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The endothelium explicates its physiological functions by producing active molecules, 

among which nitric oxide (NO) is particularly important. It is well known that endothelial 

dysfunction (ED), i.e. an impaired function of the endothelium coupled with a reduced 

release of NO, is a risk factor for atherosclerosis together with a list of conditions such as 

hypertension, hypercholesterolemia, smoking, diabetes, and the aging process itself. 

These conditions are also associated with a significant increase in Reactive Oxygen 

Species (ROS) in the vascular wall that may contribute to the establishment of ED and to 

the development of its late effect on cardiovascular system.   

 

In the present study, the behavioural and molecular consequences deriving from 

chronic NO deprivation were investigated in human primary endothelial cells (human 

umbilical vein endothelial cells, HUVECs). To inhibit NO formation, endothelial nitric oxide 

synthase (eNOS) was chronically inhibited by treatment with L-NG-Nitroarginine methyl 

ester (L-NAME), a structural analogue of L-arginine that competitively block the active 

site of the enzyme, or by transfection with a siRNA specific for eNOS.  

 

 We observed that a 48-h L-NAME treatment induced in HUVECs a higher 

migratory capability (evaluated by chemotaxis assays in Boyden’s chamber) which was 

independent of the reduced activity of the cyclic GMP/protein kinase G pathway present 

in chronically NO deprived HUVECs. In the attempt to explain the mechanism(s) through 

which NO deficiency enhances migration, we investigated if chronic L-NAME treatment 

affected the expression and production of Vascular Endothelial Growth Factor (VEGF) and 

of its receptor KDR. RT-qPCR analyses, accompanied by ELISA assays and western blot 

analyses, demonstrated that both VEGF and KDR mRNAs and proteins were significantly 

augmented in L-NAME treated cells, thus suggesting the establishment of an autocrine 

loop responsible for the increased migration.  

 

 Increased VEGF production and cell motility are typical events occurring in hypoxic 

cancer cells, due to the accumulation of hypoxia-inducible factor-1α (HIF-1α), which 

plays a major role in the transcriptional activation of genes encoding angiogenic factors. 

Similarly, induction of VEGF expression during hypoxia has been described in endothelial 
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cells (ECs). Interestingly, we observed a significant nuclear accumulation of HIF-1α in 

HUVECs chronically treated with L-NAME. Moreover, the transcriptional activity of HIF-1α 

was responsible for the increases in VEGF/KDR expression and migration since the 

transfection with ∆ARNT (a dominant negative form of the HIF-1β subunit that maintains 

the capacity of forming an heterodimer but cannot bind DNA) is able to totally blunt both 

the effects in L-NAME treated HUVECs, thus confirming the involvement of an autocrine 

loop in the pro-migratory effect induced by NO deprivation. The dependence of HIF-1α 

stabilization from NO deficiency was confirmed by using the NO donor DETA/NO. Very 

low doses of DETA/NO reverted both the HIF-1α accumulation and the consequent 

increases in VEGF expression and cell motility induced by L-NAME treatment. 

Furthermore, to investigate whether the observed effects were due to the specific 

inhibitory effect of L-NAME on eNOS activity, we knocked-down the enzyme by using RNA 

interference methodology. In eNOS silenced cells, HIF-1α accumulated in the nucleus and 

VEGF production was enhanced thus confirming the dependence of the observed effects 

on eNOS inhibition. All these results suggest that basal release of NO may act as a 

negative controller of HIF-1α levels and cell motility in HUVECs with important 

consequences on ECs physiology. 

 

 In the attempt to unravel the pathway(s) linking NO deficiency to HIF-1α 

accumulation and activity, we focus our attention on ROS since their formation has been 

involved in HIF-1α stabilization in normoxia. We found that acute treatment with L-NAME 

induced in HUVECs an early and transient burst in ROS formation that was fully 

prevented by the presence of the antioxidant N-acetylcysteine (NAC). HIF-1α 

accumulation was reduced by 45% in the presence of NAC indicating that the peak of 

ROS was only partially involved in its stabilization. On the contrary, NAC did not affect 

the increase in cell migration in ECs chronically deprived of NO. At variance with acute 

treatment, chronic L-NAME exposure gave rise to an antioxidant environment 

characterized by a reduction in cellular ROS content accompanied by an increase in 

superoxide dismutase-2 (SOD-2) expression and activity. Importantly, this protective 

response was accompanied by the nuclear accumulation of the transcription factor NF-

E2-related factor-2 (Nrf2) that was fully prevented in the presence of NAC. These results 
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suggest the establishment of an antioxidant status in HUVECs chronically deprived of NO 

in the attempt to neutralize any further cell damage induced by loss of NO. 

 

 In addition, since NO plays an important role in promoting mitochondrial 

biogenesis in different cell types and tissues, we analyzed the mitochondrial mass and 

function in HUVECs after NO deprivation. Long term L-NAME treatment induced a 

significant reduction in mitochondrial DNA (mtDNA) accompanied by decreases in the 

incorporation of the metabolic indicator MTS, in cellular ATP content, and in oxygen 

consumption. In agreement, the silencing of eNOS was able to decrease mtDNA and total 

cellular ATP levels thus confirming that loss of NO sustained the onset of mitochondrial 

dysfunction in HUVECs. Importantly, metabolic effects observed in chronically NO 

deprived ECs was independent of both HIF-1α activity and ROS generation.  

 

 In conclusion, we demonstrated that an endothelial deficit of NO, by mimicking 

the in vivo early phase of ED, induces important physiological modifications in human 

ECs. In particular, loss of NO leads to the accumulation and transcriptional activation of 

HIF-1α responsible for the enhanced VEGF/KDR expression and cell motility, and to the 

establishment of mitochondrial dysfunction.  Importantly, most of the peculiar features 

shown by long term NO deprived HUVECs are independent of acute ROS generation, and 

must therefore depend on other pathways triggered by NO loss. On the contrary, ROS 

formation appears to be totally responsible for the Nrf2 accumulation that might account 

for the establishment of an adaptive antioxidant status in response to oxidative stress. 

Further experiments will be necessary to fully characterize our in vitro model of ED and 

to elucidate the molecular mechanism(s) involved in HIF-1α stabilization. Our model 

should however represents an useful system for the study and the identification of 

innovative pharmacological targets and markers for ED, thus contributing to a better 

knowledge of the endothelium behavior in the absence of NO and to an improved 

comprehension of the molecular mechanisms involved in the onset of cardiovascular 

pathologies.  
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1. The circulatory system 

 

The circulatory system is an organ system constituted of hollow organs, which permits 

blood and lymph circulation to transport nutrients, oxygen, carbon dioxide, hormones, 

blood cells to and from cells in the body for nourishing it. Moreover, it plays a protective 

role against diseases and controls body temperature, pH stabilization, and homeostasis. 

 

 The circulatory system consists in an intricate network of blood vessels that are 

tubular organs made up of three distinct layer: tunica intima, tunica media and tunica 

adventitia. Depending on the type of the vessel, the composition of the tunicae vary 

slightly to better respond to different functional requirements of the districts, maintaining 

a common scheme. The tunica intima is the inner layer that is made up of a thin layer of 

simple squamous epithelium, called endothelium. It rests on a connective tissue 

membrane with many elastic and collagenous fibers. The tunica media is mainly 

constituted of connective tissue and elastic fibers with different proportion in relation to 

the function of the vessel itself. Finally, the tunica adventitia, the one more distant from 

the lumen, is made up mostly of connective tissue, where are located the nerves and, in 

the biggest vessels, the vasa vasorum. In particular, arteries are characterized by the 

presence of a tunica media, rich of muscular smooth fibers and a plenty of elastic fibers 

in the tunica adventitia. The presence of muscular and elastic fibers in the arteries 

permits the accumulation of the heart-derived energy. In fact, when the heart relaxes 

between two contractions, the energy accumulated from arteries is released to the blood 

column directed to the periphery of the body. In this way, the arteries transform the 

intermittent blood flow, derived from heart, in a continuous laminar flow that is essential 

to capillary exchange. Veins have instead less thick and more extensible walls, which 

minimized the resistance, a feature that permits the passing of a huge volume of blood. 

In the biggest veins, flap-like shaped valves are found that prevent the possible blood 

backflow. Finally, walls of capillaries are also composed of endothelium and form a semi-

permeable layer through which substances in blood are exchanged with substances in 
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tissue fluids surrounding cells of the body. Capillary walls have thin slits where 

endothelial cells overlap. These slits have various size, affecting capillaries’ permeability.  

 

 

Figure I. Blood vessel structure 

 

2. The endothelium 

 

2.1. Structure 

 

The endothelium forms the inner lining of a blood vessel and is constituted by a 

monolayer of thin squamous epithelial cells which are named endothelial cells (ECs) and 

arise from the splanchnopleuric mesoderm (Cines et al., 1998). 

 

 ECs are connected by two main types of intercellular junctions: tight junctions 

(also termed zona occludens) that are usually found at the apical region of the 

intercellular cleft, and adherens junctions (also termed zona adherens). Tight junctions 

form a continuous intercellular barrier that is required to separate tissue spaces and 

regulate selective movement of solutes across the ECs (the so-called “paracellular 

transport”). Moreover, tight junctions contribute to maintain cell polarity between the 

luminal and abluminal side of ECs. The junctional composition of intercellular clefts shows 
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a quite high variability along the vascular tree of the human body. For example, ECs 

composing large arteries display a well-developed system of tight junctions; on the 

contrary, at the level of microvasculature, junctions are tighter in arterioles compared 

with capillaries. Furthermore, the tight junctions are less organized in post-capillary 

venules, a feature that is related to the role of this blood vessels in mediating 

inflammation-induced extravasation of leukocytes and plasma constituents. Finally, the 

blood brain barrier is particularly rich in tight functions (Aird, 2007). 

 

 Endothelium may be continuous or discontinuous (Figure II) and the continuous 

one could be also fenestrated or non-fenestrated. Non-fenestrated continuous 

endothelium is found in arteries, veins, and capillaries of organs such as the brain, skin, 

heart, and lungs. Fenestrated continuous endothelium occurs in locations that are 

characterized by increased filtration or increased trans-endothelial transport. Typical 

examples are the capillaries of gastric and intestinal mucosa, exocrine and endocrine 

glands, glomeruli, choroid plexus and a subpopulation of renal tubules. Fenestrated 

endothelium due its name to “fenestrae”, which are transcellular pores (about 70 nm in 

diameter) that extend themselves through the full “thickness” of the cell. The majority of 

fenestrae show a thin non-membranous diaphragm (5- to 6-nm) across their opening. 

Discontinuous endothelium is found in certain sinusoidal vascular beds, most notably in 

the liver. In contrast to fenestrated continuous endothelium, the discontinuous ones 

possess larger fenestrations (100 to 200 nm in diameter) lacking a diaphragm and 

containing gaps (or large circular pores) within individual cells. Besides, the underlying 

basement membrane is poorly formed. 
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Figure II. Transports and permeability of capillaries in different tissues. Image modified from (Aird, 2007). 

 

 ECs (Figure III) are about 25–50 µm in length, 10–15 µm in width and their shape 

varies across the vascular tree. Although ECs are typically flat, they are plump or 

cuboidal in high endothelial venules. Endothelial cell thickness varies from less than 0.1

µm in capillaries and veins to 1 µm in 

the aorta. It should be also mentioned 

that endothelial cells (and their nuclei) 

are aligned in the direction of blood flow 

in straight segments of arteries but not 

at branch points. Thus, flow-dependent 

alignment of ECs represents a reversible 

endothelial structural remodelling in 

response to hemodynamic shear stress. 

 

Figure III. Endothelial cells (ECs), 200X 

 ECs possess clathrin-coated vesicles, clathrin-coated pits, multivesicular bodies 

and lysosomes, which are the structural components of the endocytotic pathway. 

Endocytosis occurs either via receptor-dependent pathways or by a nonspecific (fluid-

phase) process and directs macromolecules to the lysosomal compartment for 

degradation. The specific endocytotic pathway is mediated by so-called scavenger 

receptors, which are responsible for the uptake of transferrin, low-density lipoprotein 

(LDL), ceruloplasmin, albumin, and advanced glycosylation end products. Besides 

endocytosis, ECs actively play an important role in transcytosis, which regulates the 

transcellular transfer of molecules across the endothelium. This mechanism involves 

specialized structures, among which caveolae and vesiculo–vacuolar organelles (VVOs) 
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are essential. Caveolae are 70-nm membrane-bound, flask-shaped vesicles that usually 

open to the luminal or abluminal side but are occasionally free in the cytoplasm. In 

contrast to the clathrin-coated pits that have a thick electron-dense coat, caveolae have 

a smooth inner surface. In ECs caveolae are more numerous than clathrin-coated pits, 

except that in liver sinusoids. Furthermore, the density of caveolae is far greater in 

capillary endothelium (up to 10 000 per cell) compared with arteries, arterioles, veins, or 

venules. The number of caveolae is highest in continuous non-fenestrated endothelium, 

particularly in heart, lung, and skeletal muscle (Bendayan, 2002). A notable exception is 

the blood brain barrier, where caveolae are rare. However, VVOs which represent the 

focal collections of membrane-bound vesicles and vacuoles and are most commonly 

observed in venular endothelium, where the cytoplasm is thicker compared with 

capillaries (Dvorak & Feng, 2001; Feng, Nagy, Dvorak, & Dvorak, 2002). The complexity 

of venule VVOs varies according to the thickness of the endothelium. 

 

2.2. Physiology 

 

Healthy endothelium not only provides a structural barrier between the circulation and 

surrounding tissue, thus regulating the transfer of small and large molecules, but it is 

also able to respond to physical and chemical signals (Galley & Webster, 2004). In fact, 

the vascular endothelium serves as an important autocrine, paracrine and endocrine 

organ and maintains vascular homeostasis by modulating blood vessel tone, regulating 

extracellular matrix deposition and local cellular growth, and controlling homeostatic as 

well as inflammatory responses. Indeed, ECs produce a variety of vasculo-regulatory and 

vasculo-tropic molecules that act locally or at distant sites (Figure IV), thus influencing 

smooth muscle cells, platelets and peripheral leucocytes. Particularly important in 

endothelium stimulation are mechanical stimuli, i.e. shear and tensive stress. Shear 

stress is defined as the stress due to the friction produced by the blood flow on ECs and 

involves only the endothelium. On the contrary, the tensive stress involved the entire 

wall of the vessel (endothelial cells, fibroblasts and smooth muscle cells), because it is 
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caused by the hydrostatic pressure within the vessel. Shear stress activates ECs and 

promotes the release of vasodilatant mediators, whereas tensive stress stimulates 

directly smooth muscle cells, thus inducing their contraction and at the same time ECs 

stretching. Therefore, the net effect of mechanic stimuli on vascular tone results from the 

interactions between the pressure-induced myogenic contraction and the endothelium-

dependent vasodilatation induced by blood flow. 

 

 

Figure IV. A schematic overview of mediators secreted by endothelial cells (Galley & Webster, 2004) 

 

 ECs contribute to the regulation of blood flow and pressure by releasing 

vasodilators such as nitric oxide (NO) and prostacyclin (PGI2), but also vasoconstrictors, 

including platelet-activating factor (PAF) and endothelin (ET). PGI2, ET and PAF are 

synthesized primarily in response to changes in the external environment. On the other 

hand, NO is constitutively secreted by ECs. Its production is however modulated by a 

number of exogenous chemical and physical stimuli.  

 

 Another crucial physiologic function of the endothelium is to provide an 

antithrombotic surface that inhibits platelet adhesion and clotting, thus facilitating blood 

flow. The anticoagulant activity of the endothelium is based on the deregulation of 

thrombin through the action of several factors. As an example, the action of two 
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anticoagulant enzymes, antithrombin III (Rosenberg, 1989)and heparin cofactor II can 

be potentiated by the glycocalyx glycosaminoglycans heparan sulfate and dermatan 

sulfate, respectively(Tollefsen & Pestka, 1985). Other anticoagulant factors produced by 

the endothelium are the Tissue Factor Pathway Inhibitor (TFPI), which inhibits the tissue 

factor-activated factor VII complex binding to activated factor X (Broze, 1995), and 

thrombomodulin (TM) that could be localized on the cell membrane or released into the 

circulation. The binding of TM to protein C favors the association with the cofactor protein 

S, which determines an increase of the anticoagulant activity of TM itself. When protein C 

is activated by its cofactors such as the endothelial protein C receptor (EPCR), it inhibits 

factors V and VIII. A homeostatic equilibrium is always present between anti- and pro-

thrombotic factors. This dynamic equilibrium is however perturbed during injuries, or 

when the endothelium is exposed to physical forces (shear or tensive stress) or 

mediators such as thrombin, endotoxin, cytokines, hypoxia or oxidized lipids (Bevilacqua 

et al., 1986). In response to these conditions, ECs undergo programmatic biochemical 

changes that culminate in their transformation to a pro-thrombotic surface. Importantly, 

ECs can easily return to its unperturbed state once the given pro-coagulant stimulus has 

been dissipated. 

 

 In addition to the above-mentioned contribution of the endothelium to the 

regulation of blood coagulation, ECs also express cell surface-molecules that orchestrate 

the trafficking of circulating blood cells. These cell-associated molecules help directing 

the migration of leukocytes into specific organs under physiologic conditions and 

accelerate migration towards sites of inflammation. These pathways have been also 

implicated in platelet and erythrocyte adhesion in several common disorders associated 

with vascular occlusion (Cines et al., 1998). 

  

 The endothelium also plays a crucial role in the regenerative/reparative process 

and in neovascolarization. All these processes are based on angiogenesis, i.e. the 

development of new blood vessels/capillaries from pre-existing vessels (as opposed to 
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vasculogenesis which is the de novo formation of vessels during embryogenesis), which 

is an essential process in normal growth. However, in healthy adults, angiogenesis occurs 

only in selected phases of the female reproductive cycle and in processes of wound 

healing/tissue repair. Recent evidences suggests that angiogenic ECs arise not only from 

contiguous ECs but may also derived from bone marrow derived EC precursors. These 

precursor cells are identified by specific cell surface antigen expression and are present in 

the peripheral blood (Asahara et al., 1997). In particular, in an animal model of ischemia 

(Kalka et al., 2000; Murohara et al., 2000), it has been shown that these EC precursors  

serve as sites of angiogenesis and are directly involved in neovascularization. 

 

3. Nitric oxide 

 

Nitric oxide (NO) is one of the simplest biological molecules, but nevertheless it is 

involved in several important physiological processes by acting as a neurotransmitter, a 

vasodilator, and a cytotoxic agent (Alderton, Cooper, & Knowles, 2001).  

 

 NO merely consists of a single oxygen atom bonded to a nitrogen atom through a 

chemical bond that exhibits partial double and partial triple bond character resulting from 

the unpaired electron occupying the 2pπ∗ molecular orbital. NO is highly lipophilic and 

can therefore easily diffuse from its source to cross multiple cell membranes and reach 

its final targets often localized at some distance from the sites of NO synthesis. 

Furthermore, its free radical character confers to NO specific chemical reactivity 

properties and determines its tendency to interact with numerous in vivo targets 

(Dudzinski, Igarashi, Greif, & Michel, 2006).  

 

 One of the most important function of NO is the regulation of cardiovascular 

physiology (e.g. blood pressure levels) through its vasodilating properties. Moreover, NO 

inhibits platelet aggregation and inhibits the proliferation of vascular smooth muscle cells 
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(VSMCs). Finally, NO also plays a crucial role in angiogenesis by promoting EC 

proliferation, differentiation, and migration to the perivascular space. 

 

Figure V. Nitric oxide function in cardiovascular system 

 

3.1. Nitric Oxide Synthase 

 

NO is synthesized from L-arginine and O2 by the catalytic action of dimeric enzymes 

termed NO Synthases (NOSs) (Dudzinski et al., 2006). 

 

 

Figure VI. NO formation reaction 

 

Three mammalian archetypal isoforms are distinguished: neuronal NOS (nNOS), 

inducible NOS (iNOS), and endothelial NOS (eNOS). The three isoforms are the products 

of distinct genes but share approximately 50-60% sequence homology. Furthermore, 

they have distinctive catalytic and regulatory properties, although they share similar 
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enzymatic and chemical properties. The common structure of NOS show two main 

domains: (1) the N-terminus that exhibits homology with the other NOS isoforms and 

poor similarity versus the cytocrome P 450 monooxigenase enzymes; (2) the C terminus 

that shows homology with various cytocrome P450 reductases. The N- and C-terminal 

domains are linked by a short sequence that binds calmodulin, an allosteric effector 

essential to full NOS activity. The N-terminus presents two binding sites: one binds 

tetrahydrobiopterin (THB4) and heme, while the other one represents the active site 

where L-arginine binds to the enzyme. The L-arginine binding promotes the dimerization 

of the enzyme itself, a crucial step for acquiring catalytic activity. On the other hand, the 

C-terminal domain binds the co-factors NADPH, FAD and FMN, which are essential for 

NOS activity. 

 

 

Figure VII. Nitric Oxide Synthase and its cofactors (Vallance & Leiper, 2002) 

 

3.2. Regulation of NOS 

 

NOS enzymatic activity is finely regulated to maintain NO homeostasis. In fact, the gas 

has in vivo an half-life of less than 5 seconds so it cannot be stored (Govers & Rabelink, 

2001). The first regulation level of NOS consists in the tissue-specific expression of the 

different isoforms. nNOS is widely expressed in neurons of the central and peripheral 

nervous systems, but it is also found in skeletal muscle, the adventitial layer of some 
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blood vessels, pulmonary epithelium, the gastrointestinal system, and the genitourinary 

system. iNOS was first recognized in activated macrophages, but has been also identified 

in numerous activated cell types, including monocytes, neutrophils, eosinophils, 

hepatocytes, vascular smooth muscle cells, myocytes, osteoblasts, fibroblasts, 

epithelium, and endothelium. eNOS is expressed in vascular endothelium as well as in 

blood platelets and cardiomyocytes (Sessa, 2004).  

 

 

Figure VIII. Chief function of the different NOS isoforms: the importance of tissue-specific expression 

(Förstermann & Sessa, 2012) 

 

 All three isoforms are subject to transcriptional regulation. eNOS transcription can 

be for example actively modulated in response to laminar shear stress in ECs through the 

activation of the transcription factor KLF2 or by the action of the Rho/Rho kinase 

pathway. There is also a post-transcriptional level of regulation which acts on the NOS 

mRNA stability. For instance, although eNOS mRNA exhibits notable stability under 

normal physiological conditions, its stability is diminished in the presence of oxidized LDL, 

thrombin, inflammation, and hypoxia. This decrease in eNOS mRNA stability triggers a 

decrease in eNOS expression maintaining at the same time normal level of eNOS 

transcription. Nevertheless, the most important regulation of NOS activity occurs at post-

transcriptional levels. For example the caveolar targeting of eNOS is entirely dependent 

on irreversible myristoylation at its N-terminal glycine (Gonzalez, Kou, Lin, Golan, & 
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Michel, 2002). Myristoylation also seems to initially target eNOS to the cell membrane, 

where the enzyme is doubly palmitoylated at N-terminal cysteine residues 15 and 26, a 

modification that further helps to anchor eNOS to caveolae membranes. However, this 

palmitoylation is reversible and is controlled by cell signalling, thus resulting in the 

dynamic regulation of eNOS localization. The recruitment of eNOS in caveolae is essential 

for its activity, because caveole are enriched in cholesterol and sphingolipids that 

decrease the fluidity of these membrane regions in comparison to the surrounding 

plasma membrane. In this way, eNOS is located in close physical proximity to other 

upstream signalling proteins that co-localized in caveolae, thus regulating its activity. 

Furthermore, in EC caveolae, eNOS can strongly and directly interact with caveolin-1. 

This protein-protein interaction inhibits eNOS activity by sterically occupy the calmodulin 

binding site. Calmodulin is a key-activator that specifically links NOS activity to cellular 

calcium levels. In fact, in the absence of bound calmodulin, the transfer of electrons from 

the reductase to the oxygenase domain is impeded and the catalytic activity is blunted. 

When intracellular calcium reaches appropriate levels, it promotes the dissociation of 

eNOS-caveolin-1 complex, permitting the association of eNOS with calmodulin.  

  

 Another fundamental post-transcriptional modification in all NOS isoforms is 

phosphorylation. eNOS is known to be phosphorylated at multiple sites by the action of 

the pathway phosphoinositide-3-kinase (PI3K)/Akt. This pathway can be activated by 

different factors such as insulin, bradykinin, Vascular Endothelial Growth Factor (VEGF), 

estrogens and shear stress. The most important phosphorylation site is Ser 1177.  This 

residue is located in the reductase domain of the enzyme and its phosphorylation 

increase both calcium-sensibility and enzymatic activity. A further important stimulatory 

phosphorylation in response to shear stress occurs at Ser 635. Finally, phosphorylation at 

Ser 617 stabilizes the binding with calmodulin and supports the phosphorylation of the 

other sites. On the other hand, phosphorylation of Thr 495 and Ser 116 have an 

inhibitory role, preventing the binding of calmodulin. When ECs are stimulated to produce 

eNOS, this residues are dephosphorylated to permit full activation of the enzyme. 
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3.3. eNOS activators 

 

3.3.1. VEGF 

 

Vascular Endothelial Growth Factor (VEGF) is the most important and better 

characterized angiogenic factor. It is essential for proliferation, migration and survival of 

ECs (Ferrara & Davis-Smyth, 1997). Native VEGF is 45 kDa basic, heparin-binding and 

homodimeric glycoprotein, similar to Platelet-Derived Growth Factors (PDGFs). The VEGF 

gene family is composed by five different members: VEGF-A, VEGF-B, VEGF-C, VEGF-D e 

PIGF. Other two members were recently identified: VEGF-E (in virus) and VEGF-F (in 

some snake venom). In human, VEGF-A is the chief member and its gene is organized as 

eight exons separated by seven introns. Alternative exon splicing was initially shown to 

result in the generation of four different isoforms (VEGF121, VEGF165, VEGF189, VEGF206), 

having 121, 165, 189 and 206 amino acids, respectively, after the cleavage signal 

sequence. VEGF165 is the predominant isoform and lacks the residues encoded by exon 6, 

whereas VEGF121 lacks the residues encoded by exons 6 and 7. Less frequent splice 

variants have been also reported, such as VEGF145 and VEGF183. The effects of VEGF 

isoforms on the vascular endothelium are schematically shown in table I. 

 

 VEGF receptors are a family of closely related tyrosine kinase receptors (RTKs) 

consisting of three members termed VEGFR-1, VEGFR-2 and VEGFR-3. These receptors 

are characterized by an extracellular portion consisting of 7 immunoglobulin-like 

domains, a single trans-membrane spanning region, and an intracellular portion 

containing a split tyrosine-kinase domain. When a member of the VEGF family binds a 

VEGFR on the cell surface, receptors dimerize and become activated through a 

transphosphorylation mechanism. Then, a cascade of reactions activate different 

pathways in the cells. In particular, VEGF may increases intracellular calcium levels in 

ECs, thus activating eNOS. In addition to these RTKs, VEGF interacts with a family of co-

receptors called neuropilins. 
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Table I. The different biological activity of VEGF isoforms  

modified from (Ylä-Herttuala, Rissanen, Vajanto, & Hartikainen, 2007) 

 

 VEGF is essential for both physiological and pathological angiogenesis. Its 

synthesis is induced during hypoxia by the action of Hypoxia Inducible Factor 1α (HIF-

1α), a transcriptional factor produced in response to hypoxic stress. The newly 

synthesized VEGF is secreted and acts on ECs close to the hypoxic site by stimulating 

new vessel formation to compensate for loss of O2. This mechanism is also exploited by 

tumors that induce new vessel formation to compensate their high metabolic rate and 

grow more rapidly. Furthermore, angiogenesis is required for tumor metastatization. 

Anti-VEGF therapies based on monoclonal antibody or molecules inhibiting its receptor 

activity are indeed currently under study in the attempt to limit tumoral neo-

vascularisation. 
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Figure IX. VEGF pathway: the role on angiogenesis (Romanque, Piguet, & Dufour, 2008) 

 

3.3.2. Bradikinin 

 

Bradikinin (BK) is a biologically active kinin. It is a short-lived peptide predominantly 

generated by the enzymatic action of kallikreins on kininogen precursors. BK is locally 

produced in tissue, often after a trauma, and acts as a potent endothelium-dependent 

vasodilator, leading to a drop in blood pressure. BK interacts with specific G-protein 

coupled receptor (GPCRs) at the EC surface, and this interaction leads to a rise in 

intracellular calcium through various mechanisms involving phospholipase C, 

prostaglandins, protein kinase and phospholipase A2. The increase in intracellular calcium 

supports calcium-calmodulin complexes formation that together with the BK-induced PI3-

K/AKT cascade stimulation, finally induces eNOS activation (Figure X). 
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Figure X. Bradikinin pathway in ECs (Katzung et al., Basic & Clinical Pharmacology, 11th Edition) 

 

3.3.3. Insulin 

 

Insulin is an hormone produced by pancreatic beta cells crucially involved in the  

regulation of the carbohydrate and fat metabolism in the body. Insulin binds to a RTK 

that once activated phosphorylates its substrate IRS (Insulin Receptor Substrate). 

Activated IRS on its turn phosphorylates Grb2, an adaptor protein, which recruits Sos1 to 

finally activate the PI3-K/AKT pathway. In this way, the Ser1177 of eNOS become 

phosphorylated leading to enzyme activation and NO formation (Figure XI). 

 

 

Figure XI. Insulin‐mediated activation of eNOS 

 



27 

 

3.3.4. Shear stress 

 

Vascular ECs are influenced in vivo by two distinct hemodynamic forces: cyclical strain 

due to vessel wall distension by transmural pressure, and shear stress that is the 

frictional force generated by blood flow. Shear stress acts at the apical cell surface to 

deform cells in the direction of blood flow, whereas wall distension tends to deform cells 

in all directions. Acute shear stress elicits in vitro rapid cytoskeletal remodelling and 

signaling cascades in ECs, with a consequent acute release of NO and prostacyclin. 

Transmural pressure acts instead in an opposite way. In fact, it induces the contraction of 

smooth muscle cells of the vessel wall by causing vasoconstriction. The net effect on the 

vessel wall depends on the combination of the two opposite forces. 

 

 

Figure XII. Shear stress and eNOS activation 

 

3.4. eNOS inhibitor 

 

3.4.1. ADMA 

 

Asymmetric dimethylarginine (ADMA), an analogue of L-arginine, is a naturally occurring 

product of metabolism found in human circulation. ADMA derives from protein 

methylation catalyzed by a family of enzymes called S-adenosylmethionine protein N-

methyltransferases (protein methylases I and II). The methyl groups transferred to 
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ADMA derive from the methyl group donor S-adenosylmethionine, an intermediate in the 

metabolism of homocysteine. When present at high levels, ADMA inhibits NO synthesis 

by competing with L-arginine for the active site of eNOS, thus impairing endothelial 

function. 

 

 ADMA can be easily measured in plasma and urine. It should be noticed that 

elevated ADMA levels have been found in plasma of patients  with hypercholesterolemia, 

hypertension, chronic heart failure, chronic renal failure and other internal disorders. 

Recent prospective and cross-sectional studies seem to indicate that elevated ADMA 

levels are a risk factor for future cardiovascular events and mortality, suggesting for 

ADMA a diagnostic relevance as a novel cardiovascular risk marker (Siroen et al., 2006).  

 

 

Figure XIII. Chemical structure of ADMA 

 

3.4.2. L-NAME e L-NMMA 

 

L-NAME (L-NG-Nitroarginine methyl ester) and L-NMMA (L-NG-monomethyl Arginine) are 

synthetic analogues of ADMA. They act as competitive inhibitor of all NOS isoforms in a 

dose-dependent manner. 

 

   

Figure XIV. Structures of L-NAME (left) and L-NMMA (right) 
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3.5. Physiological role of NO 

 

In biological systems, NO acts as an important intra- and inter-cellular messenger and 

regulates many physiological functions. In particular, it crucially modulates the 

cardiovascular system through the ability of ECs of producing NO in response to various 

mechanic or chemical stimuli (Brennan et al., 2002). From ECs, NO diffuses in part into 

the haematic compartment, where it reduces platelet aggregation and leucocytes 

adhesion to the vessel walls, and in part into the vessel smooth musculature by inducing 

its relaxation. The resulting anti-aggregant, anti-inflammatory and anti-hypertensive 

effects are very important for the prevention of diseases such as atherosclerosis and 

thrombosis (Sumi & Ignarro, 2003). Vascular smooth muscle cell (VSMC) relaxation is 

mediated by the NO-dependent activation of soluble guanylate cyclase (sGC) and by the 

subsequent increase in  intracellular cGMP levels (Figure XV). 

 

 

Figure XV. Physiological activity of NO in cardiovascular system (Evgenov et al., 2006) 
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 NO is also involved in the immune response to pathogens. Indeed, phagocytes 

(monocytes, macrophages, and neutrophils) express inducible NOS (iNOS) and produce 

NO in response to iNOS activation by interferon-gamma (IFN-γ) and tumor necrosis 

factor (TNF). NO is secreted as free radical and is very toxic to bacteria, being able to 

induce DNA and plasma membrane damage, and degradation of iron-sulfur centers into 

iron-ions and iron-nitrosyl compounds. Moreover, in the presence of an increased 

oxidative stress, NO itself is transformed in peroxinitrite, a radicalic form which 

contributes to its toxicity (Channon & Jenkins, 1981). NO seems also to be involved in 

the stimulation of T and B lymphocyte proliferation that participate to the immune 

response. 

 

 NO may also act as neurotransmitter in the central nervous system, in the nor-

adrenergic and nor-cholinergic peripheral nervous plexus of the bronchial tree (where 

shows a bronchodilator effect), and  in the gastrointestinal tract. 

 

 In conclusion, NO plays a fundamental physiological role not only in cardiovascular 

system, but also in other system such as brain (learning and mnemonic control), 

gastrointestinal tract (secretion and motility), respiratory system (bronchial musculature 

tone), and kidney (blood flux autoregulation).  

 

4. Endothelial dysfunction 

 

Endothelial dysfunction (ED) is a systemic pathological state of the endothelium that can 

be defined as an imbalance between vasodilating and vasoconstricting substances 

produced by (or acting on) the endothelium (Endemann & Schiffrin, 2004; Furchgott & 

Zawadzki, 1980). ED is indeed characterized by a shift of the actions of the endothelium 

toward a reduced vasodilation, a pro-inflammatory state, and the acquirement of pro-

thrombotic properties. It is associated with most of cardiovascular diseases (CVDs), such 

as hypertension, coronary artery disease, chronic heart failure, peripheral artery disease, 
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diabetes, and chronic renal failure. The patho-physiology of ED is complex and involves 

multiple mechanisms that include a reduced NO generation, an excess of oxidative 

species, and a reduced production of hyperpolarizing factor. Up-regulation of adhesion 

molecules, generation of chemokines such as macrophage chemoattractant peptide-1 

(MCP-1), and production of plasminogen activator inhibitor-1 (PAI-1) participate to the 

inflammatory response and contribute to the establishment of a pro-thrombotic state. 

Vasoactive peptides such as angiotensin-II and endothelin-1, ADMA accumulation, 

hypercholesterolemia, hyperhomocysteinemia, an altered insulin signalling, and 

hyperglycemia also contribute to the generation of ED. Acting through these various 

mechanisms, ED represents one of the main cardiovascular risk factors predisposing to 

atherosclerosis, plaque instability and thrombosis, thus increasing the incidence of future 

clinical events (Widlansky, Gokce, Keaney, & Vita, 2003). 

 

 ED was first described in 1990 in the forearm vasculature of high-blood pressure 

suffering patients. Later, an impairment of vasodilation was described in type 1 and type 

2 diabetes, coronary artery disease, congestive heart failure, and chronic renal failure 

(Figure XVI). Moreover, ED is not only associated with CVDs but also precede their 

development, as shown by a study on offspring of hypertensive patients. Importantly, ED 

is a functional reversible pathology. Early diagnosis is fundamental for treating ED to 

avoid its degeneration in more serious diseases (Hadi, Carr, & Al Suwaidi, 2005). 

Alterations of endothelial functions such as a diminished endothelium-dependent 

vasodilatation and an increased concentration of free oxygen-radical were found in 

potential pre-atherosclerotic situation such as hypercholesterolemia, arterial 

hypertension, diabetes, estrogenic deficiency and vascular aging. Currently, the 

deficiency of tetrahydrobiopterin (THB) has been added to the list of risk factors. In fact, 

THB is a NOS cofactor, and its decrease is associated to  eNOS uncoupling and to the 

production of superoxide anions instead of NO. 
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Figure XVI. A schematic overview of ED-related pathologies 

 

 The key player in ED is the diminished bioavailability of NO, due to a reduction in 

eNOS activity (Endemann & Schiffrin, 2004). The co-presence of an excess of reactive 

oxygen species (ROS) further contributes to NO depletion, since NO reacts with ROS to 

form peroxynitrites, cyto-oxidant molecules that alter cellular protein function through 

nitration. Peroxynitrites are also involved in the oxidation of Low Density Lipoproteins 

(LDLs), which in this way increase their pro-atherogenic effect and reduce NO 

bioavailability by inhibiting its synthesis. This blocking effect on eNOS seems to be due to 

the interaction of the oxidised LDL with inhibitory G-proteins (Gi). Oxidative stress is also 

associated with an increase in inflammatory processes and thrombi formation, and it is 

directly correlated to the decrease in endothelial-dependent vasorelaxation and to the 

rate of cardiovascular events. Finally, an important element involved in ED is Endothelin-

1 (ET-1). ET-1 is the strongest vasoconstrictor molecule of endothelial origin, and acts 

through its binding to the specific receptors ETA and ETB. ETA receptors are localized 

only on VSMCs and cause vasoconstriction and cellular proliferation, while ETB receptors 
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are localized both on VSMCs and ECs and induce vasodilatation by stimulating NO 

production, which in turn acts as a negative feedback on ET-1 production. When NO 

bioavailability is reduced, the negative feedback is compromised and consequently the 

vasoconstrictor effect of ET-1 become predominant. 

 

5. Clinical highlights 

 

Strong evidences demonstrate that ED is predictive for stroke and heart attacks due to 

the inability of arteries to fully dilate. Furthermore, it has also been shown that ED 

foregoes the development of artherosclerosis, a chronic disease characterized by loss of 

elasticity of the arterial walls due to abnormal thickening and hardening. Notably, 

artherosclerosis itself may cause a stroke or heart attack. 

 

5.1. Diagnosis of ED 

 

Since the evaluation of endothelial functions is operatively troublesome, the measure of 

endogenous NO activity is taken as representative of its overall functionality (Hirata et 

al., 2010). In the clinical practice, the golden standard technique used to evaluate 

endothelial function is the “acetylcholine endothelial function and adenosine coronary 

flow reserve” test that consists in two step: 

1. adenosine, which normally causes the dilatation of small vessels of the heart, is 

injected into one of the coronary arteries and the amount of blood flow is 

measured; 

2. acetylcholine, which normally causes dilation in the large arteries, is then injected 

and the blood flow is measured again. 

If at least one of these two steps shows a decrease in the blood flow to the heart, 

physicians diagnose the presence of ED and microvascular disease. 
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 Currently, some non-invasive procedures are available to check artery's health 

and elasticity: 

• Carotid Duplex Ultrasound: this test is performed to evaluate symptoms including 

stroke, loss of memory, dizziness, loss of control of muscles and other findings that 

might result from blockage or narrowing of one or both carotid arteries; 

• Pulse Wave Velocity (PWV) that evaluates, via ultrasound, the flow of blood from 

the carotid to the femoral artery. Imaging specialists can establish if any blockage 

exists by estimating the time of travel of the pulse wave; 

• Peripheral Arterial Tonometry (PAT) that is performed using a blood pressure cuff 

combined with a graphic computer display, and measures diastolic, systolic and 

mean artery pressure. It has been demonstrated that a PAT ratio (hyperemic 

response) at 90-120 seconds after 5-minute forearm cuff occlusion correlates with 

cardiovascular risk factors (Framingham Heart Study). 

 

 Some new putative biomarkers of ED are currently under study and are listed in 

table II. 

 

New Biomarkers of Vascular Endothelial Dysfunction 

Insulin resistance 

Homocystinemia 

Lipoprotein (a) 

ADMA 

Adiponectin 

Inflammatory factors (CRP IL-1, IL-6, TNF-, MCP-1) 

Endothelial progenitor cells (EPS) 

Vasodilators (nitrite and nitrate, 6-keto PGF1) 

Vasoconstrictors (endothelin, tromboxan A2, ROS) 

Adhesion molecules (VCAM-1, ICAM-1, P & E-selectin) 

Thrombotic hemostatic factors (PAI-1, TPA, von Willebrand factor. thrombomodulin) 

 

Table II. New Biomarkers of ED modified from (Hirata et al., 2010) 
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5.2. Treatment of ED 

 

ED is positively influenced by healthful diet and exercise. These two devices are both 

necessary to control the patient’s weight that is one of the potential risk factor of 

developing diseases such as  type-2 diabetes and high blood pressure. In particular, a 

moderate aerobic exercise contributes to maintaining a healthy pumping heart and 

improves breathing, resulting in a more efficient delivery of oxygen-carrying blood cells. 

Strength and flexibility work-out could also have beneficial effects. On the other hand, 

pharmacological treatment of ED is based on the assumption of different drugs with the 

aim of reducing ED symptoms and restoring the physiological condition (Puddu, 2000; 

Radenković, Stojanović, Potpara, & Prostran, 2013). The most widely used drugs are 

summarized in Table III. 

 

Drug Timing 

Tetrahydrobiopterin Acute 

Glutathion Acute 

ACE inhibitors Acute and chronic 

Calcium antagonists Acute and chronic 

Antioxidants Acute and chronic 

L-Arginine, D-Arginine Acute and chronic 

Renin inhibitors Chronic 

Statins Chronic 

Insulin-resistance improving drugs Chronic 

Erythropoietin Chronic 

Treatments that affect the number of EPC Chronic 

β-blockers Chronic 

Extrogens Chronic 

Nitrate Chronic 

 

Table III. A schematic overview of the drugs most widely used in ED’s treatment  
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6. HIF-1 

 

Hypoxia Inducible Factor 1 (HIF-1) is an hypoxia-induced transcriptional factor able to 

induce or inhibit the transcription of different genes involved in cellular homeostasis 

(Brahimi-Horn & Pouysségur, 2009). In particular, HIF-1 regulates the expression of 

genes codifying for proteins involved in the adaptation and survival of cells under stress 

conditions, especially in the presence of low oxygen concentrations. In these conditions, 

HIF-1 acts as a protective factor against pathological conditions. Its activity is however 

also involved in the hypoxic adaptive response of tumor cells that supports their growth 

and invasiveness. Hypoxia is indeed the major cause of HIF-1 accumulation both in 

growing tumor and in stromal cells, and immunohistochemical analyses of human tumor 

reveal increased HIF-1 levels in most primary tumor and their metastasis. HIF-1 also 

accumulate is the presence of reactive oxygen species (ROS) or nitrogen species able to 

inhibit the degradation of the factor. Finally, the transcriptional activation of HIF-1 is 

essential during the embryonic development. 

  

 From the molecular point of view, HIF-1 is an heterodimeric protein composed by 

a constitutive (HIF-1β) and a regulatory subunit that exist in different isoforms (HIF-1α, 

HIF-2α, and HIF-3α in humans), among which HIF-1α is the best characterized (Wang, 

Jiang, Rue, & Semenza, 1995; Wang & Semenza, 1995). HIF-2α shows a high sequence 

homology with HIF-1α, and is regulated by similar mechanisms. In fact, HIF-2a forms an 

heterodimer with HIF-1β and activates some of the same genes activated by HIF-1α 

(Lau, Tian, Raval, Ratcliffe, & Pugh, 2007). Finally, HIF-3α acts as an HIF-1α inhibitor. Its 

transcription is activated by HIF-1α itself and operates as a negative feedback regulation 

mechanism (Makino et al., 2007). 

 

 All three HIF-1α isoforms are regulated by a post-transcriptional hydroxylation of 

a proline residue in the Oxygen-Dependent Degradation Domain (ODDD) (Schofield & 

Ratcliffe, 2004). The hydroxylation of this residue permits the interaction between HIF 
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and the von Hippel-Lindau factor (VHL), which is part of an ubiquitination domain called 

VBC (VHL/Elongin B/Elongin C). This complex mediates the covalent binding of HIF to an 

ubiquitin chain that allows the interaction of HIF with the proteolytic complex for 

ubiquitinated protein (Kaelin & Ratcliffe, 2008) and the degradation of the factor.  On the 

other hand, the hydroxylation of an asparagine in the extreme C-terminus of the 

subunits HIF-1α and HIF-2α inhibits their interaction with the co-activator p300 and CBP 

(CREB-Binding Protein) (Figure XVII). 

 

 

Figure XVII. Domain structures of HIF-1 isoforms (Kenneth & Rocha, 2008) 

  

 The above-described hydroxylation reactions are catalyzed by two different 

enzymes, the Prolyl Hydroxylase Domain Protein (PHD) and the Factor Inhibiting HIF 

(FIH). Both enzymes are di-oxygenases and their activities are dependent on oxygen, 

Fe2+ and 2-oxoglutarate, an intermediate product of the Krebs cycle (Peet & Linke, 

2006). During hypoxia, PHD and FIH are deactivated as a consequence of the lack of 

oxygen and 2-oxoglutarate required for the hydroxylation reactions. Therefore, in 

hypoxic conditions, HIF-1α is stabilized and immediately transferred to the nucleus via its 

C-terminus sequence NLS (Nuclear Localisation Signal) that binds to nuclear pores and 

guides its transfer (Kallio et al., 1998). Once in the nucleus, HIF-1α dimerizes with HIF-
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1β, recruits the co-factors p300 and CBP, and by binding to the HRE (hypoxia-responsive 

element) sequences contained in its target genes finally induces their transcription.  

 

 

Figure XVIII. HIF-1α regulation by proline hydroxilation (Carroll & Ashcroft, 2005) 

 

 HIF-1 has also been shown to be activated in response to non-hypoxic stimuli. 

Interestingly, it has been demonstrated that ROS regulate HIF-1 stability and 

transcriptional activity in both oxygenated and hypoxic cells. Consequently, ROS are 

involved in the regulation of HIF-dependent pathways under normal and pathological 

conditions. Several hypotheses have been proposed about the mechanisms of interaction 

between ROS and the HIF-1 pathway (Guzy & Schumacker, 2006; Pouysségur & Mechta-

Grigoriou, 2006). One hypothesis regards the oxidation by hydrogen peroxide of ferrous 

iron (Fe2-) to ferric form (Fe3-) that could consequently hinder the binding of the ferrous 

iron to PHD (Pan et al., 2007). Another possibility is the enrolment of ascorbate as a free 

radical scavenger. In such a way, ascorbate could not reduce ferric iron and/or directly 

bind to PHD. Moreover, free radicals and mitochondrial dysfunction can alter the 

concentration of 2-oxoglutarate (2-OG) and succinate (SC), which are both involved in 
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HIF-1α hydroxylation (Gottlieb & Tomlinson, 2005; Kozhukhar, Yasinska, & Sumbayev, 

2006). Furthermore, ROS could also affect the HIF-1 pathway by influencing the 

availability of oxygen or by modifying PHD phosphorylation (Qutub & Popel, 2008). 

Finally, it has been recently demonstrated that low concentrations of peroxide are able to 

rapidly oxidized FIH on the catalytic iron centre and/or on other susceptible sites thus 

reducing the enzyme activity. FIH oxidation can be prevented by pre-treatment with iron 

chelators, whereas the restoring of co-factors is not able to re-establish FIH activity 

(Masson et al., 2012). 

 

7. ROS 

 

Reactive oxygen species (ROS) are chemically reactive molecules containing oxygen. 

ROS originates as a by-product of the oxygen metabolism and possess important roles in 

cell signaling and homeostasis. 

 

 The most important ROS in physiological and pathophysiological conditions are 

O2
•-, •OH and H2O2.  

 O2
•- is the result of univalent reduction of triplet state molecular oxygen and can 

be formed enzimatically by the action of NADPH-oxidase (NOX) (Babior, 1999; Vignais, 

2002), xanthine-oxidase and other enzymes, by auto-oxidation reactions (Cadenas, 

1989; Cadenas & Davies, 2000), or non-enzymatically by the intervention of redox 

components such as the semi-ubiquinone compound of the mitochondrial electron 

transport chain. O2
•- has a poor ability to cross biological membranes and it is also a 

relatively unreactive molecule in physiological condition. Indeed, superoxide become a 

very reactive intermediate only when it reacts with NO to give peroxinitrite or when it is 

converted into H2O2 by superoxide-dismutase (SOD) isoforms.  

 In contrast of O2
•- , H2O2 can easily diffuse across biological membranes. It is a 

non-radical potent oxidizing agent that can oxidize or reduce several inorganic ions in 

aqueous solutions. H2O2 is usually removed by either catalase or glutathione peroxidise, 
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and can be transform in •OH  by the interaction with O2
•- (Haber-Weiss reaction) or in the 

presence of divalent metal ions such as iron (when Fe2+ is present, the reaction is called 

Fenton's reaction) and copper. H2O2 is also used by the myeloperoxidase of phagocytic 

cells to form hypochlorite (HOCl), a highly reactive compound able to oxidize thiol 

groups, amino groups and methionine in proteins. 

 •OH is a three-electron reduction state of O2 and despite its very short half-life 

(10-9 s), it is the most reactive molecules among ROS.  •OH does not diffuse from the site 

of generation and can rapidly damage any surrounding molecules, such as amino acids 

(potentially leading to protein inactivation/denaturation), carbohydrates (degradation), 

lipids (lipid peroxidation) and nucleic acids (formation of adducts with deoxyguanidine 

and, potentially, mutations). 

 Finally, we should also mention the Reactive Nitrogen Species (RNS). The most 

important is peroxynitrite (ONOO-) that form from the rapid reaction of NO with O2. 

ONOO- is a strong oxidant able to react directly with thiol groups, iron-sulphur centres 

and -SH groups present in the active site of tyrosine phosphatases. In physiological 

conditions, the production of ONOO- is quite low and oxidative injury is minimized by 

endogenous antioxidant defences. When increased in pathological conditions, ONOO- can 

act either as a direct oxidising species or indirectly by decomposing into highly reactive 

radicals. When ONOO- acts as an oxidant, it produces nitrite and a hydroxide ion rather 

than isomerising to nitrate and can react with proteins (tyrosine nitration or direct 

reactions with specific amino acids), lipids (lipid peroxidation) and nucleic acids 

(oxidative modifications in nucleobases). It should be noticed that ONOO- can interact 

with mitochondria, reaching them from extra-mithocondrial compartments or being 

locally produced through the interaction of NO (generated by the mitochondrial NOS) and 

O2
•-. Mitochondrial toxicity of ONOO- results from its direct oxidative reactions with the 

principal components of the respiratory chain or from free radical-mediated damage. 

Persistent generation of significant levels of ONOO- can lead to apoptotic or necrotic cell 

death. 
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7.1. Intracellular sources of ROS  

 

Cellular production of ROS occurs from both enzymatic and non-enzymatic sources. Any 

enzymatic system or electron-transferring protein result in the formation of ROS as by-

products of the electron transfer reaction. In mitochondria, the unintentional ROS 

generation involves about 1–2% of total O2 consumption under reducing conditions. 

Indeed, approximately about 1,5% of electrons flowing through the electron transport 

chain can be redirected to form O2
•- at the levels of complex I (NADH/ubiquinone 

oxidoreductase) and complex III (ubiquinol/cytochrome c oxidoreductase). O2•- is then 

usually transformed by mitochondrial SOD into H2O2, which can go through mitochondrial 

membranes to the cytoplasm, where it is processed by Catalase. Another important 

intracellular source of ROS is NOX, that is expressed in both phagocytic (macrophages, 

neutrophils, and eosinophils) and non-phagocytic cells and plays a crucial role in different 

diseases (Babior, 1999; Lambeth, 2007). NOX catalyzes the reduction of O2 to O2
•- in a 

NADPH-dependent reaction through the activity of the trans-membrane protein 

cytochrome b558. Finally, ROS can also be formed by the activity of 5-Lipoxygenase (5-

LOX), an oxidase involved in the synthesis of leukotrienes from arachidonic acid in 

response to growth factors and cytokines.  

 

 ROS can also be generated in many subcellular compartments by several 

enzymes, such as oxidases, mono- and di-oxygenases, peroxidases and isoforms of the 

cytochrome P450 superfamily. Several enzymes i.e. nitric oxide synthase, xanthine 

oxidase (Pritsos, 2000), cyclooxygenase and other NAD(P)H dependent oxido-reductases, 

are all able to generate primarily O2
•-. In the same way, peroxisomal oxidases (Rojkind, 

Domínguez-Rosales, Nieto, & Greenwel, 2002) can generate H2O2 during the 

metabolization of different substrates. Another important source of intracellular ROS, 

mainly O2
•- production, is the auto-oxidation of small molecules such as epinephrine, 

dopamine, hydroquinones and flavins.  
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Figure XIX. Intracellular sources of ROS (Novo & Parola, 2008) 

 

7.2. Cellular ROS content: use and damage 

 

ROS do not have only a damaging activity in cells. Indeed, as summarized in table IV, a 

variety of cytokines and growth factors are able to generate ROS in non-phagocytic cells 

by acting through their specific receptors. The main effects of ROS signalling relate to the 

control of cell proliferation and differentiation, but they are also involved in angiogenesis, 

particularly in tumor development and metastasis. 
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Table IV. Ligand-mediated generation of ROS in non-phagocytic cells (Thannickal & Fanburg, 2000) 

 

 Nevertheless, the effects of ROS are commonly negative for cells. In particular, 

the high chemical reactivity of these molecules makes ROS very unstable and able to 

induce lipid peroxidation by acting on hydrocarburic chains of unsaturated fat acids, 
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oxidation of amino acidic residues in proteins, and damage of carbohydrate and 

nucleotides in the DNA. ROS-induced damages could alter and compromise the function 

of macromolecules and cellular structures, thus inducing cell death.  

Lipid peroxidation consists in a chain of reaction which progressively transforms 

unsaturated fat acids of membrane phospholipids in lipid radicals (L•), peroxide radicals 

(LOO•) and lipid peroxides (LOOH). Lipid peroxides can easily break down in different 

compounds, such as lipid alkoxides (LO•), aldehydes (malonyldialdehyde, MDA), alkanes, 

lipid epoxides and alcohol, which can also be generated from cholesterol modifications. 

These modification imply an increase in membrane rigidity that causes the waste of 

selective permeability (Spiteller, 2006). 

Regarding proteins, oxidative reactions caused by free radicals may lead to an aberrant 

proteolysis or aggregation as a consequence of alterations in the chemical and physical 

properties of the protein itself with variation of the iso-electric point and alteration of the 

molecular weight. These changes finally induce the activation of specific proteolytic 

enzymes and the degradation of the protein (Fulle et al., 2004).  

At the level of nucleic acids, oxidative alterations irreversibly inhibit the processes of 

transcription, translation, and DNA replication, leading to premature senescence and cell 

death (Dean, Gieseg, & Davies, 1993; Spiteller, 2006). 

 

 Another important effect of ROS is the reduction of NO bioavailability through 

three main mechanisms: 

1. by directly reacting with NO, thus forming peroxinitrites; 

2. through the oxidation of the co-factor BH4 and the consequent uncoupling of eNOS 

(Li & Förstermann, 2013; Mueller, Laude, McNally, & Harrison, 2005); 

3. by a decrease in intracellular thiol levels that results in a reduced production of S-

nitrosothiols and in the subsequent decrease of the expression and activity of 

guanylate ciclase, the main downstream effectors of NO. 
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8. Antioxidant defense 

 

Human cells have several efficient mechanisms to neutralize ROS and defend themselves 

against oxidative chemical species. Antioxidants could be classified in primary or 

enzymatic antioxidants and secondary or non-enzymatic antioxidants. The definition of 

primary and secondary is based on temporal parameters, related to the sequence of 

action of the antioxidant mechanisms, and not to their importance. 

 

 

Figure XX. Intracellular antioxidant mechanisms (Small & Gobe, 2013, Oxidative Stress and Antioxidant 

Therapy in Chronic Kidney and Cardiovascular Disease, Oxidative Stress and Chronic Degenerative Diseases - A 

Role for Antioxidants, Dr. JA Morales-Gonzalez (Ed.), ISBN: 978-953-51-1123-8) 

 

8.1. Primary antioxidants 

 

The main enzymatic antioxidants are: Superoxide Dismutase (SOD), Catalase, 

Glutathione Peroxidase (GSHPx), Glutathione-S-transferase (GST-transferase), 

Glutathione Reductase (GSSG-Red) and Thioredoxin. 

 

 



46 

 

 

 

Figure XXI. Primary antioxidants (Griendling & FitzGerald, 2003) 

 

8.1.1. Superoxide Dismutase 

 

SOD is the main enzyme of primary defense against ROS. In particular, it catalyzes the 

dismutation of superoxide radical (O2
•-) that is reduced to hydrogen peroxide ( H2O2 ) and 

molecular oxygen (O2). The SOD action is particularly important to avoid the peroxidation 

of nitrate to form ONOO, thus preventing cellular damage and the consequent endothelial 

and mitochondrial dysfunction. Three mammalian archetypal isoforms are distinguished: 

SOD-1, SOD-2 and SOD-3, which are codified by different genes, located on 

chromosomes 21, 6 e 4, respectively (21q22.1, 6q25.3 e 4p15.3-p15.1). All SOD 

isoforms catalyze the same reaction, but are characterized by their specific localization 

and by a different transition metal acting as cofactor in the redox reaction (Fukai & 

Ushio-Fukai, 2011). Indeed, the metal core is necessary for the cyclic reaction of 

reduction and oxidation through which the enzyme carries out its function. This core can 

modulate SOD activity and consists of copper (Cu) in SOD-1 and SOD-3, and manganese 

(Mn) in SOD-2. 

 

 SOD-1 is a homodimer of 154 kDa, composed by two identical subunit of 154 

amino acids containing a Cu2+ and a Zn2+ ions coupled by weak, non-covalent 

interactions. SOD-1 is located in the cytoplasm and in mitochondrial intermembrane 
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space (Okado-Matsumoto & Fridovich, 2001). SOD-3 is a homotetramer of 135 kDa, 

composed by two identical dimer that contains Cu2+ and Zn2+ linked by disulfide bonds. 

SOD-3 is secreted, thus it can be found in the extra-cellular matrix, particularly close to 

blood vessels, where it is synthesized by fibroblast and smooth muscle cells, heart, 

lungs, uterus and liver. The dismutation reaction catalyzed by these two isoforms is 

based on two half-reaction with equal rate: 

SOD-Cu2+ + O2- → SOD-Cu+ + O2 (1) 

SOD-Cu+ + O2
- + 2H+ → SOD-Cu2+ + H2O2 (2) 

with the resulting reaction: 2O2- + 2H+ → O2 + H2O2   

In this reaction, the oxidation state of the metal cation oscillates between 1+ and 2+ and 

the net result is the transformation of superoxide in oxygen and hydrogen peroxide. The 

activity of Cu/Zn-SOD is directly correlated to the amount of Cu2+ ions, which represent 

the catalytic site of the enzyme and cannot be substituted by any other metal ions, 

whereas Zn2+ ion seems to have only a structural role and can be substituted with Co2+ 

or Cu2+ (Fukai & Ushio-Fukai, 2011). In physiological condition, the intracellular levels of 

free Cu2+ are very low. Indeed, it is directly transferred to its specific target by the 

chaperone CCS, thus requiring the modification of CCS to transfer Cu2+ to SOD and 

activate it. 

 Mn-SOD is located in the mitochondrial matrix and, in respect to the Cu/Zn-SOD, 

its structure has not been yet well characterized. It is known that Mn-SOD is a tetramer 

formed by four identical subunits of 23 kDa containing manganese. The mechanism of 

action is similar to that of Cu/Zn-SOD and involves the redox couple Mn3+/Mn2+.  

However, its catalytic function remains still unclear. The catalytic efficiency of SOD-2 is 

lower than that of Cu/Zn-SOD, probably because SOD-2 activity is sensitive to the 

inhibitory action of single charge anions and to neutral pH ranges. 

 

 Since the dismutase reaction produces hydrogen peroxide, the antioxidant 

function of Cu/Zn-SOD is strictly linked to the action of other antioxidant enzymes i.e. 

catalase and GSH-Px. 



48 

 

8.1.2. Catalase 

 

Catalase is an high molecular weight tetrameric enzyme that is formed by 4 polypeptidic 

chains. It contains four porphyrin heme (iron) groups that react with the hydrogen 

peroxide.  Indeed, the main function of catalase is to eliminate the hydrogen peroxide 

through the catalyzation of its dismutation in molecular oxygen and water by means of 

two sequential reactions: 

H2O2 + Fe3+-CAT → H2O + O=Fe4+-CAT 

H2O2 + O=Fe4+-CAT → H2O + Fe3+-CAT + O2 

with the resulting reaction: 2 H2O2 → O2 + 2 H2O 

 

8.1.3. Glutathione Peroxidase, Glutathione-S-Transferase and Glutathione Reductase 

 

Glutathione Peroxidase (GPX) is a selenium-dependent enzyme that has a detoxifying 

action on hydrogen peroxide and organic hydroperoxides by converting them in water 

and alcohol (ROH), respectively. The mechanism of action involved the oxidation of 

reduced Glutathione (GSH) to oxidized Glutathione (GSSG). 

The dismutation reaction of H2O2 (1) and of organic hydroperoxides (2) are: 

2 GSH + H2O2 → GSSG + 2 H2O  (1) 

2 GSH + 2 ROOH → GSSG + ROH + H2O  (2) 

In mammals five different GPX isoforms have been identified (GPX 1 to 5), showing 

different tissue and cellular localization. Whereas the GPX catalyzed the same reaction, 

they have specific substrates (Brigelius-Flohé, 1999). For instance, GPX-4 is associated 

to the membranes and specifically acts on hydroperoxides of membrane phospholipids 

(Ursini, Maiorino, & Gregolin, 1986).  

 

 As described above, the Glutathione-S-Transferase (GST) catalyzes the direct 

conjugation of GSH to oxidized substrates, which are eliminated from the organism at a 

later stage. In mammals, seven different GST classes have been identified and 
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characterized, which are all members of a family of soluble cytosolic enzyme. Recently, a 

mitochondrial and a microsomal families have been also identified (MAEPEG) (Hayes, 

Flanagan, & Jowsey, 2005). 

 

 The activity of GPXs and GSTs reduces the intracellular levels of total GHS with a 

consequent increase in GSSG content. At the aim to maintain a stable GHS/GSSG ratio, 

the GSSG is released in the extracellular matrix where is degraded, and GHS is 

regenerated by Glutathione Reductase (GR), a flavoprotein that reduces the oxidized 

form using NADPH, or by ex-novo synthesis. The ex-novo synthesis takes place through 

two sequential ATP-dependent reaction, which are catalyzed by γ-Glutamylcysteine 

Synthetase (γGCS) and Glutathione Synthetase, respectively.  

 

8.1.4. Thioredoxin 

 

Thioredoxin-1 (Trx-1) is a protein of 105 aminoacids, known to be present in all 

organisms, which is located in the cytoplasm. It possesses two cysteine residues in the 

active site essential to its catalytic function, i.e. reducing other proteins. In fact, this 

enzyme acts as antioxidant by facilitating the reduction of other proteins by cysteine 

thiol-disulfide exchange, thus reducing the disulfide bonds of proteins, which have been 

oxidized by ROS. The thioredoxins’ catalytic site is kept in the reduced state by the 

flavor-enzyme Thioredoxin Reductase-1 (TxR1) through to a NADPH-dependent reaction 

that regenerates the redox state of oxidized cysteines. 

 

8.2. Secondary antioxidants 

 

This class of non-enzymatic antioxidants is the responsible for the implementation of 

antioxidant defenses through the prevention of the formation of alkoxy- and hydroxyl- 

radicals by decomposition of hydroperoxide (ROOH). They can directly act as scavengers 

or by restoring the thiol pool. The most important secondary antioxidants is Glutathione 
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(GSH), a tripeptide that is ubiquitously present in all cell types. In addition to being a 

substrate for GPX and GST, GSH can directly act as a free radical scavenger during the 

process of detoxification of hydrogen peroxide and lipid hydroperoxides. A further non-

enzymatic antioxidant is the Coenzyme-Q, which carries out its action at the level of the 

mitochondrial electron transport chain. Some vitamins such as vitamin A, E and C are 

also considered non-enzymatic antioxidants. 

 

8.3. Chemical antioxidants 

 

Over the years, several chemical antioxidants have been synthesized to be employ in 

both laboratory and therapy. 

 

N-acetylcysteine (NAC) is one of the main chemical antioxidants, constituted by a 

modified version of the sulfur-containing aminoacid cysteine. NAC is able to replenish 

intracellular levels of GSH, helping to restore cells’ defense to damages from ROS. NAC is 

therapeutically use for the treatment of paracetamol overdose. The restoration of GSH 

reserves indeed inactivates N-acetyl-p-benzoquinone imine (NAPQI), a toxic metabolite 

that by reacting with key hepatic enzymes induces severe hepatocyte damage, finally 

leading to severe liver damage and possibly to death by fulminant hepatic failure. NAC is 

also used to prevent the disease progression in the interstitial lung disease, and in the 

treatment of different psychiatric disorders such as schizophrenia, acute mood episodes, 

autism, obsessive-compulsive disorder and drug addiction. Although its efficacy is still 

debated, NAC is also use for the prevention of radiocontrast-induced nephropathy (a 

form of acute renal failure). 

 

 

Figure XXII. Chemical structure of NAC 
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Another important chemical antioxidant is Tempol (4-Hydroxy-2,2,6,6-

tetramethylpiperidine 1-oxyl), a small cell-permeable molecule mimicking SOD. Tempol 

has been shown to possess neuroprotective effects in PC-12 cells and to restore the 

oxidative stress and cardiac dysfunction induced by TNF-α. Furthermore, it has been 

described its ability to decrease sympathetic nerve activity and blood pressure in DOCA-

salt rat studies.  

 

 

Figure XXIII. Chemical structure of Tempol 

 

8.4. Nuclear factor-erythroid-2-related factor 2 

 

The Nuclear factor-erythroid-2-related factor 2 (Nrf2) is a basic leucine zipper 

transcriptional factor which control the expression of several genes encoding for 

detoxifying enzymes and antioxidant proteins (Hayes et al., 2005). Therefore, Nrf2 is 

fundamental for the expression of both primary and secondary antioxidants. The on/off 

switch of Nrf2 activity contributes to cell protection against ROS damage and prevents 

apoptosis, thus promoting cell survival. 

 

  Nrf2 and its inhibitor Keap1 (or INrf2) are ubiquitously express in many 

cells and tissues and together act as cellular sensors of oxidative and electrophilic stress 

induced by chemicals and radiations. Nrf2 protein is composed by 5 domains as depicted 

in Figure XXIV: (1) an hydrophobic domain; (2) a transcriptional activation domain; (3) a 

Cap “n” Collar (CNC) domain; (4) a basic region, and (5) a leucine zipper. Keap1 is also 

composed by 5 domains: a N-terminal region (NTR), the broad complex region (BTB) 

that is the binding domain for Cul3-Rbx, the linker region (IVR), the Kelch domain that 

binds Nrf2, and the C-terminal region (CTR) (Figure XXIV). 
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Figure XXIV. Domain structures of Nrf2 isoforms (Kaspar, Niture, & Jaiswal, 2009) 

   

 In physiological conditions, Nrf2 is bound to Keap1 and located in the cytoplasm. 

This binding prevents Nrf2 nuclear translocation and induces its degradation through the 

interaction between Keap1 and the complex Cul3-Rbx1 (cullin3/ring box1 E3 ubiquitin 

ligase complex). Cul3 acts as a scaffold protein which complexes E3 ligase with Rbx1 and 

recruits the E3 enzyme. The complex Nrf2-Keap1-Cul3 induces the ubitiquination and 

degradation of Nrf2 through the proteasome 26S. This mechanism prevents the nuclear 

translocation and transcriptional activation of Nrf2. Under stressing conditions, the 

complex Nrf2-Keap1 is modified by the action of different protein-kinases such as PKC, 

ERK, MAPK and p38, thus stabilizing Nrf2 that can translocate to the nucleus. The 

modifications required for the disruption of the complex involve both Keap1 and Nrf2 

phosphorylations. Keap1 is phosphorylated on Cys151, thus causing a conformational 

change of BTB domain with the consequent ubiquitination and degradation of Keap1. The 

phosphorylation of Nrf2 on Ser40 by PKC is required to its release, whereas the 

phosphorylation of three other different cysteine residues (Cys151, Cys273 and Cys 288) 

is necessary to Nrf2 nuclear translocation and activation. Once in the nucleus, Nrf2 binds 

Antioxidant Response Elements (ARE) on DNA (sequence 5’-TGCTGAGTCAC-3’) through 

its basic region (Kaspar et al., 2009). To be fully activated, Nrf2 also requires 

heterodimerization with another bZIP protein, such as Jun and Maf. ARE is an enhancer 

sequence located in the promoter region of several genes, codifying for cytoprotective 

enzyme. ARE has also structural and biological features that characterized its 



53 

 

responsiveness to oxidative stress. In fact, ARE sequences are activated by alteration in 

the cellular redox state as a consequence of high intracellular levels of ROS or 

electrophilic species and/or a reduced antioxidant ability (i.e. Glutathione depletion) 

(Kobayashi et al., 2004). Another important control mechanism of Nrf2 activity is the 

phosphorylation of its Thr568 through the action of Fyn, a nuclear tyrosine kinase. The 

action of Fyn causes the export of Nrf2 from the nucleus and its binding with Keap1, thus 

finally promoting Nrf2 degradation.  

 

 

Figure XXV. A schematic representation of the mechanism of action of Nrf2 (Bataille & Manautou, 2012) 

 

9. Mitochondria 

 

Mitochondria are cytoplasmatic organelles surrounded by a double membrane with a 

small intermembrane space in between. The outermost membrane is smooth while the 

inner membrane typically presents a lot of folds, called cristae, that enhance the 

available surface area, thus increasing cellular respiration. The number, dimension and 

form of mitochondria are related to the energy needs of the cells. Indeed, mitochondria 

are generally considered as ”cellular power plants” because they produce most of ATP 

supply. 
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 As described above, mitochondria are enclosed by two membranes. The outer 

membrane is rich in protein-based pores that are big enough to permit the passage of 

ions, molecules, and small proteins. On the other hand, the inner membrane is more 

similar to the plasma membrane with a more restricted permeability. This membrane 

contains also the proteins that form the electron transport chain (ETC) responsible for 

ATP synthesis (Figure XXVI). The mitochondrial matrix is located inside the inner 

membrane, where the citric acid cycle takes place by producing the electrons that travel 

from one protein complex to the next one in the ETC. The latter consists in a series of 

protein complexes through which electrons captured from donor molecules are 

transferred to release the energy required to pump protons into the intermembrane 

space. In this way, a strong electrochemical gradient across the inner membrane is 

established, which is used to synthesize ATP from ADP and inorganic phosphate (Pi) 

through a specific enzyme, the complex of ATP-synthase.  

 

 

Figure XXVI. The electrochemical proton gradient and ATP synthase (©2010 Nature Education) 

 

9.1. Mitochondria and ROS 

 

In addition to ATP production, mitochondria are also involved in the regulation of the 

cellular redox state. Indeed, mitochondria are considered the main intracellular source of 

ROS, in particular of superoxide anion. Their production is triggered by a leakage of 

electrons from the mitochondrial respiratory chain and their consequent reaction with O2 
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(Figure XXVII). To counteract ROS production, both the mitochondrial matrix MnSOD 

(SOD2) and the mitochondrial intramembrane space Cu/ZnSOD (SOD1) are recruited, 

thus converting superoxide anion to hydrogen peroxide, which can be subsequently 

transformed into harmless H2O through the action of catalase. 

 

 

Figure XXVII. The generation and effects of ROS in mitochondria (Baughman & Mootha, 2006) 

 

9.2. Mitochondria and NO 

 

Mitochondria biogenesis and function can be regulated by several factors, among which 

NO is particularly important. Indeed, NO can influence mitochondria at several levels. 

First of all, it can indirectly regulate the affluence of respiratory substrates to 

mitochondria through its action on blood flow regulation. Furthermore, NO directly 

regulates oxyhemoglobin dissociation curve (Wolzt et al., 1999), thus influencing the 

supply of O2 to mitochondria. In addition, NO can also directly interact with mitochondria 

at the level of cytochrome c oxidase, the terminal enzyme of the ETC, by competing with 

O2 (Brown & Cooper, 1994; Cleeter, Cooper, Darley-Usmar, Moncada, & Schapira, 1994; 

Clementi, Brown, Feelisch, & Moncada, 1998; Clementi, Brown, Foxwell, & Moncada, 

1999). As a result, the activity of cytochrome c oxidase is inhibited, thus regulating in a 

negative manner the mitochondrial oxidative phosphorylation, especially in tissues where 
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O2 concentrations is usually low (Clementi et al., 1999). The competitive mechanism 

between NO and O2 is also responsible for O2 redistribution to neighboring cells (Hagen, 

Taylor, Lam, & Moncada, 2003). Another strong evidence of the importance of NO in 

mitochondria is the observation that eNOS is bound to the outer mitochondrial 

membrane in endothelial cells and neurons (Gao et al., 2004), thus indicating a possible 

reciprocal regulation of eNOS and mitochondrial function. It has been indeed discovered  

a mitochondrial NOS isoform, called mtNOS, which suggests that NO can directly regulate 

mitochondrial functions (Ghafourifar & Cadenas, 2005). 

 

 In addition to the described functional effects, NO is also crucially involved  in 

mitochondria biogenesis. In fact, it has been demonstrated that the treatment of various 

cell types with NO donors increases their mtDNA content. On the contrary, the removal 

of NO by the scavenger oxyhemoglobin shows an opposite effect (Nisoli et al., 2003). The 

promoting effect of NO on mitochondrial biogenesis occurs through an increased 

expressions of PGC-1, i.e. the principal regulator of mitochondrial biogenesis, NRF-1, 

NRF-2 and Tfam (Kelly & Scarpulla, 2004). Moreover, it depends on GC activity and cGMP 

formation, the main downstream NO effectors. The crucial role of NO in mitochondrial 

biogenesis was confirmed in eNOS–/– mice (Nisoli et al., 2003). Furthermore, eNOS 

deletion is known to reduce mitochondrial mass in many tissues such as brain, muscle, 

liver and heart. The reduction in mitochondrial mass is accompanied by a reduction in 

basal O2 consumption and steady-state ATP levels. 

 

9.3. Mitophagy 

 

One of the main mechanisms responsible for cellular homeostasis is autophagy.  It 

consists in the regulated degradation of cellular components through their engulfment 

into autophagosomes. These intracytoplasmic vacuoles fuse with lysosomes where 

hydrolytic enzymes cause the breakdown of cellular components recruited in the 

organelle. Autophagy plays a key role during starvation, by recycling components into 
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more urgently needed molecules, but it also represents a fundamental system for 

maintaining quality control by turning over organelles and degrading protein aggregates.  

 

 A specific form of autophagy is mitophagy i.e. the degradation of mitochondria 

through specifically targeted autophagic processes (see Figure XXVIII). In fact, several 

recent findings suggest that mitophagy can selectively degrade damaged mitochondria, 

e.g. in laser irradiated hepatocytes where defective mitochondria are selectively removed 

by mitophagy (Kim, Rodriguez-Enriquez, & Lemasters, 2007). Mitophagy has been 

proposed as an important homeostatic mechanism acting in a variety of conditions such 

as hypoxia and oxidative stress (Ashrafi & Schwarz, 2013; Lee, Giordano, & Zhang, 

2012; Liu et al., 2012). Moreover, autophagy is also regulated by NO availability (Sarkar 

et al., 2011). The first step in mitophagy is nucleation, which consists in the formation of 

a phagophore through the formation of a complex among Beclin-I and two vacuolar 

protein sorting (VPS), VPS34 and VPS15. Later, two ubiquitin-like conjugation systems 

represented by the microtubule-associated protein 1 light chain 3 (LC3) and the 

autophagy protein (ATG) 12-ATG5 mediate the expansion of phagophore’s membrane, 

thus promoting the conjugation of LC3 with phosphatidylethanolamine and the assembly 

of the ATG16L complex (Kabeya et al., 2004; Mizushima, Noda, & Ohsumi, 1999). The 

ATG16L complex promotes the transformation of the cytoplasmic LC3-I to the 

membrane-bound LC3-II form. Despite a higher molecular weight, LC3-II migrates faster 

than LC3-I in SDS-PAGE because of its hydrophobicity and therefore displays a lower 

apparent molecular weight. For this reason, the LC3-II/LC3-I ratio can be used as a 

marker of mitophagy. During the second step of mitophagy, the phagophore expands 

until its edges are fused around its mitochondrial target(s) thus forming a typical double-

membrane structure: the autophagosome. Finally, the autophagosome fuses with a 

lysosome and the contents are degraded by lysosomal enzymes (Mizushima, Levine, 

Cuervo, & Klionsky, 2008). 
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Figure XXVIII. Autophagosome formation (Kubli & Gustafsson, 2012) 

 

 Mitophagy can take place via both an ubiquitin-dependent or independent 

pathway. In the ubiquitin-dependent pathway, ubiquitin is used as a signal for autophagic 

degradation of mitochondria (Kirkin et al., 2009; Pankiv et al., 2007). It involves the 

action of Parkin that recognizes the dysfunctional mitochondria and ubiquitinates specific 

protein substrates present on the outer membranes. The autophagy adaptor protein p62 

has a fundamental role in the engulfment of ubitiquitinated mitochondria in the 

phagophores. Indeed, p62 binds to LC3 on the phagophore via its LC3-interacting region, 

and to ubiquitinated proteins via its ubiquitin-associated domain 110 (Figure XXIX). 

Given its importance in the mitophagic process, p62 is used as a marker of mitophagy 
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along with LC3-II/LC3-I ratio. On the other hand, the ubiquitin-independent pathway 

involves the direct binding of a series of ATG8 family proteins to specific autophagy 

receptors on the mitochondria (Figure XXIX). In mammalian cells, the main mitophagic 

receptors are NIX/BNIP3L and BNIP3 (Hanna et al., 2012; Novak et al., 2010; Schwarten 

et al., 2009). In conclusion, both the ubiquitin-dependent and independent pathways 

flow into the recruitment of LC3, that leads to autophagosome formation, thus permitting 

the degradation of dysfunctional and/or damaged mitochondria. 

 

 

Figure XXIX. Mitophagy mediated by LC3 and Bnip3/Nix (Kubli & Gustafsson, 2012) 
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Integrity of endothelial cells is crucial for the maintenance of vascular homeostasis. The 

endothelium explicates its physiological functions by producing active molecules, among 

which nitric oxide (NO) is particularly important. A tonic basal NO release controls blood 

pressure levels and maintains the endothelium in an anti-atherogenic state. Indeed, NO 

loss is  associated with endothelial dysfunction (ED) typical of atherosclerosis, diabetes 

and senescence. 

 

In the present study, we investigated in primary cultures of human endothelial cells the 

behavioral and molecular consequences induced by a chronic NO deprivation. To this aim, 

we set up an in vitro model of ED, using  human umbilical vein endothelial cells (HUVECs) 

chronically deprived of NO through two different approaches: a pharmacological 

approach, by treating HUVECs with NG-Nitro-L-Arginine Methyl Ester (L-NAME, 5 mM for 

48 h), a structural analogue of L-arginine that competitively block the active site of 

endothelial nitric oxide synthase (eNOS), the enzyme responsible for endothelial NO 

formation; and a genetic approach, by silencing eNOS expression with RNA-interference. 

 

The characterization of our in vitro model, that mimics the early phases of ED, might 

have important implications for understanding the consequences of NO deprivation on 

endothelium behavior, and finally in the onset of cardiovascular diseases. The availability 

of this model could help the identification of innovative pharmacological targets and 

markers useful for ED diagnosis and treatment, thus preventing its degeneration in most 

serious cardiovascular diseases. 

 

 

 

 

 

 

 



62 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Materials and 
Methods 

 

 

 

 
 



63 

 

Cell cultures  

Human umbilical vein endothelial cells (HUVECs) were isolated from freshly derived 

umbilical cords essentially as described by Jaffe et al. (Jaffe, Nachman, Becker, & Minick, 

1973).  Cords were anonymously donated after informed consent according to national 

ethical legislation, and gently collected by gynecologists and nurses of the Macedonio 

Melloni Hospital. Umbilical cord vein was cannulated with a butterfly needle (0,8 mm) 

and then washed with abundant sterile saline solution (0.9% NaCl) to remove blood 

clots. Afterwards, the vein was sealed at one end with a clamp and filled with a 

collagenase solution (0.125%) solubilised in Ca2+/Mg2+ phosphate-buffered saline (PBS) 

buffer (prepared by mixing 4 volumes of part A containing NaCl 140 mM, KCl 3.9 mM, 

KH2PO4 2.1 mM, Na2HPO4 8.1 mM with 2 volumes of part B containing CaCl2 1.3 mM and 

MgCl2 0.93 mM). After 10 minutes of incubation at 37°C, the collagenase solution was 

collected in a 50 ml tube with a equal volume of 199 medium supplemented with 10% 

heat-inactivated fetal bovine serum (FBS).  Cells were finally harvested by centrifugation 

and plated in 25 cm2 flasks. HUVECs were routinely grown in 199 medium supplemented 

with 20% FBS, 100 µg/ml endothelial cell growth supplement (ECGS) and 50 µg/ml 

heparin, and used at passages 2-7.  

 

Cell treatment  

Where indicated, HUVECs were treated with 5 mM NG-Nitro-L-arginine methyl ester (L-

NAME) in 199 medium containing 10% FBS for 48 h preceding the experiments. The 

concentration of L-NAME was chosen according to Papapetropoulos et al.  

(Papapetropoulos, García-Cardeña, Madri, & Sessa, 1997). 

 

Crystal violet 

Cell proliferation was evaluated on HUVECs plated at a density of 1.5-2x104 cells/well in 

96-well microplates by crystal violet staining. Briefly, after a fixation with 100% 

methanol, cells were stained with a 0.1% crystal violet solution. The dye was washed 

several times with deionized water and then solubilized in 10% acetic acid solution. The 
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absorbance was measured at 595 nm using a multiplate spectrophotometer (Victor™, 

PerkinElmer, Waltham, MA, USA).  

 

Evaluation of apoptosis by FACS analysis 

Quantification of both apoptosis and necrosis was performed by Annexin V-FITC 

conjugate and propidium iodide (PI) staining (Abcam, Cambridge, UK) followed by 

fluorescence activated cell sorting (FACS) performed with a FACScalibur flow cytometer 

equipped with a 488 nm argon laser (Becton Dickinson, San José, CA, USA). The 

collected data were evaluated by Cell Quest software. The degree of apoptosis was 

calculated as apoptotic index considering cells both in early and late apoptosis.  

 

Immunoblot and immunoprecipitation analyses 

For immunoblot analysis, HUVECs plated in 35-mm diameter Petri dishes were washed 

with PBS (NaH2PO4·H2O 3,3 mM, Na2HPO4 6,7 mM, EDTA 0,2 mM, NaCl 130 mM), and 

then directly lysed in SDS-PAGE sample buffer (62 mM Tris-HCl pH 6.8, 2% sodium 

dodecyl sulfate (SDS), 10% glycerol, 5% 2-mercaptoethanol, and 0.04% bromophenol 

blue). After SDS-PAGE electrophoresis, proteins were transferred onto nitrocellulose 

membranes that were blocked with 5% (w/v) non fat dried milk in Tris-buffered saline 

(TBS: Tris-HCl 10 mM pH 8, NaCl 150 mM) containing 0.05% Tween-20 (TBS-T). Filters 

were firstly incubated overnight with the indicated primary antibodies, and then for 1 h 

with the appropriate peroxidase-conjugated secondary antibody (DAKO, Denmark). The 

immunoreactive bands were visualized by chemiluminescence (LiteAblot Plus, EuroClone, 

Italy).  

 

For KDR immunoprecipitation, HUVECs were washed with PBS and lysed for 10 min on ice 

with RIPA buffer (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% 

NP-40, 1% sodium deoxycholate, 0.1% SDS, 1 mM β-glycerophosphate, 1 mM sodium 

fluoride, 1 mM sodium orthovanadate) supplemented with protease inhibitors. Aliquots of 

cleared cell lysates (250 µg protein/sample) were incubated with an anti KDR antibodies, 
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followed by incubation with Protein A Sepharose. After washes with lysis buffer, the 

immune complexes were eluted by boiling in sample buffer, and analyzed by SDS-PAGE. 

Densitometric analyses of the immunoblots were performed using the National Institute 

of Health (NIH) Image J program. 

 

Cell migration assays 

HUVEC migration was evaluated by chemotaxis experiments in a 48-well modified 

Boyden chamber (Bulotta et al., 2009; Cattaneo, Chini, & Vicentini, 2008). Shortly, 

Nuclepore polyvinylpyrrolidine-free polycarbonate filters  coated with 10 µg/ml of type IV 

collagen were placed over a bottom chamber containing 25 ng/ml VEGF as attractant 

factor. The cells were suspended in 199 media containing 2% FBS and then inoculated in 

the upper chamber at a density of 5.0x104 cells/well. After 6 h of incubation at 37°C, the 

cells that had migrated to the lower side of the filter were stained with Diff-Quick stain 

(VWR Scientific Products, Bridgeport, NJ, USA). The assays were run in triplicate and 5 

unit fields per filter were counted by a scorer blind to the experimental conditions using a 

Zeiss microscope.  

 

Determination of cGMP accumulation 

HUVECs were cultured in 60-mm Petri dishes and treated for 48 h with L-NAME or ODQ. 

30 minutes before the end of treatment, phosphodiesterases were inhibited by the 

administration of 1 mM isobutylmethylxanthine (IBMX). cGMP was extracted in 500 µl of 

0.1 N HCl, and its quantification was performed by an enzyme immunoassay (EIA) kit 

(Enzo Life Sciences, Vinci-Biochem, Vinci, Firenze, Italy) following manufacturer's 

instructions for the acetylated assay procedure. 

 

Total RNA extraction for reverse transcription and quantitative real time PCR 

(RT-qPCR) 

Total RNA was extracted using the RNeasy® Mini Kit and accompanying QIAshredder™ 

(Qiagen, Hilden, Germany) according to the manufacturer’s instructions. A 15 min on-
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column incubation was performed with DNase I (Qiagen), thus avoiding DNA 

contamination of samples. Reverse transcription was carried out using the SuperScript™ 

III First-Strand Synthesis System for RT-PCR (Invitrogen), again following the 

manufacturer’s instructions.  For quantitative analysis of gene expression, we used the 

ABI Prism 7000 Sequence Detection System, SDS software version 1.2.3 (Applied 

Biosystems, CA, USA) with the following TaqMan® Primer and Probe assays: human 

VEGF-A (Hs99999070_m1), KDR (Hs00176676_m1), eNOS (NOS3, Hs00167166_m1), 

HIF-1α (Hs00153153_m1) and the endogenous control 18S (Hs99999901_s1). For SOD 

analysis, RT-qPCR reactions were run with the iQ SybrGreenI SuperMix (Bio-Rad, 

Segrate, Italy) on an iCycler iQ Real-Time PCR detection system (Bio-Rad). In both cases, 

sequences were amplified from 50 ng of cDNA. For calculation of results, the 2−∆∆Ct 

method was used allowing normalization to 18S and to the calibrator which is set to a 

value of 1.  

 

ELISA determination of VEGF levels  

VEGF measurements were performed on cell supernatants collected from HUVECs plated 

in 35-mm Petri dishes, using commercially available ELISA kits (R&D Systems, 

Minneapolis, MN, USA) following manufacturer's instructions. VEGF levels were expressed 

relative to total cell protein (pg/mg of total protein) evaluated by the bicinchoninic acid 

(BCA) protein assay (Thermo Scientific, Rockford, IL, USA).  

 

Preparation of nuclear extracts  

HUVECs, cultured in 100-mm diameter Petri dishes, were washed with PBS and collected 

by scraping. Cells were then lysed for 10 min on ice in  buffer A (10 mM HEPES pH 8.0, 

1.5 mM MgCl2, 10 mM KCl, 0.5 mM dithiothreitol (DTT), 0.05% Nonidet P-40, 1 mM 

sodium orthovanadate) supplemented with protease inhibitors. After a 10 min of 

centrifugation at 2,500g at 4°C, crude nuclei were washed with buffer A  before lysis in 

buffer C (20 mM HEPES pH 8.0, 1.5 mM MgCl2, 420 mM NaCl, 1.0 mM DTT, 0.2 mM 

EDTA, 1 mM sodium orthovanadate, supplemented with protease inhibitors) for 30 min 
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on ice. The nuclear extracts were clarified by centrifugation, and loaded on a 10% SDS-

PAGE.  

 

Transient transfection 

HUVECs, plated in 35-mm Petri dishes, were transfected with the expression vector 

pcDNA3ARNTdelta_b (∆ARNT), coding for a dominant negative mutant form of the HIF-

1β ARNT subunit, and the void vector pcDNA3 using the Pep Mute transfection reagent 

(Signa Gen Laboratories, USA). Six hours after transfection, the culture medium was 

replaced by fresh medium, supplemented or not with L-NAME for the following 48 h. 

 

Small interfering RNA (siRNA) transfection  

Validated StealthTM RNAi duplexes against human eNOS (GC content 48%) were provided 

from Invitrogen. As control RNA, we utilized a StealthTM RNAi negative control duplex 

(Medium GC Duplex, Invitrogen) with a 48% GC content, suitable for use as a control 

with StealthTM RNAi duplexes containing 45-55% of GC. All sets of RNAi molecules were 

transfected individually into HUVECs at a 30 nM concentration using Lipofectamine 2000 

according to the manufacturer’s instructions (Invitrogen). The ability of the RNAi 

molecules to knockdown eNOS expression was analyzed 48 h after transfection by 

western blot analysis.  

 

Determination of ROS levels 

HUVECs, plated at a density of 1.5x104 cells/well in a 96-well black microplate, were 

loaded for 30 min at 37°C in the dark with the fluorescent dye 5(6)-Carboxy-2′7′-

dichlorofluorescein diacetate (CM-DCFA, 10 µM, Sigma Chemicals, St. Louis, MO, USA) in 

HBSS buffer (Hepes 25 mM pH 7.4, NaCl 120 mM, KCl 5.4 mM, CaCl2 1.8 mM, NaHCO3 

25 mM, glucose 15 mM) containing 1% FBS. Afterwards, cells were exposed to L-NAME 

(5 mM in HBSS), and fluorescence was assessed by means of a multiplate reader with 

excitation and emission wavelengths of 485 nm and 530 nm, respectively (Victor™, 

PerkinElmer, Waltham, MA, USA). Where indicated, cells were pre-treated for 1h with N-
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Acetyl-L-Cysteine (NAC, 5 mM) in 199 medium containing 10% FBS, and CM-DFCA was 

added 30 minutes after NAC administration. For the determination of ROS content in 

HUVECs chronically treated with L-NAME, cells were loaded as described with CM-DCFA 

during the last 30 min of treatment. 

 

SOD activity 

HUVECs, plated in 25-cm2 flasks, were washed with PBS and collected by scraping at 4°C 

in a lysis buffer containing Hepes 20 mM pH 7.4, 1 mM EGTA, 210 mM Mannitolo, 70 mM 

Saccarose. After sonication on ice and a 5-min centrifugation at 1,500g at 4°C, SOD 

activity was measured in the surnatant by using a commercially available Superoxide 

Dismutase Assay Kit (Cayman Chemical Company, Ann Arbor, MI) following 

manufacturer's instructions. This assay kit utilizes a tetrazolium salt for detection of 

superoxide radicals generated by xanthine oxidase and hypoxanthine. One unit of SOD is 

defined as the amount of enzyme needed to exhibit 50% dismutation of the superoxide 

radical. Optical density at 460 nm were measured using a multiplate spectrophotometer 

(Victor™, PerkinElmer, Waltham, MA, USA). 

 

 

HPLC detection of MDA levels 

MDA levels were measured following the procedure described by Seljeskog et al 

(Seljeskog, Hervig, & Mansoor, 2006). Briefly, samples (50 µl) were mixed with 150 µl  
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of 0.1 N perchloric acid and 150 µl  of 40 mM 2-thiobarbituric acid, and incubated at 

96°C for 1 h. After cooling at -20°C for 20 min, 300 µL of methanol  and 100 µL of 20% 

trichloroacetic acid were added to the samples, and mixed for 10 s. The samples were 

centrifuged at 10,000×g for 10 min, and 20 µL of the supernatant were subjected to 

HPLC analysis on a Supelcosil C18 3,5 µm (150 x 4,6 mm ID) equipped with a guard 

column (Supelcosil C18). Mobile phase consisted of 25 mM KH2PO4 pH 6.2–methanol 

(75:25, by vol). Buffer flow rate was of 1.0 mL/min, and spectrofluorimetric detector 

wavelengths were set at 525 nm (excitation) and 560 nm (emission). 

 

Evaluation of mitochondrial DNA  (mtDNA) 

Total DNA was extracted with QIAamp DNA extraction kit (Qiagen, Hilden, Germany). 

Then, mtDNA levels were amplified by quantitative real time PCR (RT-qPCR) reactions, 

which were run with the iQ SybrGreenI SuperMix (Bio-Rad, Segrate, Italy) on an iCycler 

iQ Real-Time PCR detection system (Bio-Rad) using 50 ng of total DNA. The primers used 

to detect mtDNA were specific for the mitochondrial cytochrome b gene (CytB: F, 5’–

CTTCGCTTTCCACTTCATCTTACC-3’ and R, 5’-TTGGGTTGTTTGATCCTGTTTCG-3’) and normalized to 

genomic DNA by amplification of the rRNA 18S nuclear gene (18S: F, 5’-

CTGCCCTATCAACTTTCGATGGTAG-3’ and R, 5’-CCGTTTCTCAGGCTCCCTCTC-3’). Calculations were 

performed with the 2−∆∆Ct methods using 18S rRNA as an internal control. 

 

Cell metabolism assays  

Cell metabolism was evaluated on HUVECs plated at a density of 1.5-2x104 cells/well in 

96-well microplates using a Cell Titer 96® Aqueous ONE Solution Reagent colorimetric 

assay (MTS, Promega, Madison, WI, USA), and the total cellular ATP content by means of 

a CellTiter-Glo® Luminescent Assay (Promega). Both assays were performed according to 

the manufacturer’s instructions. Optical density at 490 nm (for MTS) and luminescence 

(for ATP) were measured using a multiplate spectrophotometer (Victor™, PerkinElmer, 

Waltham, MA, USA).  
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Oxygen consumption  

Cellular oxygen consumption was measured as previously described (Clementi et al., 

1998). Briefly, HUVECs were re-suspended in respiration buffer (0.3 M mannitol, 10 mM 

KCl, 5 mM MgCl2, 10 mM K2PO4, pH 7.4) (Barrientos, Fontanesi, & Díaz, 2009) at a 

density of 3.0x106/ml, and analyzed at 37°C in a gas-tight vessel equipped with a Clark-

type oxygen electrode (Rank Brothers Ltd., Cambridge, UK) connected to a chart 

recorder. The oxygen electrode was calibrated assuming the concentration of oxygen in 

the incubation medium at 37°C to be 200 µM. Protein content in cell samples was 

estimated by the BCA protein assay.  

 

Statistical procedures 

All data were expressed as mean ± s.e.m. Statistical analysis was carried out using one-

way or two-ways analysis of variance (ANOVA) followed by Bonferroni’s multiple 

comparison test, or Student's t-tests, where applicable.  

In Two-way ANOVA analyses, (Figures 10A, 11B-C-F, 13B), we considered as factors the 

treatment with NAC, and the treatment with L-NAME. P-values of <0.05 were considered 

significant. 

 

Reagents and antibodies 

All tissue culture reagents were from Sigma Chemicals (St. Louis, MO, USA). The 

following reagents were purchased as indicated: human VEGF165 from Calbiochem 

(Darmstadt, Germany); collagen type IV from BD Bioscience (Bedford, MA, USA); L-

NAME, ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one), DETA-NO (2,2′ 

(hydroxynitrosohydrazono)bis-ethanimine) and NAC (N-acetylcysteine) from Sigma 

Chemicals (St. Louis, MO, USA).  

 

Antibodies used were: rabbit polyclonals anti caspase-3, anti LC3, anti p62, anti p-Akt 

and anti p-eNOS (Cell Signaling Technology, Danvers, MA, USA), anti Bax, anti KRD and 

anti Nrf2 (Santa Cruz Biotechnology, Santa Cruz, CA, USA), and mouse monoclonals anti 
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Bcl-2, anti Lamin B (Santa Cruz Biotechnology, Santa Cruz, CA, USA), anti total eNOS, 

anti HIF-1α, anti total Akt (BD Transduction Laboratories, Franklin Lakes, NJ, USA) and 

anti β-actin (Sigma Chemicals, St. Louis, MO, USA).   
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Chronic treatment with L-NAME did not affect HUVEC vitality  

 

To characterize our model of endothelial dysfunction, we firstly analyzed the effects of 

chronic NO deprivation on the vitality of HUVECs. As shown in Figure 1A, we did not 

observe any variation in cell number and vitality evaluated by cell counting with the vital 

dye Trypan Blue. These results were confirmed by a crystal violet assay that did not 

show any significant difference between the number of control and chronically L-NAME 

treated cells (Figure 1B). In addition, long term L-NAME treatment did not induce 

caspase-3 cleavage (Figure 1C) which instead occurred when human ECs were exposed 

to high glucose (30 mM for 48 h), a condition known to be apoptotic for HUVECs 

(Baumgartner-Parzer et al., 1995). Also the expression of Bcl-2 and Bax, two well-known 

proteins involved in the regulation of apoptosis endowed with anti-apoptotic and pro-

apoptotic activity respectively, was not affected by L-NAME treatment (Figure 1D). 

Finally, apoptotic index and necrotic cell percentage quantified by annexin V-conjugated 

FITC and PI staining followed by FACS analysis did not show any difference between 

control and L-NAME treated cells (Table 1). We should therefore conclude that long term 

NO deprivation does not induce neither apoptosis nor loss of vitality in HUVECs.  
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Figure 1. Effects of chronic treatment with L-NAME on HUVEC vitality. (A) The vitality and number of 

control (CTRL, set at 100%) and L-NAME treated cells was evaluated by cell counting with the vital dye Trypan 

Blue; n=25. (B) The total number of control (CTRL, set at 100%) and L-NAME treated cells was measured by 

crystal violet staining; n=7. (C) Lysates of HUVECs treated for 48 h with 5 mM L-NAME or 30 mM glucose (high 

glucose, h-Glc) were separated by 12% SDS-PAGE and immunoblotted with an anti-caspase 3 antibody which 

recognized full length caspase-3 (35 kDa) and its large fragment resulting from cleavage (17 kDa). β-actin was 

used as a loading control. Shown is a representative blot of 2 comparable experiments. (D) Total cell lysates 

prepared as described in (C) were separated by SDS-PAGE and immunoblotted with anti Bcl–2 or anti Bax 

antibodies. β-actin was used as a loading control. Shown is a representative blot of 2 comparable experiments. 

 

 Control 48h L-NAME 

Apoptotic index 0.16±0.03 0.15±0.05 

Necrotic cell % 8.3±0.26% 4.1±0.21% 

 

Table 1. Effects of chronic treatment with L-NAME on HUVEC apoptosis and necrosis. Apoptotic index 

and necrotic cell percentage were quantified by annexin V-conjugated FITC and PI staining respectively, 

followed by FACS analysis in control and L-NAME treated HUVECs.  
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Migratory behavior of L-NAME treated HUVECs  

 

Since NO is strongly involved in angiogenic processes and EC migration, we investigated 

by chemotaxis assay the migratory properties of chronically NO deprived HUVECs. Long 

term treatment with L-NAME induced a significant increase in HUVEC migratory capability 

both in the absence and in the presence of chemotactic stimuli such as VEGF (25 ng/ml) 

(Figure 2A) and FBS (10%) (data not shown).  

 

To investigate whether the increased migratory behavior was due to a deficiency in cyclic 

GMP (cGMP) accumulation as a consequence of NO deprivation, we evaluated the effect 

of a 48-h treatment with the guanylate cyclase inhibitor ODQ on HUVEC migration. 

Despite the ability of both L-NAME and ODQ to significantly reduce cGMP levels in 

HUVECs (Figure 2B), long-term treatment with ODQ did not affect the motility of either 

basal or VEGF-stimulated cells (Figure 2A). These results suggest that blunting of the 

cGMP signaling pathway is not involved in the pro-migratory effect induced by NO 

depletion. 

 

Figure 2. The enhancement in HUVEC migration induced by L-NAME is independent of the cGMP 

pathway. (A) HUVECs were treated for 48 h with 5 mM L-NAME or 1 mM ODQ, and chemotaxis experiments 

were then performed using 25 ng/ml VEGF as attractants. Results are expressed as the number of migrating 

cells in the different experimental conditions. #p<0.001 vs basal migration in control cells (CTRL); §p<0.001 vs 

VEGF-induced migration in control cells; no significant differences between control and ODQ treated cells; One-

way ANOVA with Bonferroni’s test, n = 3. (B) cGMP accumulation in HUVECs treated for 48 h with L-NAME or 

ODQ was evaluated by EIA and expressed as pmol of cGMP normalized to the cell protein content (pmol/mg 

protein). ***p<0.001; One-way ANOVA with Bonferroni’s test; n = 3. 
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Effects of chronic L-NAME treatment on eNOS, VEGF and KDR expression in 

HUVECs  

 

To evaluate if a rebound increase in eNOS expression induced by chronic NO deficiency 

might be responsible for the enhanced motility observed in L-NAME treated cells, we 

analyzed by RT-qPCR and western blot the expression of eNOS mRNA and protein in 

control and L-NAME treated HUVECs. Surprisingly, we found a significant decrease in 

eNOS protein expression (by 48±5%) (Figure 3A) in NO deprived cells that was not 

however accompanied by a parallel reduction in mRNA expression (Figure 3B).  These 

results suggest that chronic inhibition of eNOS might cause an increased degradation of 

the enzyme and/or impairment of the translation of its mRNA. 

 

 

 

Figure 3. Effect of L-NAME treatment on eNOS expression. (A) Densitometric analysis of eNOS protein 

expression. ***p<0.001; t test; n = 11. Inset: a representative blot out of eleven is shown. Total eNOS protein 

was evaluated by western blotting on lysates prepared from control cells (lane 1) or from 48 h L-NAME treated 

cells (lane 2). β-actin was used as a loading control. (B) eNOS RNA levels were measured by RT-qPCR and 

normalized to the level of the housekeeping gene 18S. No significant differences between control and L-NAME 

treated cells; t test, n = 3. 

 

VEGF through its tyrosine kinase receptor KDR is the main growth factor acting on ECs. 

Therefore, we investigated if chronic L-NAME treatment might affect the expression of 

VEGF and KDR, thus potentiating migration via an autocrine mechanism. RTqPCR 

analysis showed an increase in the expression of both VEGF and KDR mRNA (1.91±0.2 

and 1.79±0.2 fold, respectively) in L-NAME treated cells compared to control cells (Figure 

4A). The increased expression of VEGF and KDR mRNAs were also confirmed for the 
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corresponding proteins. The quantitative measurements of VEGF by means of an ELISA 

assay showed a 1.7-fold increase in the amount of VEGF secreted from L-NAME treated 

cells in comparison to untreated cells (Figure 4B). Similarly, a biochemical analysis on 

HUVEC lysates demonstrated a 1.8-fold increase in KDR protein expression in chronically 

NO-deprived HUVECs compared to untreated cells (Figure 4C). These findings are 

suggestive for the establishment of an autocrine loop sustained by the increased 

endogenous production of VEGF that through its receptor KDR could finally enhance cell 

migration. 

 

 

Figure 4. Effects of L-NAME treatment on VEGF and KDR expression. (A) VEGF and KDR mRNA levels 

were measured by RT-qPCR and normalized to the level of the housekeeping gene 18S. **p<0.01 vs control 

cells (CTRL); t test; n = 6-4 for VEGF and KDR, respectively. (B) VEGF protein levels were detected by ELISA 

measurement in conditioned media collected from control or 48 h L-NAME treated cells. Results are expressed 

as pg of VEGF normalized to the cell protein content (pg/mg protein). **p<0.01; t test; n = 3. (C) KDR protein 

was visualized by western blot after immunoprecipitation with KDR antibodies of HUVEC lysates obtained from 

control (lane 1) or from 48 h L-NAME treated cells (lane 2). An aliquot of total cell lysates was immunoblotted 

with β-actin antibodies as a control (input). Shown is a representative blot of 2 comparable experiments. 
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Effects of chronic L-NAME treatment on VEGF-induced signaling pathways in 

HUVECs 

 

A major VEGF-induced signaling pathway involved in the control of HUVEC migration 

depends on the activation of phosphatidylinositide 3-kinase (PI3-K) that through the 

phosphorylation of its downstream kinase AKT activates eNOS by phosphorylation on Ser 

1177. To verify if chronic NO deprivation might affect VEGF-induced PI3-K/AKT/eNOS 

pathway, the phosphorylation state of AKT and eNOS after a 5-min stimulation with VEGF 

(25 ng/ml) was assessed by western blot in control and L-NAME treated HUVECs. As 

shown in Figure 5, we observed an increase in eNOS and AKT phosphorylation in VEGF-

treated control cells (lane 2), as expected. On the other hand, basal levels of eNOS and 

AKT phosphorylation were already increased in L-NAME treated cells (see lane 3 vs lane 

1), and VEGF stimulation was not able to induce any further phosphorylation (lane 4). A 

densitometric analysis confirm that basal eNOS and AKT phosphorylation were 3.4±0.9 

and 1.6±0.2 times greater respectively in L-NAME treated cells in comparison to 

untreated cells. In conclusion, these data support the hypothesis that L-NAME chronic 

treatment activates the VEGF/KDR system in HUVECs, thus enhancing basal and VEGF-

stimulated migration. 

 

 

 

Figure 5. Effects of chronic L-NAME treatment on VEGF-induced signaling pathways in HUVECs. 

Control cells (lanes 1 and 2) or 48 h L-NAME treated cells (lanes 3 and 4) were stimulated for 5 min with 25 

ng/ml VEGF. Aliquots of cell lysates were separated by 10% SDS-PAGE and immunoblotted with the indicated 

antibodies. β-Actin was used as a loading control. Shown is a representative blot of 4 comparable experiments. 
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Chronic deprivation of NO induces nuclear accumulation of HIF-1α in HUVECs 

 

The increase in VEGF production and cell motility is one of the typical events that occur in 

cancer cells during hypoxia, and are related to the nuclear accumulation and activation of 

the transcription factor Hypoxia Inducible Factor 1α (HIF-1α). HIF-1α also plays a major 

role  in ECs where its activation crucially regulates the transcription of genes encoding for 

angiogenic factors such as VEGF (Namiki et al., 1995). We therefore analyzed by western 

blot HIF-1α levels in nuclei of 48-h L-NAME treated HUVECs. Interestingly, we observed a 

significant accumulation of nuclear HIF-1α (5.5±1.6 fold over the basal level) in NO 

deprived HUVECs compared to control cells (Figure 6A). Moreover, the nuclear 

accumulation of HIF-1α seemed to be dependent on a stabilization of the protein and not 

on an increased transcription. Indeed, RTqPCR experiments showed that L-NAME 

treatment did not induce any significant increase in the levels of HIF-1α mRNA (1.21±0.1 

fold over control cells) (Figure 6B). All together, these findings suggest that chronic L-

NAME treatment induces a pseudo-hypoxic state in HUVECs i.e. the nuclear accumulation 

of HIF-1α under normoxic conditions.  

 

 

 

Figure 6. L-NAME treatment induces HIF-1a nuclear accumulation in HUVECs. (A) Densitometric 

analysis of nuclear HIF-1α protein levels. *p<0.05; t test; n = 4. Insert: a representative blot out of 4 is 

shown. HIF-1α protein levels were detected by western blotting of nuclear extracts from control HUVECs (lane 

1) or from HUVECs treated with L-NAME for 48 h (lane 2). HIF-1α migrates as a doublet with apparent 

molecular weight of 118 and 120 kDa.  (B) HIF-1α RNA levels were measured by RT-qPCR and normalized to 

the level of the housekeeping gene 18S. No significant differences between control and L-NAME treated cells; t 

test; n=3. 
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To directly correlate the nuclear accumulation and transcriptional activity of HIF-1α to the 

late effects observed in chronically deprived NO HUVECs i.e. increased VEGF production 

and cell motility, we transfected control and L-NAME-treated cells with a plasmid 

expressing a dominant negative form of the HIF-1β subunit (∆ARNT), which maintain the 

capacity of forming heterodimer but cannot bind DNA (Tacchini, De Ponti, Matteucci, 

Follis, & Desiderio, 2004; Tacchini, Gammella, De Ponti, Recalcati, & Cairo, 2008). As 

shown in Figures 7A and B, transfection with ∆ARNT totally blunted both the increase in 

VEGF production and cell motility that we previously observed in L-NAME treated 

HUVECs. These results confirmed the central role of HIF-1α in the regulation of VEGF 

expression and of the consequent increased migration induced by long-term L-NAME 

treatment. Interestingly, the decrease in eNOS protein expression that we observed in L-

NAME treated HUVECs (see Figure 3A) was maintained in the presence of ∆ARNT (Figures 

7C and D) demonstrating that this late effect induced by NO deprivation was independent 

of the transcriptional activity of HIF-1α.  
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Figure 7. The block of the transcriptional activity of HIF-1a reverts L-NAME-induced VEGF secretion 

and cell migration but not the decrease in eNOS protein expression. (A) VEGF protein levels were 

detected by ELISA measurement in conditioned media collected from HUVECs transfected with the empty vector 

(pcDNA3) or with the expression vector ∆ARNT, and treated with L-NAME for the 48 h following transfection. 

Results are expressed as pg of VEGF normalized to the cell protein content (pg/mg protein). **p<0.01 vs 

untreated cells transfected with pcDNA3; ***p<0.001 vs L-NAME treated cells transfected with pcDNA3; One-

way ANOVA with Bonferroni’s test; n=3. (B) HUVECs were transfected with pcDNA3 or ∆ARNT, and treated with 

L-NAME for the 48 h following transfection, when indicated. Chemotaxis experiments were then performed 

using 25 ng/ml VEGF as attractant. Results are expressed as the number of migrating cells. #p<0.001 vs basal 

migration in untreated pcDNA3 cells; §p<0.001 vs VEGF-induced migration in untreated pcDNA3 cells; 

***p<0.001 vs basal migration in pcDNA3 cells treated with L-NAME; °°°p<0.001 vs VEGF-induced migration 

in pcDNA3 cells treated with L-NAME; no significant differences between untreated pcDNA3 and ∆ARNT 

transfected cells and between untreated and L-NAME treated ∆ARNT tranfected cells; One-way ANOVA with 

Bonferroni’s test, n=10. (C) Total cellular lysates obtained from HUVECs transfected with pcDNA3 or ∆ARNT 

and treated with L-NAME for the following 48 h were separated by SDS-PAGE and immunoblotted with the 

indicated antibodies. (D) Densitometric analysis of eNOS protein levels normalized to β-actin which was used 

as a loading control.  ***p<0.001 vs the corresponding untreated cells (CTRL); no significant differences 

between both untreated and L-NAME treated pcDNA3 and ∆ARNT transfected cells; One-way ANOVA with 

Bonferroni’s test; n=3. 
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The NO-donor DETA-NO reverts the effects of L-NAME treatment on HIF-1α 

stabilization and VEGF expression 

 

To understand whether the effects observed in HUVECs after L-NAME treatment depend 

on chronic NO deprivation, we restored physiologic NO levels by using the long lasting 

NO donor DETA-NO (500 nM). The treatment with the donor was performed for the last 

24 h of incubation. The results showed that DETA-NO completely reverted the effects of 

long-term L-NAME treatment on HIF-1α stabilization (Figure 8A) and on the consequent 

increase in VEGF mRNA expression and cell migration (Figures 8B and C). Moreover, 

DETA-NO also reverted the decrease in eNOS expression induced by the treatment with 

L-NAME (Figure 8A).   
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Figure 8. The NO donor DETA-NO reverts the effects induced by L-NAME on HIF-1α stabilization, 

VEGF and eNOS expression, and cell migration. (A) HIF-1α protein levels were detected by western 

blotting of nuclear extracts from HUVECs treated for 48 h with 5 mM L-NAME in the absence or in the presence 

of 500 nM DETA/NO for the last 24 h, as indicated. An aliquot of total cell lysates was immunoblotted with anti 

eNOS antibodies, and with anti β-actin antibodies as loading control. A representative blot of 3 comparable 

experiments is shown. (B) VEGF mRNA levels were measured by RT-qPCR and normalized to the level of the 

housekeeping gene 18S. *p<0.05 vs control cells (CTRL); **p<0.01 vs L-NAME treated cells; no significant 

differences between control and DETA/NO treated cells; One-way ANOVA with Bonferroni’s test; n = 3. (C) 

HUVECs were treated with L-NAME and/or DETA/NO as described in (A). Chemotaxis experiments were then 

performed using 25 ng/ml VEGF as attractants. Results are expressed as the number of migrating cells. 

#p<0.001 vs basal migration in control cells (CTRL); §p<0.01 vs VEGF-induced migration in control cells; 

***p<0.001 vs basal migration in L-NAME treated cells; °°°p<0.001 vs VEGF-induced migration in L-NAME 

treated cells; no significant differences between control and DETA/NO treated cells; One-way ANOVA with 

Bonferroni’s test, n = 15. 
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Silencing of eNOS mimics the effects of chronic L-NAME treatment in HUVECs 

 

To verify if the effects observed in L-NAME treated HUVECs were due to the specific 

inhibitory effect of the drug on enzyme activity, we silenced the expression of eNOS by 

RNA interference (siRNA). HUVEC transfection with eNOS siRNA induced a significant 

reduction in eNOS protein expression (by 70±0.1%) in comparison to cells transfected 

with control siRNA (Figure 9A). In agreement with the results obtained in L-NAME treated 

cells, eNOS silenced cells showed nuclear accumulation of HIF-1α (Figure 9B) and an 

increased production of VEGF protein (Figure 9C) that were instead absent in control 

siRNA transfected cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



85 

 

 

 

 

 

Figure 9. Effect of eNOS silencing on HIF-1α accumulation and VEGF secretion. (A) Characterization of 

HUVECs transfected with eNOS siRNA: densitometric analysis of eNOS protein expression where eNOS protein 

levels were normalized to β-actin protein. ***p<0.001; t test; n = 4. Inset: representative blots of eNOS 

protein in cells transfected with control (ctrl) or eNOS siRNA. (B) HUVECs were transfected with control (lane 

2) or eNOS siRNA (lane 3), and HIF-1α protein was detected by western blotting on the corresponding nuclear 

extracts. In lane 1, nuclear extracts from untransfected cells. An aliquot of total cell lysates was immunoblotted 

with anti eNOS antibodies to check silencing, and with anti β-actin antibodies as loading control. A 

representative blot of 2 comparable experiments is shown. (C) VEGF protein levels were detected by ELISA 

measurement in conditioned media collected from HUVECs 48 h after transfection with control or eNOS siRNA. 

Results are expressed as pg of VEGF normalized to the cell protein content (pg/mg protein). *p<0.05; t test;   

n = 3. 
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Acute treatment with L-NAME induces ROS generation in HUVECs 

 

In the attempt to elucidate the mechanism(s) responsible for HIF-1α stabilization in 

chronic NO-depleted HUVECs, we investigated the role of Reactive Oxygen Species 

(ROS). ROS were indeed proposed as one of the putative mechanism responsible for HIF-

1α stabilization in normoxia through their ability to block the activity of PHDs, the 

enzyme family responsible for HIF-1α degradation (Pagé, Chan, Giaccia, Levine, & 

Richard, 2008; Patten et al., 2010). Furthermore, ROS are involved in the pathogenesis 

and progression of endothelial dysfunction and cardiovascular diseases. As a matter of 

fact, the acute exposure to L-NAME (5 mM) induced in HUVECs a rapid increase in cell-

associated fluorescence (1.78±0.18 fold over the control) that was prevented by the pre-

treatment with the well-known antioxidant N-Acetil-Cysteine (NAC, 5mM), as expected 

(Figure 10A). In the absence of L-NAME, the treatment with NAC did not significantly 

modify the intracellular amount of ROS. Importantly, the L-NAME-induced burst in ROS 

production was transient, and was followed by a fast decrease in cellular ROS content 

that returned to baseline levels about 2 hours after L-NAME addiction (Figure 10B).  
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Figure 10. L-NAME acutely induces ROS generation in HUVECs. (A) HUVECs were loaded for 30 min with 

10 µM CM-DCFA before treatment with 5 mM L-NAME. Where indicated, cells were pretreated for 1 h with 5 mM 

NAC. Fluorescence was detected 10 min after L-NAME addition. Results are expressed as arbitrary units of 

fluorescence (A.U.). The presence of NAC significantly reduced the L-NAME induced ROS generation. *p<0.05 

vs control cells (CTRL) in the absence of NAC; ••p<0.01 vs L-NAME treated cells in the absence of NAC; no 

significant differences between untreated or NAC treated CTRL cells; Two-way ANOVA with Bonferroni's test, 

n=9–11. (B) HUVECs were loaded with CM-DCFA and treated with L-NAME as in (A), and fluorescence was 

recorded at the indicated times. Results are expressed as in (A). **p<0.01, ***p<0.001 vs the corresponding 

untreated cells (CTRL); t test, n=3–5. 
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Relationship between L-NAME-induced acute ROS formation and  L-NAME late 

effects in HUVECs 

 

Firstly, we focused our attention on the role of acute ROS production on the nuclear 

accumulation of HIF-1α. To this purpose, we analyzed by western blot nuclear extracts 

prepared from HUVECs chronically treated with L-NAME in the absence or in the presence 

of NAC. As shown in Figures 11A and B, the L-NAME-induced HIF-1α accumulation was 

only partially reduced (by 45±6.4%) in the presence of the antioxidant, suggesting that 

other still unknown mechanism(s) might participated to HIF-1α stabilization in chronically 

NO deprived HUVECs. Despite the significant decrease in HIF-1α nuclear levels, the 

treatment with NAC did not modify the enhanced migratory properties shown by L-NAME 

treated cells (Figure 11C),  arguing against the involvement of ROS in the establishment 

of the pro-migratory phenotype induced by chronic NO deprivation.  The independence of 

the L-NAME-induced increase in cell migration from acute ROS generation was supported 

by the observation that the drug was continuously required during the 48 h of treatment 

to exert its promoting effect on cell motility. Indeed, as shown in Figure 11D, migration 

was unaffected when the L-NAME containing medium was replaced after the first hour of 

treatment (corresponding to the time span where the drug-induced ROS levels remain 

significantly higher if compared to control values) with an L-NAME-free medium for the 

subsequent 47 h. Finally, also the reduction in eNOS protein expression observed in 

HUVECs chronically treated with L-NAME was not affected by the presence of NAC 

(Figures 11E and F).  

All these results suggest that ROS generation does not play a crucial role in establishing 

the phenotype observed in chronically NO-deprived cells. 
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Figure 11. Effects of NAC on late responses induced by L-NAME treatment. (A) HIF-1α protein levels 

were detected by western blotting of nuclear extracts obtained from HUVECs treated for 48 h with 5 mM L-

NAME in the absence (lane 2) or in the presence (lane 4) of 5 mM NAC. Lanes 1 and 3: untreated and NAC 

treated cells, respectively. The antioxidant was added 1 h before L-NAME treatment. (B) Densitometric analysis 

of nuclear HIF-1a protein levels normalized to lamin B which was used as a loading control. ***p<0.001 vs 

control cells (CTRL) in the absence of NAC; *p<0.05 vs L-NAME treated cells in the absence of NAC; no 

significant differences between untreated or NAC treated CTRL cells; Two-way ANOVA with Bonferroni's test, 

n = 3. (C) Chemotaxis experiments were performed using 10% FBS as attractant on HUVECs treated for 48 h 

with 5 mM L-NAME in the absence or in the presence of 5 mM NAC, as indicated. Results are expressed as the 

number of migrating cells. The presence of NAC did not significantly affect the L-NAME induced migratory 

response. ***p<0.001 vs control (CTRL) or NAC treated cells in the absence of L-NAME; no significant 

differences between untreated or NAC treated CTRL cells; Two-way ANOVA with Bonferroni's test, n = 10. (D) 

HUVECs were treated with L-NAME for 48 h (checked bar) or for 1 h only (grey bar), and chemotaxis 
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experiments were performed 47 h later as described in (B). ***p<0.001 vs CTRL; One way ANOVA with 

Bonferroni's test, n = 15. (E) Total cellular lysates obtained from HUVECs pretreated for 1 h with NAC (5 mM) 

before a 48-h incubation in the presence of L-LAME (5 mM) were separated by SDS-PAGE and immunoblotted 

with the indicated antibodies. (F) Densitometric analysis of eNOS protein levels normalized to β-actin which 

was used as a loading control.  ***p<0.001 vs control cells (CTRL) in the absence of NAC; #p<0.001 vs NAC 

treated cells in the absence of L-NAME; no significant differences between untreated or NAC treated CTRL cells; 

Two-way ANOVA with Bonferroni's test, n = 3. 

 

 

Chronic treatment with L-NAME induces an adaptive antioxidant status in 

HUVECs 

 

When ROS levels were assessed at the end-point of all experiments i.e. after 48 h of L-

NAME treatment, we observed a significant decrease of about 50% in cellular ROS 

content in chronically NO-deprived HUVECs compared to control cells (Figure 12A).  In 

the attempt to explain this observation, we focused our attention on the expression and 

activity of SOD-2 (Superoxide Dismutase-2), the major antioxidant defense system 

acting against ROS at the vascular level. RT-qPCR analysis demonstrated that the 

expression of SOD-2 mRNA was significantly increased in chronic L-NAME treated cells 

(Figure 12B) and was accompanied by an enhancement in its enzymatic activity (Figure 

12C).  Interestingly, also the expression of catalase, another well-known antioxidant 

enzyme, was increased by long term L-NAME treatment (2.6±0.2 fold). Catalase activity 

was not however modified by the treatment (3.6±0.3 and 3.6±0.6 mU/mg in control and 

L-NAME treated cells, respectively).  

The absence of cell damage by oxidative stress was confirmed by the HPLC measurement 

of malondialdehyde (MDA) levels that were unaffected by L-NAME treatment at all times 

tested (Figure 12D).  
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Figure 12. Chronic treatment with L-NAME reduces ROS content and increases SOD-2 expression 

and activity. (A) ROS content was evaluated by measurement of the cell-associated fluorescence in HUVECs 

treated for 48 h with L-NAME after loading with 10 µM CM-DCFA during the last 30 min of incubation. **p<0.01 

vs control cells (CTRL) (t test, n = 3). (B) SOD-2 mRNA levels were measured by RT-qPCR and normalized to 

the level of the housekeeping gene 18S. **p<0.01 vs control cells (CTRL) (t test; n = 3). (C) SOD activity was 

evaluated on the total cell lysates by a commercial kit following the manufacturer's instructions. Results are 

expressed as U/ml. **p<0.01 vs control cells (CTRL) (t test, n = 3). (D) MDA levels were detected by HPLC of 

supernatants obtained from HUVECs treated for the indicated times with 5 mM L-NAME. Results are expressed 

as pmol of MDA fold mg of total protein. No significant differences between control and L-NAME treated cells (t 

test; n =3). 
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A crucial role in the cellular adaptive response to oxidative stress is played by the 

transcription factor NF-E2-related factor-2 (Nrf2) that through its binding to Antioxidant 

Responsive Elements (AREs) located within the regulatory region of target genes 

activates the transcription of antioxidant enzymes such as SOD-2 and catalase (Ma, 

2013). To investigate the possible involvement of Nrf2 in the establishment of the 

antioxidant behavior observed in our model, we evaluated by western blot the amount of 

Nrf2 in nuclear extracts prepared from HUVECs chronically treated with L-NAME in the 

absence or in the presence of NAC. As shown in Figures 13A and B, we observed a 

significant nuclear accumulation of Nrf2 in L-NAME treated cells that was reduced in the 

presence of the antioxidant. It should be therefore possible to hypothesize a putative 

involvement of Nrf2 in the transcriptional activation of SOD-2 and catalase genes and in 

the maintenance of the redox homeostasis in chronically NO-deprived HUVECs. 

 

 

 

Figure 13. Chronic treatment with L-NAME induces nuclear accumulation of Nrf2. (A) Nrf2 protein 

levels were detected by western blotting of nuclear extracts obtained from HUVECs treated with 5 mM L-NAME 

for 48 h in the absence (lane 2) or in the presence (lane 4) of 5 mM NAC. Lanes 1 and 3: untreated and NAC 

treated cells, respectively. (B) Densitometric analysis of nuclear Nrf2 protein levels normalized to lamin B 

which was used as a loading control. **p<0.01 vs control cells (CTRL) in the absence of NAC; p*<0.05 vs L-

NAME treated cells in the absence of NAC; no significant differences between untreated or NAC treated CTRL 

cells; Two-way ANOVA with Bonferroni's test, n = 3. 
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Effects of chronic NO-deprivation on mitochondrial mass and activity in HUVECs 

 

It has been demonstrated that NO possesses a central role in mitochondrial biogenesis 

and function in various cell types (Nisoli et al., 2003; Nisoli et al., 2004).  For this 

reason, we investigated the effects of chronic NO deprivation on HUVEC mitochondrial 

mass and activity. We found a reduced amount of mitochondrial DNA (mtDNA) (by 

38±0.05%) in chronically L-NAME treated cells in respect to control cells (Figure 14A). 

Moreover, we also observed a decrease in the transformation of the metabolic indicator 

MTS (by 26±5%) (Figure 14B), suggestive of a reduced mitochondrial activity in NO-

deficient cells. This observation was supported by the measurement of ATP levels and 

oxygen consumption that were both reduced (by 25±7% and 25±6%, respectively) in L-

NAME treated cells (Figures 14C and D). Importantly, the decreases in mtDNA and ATP 

cellular levels were also observed in eNOS-silenced cells (Figure 14E and F). These 

results demonstrated for the first time the crucial role of NO in the maintenance of 

mitochondrial activities in ECs. 
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Figure 14. Effect of chronic NO deprivation on HUVEC mitochondrial mass and function. (A) 

Mitochondrial DNA (mtDNA) was quantified by RT-qPCR from control cells (CTRL) or from cells treated with L-

NAME for 48 h, and normalized to the level of the housekeeping gene 18S. **p<0.01; t test; n = 3. (B) 

Mitochondrial activity of control and L-NAME treated cells was evaluated by means of MTS. In parallel samples, 

the total cell number was measured by crystal violet staining. ***p<0.001 vs control cells (CTRL, set at 

100%); t test; n = 7. (C) Total cellular ATP levels were reduced by 25±7% after 48 h of 5 mM L-NAME 

treatment. **p<0.01 vs control cells (CTRL, set at 100%); t test; n = 8. (D) After L-NAME treatment, oxygen 

consumption was reduced by 25±6% in comparison to control cells. The values were normalized to the cell 

protein content. *p<0.05; t test, n = 3. (E) MtDNA was measured in HUVECs transfected for 48 h with control 

or eNOS siRNA. In silenced cells, mtDNA was reduced by 36±0.4%. **p<0.01; t test; n = 3. (F) Total cellular 

ATP content of HUVECs transfected for 48 h with control or eNOS siRNA was reduced by 45±9.7% in silenced 

cells. ***p<0.001; t test; n = 3. 
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We further investigated whether the reduction in mitochondrial activity could be 

dependent on the acutely L-NAME-induced ROS formation that we previously observed in 

HUVECs (Figure 10A). The treatment with NAC (5 mM) did not affect the reduction of ATP 

levels in chronically NO-deprived cells (Figure 15A), suggesting a lack of correlation 

between acute ROS generation and decreased ATP production. It was impossible to 

perform the MTS assay because of the interference of antioxidants with the mitochondrial 

succinate dehydrogenase activity on which the assay is based (Bruggisser, von Daeniken, 

Jundt, Schaffner, & Tullberg-Reinert, 2002). 

 

Having excluded ROS requirement for the establishment of mitochondrial dysfunction 

resulting from NO deprivation, we studied the possible involvement of HIF-1α by 

evaluating MTS and ATP levels in HUVECs transfected with ∆ARNT (the dominant 

negative form of HIF-1β subunit). The results shown in Figures 15B and C demonstrated 

that the decrease in mitochondrial activity and ATP levels were both maintained in ∆ARNT 

transfected cells, suggesting that the effects of NO-deprivation on mitochondria does not 

depend on L-NAME induced HIF-1α transcriptional activity.  
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Figure 15. L-NAME-induced metabolic dysfunction is independent of early ROS generation and HIF-

1α activity. (A) Total ATP content was measured in HUVECs treated for 48 h with L-NAME in the absence or in 

the presence of NAC (5 mM), as indicated. ***p<0.001 vs the corresponding untreated cells (CTRL); t test; n = 

4. Mitochondrial activity evaluated by the MTS assay (B) and total cellular ATP content  (C) were measured in 

HUVECs transfected with the empty vector pcDNA3 or with the expression vector ∆ARNT, and treated with L-

NAME for the 48 h following transfection. None: untransfected cells. ***p<0.001, **p<0.01 vs the 

corresponding untreated cells (CTRL); t test; n = 4. 
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Chronic NO deprivation did not induce autophagy in HUVECs 

 

It is well known that oxidative stress and hypoxia are key regulators of mitophagy i.e. 

the mechanism responsible for the elimination of damaged organelles to maintain 

mitochondrial quality.  Therefore, we tested the extent of autophagy in our cellular model 

characterized by NO deficiency, pseudo-hypoxia, ROS formation, and dysfunctional 

mitochondria. To this purpose, we evaluated the levels of  LC3 (Light Chain 3)-II and 

p62, two proteins widely used as markers of autophagy. We did not observed neither a 

decrease in LC3-II nor a reduction in p62 levels in chronically L-NAME treated cells 

(Figures 16A and B), even in the presence of concanamycin, a perforin inhibitor capable 

of stabilizing autophagolysosomes and slowing down their degradation (data not shown). 

The same results was obtained in eNOS silenced cells (Figures 16C and D), thus 

confirming the absence of autophagy in HUVECs chronically deprived of NO. The ability of 

HUVECs to undergo autophagy was confirmed by using a positive control represented  by  

amino-acid deprived cells where we observed a significant increase in both LC3-II protein 

levels and LC3-II/LC3-I ratio (Figure 16E and F), as expected. 

We can therefore conclude that chronic deprivation of NO induced by pharmacological or 

genetic inhibition of eNOS does not activate autophagic processes in HUVECs. 
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Figure 16. L-NAME treatment does not induce autophagy in HUVECs. Total cell lysates obtained from 

HUVECs treated for 48 h with L-NAME (A) or from HUVECs silenced for eNOS (C) were analyzed by western 

blot with anti-LC3 and anti-p62 antibodies. In (E), HUVECs were starved for 2 h in PBS alone (lane 2). Lane 1: 

control cells (CTRL). β-Actin was used as a loading control.  The LC3-I (18 kD) and LC3-II (16 kD) bands were 

quantified, and autophagy was reported as a variation in the ratio of LC3-II/LC3-I for each condition. No 

significant differences were detected between control (CTRL, open bar) and L-NAME treated cells (checked bar) 

(B) and between HUVECs transfected with control (CTRL, open bar) or eNOS siRNA (solid bar) (D); t test, n = 

3. In (F), the LC3-II/LC3-I ratio was significantly increased in PBS-treated HUVECs (vertical bar) in comparison 

to control cells (CTRL, open bar) **p<0.01; t test, n = 3. 
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Discussion 
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Nitric oxide (NO) is a central regulator of cardiovascular physiology. As a matter of fact, 

NO crucially contributes to vessel homeostasis and blood pressure control by inhibiting 

vascular smooth muscle contraction, platelet aggregation, and leukocyte adhesion to the 

endothelium. The main source of NO are endothelial cells (ECs) that constitutively 

express eNOS, the enzyme responsible for NO synthesis from L-arginine. Lack of NO is 

associated with endothelial dysfunction (ED), a pre-pathological condition coupled with 

almost all risk factors for atherosclerosis and more in general for cardiovascular diseases 

(Pober, Min, & Bradley, 2009). To better characterize the molecular mechanisms 

underlying its development, we set up an in vitro model of ED using human ECs 

chronically deprived of NO, thus mimicking ED environment. Chronic deficiency of NO 

was reached through both a pharmacological and genetic approach by using the eNOS 

inhibitor L-NAME or by silencing the enzyme, respectively. We demonstrated that chronic 

L-NAME treatment did not induce neither apoptosis nor necrosis in our in vitro model, 

thus permitting to attribute the obtained results to NO deprivation, and not to a drug-

induced toxicity.  

 

 A remarkable finding was the observation of a significant increase in the migratory 

capability of chronically NO-deprived HUVECs (Cattaneo et al., 2011). The enhancement 

in motility was present both in basal conditions i.e. in the absence of chemotactic stimuli, 

and in the presence of VEGF. It is well-known that VEGF is the main growth factor acting 

on ECs, thus stimulating their proliferation, migration, and finally angiogenesis (Morales-

Ruiz et al., 2000; Papapetropoulos et al., 1997). The effects of VEGF are mediated 

through the binding of the growth factor to its specific tyrosine kinase receptor KDR, and 

induces the activation of multiple intracellular signaling pathways. Among these 

pathways, the PI3-K/AKT/eNOS pathway is crucially involved in the control of EC motility 

(Morales-Ruiz et al., 2000). When we analyzed the levels of VEGF and KDR in NO 

deprived HUVECs, we found a significant increase in their expression, both at mRNA and 

protein level. Furthermore, L-NAME treated cells showed high levels of basal AKT and 

eNOS phosphorylation that were not further enhanced by VEGF stimulation. Collectively, 
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the increase in VEGF and KDR expressions and the concurrent finding of a “constitutive” 

activation of the AKT/eNOS axis suggest the presence of an activated VEGF/KDR system 

in chronically NO-deprived HUVECs. The enhancement in the  VEGF/KDR axis  might be 

therefore responsible for the establishment of an autocrine loop between the growth 

factor and its receptor, leading to an improved cell motility.  

 

 Soluble guanylyl cyclase (sGC) is the main downstream effectors of NO and 

mediates a wide range of physiological effects through elevation of intracellular cGMP 

levels (Dudzinski et al., 2006). Chronic treatment with L-NAME and the subsequent loss 

of NO is associated with a significant decrease in cGMP accumulation that however was 

not involved in the  pro-migratory effect induced by the drug. Cell motility was indeed 

unaffected when cGMP content was reduced by means of the GC inhibitor ODQ, thus 

excluding that the reduced activity of the pathway NO/cGMP is involved in the late effect 

of NO deprivation on cell migration. 

 

 An increased VEGF expression and cell motility are typically present in hypoxic 

cancer cells, due to the activation of the transcription factor HIF-1, that plays a central 

role in the transcriptional activation of genes encoding angiogenic factors (Rey & 

Semenza, 2010; Semenza, 2010).  Similarly, induction of VEGF expression has been 

described in ECs during hypoxia (Namiki et al., 1995). In chronically NO deprived 

HUVECs, we observed a significant nuclear accumulation of HIF-1α, due to the 

stabilization of the protein and not to an increased transcription of its encoding gene. 

This observation is quite interesting and suggests that chronic NO-deprivation causes the 

instauration of a pseudo-hypoxic state, i.e. a nuclear accumulation of HIF-1α in normoxic 

condition, which might be responsible for an adaptation of gene expression leading to an 

up-regulation of the members of the VEGF/KDR system. The direct correlation between 

HIF-1 transcriptional activity and VEGF expression was demonstrated by the experiments 

performed on cells transfected with ∆ARNT (a dominant negative form of HIF-1β subunit 

that blocks the transcriptional activity of  the factor) where the L-NAME-induced increase 
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in VEGF expression was totally blunted. Importantly, the transfection with ∆ARNT also 

reverted the increase in cell motility induced by long-term L-NAME treatment. These 

results confirm a direct correlation among HIF-1 transcriptional activity, VEGF production 

and increased migratory properties in NO-deprived cells.  The dependence on HIF-1 

transcriptional activity of both VEGF and migration enhancement further confirms the 

establishment of a pro-migratory autocrine loop involving the VEGF/KDR axis. However, 

some late effects observed in NO deprived HUVECs are not dependent on HIF-1 activity 

such as for example the reduction in eNOS protein expression and the metabolic effects 

of NO deprivation (that will be discussed later).  All these results suggest that the 

behavior observed in ECs chronically devoid of NO is the result of a complex network of 

interactions involving not only HIF-1 but also other different and still unknown pathways 

triggered by NO loss. 

 

 Importantly, to elucidate whether HIF-1α nuclear accumulation was directly 

correlated to NO deficiency, we used the NO-donor DETA-NO to restore the physiological 

levels of NO in L-NAME treated cells. The treatment with DETA-NO reverted the effects 

on HIF-1α accumulation and the increase in VEGF expression and migration, as expected. 

Moreover, the genetic block of eNOS induced HIF-1α accumulation and VEGF protein 

expression as observed in L-NAME treated cells. We can therefore conclude that the 

effects described in chronically NO-deprived HUVECs are strictly due to NO deficiency, 

and not to possible side effects of L-NAME treatment. 

 

 The complex relationships between NO and HIF-1α are subject of many recent 

studies (Berchner-Pfannschmidt, Tug, Kirsch, & Fandrey, 2010). In particular, NO may 

play a dual role in regulating HIF-1α function. In fact, it has been observed  a significant 

nuclear accumulation of HIF-1α in cells cultured in normoxic condition and in presence of 

a high concentrations of NO, being the latter induced by NO donors or by the expression 

of the inducible form of NOS (iNOS). On the contrary, under hypoxic conditions, i.e. when 

HIF-1a levels are already high, low physiological concentrations of NO seem to have the 
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opposite effect (Kimura et al., 2000; Mateo, García-Lecea, Cadenas, Hernández, & 

Moncada, 2003; Palmer, Gaston, & Johns, 2000; Sandau, Zhou, Kietzmann, & Brüne, 

2001). The effects of the gas under the latter conditions are similar to those observed 

here. Further underscoring the similarity, the involvement of sGC and cGMP in the low 

NO-induced reduction of HIF-1a was, like in our migration experiments, excluded 

(Sandau et al., 2001; Takabuchi et al., 2004). However, differently from the previously 

reported results, in our experiments ECs were not subjected to hypoxic conditions. On 

the basis of these observation, we might suppose that: (a) in ECs an higher 

concentration of O2 is necessary to prevent HIF-1α stabilization in comparison to other 

cell types; (b) basal NO production prevents the stabilization of HIF-1α which would 

otherwise occur under normoxic conditions. In this way, NO might act as a brake on 

migration, thus preventing inappropriate angiogenic response. 

 

 Searching for the molecular mechanism(s) connecting the lack of NO to the 

stabilization of HIF-1α, we focused our attention on Reactive Oxygen Species (ROS). ROS 

have been indeed proposed as one of the putative mechanism responsible for HIF-1α 

stabilization in normoxia through their ability to directly inactivates PHDs. Moreover,  

ROS are crucially involved in the pathogenesis and progression of ED as well as of other 

cardiovascular diseases. As a matter of fact, we observed a transient peak of ROS in 

HUVECs acutely treated with L-NAME, that was probably due to the eNOS uncoupling 

induced by the drug. This early increase in ROS levels is however only partially involved 

in HIF-1α nuclear accumulation and it is not required for the increased cell motility as 

demonstrated by the results obtained in the presence of NAC, an antioxidant that blocks 

ROS formation leaving unaffected cell motility. The involvement of acute effects of L-

NAME treatment on migration was also excluded by the results observed in cells treated 

with the drug for 1 hour only (the duration of the ROS peak) that did not show any 

significant increase in migratory capacity demonstrating that the drug was continuously 

required during the 48 h of treatment to exert its promoting effect on motility. These 

results suggest that the stabilization of HIF-1α depends only in part by acute ROS 
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generation and that other mechanisms depending on still unknown pathways triggered 

by NO loss participate to its activation. It should be possible to hypothesize the 

involvement of co-factors such as iron, ascorbate, and the Krebs cycle intermediate 2-

oxoglutarate (Pan et al., 2007), all required for the enzymatic activity of PHDs. 

Deficiency of NO might influence their intracellular availability, thus inhibiting PHD and 

causing HIF-1α accumulation. Obviously, we cannot exclude that other mechanisms, not 

directly related to PHD, might be involved in HIF-1α stabilization in normoxia during NO 

deficiency (Bilton & Booker, 2003). Importantly, the residual ROS-independent 

stabilization of HIF-1α is however enough to induce HIF-1α-dependent effects such as 

cell migration. 

 

 Interestingly, at the end-point of our experiments i.e. after 48 h of L-NAME 

treatment, we observed a significant decrease in cellular ROS content accompanied by an 

increase in both expression and activity of SOD-2 (Superoxide Dismutase-2), the main 

enzyme involved in redox homeostasis at the vascular level. These results suggest the 

establishment of an adaptive antioxidant status in NO-depleted HUVECs with the aim of 

protect cells from the concurrent presence of multiple risk factors i.e. NO loss and ROS 

generation. Several networks may lead to a cellular adaptive response to oxidative 

stress. One of the most important is the pathway dependent on serine/threonine AMP-

activated protein kinase (AMPK) (Fisslthaler & Fleming, 2009). Activation of AMPK by 

phosphorylation of Thr172 stimulates the transcriptional activity of FOXO3, which on its 

turn leads to an increased expression of various antioxidant enzymes, including SOD-2 

and catalase (Greer et al., 2007; Kops et al., 2002). In our in vitro model, we did not 

found however any significant increase in AMPK phosphorylation after both 

pharmacologically and genetically induced chronic NO deprivation (data not shown). We 

therefore focused our attention on the transcription factor NF-E2-related factor-2 (Nrf2) 

that through its binding to Antioxidant Responsive Elements (AREs) located within the 

regulatory region of target genes activates the transcription of antioxidant enzymes such 

as SOD-2 and catalase (Dong, Sulik, & Chen, 2008; Kaspar et al., 2009). As a matter of 
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fact, we found a significant Nrf2 accumulation in the nucleus of L-NAME-treated HUVECs 

that was totally prevented by the  pre-treatment with NAC. We should therefore 

hypothesize a putative involvement of Nrf2 in the transcriptional activation of SOD-2 and 

catalase genes and in the maintenance of the redox homeostasis in chronically NO-

deprived HUVECs. Importantly, this adaptive response seems to be dependent on the 

early burst in ROS formation acutely induced by L-NAME treatment.  

  

 The involvement of Nrf2 in the redox defense of ECs has been suggested by 

various recent papers. In particular, the protective role of Nrf2 has been proposed in 

different chemical, metabolic and physical stress conditions such as exposure to H2O2 and 

high glucose, glutathione depletion,  and fluid shear stress (Chen et al., 2006; Heiss, 

Schachner, Werner, & Dirsch, 2009; Speciale et al., 2011). Further experiments in Nrf2 

silenced HUVECs will be necessary to confirm the relationship between Nrf2 accumulation 

and the increase in SOD-2 and catalase expression observed in our in vitro model of ED. 

Moreover, it should be interesting to evaluate a possible correlation between HIF-1α and 

Nrf2 nuclear accumulation. The two transcription factors indeed share similar 

mechanisms of degradation dependent on PHD and Keap1 that address HIF-1α and Nrf2, 

respectively, to proteosomal degradation. We cannot therefore exclude that NO 

deprivation could affect the activity of the ubiquitin-proteosomal degradation system 

(UPS), thus favoring HIF-1α and Nrf2 nuclear accumulation (Chapple, Siow, & Mann, 

2012; Dreger et al., 2010).  A relationship among oxidative stress, mitochondrial 

dysfunction and UPS impairment has been for example described in neurodegenerative 

pathways  leading to Parkinson’s disease (Domingues et al., 2008). Moreover, a Nrf2-

dependent up-regulation of antioxidant enzymes has been described in ECs treated with 

proteosomal inhibitors (Dreger et al., 2010). 

 

 Finally, we observed a consistent decrease in mitochondrial DNA and activity in 

chronically NO depleted HUVECs.  The crucial role of NO in mitochondrial biogenesis and 

function has been demonstrated in different cell types and tissues (Nisoli et al., 2003; 



106 

 

Nisoli et al., 2004), and a decrease in mitochondrial mass have been previously described 

in the microvasculature of mice treated with L-NMMA for 1-2 months (Addabbo et al., 

2009). To our knowledge, the effect of NO deprivation for shorter times on mitochondrial 

function in ECs had not yet investigated. Our work demonstrated that HUVECs already 

respond to NO deprivation after 48 h of treatment, making them a useful model for the 

investigation of the effects of the gas on mitochondrial biogenesis and function. 

Furthermore, it should be highlighted that various recently published papers focus on the 

crucial role of mitochondrial damage and dysfunction in the patho-physiology of 

cardiovascular diseases (Addabbo et al., 2009; Kluge, Fetterman, & Vita, 2013; Yu, 

Mercer, & Bennett, 2012). Therefore, the presence of a reduced mitochondrial mass and 

activity in our NO-depleted HUVECs further validate our model as a suitable model able 

to recapitulate in vitro most of the aspects that contribute in vivo to the establishment 

and maintenance of ED.  

  

 Mitochondria are also the main source of cellular ROS, which are synthesized as a 

by-product of the respiratory chain (Turrens, 2003). At the same time, mitochondria 

themselves are very sensitive to oxidative stress, since ROS are able to damage 

mitochondrial DNA and membranes and to induce oxidative modifications of 

mitochondrial lipids and proteins, finally altering cellular bioenergetics. Despite the 

existence of this strong relationship between ROS and mitochondria, our results seem to 

rule out a possible involvement of ROS in the establishment of mitochondrial dysfunction 

in chronically NO deprived HUVECs. Similarly, we demonstrated that mitochondrial 

dysfunction was also independent of HIF-1α transcriptional activity, being unaffected by 

transfection with ∆ARNT. In addition, we considered the possibility that mitophagy i.e. a 

specialized form of autophagy that maintain mitochondrial quality by eliminating 

damaged organelles,  might play a role in mitochondrial dysfunction. Mitophagy has been 

observed during hypoxia and oxidative stress, where it plays an important role as 

homeostatic mechanism (Ashrafi & Schwarz, 2013; Lee et al., 2012; Liu et al., 2012). 
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Furthermore, NO itself plays a complex role in the regulation of autophagy (Sarkar et al., 

2011). 

Despite the presence of NO deprivation, HIF-1α accumulation, transient ROS formation 

and mitochondrial dysfunction,  we did not observe any modification in the levels of both 

LC3-II and p62 in cells deprived of NO. We cannot however exclude that a more 

extensive analysis of other and more specific markers for mitophagy and of mitochondrial 

shape and structure might reveal the execution of underestimated mitophagic processes 

in our cells. 

 

 In conclusion, our results show that NO deprivation induces complex modification 

in HUVECs’ physiology and behavior, as summarized in Figure 17. Chronic NO deprivation 

induces a nuclear accumulation of HIF-1α, which is on its turn responsible for the 

increases in VEGF and KDR expression and cell motility. HIF-1α nuclear accumulation is 

only partially due to the acute peak of ROS production following the acute addition of L-

NAME, while the increased cell migration is totally independent of early ROS generation 

suggesting that the residual ROS-independent HIF-1α stabilization might be sufficient to 

induce the increased migratory behavior. In addition, ROS formation was not required for 

the reduced eNOS expression and for the establishment of mitochondrial dysfunction. On 

the contrary, nuclear accumulation of Nrf2 depends on L-NAME-induced acute ROS 

formation and might account for the establishment of an antioxidant status in the 

attempt to neutralize any further cell damage induced by loss of NO. 
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Figure 17. Summary of the events observed in NO-deprived HUVECs. The persistent pharmacological block of 
eNOS induces in HUVECs both HIF-1α- dependent and independent effects 

 

 Future experiments are still required to fully characterized our in vitro model of 

ED. Nevertheless, it represents an useful system to study the effects of NO deprivation 

on ECs and to reveal the complex molecular mechanisms underlying ED. Further studies 

will allow to identify new pharmacological targets and/or markers for the prevention or 

the treatment of ED, thus preventing its degeneration in most serious cardiovascular 

diseases such as atherosclerosis. To this purpose, the nuclear accumulation of HIF-1α 

might be considered an interesting pharmacological target. Indeed, it has been recently 

proposed a role for HIF-1α in cardiovascular diseases, based on the observation that HIF-

1 and the consequent increase of VEGF expression might possess a defensive function in 

the acute response to cardiovascular injuries (Loor & Schumacker, 2008; Ockaili et al., 

2005). On the contrary, a chronic stabilization of HIF-1 α might contribute to the 

establishment of the pro-inflammatory behavior accompanying ED development, as 
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shown in ApoE-/- mice, where an enforced expression of VEGF leads to a significant 

increase in plaque formation (Celletti et al., 2001). 

  

 Another remarkable result observed in our model is the nuclear stabilization of 

Nrf2. Nrf2 is now largely studied as an innovative therapeutic target both for its 

protective effect against oxidative stress (Dreger et al., 2009; Levonen et al., 2007) and 

for its ability to inhibit inflammatory responses via suppression of NF-kB pathway. In 

addition, Nrf2 might also prevent neointimal thickening by inhibiting proliferation and 

growth of smooth muscle cells (Hurttila et al., 2008) and up-regulate the expression and 

activity of heme-oxygenase 1 (HO-1) that mediates VEGF-induced tissue repair (Loboda 

et al., 2008). For these reasons, Nrf2 stimulation might be able to restore cellular redox 

homeostasis in cardiovascular diseases (stroke, atherosclerosis, but also diabetes) and in 

aging process, improving vitality and well-being of ECs. Currently, Nrf2-stimulating drugs 

such as Protadim (a mix of natural compound which could stimulate Nrf2 expression) are 

already employed, mainly to contrast aging. Despite promising results showing protective 

effects of Nrf2 in an in vivo model of ischemia/reperfusion (Calvert et al., 2009), there 

are however other studies describing expression-dependent properties of Nrf2 in a 

murine model of atherosclerotic plaque formation such as the ApoE-/- mice (Barajas et al., 

2011; Sussan et al., 2008). These results show that in the double knock-out ApoE-/-/Nrf2-

/- mice the total absence of Nrf2 expression resulted in decreased atherosclerotic lesions, 

while the partial Nrf2 deficiency present in the ApoE-/-/Nrf2+/-mice did not influence 

atherogenesis. Very importantly, the reduced development of aortic plaques in ApoE-/-

/Nrf2-/- animals was significantly higher in male mice compared to female mice, thus 

showing a critical dependence on sex of the observed effects. Interestingly, it should be 

mentioned that preliminary results suggest that male and female HUVECs differently 

respond to chronic NO deprivation in our in vitro model of ED. These remarkable findings 

are beyond the aims of the present PhD project and will be subject of further 

investigations in the lab. 
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