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Abstract

European School of Medicine (SEMM)

Settore Disciplinare: BIO/10

by Iros Giacomo Barozzi

In mammalian cells transcription factors (TFs) bind only to a small fraction of the available

consensus sites in the genome. In particular, they prefer sites embedded in regions of com-

putationally predicted high nucleosomal occupancy. This is compatible with non-exclusive

mechanisms of nucleosome-driven TF-binding and nucleosome-mediated masking of TF bind-

ing sites, suggesting that TFs, and in particular pioneers, must overcome a strong barrier in

order to engage binding. Exploiting the available information for the hematopoietic master

regulator Pu.1, we applied machine learning approaches and uncovered the sequence-encoded

information that discriminates engaged from non-engaged genomic consensus sites. We iden-

tified a minimal set of features which predicts Pu.1 binding with 78% accuracy, among which

sequence determinants able to drive nucleosome occupancy were found. Consistent with

this, while Pu.1 maintained nucleosome depletion at many thousand cell type-specific en-

hancers in macrophages, these site are otherwise occupied by nucleosomes in other cell types

and in in vitro reconstituted chromatin. As predicted, engaged consensus sites showed higher

sequence-encoded nucleosome occupancy compared to the myriad of non-occupied (and likely

non-functional) consensus sites that randomly occur in mammalian genomes. The same se-

quence features selected in machine learning also explains up to 45% of the variability observed

in the nucleosome occupancy in cells where Pu.1 is not expressed (a performance equal or

better than what achieved by ad hoc models), suggesting that the same information con-

tributes to nucleosome occupancy and positioning. These data reveal a basic organizational

principle of mammalian enhancers whereby TF-engagement at its consensus sites and nucle-

osome occupancy are coordinately controlled by overlapping sequence features. This model

also suggests that co-evolution of these features may be crucial to ensure cell-type specific
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enhancer activation. The nucleosomal patterns at Pu.1-bound sites in macrophages were fur-

ther characterized, uncovering distinct subtypes with different DNA sequence composition,

which mirror distinctive nucleosomal configurations either in the presence or in the absence

of Pu.1.
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Chapter 1

Introduction

1.1 Regulation of DNA transcription

Seminal studies in bacteria during the 1960s (Jacob and Monod, 1961, Englesberg et al.,

1965, Gilbert and Müller-Hill, 1967) showed that regulation of transcription (namely how the

information is transferred from a DNA to a RNA molecule) depends on the recognition of

specific genomic DNA sequences (cis-regulatory elements, or simply regulatory elements) by

particular proteins termed trans-factors. These DNA sequences mediate the maintainance

and the re-organization of the transcriptional program of a cell, either in response to en-

vironmental (DeRisi et al., 1997) or developmental (Arbeitman et al., 2002) cues. Shaping

the complex body plans of multi-cellular organisms require the coordinated transcription of

thousands of genes in space and time, which is largely dependent on cis-regulatory elements

(Zinzen et al., 2009).

Different types of regulatory elements can be distinguished in the genome. A core promoter

is the minimal set of regulatory sequences sourrounding the transcriptional start site (TSS)

of a gene. In order to be defined as such, a core promoter must be able to drive transcription

in vitro (Smale and Kadonaga, 2003). Core promoters can be bound by general transcription

factors (GTFs) resulting in the assembly of the pre-initiation complex (PIC), which helps

positioning the RNA polymerase II (polII) at the TSS (Lenhard et al., 2012). Core promot-

ers represent only a fraction of cis-regulatory elements in Metazoa. The remaining elements

1



Chapter 1. Introduction 2

spread from hundreds to millions of kilobases from them and act as platforms for the re-

cruitment of multiple transcription factors (TFs), co-factors (activators and/or repressors)

and chromatin remodeling complexes. Only the concerted binding of specific combinations

of TFs at both core promoter and TSS-distal cis-regulatory elements is able to drive tissue-

specific gene expression (see figure 1.1). In this context, multiple regulatory signals converge

on the TSS of a gene, through a mechanism called DNA looping (Bulger and Groudine, 1999).

At present, this mechanism is widely supported by experiments of chromatin conformation

capture (3C) based techniques (de Wit and de Laat, 2012) and DNA fluorescence in situ

hybridization (FISH) coupled with Super-resolution microscopy (van de Corput et al., 2012).

Long-range regulatory interactions have been shown to be an extensive characteristic of the

genomes of Metazoa, while playing a significantly less widespread role in other eukaryotes

(Levine, 2010).

It should be note that these interactions are highly dynamic and subject to stochasticity

(Coulon et al., 2013). At present, there are evidences showing that the residence time of a

TF on a cis-regulatory element is the major determinant of the activity of the region (Lickwar

et al., 2012). According to this report, shorter but frequent interactions could result in little

or no effect compared to longer but less frequent ones. Similarly to single protein-DNA in-

teractions, distinct tissue-specific combinations of TFs could be able to increase (or decrease)

the probability of a looping interaction to be stabilized for an amount of time sufficient for

functional consequences (see figure 1.1).

Spatial proximity is achieved and maintained through specific protein-protein and protein-

DNA interactions. Although the underlying mechanisms are still poorly understood, the

Mediator complex and Cohesin have been recently shown to form a ring able to constraint

two DNA segments in space, thereby creating a loop (Kagey et al., 2010, Dorsett, 2011).

Cohesin has also been shown to be an invariant component of the majority of clusters of TFs

in human colorectal cancer (Yan et al., 2013). Interestingly, the same study showed that

Cohesin remains bound to these clusters during mitosis while other factors tested (namely

Klf5, Hnf4a and Myc) are evicted. These results suggest a role for Cohesin in bookmarking

active regulatory elements after DNA replication and chromatin condensation. Ldb1 was also

found to be indispensable to the Gata1-mediated looping of the locus control region (LCR)

of the β-globin with its core promoter (Deng et al., 2012).
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1.2 Taxonomy of cis-regulatory elements

During recent years it has been proposed that the promoters of higher eukaryotes can be

categorized in a few different groups (Lenhard et al., 2012). These show correlated DNA

sequence content and ability to drive initiation of transcription either from a single or from

multiple nucleotide positions (usually referred as focused and dispersed initiation):

• Tissue-Specific: focused promoters, often display TATA-box and almost no CpG islands;

• Housekeeping: dispersed promoters, almost TATA-less and with short CpG islands;

• Developmentally-Regulated: dispersed promoters, large CpG islands, Polycomb-regulated.

TATA-box is a core promoter element located around 25 bp upstream of a TSS. It is present

in 25% of the TSSs in H. sapiens (Yang et al., 2007). For a detailed description of CpG

islands refer to paragraph 1.4.3.2.

On the other hand, cis-regulatory elements other than core promoters can be divided accord-

ing to their effects on transcription: (Maston et al., 2006):

• Enhancers: interact with the TSS of one or more genes, increasing their transcriptional

rate;

• Silencers: same as enhancers, but they act by decreasing the transcriptional rate of

their target genes;

• Insulators: inhibit the activity of enhancers and silencers, by competition or blocking;

• Locus Control Regions (LCRs): clusters of regulatory elements, often affecting the

transcriptional rate at locus containing more than one gene.

From an operational point of view, these elements are often divided into two groups according

to their distance from the nearest TSS. As a rule of thumb, it is widely accepted the use of an

arbitrary threshold of 2.5 kbp around annotated TSSs in order to distinguish TSS-proximal

cis-regulatory elements from TSS-distal ones.

As anticipated in the previous paragraph, multiple regulatory signals converge on the TSS

of a single gene to fine tune its transcriptional rate in a tissue-specific manner (see figure
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1.1). It has been shown that up to tens of enhancers can be simultaneously engaged in the

regulation of a single gene (Arnold et al., 2013). This was observed also for housekeeping

genes, which by definition have similar levels of expression across cell types (Arnold et al.,

2013). The high number of enhancers per gene could reflect combinatorial regulation as well

as conferring robustness through redundancy, as testified by the report of shadow enhancers

controlling developmental genes (Hong et al., 2008).

Figure 1.1: The information encoded in the core promoter itself can be in-
sufficient to drive an expression pattern that is tissue-specific (upper panel).
The coordinated action of TFs is required to promote co-factors recruitment
and enhancer-promoter looping, which in turn regulates tissue specific levels
of gene expression (middle and lower panel). Insulator elements function to
restrict the activity of enhancers to defined chromatin domains by preventing

aspecific enhancer-promoter interactions. Adapted from Visel et al., 2009.
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1.3 Transcriptional regulation: a combinatorial problem

Transcriptional regulation is achieved through the binding of combinations of TFs, which are

encoded in the genomic sequence as dense clusters of transcription factor binding sites (TF-

BSs). These are generally referred to as cis-regulatory modules (CRMs). TFBSs are short

(usually 6-12 nt) DNA recognition sequences (motifs); they are degenerated and usually not

sufficient to predict the binding of a TF on their own (Wasserman and Sandelin, 2004).

A recent study (Ravasi et al., 2010) split human and murine TFs into two broad categories

based on their mRNA expression pattern across tissues. Two groups were defined, one of

widely expressed and another of lineage-specific TFs. The widely expressed TFs were termed

facilitators, given that their expression across different tissues could facilitate transcriptional

programs, while the lineage-specific were named specifiers. For example, TFs like Jun, Fos,

Myc and Tp53 were among facilitators while Myod1 and Gata1 were among specifiers. Among

the specifiers many master regulators were found. TFs defined as such play a pivotal role into

the differentiation towards a specific lineage. In line with this other studies demonstrated

that widely expressed TFs can bind to completely different sets of promoters and enhancers

in presence of different master regulators. Smad3 has been shown to be co-opted by Oct4 in

embryonic stem cells (ESCs) by Myod1 in myotubes and by Pu.1 in pro-B cells at an almost

completely different set of cis-regulatory elements (Mullen et al., 2011). In this scenario, the

different concentrations of TFs coupled with the genomic information (CRMs) are able to

generate the complex combinatorial patterns responsible for cell identity (Neph et al., 2012a).

This combinatorial regulation can be achieved through PPI among TFs or indirect mecha-

nisms of cooperativity (Spitz and Furlong, 2012):

• Transcriptional sinergy: two non-interacting TFs bound in proximity along DNA can

be stabilized by PPI to form a complex (through Mediator or co-factors like p300/Cbp);

• Passive enhancer priming: one TF can act as a place-holder and displace a nucleosome.

This allows another TF to access the cis-regulatory element, that otherwise would not

be able to bind;

• Local DNA bending: one TFs is specifically able to induce a change in the local shape

of the chromatin fiber, so that another TF acquire the ability to bind;
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• Chromatin remodeling dependent on a pioneer TF: a TF that is able to invade chro-

matin is called a pioneer (Magnani et al., 2011). Recruitment of chromatin remodeling

complexes by pioneers might increase the accessibility to the locus to other TFs that

do not possess pioneering activity.

At present, in order to achieve cooperativity among TFs different models have been proposed.

These are not mutually exclusive in the sense that they account for different way of regulation

that co-exist in the same genome. The three main models have been recently reviewed in

(Spitz and Furlong, 2012):

• Enhanceosome: there is a strict grammar (namely precise spacing and orientation) over

the motif composition of the regulatory element as all the TFs must be expressed at

the proper concentration for its activity; in practice, this precise organization has been

observed in very few cases (Merika and Thanos, 2001), among which the most studied

is an enhancer of the Ifn-β gene (Maniatis et al., 1998);

• Billboard: the majority of the regulatory elements in Metazoan genomes do not follow

an enhanseosome model; in the billboard model the accent is on the players involved.

Namely there is no strict grammar in the sequence but a core of motifs is required

for activity. In this context, additive and independent binding takes place, while in

the enhanseosome model a strict cooperativity is required in order to reach the only

conformation that is functional;

• TF Collective: a core set of TFs is bound to the regulatory element with looser sequence

requirements compared to the billboard model; TFs can bind either through DNA-

protein or protein-protein interactions, with no strict requirement on the presence of

the motifs.

As anticipated, there exist cis-regulatory elements where strict grammar is essential to ensure

proper activity (Maniatis et al., 1998, Senger et al., 2004), but they represent a minority. In

fact, evidences in D. melanogaster suggest that while the identity of the motifs into the module

is conserved, the architecture is flexible. This is supported by functional experiments in which

enhancers that diverged over a 100 millions years ago were demonstrated to drive the same

expression pattern during development, while the underlying motifs being almost completely
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reshuffled (Liberman and Stathopoulos, 2009, Hare et al., 2008). Similar conclusions were

drawn in independent computer simulations (Lusk and Eisen, 2010).

This picture gets a further level of complexity when considering that regulatory processes take

place in the context of chromatin. Chromatin status is influenced by binding of TFs and vice

versa. TFs are able to recruit protein complexes that can read the chromatin status of cis-

regulatory elements as well as enzymes able to modify it, leaving a trace of previous activities

(Kouzarides, 2007). The next section gives a general overview of chromatin organization and

frame TFs into this context.

1.4 Chromatin organization

Genomic DNA is organized in the nucleus of eukaryotic cells in a protein-DNA complex called

chromatin. Chromatin is not only a way of compacting genomic information in a restricted

space. Transcription, replication, recombination and repair are all intrinsecally related to this

reversible property (the condensation/de-condensation).

1.4.1 The nucleosome

The nucleosome is the basic building block of chromatin (Kornberg, 1974). The nucleosome

core particle consists of 146-147 bp of DNA wrapped in 1.67 left-handed superhelical turns

around a histone octamer, which consists of two H2A-H2B dimers and a H3-H4 tetramer

(Luger et al., 1997). Core particles are connected by stretches of ”linker DNA”, which can

vary in length based on the species or even on the tissue considered (Valouev et al., 2011).

The linker histone H1 is not part of the core particle, and it has been implicated mainly in

chromatin compaction. The amino acid sequence of histones is almost completely under neg-

ative selection and conserved from S. cerevisiae to H. sapiens (Kornberg and Lorch, 1999).

Studies in S. cerevisiae and in vitro showed that histones can act as general repressors (Ko-

rnberg and Lorch, 1999). In recent years, it has emerged a more complex picture in which

nucleosomes are plastic and can acquire different states (Zentner and Henikoff, 2013), con-

trolled through covalent post-translational modification of the N-terminal tails of histones
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(hPTMs or ”marks”) and ATP-dependent remodeling (Kornberg and Lorch, 1999). The

availability of variants of the histone genes adds a further level of complexity.

1.4.2 Nucleosomal organization at cis-regulatory elements

Nucleosomal organization at regulatory elements has been the subject of intense studies,

especially at TSSs and enhancers. Active and poised (namely those in which polII is engaged

but is not elongating into the gene body) TSSs show a particular configuration in which a

nucleosome free region (NFR) is flanked by two well-positioned nucleosomes (named +1 and

-1 according to the direction of transcription), followed by a nucleosomal array overlapping

the initial portion of the gene body (Jiang and Pugh, 2009). The function of as well as the

mechanism that originate this structure are still unclear. It has been shown that the NFR is

occupied by two divergent PICs in S. cerevisiae (Rhee and Pugh, 2012), which fits with the

hypothesis that the two positioned nucleosomes could play a role in polII pausing at TSSs.

Nevertheless, this role for the +1 nucleosome has been recently challenged in D. melanogaster

(Kwak et al., 2013). PolII has been long hypothesize to be responsible for the maintenance of

this NFR. A recent study reported that α-amanitin treatment (which causes the release and

degradation of the polII complex from chromatin) on human T-cells has only a minor effect on

the NFR and the surrounding nucleosomal configuration (Fenouil et al., 2012). Although the

polII complex does not seem to be directly implicated in the mechanism of NFR maintenance

(unless it leaves some kind of memory), deletion of ATP-dependent chromatin remodeling

factors have been reported to affect positioning of the +1 nucleosome in S. cerevisiae (van

Bakel et al., 2013). Besides, once thought to work indiscriminately across the entire genome,

recent observations point to a position-specific role (relative to the NFR) of many of the

chromatin remodelers (Yen et al., 2012).

Considering the three main classes of core promoters in Metazoan (Lenhard et al., 2012),

focused promoters often show a more disordered nucleosomal pattern compared to dispersed

promoters. Considering instead the bulk of cis-regulatory elements (core promoters, TSS-

proximal and TSS-distal elements) in murine ESCs, NPCs and MEFs, an intricate pattern

was observed. Different TFs were associated to distinct behaviors (Teif et al., 2012), namely:
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• TFs residing in regions with high nucleosome occupancy in cells types where they are

not expressed but undergo a decrease in nucleosome occupancy in the cell types where

the TF is expressed (and bound);

• TFs residing in regions of general high nucleosome occupancy;

• TFs residing in regions of general low nucleosome occupancy.

Among the first class, tissue-specific CTCF binding events correlated with tissue-specific nu-

cleosomal patterns. Sites in common between ESCs and MEFs showed the same organization,

namely a lower nucleosome occupancy at the CTCF binding site, flanked by two positioned

nucleosomes. ESCs-specific sites shown instead an increase in nucleosome occupancy over

the CTCF site in MEFs (Teif et al., 2012). A recent study extended these observations by

showing an extensive asymmetry regarding the positions of nucleosomes around binding sites

of the majority of human TFs (Kundaje et al., 2012).

Beside showing differences in their levels and positions at regulatory elements, histones can

be regulated by a layer of PTMs, giving rise to the so-called histone code (Kouzarides, 2007).

This expression was conceived upon the observation that distinct combinations of hPTMs

correlate with a different DNA function. This code represents a trace of past events in

chromatin (for example transcriptional elongation) and thus serve as an epigenetic memory

because it can be propagated through cell divisions (Kouzarides, 2007). This is particularly

well established for X chromosome inactivation and heterochromatin formation. Another

well-established epigenetic mark is cytosine methylation (Smith and Meissner, 2013), which

together with histone marks mediate the cross talk among TFs and the DNA. On the other

hand, some TFs can invade chromatin, modifying the accessibility of the underlying DNA

molecule to other effectors among which factors able to read and write these modifications

(Gardner et al., 2011).

1.4.3 Chromatin modifications at cis-regulatory elements

1.4.3.1 Post-translational modifications of the histones

Although PTMs have been detected at more than 60 different residues on the histones tails,

this still represents an underestimate of the real number. The residues involved are mainly
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lysines and arginines (and to a lower extent serines, threonines and tyrosines). The most

studied modifications are acetylation and methylation (which can be mono-, di- or tri- for

lysines and mono- or di- for arginines), although many others have been found to play roles in

chromatin condensation, transcription, repair and replication, with phosphorylation, ubiqui-

tylation, sumoylation, ADP-ribosylation, and proline isomerization among the most notable.

Some chromatin marks are mutually exclusive (e.g. the lysine 27 of the Histone H3, referred

to as H3K27, can be methylated or acetylated) but in general the number of combinations of

marks a single histone can acquire is virtually a much greater number than that observed so

far (Kouzarides, 2007).

The availability of high-throughput (HT) approaches aimed at measure hPTMs genome-wide

paved the way to the unfolding of the histone code. The very first map of chromatin marks

in human T-cells highlighted a link between the chromatin status of a TSS of a gene and

its transcriptional activity (Barski et al., 2007). Given population-averaged measurements

(ChIP-seq), higher the transcriptional level of a gene higher the levels of H2A.Z (a variant of

H2A) and H3K4me3 (and to some extent also of H3K4me2 and H3K4me1) around its TSS

and also higher the H3K36me3 and H3K20me1 levels on its body. On the contrary, lower

transcriptional activity is mirrored by higher H3K27me3 and H3K9me (di- and tri-) levels

over the corresponding TSSs.

Heintzman and collegues (Heintzman et al., 2009) showed that distal enhancers and TSSs can

be distinguished by the ratio between mono- and tri- methylation of H3K4. While high levels

of H3K4me1 and low levels of H3K4me3 (H3K4me1high/me3low) are characteristics of distal

regulatory elements, the opposite ratio (H3K4me1low/me3high) marks TSSs. Nevertheless, a

study reported a positive correlation between the level of H3K4me3 and enhancer activity

(Pekowska et al., 2011). Besides, histone acetylation (in particular H3K27ac) has been shown

to distinguish active from poised enhancers (Creyghton et al., 2010). Poised elements show a

methylation signature of enhancers but no sign of activity, either because of lack of activating

signals or because of active repression. They can also be a footprint of previous activities

(Ostuni et al., 2013). The concept of poised regulatory element was first denfined for the

so-called bivalent TSSs. Co-occurrence of activating H3K4me3 and repressive H3K27me3

marks at TSSs was observed at lowly transcribed developmental genes in ESCs (Bernstein

et al., 2006). Being in a transiently poised transcriptional state in ESCs, these genes can
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either lose the activating or the repressive mark during differentiation, turning on or off their

transcription (Mikkelsen et al., 2007). All these transitions requires the active egagement of

enzymes able to modify histone tails, namely methyl-transferases and de-methylases as well

as acetylases and de-acetylases (Gardner et al., 2011).

Pioneer studies showed that polII can often be recruited at cis-regulatory elements other than

TSSs (De Santa et al., 2010, Kim et al., 2010). These studies showed that localization of polII

at these sites was not only the result of polII being engaged in enhancer-promoter loops, but

that it was productively transcribing enhancer RNAs (eRNAs). Since these products show

almost no measurable evolutionary conservation, it remains unclear to what extent they are

functional or if they are byproducts of polII engagement onto chromatin. It cannot be also

excluded that the engagement of polII rather than its product could itself be of functional

relevance. Further studies (Ørom et al., 2010, Lam et al., 2013, Li et al., 2013) used targeted

degradation to demonstrate that at least some eRNAs are themselves directly implicated in

gene activation.

Taken together, these evidences suggest that the transcriptional profile of regulatory elements

is more complicated than initially thought. Since very recently core promoters and enhancers

were defined over almost exclusive features. The current emerging picture points instead to

a continuum among these two classes of regulatory elements.

Similar to TFs, the specific function of hPTMs is likely to be quite context-specific and also

not as clear-cut as initially thought. For example the role H3K4me3 as an activating mark

has been recently challenged by a study in S. cerevisiae which shows that Set1-dependent

H3K4 methylation acts as a gene repressor upon stress (Weiner et al., 2012).

1.4.3.2 DNA methylation

Cytosine residues in DNA can be methylated in vivo resulting in 5-Methylcytosine (5mC).

This reaction is mediated by enzymes possessing DNA methyltransferase (DNMT) activity

(Smith and Meissner, 2013). DNA methylation is considered a bona fide epigenetic mark,

which can be faithfully inherited through cell divisions. Although most of the cytosine methy-

lation occurs at CpG dinucleotides, cytosine can also be methylated in non-CpG context, as

observed in ESCs (Lister et al., 2009).

Mammalian genomes are largely depleted of CpGs, and among them 60-80% are methylated.
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Clusters of relatively high CpG density (termed CpG islands) are instead largely unmethy-

lated throughout organism development. Nearly half of the islands overlaps known TSSs,

while half are orphans (at least given the current level of annotation of the mammalian

genomes). Only 21.8% of CpG islands, especially the TSS-distal ones, undergo dynamic

changes in methylation during development (Ziller et al., 2013). On the contrary, dynamic

changes have been found to occur more frequently in diseases, like cancer (Aran and Hellman,

2013). CpG methylation at TSSs has been associated with down-modulation of transcrip-

tion and long-term gene silencing. This is in line with the pivotal role of CpG methylation

in suppressing the transcription of transposable elements, thereby inhibiting their ability to

spread (Smith and Meissner, 2013). Compared to promoters, enhancers show narrow tissue-

specific activity which is reflected by characteristic patterns of hPTMs (Heintzman et al.,

2009). Similarly, DNA methylation at enhancers exhibit tissue-specific patterns and it can

directly exert its effects on TF binding, as shown for the Glucocorticoid Receptor (Wiench

et al., 2011). In line with its importance, the methylation level of enhancers has been recently

shown to be better correlated to aberrant expression of target genes in cancer, as compared

to TSS methylation (Aran and Hellman, 2013).

1.4.4 A wider picture: chromatin states

The increasing availability of genome-wide maps of hPTMs and DNA methylation allowed

the unsupervised segmentation of the cell-types specific epigenomes in dozens of functionally

distinct compartments called chromatin states (Ernst and Kellis, 2010). As for single hPTMs,

distinct chromatin states showed different extent of cell-type specificity (Ernst et al., 2011).

Similar results were found profiling chromatin regulators (Ram et al., 2011). As expected,

different combinations of histone marks co-occur with proteins that read, deposit and erase

them. Interestingly, this study confirmed a previous observation in which counteracting

enzymes (e.g. acetylases and de-acetylases) are found on overlapping sets of regions (e.g.

acetylated active regulatory elements) (Wang et al., 2009), suggesting a deeper level of fine-

tuning of hPTMs than previously thought.
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1.4.5 Sequence-specific TFs and their interplay with chromatin determine

cell fate

The majority of inferences made so far concerning chromatin states, transcription factors

occupancy and transcriptional outputs are correlative. Strong efforts have to be made in order

to understand to what extent the observed chromatin states represent not only a consequence

of but also a prerequisite for recruitment (or exclusion) of the transcriptional machinery

(Gardner et al., 2011).

In a way that is largely independent of the state of chromatin, at least a specific class of TFs is

able to invade it: the pioneers (Magnani et al., 2011). As mentioned, they are able to recognize

their sites even in chromatinized context and to recruit chromatin regulators such as ATP-

chromatin remodeler factors. In principle, compared to TFs not showing this activity, pioneers

should exhibit longer residence time on chromatin. From an experimental point of view, this

can be assessed by FRAP, in which the fluorescence-tagged TF is irreversibly bleached by a

laser pulse from an area of interest and the time needed for recovery is measured. Although

this has been done for a limited amount of TFs, it has been demonstrated that FoxA1, which

is central in endoderm specification (Sekiya et al., 2009) shows a recovery time higher than

the other TFs tested but lower than the histone linker. According with this, Foxa2 has also

been shown to be responsible for chromatin remodeling at nucleosome-occupied regulatory

elements marked by H2A.Z during differentiation of ESC to endoderm/hepatic progenitors

(EHP) (Li et al., 2012). Interestingly, around 15% of FoxA1 binding sites in interphase are not

evicted during mitosis Caravaca et al., 2013. Unless to a lesser extent compared to Cohesin

(Yan et al., 2013), this suggests a role also for pioneer factors (and not for other factors,

e.g. Klf5, Hnf4a and Myc, see Caravaca et al., 2013) in mitotic bookmarking of regulatory

elements. This is also consistent with the strong enrichment of motifs for pioneer factors (e.g.

Fox- and Ets- related factors) observed in the sequence of the Cohesin clusters (Yan et al.,

2013).

The pioneering activity of at least a fraction of them candidates TFs as main drivers in the

determination of the transcriptional landscape of a cell, which in turns governs its fate. In

fact, the over-expression of a single cell-type specific TF or a combination of them has been

demonstrated to be sufficient in order to induce re-programming of cells from a lineage to

another (Pereira et al., 2012). Nevertheless, it has been shown that they are not sufficient
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to completely erase the epigenetic memory of the cell of origin (Lister et al., 2011), which in

turn can affect TF binding (e.g. DNA methylation) (Wiench et al., 2011).

If TFs rule cell fate, this implies that determinants of TF binding are at its foundation. Even

though they are sequence-specific by definition, given the size of mammalian genomes, the

sites that are bound in vivo are only a minor fraction compared to the hundreds of thousands

of sequences matching high-affinity TF recognition sites (Pan et al., 2010). This is apparently

in contrast to their non-ambiguous binding profiles. Using information theory (Wunderlich

and Mirny, 2009) it was shown that TF-binding motifs are not instructive enough to avoid

spurious hits to the mammalian genomic background, calling for the presence of additional

genetic or epigenetic features in order to achieve their specificity.

Considering chromatin determinants, two studies (Nili et al., 2010, Tillo et al., 2010) spotted

a positive correlation between in vitro local nucleosome occupancy (predicted as well as

experimentally verified) and engagement of binding sites for multiple human TFs. Namely,

contacted sites showed an intrinsic propensity for the region to be wrapped into a nucleosome,

compared to similar sites never found to be contacted by the TFs in vivo. More recently,

the correlation of in vitro binding preferences with the in vitro nucleosome occupancy of

the same DNA stretch has been tested for 137 sequence-specific DNA-binding proteins in

S. cerevisiae (Charoensawan et al., 2012). 98 out of 137 have been found to be positively

correlated, with transcriptional activators among the most strongly correlated. Another piece

of evidence came recently from Winter et al., 2013, in which the authors observed that open

Dnase I hypersensitive sites are often occupied by rotationally stable nucleosomes in cell types

where the same site is not accessible. Along with the observation that Progesterone Receptor

contacts sites pre-marked by a nucleosome (Ballaré et al., 2012), these studies suggest that

particular nucleosomal configuration (occupancy and positioning of short genomic regions)

and TF-binding sites which can be productively engaged might be intrinsically imposed by

the genomic sequence.

1.5 Determinants of transcription factor binding

Understanding to what extent the sequence information encoded in the genomic DNA itself

specifies its regulatory properties is not only a challenging task. The answer to such question
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would shed light on the relative contribution of genetics and epigenetics to regulation. As

mentioned in the previous paragraph, given the size of mammalian genomes, the sites that are

bound in vivo correspond only to a small fraction of the hundreds of thousands of sequences

matching high-affinity TF recognition sites (Pan et al., 2010).

A general observation is that, in order to be bound, a motif should be available to the TF.

What does available mean? Many studies have shown the high power of DNA hypersensitivity

to nuclease digestion in predicting TF binding (Kaplan et al., 2011, Arvey et al., 2012).

Despite the encouraging results, DNA hypersensitivity represents a readout of some previous

remodeling event. Not being independent on the binding itself, it is not correct considering

hypersensitivity as a determinant of binding, especially in case of pioneer factors and master

regulators (the former being able to invade inaccessible chromatin, the latter being expressed

very early during differentiation). Availability of a certain binding site to its cognate TF

reflects the contribution of the sequence itself (i.e. presence of binding sites for partner TFs)

as well as of the epigenetic signature of the region, which is a legacy coming from a previous

stage of differentiation or exposure to environmental insults (Ostuni et al., 2013).

Multiple evidences (described in the next paragraph) suggest that engaged binding sites reside

in a peculiar sequence context that can be responsible for directing TF-binding. If this is

true, it should be possible to distinguish engaged from non-engaged sites using predictors

trained on the genomic sequence alone.

1.6 Predictions of transcription factor binding from the se-

quence

The problem of predicting transcription factor binding starting from the local sequence of

mammalian genomes has been successfully addressed in two recent papers (Yáñez-Cuna et al.,

2012, Arvey et al., 2012). While both papers tackled cell type specificity of binding for differ-

ent TFs and co-regulators (e.g. the acetyltransferase p300) only Arvey and collegues (Arvey

et al., 2012) compared real binding events to a negative set (namely nearby regions) but

applied the method only to the best 1,000 ChIP-seq determined contacted sites.

Yáñez-Cuna and collegues (Yáñez-Cuna et al., 2012) used motifs representing published bind-

ing preferences for known TFs. Arvey and collegues (Arvey et al., 2012) applied instead a
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completely unbiased approach which considers degenerated k -mers. The first method reached

AUCs between 0.62 and 0.95 in discriminating cell-type specific binding, depending on the

dataset considered. The second one got AUCs between 0.5 and 0.95 in discriminating real

binding to a negative set.

None of the approaches explicitly considered other features of the genomic sequence that

have been found to be related to TF engagement at its consensus sequences. A recent study

(Kwon et al., 2011) highlighted a higher C+G content in muscle-specific CRMs that could be

validated in functional assays (compared to predicted candidates that could not be validated),

which was also reflected at the level of C+G-rich di-nucleotides. This is in accordance with

the observation that higher C+G content at engaged elements compared to non-engaged ones

favours higher nucleosome occupancy.

Predictions of the three-dimensional DNA shape induced only by sequence has been recently

shown to improve the correct classification of binding sites contacted in vivo by bHLH TFs

in S. cerevisiae (Gordân et al., 2013). The authors found that DNA shape features are able

to recapitulate the boost in predictive power that can be achieved using positional 2-mers

and 3-mers. The great advantage of using DNA shape is that it can capture the same in-

formation in a relatively small number of features compared to the whole set of positional

2/3-mers. Generally speaking, DNA shape is strictly related to correct protein-DNA recog-

nition (Rohs et al., 2009). The inclusion of these kind of measurements in the prediction

captures the fact that degenerated binding motifs can form very similar three-dimensional

shapes, an information that otherwise will be missed.

1.7 Determinants of nucleosome occupancy and positioning

Nucleosome positions are usually described through occupancy and positioning. Given a

certain strecth of DNA in a population of cells, the occupancy defines the probability it is

wrapped into a nucleosome. Given similar occupancy, the DNA can slide along the histone

octamer, resulting in different conformations. The less conformations the nucleosome can

assume, the better its positioning, and vice versa (see figure 1.2). Similarly to TFs selecting

their binding sites, it was hypothesized that a set of rules governing the nucleosome confor-

mations across a genome must be in place.
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In the current view rules are governed by three main variables (Struhl and Segal, 2013):

High High Mid 

Low High High 

Single cells 

Occupancy 

Positioning 

Figure 1.2: Nucleosome occupancy and positioning are two descriptors of
nucleosomal DNA. Three situations are depicted in the figure. On the left, a
region showing a high probability of been wrapped into a nucleosome, while
the histone octamer can assume different rotational positions along the DNA
fiber (high occupancy, low positioning). In the middle, a region displaying a
similar occupancy but in which the histone octamer is not able to rotate along
the DNA fiber is reported (high occupancy and positioning). On the right, a
region with lower occupancy compared to the other two regions, but with high

capability to position nucleosomes.

DNA sequence, trans-acting factors (including TFs and the transcriptional machinery) and

ATP-dependent chromatin remodeling enzymes (see figure 1.3). The role of DNA sequence in

nucleosome occupancy has been the object of a long controversy (reviewed in Struhl and Segal,

2013) concerning the relative role of nucleotide composition (Segal et al., 2006), DNA-bound

barriers (Mavrich et al., 2008) and remodelers-driven nucleosome packing against barriers

(Zhang et al., 2011) in determining nucleosome patterns in vivo. It is now demonstrated that

each of these mechanisms contributes to the control of nucleosomal organization and that

sequence-driven nucleosome assembly can be overcome by trans-acting factors at specific lo-

cations in the genome, e.g. at the +1 nucleosome relative to the TSS (Zhang et al., 2011).

Pioneer studies showed a much larger contribution of the sequence to occupancy (Segal

et al., 2006, Segal and Widom, 2009) than positioning (Zhang et al., 2009). According to

these findings, while the information for NFR formation at TSSs is encoded in the sequence,

predictions of the exact positions are only modest (Yuan and Liu, 2008), pointing to the
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Figure 1.3: Gray circles indicate nucleosomes, dark grey ones represent better posi-
tioned nucleosomes. poly(dA:dT) tracts and/or transcription factors can generate NDRs
(upper panel). By statistical positioning and action of chromatin remodeling complexes,
arrays of nucleosomes are positioned at the sides of NDRs. At TSSs (lower panel) PIC-
associated ATP-dependent chromatin remodeling factors are able to constraint positions
of the +1 and -1 nucleosomes (Zhang et al., 2011). The positioned nucleosomes into the
gene body are also dependent on chromatin remodelers complexed with the elongating

polII (Yen et al., 2012). Adapted from (Struhl and Segal, 2013).

importance of trans-factors in fine-tuning nucleosome positions.

The pattern of dinucleotides is correlated with (and often responsible for) nucleosomal orga-

nization at different resolution. At a fine-grained level a 10 bp periodicity of AA/TT/TA that

oscillate in phase with GC dinucleotides affects the DNA-histone octamer contacts (Satchwell

et al., 1986) while at a coarse-grained level (hundreds of bp) an overall increase in GC content

is in general a favorable condition for nucleosome formation (Tillo and Hughes, 2009), but

not for positioning. Besides, a recent study split the human promoters into homogeneous

groups by C+G content, and analyzed their in vitro capability to assemble into nucleosomes

(Fenouil et al., 2012). Interestingly, going from low to intermediate CpG content the re-

gions show increasing capacity of nucleosome assembly, which drops dramatically at highest

C+G content. Another coarse-grained feature are Poly(dA:dT) tracts, which are virtually

nucleosome-excluding sequence. They form stiff structures unable to bend around the histone

octamer (Nelson et al., 1987, Segal and Widom, 2009). This in fact accounts for nucleosome

depletion at poly(dA:dT) sequences commonly found in S. cerevisiae gene promoters. In hu-

man cells, nucleosome-repelling poly(dA:dT) tracts flanking moderately (dG:dC)-rich regions

delimit container sites, defined as sequences able to accommodate positioned nucleosomes in

in vitro assembly experiments (Valouev et al., 2011).
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Beside sequence itself, fixed barriers on chromosomes generate adjacent ordered arrays of

nucleosomes, first described under the term statistical positioning (Kornberg, 1981). A

positioned nucleosome or another DNA-binding protein or complex as well as a repelling

poly(dA:dT) tract can act as barriers. Nucleosome positiosing sequences and poly(dA:dT)

tracts upstream of TSSs were first ascribed as the barriers responsible for the positioning

of the +1 nucleosome, from which an array of regularly spaced nucleosomes emanate (Yuan

and Liu, 2008). While the NFR upstream TSSs is largely encoded by the sequence (Yuan

and Liu, 2008), in vitro reconstitution of chromatin only partially recapitulate the in vivo

pattern. It has also been recently shown that the polII complex is not responsible for the

maintainance of this pattern. In fact α-amanitin treatment (which causes the release and

degradation of the polII complex from chromatin) showed only minor effects on human T-

cells (Fenouil et al., 2012). Proper nucleosome positioning, spacing, and occupancy levels at

5’ ends of most yeast genes was achieved by adding nuclear extract and ATP to the reaction of

in vitro reconstitution of chromatin (Zhang et al., 2011). The same authors recently showed

a position-specific role (relative to the NFR) for many ATP-dependent chromatin remodelers

(Yen et al., 2012). Arrays of positioned nucleosomes have also been shown to emanate from

sites bound by TFs (Kundaje et al., 2012). Although available data point to the coordinated

action of TFs as barriers and DNA sequence constraints on nucleosome positions, the contri-

bution of co-factors (which can alter the local chromatin environment through hPTMs) and

ATP-dependent chromatin remodeling at TSS-distal cis-regulatory elements still remains to

be investigated.

Although during recent years the determinants at the foundation of genomic nucleosome pat-

terns have started to be elucidated, the debate is still in its very infancy about the fraction of

nucleosomes in mammalian genomes showing reproducible positions. Valouev and collegues

(Valouev et al., 2011) concluded that the majority of the human genome showed substantial

flexibility of nucleosome positions. Using an unprecedented amount of data, a recent study

(Gaffney et al., 2012) challenged this view and found that most nucleosomes have more con-

sistent positioning than expected by chance and around 9% of them show moderate to strong

positioning. Complex questions like this one will be better tackled as soon as the experi-

mental procedures will be more standardized, the data throughput as well as the number

of organisms and cell types studied will increase, and the computational approaches will be
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more powerful.

1.8 Predictions of nucleosomal patterns from the DNA se-

quence

Computational models using sequence features to predict nucleosome occupancy have been

described. While these have demonstrated that DNA sequence alone specify nucleosomal

preferences, its quantitative contribution to in vitro and in vivo patterns is still under debate

(Struhl and Segal, 2013).

Segal and collaborators (Segal et al., 2006) used a collection of 199 mononucleosome (142-

152 bp in length) DNA sequences to construct a probabilistic model representing the DNA

sequence preferences of the histone octamer in S. cerevisiae. This model is slightly more

complicated than a PWM for TFs but it is able to recapitulate the most important features

of chromatin structure of yeast. Being learned from in vivo data, this model could be influ-

enced by the sequence preferences of other factors and by chromatin remodeling activities.

The same authors devised a refined model (Kaplan et al., 2008) completely derived from in

vitro data and applied it to the prediction of nucleosome occupancy in vivo. Performances in

cross-validation achieved Pearson correlation coefficients of 0.89 and 0.75 for the in vitro and

in vivo maps respectively. It is important to point out that a correlation of 0.75 correspond

to a coefficient of determination (R2) of around 0.56, namely the learned in vitro preferences

are able to explain about 56% of the variability in the nucleosome patterns observed in vivo.

Interestingly, the use of C+G content alone was later shown to give an R2 of 0.5 (Tillo and

Hughes, 2009), not far from the performances of the more complex model. When moving

from S. cerevisiae to mammalian genomes, the model performances drop to a correlation

coefficient of 0.28 for human CD4 T-cells (Tillo et al., 2010). Namely the in vitro model can

explain less than 10% of the variability observed in the human nucleosome pattern. More

recently, a statistical mechanics model was shown to outperform those methods on in vivo

occupancy data from S. cerevisiae and to be able to recognize known NPSs (van der Heijden

et al., 2012).

SVMs (Peckham et al., 2007) as well as models taking advantage of wavelet analysis to
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extract spatially periodic signals (Yuan and Liu, 2008) were successfully applied in discrim-

inating NPSs from NFRs in S. cerevisiae. Comparative genomics from six Saccharomyces

genomes was also successfully employed to derive nucleosome positioning sequence patterns

(Ioshikhes et al., 2006).

While these studies showed that DNA sequence is sufficient to partially predict nucleosome

occupancy in vitro and in vivo, the contribution of the sequence to positioning is still am-

biguous. Despite a recent report (Gaffney et al., 2012) and excluding some precise genomic

locations (e.g. the +1 relative to TSSs) even the fraction of in vivo well-positioned nucleo-

somes remains elusive (Peckham et al., 2007, Zhang et al., 2009, Valouev et al., 2011).

1.9 Regulation of transcription in murine macrophages

Bone marrow derived macrophages (BMDMs) from M. musculus represent a very suitable

system to study regulation of transcription. They can be differentiated from bone marrow

giving rise to a very homogeneous population that can be polarized in vitro under pro- or

anti- inflammatory stimulation, with little variability across single cells compared to other

systems. This results in massive reorganization of chromatin and transcription on a very

short time scale (Lawrence and Natoli, 2011).

1.9.1 TFs in the hematopoietic system

Hematopoiesis (see figure 1.4) is the process of proliferation, differentiation and maturation

of all blood cells types. The primary organs involved in hematopoiesis during embryogenesis

are the yolk sac and later the aorta-gonad mesonephros (AGM) region, the placenta and the

fetal liver (Orkin and Zon, 2008). The fetal (or primary) hematopoiesis progresses toward

the definitive hematopoiesis when the hematopoietic stem cells (HSC) migrate toward newly

developed long bones. In H. sapiens the bone marrow is the primary organ of hematopoiesis.

Although this process is conserved throughout vertebrate evolution the sites of primitive and

definitive hematopoiesis differ among species (Orkin and Zon, 2008). HSCs are characterized

by self-renewal, and the capacity to proliferate and differentiate into progenitors of each of

the blood cell lineages. Recent studies have questioned the classical hierarchical organization
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in which progenitors arise in an orderly manner from a HSC. HSCs are more plastic than

previously thought and can be seen as groups of cells with varying developmental potentials

(Orkin and Zon, 2008).

The balance among lineages is ensured by the expression of combinations of few TFs (see

figure 1.4). These factors go under the name of master regulators for their ability of switching

on or off cell-type specific transcriptional programs. Pax5 is for example required for proper

B cell differentiation (Nutt and Kee, 2007). In its absence, pro-B cells are not committed

to the B cell lineage but instead become capable of differentiating into a broad spectrum

of hematopoietic cell types. Besides, cell fate determination has also been shown to be a

function of TFs concentration. High-levels of Pu.1 (the corresponding gene is named SPI1

in H. sapiens and Sfpi1 in M. musculus) promote macrophage differentiation, whereas low-

levels direct B cell formation (DeKoter and Singh, 2000). Besides, Pu.1 is expressed in other

specialized populations of cells in many different tissues (as reported in figure 1.5). Pu.1 is not

only capable of lineage conversion among blood cells. It has also been shown to be capable of

direct reprogramming of fibroblasts to macrophages when combined with C/EBPα/β (Feng

et al., 2008).

1.9.2 Pu.1: one of the master regulators of macrophage differentiation

We have recently shown that Pu.1 is not only a trigger for macrophage differentiation but

it does that through the supervision of most of the cistrome (Ghisletti et al., 2010). This

expanded the view about master regulators, which are not only TFs responsible for cell fate

(switching on or off cell-type specific transcriptional programs) but are also supervisors of

the majority of regulatory elements (enhancers as well as promoters) in the genome (Natoli,

2010). Similar findings were obtained in other models of differentiation, e.g. considering

MyoD in skeletal muscle (Cao et al., 2010).

Pu.1 is expressed from very early stages of hematopoietic differentiation (Back et al., 2005).

As mentioned, its effect on cell fate are context- and dose- dependent (DeKoter and Singh,

2000). Pu.1 expression increase along the myeloid lineage, reaching its maximum level in

monocytes. While essential for macrophage identity, it also plays a central role in B- and

early T- cells differentiation (Zhang et al., 2012). The reciprocal regulation between Pu.1 and

Gata1 is instead responsible for the priming of multipotent progenitors to myelolymphoid or
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Figure 1.4: In the current view, hematopoiesis is hierarchically organized. Master reg-
ulators through different lineages are highlighted in red. Red bars indicate the stages at
which hematopoietic development is blocked by the knockout of a given TF. Abbrevia-
tions: LT-HSC, long-term hematopoietic stem cell; ST-HSC, short-term hematopoietic
stem cell; CMP, common myeloid progenitor; CLP, common lymphoid progenitor; MEP,
megakaryocyte/erythroid progenitor; GMP, granulocyte/macrophage progenitor; RBCs,

red blood cells. Adapted from Orkin and Zon, 2008.

myeloerythroid progenitor populations (Arinobu et al., 2007).

Given its very early expression a pioneering activity of Pu.1 can be envisioned. Although

this has never been formally demonstrated as for other factors (Sekiya et al., 2009), indirect

evidences suggest that Pu.1 can act as a pioneer factor. By ectopic expression in fibroblasts,

Pu.1 is able to drive partial reprogramming to macrophages (Feng et al., 2008). In this

context regions devoid of H3K4me1 but acquiring Pu.1 upon ectopic expression gain this

mark (Ghisletti et al., 2010). These data are in agreement with an independent study, in

which Pu.1 was fused to the estrogen receptor ligand-binding domain. After 24h of tamoxifen

treatment, 43% of the induced Pu.1 sites gained H3K4me1, 32% consisted of induced sites

that were marked by pre-existing H3K4me1 and 25% were H3K4me1 negative (Heinz et al.,

2010). The same study also showed that induction of Pu.1 led to nucleosome remodeling,

resulting in further expansion of the NDR centered on the Pu.1 binding site. Nevertheless, the

observed remodeling occurs in regions showing an already partial nucleosomal organization,
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Figure 1.5: mRNA levels for Pu.1 in murine tissues/cell lines expressing it
(those showing a microarray measured log2-intensity value of at least 6). Data

from Wu et al., 2013.

possibly due to pre-existing low levels of PU.1 binding (Heinz et al., 2010). These findings

need to be confirmed in a more physiological setting.

Of note, although the major expansion of the regulatory landscape driven by Pu.1 takes place

during differentiation, we showed that in macrophages this landscape is plastic and can be

expanded upon environmental insult (Ostuni et al., 2013).

1.9.3 How does Pu.1 select its binding sites in vivo?

While a fraction of TFs bind only to a pre-determined landscape (Lefterova et al., 2010,

Mullen et al., 2011), other factors are able to determine this landscape. Master regulators,

some of which have demonstrated pioneering activity (Magnani et al., 2011), are among

those. Nevertheless, there are exceptions. Foxp3, the master regulator of regulatory T-cells,

has been recently shown to bind to a pre-determined repertoire of enhancers (Samstein et al.,
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2012). Given their ability to identify their target sites in a yet unmodified chromatin context,

it is intriguing to hypothesize the binding of master regulators as mainly driven by sequence

determinants. In line with this hypothesis, Pu.1 binding maps could be used to estimate to

what extent these events are driven by sequence determinants.

Pu.1 binds a 10-nt long core (consensus sequence: AGAGGAAGTG) that has been experi-

mentally determined using an in vitro microwell-based assay (Wei et al., 2010). Considering

high-affinity binding sites there are 5 to 10 times more of them in the genome compared to

sites bound in vivo (Pham et al., 2013). In this context, how can Pu.1 achieve specificity in

engaging its consensus sites? How much of this information is encoded in the local sequence

context?

In this thesis, we address these questions using a collections of contacted sites from mul-

tiple cell-types (namely we looked for the general sequence determinants of binding at the

expense of the cell-type specific information). This means we gathered the in vivo available

data (ChIP-seq) in M. musculus in order to get the wider set of Pu.1-contacted sites irre-

spectively of the cell type. We then calculated features in the sequence of the nearby bound

and unbound Pu.1 binding sites and used this information for machine learning. The more

information encoded in the sequence, the higher the accuracy of the approach. This means

that our result represents only a lower bound as we expect more accurate predictions as soon

as our ability in measuring new relevant sequence features improves.

A recent paper (Pham et al., 2013) shed some light into the mechanisms of Pu.1 binding sites

selection in H. sapiens. Authors found that those canonical ETS sites showing the highest

affinity have a higher probability of representing autonomous binding events. These sites also

show a low DNase I accessibility. On the contrary, lower affinity sites are more accessible

to DNase I digestion and are more likely to be found in clusters of motifs for partner TFs.

Interestingly, unbound sites are enriched in gene deserts, suggesting a role for higher order

chromatin structure.
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1.10 Experimental approaches to probe cis-regulatory elements

and chromatin

The main function of TFs is to affect transcriptional rate of their target genes, namely driving

tissue-specific quantitative change. In case of core promoters, RNA is a direct readout of its

functionality. In case of other regulatory elements, like enhancers or silencers, the problem is

complicated by the precise identification of their targets. Chromosome Conformation Capture

Carbon Copy (5C) data from 1% of the human genome (Sanyal et al., 2012) estimated that

only 27% of the distal elements have an interaction with the nearest TSS, and 47% of elements

have interactions with the TSS of the nearest expressed gene. From a quantitative point of

view, this is complicated by the fact that any enhancer can be engaged in multiple regulatory

loops.

In this context, surrogate assays to probe the effects of putative regulatory elements on

transcription have been employed. For example, in the luciferase reporter assay, the region of

interest is cloned in a plasmid, upstream of a luciferase gene under the control of a minimal

promoter (which is constitutively expressed). After transfection in a cell line luciferase activity

is assessed and used as a readout of the enhanced or reduced transcriptional rate compared

to the constitutive promoter alone. STARR-seq (self-transcribing active regulatory region

sequencing) represent an evolution of the luciferase assay, in the sense that it is HT and allows

direct measurement of the RNA (Arnold et al., 2013). A genome-wide reporter library from

randomly sheared genomic DNA of D. melanogaster was placed downstream of a minimal

promoter, such that active enhancers transcribe themselves. In this way, the strength of each

enhancer can be directly inferred by the number of sequences mapping to it (Arnold et al.,

2013). A less quantitative but more physiological assay use stable transgene reporter. This

has been successfully applied to the validation of CRMs predicted to drive precise patterns

of expression during development in D. melanogaster (Zinzen et al., 2009).

In order to get a detailed description of a single regulatory element as well as genome-wide

regulatory maps, different techniques have been flourished during the years. Since many of

them recently moved from single-locus to genome-wide analyses, Computational Biology has

become essential to handle and interpret the large amount of data generated.
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1.10.1 DNA accessibility assays

A positive correlation between sensitivity to endonuclease and regulatory DNA has been

known since almost 30 years ago (Gross and Garrard, 1988). Increased sensitivity is often

referred as to increased accessibility. Euchromatic (including regulatory) regions are in general

less condensed (and thus more accessible to endonucleases) than heterochromatic ones. More

specifically, DNase I hypersensitive sites (DHSs) are regions of chromatin which are sensitive

to cleavage by the DNase I enzyme (Gross and Garrard, 1988, Thurman et al., 2012). Sensitive

regions generate smaller digested fragments (<<1kbp), which can be purified and subjected to

HT-sequencing. In this way, regulatory elements can be mapped genome-wide with basically

no bias. Increasing the throughput from tens to hundreds of millions sequenced fragments

allows a further increase in resolution, namely the identification of the so-called footprints.

These are short (tens of bp) stretches of DNA that were protected from digestion by the

presence of TFs or more in general by DNA-binding proteins. They virtually encompass the

entire cis-regulatory repertoire (either active or poised elements) of a given cell, allowing the

characterization of its regulatory network (Neph et al., 2012b).

Similarly, digestion with restriction enzymes has been combined with HT-sequencing (NA-

Seq), providing an alternative method to monitor genome-wide the status of chromatin during

differentiation and disease (Gargiulo et al., 2009).

Another approach termed Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE)

(Giresi et al., 2007) was shown to be complementary to DNase I digestion. It is in fact

also able to capture TSS-distal regulatory regions that DNase I enzyme cannot easily digest

(Song et al., 2011). Nevertheless, footprints are precluded to FAIRE, which allows only a

coarse-grained view of the accessibility landscape.

1.10.2 Chromatin immuno-precipitation

Chromatin immuno-precipitation (ChIP) is a technique aimed at probing DNA-protein inter-

actions in vivo. This allows the study of the state of chromatin or the binding of transcription

factors to it. Chemical cross-linking by formaldehyde is followed by precipitation with a spe-

cific antibody (Orlando et al., 1997). After de-cross-linking, enrichment at a single locus can

be assessed by PCR, or the resulting material can be either hybridized to a custom array



Chapter 1. Introduction 28

(ChIP on chip) or sequenced (ChIP-seq). The advent of HT-sequencing technologies allowed

extensive characterization of the regulatory DNA in mammals (Dunham et al., 2012). From

a technical point of view, the main limiting factor of the technique is the availability of high

quality antibodies.

Due to the very nature of the assay, ChIP is showing population- and time-averaged signals

and thus is not suited to capture the dynamics of the events. Consider for example a CRM

found to be bound by two different TFs. From a mechanistic point of view, the co-occupancy

of TFs does not necessarily mean that a cooperative binding is occurring there. It could well

be the result of a series of dynamic events (which could even be related to each other by some

memory signal, e.g. a first factor reside on chromatin for a short time but leave a long lasting

modification that gives directionality to the sequence of events). ChIP just freezes a picture

of many different metastable states. Integration with co-immunoprecipitation, measurement

of residence time on chromatin and imaging techniques like FISH is needed in order to gain

a better understanding of the real scenario.

ChIP is in principle a quantitative technique. Given a population of cells, the more a certain

DNA region is likely to be complexed with a given protein, the higher the signal. The rela-

tion among occupancy and functional engagement is far from being thoroughly investigated.

A recent study in S. cerevisiae (Lickwar et al., 2012) showed that in case of Rap1 stronger

enrichments not necessarily correlate with function. Rap1 residence time on chromatin has

been instead linked to transcriptional activation. TF-occupancy measured by ChIP is only

poorly correlated to residence time (R2 = 0.14) and thus not predictive for a region to be

functional.

1.10.3 Determination of nucleosome positions

Micrococcal nuclease (MNase) preferentially cuts linker DNA rather than DNA wrapped in

nucleosomes. The digestion of native chromatin by MNase has become the standard approach

to cut down the chromatin fiber into single mononucleosome. Nevertheless, a more accurate

chemical method has been recently proposed (Brogaard et al., 2012), which also overcome

another issue related to MNase, namely its slight cleavage preference for TA/AT dinucleotide

which could bias the precise determination of nucleosome positions.

DNAse I is also been shown to digest nucleosomeal DNA with a 10 bp periodicity, according to
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the exposure of the minor groove as it wraps around histones. DNAse I digestion patterns are

indeed correlated to the positions of nucleosomes. Leveraging this principle over a pool of 49

samples (originating a set of 1.5 billions of short reads) coupled to a machine learning approach

revealed that around 30% of the human genome is associated with regions of nucleosomal

stability (Winter et al., 2013). As already mentioned, the fraction of the genome that is

able to restrict nucleosome rotational positions is under dispute. Estimates from previous

studies ranged from 20% (Valouev et al., 2011) to almost all of the genome being constrained

(Gaffney et al., 2012).
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Methods

2.1 Pu.1 ChIP-seq in murine macrophages

Pu.1 ChIP-seq in bone marrow derived murine macrophages (BMDMs) was performed in the

lab (refer to section 2.12.1 for details on the experimental protocol) using an anti-Pu.1 rabbit

polyclonal antibody generated in-house against the N-terminus of the murine Pu.1 (aa. 1-100;

NP 035485.1) and affinity purified (Ostuni et al., 2013).

After quality filtering, 51 nt long reads were aligned to the mm9 release of the murine genome

using Bowtie v0.12.7 (Langmead et al., 2009). Only unique alignment were retained, allowing

up to two mismatches compared to the reference genome (options -m 1 -v 2). Peak calling

was performed using MACS v1.4 (Zhang et al., 2008) using a bandwidth (bw parameter) of

100 (bp). Cell type specific input was used as control. A golden set was defined by filtering

peaks with a p-value lower than or equal to 1e-10. This dataset was annotated over Ensembl

genes (Flicek et al., 2012) using GIN (Cesaroni et al., 2008) (priority set to ”gene” and

promoter definition to ”-20,000”). The coordinates of the genes were downloaded from the

UCSC genome browser (Fujita et al., 2011) on 2011, July 7th. Peaks within +/- 2.5 kbp from

TSSs were considered as TSS-proximal while all the others were defined as TSS-distal. In

order to visualize the raw profiles on the Genome Browser (Flicek et al., 2012), wiggle files

were generated with MACS v1.4 and converted to bigWig.

30
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2.2 in vitro Pu.1 ChIP-seq data analysis

Analyses were performed as described in section 2.1 but considering a lower statistical thresh-

old for the peak calling (p <= 1e-5). Nucleosomal occupancy over the sites was calculated

as the number of paired-end fragments (determined by Mnase digestion followed by HT-

sequencing) spanning the experimentally determined Pu.1 summits.

2.3 A collective cis-regulatory repertoire bound by Pu.1

Every murine ChIP-seq dataset of sufficient quality available in the literature was down-

loaded from the Gene Expression Omnibus (Barrett et al., 2013) (see table 2.1) and analyzed

as described in section 2.1. Cell type specific inputs were used as control (see table 2.1).

Genomic tracks were generated using MACS (Zhang et al., 2008) and normalized to the same

sequencing depth for visualization. All the ChIPs considered were carried out with the same

antibody (Santa Cruz SC-352), with the exception of the BMDMs-derived dataset generated

in our lab (section 2.1), which was also included in the following analysis.

In order to define regions bound by Pu.1 in at least one of the seven cell types considered,

IP Input/IgG Decription Cell type Mouse strain

GSM538017 GSM537988 BMDM BMDM C57BL/6
GSM537983 GSM537988 ThioMac Perithoneal Macrophages C57BL/6
GSM774291 GSM774298 FLDN1 Thymocytes (FLDN1) C57BL/6
GSM774292 GSM774299 FLDN2a Thymocytes (FLDN2a) C57BL/6
GSM774293 GSM774300 FLDN2b Thymocytes (FLDN2b) C57BL/6
GSM539537/8 GSM539550 ProB (2 rep) Pro-B cells 38B9 (cell line)
GSM537989 GSM537993 Bcells B-cells C57BL/6

Table 2.1: List of the Pu.1 ChIP-seq datasets collected from the literature. The first
column refers to GEO accession numbers (Barrett et al., 2013). FLDN stands for Fetal Liver

Precursor Derived.

the binding events from different experiments were combined. First of all, the enriched re-

gions were further split into their components (dense homotypic clusters, which often span

up to few kilobases, are recognized by MACS as a single highly-enriched region). To this

aim, PeakSplitter (Salmon-Divon et al., 2010) was run on the individual ChIP-seq profiles,

considering only enriched regions with a p-value <= 1e-5 (as determined by MACS) and

using the following parameters: -c 5 -f -v 0.7. Only subpeaks with 20 or more reads spanning
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their summit in at least one ChIP-seq were considered for further analysis (those under this

threshold were defined as low-affinity sites). Irrespective of their cell type of origin, coor-

dinates of Pu.1-bound regions from different cell types were merged if their summits were

found within 250 bp from each other. These regions were then annotated as TSS-proximal

or TSS-distal as described in section 2.1.

2.4 Genome-wide maps of regions putatively bound by Pu.1

FIMO (Grant et al., 2011) (MEME version 4.6.1) was used to identify DNA stretches that

could be potentially bound by Pu.1 (these sequences will be referred to as canonical binding

sites or bound/w sites). FIMO was run at a p-value threshold of 1e-4, with default parame-

ters except that no q-value was calculated. A published PWM for Spi1 DNA-binding domain

(DBD) (Wei et al., 2010) was used as representative of Pu.1 binding preferences.

Some of the regions identified could have been missed by HT-sequencing because of mappa-

bility issues. Intuitively, the longer the read, the lower the probability to map to more than

one place in the genome. Since the shortest reads in the datasets under investigation (see

table 2.1) are 36 nt long, mappability scores computed for 36 nt reads were used. Scores were

extracted from bigWig tracks (Derrien et al., 2012) downloaded from the UCSC Genome

Browser (Fujita et al., 2011). For a given region (considered as 50 bp upstream and down-

stream of each canonical binding site identified), the highest mappability score was retrieved

using custom scripts. Any region showing at least one bp with a mappability score of 1 was

further analyzed.

Using this procedure, 613,210 putative Pu.1-binding sites were identified. Among those,

41,472 overlap a bound site of the cell-type a-specific Pu.1 cistrome (see section 2.3), mean-

ing that 571,738 (93.2%) of the sites are never contacted by Pu.1 in vivo. On the other hand,

among the bound sites, 41,472 show a canonical high-affinity Pu.1 binding site (Wei et al.,

2010) within 50 bp from the peak summit (see figure 3.2), accounting for 42,9% of the total

(the bound sequences without a canonical binding sites will be referred to as bound/wo).



Chapter 2. Methods 33

2.5 Measuring features in DNA strings

Features were assessed in a 300 bp window (unless specified differently) centered on the

summit of the ChIP-seq peaks in case of bound regions, and to the invariant GGAA core of

the Pu.1 binding site in case of the unbound ones.

These features can be divided into five broad categories, namely PWMs, k -mers, repetitive

elements, DNA shape and nucleosome theoretical occupancy. Each group is described in

details.

• PWMs provide quantitative descriptions of the known binding sites for a TF (Wasser-

man and Sandelin, 2004). They can be used to assess putative binding in any DNA

string (see section 2.5.1). PWMs were collected from the literature (see table 2.2).

FIMO (Grant et al., 2011) (version included in Meme 4.6.1) scans an input region of

Reference # PWMs

Portales-Casamar et al., 2010 146
Jolma et al., 2013 843
Jolma et al., 2010 26
Hallikas et al., 2006 4
Badis et al., 2009 104
Berger et al., 2008 177
Wei et al., 2010 27
Kulakovskiy et al., 2013 481

Table 2.2: List of publications and corresponding number of PWMs derived from them.

DNA for occurrences of a PWM. It computes a log-likelihood ratio score (see paragraph

2.5.1 for details) with respect to each sequence position and converts these scores to

p-values. FIMO was run on the regions of interest (using a 300 bp as well as a 100

bp window) and the corresponding p-values were transformed according to the formula

-log10(p-value). Only p-values equal or lower than 1e-4 were retained, otherwise a p-

value of 1 was assigned to the region. In case of multiple results for the same region,

only the best p-value was considered. In this way each region was described with a

single value for each one of the PWM (see table 2.2).

Since the dataset of PWMs gathered from the literature was highly redundant, motifs

were grouped according to their DNA-binding domain. A straightforward approach

to group motifs would be cluster them based on sequence similarity. Nevertheless, a
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familial binding profile ignores the flanking positions of PWMs that are not aligned but

which may be important in discriminating false positives. A recent paper (Oh et al.,

2012) suggested an alternative approach, i.e. to consider all the redundant PWMs to

search binding sites and then to summarize the information of single TFs at the level

of their structural family. In line with this, PWMs were grouped according to their

classification in families and subfamilies in TFClass (Wingender et al., 2013). A total

number of 83 families and 263 subfamilies were considered. The lowest FIMO p-value

among those obtained for the PWMs in a given family or subfamily was chosen as rep-

resentative for each one of them. This approach also gives the advantage of reducing

the initial number of features to be included in the supervised feature selection.

Furthermore, the sum of families and subfamilies showing at least a significant occur-

rence for one PWM was used as a proxy for cooperative binding at the region;

• The sum of C+G and the individual k -mers (with k equal to 2 or 4) counts were

calculated;

• Repetitive elements in the mm9 genome were retrieved from the RepeatMasker (Smit

et al., 1996) track of the UCSC genome browser (Fujita et al., 2011). A BED file for each

class of repetitive elements was generated and overlapped with the regions of interest;

• The three-dimensional DNA shape features (Rohs et al., 2009) were predicted using

the local sequence context in the 10 bp in the ETS core motif and for additional 15 bp

on each side (see figure 2.1). The features included MGW (Minor Grove Width), Roll,

propeller twist (ProT) and helix twist (HelT). Roll refers to the angle of deflection of

two planer base pairs perpendicularly to the direction of the hydrogen bonds between

two adjacent base pairs. Propeller twist indicates the angle of roll of one base relative to

the other within the same hydrogen bond. Helix twist refers to the rotation of one base

pair with respect to a neighboring one (Sinden, 1994). Measurements were obtained

through all-atom Montecarlo simulations as recently described (Gordân et al., 2013).

• Nucleosome theoretical occupancy was calculated using a published algorithm (Kaplan

et al., 2008). Calculations were performed using a sliding window of 147 bp. The

average value among all the sliding windows was used as a proxy for the region.
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CoreFlanks (-) Flanks (+)

MGW Roll ProT HelT

-15 -1 1 10 +1 +15

Bound

Unbound

Figure 2.1: Each feature of DNA shape is predicted at each nucleotide using a window
sliding the local surrounding sequence (ETS core +/- 15 flanking nucleotides). The sequence
logo for the Pu.1-bound as well as unbound sequences is shown. Depicted as such, the two
groups seems to be very similar. Nevertheless, the DNA shape measurements can capture
properties of the single binding sites that are not apparent in a classical PWM representation.

2.5.1 Position Weight Matrices

Position-specific weight matrices are broadly used models for representing DNA-protein affini-

ties. They are built upon collections of experimentally determined binding sites of a given

DNA-binding protein (Wasserman and Sandelin, 2004). One of the main features of PWMs

is that each nucleotide in independent of the nearby positions. This simplification has been

demonstrated to be adequate in most of the cases (Weirauch et al., 2013) and improvement

using higher order models are noticeable only for a few documented cases (Jolma et al., 2013,

Weirauch et al., 2013).

Figure 2.2 gives an overview on the derivation and usage of a PWM. In summary, a position

weight matrix (PWM) is constructed by dividing the probabilities at each nucleotide (see

equation 2.1) by the expected background probabilities (see equation 2.2). These values are

then log-transformed, so that probabilities can be sum up to obtain a quantitative PWM

score (see equation 2.3 and figure 2.2). For large collections of binding sites, the scores are

proportional to DNA-binding energies of the corresponding TF.

p(b, i) =
fb,i + s(b)

N +
∑

b
′
∈[A,C,G,T ]

s(b′)
(2.1)

p(b,i) is the corrected probability of base b in position i

fb,i represents the counts of base b in position i
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N is the number of sites in the matrix

s(b) is the pseudocount function

Wb,i = log2
p(b, i)

p(b)
(2.2)

p(b) is the background probability of base b

p(b,i) = corrected probability of base b in position i

Wb,i is the PWM vaule of base b in position i

S =

w∑

i=1

Wli,i (2.3)

S is the PWM score of a sequence

li represents the nucleotide in position i in an input sequence

w equals the width of the PWM

2.6 Supervised learning using Support Vector Machines

Support vector machines (SVMs, Cortes and Vapnik, 1995) are supervised learning models

used to discover patterns useful for classification and regression analysis (Drucker et al., 1997).

Given a dataset of training examples, each belonging to one and only one category, a SVM

training algorithm builds a model that can be used to assign new examples to a category.

SVMs are mainly used for binary classification, even though implementations for multi-class

classification are available (Chang and Lin, 2011).

More formally, a SVM finds a hyperplane or set of hyperplanes in a high-dimensional space

able to separate the training examples belonging to different categories. This in turn can be

used for classification or regression of new examples, by mapping them into this very same

space. Intuitively, a good separation is achieved by the hyperplane that has the largest dis-

tance to the nearest training data point of any class, by maximizing the so-called margin. If

there exists no hyperplane that can perfectly split examples from different categories, the Soft

Margin strategy is used to find a hyperplane that divides the examples as cleanly as possible.

Formally, SVMs are linear classifiers. Nevertheless, they can efficiently perform non-linear
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Figure 2.2: A set of experimentally validated MEF2-binding sites is repre-
sented in the upper panel. A matrix that contains the number of observed
nucleotides at each position is created (Position Frequency Matrix). These fre-
quencies are converted to log-transformed normalized values (Position Weight
Matrix, see equations 2.1 and 2.2). Using a PWM model, a quantitative score
for any DNA sequence can be generated by summing the values that corre-
spond to the observed nucleotide at each position (Site Scoring). Adapted

from Wasserman and Sandelin, 2004.

classification using what is called the kernel trick. This trick implies that SVMs are still per-

forming linear classification, but input data points are mapped into high-dimensional feature

spaces by a so-called kernel function.

SVMs were applied to classify Pu.1-bound regions showing a canonical binding site (see para-

graph 2.4) from unbound sites. Considering 41,472 Pu.1-bound regions, the same number of

regions was randomly chosen among the unbound sites. LibSVM (Chang and Lin, 2011) was

used to train and test two-class SVMs.

Given the large initial amount of features (n=995, see table 2.3 and paragraph 2.5 for more

details), a feature selection procedure (Guyon and Elisseeff, 2003) to identify the smallest set

with the highest predictive power was devised. The use of fewer variables should not only

result in an increase in accuracy but also in a simpler model, which allows a better biological

understanding and interpretation of the results.
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Group # Features

PWMs 686
k -mers 147
DNA shape 146
Repeats 15
Kaplan et al., 2008 1

Table 2.3: For each one of the categories considered, the number of features is listed in the
table. PWMs are collapsed on the families and subfamilies of TFs. k -mers encompass G+C

and words with k=2 and k=4.

The procedure followed the steps shown in figure 3.6. Using 20% of the total instances, ten

forward features selection were run randomizing training and validation datasets (50% each).

The features selected in at least one out of the ten randomizations were then pooled and used

to train the machine on the entire 20% and test on the remaining 80%. Training and test

datasets were also randomized ten times. For each round of randomization, uninformative

features, namely those showing no variance across the examples, were discarded. Features

were then scaled properly (range 0-1) and ranked according to the value of absolute Spear-

man’s rank correlation coefficient calculated among the values and the class of the training

examples. Only those with showing a value >= 0.04 were retained (threshold estimated by

elbow method). Forward selection consisted in adding features one by one (according to the

described ranking) and keeping only those whose inclusion improved the accuracy on the

validation set of at least 0.1%. This entire routine was wrapped into Python and R code.

A grid search was performed in order to choose the set of parameters giving the best perfor-

mances on the validation set. In practice, for each round of feature selection, an exhaustive

search through a manually specified subset of parameters was performed, and the set of pa-

rameters with the highest improvement of performance was retained. SVM with no kernel

(linear SVM) or with radial basis function (RBF) kernel were tested. In both cases, param-

eter C was set to {0.01, 0.1, 1, 101, 100, 1000}. In case of RBF, parameter g was set to

{0.0001, 0.001, 0.01, 0.1, 1, 10}. All the possible combinations were tested.

Performances were assessed using three indexes (bound are the positive dataset, unbound are

the negative one, TP = true positive, FP = false positive, TN = true negative, FN = false

negative):

• Overall accuracy, defining the fraction of instances correctly predicted, calculated as

(TP+TN) / (TP+FP+TN+FN);
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• Sensitivity, calculated as TP / (TP + FN), high values indicate the machine is very

good in recognizing positive (bound) examples;

• Positive Predictive Value (PPV), calculated as TP / (TP + FP), high values correspond

to a higher number of negative examples (unbound) predicted as positive (bound).

2.7 Mnase-seq data analysis

Paired-end 101 nt long reads were quality filtered and mapped to the mouse genome (mm9,

NCBI Build 37) using Bowtie v0.12.7 (Langmead et al., 2009). The following parameters were

used: -v 3 -m 1 -S -I 0 -X 250. In this way, the paired-end fragments with a unique match

to the genome and showing three or fewer mismatches were retained. Duplicated fragments,

which are likely to arise from selective PCR amplification, were discarded (see table 2.4 for

statistics). Namely, given multiple fragments with both ends mapping to the same genomic

coordinates, all fragments but one were discarded. Wiggle files (Fujita et al., 2011) at single

bp resolution were generated with BedTools (Quinlan and Hall, 2010). In order to extract nu-

cleosomal positions from this population-averaged profile PeakSplitter (Salmon-Divon et al.,

2010) was run genome-wide on the wiggle file (with options -c 5 -f -v 0.7). For each one of

the resulting regions the total number of fragments spanning the putative nucleosome dyad

(namely the coordinate with the highest number of overlapping fragments) was calculated.

This figure was used as proxy for occupancy. The dispersion of the midpoints of these frag-

ments around the putative dyad (measured as standard deviation) was instead used as proxy

for positioning. These calculations were performed by a custom C++ script.

Paired-end fragments for ESCs, NPCs and MEFs (Teif et al., 2012), aligned to the mm9 refer-

ence genome, were downloaded from GEO (Barrett et al., 2013). Alignments were processed

as described in the previous paragraph. Final numbers of sequencing reads are summarized in

table 2.4. Unless specified differently, all the heatmaps, the cumulative distributions and the

nucleosome density plots have been computed using a 10 bp binning and the midpoint of each

sequenced fragment as a proxy for the nucleosome dyad (hereafter referred to as midpoint

analysis). Considering the heatmaps, the counts exceeding the 95th percentile of the overall

distribution were set to the value of the 95th percentile. These counts were then normalized

in the range 0-1, separately for each region.



Chapter 2. Methods 40

Sample # reads

BMDMs (rep. 1) 216,882,672
BMDMs (rep. 2) 250,307,803
BMDMs (rep. 3) 216,686,317
BMDMs (rep. 4) 148,756,092
BMDMs (empty, rep. 1) 212,660,520
BMDMs (shPu.1, rep. 1) 220,848,451
BMDMs (empty, rep. 2) 168,269,709
BMDMs (shPu.1, rep. 2) 181,527,195
in vitro 225,822,132
ESCs 443,856,962
NPCs 263,014,972
MEFs 399,506,104

Table 2.4: For each sample, the number of high-quality, uniquely aligned and properly
paired reads (after filtering for PCR duplicates) is provided.

In order to sort the regions based on the size of the nucleosome-depleted region (NDR) at

their center, the following strategy was applied. The number of nucleosome midpoints falling

into the central 300 bp (+/- 150 bp) of each region was calculated. These numbers were used

as a proxy for the overall occupancy of the area (lower the number, higher the depletion).

2.8 Support Vector Regressors

Support Vector Regressors (SVRs, Drucker et al., 1997) are a variant of SVMs that can be

applied to address regression problems. It was used here to assess the fraction of variability

in the nucleosomal occupancy pattern at Pu.1-bound and unbound sites in cells where Pu.1

is not expressed or in in vitro chromatin reconstitution experiments. SVRs were fed with the

same features selected by the SVM. The theoretical nucleosomes occupancy (Kaplan et al.,

2008) was excluded and a SVR was in parallel trained and tested with this feature alone.

Nucleosome occupancy at bound and unbound sites was evaluated by the log2-transformed

number of fragments spanning the center of each region (corresponding to the Pu.1 ChIP-seq

summit for the bound and to the GGAA core in case of the unbound). These numbers were

calculated for the ESCs, NPCs, MEFs and the in vitro datasets.

The entire dataset of bound and unbound sites was split into 90% training and 10% test.

The following procedure was run using the set of features coming from each one of the

ten randomizations of the training and test datasets (see section 2.6) and separately for
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each condition (ESCs, NPCs, MEFs and in vitro). Features were scaled to range 0-1. The

training dataset was used to fit the experimentally determined nucleosome counts according

to sequence features. The model obtained was then used to predict the nucleosome counts

over the test dataset. Performances were evaluated through the coefficient of determination

(R2), calculated as the squared Pearson correlation coefficient among the predicted and the

observed counts. This coefficient can be interpreted as the percentage of variation in the

data that is explained by the model (i.e. the variation in the nucleosome occupancy that

is explained by the features in the sequence). As mentioned, an independent SVR was fed

with the theoretical nucleosomes occupancy alone, and its performances compared to those

obtained by the model trained on all the remaining features.

The SVR implementation in the R package e1071 (Dimitriadou et al., 2008) with RBF kernel

was used.

2.9 Data analysis upon Pu.1 depletion

BMDMs were infected with a retroviral vector either containing a short hairpin targeting the

mRNA of Renilla (hereafter referred to as empty vector) or Pu.1 (hereafter referred to as

shPu.1, see section 2.12.1 for details on the experimental procedure). ChIP-seq data from

both samples were analyzed for enrichment versus the input DNA as described in section 2.1.

All those peaks identified in the empty (using a p-value threshold of 1e-10) were retained only

if also present in the untreated Pu.1 sample obtained in ”wild-type” conditions (see section

2.1). Among them, those showing a significant enrichment for Pu.1 when compared to the

shPu.1 (p-value <= 1e-10) were considered as Pu.1 sites whose occupancy was decreased by

the depletion.

In order to get a more quantitative picture of the effect of the Pu.1 depletion, the entire dataset

of peaks was sorted based on the ratio of the reads in the empty versus the shPu.1. Reads

were counted in a window of 200 bp around the Pu.1 summit. After adding a pseudocount of

1 and normalizing for sequencing depth, ratios were calculated and used to split the dataset

into quartiles (the 1st quartile corresponds to lower ratios, namely peaks that are not affected

by the depletion, while the 4th quartile encompasses those peaks with the lowest occupancy in

the Pu.1-depleted cells compared to the control). Bulk differences in nucleosomal occupancy
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at these sites were evaluated summing up the nucleosomal fragments whose midpoint mapped

into the 160 bp centered on the peak summit (the area that would ideally be occupied by

a nucleosome if Pu.1 is not bound). The difference among the resulting distributions was

tested using a Wilcoxon signed-rank test (which is a paired, non parametric test).

2.10 Chromatin-bound RNA-seq analysis

Chromatin-bound RNA-seq data from BMDMs were obtained from the literature (Bhatt

et al., 2012). Quantitative estimation of the abundance of the transcripts (FPKM) was

calculated using Cufflinks 2.0.2 (Trapnell et al., 2012) with options -N -u. Ensembl genes

(Flicek et al., 2012) were used to guide assembly of the transcriptome.

2.11 Statistics and plots

All plots were drawn and statistics were performed using R.

2.12 Experimental procedures

The experiments described in the next paragraphs have been performed by Marta Simonatto,

Silvia Bonifacio and Serena Ghisletti.

2.12.1 Cell culture, retroviral infection and ChIP

Macrophage cultures from bone marrows of C57/BL6 mice (Harlan) were generated as de-

scribed (De Santa et al., 2007). The hairpin used in this study to deplete Pu.1 was selected

among five designed using a publicly available software (http://katahdin.mssm.edu/siRNA).

The shPU.1 sequence was cloned in a modified version of TtRMPVIR inducible retroviral vec-

tor (Genbank HQ456318) in which the puromycin resistance gene was inserted. The empty

vector (containing an sh-Renilla sequence) was used as control.

At day zero bone marrow cells were isolated and 4e6 cells/plate were seeded in 10 cm dishes

in TET-free BM medium. Cells were infected twice in two consecutive days after plating
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using supernatants from transfected Phoenix-ECO packaging cells. Puromycin selection (3

µg/ml) was added on day 3. At day 5, shPU.1 expression was induced for 48 hours using

doxycycline (0.5 µg/ml).

ChIP was carried out starting from 5e6-8e6 cells, using a previously described protocol

(Ghisletti et al., 2010). ChIP DNA was prepared for HiSeq 2000 sequencing following stan-

dard Illumina protocols.

2.12.2 In vitro nucleosome assembly

Naked genomic DNA was purified from mouse macrophages by three consecutive phenol/chlo-

roform extractions. DNA was sonicated to obtain fragments smaller than 2 kb, and frag-

ments ranging from 600 to 2,000 bp were purified with Solid-Phase Reversible Immobiliza-

tion (SPRI) beads (Agencourt AMPure XP, Beckman Coulter). DNA was combined with

recombinant histones (EpiMarkTM Nucleosome Assembly Kit, NEB E5350) to generate nu-

cleosomes by salt dialysis (Luger et al., 1999). DNA molecules were considered as multiple

of 150 bp nucleosome-assembling units. Assembly reaction was performed mixing octamers

and nucleosome-assembling units in a molar ratio 1:2, such that DNA was not limiting and

octamer would assemble according to the sequence preference.

2.12.3 MNase digestion

MNase digestion was performed starting from 8e6-12e6 cells. Cell pellets were resuspended

in a 15 mM NaCl, 15 mM Tris-HCl [pH 7.6], 60 mM KCl, 2 mM EDTA, 0.5 mM EGTA,

0.3 M sucrose buffer (0.5 mM PMSF, 1 mM DTT, 0.2 mM spermine, 1 mM spermidine)

buffer and lysed upon addition of 0.4% NP40. Nuclei were washed with a 15 mM NaCl, 15

mM Tris-HCl [pH 7.6], 60 mM KCl, 0.3 M sucrose buffer (0.5 mM PMSF, 1 mM DTT, 0.2

mM spermine, 1 mM spermidine). Digestion was performed with 1.3 units of MNase (Roche

10107921001) in a 20 mM Tris-HCl [pH 7.6], 5 mM CaCl2 digestion buffer, for 100 minutes

at 37 ◦C. Nucleosomal DNA was isolated by diluting nucleosomes in digestion solution to a

final concentration of 5 mM MgCl2, 5 mM CaCl2, 70 mM KCl and 10 mM HEPES [pH 7.9].

Digestion with 5 units of MNase was carried out at 37 ◦C and stopped after 100 minutes by

adding EDTA to a final concentration of 50mM. DNA was purified from octamer proteins
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with Qiagen PCR purification kit. Purified DNA was then run in a 1% agarose gel and the

mononucleosomal band cut and purified first with Millipore DNA Gel Extraction Kit and then

with Qiagen PCR purification kit. Digestion conditions were adjusted to obtain a mixture

of DNA fragments constituted by 80% of mono-nucleosomes and 20% of di-nucleosomes or

higher molecular weight forms. Mononucleosome-sized DNA fragments were isolated from

agarose gels and subjected to 100 bp paired-end sequencing using the Illumina HiSeq 2000

platform.

2.12.4 In vitro ChIP

In vitro nucleosomes were partially digested with MNase (5U for 2 minutes in the digestion

buffer described above) to obtain mainly di- and tri-nucleosomes and to eliminate any resid-

ual unwrapped DNA. They were then incubated with macrophage-derived nuclear extracts.

Nuclear extracts were prepared from 2e7 cells. Cells were first lysed with hypotonic buffer

(10 mM Tris-HCl, 1 mM KCl, 1.5 mM MgCl2), then nuclei were lysed with a high-salt buffer

(50 mM Tris-HCl, 200 mM NaCl, 10% glycerol, 0.2% NP40) and diluted 1:2 with a dilution

buffer (10 mM Tris-HCl, 2 mM EDTA). Nuclear extracts were subjected twice (2 hours and

overnight) to immunodepletion with 8 µg of Pu.1 antibody or normal rabbit IgG. Incuba-

tion of nuclear extracts and in vitro nucleosomes was performed at 4 ◦C for 2 hours, then 5

µg of anti-Pu.1 antibody were added for 1 hour and DNA-protein complexes recovered with

G protein-coupled magnetic beads. Beads were washed 6 times with wash buffer (30 mM

Tris-HCl, 200 mM NaCl, 10% glycerol, 0.1% NP40, 1 mM EDTA) and twice with TE. DNA

was eluted in TE-2% SDS. DNA was then purified by Qiaquick PCR purification kit and

quantified with PicoGreen (Invitrogen). ChIP DNA was prepared for HiSeq 2000 sequencing

following standard Illumina protocols.
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Results

3.1 The theoretical cistrome of Pu.1

Pu.1 contacts DNA through a 10-nt long core (consensus sequence: AGAGGAAGTG, figure

3.1) that has been experimentally determined by an in vitro microwell-based assay (Wei et al.,

2010). For brevity, we term this core sequence canonical Pu.1 binding site.

As already pointed out, given the size of a typical mammalian genome (billions of bp),
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Figure 3.1: Position-specific sequence logo showing the in vitro determined
binding preferences for Pu.1 (Wei et al., 2010). The relative frequency of each

nucleotide at each position is shown.

the sites that are found to be bound by a TF in vivo are a small fraction compared to the

hundreds of thousands of sequences matching high-affinity recognition sites for the very same

TF (Pan et al., 2010).

We first estimated this number for the murine genome (mm9, NCBI Build 37). We searched

for high-affinity Pu.1 canonical binding sites (see figure 3.1) using FIMO (Grant et al., 2011).

We identified a total of 731,453 occurrences (p <= 1e-4), among which 112,830 show no

uniquely mappable nucleotides in a window of 100 bp centered on the canonical site, resulting

in a set of 618,623 sites that could be potentially identified as bound.

The mappability filter ensures that this global pattern is comparable to the in vivo binding

45
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data collected (as identified by ChIP followed by multi parallel sequencing using a read as

short as 36 bp).

3.2 The collective cis-regulatory repertoire bound by Pu.1 in

vivo

Pu.1 is expressed only in the hematopoietic system and specifically in myeloid cells, B lym-

phocytes and early T lymphocytes. In order to define the largest set of sites that can be

contacted by Pu.1 in vivo, every murine ChIP-seq dataset of sufficient quality available in

the literature was gathered (see table 2.1) and analyzed as described in section 2.3, resulting

in 96,685 sites contacted by Pu.1.

Among the 618,623 canonical binding sites that could be potentially identified as bound,
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Figure 3.2: The fraction of Pu.1 bound regions overlapping a high-affinity
canonical binding site (FIMO, p-value <= 1e-4) depends on the maximum
distance considered between the experimentally determined summit and the
canonical binding site. The right plot shows a magnification of the left one.
The red dashed vertical line indicates the threshold chosen to split the dataset

in bound with canonical binding site (bound/w) and without (bound/wo).

41,472 were found within 50 bp from the peak summit of the previously defined 96,685

Pu.1-bound regions (see figure 3.2). This means that 571,738 (93.2%) of the sites are never

contacted by Pu.1 in vivo. Even assuming that part of them may be bound in conditions that

were not recapitulated in the experiments that generated the datasets we collected, the vast

majority of them is likely to be never engaged in vivo. On the other hand, 41,472 accounts

for 42.9% of the total (see figure 3.3). This means that Pu.1 binding through lower affinity or

composite sites and tethering interactions together account for more than 50%. Interestingly,

22.7% of the total bound/wo (Pu.1-bound regions showing no canonical binding site) regions
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versus 14.9% in bound/w ones (Pu.1-bound regions at canonical binding site) resides within

2.5 kbp of RefSeq TSSs (p <= 0.01 in a Chi-squared test), which might indicate a relative

enrichment of lower affinity sites or tethering interactions accounting for Pu.1 binding at

TSSs.

(mappable)
 high-affinity canonical 

binding sites

41 472
Binding

canonical sites

55 213
Binding non

canonical sites

ChIP-seq defined
PU.1 peaks

618'623

Figure 3.3: Venn diagram showing the overlap be-
tween Pu.1 peaks identified in ChIP-seq experiments
from multiple cell types and computationally identi-

fied genomic Pu.1 sites.
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Figure 3.4: Bound/wo show a significanlty different distribution compared
to bound/w (p <= 0.01 in a Chi-squared test). This can be attributed to a
different representation of RefSeq TSS-proximal sites, which accounts for 22.7%

of the total bound/wo regions versus 14.9% bound/w ones.

3.3 Discrimination of engaged and non-engaged Pu.1-binding

sites in vivo

Starting from these data, we then asked if the hundreds of thousands of high-affinity recog-

nition sites for Pu.1 showing no engagement in any of the cell types tested can be recognized

from the engaged ones using only the information from the surrounding sequence. To this

purpose, the 41,472 engaged sequences showing a canonical binding site were compared to

the same number of unbound regions. Since the latter outnumber the former, 41,472 regions
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were randomly chosen. While regions in both groups show a canonical binding site (FIMO

p-value <= 1e-4), we asked if the affinity (according to the PWM used) for the sites was

different. As shown in figure 3.5, this is indeed the case. Bound/w sites show statistically

significant higher affinities than unbound ones (Mann-Whitney test, p = 2.31e-294).

Given this significant difference in affinity, we trained a Support Vector Machine (SVM,

Bound

Unbound

4 6
-log10(FIMO p-value)

Figure 3.5: Higher affinities correspond to lower p-values, which correspond
to higher -log10(p). In bulk, bound/w sites show higher affinities than unbound

ones (Mann-Whitney test, p = 2.31e-294).

Cortes and Vapnik, 1995) using 20% of the examples and tested it on the remaining 80%.

Pu.1 sequence preferences alone are poorly predictive of binding, resulting in an average accu-

racy of 58.5% (see figure 3.7, the mean value is shown, which is extremely stable over random

initializations of the training and test datasets). We then measured features in the surround-

ing non-coding sequence, aimed at increasing this accuracy value. We collected a total of 995

sequence features assessed in 300 bp windows aligned to the summit of the ChIP-seq peaks in

the case of bound regions, and to the invariant GGAA core of the Pu.1 binding site in the case

of the unbound ones (see section 2.5 for a detailed description of the features and how they

were extracted). We gathered 1,808 models (PWMs) from the literature describing known

binding preferences for TFs. In order to avoid redundancies, the PWMs were grouped by TF

family and subfamily. The described scoring procedure for the PWMs was repeated also for

a more narrow window of 100 nucleotides. Among other features we included i) k -mers with

k = 2 and k = 4, ii) C+G content, iii) the average theoretical nucleosome occupancy of the

region calculated with a published algorithm (Kaplan et al., 2008), iv) the overlap with known

classes of repetitive elements, and v) the three-dimensional (3D) DNA shape predicted for

the 10 bp in the ETS core motif and for additional 15 bp on each side. DNA shape depends

on sequence only and directly impacts on protein-DNA recognition (Rohs et al., 2009). The

inclusion of these features is able to capture the fact that degenerated binding motifs can form

very similar 3D shapes and conversely sequences with comparable affinity may display func-

tionally relevant topological differences. In fact, DNA shape was recently shown to improve

the prediction of engaged bHLH TF binding sites in S. Cerevisiae (Gordân et al., 2013).
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Given this large amount of features, we devised a feature selection procedure (Guyon and

Figure 3.6: The entire set of sequences was split into training (20%) and test (80%) datasets.
50% of the training dataset was kept as a validation set. Forward feature selection was performed
ten times and the selected features pooled. Final training and testing were performed over this pool
of features. Features were pre-ranked according to the value of absolute value of the Spearman’s
rank correlation coefficient calculated among the values and the class of the training examples.
Only those with a value >= 0.04 were retained. According to this ranking, forward selection was
performed by adding features one by one and keeping only those whose inclusion improved the
accuracy on the validation set of at least 0.1%. To estimate the robustness in the accuracy of the
predictions and the reproducibility of the set of selected features, the approach was reiterated ten

times on different permutations of the training and the test datasets.

Elisseeff, 2003) aimed at identifying the smallest set with the highest predictive power. The

use of fewer variables should result not only in a more performing but also in a simpler

model, which allows a better biological understanding and interpretation of the results. The

entire dataset of sequences was split into training (20%) and test (80%). 50% of the training

dataset was kept as a validation set. Forward feature selection was performed ten times and

the selected features pooled. Performances on training and test sets were evaluated over

this pool of features. To estimate the robustness of the accuracy achieved in the prediction
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and the reproducibility of the set of selected features, the approach was reiterated ten times,

reinitializing the training and test datasets (see figure 3.6).

Starting with the entire set of 995 features and through feature selection, we achieved an

Combined

PWMs in 300 bp

DNA Shape

PWMs in 100bp

2mers/4mers

G+C

Repeats

Pu.1 PWM in 100 bp

Prediction Accuracy

0 1

Figure 3.7: The average accuracy for the test datasets over ten training-test
randomizations are shown. Standard deviations are negligible (see table 3.1)

and not shown.

average accuracy of 78%(see figure 3.7, red bar). We then analyzed the contribution of in-

dividual groups of features to the prediction. Theoretical nucleosome occupancy and C+G

content were found to have similar performances (accuracy of 59-60%). C+G content has in

fact been reported to be a simple proxy of nucleosome occupancy (Tillo and Hughes, 2009).

Interestingly, while 2-mers and 4-mers were more predictive (66.2%) than C+G only, a small

number of DNA shape features alone achieved an average accuracy of 71.9%, slightly less

than considering PWMs in a 300 nt window (72.2%). In the end, none of the single groups

of features achieved the performance of the combination (see figure 3.7). When the feature

Training Testing

Run ACC SEN PPV ACC SEN PPV

1 0.7888 0.7907 0.7878 0.7785 0.788 0.7733
2 0.7911 0.8002 0.7858 0.7834 0.7919 0.7787
3 0.7902 0.7904 0.7901 0.7821 0.7856 0.7801
4 0.7931 0.7996 0.7894 0.7825 0.785 0.7811
5 0.7814 0.7926 0.7753 0.7757 0.7826 0.772
6 0.7752 0.7854 0.7696 0.771 0.7829 0.7647
7 0.7859 0.7928 0.782 0.7816 0.7899 0.777
8 0.7969 0.8034 0.7931 0.7817 0.7883 0.778
9 0.7922 0.8007 0.7873 0.7798 0.7914 0.7735
10 0.7885 0.7932 0.7858 0.7858 0.7941 0.7811

Table 3.1: Accuracy (ACC), sensitivity (SEN) and positive predictive value (PPV) obtained
from training and test datasets are shown.

selection routine was allowed to select between linear SVM or using the RBF (radial basis
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function) as kernel and an exhaustive search for parameters was performed (grid search), RBF

kernel was systematically preferred over the linear SVM. Nevertheless, while performances

on the validation set increased, those on the test dataset dropped to values lower than those

obtained using the linear SVM.

Considering the linear kernel and the ten training-test datasets randomizations performed,
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Figure 3.8: The sum of different families of PWMs with a putative binding
site in a 300 bp region centered on the Pu.1-bound sites is significantly higher
than that measured at the unbound ones (p-value = 1.54e-11, Mann-Whitney

test).
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Figure 3.9: Bound sites show a significantly higher C+G content than un-
bound sites (p-value <= 1e-300, Mann-Whitney test).
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Figure 3.10: Bound sites show a significantly higher theoretical nucleosome
occupancy than unbound sites (p-value <= 1e-300, Mann-Whitney test).

PWMs representing ETS-family binding preferences were systematically selected. On the

contrary, the sum of PWMs families (used as a proxy for cooperative binding at the regions)

was included only in 5 out of 10 runs. Nevertheless, the sum of distinct families of PWMs

showing a putative binding site around Pu.1-bound sites is significantly higher (see figure 3.8)

than that measured at the unbound ones (p-value=1.54e-11, Mann-Whitney test). Except

for one case, C+G content was systematically selected along with the theoretical nucleo-

some occupancy. In fact, considering either of the two, bound sites show significantly higher
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Category Feature # times (out of 10)

DNA shape MGW flank -1 10
DNA shape Roll core 10 10
DNA shape Roll flank -1 10
DNA shape MGW core 1 10
DNA shape MGW core 7 10
DNA shape Roll core 6 10
DNA shape ProT flank -2 9
DNA shape HelT core 3 9
DNA shape MGW core 10 9
DNA shape ProT flank +1 8

2mers/4mers GC 10
2mers/4mers CC 10
2mers/4mers CG 10
2mers/4mers AT 10
2mers/4mers AAAT 9
2mers/4mers TA 9
2mers/4mers AG 9
2mers/4mers AGGT 8
2mers/4mers GATA 8
2mers/4mers AGTG 7

PWMs Fos-related factors (Family, +/- 50bp) 9
PWMs B-ATF-related factors (Subfamily, +/- 50bp) 9
PWMs Interferon regulatory factors (Family, +/- 50bp) 9
PWMs Interferon regulatory factors (Subfamily, +/- 150bp) 8
PWMs Runt-related factors (Family, +/- 50bp) 8
PWMs Jun-related factors (Family, +/- 50bp) 7
PWMs Jun factors (Subfamily +/- 50bp) 7
PWMs CTCF-like factors (Subfamily, +/- 150bp) 6
PWMs CTCF-like factors (Subfamily, +/- 50bp) 6
PWMs Runt-related factors (Subfamily, +/- 150bp) 5

Repeats LINE 10
Repeats LTR 8

Table 3.2: Among those selected at least in 5 out of 10, the top ten selected features during
multiple initialization of training-test datasets for each category are shown.

values than unbound ones (see figures 3.9 and 3.10). This is in line with observations at p53-

contacted sites in H. sapiens (Nili et al., 2010). Considering the broader groups of features

(i.e. PWMs, DNA shape, k -mers and overlap with repetitive elements), a summary of the

features selected is given in table 3.2.

In the combined model, DNA shape features of the ETS core but also at -2, -1 and +1 flanking

nucleotides were systematically selected (see table 3.2). Among the k -mers, those system-

atically selected are mostly reflecting a different C+G composition of bound and unbound

sites. Nevertheless, they carry more information than C+G alone, by pushing the accuracy
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to 66.2% compared to the 59% achieved by the C+G content only.

The families of TFs (PWMs group) that are more frequently selected are Jun/Fos and
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Figure 3.11: Runx1 and AP-1 sites (FIMO, p-value <= 1e-4) were annotated
around the ETS cores. The cores have been aligned according to the GGAA
in order to be able to spot existing spatial constraints. For bound (red) and
unbound (grey) the number of Runx1 and AP-1 sites was summarized using
a 10 bp binning. The probability for the observed number of sites to occur
by chance was calculated for each bin (binomial probability estimated as the
average bin frequency in 1,000 bp surrounding the ETS ore). Compared to
p-values in the unbound (which show an almost completely flat distribution
in the 1,000 bp window) the bound sites show a strong enrichment for both

Runx1 and AP-1 sites in a narrow area on both sides of the ETS site.

ATF-like factors (AP-1 is a heterodimeric TF composed of proteins belonging to these fam-

ilies), Runt family members (like Pu.1, Runx1 is another essential transcription factor in

hematopoiesis), IRF-like factors and CTCF. In line with this, we searched for Runx1 and

AP-1 sites around the ETS cores of the unbound and bound sites. Both Runx1 and AP-1

sites show a strong enrichment in a narrow area (about 200 bp) around the bound ETS sites

compared to unbound (see figure 3.11).

We also found of great interest that LINE and LTR repetitive elements were frequently se-

lected by the machine learning approach. Using the whole set of unbound, we confirmed that

17.4% of them overlap LINEs, compared to only 6.9% of the bound/w sites (p <= 1e-300 in

a Chi-squared test). LTRs also showed a highly significant difference as well (p <= 1e-300

in a Chi-squared test) but the gap among the two groups was smaller, with 17.1% of the un-

bound regions overlapping them, compared to a 12.1% for the bound/w sites. An intriguing
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hypothesis suggests that these transposable elements elements containing the Pu.1 consen-

sus site might be representative of a reservoir of elements ready to rewire the mammalian

cis-regulatory repertoire (de Souza et al., 2013).
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3.4 Nucleosomal organization at Pu.1 bound and unbound

sites

Among the features that were systematically selected by the SVM, we found the C+G content

and the theoretical nucleosome occupancy of primary interest. These data might indicate that

DNA sequence drives higher nucleosomal occupancy at engaged (TF-bound) cis-regulatory

regions, compared to unbound sites. To test this hypothesis, we looked at nucleosomal or-

ganization at bound and unbound sites in macrophages and in unrelated cell types in which

Pu.1 is not expressed. Since we generated Mnase-seq data only in macrophages, in order

to get a cleaner picture we considered only those Pu.1 sites that are specifically bound in

BMDMs.

We first split the Pu.1-bound sites (the bound/w and the bound/wo separately) into TSS-
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Figure 3.12: Cumulative distributions of nucleosome midpoints cen-
tered on the summit of the TSS-distal Pu.1-contacted regions in
macrophages (bound/w and bound/wo shown respectively in red and
orange) or on the GGAA of the computationally identified sites that are

not bound in vivo (grey) (bin = 10 bp).
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Figure 3.13: Same as in figure 3.12 but for the TSS-proximal sites.

proximal and TSS-distal sites. This was done in order to avoid any bias coming from the

fact that TSSs are not as cell-type specific as TSS-distal enhancers. Considering BMDMs,
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Pu.1 is able to induce the same pattern in both genomic contexts (a nucleosome-depleted

area with nucleosome phased on either sides, see figures 3.12 and 3.13; see later in the thesis

for a thorough investigation of nucleosomal patterns in macrophages).

Considering instead the situation in ESCs (in which Pu.1 is not expressed) the TSS-distal
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Figure 3.14: Cumulative distributions of the midpoints of the nucle-
osomal fragments centered on TSS-distal Pu.1 sites in ESCs. These
are centered on the summit of the TSS-distal Pu.1-contacted regions in
macrophages (bound/w and bound/wo shown respectively in red and
orange) or on the GGAA of the computationally identified sites that are

not bound in vivo (grey) (bin = 10 bp).
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Figure 3.15: Same as in figure 3.14 but for TSS-proximal sites.

bound sites show increased nucleosome signal in a narrow area around the site contacted

by Pu.1 in vivo, while the unbound sites do not. TSS-proximal sites instead show no clear

increase in nucleosome occupancy over the Pu.1 sites. This might be due to the fact that

these sites are active in this other system as well, being bound by a different combination of

TFs, which is responsible for the nucleosome depletion (either compared to the surrounding

regions or to the unbound sites).

The analysis at all Pu.1-bound sites was extended to nucleosomal data from neural precur-

sors (NPCs) and mouse embryonic fibroblasts (MEFs) (Teif et al., 2012). These data were

also aligned to the summit of Pu.1 peaks. Irrespective of the cell type considered, higher nu-

cleosome occupancy extending for about a single nucleosome length and precisely overlapping
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Figure 3.16: Cumulative distributions of the midpoints of the nucleosomal
fragments centered on TSS-distal Pu.1 sites in macrophages and in unrelated

cells that do not express Pu.1 (ESCs, NPCs, MEFs) (bin = 10 bp).

the macrophage Pu.1-bound, nucleosome-depleted regions was detected in case of TSS-distal

sites (see figure 3.16). As already observed, TSS-proximal sites instead show no increase in

nucleosome occupancy over the Pu.1 sites (see figure 3.17).

3.5 Pu.1-bound sites show spatial sequence constraints

The feature selection embedded in the SVM indicated that Pu.1-bound sites show a higher

theoretical nucleosome occupancy (as well as C+G content) than unbound canonical Pu.1
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Figure 3.17: Cumulative distributions of the midpoints of the nucleosomal
fragments centered on TSS-proximal Pu.1 sites in macrophages and in unrelated

cells that do not express Pu.1 (ESCs, NPCs, MEFs) (bin = 10 bp).

sites. This sequence characteristic is reflected in the nucleosome patterns of the cell types in

which Pu.1 is not expressed. This lead us to further investigate the features of the sequence

along the engaged regions, centered on the summit of the regions bound by Pu.1 in BMDMs.

Cumulative distribution plots revealed features characteristic of nucleosome container sites

(see figure 3.18, Valouev et al., 2011): an increase in the relative frequency of both AA

dinucleotides (see figures 3.19 and 3.20) and AAAA polynucleotides (see figures 3.21 and

3.22) peaking at -100 and +100 positions relative to the summit of Pu.1 peaks (corresponding

to repelling sequences) with an extended central core of G/C rich sequences that promote
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Figure 3.18: Schematic depiction of the container site position-
ing mechanism. The C/G-rich core (green) is known to favor
nucleosome occupancy, but it is not able to precisely position the
nucleosome. Flanking A/T-rich repelling elements (purple) add
the ability to restrict the position of the nucleosome. Adapted

from Valouev et al., 2011.

nucleosome occupancy (Tillo and Hughes, 2009) (note that the strong enrichment of CC/GG

and AA/TT dinucleotides at the anchor point is enhanced by the central invariant nucleotides

of the Pu.1 site, AGAGGAAGTG).

Any attempt of including these features in the SVM (spatial counts of AA and AAAA in
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Figure 3.19: Frequency of AA and CG-rich dinucleotides around TSS-distal
Pu.1 binding sites. CG-rich and AA normalized k -mer frequency is calculated
as the relative frequency (the count of dinucleotides per bp per number of
regions) divided by the average relative frequency in a larger region of +/- 500

bp.

coarse-grained bins or the ratio among the same counts in the central versus the side regions)

did not show any increase in the performances. A possible explanation is that the container

site is a feature characteristic only of a subset of the entire repertoire of engaged Pu.1-sites

(see section 3.8, which reports evidences supporting this scenario).
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Figure 3.20: As described for figure 3.19, but for the TSS-proximal set of
Pu.1.
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Figure 3.21: AAAA frequency at TSS-distal Pu.1 binding sites. AAAA
relative frequency stands for the number of AAAA for each nucleotide position

divided by the total number of regions considered.
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Figure 3.22: As in figure 3.21, but referring to the TSS-proximal set of Pu.1.

3.6 Nucleosomal organization at Pu.1 sites in vitro

In order to conclusively demonstrate the role of DNA sequence in controlling the basal nucle-

osomal landscape at Pu.1 sites, we assembled nucleosomes in vitro and analyzed them using

the same pipeline. Naked genomic DNA extracted from mouse macrophages was sonicated

and a smear from 600 to 2,000 bp fragments was purified and combined with recombinant

histones to generate nucleosomes by salt dialysis (Luger et al., 1999). Assembly conditions

in which DNA was not limiting were used to specifically focus on the effects of the primary

sequence on nucleosome positioning (Luger et al., 1999, Valouev et al., 2011).
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The cumulative distribution of nucleosome reads at TSS-distal as well as TSS-proximal Pu.1-

bound sites in macrophages indicates that genomic sequence features are sufficient to generate

a focused increase in nucleosomal density at both TSS-distal and proximal sites bound by

Pu.1 in macrophages (see figure 3.23).

It is important to point out that, contrary to what we have observed in vivo (see figures
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Figure 3.23: Cumulative midpoints distribution from in vitro assembled nu-
cleosomes (bin = 10 bp).

3.15 and 3.17), the in vitro pattern at TSS-proximal sites also shows a local increase in nu-

cleosomes positioned over the Pu.1-binding site.

We also looked for genome-wide evidences supporting the container site. The distributions of

dinucleotides at strongly positioned nucleosomes in macrophages as well as in vitro are shown

in figure 3.24. We first extracted all the nucleosomes supported by at least 10 sequenced frag-

ments (but also less than 50 in order to avoid extreme outliers), sorted them by standard

deviation of the fragments around the nucleosome dyad (smaller standard deviations corre-

spond to better positioned nucleosomes), and used the top 100,000 for the analysis. Strongly

positioned nucleosomes in vitro showed a higher frequency of AA dinucleotides rising at +/-

50 nt and peaking at +/- 100 nt from the dyad. The AA dinucleotides shoulders bracketed

a central CC/GG-richer region extending for about 100 nt. Conversely, except for a rather

narrow region around the dyad, the frequency of the same dinucleotides at 100,000 randomly

picked nucleosomes was rather flat over the entire 500 nt considered. When the same pro-

cedure was applied to the nucleosomes in macrophages, a similar result was observed albeit
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of lower magnitude. This is in line with a smaller contribution of the sequence determinants

compared to other factors in vivo. These factors are often able to override the intrinsic occu-

pancy and positioning dictated by the DNA sequence itself (Struhl and Segal, 2013). Taken

together, these results confirmed that the container site observed in H. sapiens is a feature

conserved in the genome of M. musculus.
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Figure 3.24: The top 100,000 positioned nucleosomes were extracted from
the the in vivo (BMDMs) and in vitro reconstituted nucleosomes. The same
number of nucleosomal positions was retrieved at random (independently for
the in vivo and in vitro sets) and used as reference. The distributions of AA and
CC dinucleotides are shown. For each nucleotide position, relative frequency
stands for the number of regions showing that particular dinucleotide divided

by the total number of regions considered (100,000 for every set).
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3.7 Predicting nucleosome occupancy from features instruc-

tive for Pu.1 binding

The data presented so far suggest that nucleosomes may selectively occupy those Pu.1 sites

that are contained within TF binding-competent cis-regulatory regions through different

mechanisms. Since i) these nucleosomal patterns correlate with peculiar sequence features

(namely a different C+G content and the presence of the container site) and ii) we were able

to identify a limited subset of sequence features which is 78% accurate in predicting which

Pu.1 canonical binding sites will be contacted in vivo, we then asked if we could use the same

determinants to predict nucleosome occupancy in cells that do not express Pu.1.

The nucleosomal information at these sites was extracted from ESCs, NPCs, MEFs and

Figure 3.25: Operational scheme of the Support Vector Regressor used to
predict nucleosome occupancy from the DNA sequence features predictive for
Pu.1 binding. Filtering refers to the exclusion of the measurements of theoret-

ical nucleosome occupancy from the features used.

in vitro patterns. The number of nucleosomal fragments spanning the center of each region

(corresponding to the Pu.1 ChIP-seq summit for the bound or to the GGAA core in case of

the unbound) was counted and the log2-transformed value used as a proxy for occupancy. The

information for all the features except the theoretical nucleosomes occupancy (Kaplan et al.,

2008) was used to feed a Support Vector Regressor (Drucker et al., 1997), which is a variant

of SVM for regression. The entire dataset of bound and unbound sites was split into 90%

training and 10% test. The training dataset was used to fit the experimentally determined
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nucleosome counts in function of the features in the sequence. The model obtained was

then used to predict the nucleosome counts over the test dataset (see schema in figure 3.25).

Performance was evaluated through the coefficient of determination (R2), calculated as the

squared Pearson correlation coefficient among the predicted and the observed counts. Results
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Figure 3.26: Smoothed scatterplots of the predicted values in function of the observed log2-
transformed values of nucleosome occupancy in ESCs or in vitro over Pu.1 sites (using the set
of features selected for one of the randomizations of the training-test SVM input datasets). The
scatterplot on the right shows the results on the test dataset using only theoretical nucleosome
occupancy. The plot on the left show instead the results using all the features selected except for

it.

for a representative set of features are summarized in figure 3.26. Smoothed scatterplots show

the predicted values in function of the observed values. The features discriminating Pu.1-

bound from unbound sites explained 45% of the variability in the nucleosome occupancy

pattern at these sites in ESC. Conversely, an SVR trained and tested using only the theoretical

nucleosomes occupancy (Kaplan et al., 2008) explained less than 10% of the variability in

the same data, which is in agreement with previously published data (Tillo et al., 2010).

Interestingly, theoretical nucleosomes occupancy values (which are predicted by a model built

upon yeast in vitro measurements) perform better on in vitro data compared to data from

ESCs, and the SVM-selected features only slightly outperform it.

These results are robust when slightly different sets of features (corresponding to multiple
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re-initialization of the SVM-based procedure used to predict Pu.1 binding) and different cell

types are considered (see boxplots in figure 3.27).

Therefore, sequence determinants of Pu.1 binding also encode part of the information for
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Figure 3.27: Boxplots showing the distribution of the (R2) for the sets of
features from the ten training-test datasets randomization of the SVM.

nucleosome affinity. It should be noticed that the results obtained are better (Kaplan et al.,

2008, Tillo and Hughes, 2009) or in line (van der Heijden et al., 2012) with published models

developed ad hoc to predict nucleosome occupancy from the local genomic sequence.



Chapter 3. Results 66

3.8 A detailed evaluation of chromatin organization at Pu.1

binding sites in BMDMs

These observations about the interplay of sequence determinants of Pu.1-binding and nucle-

osome affinity coupled to the unprecedented sequencing depth we reached in assaying the

nucleosome pattern in BMDMs (see table 2.4) prompted us to a much detailed investiga-

tion of the nucleosomal patterns occurring at the Pu.1-binding sites (Ostuni et al., 2013).

TSS-proximal and TSS-distal sites were defined upon annotation of the Pu.1-bound sites

to Ensembl genes (Flicek et al., 2012), resulting in 17,401 (22.63% of the total) and 59,481

(77.37%) regions, respectively.

3.8.1 TSS-distal sites

As already shown, when TSS-distal Pu.1 peaks (corresponding to putative enhancers) were

used as central anchoring points, we detected regular arrays of well-positioned nucleosomes

(with up to seven nucleosomes on each side of the Pu.1-bound region, see figure 3.12). Since

this cumulative distribution is not informative of the behavior of individual genomic regions,

we generated a heatmap in which Pu.1 summit-centered nucleosome patterns were sorted

based on the decreasing width of the central NDR (see figure 3.28). Regions at the bottom

of the heatmap are characterized by narrow NDRs flanked on each side by one prominent

nucleosome and then additional nucleosomes whose occupancy progressively diminish with

increasing distance from the center. Conversely, regions at the top show broad NDRs that

are less clearly demarcated because of the much lower degree of occupancy of the flanking

nucleosomes. Pu.1-bound TSS-distal regions sorted by decreasing NDR width were then

split into deciles and further analyzed. Although significantly different (p = 7.89e-95 in a

Kruskal-Wallis test), Pu.1 occupancies were relatively similar in magnitude across all deciles,

with slightly higher scores (score is equivalent to -10*log10(p-value) of the ChIP-seq enrich-

ment over the input) only in the first decile. This is an indication that different degrees

of Pu.1 occupancy are not a major determinant of the width of the NDR (see figure 3.29).

Considering a larger (+/- 1.5 kbp) area centered on Pu.1, regions in the 1st decile (at the top

of the heatmap, broader NDRs) are characterized by an overall lower nucleosome occupancy
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Figure 3.28: TSS-distal Pu.1-bound sites in macrophages were sorted according to the extent of
the NDR. Nucleosome patterns (Mnase), hPTMs (H3K27ac, H3K4me1), polII and Pu.1 binding
profiles (in vivo - Pu.1 - and in vitro - Pu.1 IV) are shown as heatmaps. Considering the nucleosome
midpoints, the counts exceeding the 95th percentile of the overall distribution were set to the value
of the 95th percentile. These counts were then normalized in the range 0-1, separately for each
region. Considering the ChIP-seq data, the same procedure was applied except that the 0-1
normalization was applied to the entire set (this would emphasize absolute differences in the level
of the modifications in the different deciles, while the region-wise normalization is better aimed
at showing relative differences at the level of the single region, which is better suited to highlight

nucleosome positions).

than those in the 10th (see figure 3.30). This suggests that different properties in terms

of nucleosome organization extend beyond the centrally located regulatory region. Impor-

tantly, the two NDR-flanking nucleosomes (heretofore indicated as -1 and +1 nucleosomes)

are prominent in the regions belonging to the 10th decile and almost absent in those in the

1st, contributing to the width of the NDR in this group. Therefore, although the nucleosome

map shows a continuum of behaviors, qualitatively different classes of NDRs that surround

Pu.1 peaks can be identified.

H3K27ac and H3K4me1 showed a peculiar bimodal behavior, with bulk signal decreasing

in the lower deciles (broader NDRs) and increasing again in the upper deciles (more narrow

NDRs). This trend (shown in figure 3.31) is mirrored by hPTMs enrichment that can be

spot by statistical analysis of the ChIP-seq data (see table 3.3). Considering H3K4me1, the

1st decile shows almost 60% of overlap with H3K4me1 peaks, a figure that slightly decreases

to 52% in the 4th decile and then increases gradually from the 4th to the 10th, up to 80%.

A similar trend is observed for the H3K27ac and H3K4me3. Given the extremely different
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Figure 3.29: Pu.1 ChIP-seq score (according to MACS) of the
peaks in different deciles are shown. Groups are significantly dif-
ferent (p = 7.89e-95 in a Kruskal-Wallis test) even though only the
first decile (larger NDRs) displays a marked increase in ChIP-seq

determined occupancies.
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Figure 3.30: Bulk signals of the nucleosome midpoints in each
one of the deciles defined according to the NDR width (see figure

3.28).

average level of nucleosome occupancy at the deciles, the hPTMs data were normalized ac-

cording to it. This resulted in a smoother transition from higher to lower levels of H3K27ac

and H3K4me1, going from the 10th to the 1st decile. Overall, the regions in the lower deciles

show a higher density of nucleosomes, which have a lower probability of being modified. On

the other hand, DNA in the upper deciles has a lower propensity to be found into nucleo-

somes, but these nucleosomes show a higher probability of being modified. Same as saying

that the relative amount of modified histones is different, but the absolute amount is com-

parable among the two subsets. This results raise an important issue (that is not among the
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aims of this thesis) and put into a completely different light the results from ChIP targeting

hPTMs: normalization by input DNA alone or by using also the nucleosome occupancy of

the area can lead to different interpretations.

As observed for the signals of hPTMs (before normalization by the average nucleosome oc-
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Figure 3.31: Bulk signals (density of reads) for the ChIP-seq of H3K27ac
(green) and H3K4me1 (yellow) in each one of the deciles defined according to

the NDR width (see figure 3.28) are shown.

Decile H3K4me1 H3K4me3 H3K27ac polII IV Pu.1 Canonical site CpGi

1 0.597 0.077 0.434 0.134 0.244 0.472 0.042
2 0.564 0.056 0.332 0.111 0.206 0.497 0.034
3 0.532 0.040 0.296 0.099 0.183 0.532 0.020
4 0.521 0.042 0.293 0.107 0.167 0.530 0.023
5 0.550 0.044 0.316 0.130 0.153 0.522 0.023
6 0.630 0.042 0.393 0.149 0.146 0.504 0.018
7 0.694 0.047 0.449 0.166 0.141 0.486 0.021
8 0.721 0.042 0.464 0.182 0.114 0.494 0.019
9 0.754 0.042 0.518 0.209 0.098 0.475 0.016
10 0.807 0.045 0.597 0.263 0.075 0.473 0.015

Table 3.3: Pu.1-bound TSS-distal regions in each decile were overlapped with enrichment
peaks derived from ChIP-seq datasets (H3K4me1, H3K4me3, H3K27ac, polII and IV Pu.1,
which stands for in vitro ChIP targeting Pu.1, see section 3.8.1.3 for details), canonical

Pu.1-binding sites and CpGi (Illingworth et al., 2010).

cupancy of the area) polII accumulation shows a bimodal behavior. The bulk signal decreases

in the lower deciles (broader NDRs) and increases again in the upper deciles (see figure 3.33),

which is also in line with the statistical analysis of the enriched regions (see table 3.3).
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Figure 3.32: Bulk signals (density of reads) for the ChIP-seq of H3K27ac
(green) and H3K4me1 (yellow) in each one of the deciles defined according to
the NDR width (see figure 3.28) are shown. Compared to figure 3.31 the signal
of each decile has been divided by the average nucleosome occupancy of the

area. NFPB stands for number of fragments per bin.

We then tried to assess if enhancers in distinct deciles have a different impact on the transcrip-

tional rate of the neighboring genes. Even though computational assignment of TSS-distal

regions to core promoters of target genes is a very inaccurate task (see section 1.10.3) each

Pu.1-bound TSS-distal element was assigned to the nearest RefSeq gene with detectable

mRNA in the macrophage (see section 2.10 for details). Distributions of FPKMs from the

different deciles are significantly different (p = 2.13e-14 in a Kruskal-Wallis test), mainly due

to an increase in the 9th and 10th deciles (those ones with higher nucleosome occupancy).

Besides, we run GREAT (McLean et al., 2010), which reports enrichment for functional an-

notations of a dataset of non-coding genomic regions through a probabilistic assignment of

each region to nearby genes. We restricted the analysis to the terms associated to biolog-

ical processes in the Gene Ontology and used very stringent criteria (Bonferroni-corrected

hypergeometric p-value <= 0.01, fold enrichment of at least 2). This resulted in very similar

lists, irrespective of the decile analyzed. All of them were found enriched for terms related

to Immune Response and Hematopoietic System Development, and show no decile-specific

enriched terms.
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Figure 3.33: Bulk signals (density of reads) for the ChIP-seq of polII in each
one of the deciles defined according to the NDR width (see figure 3.28) are

shown.
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Figure 3.34: Each region was annotated to the nearest gene
showing detectable mRNA in macrophages. The corresponding
FPKMs were used to derive decile-specific distributions. These
are significantly different (p = 2.13e-14 in a Kruskal-Wallis test)

mainly due to an increase in the 9th-10th deciles.

3.8.1.1 Sequence determinants

We then investigated the composition of the DNA sequences belonging to each decile, con-

sidering a region of +/- 150 bp from the Pu.1 summit. We were particularly interested in

understanding if the container site features observed in the bulk of Pu.1-contacted regions

(see figure 3.19) were characteristic of one or more distinct deciles.

The overall C+G content showed a progressive increase from the 1st to the 10th decile (p
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Figure 3.35: Considering a region of +/- 150 bp from the Pu.1
summit, C+G content increases with the nucleosome occupancy
observed at the Pu.1-bound TSS-distal sites (p <= 1e-300 in a

Kruskal-Wallis test).
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<= 1e-300 in a Kruskal-Wallis test, see figure 3.35), which is consistent with the progressive

increase in nucleosome occupancy. AA dinucleotides, which contribute to generate the re-

pelling elements in container sites (Valouev et al., 2011), were more represented in the 1st

decile with a peak at -100 and +100 positions (see figure 3.36). This relative enrichment of

AA dinucleotides in the flanks may determine the strong depletion of the -1 and +1 nucleo-

somes in the first decile, a hypothesis that is directly addressed in the next paragraph. In a

reciprocal manner, the 1st decile showed a relative depletion of GC and CC dinucleotides in

the flanks.

Taken together, these data indicate qualitative and quantitative differences in sequence com-
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Figure 3.36: The positional content for AA, CC, GC and CG is shown as average frequency in
the population (considering a bin of 10 bp) for each dinucleotide.

position across deciles and suggest that the interplay between Pu.1 and different underlying

sequences may eventually determine the features of distinct classes of NDRs in macrophages.

Besides, the container site is a feature characteristic only of a subset of Pu.1-bound TSS-

distal sites, namely those showing broader NDRs in macrophages.

We then assessed the relative over-representation for binding sites of known TFs using Pscan

(Zambelli et al., 2009). Basically, the sequences belonging to each deciles were compared to
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the pool of sequences coming from all deciles. Considering some of the well-known families of

TFs involved in myeloid differentiation and innate inflammatory response, we observed that

while Runt, Maf, and Egr/Klf families are enriched in the upmost and lowest deciles, Irfs

and Stats are enriched in the lowest and Nfkb in the upmost. Besides, the ATF-like matrices

(including the AP-1 subunits) are evenly distributed among deciles.

3.8.1.2 Nucleosomal patterns in unrelated cell-types and in vitro

In order to directly determine the impact of sequence composition on nucleosomal organiza-

tion at these cis-regulatory elements, we analyzed nucleosome occupancy in unrelated cell

types that do not express Pu.1 (ESCs, NPCs, MEFs) and in in vitro reconstituted mouse

chromatin.

In previous paragraphs we already observed that, considering unrelated cell types, higher
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Figure 3.37: Cumulative nucleosome profile in cells other than macrophages and in vitro. Regions
in the 1st (lightgrey), 5th (darkgrey) and 10th (black) deciles are shown.

nucleosome occupancy extending for about a single nucleosome length and overlapping the

macrophage Pu.1-bound, nucleosome-depleted regions is detected in case of TSS-distal sites

(see figure 3.16). Considering in vitro data instead, this holds true for TSS-distal as well as
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Figure 3.38: Considering a region of +/- 150 bp from the Pu.1 summit, the overall nucleo-
some occupancy in ESCs, NPCs, MEFs and in vitro reconstituted chromatin is shown (in all four

situations, p <1e-300 in a Kruskal-Wallis test).

TSS-proximal sites (see figure 3.23). When data corresponding to the individual deciles were

analyzed separately, distinct regulatory mechanisms impinging on nucleosome occupancy and

positioning became apparent (see figure 3.37). Considering the first decile, the central NDR

observed in macrophages showed a focused increase in nucleosomal density bracketed by two

narrow areas of nucleosome depletion in all other cells. This behavior is entirely compatible

with the enrichment in this decile of well-positioned nucleosomes controlled by container sites

demarcated by AA-rich flanks, which in fact are mainly observed in the 1st decile (see figure

3.36). It is important to notice that these well-positioned nucleosomes occur in the context

of the lower nucleosome occupancy characteristic of the 1st decile (see figure 3.38). At the

opposite side of the range, the 10th decile was characterized by central nucleosomes with

higher occupancy but much lower positioning (as indicated by the width of the signal on the

x-axis), which occurred in regions with an overall higher occupancy (see figure 3.38).

Given the existence of these two peculiar categories at the edges of a more continuos distri-

bution of Pu.1-bound sites, we decided to assess if Pu.1 shows a different capability to engage
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binding using an in vitro reconstituted system.

3.8.1.3 in vitro ChIP against Pu.1

We devised an in vitro ChIP-seq approach in which in vitro-assembled nucleosomes were

first digested with MNase and then incubated with macrophage-derived nuclear extracts in

order to allow the formation of protein-DNA complexes. Pu.1-bound nucleosomes were im-

munoprecipitated and subject to HT-sequencing. An in vitro Pu.1 ChIP-seq performed with

Pu.1-immunodepleted nuclear extracts was used as a reference. Depending on the stringency

applied to the in vivo dataset of Pu.1-binding sites (the cell type a-specific Pu.1 cistrome,

see section 3.2), between 26% and 40% of the Pu.1 binding events observed in vivo were

recapitulated in the in vitro assay (see figure 3.39).

Considering the TSS-distal Pu.1-bound sites in macrophages dissected by NDRs-deciles (see

in vitro

in vivo

(7 cell types,

high affinity)

15 123

(26%)
42 389 78 341

Figure 3.39: Venn diagram showing the overlap
between in vitro and in vivo Pu.1-bound sites. Low-

affinity sites defined in section 2.3.

table 3.3 and figure 3.28), those in the lower deciles (broader NDRs) are those that show the

higher rate of binding in vitro (up to 25%). Conversely, those in the upper deciles (more

narrow NDRs, higher nucleosome occupancy) show a lower rate of binding in vitro (down to

7%). Taken together, these results show that an overall high degree of occupancy along the

regulatory sequence has a higher detrimental impact on Pu.1 binding than a well-positioned

nucleosome precisely located on the Pu.1 binding site. This is compatible not only with

the hypothesis that the positioned nucleosome observed in the lower deciles is preventing

unspecific binding to the site, but also with a nucleosome-driven mechanism of binding site

recognition.

These observations were mirrored by a more quantitative analysis, carried out using nucleo-

some fragments from the in vitro reconstituted chromatin which overlapped the Pu.1-binding
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Figure 3.40: Boxplots showing the in vitro nucle-
osome occupancy at sites bound by Pu.1 either in
vivo, in vitro or in both conditions. Nucleosome oc-
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Figure 3.41: Pu.1 ChIP-seq scores (score is equiv-
alent to -10*log10(p-value)) at sites bound by Pu.1
both in vitro and in vivo or in vitro only (p <=

1e-300 in a Mann-Whitney test).

sites in the three groups depicted in figure 3.39 (namely sites bound by Pu.1 either in vivo, in

vitro or in both conditions). Those binding events occurring only in vitro were restricted to

regions of low nucleosome occupancy (see figure 3.40) and show lower in vitro TF-occupancy

(measured by ChIP-seq occupancy) compared to those occurring both in vivo and in vitro

(see figure 3.41).

Interestingly, among the sites contacted by Pu.1 in vivo, those that are also found in vitro

show a more extensive overlap with canonical Pu.1-binding sites (71.6%, see table 3.4) than

expected by the overlap of the entire population (42.9%, see section 3.2). Our interpreta-

tion of this data is that cooperative binding is disfavored in the in vitro conditions (which are
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Canonical Pu.1 sites TSS (Ensembl genes)

in vitro and in vivo 71.6% 18.5%
in vitro only 21.7% 7.7%
in vivo only 40.0% 30.8%

Table 3.4: Regions showing a statistically significant enrichment for Pu.1 in an in vitro
reconstitution experiment were overlapped with the canonical Pu.1-binding sites and the

TSSs of Ensembl genes.

characterized by non-physiological concentrations of partner TFs and absence of active mech-

anisms, i.e. ATP is not added to the reaction). In this context, Pu.1-binding is favored at

canonical sites, at which Pu.1 can bind alone (compared to higher affinity sites, Pham et al.,

2013 showed that lower affinity sites are buried in a sequence context enriched for binding

sites of partner TFs). Considering the same datasets, those bound in vitro and in vivo show

a less extensive overlap with TSSs of Ensembl genes compared to those binding events that

are not recapitulated in vitro. Consistent with this - and as it will become apparent in the

next paragraph - TSS-proximal Pu.1-bound sites in macrophages show more resistance to

Pu.1-binding in vitro.

3.8.2 TSS-proximal sites

We then moved to the TSS-proximal set of Pu.1-bound sites in macrophages. The nucleo-

somal patterns at these sites showed a lower number of phased nucleosomes around the site

compared to TSS-distal ones (see panels relative to BMDMs of figures 3.17 and 3.16). Over-

all, they also show a lower nucleosome occupancy in bulk (compare the y-axes of figures 3.17

and 3.16, panels relative to BMDMs).

As described for the TSS-distal sites, TSS-proximal ones were also split in deciles according

to the width of the NDR overlapping the Pu.1-bound site. Considering a larger (+/- 1.5

kbp) area centered on Pu.1, still the regions in the 1st decile are characterized by an over-

all lower nucleosome occupancy than those in the 10th (see figure 3.42), but the differences

span a shorter range of values (2-fold compared to the 4-fold showed by TSS-distal deciles).

Considering instead the NDRs themselves, qualitatively different classes can be identified.

Furthermore, comparing the extreme deciles, a larger difference was found in the bulk nu-

cleosome occupancy of the NDRs, if compared to TSS-distal ones (5 orders of magnitude

compared to 4 orders).
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Figure 3.42: Bulk signals of the nucleosome midpoints in each
one of the deciles defined according to the NDR width.

This could suggest that the regions in the lower deciles (broader NDRs) might have a higher

probability to coincide with core promoters, while the upper deciles (more narrow NDRs,

higher nucleosome occupancy) to be TSS-proximal enhancers. By directly testing this hy-

pothesis, we found that this is indeed the case. Each region was assigned the nearest TSS

and the decile-specific distributions were constructed upon the corresponding distances (see

figure 3.43, p <= 1e-300 in a Kruskal-Wallis test).

Even prior to normalization for the average nucleosome occupancy of the area, H3K27ac and
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Figure 3.43: The distributions of the distances from the nearest
TSSs for the regions in the different deciles defined according to
the NDR width are shown (p <= 1e-300 in a Kruskal-Wallis test).

H3K4me3 patterns did not show the peculiar bimodal behavior observed for the H3K27ac

and H3K4me1 at TSS-distal sites (a decrease in signal from the 1st to the 4th deciles and

an increase from the 5th to the 10th deciles, as shown in figure 3.31). According to this,
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also the overlap with statistically significant enriched regions showed a smoother transition

from high to low percentages (see table 3.5). Considering H3K4me3, the 1st decile shows

almost 90% of overlap with H3K4me3 peaks, a figure that decreases almost linearly down

to 24% in the 10th decile. The same trend, but coming down to higher absolute values, is

observed for the H3K27ac. On the contrary, H3K4me1 show an inversion of this trend, in

which around 30% of the regions in the 1st decile overlap H3K4me1, a figure increasing up

to 60-70% in the upper deciles. The reversing of the K4me1/K4me3 ratio from the 1st to the

10th decile is in line with a strong relative enrichment for core promoters in the 1st decile

and of TSS-proximal enhancers in the 10th one (consistent to what is shown in figure 3.43).

In this case, normalizing by average level of nucleosome occupancy at the deciles did not
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Figure 3.44: Bulk signals (density of reads) for the ChIP-seq of H3K27ac
(green) and H3K4me3 (red) in each one of the deciles defined according to the

NDR width are shown.

change the picture as dramatically as for the TSS-distal sites. Overall, the observations made

for the TSS-distal sites hold for the TSS-proximal ones as well. The regions in the lower

deciles have a higher density of nucleosomes, with a lower probability of being modified. On

the other hand, DNA in the upper deciles show a lower propensity to be found into nucleo-

somes, but with a higher probability of being modified.

The overlaps with CpG islands (Illingworth et al., 2010) also mirrored the results obtained

for the H3K4me3 peaks. Interestingly, the overlaps with the canonical Pu.1-binding sites

showed particularly low values at broad NDRs (down to 30%). This is compatible with a

scenario in which Pu.1 is able to bind at core promoters mainly through cooperative inter-

actions or tethering mechanisms. As already mentioned, a recent paper (Pham et al., 2013)

showed that lower affinity Pu.1-binding sites are found in sequences enriched for binding sites

of putative partner TFs.

As observed for the signals of hPTMs, polII accumulation shows a smooth transition from

lower to upper deciles (see figure 3.46). This is also in line with the statistical analysis of the
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Figure 3.45: Bulk signals (density of reads) for the ChIP-seq of H3K27ac
(green) and H3K4me3 (red) in each one of the deciles defined according to the
NDR width are shown. Compared to figure 3.44 the signal of each decile has
been divided by the average nucleosome occupancy of the area. NFPB stands

for number of fragments per bin.

Decile H3K4me1 H3K4me3 H3K27ac polII IV Pu.1 Canonical site CpGi

1 0.302 0.893 0.939 0.748 0.059 0.305 0.787
2 0.459 0.802 0.902 0.679 0.093 0.364 0.649
3 0.521 0.766 0.881 0.674 0.078 0.375 0.606
4 0.574 0.703 0.826 0.622 0.091 0.367 0.547
5 0.615 0.675 0.820 0.608 0.072 0.405 0.501
6 0.623 0.610 0.752 0.552 0.082 0.390 0.443
7 0.676 0.509 0.715 0.496 0.084 0.416 0.367
8 0.701 0.496 0.678 0.489 0.064 0.420 0.332
9 0.675 0.408 0.576 0.413 0.071 0.468 0.268
10 0.617 0.236 0.445 0.316 0.074 0.542 0.153

Table 3.5: Pu.1-bound TSS-proximal regions in each decile were overlapped with enrich-
ment peaks derived from ChIP-seq datasets (H3K4me1, H3K4me3, H3K27ac, polII and IV
Pu.1, which stands for in vitro ChIP targeting Pu.1, see section 3.8.1.3 for details), canonical

Pu.1-binding sites and CpGi (Illingworth et al., 2010).

enriched regions, showing an almost linear decrease of the measured overlap from 75% down

to 32% (see table 3.3).

Each region was then annotated to the nearest gene showing detectable mRNA in macrophages
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Figure 3.46: Bulk signals (density of reads) for the ChIP-seq
of polII in each one of the deciles defined according to the NDR

width are shown.

(see section 2.10 for details). The corresponding FPKMs were used to build decile-specific
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distributions. According to boxplots in figure 3.47, groups are only slightly significantly dif-

ferent (p = 0.00758 in a Kruskal-Wallis test). This is due to a minor decrease in the FPKMs

belonging to the 10th decile (which are also, compared to regions in the other deciles, those

TSS-proximal enhancers that are further away from the nearest TSS, see figure 3.43).

We then evaluated the nucleosome organization in ESCs and in vitro at the very same TSS-

proximal sites. The bulk signal (see figure 3.48) did recapitulate the positioned nucleosome

over the site in ESCs and in vitro.
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Figure 3.47: Each region was annotated to the nearest gene
showing detectable mRNA in macrophages. The corresponding
FPKMs were used to derive decile-specific distributions. These
are slightly significantly different (p = 0.00758 in a Kruskal-Wallis
test) mainly due to a decrease in the FPKMs belonging to the 10th

decile.
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Figure 3.48: Cumulative nucleosome profile in ESCs and in vitro. Regions in the 1st (light-
grey), 5th (darkgrey) and 10th (black) deciles are shown.
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3.9 Is Pu.1 required to maintain the nucleosomal organization

at cis-regulatory elements in BMDMs?

Pu.1 is expressed from the very early stages of macrophage differentiation, where it supervises

almost every regulatory event. Besides, it shows the capability to reprogram different cells

(e.g. fibroblasts) to macrophage-like cells (see section 1.9.1). The data presented in this thesis

support a scenario in which Pu.1 engages its recognition sites only at peculiar sequence con-

texts, which also correspond to precise nucleosomal conformations. Besides, we showed that

Pu.1 is able to contact thousands of its in vivo binding sites over in vitro reconstituted chro-

matin, which is an indication of the ability of Pu.1 to invade some chromatin environments

even in the absence of ATP-dependent chromatin remodelers. Although a formal demonstra-

tion of this pioneering activity is still lacking, all these evidences point to a role for Pu.1 in

defining and maintaining the precise nucleosomal conformations at its binding sites.

To directly address the role of Pu.1 in counteracting DNA sequence-driven nucleosome occu-

Figure 3.49: Acute depletion of Pu.1 in terminally differentiated macrophages using a
retrovirally encoded Tet-regulated shRNA. Data from two biological replicates are shown.

Vinculin was used as loading control.

pancy and therefore in maintaining nucleosome depletion and accessibility of the underlying

regulatory regions in macrophages, we generated a retroviral vector for inducible, doxycycline-

regulated expression of an shRNA targeting Pu.1. Bone marrow-derived cells (that proliferate

and differentiate in macrophages in M-CSF-containing medium) were infected at day 1 and

2 after plating, selected in puromycin and then induced to express the Pu.1 shRNA at day 5.

48h after shRNA induction we reproducibly obtained around 60% depletion of Pu.1 protein
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levels (see figure 3.49). It must be notice that a complete depletion of Pu.1 is not compatible

with macrophage survival. Because of the residual amount of the protein not all genomic

regions were equally stripped of Pu.1. Therefore we carried out a Pu.1 ChIP-seq to classify

regulatory regions based on the level of reduction of Pu.1 binding and in parallel samples of

cells we analyzed nucleosome profiles by MNase-Seq. Cells infected with a control retroviral

vector (empty vector) were used as a reference.

In the experimental setting of the retroviral infection, only a restricted fraction of Pu.1-

8’028

8’453

61’202

Empty > shPu.1

Empty ~ shPu.1

Undetected in Empty

Figure 3.50: The pie shows the fraction of Pu.1-bound sites in
macrophages that are not affected (grey) and those found in the
empty vector experiment (blue and red). Among them, nearly half
are found to be significantly diminished by the acute depletion of

Pu.1 (red).

bound sites in macrophage could be recapitulated (21.2%, see figure 3.50). Among them,

nearly half are found to be significantly diminished by the acute depletion of Pu.1. In order

to quantify the effect of the lower concentration of Pu.1 on the local nucleosomal organiza-

tion, the TSS-distal Pu.1 peaks identified by ChIP-seq were divided in quartiles based on the

ratio of the Pu.1 signal in Pu.1-depleted vs control cells (the fourth quartile corresponding

to peaks showing the stronger reduction in Pu.1 binding, see figure 3.51).

A quantitatively strong and statistically significant increase in nucleosomal reads at TSS-

distal Pu.1 regions was detected in both replicates, particularly in the fourth quartile (see

figure 3.52 and reported p-values).

Overall, these data indicate that Pu.1 is essential in maintaining the nucleosome depletion

at its binding sites, but it seems much less important in affecting the phasing of the nearby

nucleosomes (see Discussion).
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Figure 3.51: Pu.1 peaks were divided in quartiles based on the degree of signal
reduction in Pu.1-depleted vs. control cells. The 4th quartile corresponds to Pu.1
peaks with the higher reduction in binding occupancy in depleted cells. Distributions
of the midpoints of the nucleosome fragments were centered on the summit of Pu.1
peaks. MNase-seq data from two different biological replicates were independently

analyzed.
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orange). Wilcoxon signed-rank test was used to assess the statistical significance of
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Discussion

The mechanisms by which a TF engages only a specific (and small) fraction of all its genomic

consensus sites are still not well-understood. This thesis tackled this very general question

and found out that the answer is intrinsically related to the the interplay existing between TF-

binding and nucleosome-mediated occlusion of the functional DNA sequences they recognize,

which is at the hearth of regulated gene expression. In order to do that, we exploited the

availability of extensive high-throughput binding data for a single TF, Pu.1, and coupled it

to novel computational analyses, machine learning approaches and the ability to generate

nucleosomal patterns in vivo and in vitro at an unprecedented resolution. The main results

can be outlined as follows:

• we trained a SVM-based machine learning approach able to discriminate with 78%

accuracy those randomly occurring Pu.1 sites that do not show binding competence

from those that are contacted in vivo and are therefore potentially functional;

• a feature selection approach was embedded in the training of the SVM, allowing the

identification of some of the molecular determinants of binding competence; among them

we found i) differences in the ETS core and immediately flanking sequences, especially

at the level of the imposed local DNA shape; ii) binding preferences for partner TFs;

iii) higher C+G content and theoretical nucleosome occupancy in case of the engaged

sites compared to those that are never contacted in vivo;

86
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• using the same sequence determinants, we trained a regression model that explains up

to 45% of the variability observed in the nucleosome occupancy in cells where Pu.1 is

not expressed. This is equal or better than what can be achieved by published ad hoc

models (Kaplan et al., 2008, van der Heijden et al., 2012);

• we thoroughly investigated both the sequence and the nucleosomal organization at

Pu.1-bound sites in macrophages, in cell types where Pu.1 is not expressed, and in

in vitro reconstituted chromatin. We found out that i) Pu.1-binding generates NDRs

flanked by arrays of positioned nucleosomes; ii) the regions bearing Pu.1 sites that

can be engaged in vivo show an intrinsic higher nucleosome affinity compared to its

flanks, as measured by in vitro reconstitution experiments, iii) which is also observed

in cell types that are not expressing Pu.1; iv) Pu.1-binding occurs in regions with

different sequence composition, which is mirroring different nucleosomal configurations

(both in the presence and in the absence of Pu.1); in particular, two extreme patterns

have been identified. In the former, a region of lower nucleosome occupancy is either

occupied by Pu.1 or by a well-positioned nucleosome. In the latter, regions of broad

higher occupancy extend on both sides of a centrally located, prominent but less well-

positioned nucleosome. These nucleosomal patterns show distinctive underlying DNA

sequence features. While in the former case a container site is observed, the latter shows

a significantly higher C+G content. Importantly, when analyzing Pu.1 recruitment to

in vitro assembled chromatin, the second configuration showed a stronger inhibition of

Pu.1 binding, suggesting that chromatin remodelers may be selectively required only at

sequences characterized by an extended high nucleosomal occupancy.

These findings point to a basic organizational principle of mammalian cis-regulatory se-

quences: TF-engagement at its consensus sites and nucleosome occupancy are coordinately

controlled by overlapping sequence features. This model also suggests that co-evolution of

these features may be crucial to maintain cell-type specific enhancer activation. At least in

principle, mutations that change the sequence of a TF binding site or its flanks may have

no deleterious effects on binding affinity but may impact on the ability of the same sequence

to promote nucleosome occupancy. This would result in the uncoupling of TF-engagement

from the sequence determinants important for the proper nucleosomal configuration of the
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region and would impair the functional properties of the regulatory region (e.g. by allowing

unrestricted TF access to the underlying sequence). We hypothesize that these sites are sub-

ject to a joint selective pressure for the concurring maintenance of these overlapping features.

Disentangling the evolutionary conservation of these single features is a task we have not

addressed yet.

The higher nucleosome affinity encoded at the engaged sites compared to the non-engaged

ones is compatible with two non-exclusive mechanisms, namely nucleosome-driven TF-binding

and nucleosome-mediated masking of the TF binding sites. While the latter might ensure

that enhancers exert their action only in the presence of the proper lineage-determining TFs,

the former might be relevant to display the binding sites to TFs. We have identified two

subsets of Pu.1-engaged sites showing extremely different sequence content and nucleosomal

configurations, which are valuable to contextualize these two mechanisms.

Those sites showing lower occupancy in general, but also a well-positioned nucleosome right

over the Pu.1 site, are those more likely to be contacted by Pu.1 in in vitro reconstitu-

tion experiments. This might be a consequence of the lower occupancy, or the result of a

nucleosome-assisted mechanism of binding site selection (as recently suggested for the Pro-

gesterone Receptor in Ballaré et al., 2012, in its inactive configuration the regulatory element

might be constrained such that it can display the Pu.1 site for binding); this mechanism is

only one side of the coin. Considering the general lower occupancy of the genomic region,

the nucleosome over the Pu.1 site could also serve to prevent aberrant ectopic activation by

broadly expressed TFs, in those tissues where the lineage-determining TF is not present.

On the other hand, those sites showing a higher nucleosome occupancy are more clear candi-

dates in preventing stable Pu.1 binding unless the proper ATP-dependent chromatin remod-

elers are available; in fact, these sites cannot be bound in experiments of in vitro chromatin

reconstitution in the absence of ATP. In line with this, it has been shown that the Glucocor-

ticoid Receptor (GR) binding to naked DNA proceeds over an extended period of 5-7 min,

while it is rapidly recruited to chromatin over brief periods of 30 seconds. GR is transiently

trapped and released at dense arrays of nucleosomes, at which it is able to direct the action

of chromatin remodelers, which in turn are necessary to stabilize its binding (Nagaich et al.,

2004). We can envision that a similar mechanism is in place at these Pu.1-engaged regions.

Their higher nucleosome occupancy would represent an unsurmountable barrier for any TF



Chapter 4. Discussion 89

(avoiding unwanted ectopic regulatory activity), unless the proper sequence is recognized by

a pioneer TF that is in turn able to recruit the remodeling machinery.

Although a formal demonstration of this pioneering activity is still lacking, we showed that

Pu.1 is able to contact thousands of its in vivo binding sites also when chromatin is recon-

stituted in vitro. This is an indication of the competence of Pu.1 to invade some chromatin

environments even in the absence of ATP-dependent chromatin remodelers.

It is also interesting to notice that moving across deciles there is not only a difference in the

occupancy of the NDR but also a delta in the occupancy of a larger genomic area (around

1.5-fold difference from 1st to 10th decile in vitro, a difference that is even amplified in

macrophages). This could suggest that some information about the higher order chromatin

structure is encoded in the genomic sequence itself. Nevertheless, we cannot exclude that

this is in part due to an experimental bias (as a result of an under-representation of polynu-

cleosomes, which can lead to an underestimate more compact chromatin configuration).

We also assessed the impact of the acute depletion of Pu.1 during macrophage differentiation.

These experiments indicated that Pu.1 is essential in maintaining the nucleosome depletion

at its binding sites, but it seems much less important in affecting the phasing of the nearby

nucleosomes. This could be an indication that the maintenance of the NDR depends on the

nuclear Pu.1 concentration, while the phasing of the nearby nucleosome does not. This might

be further validated comparing the nucleosomal patterns at those Pu.1-bound sites that are

invariably contacted in cell types showing a broad range of Pu.1 concentration (in the B-

and T- cells lineages, or in progenitor cells). It is important to stress that Pu.1 is essen-

tial to macrophage differentiation, so a complete depletion is not feasible under physiological

conditions. In this context, introducing Pu.1 in a non-physiological setting might be a valid

surrogate to understand how de novo deposition of Pu.1 affects the existing nucleosomal con-

figurations (e.g. over-expressing Pu.1 in fibroblasts).

We can envision a number of experiments aimed at corroborating the pioneering activity of

Pu.1 and at increasing our understanding about the interplay between Pu.1 and the nucleo-

somal context of its binding sites:

• we hypothesize that those Pu.1-bound sites showing a higher nucleosome occupancy

cannot be bound in experiments of in vitro chromatin reconstitution in the absence of
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ATP; the in vitro chromatin reconstitution experiment with ATP, followed by a ChIP

against Pu.1 must be performed in order to disentangle this hypothesis;

• higher affinity for nucleoprotein templates and longer residence times on chromatin is a

bona fide criteria to distinguish pioneer from non-pioneer TFs. Longer residence times

(less nuclear mobility) testify the ability of pioneers to scan the chromatin fiber for their

targets. FRAP experiments have been performed to measure nuclear mobility of FoxA1

(Sekiya et al., 2009). Performing FRAP for Pu.1 and compare its nuclear mobility to

those of other TFs involved in myeloid differentiation and inflammatory response, would

represent a further positive indication about its pioneering activity;

• the impact of the relative positioning between the nucleosome dyad and its recognition

sequence over the ability of Pu.1 to access and engage this site remains an open question.

This could be tackled by performing EMSA with synthetic oligos. The 601 sequence

(Lowary and Widom, 1998) is a reliable standard positioning signal for in vitro studies.

This could be engineered moving the Pu.1 site to different positions relative to the

nucleosome dyad, and differences in binding-site recognition assessed;

• even though we reached an unprecedented sequencing depth for a nucleosomal pattern

in a single cell type, still the number of fragments describing each nucleosome in the

population is too low to define their positions with high confidence. Since the fraction

of the genome which is of primary interest to study cis-regulation in a single cell type is

relatively small compared to the size of the genome, higher resolutions can be achieved

by target enrichment (TE) strategies. Nevertheless, considering the high range of G+C

that must be covered and the extensive overlap with repetitive elements (Tewhey et al.,

2009), standard TE strategies will be inappropriate. Instead, it has been recently shown

that locus-specific enrichment of mononucleosomal DNA using hybridization to BACs

increased the coverage up to 500 fold, compared to previous genome-wide sequencing

efforts (Yigit et al., 2013).

It is also important to stress that the performances achieved by the SVM are in line with

the state-of-the-art of the field. Discrimination of engaged TF-binding sites in mammalian

genomes using sequence information has been successfully tackled in two recent papers
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(Yáñez-Cuna et al., 2012, Arvey et al., 2012). While both studies addressed cell type speci-

ficity of binding for different TFs and co-regulators (e.g. p300) using SVMs, only Arvey

et al., 2012 compared TF binding events occurring in vivo to a negative set (namely nearby

regions). The results obtained are very good (AUC higher than 0.9) but are calculated only

on the best 1,000 ChIP-seq peaks, which represent a very small minority of the entire regula-

tory repertoire of the majority of mammalian TFs. Arvey et al., 2012 used the surrounding

sequence (200 bp away) as negative set, which might be challenging in the sense that the

surrounding sequence of a regulatory element might have similar C+G content. Neverthe-

less, their strategy did not address the real question, namely trying to disentangle occurring

binding events from similar recognition sequences that are not productively engaged in vivo.

When applied to our data, this approach performed poorly compared to ours (AUC of 0.66

compared to an average of 0.86 achieved by our approach).

Considering that in the future we will be able to define smarter methods to capture and sum-

marize the information content of DNA stretches of a few hundreds base pairs, we are aware

that the performances achieved certainly represent a lower boundary. More importantly, we

have so far used a pool of Pu.1-engaged sites that are coming from different cell-types within

the hematopoietic compartment. This means that we are selecting for those features in the

sequence that are more general but we are missing those that are context-specific (e.g. bind-

ing sites for Pu.1 partners either peculiar for the myeloid, the B- or the T- lineages). We

plan to overcome these limitations by taking into account cell-type specific binding into more

sophisticated predictors. At the same time, it cannot be excluded (on the contrary, we think

this is probably the case) that a part of the variability could be only explained by epige-

netic factors. Preliminary analysis using RRBS data (Bock et al., 2012, RRBS is a biased

experimental technique so the information could be extracted only for 4.4% of the unbound

sites and for 16.6% of the Pu.1-bound sites) suggested a significant difference in the cyto-

sine methylation level of the unbound sites compared to those ones engaged in macrophages

(AUC = 0.8). Further analyses are needed in order to disentangle the relative contribution

of genetics and epigenetics. In fact, cytosine methylation might be either redundant with

(and so explained by) the sequence features themselves or it might add further information

(representing a memory of a previous developmental stage, an information that cannot be

directly ascribed to the regulatory sequence itself).
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Another open question in the field is whether TFBSs found in enhancers show differences in

the local sequence context compared to those found in TSSs. At least from the results we

obtained so far this does not seem to be the case. TSS-distal Pu.1-bound regions outnum-

ber the TSS-proximal sites. Nevertheless, this does create a bias in the predictions (wrong

predictions are equally distributed, p = 0.36 in a Chi-squared test). This is in line with the

hypothesis that although the genomic context is different, the local sequence determinants

for Pu.1 binding are very similar. Still, we cannot exclude the existence of subtle differences.

This could be addressed in the future by training a machine specifically on the TSS-proximal

sites and testing it on both the sets (and the other way round).

Another point we still have not addressed concerns our understanding of the orientation of the

regularly spaced nucleosomes observed around Pu.1-binding sites. A recent paper (Kundaje

et al., 2012) suggested that most of the TFs show an asymmetry, namely an array of organized

nucleosomes only on one side. We think this is an important point to be investigated, but

we also think that a statistic to understand, site by site, if this asymmetry is real or just a

computational artifact, is missing. This is the only way to formally show that the clustering

of the sites performed to understand if there is an orientation bias is not just highlighting

spurious differences at the two sides of the TFBSs.
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Roderic Guigó, and Paolo Ribeca. Fast computation and applications of genome mappa-

bility. PLoS One, 7(1):e30377, 2012.

Evgenia Dimitriadou, Kurt Hornik, Friedrich Leisch, David Meyer, and Andreas Weingessel.

Misc functions of the department of statistics (e1071), TU Wien. R package, pages 1–5,

2008.

Dale Dorsett. Cohesin: genomic insights into controlling gene transcription and development.

Current opinion in genetics & development, 21(2):199–206, 2011.

Harris Drucker, Chris JC Burges, Linda Kaufman, Alex Smola, and Vladimir Vapnik. Support

vector regression machines. Advances in neural information processing systems, pages 155–

161, 1997.



Bibliography 97

Ian Dunham, Ewan Birney, Bryan R Lajoie, Amartya Sanyal, Xianjun Dong, Melissa Greven,

Xinying Lin, Jie Wang, Troy W Whitfield, Jiali Zhuang, et al. An integrated encyclopedia

of DNA elements in the human genome. 2012.

Ellis Englesberg, Joseph Irr, Joseph Power, and Nancy Lee. Positive control of enzyme

synthesis by gene C in the L-arabinose system. Journal of bacteriology, 90(4):946–957,

1965.

Jason Ernst and Manolis Kellis. Discovery and characterization of chromatin states for sys-

tematic annotation of the human genome. Nature biotechnology, 28(8):817–825, 2010.

Jason Ernst, Pouya Kheradpour, Tarjei S Mikkelsen, Noam Shoresh, Lucas D Ward, Charles B

Epstein, Xiaolan Zhang, Li Wang, Robbyn Issner, Michael Coyne, et al. Mapping and

analysis of chromatin state dynamics in nine human cell types. Nature, 473(7345):43–49,

2011.

Ru Feng, Sabrina C Desbordes, Huafeng Xie, Ester Sanchez Tillo, Fiona Pixley, E Richard

Stanley, and Thomas Graf. PU. 1 and C/EBPα/β convert fibroblasts into macrophage-like

cells. Proceedings of the National Academy of Sciences, 105(16):6057–6062, 2008.

Romain Fenouil, Pierre Cauchy, Frederic Koch, Nicolas Descostes, Joaquin Zacarias Cabeza,

Charlène Innocenti, Pierre Ferrier, Salvatore Spicuglia, Marta Gut, Ivo Gut, et al. CpG is-

lands and GC content dictate nucleosome depletion in a transcription-independent manner

at mammalian promoters. Genome research, 22(12):2399–2408, 2012.

Paul Flicek, M Ridwan Amode, Daniel Barrell, Kathryn Beal, Simon Brent, Denise Carvalho-

Silva, Peter Clapham, Guy Coates, Susan Fairley, Stephen Fitzgerald, et al. Ensembl 2012.

Nucleic acids research, 40(D1):D84–D90, 2012.

Pauline A Fujita, Brooke Rhead, Ann S Zweig, Angie S Hinrichs, Donna Karolchik, Melissa S

Cline, Mary Goldman, Galt P Barber, Hiram Clawson, Antonio Coelho, et al. The UCSC

genome browser database: update 2011. Nucleic acids research, 39(suppl 1):D876–D882,

2011.

Daniel J Gaffney, Graham McVicker, Athma A Pai, Yvonne N Fondufe-Mittendorf, Noah

Lewellen, Katelyn Michelini, Jonathan Widom, Yoav Gilad, and Jonathan K Pritchard.



Bibliography 98

Controls of nucleosome positioning in the human genome. PLoS genetics, 8(11):e1003036,

2012.

Kathryn E Gardner, C David Allis, and Brian D Strahl. Operating on chromatin, a colorful

language where context matters. Journal of molecular biology, 409(1):36–46, 2011.

Gaetano Gargiulo, Samuel Levy, Gabriele Bucci, Mauro Romanenghi, Lorenzo Fornasari,

Karen Y Beeson, Susanne M Goldberg, Matteo Cesaroni, Marco Ballarini, Fabio Santoro,

et al. NA-seq: a discovery tool for the analysis of chromatin structure and dynamics during

differentiation. Developmental cell, 16(3):466–481, 2009.

Serena Ghisletti, Iros Barozzi, Flore Mietton, Sara Polletti, Francesca De Santa, Elisa Ven-

turini, Lorna Gregory, Lorne Lonie, Adeline Chew, Chia-Lin Wei, et al. Identification

and characterization of enhancers controlling the inflammatory gene expression program

in macrophages. Immunity, 32(3):317–328, 2010.

Walter Gilbert and Benno Müller-Hill. The lac operator is DNA. Proceedings of the National

Academy of Sciences of the United States of America, 58(6):2415, 1967.

Paul G Giresi, Jonghwan Kim, Ryan M McDaniell, Vishwanath R Iyer, and Jason D Lieb.

FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regula-

tory elements from human chromatin. Genome research, 17(6):877–885, 2007.

Raluca Gordân, Ning Shen, Iris Dror, Tianyin Zhou, John Horton, Remo Rohs, and Martha L

Bulyk. Genomic regions flanking E-box binding sites influence DNA binding specificity of

bhlh transcription factors through DNA shape. Cell reports, 2013.

Charles E Grant, Timothy L Bailey, and William Stafford Noble. FIMO: scanning for occur-

rences of a given motif. Bioinformatics, 27(7):1017–1018, 2011.

David S Gross and William T Garrard. Nuclease hypersensitive sites in chromatin. Annual

review of biochemistry, 57(1):159–197, 1988.
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Karolin Luger, Armin W Mäder, Robin K Richmond, David F Sargent, and Timothy J

Richmond. Crystal structure of the nucleosome core particle at 2.8 å resolution. Nature,

389(6648):251–260, 1997.

Karolin Luger, Thomas J Rechsteiner, and Timothy J Richmond. Preparation of nucleosome

core particle from recombinant histones. Methods in enzymology, 304:3–19, 1999.

Richard W Lusk and Michael B Eisen. Evolutionary mirages: selection on binding site

composition creates the illusion of conserved grammars in Drosophila enhancers. PLoS

genetics, 6(1):e1000829, 2010.
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Vladimir B Teif, Yevhen Vainshtein, Mäıwen Caudron-Herger, Jan-Philipp Mallm, Caroline
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