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ABSTRACT  

Multiple myeloma (MM)  is an incurable hematological tumor stemming 

from malignant plasma cells. Similarly to normal plasma cells, MM cells 

accumulate in the bone marrow (BM) where they establish complex 

interactions with normal BM stroma, which promote tumor survival and 

bone disease due to unbalanced bone deposition and resorption.  

The Notch family of receptors consists of 4 isoforms that, once activated, 

act as transcription factors. The activation is triggered by membrane-bound 

ligands (Jagged1-2 and DLL1-3-4). Notch has a key role in the regulation of 

proliferation, survival, differentiation and stemness in various tissues and 

tumors. Notch receptors and ligands are deregulated in MM and this 

signaling system may play a role in the pathogenesis of MM by modulating 

tumor cell biology, as well as their pathological interactions with the BM 

niche. Specifically, the myeloma-associated alteration of Notch signaling 

mainly consists in the aberrant expression of two Notch ligands, Jag1 and 

Jag2, by tumor cells resulting in Notch signaling activation in both tumor 

cells and the surrounding cells of the bone niche.  

Notch mediated signals have been reported to play a role in MM-induced 

osteoclasts activity and the release of tumor promoting factors by stromal 

cells. 

This work unequivocally demonstrates that Notch signaling drives MM cell-

induced osteoclastogenesis. The underlying molecular mechanisms is 

based on: 1) Notch signaling-dependent MM cell ability to promote the 

release of the osteoclastogenic receptor activator of NF-B ligand 

(RANKL), 2) Notch2-mediated transcription of osteoclastogenic master 

genes, such as Tartrate-resistant acid phosphatase (TRAP) and Receptor 

Activator of Nuclear Factor κ B (RANK), within osteoclast precursors. 
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Notch2 signaling activation, occurring upon RANKL stimulation, results to 

be necessary for osteoclastogenesis completion, and further boosts the 

differentiation by promoting an autonomous secretion of RANKL by 

osteoclasts.  

Finally, the most crucial finding of this study is that MM-induced 

osteoclastogenesis could be disrupted by silencing in MM cells two of the 

Notch ligands, Jag1 and 2,. These results make Jag1 and Jag2 new 

promising therapeutic targets to hamper MM-associated bone disease and 

co-morbidities, lacking the toxicity of the currently used drugs which affects 

the whole Notch pathway.  

 

RIASSUNTO 

Il mieloma multiplo (MM)  è un tumore ematologico incurabile che ha 

origine da plasmacellule maligne. Analogamente alle plasmacellule sane, le 

cellule di MM si accumulano nel midollo osseo, dove stabiliscono una serie 

di complesse interazioni con lo stroma midollare. Queste interazioni 

promuovono la sopravvivenza delle cellule maligne e lo sviluppo di 

un’osteoporosi diffusa, causata dallo sbilanciamento tra il riassorbimento e 

la deposizione ossea.  

La famiglia dei recettori Notch comprende 4 diverse isoforme che, una volta 

attivate, agiscono da fattori di trascrizione. L’attivazione di questi recettori è 

mediate da ligandi di membrana (Jag1-2 e DLL1-3-4). Notch ha un ruolo 

chiave nella regolazione di proliferazione, sopravvivenza, differenziamento 

e staminalità in diversi tessuti normali e neoplastici. Nel mieloma il pathway 

di Notch è deregolato sia a livello dei ligandi che dei recettori.  

Il signaling di Notch può avere un ruolo nella patogenesi del MM non solo 

influenzando le funzioni della cellula tumorale, ma anche le interazioni 

patologiche tra questa ed il microambiente midollare. Nello specifico, le 
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alterazioni del pathway di Notch associate al mieloma consistono 

nell’iperespressione di due dei ligandi di Notch, Jag1 e Jag2, da parte delle 

cellule tumorali. Questo causa un’alterazione nell’attivazione di Notch sia a 

livello delle cellule tumorali che delle altre componenti cellulari del midollo 

osseo. 

Recentemente è stato riportato un coinvolgimento di Notch nell’incremento 

dell’attività osteolitica associata al mieloma e nel rilascio da parte delle 

cellule stromali di fattori solubili che supportano il tumore.  

Questo lavoro di tesi dimostra in modo inequivocabile che Notch guida 

l’osteoclastogenesi indotta dalle cellule di mieloma. Il meccanismo alla 

base di questo processo si fonda su: 1) l’induzione da parte della via di 

Notch della capacità delle cellule di mieloma di rilasciare Receptor Activator 

of NF-B Ligand (RANKL), 2) il ruolo di Notch2 nel promuovere la 

trascrizione da parte dei precursori degli osteoclasti di geni chiave nel 

processo differenziativo quali Tartrate-Resistant Acid Phosphatase (TRAP) 

e Receptor Activator of Nuclear Factor-κB (RANK). In particolare 

l’attivazione di Notch2 in seguito alla stimolazione con RANKL è necessaria 

per una completa osteoclastogenesi e promuove ulteriormente il 

differenziamento stimolando la secrezione autonoma di  RANKL da parte 

degli stessi osteoclasti.  

Ma la scoperta più rilevante di questo studio è che l’osteoclastogenesi 

indotta dal MM può essere inibita silenziando due ligandi di Notch, Jag1 e 

Jag2. I risultati che ho prodotto suggeriscono come Jag1 e Jag2 siano due 

nuovi e promettenti target terapeutici nel trattamento del danno osseo 

causato dal MM e della comorbidità ad esso associata. Questo tipo di 

approccio, inoltre, presenterebbe una ridotta tossicità rispetto ai farmaci 

correntemente usati che agiscono bloccando contemporaneamente tutte le 

isoforme di Notch.   
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CHAPTER 1 

THE NOTCH PATHWAY 

 

1.1 INTRODUCTION 

 

The first studies on  the Notch oncogene date back to 1919, when T. H. 

Mohr identified a strain of haploinsufficient Drosophila characterized by 

wings with irregular margins (Notched). The gene responsible for this 

phenotype was cloned in 1985 and is known as Notch  (Grimwade et al., 

1985). 

In humans, as well as other mammals, the Notch gene family includes a 

total of four highly homologous sequences Notch-1, Notch-2, Notch-3, 

Notch-4, mapping respectively on human chromosomes 9, 1, 19 and 6. The 

first human ortholog of Notch, Notch-1, was found in 1991 by LW Ellisen in 

T-ALL patients, carriers of the translocation t (7; 9) (q34; q34.3) and it was 

initially called TAN-1 (translocation-associated Notch homologue-1)(Ellisen 

et al., 1991).  

Subsequent studies demonstrating that the oncogene Notch regulates 

morphogenesis, proliferation, apoptosis and cellular differentiation and it is 

essential for embryonic development of multicellular organisms (Lai et al, 

2004). In mammals Notch seems to have a key role in the regulation of 

various processes such as neurogenesis, gliogenesis, myogenesis, 

vasculogenesis, hematopoiesis and development of the epidermis (Kopan 

and Ilagan, 2009). Notch, however, is also involved in the homeostasis of 

adult tissues promoting self-renewal of stem cells, determining cell fate 

(such as the commission towards the T or B lineage) and regulating the 

differentiation of many cell types. Because of its extensive involvement in 
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all these process, mutations or deregulation of Notch receptors and/or 

ligands are associated with the onset of various diseases, many types of 

cancer (breast, ovarian, prostate, cervical, skin, pancreas and liver cancer, 

neuroblastoma) including the T-cell leukemia (Notch-1)and multiple 

myeloma (Jag-2), in developmental disorders such as cerebral artery 

disease CADASIL (Notch-3) and in Alagille syndrome (Jag1) (Kopan and 

Ilagan, 2009). 

 

1.2 NOTCH RECEPTORS 

The Notch gene encodes for a transmembrane receptor whose structure is 

highly conserved during evolution (Lardelli et al., 1995; Maine et al., 1995) 

(Figure1.1). 

  

Figure 1.1 The oncogene Notch in invertebrates and vertebrates 

(Kopan and Ilagan, 2009). 
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The prototype of the Notch gene, the dNotch of Drosophila, encodes for a 

protein of 2703 amino acids with a molecular weight of 300 kDa. The 

mature form, expressed at the cell membrane, is an heterodimer consisting 

of two subunits associated by calcium-mediated covalent bonds: an 

extracellular subunit, involved in the interaction with the ligands, and an 

intracellular subunit, necessary for signal transduction (Blaumueller et al., 

1997; Logeat et al., 1998).  

NOTCH proteins extracellular domain (ED) contains (Kopan and Ilagan, 

2009): 

 29–36 tandem epidermal growth factor repeats (EGF-like repeats, ELR), 

required for the interactions with ligands;  

 a negative regulatory region (NRR), composed of three cysteine-rich Lin12-

NOTCH repeats (LNR), that prevents autonomous receptor activation; 

 a highly conserved heterodimerization domain of 100 amino acids, 

containing two cysteine, important for maintaining the receptor in an 

inactive conformation required for the dimerization. 

The citoplasmatic region consisted of: 

 6 repeats of the cdc10/ankirina (ANK) domain, important for  the interaction 

with several proteins (like Deltex and Mastermind); 

 a high affinity binding module called RAM [RBPjκ (recombination signal 

sequence-binding protein Jk) association module] formed by 12–20 amino 

acids. The RAM domain, together with the ANK repeats, interacts with the 

transcriptional complex CSL and mediates the signaling transduction; 

 two sequences for the nuclear localization (NLSs); 

   a transactivation domain (TAD), important for the transcriptional activation; 

   a  PEST domain (proline/glutamic acid/serine/threonine-rich motif), that 

regulates the  receptor degradation. 
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Notch is synthesized in the endoplasmic reticulum as a single polypeptide 

(pre-Notch) with one extracellular and one intracellular domain. An 

unknown glucosyltransferase and the POFUT1 O-fucosiltransferase are 

necessary for the transport of pre-Notch from the endoplasmic reticulum to 

the Golgi apparatus where the serine and threonine residues in the EGF 

repeats are modified (Okajima et al., 2005). 

The first cleaved of the pre-Notch protein in the Golgi apparatus is 

mediated by a furin-like convertase and occurs within the HD domain, in the 

S1 cleavage site (70 amino acids from the transmembrane domain). This 

cleavage converts the pre-Notch polypeptide into the heterodimer 

NECD/NTMIC (Notch-extracellular domain/Notch transmembrane and 

intracellular domain) (Blaumueller et al., 1997; Logeat et al., 1998).  

The two subunits resulting from this process are brought to the plasma 

membrane as one heterodimer, held together by non-covalent calcium-

dependent interactions. 

 

1.3 NOTCH LIGANDS 

 

Notch activation is stimulated by the interaction with the ligands, which 

induce the proteolytic cleavages, the release of the cytoplasmic portion, 

and its translocation to the nucleus (Artavanis-Tsakonas et al., 1999).  

In vertebrates two closely related families of ligands are capable of 

interacting with Notch receptors: the Delta-like  ligands (DLL-1, -3, -4 and 

DLL-2 described only in Xenopus) and the Serrate-like ligands (Jagged1 

and 2) (Kopan and Ilagan, 2009) (Figure 1.2).  
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Figure 1.2 . Schematic representation of Notch ligands ((Kopan and 

Ilagan, 2009). 

 

The structure of all DSL ligands is very similar to the one of Notch receptors 

and consists of: 

• an extracellular domain containing from 2 to 16 EGFR in tandem; 

• a cysteine rich domain (CR) located between EGFR and the 

transmembrane domain (Lindsell et al., 1995; Shawber et al., 1996)). 

Experimental data suggest that this domain reduce ligand-receptor 

interaction (Fehon et al., 1990; Rebay et al., 1991); 
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• a characteristic EGF degenerate sequence at the N-terminal domain 

known as DSL, which is essential for the activation of Notch (Muskavitch, 

1994). 

• a cytoplasmic domain that plays a central role in the process of 

dimerization with the receptor. 

The interactions between Notch and its ligands can be complex.  

Indeed, some cells simultaneously express both the receptor and the ligands 

(Muskavitch, 1994). In vitro studies have shown that Notch and Delta can 

interact also when placed in cis (Fehon et al., 1991). The ability of  Delta to 

mediate an homotypic cell adhesion represents another level of complexity. 

In fact, based on the expression levels, the ligands might have an agonist or 

an antagonist action on Notch (Jacobsen et al., 1998). 

 

1.4 ACTIVATION AND SIGNAL TRANSDUCTION  

 

Upon ligand binding , Notch undergoes conformational modifications in the 

receptor which cause a sequence of proteolytic cleavages that result in 

Notch trans-activation (Mumm and Kopan, 2000). 

This process is characterize by two steps: 

 Following ligand binding, the endocytosis of the ligand–NECD complex 

induces the  unfolding of the juxtamembrane negative control region 

(NRR). The resulting conformational change in NRR exposes the site 2 

(S2) allowing access of the ADAM/TACE metalloprotease (Mumm and 

Kopan, 2000). ADAM proteases leaves a short-lived fragment called 

NEXT (Notch extracellular truncation) anchored to the plasma 

membrane. 

 NEXT becomes the substrate for the last cleavage: Notch intracellular 

fragment is recognized by the inactive aminopeptidase domain of 
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Nicastrin (NCT), which transfers NEXT to the active site of the enzyme 

γ-secretase, that operates the cleavage within the transmembrane 

domain. γ-secretase is an aspartyl-protease presenilin(s) complex 

composed by four core proteins: presenilin 1 or 2, anterior pharynx 

defective 1 (APH1), nicastrin and presenilin enhancer 2 (PEN2) (Francis 

et al., 2002). The γ-secretase cleavage may occur at the cell surface or 

in endosomal compartments, perhaps following mono-ubiquitination 

(Kopan and Ilagan, 2009). 

This γ-secretase-mediated processing, releases the Nβ peptide and 

various forms of ICN (Intracellular Notch): only those with a valine 

residue at the amino terminus (V1744) are able to escape the N-end-rule 

degradation pathway (Tagami,  2008) and translocate into the nucleus, 

where ICN interacts with the DNA-binding protein complex CSL [CBF-1 

(Cp-binding factor 1)/RBP-Jk] to activate the transcription of several 

target genes. 

Into the nucleus, in absence of activation by Notch, CSL acts as a 

transcriptional repressor due to its ability to bind several transcriptional co-

repressor complexes including SMRT (silencing mediator of retinoic acid 

and thyroid hormone receptor), histone deacetylase 1 (HDAC1), HDAC2, 

SHARP (SMRT/HDAC1-associated repressor protein), CIR1 (CBF1-

interacting co-repressor) and SKIP (ski-related protein) (Mumm and Kopan, 

2000). In the nucleus, ICN binds CSL through the RAM domain and the 

ANK repetitions and displaces the co-repressor complex by recruiting 

Mastermind-like proteins (MAMLs). After that, MAMLs recruit some 

transcriptional co-activators (CoA) as GCN5 and histone acetyltransferase 

such as SKIP and p300. These proteins form an high molecular weight 

transcriptional activation complex that converts CSL from repressor to 

activator (Mumm and Kopan, 2000).  
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At the end of signal transduction, ICN is degraded and the promoter comes 

back to an inactive state. 

The CSL-dependent signal seems to be responsible of most of Notch-

mediated effects, but biochemical data support the existence of a CSL-

independent pathway, whose function remains to be determined (Heitzler, 

2010).  

The CSL-independent pathway involves the regulation of the transcription 

of some genes by Deltex, a zinc-finger protein that interacts with the 

cytoplasmic ICN through the ANK repeats. Deltex is a positive regulator of 

the Notch pathway in Drosophila, but not in mammals. Although the exact 

mechanism of its action is unclear, it seems that Deltex antagonizes p300, 

reducing the transcription of particular genes and regulating different 

classes of transcription factors, including E47. It also appears that the 

expression levels of Deltex are self-regulated by ICN (Heitzler, 2010).  

Notch transcriptional activity can be further regulated by direct inhibitors of 

CSL such as KyoT2 and Hairless. Their interaction prevents ICN action 

leaving the promoter accessible to other transcriptional activators and thus 

leading to a different transcriptional activity (Kao et al., 1998). 

 



14 

 

 

Figure 1.3 Notch’s activation and signal transduction (Kopan and 

Ilagan, 2009).  

 

1.5 REGULATION OF THE NOTCH PATHWAY 

 

The Notch signaling is the result of a fine-tuned balance; both Notch and 

Notch ligands are in a dynamic equilibrium between a membrane pool and 

an intracellular vesicle pool, with a transition to an internalized pool upon 

interaction of adjacent cells. 

In the endoplasmic reticulum Notch, modified  in the EGF domains by the 

addition of fucose to serine (Ser) or threonine residues (Thr)  (O-fucose), 

may be further modified at the O-fucose by N-acetyl-

glucosaminyltransferase Fringe thus altering the ligand-receptor specificity. 
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These modification promotes the activation via Delta ligands and limits the 

Jag-mediated activation (Okajima et al., 2005).  

In the cytoplasm the Notch pathway is regulated by Numb and Deltex.  

Numb is an adapting  protein that participates at the cellular endocytosis in 

association with α-adapting and Exp-15. According to numerous studies in 

Drosophila and mammals, Numb may inhibit Notch function through several 

mechanisms: by interacting and activating Itch (a member of the Nedd4 

family of E3 ubiquitin-ligase), that promotes the polyubiquitination and the 

subsequent proteasomal degradation of ICN (Qiu et al., 2000); by 

promoting endocytosis of the S2-cleaved Notch before the release of ICN; 

by preventing membrane localization of the gene product Sanpodo, a 

transmembrane protein that promotes the Notch signaling. The role of  

Deltex in Notch regulation was discussed above.  

In the nucleus the Notch pathway is regulated by Sel-10, Mint and Nrap. 

Sel-10 is an E3-ubiquitin ligase which binds ICN and recruits the SCF 

complex (Skp1-Cullin-F-box), this complex ubiquitinates Notch and 

promotes its proteasomal degradation. The regulation by Sel-10 requires 

the presence of the PEST domain (Lai, 2002), which is 

hyperphosphorylated by the binding of MAML to p300 and to the cyclin-

dependent kinase 8 (CDK8) (Lai, 2002). Nrap (Notch regulated ankyrin 

repeat protein) can bind the ICN-CLS complex through two AKN repeats 

and may inhibit the complex and/or destabilize ICN (Lamar et al., 2001). 

Mint (MSX2-interacting nuclear target protein) inhibits the Notch pathway 

by preventing the binding of ICN to CSL and by blocking the transcriptional 

activation mediated by Notch (Lamar et al., 2001). 

The best known mechanism of Notch degradation is proteasome-

dependent and mediated by two E3 ubiquitin ligase, Itch and Sel-10, but 

the lysosomal way appears to be often preferred  (Jehn et al., 2002) In the 
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lysosomal degradation pathway, a key role is played by the ubiquitin ligase 

c-Cbl, which interacts with NOTCH after the tyrosine-phosphorylation of the 

PEST domain and directs the receptors to lysosomal degradation ( Jehn et 

al., 2002).  

Also, the endocytosis of the Notch receptor is tightly controlled in time and 

space: Numb, acts as a Notch inhibitor upstream of the γ-secretase 

cleavage, in cooperation with the AP2 component α-adaptin and NAK 

(Numb associated kinase). 

Notch ligands are also finely regulated. Probably, ubiquitynation allows their 

traffic into an endocytic compartment where ligands are modified, activated 

or re-inserted into specific membrane domains. Indeed, the localization of 

Notch ligands is important for an effective signaling and may be modulated 

(Kopan and Ilagan, 2009). 

 

In addition to trans-activating Notch–ligand complexes, when binding 

occurs between Notch and ligand expressed on the same cell surface the 

receptor can form cis-inhibitory complexes. This cis-inhibition limits the 

areas of Notch activity and determines whether a cell will signal (the ligand 

is more abundant than Notch) or receive (Notch is more abundant than the 

ligand) (Sprinzak et al., 2010). Alternatively, in some cases ligands and 

receptors can be segregated into different subdomains to allow 

simultaneous transmission and reception of signals (Luty et al., 

2007)(fig.1.4). 

Some recent reports show that ligands also undergo proteolysis and 

release ligand intracellular domain (LICD) which antagonizes Notch 

signaling by mechanisms as yet unclear (LaVoie and Selkoe, 2003). 
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Figure 1.4 Trans- and Cis-activation of Notch.  

 

1.5 NOTCH TARGET GENES 

Although signals mediated by Notch receptors may have several outcomes, 

only a fairly limited set of Notch target genes have been identified in various 

cellular and developmental contexts. 

The most extensively studied and best understood targets are Hairy and 

Enancer of Spleet in Drosofila and the related genes Hes and Hey in 

mammals. In mammals genome seven Hes (Hes 1-7) and three Hey (Hey 

1, 2, L) genes have been identified. HES and HEY are helix-loop-helix 

transcription factors that act as transcriptional repressors and play an 

important role in development.  

CD25 (IL2-R and preT, pre-T-cell receptor alphachain) and the 

transcription factor GATA3 are direct Notch target genes activated in T-cell 

development. Further Notch targets are Myc, CyclinD1, p21/Waf1, Bcl2, 

E2A, HoxA-5 -9 -10, NF-B2, Ifi-202, Ifi-204, Ifi-D3, and ADAM19. Two 
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other Notch target genes, NRARP and Deltex1, are shown to be negative 

regulators of Notch signaling itself and Notch1 and Notch3 have been 

reported as Notch itself target genes (Borggrefe and Oswald, 2009). 

  

1.6 NOTCH SIGNALING IN CANCER  

Given the range of processes that require normal Notch signaling, it is not 

surprising that a number of human diseases and cancer are caused by 

mutation or deregulation of different components of this pathway. In table 

1.1 there are some examples of malignances in which Notch or its ligands 

are involved. 

 

1.6.1 Notch as an oncogene 

Notch deregulation is involved both in solid tumors as breast cancer, skin 

cancer, neuroblastomas, prostate cancer and cervical cancer (Allenspach 

et al., 2002), and in non-solid malignancies, such as leukemia (Weng and 

Aster, 2004) and multiple myeloma (Jundt et al., 2004). 

From 90’s to nowadays Notch signaling aberrations have been shown to be 

linked with several hematological malignancies such as T-cell acute 

lymphoblastic leukemia (T-ALL), acute myeloid leukemia (AML), lymphoma 

and multiple myeloma (MM).  

The main oncogenic role of Notch can be found in T-ALL, an aggressive 

neoplasm of immature T-cells. Indeed, approximately 60% of T-ALL cases 

display activating Notch mutations (Weng and Aster, 2004).  

The role of Notch signaling in AML is less clear than in T-ALL. Activating 

mutations of Notch have been reported but they seems to be a rare event 

(Palomero et al., 2006). Chiaramonte and colleagues demonstrate that 

AML primary sample show high levels of Jag-1 expression, despite low 
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Notch-1 pathway activation (Chiaramonte et al., 2005), thus suggesting a 

Notch-independent pathway driven directly by the Jag-1 ligand (Ascano et 

al., 2003). 

Regarding B-cell malignancies, Notch deregulation has been detected in 

Hodgkin’s lymphoma, large B-cell lymphoma, Burkitt’s lymphoma, B-cell 

chronic lymphocytic leukemia, diffuse large B-cell lymphoma, primary 

effusion lymphomas associated with Kaposi’s sarcoma herpes virus 

infection and in multiple myeloma (Mirandola et al., 2013). 

The role of Notch in MM will be discussed in the following chapter. 

The second most compelling evidence for a Notch oncogenic function 

comes from studies of breast and cervical cancer as well as melanoma. 

Molecular analysis reveal that Notch4 overexpression activates TGF-β and 

HGF signaling and promotes tumor invasion in the majority of breast ductal 

carcinoma in situ lesions (Meurette et al., 2009). 

A role for aberrantly active Notch signaling has been proposed in cervical 

cancer, largely due to observation of intensive Notch 1 and 2 protein 

accumulation as well as consistent expression of Jag1 in which two 

oncogenic effector mechanisms are triggered by Notch: activation of 

PI3K/AKT pathway and up-regulation of Myc (Maliekal et al., 2008). 

The Notch signaling is also up-regulated in primary human melanomas: the 

pro-oncogenic role of this receptor is linked with the activation of WNT 

signaling and to the promotion of N-cadherin expression(Koch and Radtke, 

2007). 

 

1.6.2 Notch as a tumor suppressor 

 

The most emblematic example of Notch as a tumor suppressor comes from 

studies on the skin. The tumor suppressive effect of Notch 1 in the 
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epidermis is mediated by the induction of p21 (that blocks the cell cycle) 

and by the suppression of Wnt/β-catenin, leading to terminal differentiation 

by withdrawal of proliferating cell from the cell cycle (Rangarajan et al., 

2001). 

 

 

Table 1.1  Involvement of aberrant NOTCH signaling in a wide variety of 

cancers. NOTCH signaling may act as a tumor suppressor or a promoter 

depending on the cell type and cell context (Yin et al., 2010). 
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CHAPTER 2 

MULTIPLE MYELOMA 

 

 

2.1 INTRODUCTION 

 

Multiple myeloma (MM) is a malignant plasma cell disorder  accounting for 

approximately 10% of all hematologic cancers.  

This pathology is characterized by malignant plasma cells accumulations in 

the bone marrow (BM) associated to the aberrant production of Ig, usually 

monoclonal IgG or IgA. MM is also characterized by skeletal destruction, 

renal failure, anemia, and hypercalcemia.  Although the recent advances in 

the therapeutic treatment, including the use of thalidomide and new drugs 

such as Bortezomib and CC-5013, MM is still incurable, with a median 

survival of 3-4 years after diagnosis (Kyle and Rajkumar, 2004). 

The first pathogenetic step in the development of multiple myeloma is the 

emergence of a limited number of clonal plasma cells, clinically known as 

MGUS.  Patients with MGUS do not have symptoms or evidence of end-

organ damage, but they have an annual risk of progression to multiple 

myeloma or  related disorder of 1% (Bergsagel and Kuehl, 2005).  
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Figure 2.1 Stages of the disease and chronology of the oncogenics 

events  (Bergsagel and Kuehl, 2005). 

The progression of MGUS to myeloma is characterized by complex genetic 

events occurring in the neoplastic plasma cell (Figure 2.1). Changes also 

occur in the bone marrow microenvironment, including the suppression of 

cell-mediated immunity and the development of paracrine signaling loops 

involving cytokines such as interleukin-6 (IL-6) and vascular endothelial 

growth factor (VEGF) that promotes both angiogenesis and 

osteoclastogenesis (Bergsagel and Kuehl, 2005).  

The development of bone lesions in MM is thought to be related to an 

increase of RANKL  (receptor activator of nuclear factor-κB ligand) 

expression by osteoblasts and to a reduction in the level of its decoy 

receptor, osteoprotegerin. This increase in the ratio of RANKL to 



23 

 

osteoprotegerin results in activation of osteoclasts and bone resorption. 

Overexpression of RANKL is probably mediated in part by the release of 

macrophage inflammatory protein (MIP) 1α by neoplastic plasma cells, and 

in part by the IL6-VEGF loop (Roodman, 2010a).  

The interactions between myeloma cells, bone marrow stromal cells, and 

microvessels contribute to the persistence of the tumor and to its drug 

resistance.  These interactions involves the bone marrow stromal cells 

(BMSC) and others normal constituent of the bone marrow fibroblasts, 

osteoclasts, osteoblasts, endothelial cells and adipocytes (Mitsiades et al., 

2006). 

 

2.2 PATHOGENESIS 

MM and non-IgM MGUS are exclusively post-germinal center (GC) tumors 

that have phenotypic features of plasmablasts (PB)/long-lived plasmacells 

(PC) and usually are distributed at multiple sites in the BM. The events that 

initiate myeloma transformation are unknown.  

The  GC or post-GC B cells have modified immunoglobulin (Ig) genes  due 

to sequential rounds of somatic hypermutation and antigen selection, and 

sometimes to IgH switch recombination. 

These two B cell–specific DNA modification processes, which occur mainly 

in GC B cells, sometimes can cause mutations or double-strand DNA 

breaks in or near non-Ig genes, including oncogenes like c-Myc, Ras, p53 

and some genes of the Rb pathway, and genes involved in the regulation of 

the cell cycle, such as, for example, cyclins.   

 A failure to repair the double strand brakes can lead to mutation and 

neoplastic transformation. 
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Post-GC B cells can generate PBs that have successfully completed 

somatic hypermutation, antigen selection, and IgH switching before 

migrating to the BM, where stromal cells enable terminal differentiation into 

long-lived PCs. 

A critical feature shared by MGUS and MM is an extremely low rate of 

proliferation, usually with no more than a small percentage of cycling cells 

until late stages of MM.  

This implicates the existence of a malignant, self-renewing precursor cell as 

a result of oncogenic transformation and selection, but this population has 

not yet been identified.  

 
Two kinds of cell populations are known in non-IgM MGUS or MM tumors: 

 a small fraction of proliferative tumor cells have a phenotype that is 

similar to a PB or a pre-PB that might express some B-cell markers 

(CD19, CD20, CD45) but not some PC markers (CD138) 

 non-proliferative cells that are not differentiated  but have a 

phenotype similar to healthy, terminally differentiated, long-lived BM 

PCs. It is unclear if this second cell population retains the ability to 

revert to a proliferative phenotype.  

Only a small number of tumor cells are detectable in peripheral blood. 

These cells represent an upstream population of late-stage B cells that may 

be a drug resistant reservoir of myeloma precursors, capable of expanding 

and differentiating into a malignant PC tumor (Bergsagel and Kuehl, 2005). 

Clearly, the different nature of tumor cells found in MM supports the 

hypothesis of a complex multi-step transformation process, in which the 

malignant clones arise from a differentiation process closely tied to the 

normal B-cell differentiation pathway. 
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The first step of this multistep transformation process seems to be 

immortalization. The malignant PCs observed in MM are localized to the 

BM in the earlier stages of the disease and most closely resemble long-

lived PCs. These cells have undergone antigen selection outside the BM, 

as evidenced by their isotype-switched and somatically hypermutated Ig 

genes. 

Despite their similarities to long-lived PCs, myeloma cells have significantly 

lower rates of Ig secretion compared with normal PCs. Therefore, it 

appears that the critical neoplastic transformation events take place after or 

do not interfere with most of the normal B-cell differentiation process, 

leading to long-lived PCs  (Davies et al., 2003). 

During the development of the pathology the tumor cells depend on the 

bone marrow microenvironment, which provides the signals essential for 

their growth and survival (Vande Broek et al., 2008) (Figure 2.2). 

Once immortalized, myeloma cells are necessarily resident in the BM, as 

early tumor growth is entirely dependent on the BM niche, especially from 

the paracrine support of IL-6 provided by BMSCs. 

Bone marrow angiogenesis significantly increases in the advanced stages 

of monoclonal gammopathies end it has been hypothesized that also the 

dysregulation of various cytokines and growth factor might be involved in 

the transition from MGUS to MM. 

In the BM, direct cell–cell contact through integrins trigger MM cell growth, 

survival and drug resistance by inducing different pathways: 

Ras/MEK/MAPK, PI-3K/Akt/mTOR, JAK/STAT3 and IKK-a/NF-kB (Blade 

and Rosinol, 2008; Mitsiades et al., 2006). 

The interaction of MM cells with BMSCs is considered a critical component 

of the overall  network of biological relationships established between the 

malignant cells and their BM. 
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BMSCs are described as a heterogeneous compartment of mesenchymal 

cells with morphological features reminiscent of fibroblasts that are able to 

support normal hematopoiesis. 

So the support that BMSCs provide to MM cells in terms of their 

proliferation, survival and drug resistance may represent an abnormal and 

pathophysiologically unfavorable reprise of their intrinsic ability for providing 

support of normal hematopoiesis. For instance, adhesion  of MM cells to 

BMSCs via adhesion molecules such as VLA-4 and ICAM-1 enhances MM 

cell proliferation and viability through several complementary mechanisms, 

which include cell adhesion-mediated stimulation of intracellular signaling  

pathways in MM cells and increased paracrine (BMSC-derived) and/or 

autocrine (MM cell- derived) release of cytokines/growth factors in the BM 

that increase the resistance to apoptosis (Mitsiades et al., 2007). 

 
Figure 2.2 Bone marrow microenvironment and multiple myeloma 

cells (Balakumaran et al., 2010). 
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Another important feature of MM is the development of bone disease. MM 

cells must actively stimulate the recruitment of OCL precursors from the 

peripheral blood to the BM to induce osteolysis. Whereas a number of 

potential candidates have been suggested, recent studies suggest that the 

axis CXCR4/SDF1α is the best candidate for this role (Blade and Rosinol, 

2008). 

It has also been proposed that MM cells can stimulate RANKL expression 

in BMSCs and suppress OPG activity and stimulate  production of multiple 

pro-osteoclastogenic  cytokines in the BM. 

This large constellation of osteoclastogenic stimuli includes IL-6, IL-1a, IL-

1b, and IL-11;, chemokines such as MIP1a; TNF TNF-a, TNF-b and other 

soluble mediators, including  M-CSF, PTHrP, or VEGF activity of increased 

levels of cytokines such as  IL-6 (Colombo et al., 2013).  

 

2.2.1 GENETICS OF MULTIPLE MYELOMA (Fonseca et al., 2004) 

 

Multiple and complex chromosomal abnormalities are present in  the clonal 

plasma cells (PCs) of multiple myeloma. 

The rekindled interest in the role of specific genetic aberrations in the 

outcome of MM was sparked by reports showing clinical implication for 

karyotype abnormalities. MM is characterized by the frequent occurrence of 

aneuploidy, especially monosomies. The most common abnormalities are 

chromosome 13, 14, 16, and 22 monosomies and  chromosome 3, 5, 7, 9, 

11, 15, 19 and 21 trisomies. 

Globally, aneuploidy analysis segregates patients into two categories: 

hyperdiploid  and non-hyperdiploid (including hypodiploid, pseudodiploid, 

and near tetraploid). The nonhyperdiploid MM is characterized by a very 

high prevalence of IgH  translocations (85%),  while chromosome 13 
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monosomy and structural chromosome abnormalities are more common in 

patients with nonhyperdiploid karyotype. Deletions/monosomy of 

chromosome 13 are associated with a shorter survival. Translocations that 

involve both the immunoglobulin heavy-chain (IgH) and light-chain  (IgL) 

genes are implicated in the pathogenesis of MM/MGUS. Unlike other B-cell 

tumors, for MM there is a  marked diversity of chromosomal loci involved in 

immunoglobulin translocations. These include c-myc, FGFR3, c-maf and 

cyclin D3 that  taken together  are  involved in immunoglobulin 

translocations in 40% of MM tumors while approximately 20 –30%  have 

translocations that involve other chromosome partners that occur at a 

prevalence of  1% or less. IgH translocations may be primary genetic 

events but some variants will likely be progression events as secondary 

translocations. It has been proposed that most primary immunoglobulin 

translocations result from errors in B-cell-specific DNA modification 

processes, mostly IgH switch recombination or less often somatic 

hypermutation, and rarely VDJ recombination. These translocations are 

then predicted mostly to have translocation breakpoints within, or very near, 

IgH switch or J regions. By contrast, secondary translocations would not 

involve B-cell-specific DNA modification processes. The influence of IgH 

enhancers appears to extend over a long range, so after a traslocation 

oncogenes located hundreds of kilobases away from the enhancers can be 

under the influence of cis transcriptional up-regulation. It is not  clear 

whether IgH translocations or aneuploidy occurs first in the PC  neoplasms. 

Both genetic aberrations are seen in the very early stages  of the PC 

disorders and no clear pattern is evident. The high prevalence of 13 among 

patients with the t(4;14)(p16.3;q32) and t(14; 16)(q32;q23) suggests 

primacy for 13, but it is also possible that these IgH translocations allow 13 

to be “tolerated” by the cell. Other mutations detected in MM involved Ras 
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(35-50% of MM, but rare in MGUS, suggesting that this is a molecular 

marker if not causative in the progression from  MGUS to MM for some 

tumors), the inactivation of p53 by either deletion or mutation, inactivation 

of the tumor suppressors gene p16/INK4a in the Rb pathway, inactivation 

of PTEN and complex abnormalities of c-myc that correlate with  advanced 

stages of the disease.  

 

2.3 MM THERAPY AND DRUG RESISTANCE 

Initial treatment of multiple myeloma depends on the patient’s age and co-

morbidities. In recent years, high-dose chemotherapy with autologous 

hematopoietic stem-cell transplantation has become the preferred 

treatment for patients under the age of 65. Prior to stem-cell 

transplantation, these patients receive an initial course of “induction 

chemotherapy”, this treatment induces hematopoietic stem-cell migration 

from the BM to the peripheral blood vessels; then blood-forming stem cells 

are removed from the patient's blood by a process called leukapheresis and 

are preserved. 

After the high-dose chemotherapy stem cells are given back to the patient 

to reconstitute its BM. This treatment is not curative, but prolongs overall 

survival. Also allogeneic stem cell transplantation has the potential for a 

cure, but is only available to a small percentage of patients. 

MM may be treated with a variety of drugs, including chemotherapics (for 

example, Melpahalan), corticosteroids (Dexamethasone), 

immunomodulating agents (Lenalidomide and Talidomide), proteasome 

inhibitor (Bortezomib and Carfilzomib), or a combination of them. Novel 

biologically based treatments target not only the MM cell, but also MM cell-

host interactions and the BM microenvironment. 

http://en.wikipedia.org/wiki/Hematopoietic_stem_cell_transplantation
http://en.wikipedia.org/wiki/Hematopoietic_stem_cell_transplantation
http://en.wikipedia.org/wiki/Allogeneic_stem_cell_transplantation
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MM cells manifest intrinsic genetic mechanisms of drug resistance, (for 

example p53 mutations), or may acquire resistance following the exposure 

to conventional chemotherapeutic treatment. Furthermore, binding of 

multiple myeloma cells to extracellular matrix proteins induces cell-

adhesion-mediated drug resistance to conventional chemotherapy and 

cell–cell contact with accessory cells [bone marrow stromal cells (BMSCs), 

osteoclasts, osteoblasts and endothelial cells] and the secretion of growth 

factors (TGF-β) further induce transcription and secretion of cytokines, 

which in turn confers drug resistance (Hideshima et al., 2007). New 

therapeutic agents, such as Carfilzomib, can overcome intrinsic drug 

resistance, as well as CAMDR and the protective effects of cytokines, and 

induce multiple myeloma cell cytotoxicity in the bone marrow milieu. These 

agents can also overcome clinical drug resistance to conventional and 

high-dose chemotherapies(Mateos et al., 2013). 

 

2.4 NOTCH IN MULTIPLE MYELOMA 

 
Notch receptors (Notch 1,2,3) are expressed on primary MM cells, BMSC 

and osteoclast (OCL) and Notch ligands (Jagged1 and Jagged2) are 

expressed on MM and BMSC and are able to activate Notch signaling 

through homotypic as well as heterotypic interactions. Probably are these 

interactions that allow tumor growth and survival. 

Jagged1 (Jag1) and Jagged2 (Jag2) are overexpressed in myeloma cells 

because of promoter hypomethylation; this increased expression is related 

to the progression of the disease. 

Jag1 promotes proliferation and inhibits apoptosis of MM cells, while Jag2 

activates Notch signaling in BMSCs, leading to the secretion of interleukin-

6, VEGF and insulin-like growth factor-1 that activated the MAPK signaling 
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pathway, increasing angiogenesis and promoting tumor growth and survival 

(Houde et al., 2004). 

There is no evidence of a constitutive activation of Notch, suggesting that 

the increase of the Notch activity is caused by an overexpression of the 

receptor and his ligands. 

Activation of Notch, which takes place during the MM cell interaction with 

BMSC, may result in the accumulation of the Notch target gene Hes1, 

which functions as a transcriptional repressor for the pro-apoptotic genes. 

In MM cells Hes-1 is dose dependently downregulated upon Notch 

inhibition with γ-secretase inhibitors and concomitantly the proliferation rate 

of the MM cells was markedly reduced. 

Different studies confirm the ability of the GSI to specifically inhibit Notch 

signaling in MM cells (there is a decrease of the Hes1 expression, but not 

of unrelated genes, showing that the effect is not due to a general inhibition 

of transcription) and the safety of the treatment (the activity of CD34+ cells 

is unmodified). GSI rapidly and dramatically up-regulates the proapoptotic 

protein Noxa in MM cell lines and primary MM cells and the decrease of 

Hes1 expression causes an increase in the transcription of proapoptotic 

genes. Furthermore there are evidences that the inhibition of Notch 

signaling in MM cells may not only induce apoptosis of MM cells but may 

also substantially enhance the effect of chemotherapy (Nefedova et al., 

2008). 

A major hallmark of MM is the occurrence of severe bone lesions caused 

by the disturbed balance of OCL and osteoblast (OBL) activity. It is known 

that MM cells, growing within the BM in close contact to BMSCs, induce 

this imbalance. Moreover, the interaction with OCL further stimulates the 

growth of MM cells, thus generating a vicious circle of mutual activation 

between MM cells and OCL. 
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Some studies showed that Hes1 upregulation in OCL is accompanied by 

the increased tartrate resistant acid phosphatase-5 expression, indicative of 

higher OCL activity, suggesting an important role of Notch in the OCL/OBL 

imbalance. 

The treatment with γ-secretase inhibitors is able to reverse the process, 

restoring OBL activity . Particularly, GSI XII induces apoptosis of myeloma 

cells and dramatically improves the sensitivity of myeloma cells to 

chemotherapeutic drugs such as Doxorubicin and Melphalan, representing 

a promising strategy for therapeutic intervention in multiple myeloma . 

Taken together all these results suggest that the NOTCH pathway is a 

rational target for the therapy of multiple myeloma. 

However, the role of Notch in B-cell tumors remains controversial. Several 

studies suggested that constitutively active Notch signaling leads to growth 

inhibition and apoptosis in malignant B-cells (Morimura et al., 2000; 

Nefedova et al., 2004; Romer et al., 2003; Zweidler-McKay et al., 2005). 

Zweidler-McKay demonstrated growth arrest and/or apoptosis as functional 

consequences of NOTCH activation in 13 cell lines representing multiple 

subclasses of B-cell neoplasia (murine and human preB-ALL, human 

Hodgkin, biphenotypic mixed-lineage leukemia and MM cells lines). This 

effect was observed by both expression of a ICN as well as ligand-induced 

Notch signaling activation. Furthermore, all four Notch members were able 

to induce growth inhibition and apoptosis(Kannan et al., 2011; Zweidler-

McKay et al., 2005).  

The presence of conflicting data makes necessary further studies to 

characterize the role of Notch in the development and maintenance of this 

pathology. 
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CHAPTER 3 

THE BONE MARROW 

MICROENVIRONMENT IN MULTIPLE 

MYELOMA 

 

3.1 INTRODUCTION 

The close interaction between malignant cells and the local 

microenvironment where they reside is a feature that MM shares with a 

broad spectrum of solid tumors and hematological malignancies. The 

concept of tumor-microenvironment interplay can probably back up to “seed 

and soil” hypothesis by Stephen Paget in 1889.  

The bone marrow microenvironment consists of cellular and non-cellular 

elements. Cell components include hematopoietic stem cells (HSCs), 

progenitor cells, immune cells, erythrocytes, BM fibroblast-like stromal cells 

(BMSCs), vascular endothelial cells, osteoclasts and osteoblasts. The non-

cellular elements are represented by extracellular matrix (ECM) proteins, 

such as fibronectin, collagen, laminin and osteopontin.  
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Figure 1.1. interaction between malignant plasma cells and bone 
marrow in MM (Palumbo and Magarotto, 2011).  

 

The direct interaction of MM cells with BM microenvironment cells activate 

signaling pathway mediating growth, survival, drug resistance and the 

migration of MM cells, as well as osteoclastogenesis, angiogenesis and 

secretion of several soluble factors, such as interleukin 6 (IL-6), vascular 

endothelial growth factor (VEGF) ,stromal cell-derived factor 1 (SDF-1) and 

insulin-like growth factor (IGF1) (Colombo et al., 2013). Both homotypic and 

heterotypic adhesion of MM cells to either BMSCs or ECM are mediated 

through several adhesion molecules, i.e. CD44, very late antigen 4 (VLA-4), 
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VLA-5, intracellular adhesion molecule (ICAM-1), NCAM, syndecan 1 and 

MPC-1.  

In the following paragraphs we will focus on three key elements of the 

interaction between myeloma and BM niche: the adhesion molecules, the 

soluble factors and their receptors, angiogenesis and skeletal destruction. 

3.2 ADHESION MOLECULES 

Adhesion molecules on MM cells were identified about two decades ago, 

and specific role in their adhesive interaction with the ECM were attributed 

to integrins (Uchiyama, 1997). 

MM cells exhibit preferred adhesion to several ECM constituents, including 

laminin, collagens and fibronectin (FN), via β1 integrin-mediated adhesion. 

Integrins are heterodimeric cell surface receptors that mediate adhesion to 

the ECM and immunoglobulin superfamily molecules. They are essentially 

expressed by all cell types, including cancer cells (Neri and Bahlis, 2012). A 

wide range of integrins is expressed by MM cell lines and primary MM cells, 

but about their specific functional roles still little is known.  
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Figure 3.2. Adhesion molecules expressed by myeloma cells (Katz, 
2010).  

 

Others cell-surface molecules are involved in MM cells interactions with the 

bone marrow niche: one of the specific surface markers of MM cells is 

CD138, also identified as syndecan-1 (Khotskaya et al., 2009).  

Adhesion molecules are responsible for the development of MM cells 

resistance to front-line chemotherapeutic drugs, such as Melphalan 

(alkylating agent) and doxorubicin (anthracycline), thus leading to treatment 

failure. This phenomenon is referred as cell adhesion mediated drug 

resistance (CAM-DR), and it suppresses drug-induced apoptosis 

(Hazlehurst and Dalton, 2001). The proteasome inhibitor Bortezomib was 

shown to overcome CAM-DR by selectively downregulating VLA-4 

expression in MM cells (Noborio-Hatano et al., 2009).  
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3.3 SOLUBLE MEDIATORS 

Since MM mainly progresses in the bone marrow, signals from this 

microenvironment play a critical role in the maintaining plasma cell growth, 

survival, migration, drug resistance and angiogenesis Reciprocal 

interactions between PCs and BM cells, namely HSCs, stromal cells, 

osteoblasts, osteoclasts, vascular endothelial cells and immune cells are 

mediated by an array of cytokines and receptors. PCs in the BM secrete 

tumor necrosis factor-α (TNFα), transforming growth factor-β (TGF-β), 

VEGF, Angiopoietin-1, FGF-2 and matrix metalloproteases (MMPs). 

Moreover, the cell-cell interactions mediated by adhesion molecules 

between PCs and BM cell trigger transcription and secretion by the latter of 

cytokines, such as IL-6, VEGF, SDF-1 (CXCL12), Hepatocyte growth 

factor-scatter factor (HGF-SF) and IGF-1 (Colombo et al., 2013). 

The first cytokine described that placed the focus on BMSCs-MM interplay 

was probably IL-6: in 90’s it was known that IL-6 induces in vitro growth of 

freshly isolated MM cells and that MM cells express the IL-6 receptor (IL-

6R). Moreover, several MM cell lines have been described to be responsive 

and produce IL-6, thus leading to hypothesize an autocrine pattern. 

In the same years, many studies showed that BMSCs are the major source 

of IL-6 and that, although all human MM-derived cell lines express IL-6R 

mRNA, only a subset express IL-6 mRNA. In 1996, Chauhan and 

colleagues finally showed that adhesion of MM cell lines to BMSCs and 

BMSC lines resulted in significant increase in IL-6 secretion by BMSCs, 

thus supporting tumor growth (Chauhan et al., 1996). Noteworthy, through 

gene reporter assays, they also indicate involvement of NF-κB in regulation 

of IL-6 transcription triggered in BMSCs. Various soluble factors have been 
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shown to mediate IL-6 secretion by BMSCs or MM cells, e.g. IL-1α, IL-1β, 

TNFα and VEGF (Chauhan et al., 1996).  

In MM, VEGF is expressed and secreted by tumor cells as well as BMSCs. 

It induces proliferation through Raf-1-MEK-extracellular-signal-regulated 

protein kinase (ERK) pathway, it triggers migration of human MM cells 

through a protein kinase C (PKC)-dependent cascade (Podar et al., 2001) 

and it stimulates the expression of IL-6 by microvascular endothelial cells 

and BMSCs (Dankbar et al., 2000). 

TNFα is expressed by BMSCs and PCs in myeloma patients and it is 

known to be a strong mediator of inflammation and bone resorption. TNFα 

induces proliferation, the expression of ICAM-1, VCAM-1 and VLA-4 and 

MAPK/ERK activation in MM cells, while IL-6 secretion, NF-κB activation 

and expression of ICAM-1 and VCAM-1 in BMSCs (Hideshima et al., 2001) 

HGF-SF is a pleiotropic cytokine that induces complex biological responses 

in target cells, including motility and growth. Its biological effects are 

transduced via the transmembrane tyrosine kinase Met, while syndecan-1 

(CD138) strongly promotes HGF-induced signaling through Met, thereby 

acting as a co-receptor (Derksen et al., 2002). MM cell lines and BM 

plasma cells express both HGF-SF and its receptor Met (Borset et al., 

1996). 

MM is a tumor with a high ability to degrade the bone matrix thanks to 

matrix metalloproteases (MMPs) expression (Barille et al., 1997). MMPs 

are a family of zinc-dependent endopeptidases with proteolytic activity for a 

large range of components of the extracellular matrix (ECM).  MMPs are 

involved in physiologic ECM turn over, bone remodeling and angiogenesis, 

as well as in several pathologic processes, such as rheumatoid arthritis and 

tumor invasion. Human myeloma cells secrete constitutively MMP-9, while 
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BMSCs secrete MMP-1 and MMP-2, thus supporting the spreading of MM 

cells inside and outside the BM. 

Chemokines are a complex superfamily of small secreted proteins (6-

14kDa) that have many overlapping functions and are produced by a 

variety of cell types during the inflammatory response. These molecules 

play also different roles in physiological and pathological processes, for 

example, they have a key role in the angiogenesis regulation. 

Chemokines are classified into two groups: the CXC family (or α) and the 

family CC (or β). This distinction is based on the presence or absence of an 

amino acid (X) between the  first two cysteine residues at the N-terminal 

end. They bind to specific G-protein coupled seven-span transmembrane 

receptors (GPCRs). Most chemokines bind to multiple receptors, and the 

same receptor may bind to more than one chemokine. The chemokines 

functional classification includes three families: the constitutive or 

homeostatic chemokines (involved in physiological leukocyte migration), 

inflammatory or inducible chemokines (released following a damaging 

stimulus that generates an inflammatory response) and chemokines with 

homeostatic and inflammatory functions. 

Several chemokine systems had a role in MM development and 

progression. Among these the SDF1α/CXCR4 axis was reported as key-

regulator of MM cell homing, adhesion, growth and motility (Mirandola et 

al., 2013; Mitsiades et al., 2007). The axis CXCR4/SDF1α is also a strong 

candidate for regulating the mobilization and intravasation of primary 

cancer cells and their extravasation and formation of metastasis in bone 

because it is able to attract lymphocytes and monocytes and to retain these 

cells in the bone marrow environment (Colombo et al., 2013). 

Another chemokine axis involved in MM progression are the CCR1/CCR5 

systems. Indeed, CCR1, CCR5 and their ligand MIP1α can exert both a 
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direct effect on the MM cells and an indirect effect on the stromal cells. 

Over 70% of patients with multiple myeloma are characterized by high 

production of MIP1α  by tumor cells and it has been shown in vivo and in 

vitro that blocking activity of MIP1α in multiple myeloma cells reduces the 

ability to migrate in the bone marrow, the growth of tumor masses and bone 

destruction (Choi et al., 2003). 

 

3.4 ANGIOGENESIS 

MM cells depends from BM microvasculature for the appropriate supply of 

oxygen and nutrient. Moreover,  BM microvasculature provides to MM cells 

a route for homing and spreading. BM endothelial cells (BM-ECs) are also 

able to stimulate MM progression through direct cell contact or through  the 

production of soluble factors as or VEGF, basic fibroblastic growth factor 

(bFGF), MMP-2, MMP-9, monocyte chemoattractant protein-1 (MCP-1) (De 

Raeve et al., 2004). BM-ECs stimulation with VEGF results in the secretion 

of other factors relevant for MM cells, such as stem-cell factor (SCF), 

granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-6 

(Dankbar et al., 2000). Therefore, it is not surprising that BM angiogenesis 

is a key step in MM progression from MGUS, or non-active MM to active 

MM, and predicts poor survival in patients at diagnosis (Kumar et al., 2004).  

3.5 SKELETAL DESTRUCTION 

The cellular interplay between MM cells and BM microenvironment 

mediates the formation of bone lesions. MM growth is associated with 

increased numbers of osteoclasts and suppression of osteoblastogenesis 

in areas adjacent to tumor foci. These effects are frequently described to 

establish a “vicious cycle” between tumor cells and surrounding 
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environment: myeloma induces osteoclastogenesis and osteoclasts induce 

myeloma growth (Sezer, 2009). The molecular mechanisms by which 

myeloma cells stimulates osteoclasts activity are multifactorial and involve 

osteoclasts differentiation and survival factors that are produced by 

microenvironmental cells and myeloma cells. Several osteoclastogenic 

factors have been described to be involved in MM-induced osteoclasts 

activity: receptor activator of NF-κB ligand (RANKL), inflammatory protein-1 

alpha (MIP-1α) , SDF-1α, IL-3, IL-6 and TNFα. 

RANKL is a member of the tumor necrosis factor superfamily and is 

produced mainly by osteoblastic lineage cells and stromal cells. Its 

receptor, RANK, is expressed on the surface of osteoclasts precursors and 

mature osteoclasts. RANKL indices differentiation, formation, fusion and 

survival of preosteoclasts. Osteoprotegerin (OPG) is a decoy receptor 

antagonist for RANKL, mainly secreted by osteoblastic lineage and stromal 

cells. MM cells induce stromal cells to upregulate RANKL and to 

downregulate OPG (Giuliani et al., 2001). A balanced RANKL/OPG ratio is 

essential for normal bone turn over: Qiang and colleagues demonstrated 

that myeloma cell production of Wnt antagonist Dickkopf 1 (DKK1) 

abrogates the canonical Wnt signaling to commit immature cells to 

osteoblastogenesis, ultimately increasing RANKL/OPG ratios (Qiang et al., 

2008).  

MIP-1α belongs to the RANTES family of chemokines and is chemotactic 

for osteoclasts precursors and promotes osteoclastogenesis by increasing 

production of RANKL and IL-6 (Choi et al., 2001). In addition to 

osteoclastogenic factor produced by MM cells, it has been reported that 

myeloma cells form themselves multinucleated cells capable of bone 

resorption (Silvestris et al., 2009). SDF-1α is directly responsible for 

chemotactic recruitment, development and survival of human osteoclasts 
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(Wright et al., 2005). Moreover, elevated serum levels of SDF-1α are 

associated with osteolytic bone lesions and increased osteoclasts activity in 

MM patients (Zannettino et al., 2005). 

As mentioned above, osteoclastogenesis and osteoblastogenesis in the 

normal bone are finely balanced, but this equilibrium is disrupted in MM: 

mesenchymal cells (MSCs) isolated from MM patients are genetically and 

phenotypically abnormal, and have impaired osteogenic potential (Corre et 

al., 2007).  

 

Figure 3.3. interplay between myeloma cells and BM 
microenvironment (Abe, 2011). 

 

Osteolysis is a key element in MM cell progression, as well. OCLs play an 

active role in supporting MM cell long-term survival, proliferation and drug 

resistance (Yaccoby, 2010), and promote TGF-β release from the bone 

matrix, which plays a role in antagonizing patient’s anti-tumor immune 

responses (Juarez and Guise, 2011). Moreover OCLs  and vascular 



43 

 

endothelial cells interact and promote a vicious circle that leads to the 

progression of MM and to bone lesions formation (Tanaka et al., 2007).  

Currently, MM bone disease is treated mainly by controlling the tumor 

burden and inhibiting osteoclast activity with bisphosphonates. 

Unfortunately, they reduce skeletal complications but the beneficial effects 

on myeloma progression are inconclusive 

 

3.6  NOTCH AND BONE REMODELLING  

The Notch pathway plays a key role in skeletal development and 

remodeling.  

Notch activity is finely regulated during osteoclastogenesis and has distinct 

effects according to the different ligands and the receptor isoforms that are 

involved in the signaling. Notch1 and Notch3 have been reported to 

suppress osteoclastogenesis (Bai et al., 2008) while Notch2 is up-regulated 

during RANKL-induced osteoclastogenesis and plays a critical role in the 

late stage of OC differentiation (Fukushima et al., 2008). The role of the 

Notch ligands depends to the Notch isoform they engage. Dll1 inhibits 

osteoclast development through Notch1 (Yamada et al., 2003), while it 

enhances osteoclastogenesis by activating Notch2 (Sekine et al., 2012). 

These data suggest that MM cells may boost to the OCL differentiation 

process by the engagement of a  particular Notch receptor (possibly 

Notch2) expressed by OCL precursors during osteoclastogenesis. Despite 

the complexity of Notch signaling modulation in osteoclastogenesis, it 

seems clear that Notch signaling activated by MM cells is necessary for 

OCL osteolytic activity. Schwarzer et al. demonstrate that the gamma 

secretase inhibitor GSI15 is able to impair OCL activation and to induce 

apoptosis in MM cells co-cultured with OCL, suggesting that the Notch 
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pathway can be a rationale target for the therapy of MM associated bone 

disease (Schwarzer et al., 2008).  

Notch signaling is also involved in the maintenance of the early osteoblastic 

pool by inhibiting the Wnt/beta-catenin pathway in OB precursors, (Zanotti 

et al., 2008). Therefore we can hypothesize that MM cell can activate the 

Notch pathway in the mesenchymal precursors  in order to impair OB 

maturation. 

These reports emphasize the complexity of Notch role in bone resorption 

triggered during MM progression, highlighting the need of further studies to 

elucidate the molecular mechanisms involved in this process. 

 

Figure 3.4. Model of Notch signaling involvement in MM cells directed 

bone resorption (Colombo et al., 2013). 
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AIMS 

Osteoclastogenesis and the consequent osteolysis are major outcomes of 

MM cells localization to the BM. They produce fractures and bone disease 

significantly worsening patient’s quality of life.  

Moreover, skeletal destruction contributes to tumor progression and to the 

development of drug resistance. 

Notch receptors are expressed by MM cells, BM stromal cells (BMSCs), 

and OCLs. Of note MM cells can activate the Notch pathway because they 

over-express the Jagged1 and Jagged2 ligands (Ghoshal et al., 2009; 

Skrtic et al., 2010). Evidences from our and other groups indicate that the 

active Notch signaling is involved in MM pathogenesis (Colombo et al., 

2013) and that its inhibition induces apoptosis and inhibits MM cell drug 

resistance, and migration to the BM (Mirandola et al., 2013; Nefedova et 

al., 2008).   

Recently the Notch pathway was also reported to play a key role both in 

bone tissue remodeling and skeletal development in collaboration with the 

NF-κB pathway (Bai et al., 2008; Fukushima et al., 2008; Sekine et al., 

2012). 

 

The aim of this study was to investigate the role of the Notch pathway in 

MM-driven regulation of OCL development and bone destruction.  

To this I evaluated: 

 the contribute of the Notch pathway on the ability of monocytes 

precursors to differentiate in mature OCLs; 

 the role of the different Notch isoforms in OCL development; 
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 the mechanisms that drive MM-induced osteoclastogenesis and the 

contribute of the Notch pathway, specifically of its two ligands Jagged1 and 

Jagged2, to MM-mediated osteolysis. 

 

If the hypothesis of a contribution of the Notch pathway in MM associated 

bone disease will be confirmed, the development of a Jagged1/2-specific 

approach will allow to eliminate the well-known toxicities caused by pan-

Notch blocking agents, such as GSIs (Mirandola et al., 2011a; Searfoss et 

al., 2003; Wong et al., 2004). Moreover, targeting the Jagged ligands in MM 

cells could also prevent heterotypical activation of the Notch pathway in the 

BM microenvironment, resulting in interruption of the vicious cycle between 

MM cells and the BM niche. 
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1. Notch regulates OCLs differentiation and activity 

In order to assess Notch contribution to osteoclastogenesis, Raw264.7 

cells were induced to differentiate for 5 days using 50 ng/mL mouse 

RANKL (mRANKL) in the presence or absence 50 μM DAPT (a -secretase 

inhibitor), control cells were treated with an equal amounts of drug vehicle 

(DMSO). DAPT significantly reduced OCLs formation as shown by 65% 

reduction in TRAP+/ multinucleated cell number (Fig 1a).  
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Fig 1a. Role of Notch in mRANKL-induced osteoclastogenesis. TRAP 

staining (20x; left) and count of multinucleated cells (right) of Raw264.7 

cells after 5 days of differentiation with RANKL with or without DAPT. 

Pictures are representative of at least three experiments with similar 

results. Error bars represent standard deviations calculated out of 3 

independent experiments. Statistical analysis was performed by ANOVA 

and Tukey post-test; **= P <0,01. 
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To assess the effects of Notch inhibition on OCL resorption activity, 

Raw264.7cells were cultured in calcium phosphate coated wells and 

treated with 50 ng/mL mRANKL and 50 μM DAPT or equal amounts of 

vehicle (DMSO). Notch inhibition impaired the ability of Raw264.7 cells to 

degrade the artificial bone matrix, resulting in 50% reduction of  pit 

formation (Fig 1b). 
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Fig 1b. Notch inhibition impairs OCLs activity. Pit formation assay. The 

percentage of resorbed area was measured by using the Wimasis image 

analysis software (Wimasis GmbH) to process 20x pictures covering the 

whole well surface. Error bars represent standard deviations calculated out 

of 3 independent experiments. . Statistical analysis was performed by 

ANOVA and Tukey post-test; **= P <0,01. 
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To investigate whether  the effect of Notch inhibition previously observed 

on osteoclastogenesis and OCL activity was attributable to pre-OCL 

differentiation or depletion, we evaluated if DAPT influenced  their 

proliferation and apoptosis rate. My results shown in figure 1c indicate that 

none of these biological features were affected by DAPT,  indicating that 

Notch inhibition mainly affects OCL precursors differentiation without 

affecting their viability.  
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Fig 1c. DAPT has no significant effects on OCL precursors growth and 

survival.  MTT (left) and apoptosis assay (right) showed that DAPT do not 

affects Raw264.7 growth and survival. Error bars represent standard 

deviations calculated out of 3 independent experiments. Statistical analysis 

was performed by two tailed t-test, not significance; **= P <0,01.Apoptosis 

assay represent one of at least three experiments with similar results. 
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To evaluate the effects of DAPT on Raw264.7 osteoclastogenic potential, 

cells were treated for 72h with 50 μM DAPT, or equal amounts of DMSO. 

Quantitative PCR (Fig 1d) showed that DAPT causes a downregulation in 

the expression levels of two key genes involved in OCL differentiation and 

activity: Tartrate-resistant acid phosphatase (TRAP) e Receptor Activator of 

Nuclear Factor κ B (RANK). The expression of a Notch target, HES5, were 

evaluated to confirm the treatment efficacy.  

 

Fig 1d. Effects of DAPT on OCL precursors. qRT-PCR on Raw264.7 

following 3 days of DAPT treatment. Data are presented as the relative 

expression (control =1), calculated by the 2−ΔΔCt formula. Error bars 

represent standard deviations calculated out of 3 independent experiments. 

Two-tailed t-test confirmed statistically significant differences in the 

expression levels of the target genes.  
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To further investigate the role of Notch in the regulation of TRAP and RANK 

during osteoclastogenesis, Raw264.7 cells were treated with DAPT for 3 

and 5 days in differentiation condition with 50 ng/ml mRANKL. As expected, 

I observed along with differentiation a significantly increase in TRAP and 

RANK transcription levels (Fig 1e). Interestingly, this increase of the 

differentiation markers was hampered if Raw264.7 cells were treated with 

DAPT, confirming that Notch is necessary for osteoclastogenesis.  (Fig 1e).  

 

 

Fig 1e. The impaired OCL differentiation following DAPT treatment 

was confirmed at molecular level.  qRT-PCR on Raw264.7 following 3 

and 5 days of differentiation and DAPT treatment. Data are presented as 

the relative expression (control =1), calculated by the 2−ΔΔCt formula. 

Error bars represent standard deviations calculated out of 3 independent 

experiments. Two-tailed t-test confirmed statistically significant differences 

in the expression levels of the target genes.  
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2. Notch2 drives osteoclastogenesis, modulating RANKL 

expression 

The evidence that Notch activity is required for OCLs differentiation, 

together with the presence of controversial data on the role of the different 

Notch isoforms in this process prompted me to evaluate the contribution of 

Notch 1 and Notch2 on OCL development. Raw264.7 were treated for 5 

days with mRANKL 50ng/ml. qRT-PCR (Fig. 2a) showed that mRANKL-

induced differentiation causes a switch between the two Notch isoforms 

expressed in Raw264.7.  Specifically, data showed an upregulation of 

Notch2 that was associated to a decrease in Notch1 expression levels.  
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Fig 2a. Effects of mRANKL on the expression of Notch isoforms. qRT-

PCR on Raw264.7 after 5 day-treatment with DAPT. Data are presented as 

the relative expression (control =1), calculated by the 2−ΔΔCt formula. 

Error bars represent standard deviations calculated out of 3 independent 

experiments. Two-tailed t-test confirmed statistically significant differences 

in the expression levels of the target genes.  
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To evaluate how Notch isoforms differently affected the osteoclastogenesis, 

Raw264.7 were transfected cells with plasmids carrying the constitutively 

active forms of  Notch1 or Notch2 (ICN1 and ICN2, respectively, see 

Materials and Methods).  

A western blot was performed in order to confirm the activation of Notch 1 

and 2 in transfected cells (Fig 2b). 

 

Fig 2b. Notch1 and Notch2 activation in transfected Raw264.7. 

Western blot on Raw264.7 after 48h from the electroporation with two 

vector expressing the active form of Notch1 and Notch2. Pictures are 

representative of at least three experiments with similar results. 
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At 48h post-transfection, the forced expression of Notch2 induced 

Raw264.7 differentiation, as confirmed by the increase in TRAP+ 

multinucleated cells. On the contrary, Notch1 did not induced any change 

(Fig2c).  

 

Fig2c. Role of Notch1/2 in osteoclasts differentiation. TRAP staining 

(40x) and count of multinucleated cells. Pictures are representative of at 

least three experiments with similar results. Error bars represent standard 

deviations calculated out of 3 independent experiments. Statistical analysis 

was performed by ANOVA and Tukey post-test; *= P <0,05. 

 

 

 

A further study on the role of the activation Notch2 in the differentiation 

process, allowed me to discern that Notch2-transfected Raw264.7 cells 

were able not only to differentiate (as confirmed by the upregulation of 

TRAP expression levels), but also to autonomously secrete an  RANKL, as 

shown by real time RT-PCR in Fig.2d on the left and by the ELISA on the 

conditioned medium, on the right of the same figure. On the contrary, 

ELISA assay indicate that there was no increase in RANKL secretion by 

Notch1-transfected cells (Fig2d, right panel).  
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Fig2d. Notch2 promotes RANKL expression in OCL precursors. qRT-

PCR (left) shows that Notch2 is able to promotes differentiation (as 

confirmed by the increase in TRAP levels) and upregulates RANKL. The 

Notch-target gene HES5 was used in order to confirm the upregulation of 

this pathway. Data are presented as the relative expression (control =1), 

calculated by the 2−ΔΔCt formula. The increase in RANKL production were 

further confirmed by ELISA assay performed 48h after transfection (left 

panel). Error bars represent standard deviations calculated out of 3 

independent experiments. Statistical analysis was performed by ANOVA 

and Tukey post-test; *= P <0,05. 

 

 

 

To test if Notch2-induced RANKL production was sufficient to induce 

osteoclastogenesis, Raw264.7 cells were cultured for 7 days with the 

conditioned medium (CM) from Raw264.7 cells transfected with empty 

vector (mock) or the vectors expressing Notch1 or Notch2. Notch1 did not 

induce osteoclastogenic differentiation (Fig2e). On the contrary, 

differentiation occurred when the conditioned medium was from Raw264.7 
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cells transfected with the vector expressing Notch2 as demonstrated by the 

increase in TRAP+/multinucleated cells (Fig2e) 

 

Fig2e. Role of Notch 2 in osteoclast differentiation. TRAP staining (20x) 

and count of multinucleated cells. Standard deviations calculated out of 3 

independent experiments are indicated by error bars. One-way ANOVA and 

Tukey post-test confirmed statistically significant variation in OCLs 

differentiation (*p<0.05).  
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3. Notch signaling is required for Myeloma-mediated 

osteoclastogenesis 

In order to evaluate the ability of MM cells to induce osteoclastogenesis 

and the contribution of Notch pathway in this process, the human 

osteoclastogenic MM cell line, U266, was co-cultured with Raw264.7 in the 

presence or absence of 50 μM DAPT for 7 days.  

The presence of U266 cells promoted Raw264.7 cells differentiation 

(measured as TRAP+ multinucleated cells), which was inhibited by DAPT 

addition (~70%) (Fig 3a). These results indicated that the pro-

osteoclastogenic ability of MM cells depended upon Notch signaling.  

 

Fig 3a. MM cells are able to induce osteoclastogenesis. TRAP staining 

(40x) and count of multinucleated cells. Standard deviations calculated out 

of 3 independent experiments are indicated by error bars. One-way ANOVA 

and Tukey post-test confirmed statistically significant variation in OCLs 

differentiation (***p<0.001). Pictures are representative of three 

experiments with similar results. 
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To evaluate the role of Notch in OCLs activation, a bone resorption assay 

was performed with Raw264.7/U266 co-cultures induced to differentiate in 

the presence or the absence of 50 μM DAPT for 10 days. As expected, 

Notch inhibition impaired the pit formation ability of MM-induced OCLs as 

shown by the graph summarizing the obtained results in Fig 3b. 

 

Fig 3b. Notch inhibition blocks MM-mediated OCL activity. Pit formation 

assay. The percentage of resorbed area was measured by using the 

Wimasis image analysis software (Wimasis GmbH) to process 20x pictures 

covering the whole well surface. Results from 3 independent experiments 

are summarized in the graph with error bars representing standard 

deviations . Statistical analysis was performed by ANOVA and Tukey post-

test; **= P <0,01. 

 

  

The qRT-PCR analysis of osteoclastogenic marker genes in Raw264.7 

cells co-cultured for 7 days with U266 cells in the presence or the absence 

of 50 M DAPT gave results similar to those obtained in mRANKL- 

differentiated cells: U266 cells promoted TRAP and RANK expression in 
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Raw264.7 cells (Fig3c) and DAPT significantly reduced TRAP and RANK 

levels, indicating that the MM-induced OCL differentiation required an 

active Notch signaling.  

 

 

Fig 3c. Quantitative RT-PCR on RAW264.7 cells co-cultured with U-266 

cells confirms their ability to induce express osteoclastogenic 

markers in a Notch-dependent manner. U266 induced the upregulation 

of RANK and TRAP in co-culture Raw264.7 cells, Notch signaling inhibition 

significantly impaired this effect. Gene expression variations were 

evaluated comparing treated cells to untreated controls. Histograms 

represent mean ± SD and were calculated out of three independent 

experiments run in triplicate. Statistical analysis was performed by Two-wat 

t-test; *=p<0,05; **= p <0,01. 
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4. MM cells induce OCLs formation in a contact-independent 

manner, through RANKL secretion 

The evidence that MM cells are able to induce the Notch-dependent OCL 

differentiation prompted me to evaluate if differentiation required a direct 

contact between MM cells and pre-OCLs to trigger Notch activation in the 

last, or if MM osteoclastogenic ability depended upon the secretion of 

soluble factors triggered by Notch signaling.  

Initially, to understand if the interaction with MM cells could activate Notch 

on Raw264.7 cells, I performed a dual luciferase assay (Fig 4a, left). 

Raw264.7 cells were transiently transfected with a plasmid carrying the 

firefly luciferase gene controlled by the DNA binding sequence of CSL, the 

transcription factor activated by the active Notch  (13xCSL-RE).  24h-

transfected Raw264.7 cells were cultured alone or with U266 cells for 

further 24 to 48 hours (Fig. 4a, left). As a positive control of Notch 

activation, Notch signaling pathway  was forced in Raw264.7 cells by co-

transfecting ICN1 and ICN2. 

This first experiment showed that 24-48h of MM cells co-culturing with  

Raw264.7 cells were unable to simulate the Notch transcriptional activity in 

the last, since 13XCSL-RE activity did not changed when Raw264.7 were 

cultured alone or in the presence of U266 cells. Since Duan et al. 

previously reported that  Notch signaling upregulation during 

osteoclastogenesis induced by RANKL (Duan et al., 2008), I wondered if 

U266 cells could indirectly activate the Notch pathway, at longer 

experimental times, through the expression of  soluble mediators.  

To address this issue, I measured by qRT-PCR the expression of HES5, a 

Notch target gene in Raw264.7 cells following osteoclastogenic stimulation 

induced through RANKL, direct contact with U266 cells or U266 CM. 

Results in figure 4a (right panel) showed that all the osteoclastogenic 
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stimuli failed to upregulate HES5 within 72h, on the contrary 5-days 

treatments showed Notch pathway activation. Moreover, the evidence that 

both U266 cells direct contact and CM induced a comparable level of HES5 

transcription, confirmed that a direct contact between MM cells and 

osteoclasts is not essential for Notch activation.   

  

 

Fig 4a. Left: Dual luciferase assay was performed in Raw264.7 cells 

cultured alone or co-cultured with U266 cell line. Raw264.7 cells co-

transfected with vectors carrying the constitutively active Notch1 (ICN1) or 

Notch2 (ICN2) isoforms were used as positive controls of Notch activity. 

Histograms indicate the normalized luciferase activity (firefly luciferase 

activity/Renilla luciferase activity). Right: HES5 qRT-PCR  was performed 

on Raw264.7 cells after 3 and 5 day of culture with the different 

osteoclastogenic stimuli reported. Data are presented as relative 

expression (control =1), calculated by the 2−ΔΔCt formula.  

 

To evaluate  if  OCL development was mediated by the Notch-dependent 

secretion of soluble factors from U266 cells, I set up differentiation 

experiments using the CM from U266 cells.  At this purpose I prepared a 7-

day culture of Raw264.7 cells in the presence of  20% V/V  CM of U266 

cells pre-treated with or without 50 M DAPT. Results in Figure 4b (CM 

U266) show that  U266 CM induced productive RAW264.7 cells 
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differentiation. As expected, the addition of DAPT to the co-culture 

dramatically reduced this effect (Figure 4b, CM U266 + DAPT). Finally,  CM 

from DAPT-pre-treated U266 cells (Figure 4b, CM U266 treated with DAPT) 

was not able to induce OCL differentiation. These results  suggested that 

MM cells also required Notch activity to produce the pro-osteoclastogenic 

soluble factors.  

 

Fig4b. MM cells trigger OCL development by Notch-dependent soluble 

factors. TRAP staining (20x) and counts of multinucleated cells in 

Raw264.7 cells exposed to CM from U266, CM obtained from U266 after 

DAPT treatment or CM from U266 together with DAPT treatment. Pictures 

are representative of at least three experiments with similar results. The 

graph summarizes all the obtained results. Bars represent standard 

deviations. Statistical analysis was performed using the ANOVA and Tukey 

test: *= P <0,01, **= P <0,001.  

 

The evidence that Raw264.7 cells differentiation was exclusively dependent 

upon RANKL stimulation, and that MM cells ability to produce pro-

osteoclastogenic soluble factors was Notch-dependent, made me 

hypothesize that U266 cells produced RANKL in a Notch-controlled 
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manner. To test this hypothesis, I treated U266 with 50 μM DAPT for 48h 

and verified if changes occurred in RANKL gene expression and protein 

release in the medium. Fig 4c (left panel) shows that DAPT caused a 

significant decrease in RANKL gene expression levels. Variation in the 

expression of a Notch target gene, Hes6, was used to confirm the 

successful inhibition of Notch activity. The dependence of RANKL 

production on Notch was further confirmed by an ELISA on CM form U266 

cells treated with DAPT for 48 and 96h  (Fig. 4c, right).  

  

Fig 4c. RANKL production from MM cells is Notch dependent. qRT-

PCR of RANKL and the Notch gene target HES6 (left) and ELISA for 

RANKL  (right)  on CM from DAPT-treated U266. Gene expression 

variations were evaluated comparing DAPT treated cells to DMSO treated 

controls (ctrl=1). Statistical analysis was performed by Two-tailed t-test: **= 

P <0,01.  

 

Overall, this set of experiments allowed me to conclude that MM cells ability 

to induce osteoclastogenesis was cell contact independent and mediated 

by the secretion of RANKL. Moreover, MM cells osteoclastogenic potential, 

as well as OCL precursors ability to respond to the osteoclastogenic 

stimulus, are strongly dependent on the Notch pathway.  Specifically, Notch 

is required from MM cells to secrete the osteoclastogenic factor RANKL.  
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5. RANKL expression in primary MM cells is correlated with 

Notch pathway activation 

The dependence of RANKL secretion by Notch signaling activity observed 

in U266 cells, prompted me to verify if RANKL gene expression could be 

associated to Notch pathway activation in MM patients. To this purpose, a 

qRT-PCR analysis of RANKL and HES6 was performed on mRNA from 

CD138+ cells from bone marrow aspirates of  17 MM patients. This analysis 

confirmed that the expression levels of HES6 and RANKL were strongly 

correlated in primary MM cells (Fig5),  consistently with the reported in vitro 

evidence that in MM cells RANKL expression depends upon Notch activity.  

b

 

Fig5. Notch pathway activation is correlated with RANKL expression 

levels in MM patients. qRT-PCR on primary MM cells from 17 patients for 

HES6 and RANKL genes (GAPDH expression levels =100). The graph 

shows the correlation between the two genes. Statistical analysis was 

performed with Pearson's product-moment correlation (p=0.0081).  
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6. Jag1/2 silencing impairs MM-mediated osteoclastogenesis 

Currently used drugs addressed to Notch pathway inhibition, such as γ-

secretase inhibitors, induce high toxicity at gut level (Mirandola et al., 

2011a; Searfoss et al., 2003; Wong et al., 2004), so my next step was to 

investigate the efficacy of a new and more selective approach that allows to 

inhibit the Notch signaling in MM cells, avoiding the side effects due to the 

contemporary inhibition of all the Notch isoforms. 

In MM, the deregulation of Notch pathway is due to alterations of the 

expression of two Notch ligands, Jag1 and Jag2. This prompted me to 

assess if this two ligands represent possible targets for a Notch inhibitory 

approach directed to counteract the osteoclastogenesis and osteolysis 

associated to MM. 

To this, Jag1 and 2 were simultaneously silenced in U266 cells by 

transfection of specific stealth shRNAs; cells transfected with scrambled 

shRNA represented a negative control. Every 48h cells were transfected 

again with Jag1/2 shRNAs (see Material and Methods). Cell count (Fig 6a, 

left) and apoptosis assay (Fig 6a, right) of silenced U266 cells indicated 

that Notch signaling inhibition had no significant effect on cell viability. 
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Fig 6a. Effect of Jag1/2 silencing on U266 cells.  DAPT does not affects 

Raw264.7 growth and survival of U266 cells after 96h Jag1/2 silencing. 

Left: cell count. Error bars represent standard deviations calculated out of 3 
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independent experiments. Statistical analysis performed by two tailed t-test 

indicate not significant differences (P>0,05). Right: apoptosis assay 

represents one of at least three experiments with similar results. 

 

The next step was to evaluate the molecular effects of Jag1 and 2 silencing 

on U266 cells. Results of qRT-PCR in Fig.6b show that 48h hours after 

transfection Jag1 and Jag2 gene expression was effectively reduced in 

U266 cells and, accordingly, the inhibition of Notch receptors activity is 

testified by the decrease in Hes6 expression. Two housekeeping genes 

(18s and HPRT1) were used to assess siRNAs specificity. Importantly, 

qRT-PCR revealed that the expression level of RANKL gene was 

significantly reduced in Jag1/2-silenced U266 cells (Fig. 6b, left). The 

impaired expression of RANKL in Jag1/2 silenced U266 cells  was 

substantiated  by ELISA assay on the CM analyzed after 48h or 96h from 

transfection (Fig. 6b, right). These results confirmed that Jag1/2-activated 

Notch was required from U266 cells to express RANKL and that Jag1 and 2 

silencing was sufficient to repress U266 cells production of RANKL. 

 

Fig 6b. Jag1/2 silenced U266 cells  reduce RANKL expression. 48h 

post-silencing qRT-PCR of RANKL gene in Jag1/2-silenced U266 cells 

(left): Jag1, Jag2 and HES6 were analyzed to assess specificity and 
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efficacy,  18s and HPRT1 for selectivity ; 48 and 96h post-silencing ELISA 

for RANKL secreted protein (right), on Jag1/Jag2-silenced U266 cells CM. 

Gene expression variations were evaluated comparing silenced cells to 

cells transfected with scrambled shRNAs (Scr=1). Statistical analysis was 

performed using two-tailed t-test: ** =  P <0,01. Standard deviations were 

calculated from 3 independent experiments.  

 

 

To test the contribution of Jag1 and Jag2 in MM-induced 

osteoclastogenesis, Raw264.7 cells were cultured for 7 days in the 

presence of CM from U266 transfected with Jag1/2 siRNAs or the negative 

control (scrambled siRNAs, Scr). TRAP staining and count of 

multinucleated cells (Fig. 6c) showed that the CM from Jag1/Jag2 silenced 

U266 cells displayed a reduced osteoclastogenic potential.  

 

Fig 6c. Silencing of Jag1/2 impairs MM cell osteoclastogenic potential. 

Raw264.7 cells were cultured for 7 days in the presence of CM from U266 
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cell line transfected with J1/J2- or Scr- shRNAs. On the left, TRAP staining 

(40x) and count of multinucleated Raw264.7 cells showed that U266 

osteoclastogenic potential depends upon Jag1 and 2 expression. Pictures 

are representative of at least three experiments with similar results. The 

graph on the right summarizes the obtained results +/- standard deviations. 

Statistical analysis was performed using the ANOVA and Tukey post-test: 

** = p <0,001.  

 

 

 

To evaluate the effect of Jag1/2 silencing on MM-induced osteolytic activity 

of Raw264.7 cells, a pit formation assay was performed. Cells were 

induced to differentiate with the CM from Jag1/2- or Scr-silenced U266 for 

10 days. Jag1/2 downregulation in U266  cells impairs the ability of 

Raw264.7 to differentiate and resorb the calcium phosphate matrix, as 

indicated by the decrease in the degraded area represented by the pit (Fig 

6d, left).  

Moreover, Jag1/2 silencing impaired the modulations of the 

osteoclastogenic marker genes observed during OCL differentiation. 

Indeed, an analysis by qRT-PCR showed an upregulation of TRAP and 

RANK expression in Raw264.7 cells cultured with Scr CM, but not in 

Raw264.7 cultured with Jag1/2 CM (Fig. 6d, right).   
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Fig 6d. Jag1 and 2 are required in  MM cells to induce 

osteoclastogenesis. Left: pit formation assay, the percentage of resorbed 

area was measured by using the Wimasis image analysis software 

(Wimasis GmbH) to process 20x pictures covering the whole well surface. 

Right: analysis of pro-osteoclastogenic genes, RANK and TRAP,  by qRT-

PCR showed that U266 pro-osteoclastogenic potential is Jag-dependent. 

Gene expression data are presented as relative expression (control =1) 

calculated through the 2−ΔΔCt formula.  

Statistical analyses were performed using the ANOVA and Tukey post-test 

(pit formation assay, **= P <0,01) and Two-tailed t-test (qRT-PCR, ** = P 

<0,01) 
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7. Stromal cells stimulate RANKL secretion by MM cells in a 

Jag1/2-dependent manner 

Several MM primary cells and cell lines, such as OPM2 cells have no 

osteoclastogenic potential since they  express very low levels of RANKL. 

The interaction of MM cells with BMSCs promotes the production of soluble 

factors that contribute to MM progression and to osteoclast development 

(Roodman, 2010a). Therefore, I wondered if BMSCs may interact with MM 

cells to increase their osteoclastogenic potential and if the Notch pathway 

could have a role in this process. To evaluate this hypothesis, OPM-2 cells 

were transfected with Jag1/2 or Scr shRNAs. After 48h cells were re-

silenced and plated on a monolayer of NIH-3T3 cells (see Material and 

Methods). Co-cultures were maintained for 48h. CM (20% V/V) from co-

culture or single culture were tested in differentiation assay of Raw264.7 

cells. 

Results showed that both the CMs from OPM2 and NIH3T3 cells had a 

slight intrinsic osteoclastogenic potential. On the contrary, the CM from 

OPM2 cells co-cultivated with NIH3T3 fibroblasts were able to induce a 

significant increase in OCLs differentiation. The increased osteoclastogenic 

potential was completely impaired by silencing Jag1 and 2 in OPM2 cells 

(Fig 7a).  



72 

 

 

Fig 7a. NIH3T3 cells stimulates RANKL expression in MM cells in a 

Notch-dependent manner. Raw264.7 cells were induced to differentiate 

with CM from Jag1/2 silenced-OPM2 cell line co-cultured with NIH3T3 cells. 

On the left, pictures representative of 3 independent experiments with 

similar results show TRAP staining of Raw264.7 cells (40x) after culturing 

in the different conditions. On the right, a graph with the mean values and 

standard deviations of counted multinucleated/TRAP+ cells Statistical 

analysis was performed using the ANOVA and Tukey post-test:* = P<0.05; 

** = P <0.01. 
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This evidence prompted me to assess by qRT-PCR and ELISA if variations 

occurred in the amount of RANKL secreted by OPM2 cells in the different 

culture conditions. I found out that when co-cultured with NIH3T3 cells, 

OPM2 cells increased Notch signaling activity (changes in HES6 expression 

in qRT-PCR, Fig 7b left panel) and this was associated to an increase in the 

secreted RANKL (qRT-PCR, Fig 7b left panel and ELISA, Fig  7b right 

panel). As expected, Notch pathway inhibition mediated by Jag1/Jag2 

silencing in OPM2 cells dramatically impaired their RANKL production even 

when co-cultured with NIH3T3 cell line (Fig 7b). It is worthy to note that the 

low intrinsic osteoclastogenic potential of CM from NIH3T3 cells (previously 

reported) is due to the ability of these cells to secrete RANKL (2ng/ml in 48h 

CM, data not shown). 

 

Fig 7b. Jag1 and 2 control MM cells ability to secrete RANKL in 

response to NIH3T3 cells stimulation. The expression of RANKL 

produced by OPM2 cells co-cultured with NIH3T3 cells was measured. On 

the left qRT-PCR of RANKL and HES6 genes (to assess Notch activation 

variation in OPM2 cells). Bars represent the mean relative expression of 

the indicated genes measured by RT-qPCR (expression level in control 

cells was made equal to 1). Two-tailed t-test confirmed statistically 
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significant differences  in the expression levels of the target genes (Scr vs. 

Jag1/Jag2 p<0.05). Standard deviations were calculated from 3 

independent experiments. On the right ELISA of RANKL secreted in CM of 

OPM2 cell line alone or co-cultured with NIH3T3 cells, transfected with 

Jag1/2 or Scr shRNAs. Statistical analysis was performed using  ANOVA 

and Tukey post-test: ** = P <0,01. 

 

Overall these results indicated for the first time that BMSCs might contribute 

to MM-induced OCL development by increasing the osteoclastogenic 

potential of non-osteoclastogenic MM cells via Notch signaling activation. 

BMSC-mediated Notch signaling activation seems to enable MM cells 

lacking osteoclastogenic potential to acquire it by secreting RANKL. 

Switching off Notch signaling in MM cells through Jag1 and 2 silencing 

could prevent both the intrinsic osteoclastogenic activity of MM cells and 

that induced by the surrounding BM microenvironment.   
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DISCUSSION and 

CONCLUSIONS 
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Osteoporosis and formation of bone lesions are common features of MM 

and affect almost the 80% of patients (Roodman, 2010b) .  

Skeletal destruction not only negatively influences patients’ quality of life, 

but also promotes tumor burden (Yaccoby, 2010), angiogenesis (Tanaka et 

al., 2007), drug resistance (Abe, 2011; Moreaux et al., 2011) and reduces 

the patient’s anti-tumor immune response (Feyler et al., 2013; Juarez and 

Guise, 2011), finally supporting MM progression and contributing to the 

fatal outcome of this disease. Indeed, OCL activity occurs mainly adjacent 

to MM cells, supporting the hypothesis that neoplastic cells may be 

responsible for the increased bone resorptive activity and OCLs formation 

in MM. Soluble factors released by the increased bone resorptive process 

also support the growth of MM cells creating a “vicious cycle” in which bone 

resorption causes the release of growth factors that increase MM tumor 

burden that in turn results in increased bone destruction (Edwards et al., 

2008). In addition, OCLs are able to promote microvessels formation 

through the production of pro-angiogenic factors (Tanaka et al., 2007) and 

to antagonize patient’s anti-tumor immune responses promoting the release 

of TGF-β from the bone matrix (Juarez and Guise, 2011). 

BM localization is extremely relevant in MM progression since MM cell is 

strongly dependent from the BM microenvironment and is able to 

unbalance the OCL/OBL ratio by increasing osteoclastogenesis and 

reducing OBL differentiation, finally resulting in MM-induced bone disease.  

In the last years, the Notch pathway has been proposed as a promising 

therapeutic target in MM (Mirandola et al., 2013; Nefedova et al., 2008; 

Schwarzer et al., 2008). Notch receptors and ligands are reported to be 

dysregulated in MM and positively correlate with clinical stage (Ghoshal et 

al., 2009; Houde et al., 2004; Jundt et al., 2004; Schwarzer et al., 2008; 

Skrtic et al., 2010; Takeuchi et al., 2005).  



77 

 

MM cells simultaneously express Notch receptors and ligands, resulting in 

homotypic activation of Notch signaling within MM cells, as well as 

heterotypic Notch activation in the surrounding cells of the BM 

microenvironment. In accordance, Notch pathway affects the biology of MM 

cell and its pathological interaction with BM stroma. Indeed, evidences from 

our and other laboratories showed that Notch inhibition in MM cells resulted 

in reduced proliferation, increased apoptosis (Mirandola et al., 2013; 

Mirandola et al., 2011a; Nefedova et al., 2004; Ramakrishnan et al., 2011; 

Schwarzer et al., 2008; Vallet et al., 2007; Xu et al., 2012) and drug 

sensitivity (Chen et al., 2011; Nefedova et al., 2008).  

Moreover, we recently described that Notch signaling controls malignant 

plasma cells localization in the BM by the regulation of the CXCR4/SDF1 

chemokine axis (Mirandola et al., 2013).  

The aim of this work was to study the role of Notch pathway in the key 

relationship between MM cells and the osteoclast precursors, to understand 

if Notch signaling deregulation in MM cells may contribute to MM-

associated bone disease.  

Notch is finely tuned during bone formation and modeling; however, 

signaling from the different Notch isoforms have different and still not 

completely understood outcomes (Bai et al., 2008; Fukushima et al., 2008).  

The relevance of Notch activity in skeletal development and remodeling 

(Bai et al., 2008; Fukushima et al., 2008), prompted me to wondered if 

Notch signaling upregulation in MM cells may have a role in inducing OCL 

differentiation.  Therefore, I initially investigated the contribute of Notch on 

OCLs precursors ability to differentiate using a murine cellular model of 

OCL precursors, the Raw264.7 monocyte cell line. I observed that 

Raw264.7 cells failed to differentiate in mature OCLs in the presence of the 

γ-secretase inhibitor DAPT, a commonly used Notch signaling inhibitor.  
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I deepened the possible causes of the impaired OCL differentiation by 

analyzing changes induced by DAPT administration on the expression of 

master genes involved in osteoclastogenesis, including  RANK (Nakagawa 

et al., 1998) and TRAP (Abu-Amer, 2013; Tauchert et al., 2009). The usual 

upregulation of these genes occurring during osteoclastogenesis failed 

when murine OCL precursors were treated with Notch inhibitor.  This 

results suggest that RANK and TRAP are two Notch downstream 

osteoclastogenic effector and their positive regulation by Notch signaling, at 

least in part,  may be at the basis of osteoclast differentiation.  

Indeed, the observed reduction in RANK expression associated to Notch 

withdrawal is noteworthy since this receptor not only represents a 

differentiation marker, but it also mediates pre-OCL response to RANKL 

stimulus which results in the activation of the NF-κB pathway, an essential 

step in the osteoclastogenic process (Abu-Amer, 2013).  

The relevance of TRAP dependence on Notch signaling stems from the 

evidence that its enzymatic activity is directly involved in bone resorption 

(Scarnecchia et al., 1991) along with the associated degradation of type I 

collagen (Littlewood-Evans et al., 1997). Moreover, the reduction of its 

expression is in accordance with the decreased osteolytic activity of 

Raw264.7 cells upon Notch signaling withdrawal, confirming the results 

obtained by Schwarzer and colleagues who observed that in human OCLs 

TRAP expression was inhibited by treatment with GSI (Schwarzer et al., 

2008).  

The second issue was to understand the role of the different Notch 

isoforms expressed by Raw264.7 cells during osteoclasts differentiation.  

As a matter of fact, the function of Notch1 is still controversial, since 

evidences from Choi and colleagues (Choi et al., 2013) indicate that 

RANKL-induced OCL differentiation is promoted by the Notch1 intracellular 
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domain, whereas data by Bai et al. not only report Notch1 inability to 

support osteoclastogenesis, but also describe its negative effect on this 

process (Bai et al., 2008).  

My results indicated that Notch1 activity is neither necessary nor sufficient 

to induce osteoclastogenesis. As a matter of fact, Notch1 was 

downregulated during Raw264.7 cells differentiation and OCL precursors 

failed to differentiate in the presence of the constitutively activated Notch1. 

On the contrary, I observed that Notch2 had a relevant role in 

osteoclastogenesis. Specifically, its expression was increased during 

RANKL induced Raw264.7 cells differentiation and its forced expression 

alone induced OCL differentiation at least partially through the activation of 

an autonomous production of RANKL.   

An interaction between the Notch2 and NF-kB pathways in directing the 

osteoclastogenic process had already been reported by Fukushima and 

colleagues who described a positive regulation of Notch2 expression due to 

a RANKL-triggered NF-κB signaling (Fukushima et al., 2008). My results 

further suggested that these two pathways synergistically reciprocally 

enhanced their activities, since Notch2-promoted RANKL secretion by 

Raw264.7 cells, which was sufficient to induce osteoclastogenesis.  

 

The most interesting result presented here concerns the mechanisms by 

which the interactions between myeloma cells and the BM 

microenvironment promote bone resorption.  

I demonstrate that MM cells were able to induce the differentiation of 

monocytes into OCLs and that this process required an active Notch 

signaling both in MM cells and in monocytes/OCLs. 

Indeed, results showed that the U266 MM cell line was able to induce 

OCLs differentiation and that this process was inhibited by DAPT treatment. 
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DAPT hampered also the modulation of RANK and TRAP expression 

occurring during the differentiation process. These evidences suggested a 

role for Notch signaling in MM-induced osteoclastogenesis and supported 

the hypothesis that a treatment directed to Notch pathway inhibition could 

be effective in reducing MM-driven bone disease.  

Since the used co-culture system did not allow to discriminate if the 

observed inhibitory effect of DAPT on osteoclastogenic differentiation was 

due to Notch inhibition on MM cells, OCL precursors or both, I needed to 

elucidate it .  

This point was clarified when I demonstrated that Notch signaling needed 

to be active not only in OCL precursors but also in MM cells. Indeed, the 

osteoclastogenic ability of U266 cells was due to the secretion of RANKL, 

which in its turn was under Notch signaling control.  

First of all, I demonstrated that U266 cells did not need a direct contact to 

trigger Notch signaling in Raw264.7 cells, but Notch activation occurring in 

OCLs during differentiation could be mediated by U266 cells conditioned 

medium. Accordingly, I found that U266 cells did not need to be in direct 

contact with pre-OCLs to induce differentiation, indeed U266 cells 

conditioned medium alone was able to induce osteoclastogenesis.  

The evidence that RANKL is the only osteoclastogenic factor required for 

Raw264.7 cells differentiation, prompted me to verify if Notch activity 

promoted the osteoclastogenic ability of U266 cells enhancing  RANKL 

secretion. Results indicated that Notch withdrawal resulted in the reduction 

of RANKL, both at mRNA and protein levels and, as expected, conditioned 

media from U266 cells treated with DAPT or with Jag1 and Jag2 siRNAs, 

were unable to induce Raw264.7 cells differentiation.  

Interestingly, my study on cell lines was further confirmed in ex-vivo 

experiments by our collaborator, Dr. Carl S. Goodyear, at the University of 
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Glasgow, UK. Dr. Goodyear’s group  set up co-culture systems consisting 

of primary myeloma cells purified from patients BM and human monocytes 

and showed that DAPT significantly inhibited the ability of myeloma cells to 

induce osteoclastogenesis confirming the results obtained with  

Raw264.7/U266 co-cultures. 

Overall, this is the first evidence that Notch signaling is necessary in MM-

induced osteoclastogenesis and affects both the osteoclastogenic potential 

of MM cell as well as the pre-OCL ability to respond to this stimulus.. 

The new picture drawn from this work depicts the role of Notch in myeloma 

cell biology through some key points (detailed in figure 1): Notch signaling 

in MM cells promotes the release of RANKL, which in turn enhances the 

NF-KB signaling by engaging RANK on pre-OCL; RANKL-stimulated pre-

OCL upregulates Notch2 expression which further reinforces the 

differentiation process by promoting the autonomous secretion of RANKL 

by OCL precursors. MM-triggered stimulation of RANK and Notch2 

signaling pathways results in osteoclastogenesis and contributes to the 

osteolysis associated to  this disease.  
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Fig 1. MM cells induces osteoclastogenesis in a Notch-dependent 

manner,  through the production of RANKL. 

 

The relevance of these findings arises from the key role of RANKL in MM-

associated bone disease, indeed RANKL expression is not only increased 

in BMSCs from myeloma patients compared with those from healthy donors 

(Giuliani et al., 2001), but its expression levels in MM cells correlates with 

the level of skeletal involvement (Farrugia et al., 2003; Heider et al., 2003). 

In accordance, it has been reported that targeting RANKL can prevent the 

development of myeloma bone disease (Yaccoby et al., 2002).  

Albeit the present results should be confirmed through in vivo experiments, 

I obtained a first confirmation  of the clinical relevance of my findings about 

Notch signaling ability to promote osteoclastogenesis by identifying the 

existence of an association between the levels of Notch signaling activation 

and RANKL expression in MM patients. Indeed, I found a correlation 

between the expression of the Notch target gene, HES6, and the RANKL 

gene in purified CD138+ cells from the BM of 17 MM patients.  



83 

 

An analogous result was obtained by our collaborator, Prof. Antonino Neri 

from the Department of Clinical Sciences and Community Health of the 

University of Milano. Indeed, by a Gene Expression Profile analysis 

performed on primary cells from 55 newly diagnosed MM patients, his 

group highlighted a significant correlation between HES6, and RANKL 

expression levels. 

   

Notch signaling dysregulation in MM is often associated to alteration of 

Notch ligands expression or post-translational processing. Jag1 expression 

in malignant plasma cells arises upon progression of disease from MGUS 

to MM (Jundt et al., 2004). Jag2 dysregulation (Ghoshal et al., 2009; Houde 

et al., 2004; Takeuchi et al., 2005) seems even more important in MM 

pathogenesis since it is an early event preceding MGUS and positively 

correlated with stage (Houde et al., 2004).  Jag2 dysregulation can be 

driven by promoter hypomethylation or constitutive core promoter 

acetylation (Ghoshal et al., 2009) or can be the result of the overexpression 

of Jag2 specific ubiquitin-ligase Skeletrophin (Takeuchi et al., 2005).  

The evidence of Jag1 and 2 dysregulation in MM, prompted me to evaluate 

if they could be possible targets for a Notch pathway directed approach and 

if their selective inhibition could be sufficient to counteract the excessive 

osteoclastogenesis observed in MM patients. 

To address this issue, an RNA interfering approach was used to silence 

Jag1 and Jag2 expressed by U266 cells. Jag1/2 silencing resulted in a 

reduced Notch activity and, notably, in the inability of MM cells to secrete 

RANKL induce osteoclastogenesis and the expression of RANK and TRAP 

in Raw264.7 cells.  

Interestingly, I also found out that the mechanism of MM-induced 

osteoclastogenesis based on Notch-driven RANKL production is active also 
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in non osteoclastogenic MM cells . These are represented by OPM2 cells, 

which express a low RANKL level and are scarcely osteoclastogenic. 

Nonetheless, when these cells were co-cultured with NIH3T3 fibroblasts 

(used as mimics of BM stromal cells), they showed a strong increase in the 

amount of secreted RANKL, comparable to that released by the 

osteoclastogenic U266 cells. Accordingly, the amount of RANKL released 

in the medium by OPM2/NIH3T3 co-culture system was sufficient to induce 

Raw264.7 differentiation. Importantly, the ability of stromal cells to promote 

the osteoclastogenic properties of poor-osteoclastogenic MM cells, such as 

OPM2, required an active Notch signaling, since Jag1 and 2 silencing in 

OPM2 significantly reduced their osteoclastogenic potential induced by 

NIH3T3 fibroblasts. 

The evidence that Notch signaling inhibition blocks MM-driven 

osteoclastogenesis makes the Notch pathway a promising therapeutic 

target to suppress the development of bone lesions in MM patients. 

Moreover, the evidence that the inhibition of high levels of Jag ligands 

activity observed in MM cells strongly reduces  osteoclastogenesis and 

osteolysis, suggest that the inhibition of the dysregulated ligands can be a 

selective Notch-directed therapeutic approach in MM patients to oppose to 

osteoclastogenesis, bone degradation and probably all the associated 

consequences, including increase in tumor burden (Yaccoby, 2010), 

angiogenesis (Tanaka et al., 2007), inhibition of patient’s anti-tumor 

immune response (Juarez and Guise, 2011) and drug resistance (Abe, 

2011; Moreaux et al., 2011).  

The significance of this novel approach is evident if considering the high 

toxicity of the treatments with γ-Secretase inhibitors (Mirandola et al., 

2011a; Searfoss et al., 2003; Wong et al., 2004), mainly due to the 

contemporary inhibition of the activation of all the 4 Notch isoforms. The 
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redundancy of Notch ligands and the effective possibility to reduce the 

excessive Notch signaling in MM cells by silencing only the dysregulated 

Jag1 and/or Jag2 ligands, may provide the rational for an effective and 

safer Notch-directed approach in MM therapy.   

 

The future direction of this work should include a validation of the Jag1/2-

directed therapeutic strategy on an in vivo animal model of MM.  To 

address this issue I propose to xenograft a MM cell line conditionally 

expressing specific siRNAs for Jag1 and Jag2 by means of a lentiviral 

vector in busulfan-conditioned NOG mice (Choi et al., 2011; Mirandola et 

al., 2011b). To set up a situation analogous to that of MM patients, Jag1/2 

knockdown should be induced in tumor cells by Doxycycline administration 

only upon BM infiltration and bone lesions establishment. Mice monitoring 

should include evaluation of tumor burden, survival and bone lesions 

development. 

An in vivo confirmation of the role of Jag ligands upregulation in bone 

disease and the efficacy of their silencing, would ultimately provide the 

rationale for a new therapeutic strategy  to reduce MM-associated skeletal 

destruction and improve the response to standard treatments, providing a 

valuable option for those patients who suffer from advanced disease and 

have no alternatives other than palliative cares. 
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1. CELL CULTURES 

 

1.1 Single cultures 

The Multiple Myeloma (MM) cell lines used were:  

U266: established from the peripheral blood of a 53-year-old man with IgE-

secreting myeloma (refractory, terminal) in 1968; cells were described to 

produce IgE lambda; . Cells negative for CD3 , CD10, CD19  and CD20 

and positive for CD138. They grow partially (loosely) adherent. 

OPM2: cell line established from the peripheral blood of a 56-year-old 

woman with multiple myeloma (IgG lambda) in leukemic phase (relapse, 

terminal) in 1982. Cells negative for CD3 , CD10, CD80, CD19  and CD20 

and positive for CD138. They grow in suspension.  

All MM cell lines were maintained in 75 cm2 flask in RPMI 1640 medium 

(Sigma-Aldrich Co., St Louis, MO), supplemented with 10% (v/v) FBS 

(Gibco, Rockville, MD), 2 mM L-glutamine (Invitrogen Corporation 

Carlsbad, CA, USA), 100 U/ml penicillin and 100 µg/ml streptomycin. The 

serum was de-complemented for 30’ at 56°C before use. Cells were 

cultured in 5% CO2 at 37°C, maintaining the optimum concentration at 

3x105cells/ml with complete change of medium every two days. 

The fibroblast cell line used as mimetic of Bone marrow stromal cell 

(BMSC) was:  

NIH3T3: cell line of mouse embryonic fibroblasts isolated in 1962 at the 

New York University School of Medicine Department of Pathology. They 

grow adherent. Cell line was maintained in 10 cm2 plate dishes , in DMEM 

medium (Sigma-Aldrich Co., St Louis, MO, USA), supplemented with 10% 

(v/v) FBS (Gibco, Rockville, MD, USA), 2 mM L-glutamine (Invitrogen 

Corporation Carlsbad, CA, USA), 100 U/ml penicillin and 100 µg/ml 
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streptomycin. The serum was de-complemented for 30’ at 56°C before use. 

Cells were cultured in 5% CO2 at 37°C. Cells have a doubling time of 18-

20h and were divided three times/ week. 

Osteoclast precursors cell line is: 

RAW264.7: Monocyte/macrophage cells established from a tumor induced 

by Abelson murine leukemia virus. These cells growth in adhesion and are 

able to differentiate in OCLs in presence of mRANKL or in dendritic cells 

(DCs) in presence of GM-CSF, IL4 and LPS.  

1.2 Co-culture of MM/BMSC lines 

NIH3T3 cells were plated in 24 multi-well plates at the concentration of 

150000/ml. After 24h NIH3T3 medium was discarded and OPM2 MM cells 

were plated on top of NIH3T3 monolayer at the concentration of 350000/ml. 

All the co-cultures were maintained in RPMI 1640 medium (Sigma-Aldrich 

Co., St Louis, MO), supplemented with 10% (v/v) FBS (Gibco, Rockville, 

MD), 2 mM L-glutamine (Invitrogen Corporation Carlsbad, CA, USA), 100 

U/ml penicillin and 100 µg/ml streptomycin. The serum was de-

complemented for 30’ at 56°C before use. Cells were cultured in 5% CO2 

at 37°C for 48h. 

 

1.3 Co-culture of MM/pre-OCL cell line 

For co-culture experiments Raw264.7 and U266 cells  were seeded on a 6-

well plate at a density of 1 × 104 cells per well (about 8 × 103 Raw264.7 and 

2 × 103 U266) and cultured for 7days in presence/absence of drugs. 

For conditioned medium experiments, Raw264.7 cells were seeded on a 6-

well plate at a density of 1 × 104 cells per well and allow to adhere for 
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3hours. Then, medium was replaced with 4/5 of DMEM and 1/5 of 

conditioned medium from U266 cells. 

 

2. TREATMENTS AND DIFFERENTIATION ASSAYS 

2.1 Notch inhibition DAPT-mediated 

DAPT (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester, 

Chalbiochem), also called GSI IX,  is an inhibitor of the enzyme γ-

Secretase. It is dissolved in DMSO. 

The cells were treated with the drug at a concentration of 50μM. The cells 

treated with the same amount of DMSO were used as control. 

 

 

Figure 2.1. Molecular structure of DAPT. 

 

2.2 Osteoclast differentiation from RAW264.7 cells 

Raw264.7 were seeded on a 24-well plate at a density of 1 × 104 cells per 

well. Cells were treated for 5 days with 50ng/ml mRANKL in the 

presence/absence of DAPT. 
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3. TRAP Staining 

On the day of harvest, cells were fixed on the culture plates with citrate-

acetone solution and stained for tartrate-resistant acid phosphatase (TRAP) 

(Sigma-Aldrich) in order to identify mature OCLs. 

Picture were taken by using a Leica microscope equipped with a DFC280 

camera (Leica Microsystems), and analyzed with the LAS v2.8.1 software 

(Leica). 

Osteoclasts were identified and enumerated under light microscopy by the 

presence of ≥3 nuclei. 

 

4. BONE RESORPTION ASSAY  

Raw264.7 were cultured on Osteo Assay Surface 24-wells plates (Corning) 

under differentiation conditions. After 7-10 days of culture, the plates were 

washed in 5% sodium hypochlorite solution to remove the cells. The 

resorbed areas on the plates were captured with EVOS fl microscope and 

the percentage of resorbed area was measured by using the Wimasis image 

analysis software (Wimasis GmbH) to process 20x pictures covering the 

whole well surface. 

5. GENE EXPRESSION ANALYSIS 

5.1 RNA isolation 
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The total RNA isolation was based on acid guanidinium thiocyanate-

phenol-chloroform extraction (Chomczynski P., 1987).The protocol is 

optimized for 106 cells: 

 Cells were washed two times with cold 1X PBS.  

 After centrifugation at room temperature, pellet was resuspended in 

150 μl of D-solution. 

 Sequentially it was added: 

- 15 μl Sodium Acetate 2M pH 4 

- 150 μl water-saturated Phenol 

- 30 μl Chloroform 

 Sample was mixed by vortex and incubated at 4°C for 10’. 

 After centrifugation for 10’ at 14.000 rpm at 4°C, the aqueous phase 

was collected in a new tube. 

 One volume of Phenol-Chloroform was added to the aqueous phase. 

 Sample was mixed by vortex and centrifuged for 10’ at 14.000 rpm at 

4°C. 

 The aqueous phase was collected in a new tube.  

 One volume of cold isopropanol was added to the aqueous phase. 

 Sample was incubated for 30’ at –20°C. 

 After centrifugation for 30’ at 14.000 rpm at 4°C, the supernatant was 

discarded. 

 Pellet was resuspended in 50 μl of D-Solution and precipitated with 1 

volume of cold isopropanol.  

 Sample was incubated for 30’ at –20°C. 

 After centrifugation for 30’ at 14.000 rpm at 4°C, the supernatant was 

discarded. 

 Pellet was washed with cold ethanol 70% . 
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 After centrifugation for 10’ at 14.000 rpm at 4°C, the ethanol was 

discarded. 

 Pellet was dried with vacuum system and resuspended in 30 μl of H2O 

DEPC. 

 To obtain an homogenous solution, RNA was heated at 65°C for 5’. 

1  

PBS 1X pH 7,4 

- 4,3 mM  Na2HPO4 

- 1,47 mM  KH2PO4 

- 137 mM  NaCl 

- 2,7mM  KCl 

 

D-Solution pH 7: 

- 4 M  guanidinium isothiocyanate 

- 25 mM sodium citrate tribasic dehydrate 

- 18.4 mM sodium lauroyl sarcosinate 

- 100 mM β-mercaptoethanol 

-  

5.2 RNA quantification 

RNA was quantified by spectrophotometric measure, using 2 μl of RNA in 

700 μl of H2O Milli-Q in quartz cuvettes at two different wavelengths: 260nm 

(A1) and 280nm (A2). 

Since: 1 OD260nm = 40 μg/ml 

The concentration in μg/ml was calculated as: 

A260 x 40 ng/μl x dilution factor 

High quality RNA was used (A1/A2 ratio closed to 2). 
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5.3 Reverse transcription 

The cDNA was obtained by reverse transcription with M-MLV RT KIT 

(Sigma-Aldrich Co.).  

 A reaction mix of 20 μl was prepared with: 

- 2 μl of Random primers (250ng/μl)  

- 4 μl of 10 mM dNTPs (2.5mM each)  

- 2 μg RNA 

- H2O DEPC up to 10 μl 

 The sample was heated at 65°C for 5’. 

 After centrifugation it was added to the mix:  

- 2μl of 10x M-MLV RT Buffer  

- 1μl of M-MLV Reverse Transcriptase (200 U/μl) 

- 7μl of H2O DEPC 

 Sample was incubated 10’ at room temperature, then at 37°C for 50 

minutes and finally stored at –20°C. 

 

5.4 PCR (Polymerase Chain Reaction)  

Quantitative PCR reactions were carried out on a 7500 Fast Real-time PCR 

system (Applied Biosystems, Life Technologies Italia, Italy) using the 

GoTaq qPCR Master Mix (Promega, Italia s.r.l., Milan, Italy). 

Each sample was analyzed in triplicate with no template controls. 

Calculations of the initial mRNA copy numbers in each sample were made 

according with to Ct (cycle-mix threshold) method and the copy numbers of 

the analyzed mRNA were normalized using GAPDH mRNA levels. Primer 

sequences used for cDNA amplification are displayed in Table 5.4.1. 
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RT-qPCR 

primers 

Forward Primer 5’-3’ Reverse Primer 5’-3’ 

mGAPDH TTGGCCGTATTGGGCGCCTG CACCCTTCAAGTGGGCCCCG 

mHES5 GGCTCACCCCAGCCCGTAGA TCGTGCCCACATGCACCCAC 

mCXCR4 AACCACCACGGCTGTAGAGCG

A 

TCCCGGAAGCAGGGTTCCTTG

T 

mTRAP ACCGTGCCCTTCGCAACATCC GACAGCTGAGTGCGGGCCAC 

mRANK TGCCCTGTGGCCCCGATGAG TGGTAGCCAGCCGTGCAAGC 

mRANKL CCCAGCGAGGCAAGCCTGAG TGCCGAAAGCAAATGTTGGCG 

mNOTCH

1 

ACCGGAGTGGACGGGTCAGT TGTGCGCCCATGCGGACATT 

mNOTCH

2 

CTTGCTTGTGCCCCGTGGGT 
GCCCGAGTGCTGGCACAAGT 

hGAPDH ACAGTCAGCCGCATCTTCTT AATGGAGGGGTCATTGATGG 

hHPRT1 GTAGCCCTCTGTGTGCTCAA TTTATGTCCCCTGTTGACTGG

T 

h/m18s GTAACCCGTTGAACCCCATT CCATCCAATCGGTAGTAGCG 

hHES6 ATGAGGACGGCTGGGAGA ACCGTCAGCTCCAGCACTT 

hJag1 TTCGCCTGGCCGAGGTCCTAT GCCCGTGTTCTGCTTCAGCGT 

hJag2 CCGGCCCCGCAACGACTTTT CCTCCCTTGCCAGCCGTAGC 

hRANKL AAGGAGCTGTGCAAAAGGAA CGAAAGCAAATGTTGGCATA 
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Table 5.4.1 Primer sequences. 

 

6. ELISA Assay 

Flat-bottom 96-well polycarbonate plates were coated at 4°C overnight with 

50 µL/well cell culture supernatants diluted 1:1 in carbonate coating buffer 

(0.1 M Na2CO3, 0.1 M NaHCO3, pH=9.5). Standard curves were obtained 

with purified recombinant human RANKL (Merck-Millipore) serially diluted in 

coating buffer. After removing diluted supernatants or standards and 

blocking with PBS supplemented with 1% W/V BSA for 1 h at RT, plates 

were incubated with biotin-conjugated goat anti-human RANKL (Merck-

Millipore) for 1 h at RT. Then, plates were washed twice with PBS 

containing 0.025% V/V Tween-20 (300 µL/well) and incubated at RT with 

Streptavidin-HRP-labeled secondary antibody (Invitrogen) for 30min. The 

plates were washed three times with PBS containing 0.025% V/V Tween-

20 (300 µL/well), then the TMB substrate (Thermo Scientific, Inc) was 

added, and signal was measured using a microplate reader. All samples 

were run in triplicates. 

7. FLOW CYTOMETRY ANALYSIS 

A Beckman Coulter  flow cytometer was used for apoptosis detection. 

3x105 cells/ml were washed with cold PBS1x, resuspended in “binding 

buffer 1X” (HEPES 0,01M, NaCl 0,14M, CaCl2 2,5mM) and incubated (or 

not for control) for 15’ at room temperature with Annexin-V FITC (Bender) + 

Propidium Iodide (2,5 ug/ml final, Sigma-Aldrich Co) in the dark. Finally, 

400 μl of Binding Buffer 1x were added to the tube. 10.000 cells were 

acquired using FL1 and FL3 bandpass filter for Annexin-V FITC (λex=488 

nm; λem=520 nm) and Propidium Iodide (λex=488 nm; λem=617 nm) 
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respectively. Cells were processed using “Cytomics FC500” 

BeckmanCoulter software program.  

 

8. MTT ASSAY 

Cells were incubated with 0,5mg/ml MTT suspension (Sigma-Aldrich Co) in 

the dark at 37°C 5%CO2 for 4h and finally resuspended in DMSO. An 

automated microplate reader was used to measure the optical density at a 

wavelength of 540nm (background wavelength= 620nm). Plates were 

processed using “Magellan” Tecan software program.  

 

9.TRANSFECTION AND REPORTER ASSAY 

Intracellular Notch1 (ICN1)  and Notch2 (ICN2)  constructs were previously 

described respectively by Prof. W.S. Pear and Prof. B. Bettler (Pear et al., 

1996; Tchorz et al., 2009).   

For the reporter assays, TK-pRL was from Promega Italia s.r.l. (Milano, 

Italy). The pGL3-based plasmid encoding the firelfly luciferase under the 

control of 13 repeats of the CSL-responsive element (13XCSL) was as 

described by Shawber C., et al. (32). Cells were harvested and 

resuspended (107/mL) in RPMI1640 without antibiotics. One hundred 

microliters of cell suspension were mixed with 5 μg DNA (1:25 firefly:renilla 

luciferase ratio), then transferred into a 2.0 mm-gap cuvette (BTX, MA, 

USA).  Electroporation was performed using 250 V and 950 μF. Analyses 

were performed 72 hours after transfection. The dual luciferase assay was 

performed according to the manufacturer’s directions (Dual-Luciferase® 

Reporter Assay System, Promega). 
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10. WESTERN BLOT ANALYSIS 

Whole cell extracts were prepared using a RIPA lysis buffer containing 

50mM Tris-HCl, pH 7.4, 150mM NaCl, 1% Triton X-100, 1% sodium 

deoxycholate, 0.1% SDS, 1mM EGTA, 1mM EDTA and the protease 

inhibitors, 50mM NaF, 1mM phenylmethylsulfonyl fluoride (PMSF), 1 mM 

Na3VO4, 2μg/ml aprotinin, 2μg/ml leupeptin. After incubation on ice for 15 

min, the lysate was clarified by centrifugation for 10 min at 4°C. Protein 

concentration was determined using the Bradford assay (Bio-Rad 

Laboratories). Protein samples (50–70 μg) were loaded and run on 8% 

denaturing SDS-PAGE gels, transferred to a nitrocellulose membrane 

(Hybond-ECL, Amersham Bioscience), and blocked with 5% screamed milk 

in TBS-T (20 mM Tris, pH 7.5, 150 mM NaCl, 0.05% Tween-20). The 

membrane was then incubated o.n. at 4°C with the indicated primary 

antibodies as follows: cleaved-Notch1 (Val 1744) 1:1000, Notch 2 

intracellular domain antibody-cleaved (Asp1733) 1:1000. Following washes, 

the filter was incubated with HRP-conjugated species-specific secondary 

antibodies (Santa-Cruz Biotechnology). Proteins were visualized with ECL 

reagents (Promega) according to the manufacturer’s instructions.  

 

11. RNA INTERFERENCE 

To selectively inhibit Notch signaling in MM OPM2 and U266 cell lines a 

specific Jag1 and 2 knock-down was designed using a transient expression 

of specific siRNAs for Jag1-2. As negative control was used a “scrambled” 

siRNA, to discount any change in gene expression profile due to delivery 

method. Cells treated with fluorescent sdRNA “BLOCK-IT” (Life 

Technologies Italia, Milan, Italy) were used as positive control. 
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To address this issue, Stealth Select RNAiTM siRNA system (Life 

Technologies Italia, Milan, Italy) was used according to the Manufacturer’s 

guidelines. 

Specific anti-Jag siRNAs were delivered following these steps: 

 Cells were plated at 3x105/ml in medium without antibiotics; 

 24h later, cells were diluted to 3,6x105/ml in medium without antibiotics 

and plated in 0,5 ml of final volume; 

 siRNAs (25 nM anti-Jag1 + 25 nM anti-Jag2 / or 50nM scrambled 

siRNA/ or 50nM fluorescent dsRNA ) were diluted in 50μl of Opti-MEM 

medium (Invitrogen, Life Technologies Italia, Milan, Italy) without serum 

and antibiotics; 

 1µl of RNAi-MAX lipofectamine transfecting reagent (Invitrogen, Life 

Technologies Italia, Milan, Italy) was diluted in 50μl of Opti-MEM 

medium  without serum and antibiotics; 

 The two solutions (siRNA/lipofectamine) were mixed and incubated for 

20’ at room temperature; 

 100μl of lipofectamine/siRNA mix was added to the cells (final cells 

concentration 3x105/ml); 

 Every 48h cells were diluted 1:1 with medium antibiotics-free and 

treated again with Jag1/Jag2 siRNA up to 8 days 

Cells were maintained in RPMI 1640 medium (Sigma-Aldrich Co., St Louis, 

MO) supplemented with 10% (v/v) FBS (Gibco, Rockville, MD) and 2 mM L-

glutamine (Invitrogen Corporation Carlsbad, CA, USA) without antibiotics 

and incubated in 5% CO2 at 37°C. 

To confirm that the transfection occurred successfully, the percentage of 

BLOCK-IT positive cells were checked trough flow cytometry analysis at 

each time point. 10000 cells were acquired with Beckman Coulter analyzer 
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using FL2 bandpass filter (λex=488nm; λem=575nm) for BLOCK-IT 

fluorophore conjugated sdRNA. 

Jag1 and Jag2 effective silencing induced by specific siRNAs was 

assessed by quantitative PCR compared to scrambled siRNA-receiving 

cells. 

 

12. STATISTICAL ANALYSIS 

Data are represented as mean ± SD of at least 3 independent experiments. 

Statistical analysis on single culture and co-culture experiments on 

Raw264.7 and MM cell lines were performed using two-tailed Student's t-

test to compare the means of normally distributed values and analysis of 

variance was performed by  a one-way ANOVA with Tukey’s post-test. 
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