removal of capping proteins favours filopodia formation in neurons: the case of Eps8. (A) Increased number of filopodia in neurons from Eps8 knockout
(KO) mice relative to wild-type (WT) mice. Staining for the synaptic vesicle synaptobrevin is shown. Reprinted from Menna et al. (2009). (B) An axonal growth
cone of 6 days in vitro hippocampal neurons expressing yellow fluorescent protein–actin selectively photobleached by high-intensity laser light (514 nm).
Fluorescence recovery was followed by collecting images at rates of one image every 500 ms for 2.5 min. Scale bar: 5 lm. The red circle represents the region of
interest used for both the photobleaching and the fluorescence recovery analysis. For interpretation of color references in figure legend, please refer to the Web
version of this article. (C) Actin dynamics at the axonal growth cone are significantly accelerated in the absence of the actin-capping protein Eps8. Number of growth
cones: WT, 31; and and Eps8 KO, 25. (Mann–Whitney rank sum test, P = 0.017.) (D) Actin dynamics, measured at the axonal growth cone, are significantly
accelerated after BDNF treatment, which increases filopodia formation (see text for details). The increase in actin dynamics is prevented by treatment with the MAPK
blocker PD98059 (PD). Number of growth cones: control (CTR), 18; BDNF, 18; PD + BDNF, 16. (Kruskal–Wallis one way anova on ranks, P = 0.002).
*P < 0.05; **P < 0.01.
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capping activity of the protein and causing its subcellular redistribu-
tion away from actin-rich structures (Menna et al., 2009) (Fig. 3A).
Also, neuronal exposure to BDNF led to an alteration in actin
dynamics, that is, a reduction in the half-time of recovery, as revealed
by fluorescence recovery after photobleaching. The MAPK inhibitor
PD98059 completely prevented this effect (Fig. 2D). Therefore,
inhibition of actin-capping proteins and consequent alterations in
actin dynamics appear to represent key events in filopodia formation.
These data also open the possibility that, in response to an external
signal such as BDNF, asymmetric deactivation of Eps8 by MAPK on
one side of the cell or growth cone may lead to the formation of
polarized filopodial protrusions, resulting in altered outgrowth and
guidance (Lundquist, 2009). Interestingly, the NGF and BDNF
pathways might work in concert, promoting, respectively, the
matching between the formation of actin patches and the rate of
emergence of filopodia from patches. On the other hand, lack of
MAPK activation could decrease the possibility of filopodial extension
from actin patches that are formed through the action of phosphoino-
sitide 3-kinase (Ketschek et al., 2011).

Loss of filopodia impairs neuritogenesis: involvement of
actin-capping and anti-capping proteins

In recent years, the concept has clearly emerged that the formation of
axonal filopodia represents the first step in neuritogenesis. Neurito-
genesis and collateral branching, that is, the processes by which
postmitotic neurons extend long primary axons towards targets to
form appropriate connections, are crucial processes for correct wiring
of the brain and for the generation of appropriate synaptic networks
(Garner et al., 2006; Korobova & Svitkina, 2008). Ena ⁄ VASP family
proteins bind actin and regulate the assembly of F-actin networks by
antagonizing actin-capping proteins, by enhancing processive elonga-
tion, and by promoting the clustering and convergence of filaments at
their barbed ends (Bear et al., 2002; Krause et al., 2003; Applewhite
et al., 2007; Breitsprecher et al., 2008, 2011; Hansen & Mullins,
2010). Notably, loss of the anti-capping proteins Ena and VASP

causes a striking reduction in filopodia formation in stage 1 cortical
neurons. Failure to form filopodia in Ena ⁄ VASP-deficient neurons
induces a neurite initiation defect and blocks axon fibre tract formation
in the cortex (Kwiatkowski et al., 2007). Therefore, reduction of
filopodial extension, resulting from loss of Ena ⁄ VASP, may be the
primary cause of the block in neuritogenesis. Interestingly, neurito-
genesis in Ena ⁄ VASP-null neurons could be rescued by restoring
filopodia formation through ectopic expression of the motor protein
myosin X or the actin-nucleating protein mDia2, or by plating cells on
the extracellular matrix protein laminin, which promotes the formation
of filopodia-like actin-rich protrusions (Dent et al., 2007). These latter
observations indicate that there are multiple and possibly independent
molecular mechanisms to promote filopodial extension. In the same
study, the authors also showed that neurite initiation requires
microtubule extension into filopodia, suggesting that interactions
between actin filament bundles and dynamic microtubules within
filopodia are crucial for neuritogenesis (Dent et al., 2007). This is in
line with the concept that actin bundles within filopodia serve as tracks
for microtubule exploration (Schaefer et al., 2002) and that neurite
formation occurs when actin filaments are destabilized, filopodia are
extended, and microtubules invade filopodia (Georges et al., 2008).
Therefore, a failure in filopodia formation may lead to a secondary
defect in the microtubule-dependent functions required for neurito-
genesis. At least one of the molecular components mediating the
interaction between microtubules and filopodial F-actin has been
identified as drebrin, an F-actin-associated protein that binds directly
to the microtubule-binding protein EB3. Indeed, when this interaction
is disrupted, the formation of growth cones and the extension of
neurites are impaired (Geraldo et al., 2008). Whereas loss of anti-
capping proteins impairs neuritogenesis, the genetic absence of actin-
capping proteins enhances neuritogenesis. This has been shown in
Eps8-deficient neurons, which, in culture, show a significantly higher
number of neurites (Fig. 4). Thus, actin-capping and anti-capping
proteins, through modulation of filopodia formation, appear to play a
crucial role in neuritogenesis.

From filopodia to synapses: actin-capping and
anti-capping proteins at neuronal contacts

Filopodia are thought to play an active role in synaptogenesis; in fact,
they appear to guide the coordinated growth of presynaptic and
postsynaptic partners (Dailey & Smith, 1996; Ziv & Smith, 1996;
Fiala et al., 1998; Dunaevsky et al., 1999; Okabe et al., 2001; Evers
et al., 2006). This concept is particularly well established in the case
of dendritic filopodia, which participate in synaptic contact formation.
These protrusions switch to more stable dendritic spines through the
actions of synapse-inducing factors and neuronal activity (Jontes &
Smith, 2000; Bhatt et al., 2009; Hotulainen et al., 2009; Hotulainen
and Hoogenraad, 2010). Although less well investigated, axonal
filopodia, which emerge from the shaft of axonal branches and contain
small synaptic vesicle clusters, are also thought to be involved in
initiating synapse formation (Chang & De Camilli, 2001). Accord-
ingly, the actin-based motility of axonal filopodia is inversely
correlated with contact with postsynaptic targets (Tashiro et al.,
2003), whereas the emergence of axonal filopodia from varicosities
enriched in synaptic vesicles favours assembly of the neuromuscular
junction (Li et al., 2011).
Recent data have provided further evidence to support the long-

standing concept that control of filopodia motility and number is only
one aspect of establishing a synapse. Indeed, the extension of
filopodial protrusions must be followed by the establishment of a

Fig. 3. Neurotrophic factors may control filopodia formation by regulating
actin-capping proteins. A model depicting the effect of BDNF in regulating
filopodia formation is shown. The neurotrophin, through MAPK activation,
phosphorylates Eps8, inducing its detachment from actin barbed ends. This
leads to actin elongation and filopodia formation. PPP, phosphorylation.
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transcellular interaction to stabilize the nascent contact. The two
processes may be concomitantly controlled, as in the case of EphB,
which, by increasing dendritic filopodia motility to initiate presynaptic
and postsynaptic contact and by stabilizing nascent synapses through
trans-synaptic interactions, mediates a filopodia-based synaptogenesis
process (Ethell et al., 2001; Kayser et al., 2008). Arstikaitis et al.
(2011), using a filopodia-inducing motif that is found in growth-
associated protein-43, found enhanced filopodia numbers and motility,
but a reduced probability of the formation of a stable axon–dendrite
contact; conversely, expression of neuroligin-1 results in a decrease in
filopodia motility, but an increase in the number of stable axonal
contacts. Hence, enhancing filopodia formation and mobility may not
necessarily lead to more stable axon–dendrite contacts. Rather, the
production of stable synapses seems to be dependent on key members
of the postsynaptic scaffolding complex (Arstikaitis et al., 2011).

It is presently not clear whether actin-capping and anti-capping
proteins control the process of synaptogenesis from filopodia,
modulating either their density or stability. Notably, however, actin-
capping and anti-capping proteins have been recently detected in
dendritic spines. Platinum replica electron microscopy analysis has
recently revealed that spine heads are characterized by a branched
actin filament network containing the Arp2 ⁄ 3 complex and actin-
capping proteins, a cytoskeletal organization resembling the conven-
tional lamellipodial structure (Hotulainen & Hoogenraad, 2010).
Notably, the actin-capping protein CP, a regulator of actin filament
growth, has been found recently to be essential for spine development
and maturation, leading to functional synapses (Fan et al., 2011).
Presynaptic boutons, as well as spine necks and bases, also contain a
very similar branched network of actin cytoskeleton (Korobova &
Svitkina, 2010). Furthermore, it has been found that the anti-capping
protein VASP is enriched in spine heads and synapses (Lin et al.,
2010). VASP expression increases the size of the spine head and
results in a significant increase in the amount of actin filaments and
uncapped barbed ends available for further actin polymerization in
spines (Lin et al., 2010). Ena ⁄ VASP was identified as a protein kinase
A effector downstream of syndecan-2; in particular, syndecan-2 was
found to activate, via neurofibromin, protein kinase A, which in turn
phosphorylates Ena ⁄ VASP, thus promoting filopodium and spine
formation (Lin et al., 2007). Interestingly, in spines, VASP elevates
the amount of postsynaptic density scaffolding proteins, including
PSD95, Homer, and Shank, and increases the number and retention of
glutamate receptor type 1-containing AMPA receptors, thus ultimately

potentiating AMPA receptor-mediated synaptic transmission (Takah-
ashi et al., 2003; Lin et al., 2010).
Notably, using fimbria–fornix transection as a model of memory

deficit, coupled with a proteomic approach, Kitanishi and coworkers
identified the F-actin-capping protein CapZ (Schafer & Cooper, 1995)
among the candidate proteins showing a reduction in level after
fimbria–fornix transection. CapZ, which has been previously shown to
regulate growth cone morphology and neurite outgrowth in cultured
hippocampal neurons (Davis et al., 2009), was detected in dendritic
spines of neurons in vitro, where its expression was reduced after
silencing of neuronal activity by tetrodotoxin. Accordingly, unilateral
administration of high-frequency stimuli to the medial perforant path
in awake rats increased CapZ immunoreactivity (Kitanishi et al.,
2010). Activity-dependent CapZ accumulation supported a possible
role for the protein in the regulation of actin dynamics in response to
synaptic inputs and eventually in synaptic plasticity. All together,
these data suggest that regulation of capping activity is involved in

A B

Fig. 4. Removal of the capping protein Eps8 enhances neuritogenesis. (A) bIII-tubulin staining of wild type (WT) and Eps8 knockout (KO) neurons reveals that
protein removal induces a significant increase in neurite formation (reprinted from Menna et al., 2009). (B) Cumulative analysis of neurite number in WT and Eps8
KO mice (Kolmogorov–Smirnov test, P = 0.001).

AMPA receptors

NMDA receptors

Arp2/3 complex

Capping proteins

Postsynaptic density

Fig. 5. Actin-capping and branching proteins in spine enlargement. The model
depicts the possible involvement of actin-capping and branching proteins in
favouring the spine head enlargement that occurs during long-term potentiation
(based on Tada and Sheng, 2006; Hotulainen and Hoogenraad, 2010).
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synapse formation and postsynaptic stabilization, as well as in spine
plasticity processes (Fig. 5).

Conclusions and perspectives

Actin-capping and anti-capping proteins are crucial regulators of actin
dynamics. Recent studies have indicated that these proteins may be
heavily involved in all stages of synaptogenesis, from the emergence
of filopodia in developing neurons, through the processes of
neuritogenesis and contact stabilization, to the structural changes
occurring at the synapse during plasticity phenomena. In recent years,
it has become evident that many psychiatric disorders, in particular
autism and mental retardation, are accompanied by alterations in spine
morphology and synapse number (Comery et al., 1997; Irwin et al.,
2001; Bourgeron, 2009; Pfeiffer & Huber, 2009; Hutsler & Zhang,
2010; Pfeiffer et al., 2010). It is expected that future genetic studies
will identify new mutations in actin-capping and anti-capping proteins
that, by altering either the process of filopodia-driven synaptogenesis
and ⁄ or spine actin regulation, may result in abnormalities of spine
morphology and synapse dysfunction.
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