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The characteristic feature of Alzheimer’s disease (AD) is the presence of extracellular amyloid-beta 

(Abeta) plaques, which are surrounded by activated microglial cells.  Microglial cells during the long 

course of the disease can induce neuroinflammation and drive neurodegeneration. Recent evidence 

indicates that neuroinflammation negatively co-relates with cognitive state in AD. Furthermore it’s 

well accepted now that soluble pre-fibrillar Abeta species, rather than insoluble fibrils, are the most 

toxic forms of Abeta. This hypothesis is supported by the fact that plaque load reaches plateau 

before the clinical onset of AD. 

 We investigated whether membrane microvesicles (MVs) released extracellularly by reactive 

microglia may contribute to AD degeneration. We found that production of myeloid MVs is strikingly 

high in AD patients and in subjects with mild cognitive impairment, and that AD MVs are toxic for 

cultured neurons.  We demonstrated the mechanism responsible for MV neurotoxicity in vitro, using 

MVs produced by primary microglia. We found that MV lipids can promote formation of soluble Aβ 

species from extracellular insoluble aggregates. Moreover we showed that MVs can be carriers of 

neurotoxic Aβ forms that are trafficked to MVs after internalization into microglia. Neurotoxicity of 

MVs was neutralized by the Aβ interacting protein PrP and anti- Aβ antibodies, which prevented 

binding to neurons of neurotoxic soluble Aβ species. Finally, administration of the MV shedding 

inhibitor FTY720 for a period of 6 weeks significantly improved memory performance and reduced 

brain inflammation in APP/PS1 mice. This study identifies microglial MVs as a novel mechanism by 

which reactive microglia contribute to AD degeneration and suggests that FTY720, by inhibiting MV 

shedding can ameliorate the pathophisiology and cognitive defects in a mouse AD model. 

 

 

 

 

                                                                                       1.  SUMMARY 
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2.1 Alzheimer’s disease and its pathology. 

Alzheimer's disease (AD) is the leading cause for dementia in the world.  It is an age-related 

neurodegenerative disorder that affects 7% of people older than 65 years and about 40% of people 

older than 80 years (Glass CK, et al., 2010). In 2010, 36 million people suffered from AD and it has 

been estimated that every year this number increases by 7.7 million patients (Werner P, et al., 

2012). The neuropathological changes of AD has both positive and negative features. Classical 

positive lesions consist of abundant amyloid plaques and neurofibrillary tangles, neuropil threads, 

and dystrophic neurites containing hyperphosphorylated tau (Terry RD, et al., 1991; Mandelkow and 

Mandelkow, 1998; Trojanowski and Lee, 2000; Iqbal and Grundke-Iqbal, 2002; Crews and Masliah, 

2010), that are accompanied by astrogliosis (Beach et al., 1989; Itagaki et al., 1989) and microglial 

cell activation (Rogers et al., 1988; Itagaki et al., 1989;Masliah et al., 1991). Sometimes Congophilic 

amyloid angiopathy (CAA) is also observed. In the hippocampus are also found unique plaque, which 

include Hirano bodies and granulovacuolar degeneration. Hirano bodies are eosinophilic rod-like 

cytoplasmic inclusion, relatively common in the stratum lacunosum of the hippocampal CA1 region 

in the elderly. In the AD patients the number of Hirano bodies is abnormally high (Gibson and 

Tomlison, 1977).  Neuronal loss and synapse loss largely parallel tangle formation, although whether 

tangles are causative of neuronal loss or synaptic loss remains uncertain (Gómez Isla, et al., 

1997; Iqbal and Grundke Iqbal, 2002; Bussière et al. 2003; Hof et al., 2003; Yoshiyama et al., 2007; 

Spires Jones, et al., 2008; de Calignon, et al., 2009, 2010; Kimura et al., 2010). 

                                      

Figure 2.1 Two main lesions in AD, senile plaques (SPs) and neurofibrillary tangles (NFTs). Two types of SP diffuse plaques 

with exracellular amyloid deposits and neuritic plaques consist of degenerating neuronal processes with tau paired 

helical filaments along with reactive astrocytes and microglia. (Alberto Serrano-Pozo, et al., 2011) 

Diffused Plaque Neurite Plaque Neurofibrillary Tangles 

                                                                               2.  INTRODUCTION              

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234452/#A006189C191
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234452/#A006189C117
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234452/#A006189C117
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234452/#A006189C200
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234452/#A006189C77
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234452/#A006189C26
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234452/#A006189C26
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234452/#A006189C9
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234452/#A006189C78
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234452/#A006189C159
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234452/#A006189C78
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234452/#A006189C123
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234452/#A006189C46
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234452/#A006189C46
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234452/#A006189C51
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234452/#A006189C51
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234452/#A006189C77
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234452/#A006189C21
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234452/#A006189C69
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234452/#A006189C219
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234452/#A006189C221
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234452/#A006189C222
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234452/#A006189C223
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 2.2 Cellular metabolism of Amyloid precursor protein (APP). 

APP is a type I membrane protein and follows the conventional secretory pathway from the 

endoplasmic reticulum (ER) to the plasma membrane. During this process, APP undergoes several 

co-and post-translational modifications, including N-and O-glycosylation, tyrosine sulphation, and 

phosphorylation. Already on the way to the cell surface, APP can undergo endoproteolytic 

processing by secretases and soluble variants of APP are generated which are secreted 

extracellularly. The Aβ domain is located within APP at the junction between the intraluminal and 

transmembrane domains. Two enzymatic steps liberate Aβ from APP. In the first “β-cleavage” step, 

β-site APP-cleaving enzyme (BACE-1) (Vassar et al., 1999) cleaves APP at or near the N-terminus of 

the Aβ peptide; then, in the second, or “γ-cleavage” step, the membrane-bound C-terminal APP 

fragment (CTF) generated by BACE-1 is cleaved by the γ-secretase, a multimeric complex thought to 

be made up of an essential quartet of transmembrane proteins—presenilin 1 (or 2), nicastrin, 

anterior pharynx-defective phenotype 1 (APH-1) and PS-enhancer 2 (PEN-2) (Edbauer et al., 2003). 

Alternatively, APP can be subjected to the proteolytic cleavage by α-secretase, which occurs within 

the sequence of Aβ, thus precluding the formation of the amyloidogenic fragments. α-Secretase 

gives rise to the secretion of the neuroprotective sAPPα fragment and to a C-terminal stub that is 

then cleaved by γ-secretase. Thus APP is processed in two different catabolic pathways: a minor 

amyloidogenic pathway, in which APP is cleaved by β- and γ-secretases releasing Aβ peptide and a 

predominant (> 90%) non-amyloidogenic pathway in which the protein is successively cleaved by α- 

and γ-secretases precluding production of Aβ. APP after its synthesis in the endoplasmic reticulum 

is then transported through the golgi apparatus to the trans golgi network, where the highest 

concentrations of APP are found in neurons (Xu H, et al., 1997; Hartmann T, et al., 1997; Greenfield  

JP, et a.,1999). From there, APP can be transported in secretory vesicles to the cell surface where α-

secretases are located.   

The functions of the APP and its various metabolites is not yet clear, but there is a lot of literature 

that indicates its role in neurite outgrowth, synaptogenesis, neuronal trafficking along the axon, 

transmembrane signal transduction, cell adhesion, as well as in the control of gene expression and 

calcium metabolism, which is essential for synaptic transmission (Berridge, et al., 1998). Disruption 

of calcium homeostasis is considered the common pathway for aging and AD (Khachaturian, et al., 

1989). Amyloidogenic Aβ has been suggested to function as ion channel regulator and as a 

transcriptional activator (Ohyagi, et al., 2005; Pearson and Peers, 2006; Hardy, 2007; 

http://www.sciencedirect.com/science/article/pii/S0014299913005414#bib354
http://www.sciencedirect.com/science/article/pii/S0014299913005414#bib83
http://onlinelibrary.wiley.com/doi/10.1111/jnc.12239/full#jnc12239-bib-0011
http://onlinelibrary.wiley.com/doi/10.1111/jnc.12239/full#jnc12239-bib-0048
http://onlinelibrary.wiley.com/doi/10.1111/jnc.12239/full#jnc12239-bib-0067
http://onlinelibrary.wiley.com/doi/10.1111/jnc.12239/full#jnc12239-bib-0071
http://onlinelibrary.wiley.com/doi/10.1111/jnc.12239/full#jnc12239-bib-0035
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Bailey et al., 2011).  Indeed APP intracellular domain (AICD) is able to regulate transcription of 

several genes, including APP itself, the β-secretase BACE-1 and the Aβ-degrading enzyme neprilysin 

(Cao and Sudhof, 2001; Pardossi Piquard, et al., 2005; Müller et al., 2007; Belyaev et al., 2009, 2010). 

 

 

                                                                                                                                       

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3 Amyloidgenic pathway of Abeta . 

Generally, amyloid refers to misfolded peptides or proteins that demonstrate a stable, cross-beta 

super-secondary structure that renders the proteins insoluble, fibrous-like, and resistant to 

proteolysis. Each type of amyloidosis is classified according to clinical signs and the main peptide or 

protein that constitutes the amyloid fibrils. Amyloidosis deposits contain not only fibrils but also 

Figure2.2 The amyloidogenicand non-amyloidogenic pathways of amyloid precursor protein (APP) processing and its 
metabolites. Ab, amyloid b-peptide; sAPPa and sAPPb, N-terminal shed ectodomains of APP; CTFa and CTFb, C-terminal 
fragments of APP produced by the actions of a- or b-secretases, respectively; AICD, APP intracellular domain; p3, 
fragment of APP after cleavage by a- and c-secretases; NEP, neprilysin. (J.-N. Octave et al. 2013) 

http://onlinelibrary.wiley.com/doi/10.1111/jnc.12239/full#jnc12239-bib-0003
http://onlinelibrary.wiley.com/doi/10.1111/jnc.12239/full#jnc12239-bib-0017
http://onlinelibrary.wiley.com/doi/10.1111/jnc.12239/full#jnc12239-bib-0070
http://onlinelibrary.wiley.com/doi/10.1111/jnc.12239/full#jnc12239-bib-0060
http://onlinelibrary.wiley.com/doi/10.1111/jnc.12239/full#jnc12239-bib-0007
http://onlinelibrary.wiley.com/doi/10.1111/jnc.12239/full#jnc12239-bib-0008
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nonfibrillar components such as glycosaminoglycans (GAGs), apolipoprotein E (apoE), and serum 

amyloid P (SAP) components. 

 Aβ is an aggregated protein deposited within plaque cores found in AD brain. The Aβ monomers 

are generated in most of the body's cells, including vascular endothelial cells (Kitazume S, et al., 

2010) thyroid epithelial cells (Schmitt TL, et al., 1995) and neuronal and nonneuronal cultured cells. 

However, neuronal cells seem to generate greater amounts of Aβ than other cell types (Fukumoto 

H, et al., 1999). In its monomeric form, this protein is harmless (Giuffrida ML, et al., 2010). 

Aβ monomers form a random coil or α helix conformation transmitted to a β hairpin. This structure 

facilitates polymerisation reaction which triggers monomer polimerization to short, soluble, 

metastable intermediates called oligomers. Oligomers self can be rapidly extended by monomer 

addition to form curvilinear protofibrils. Finally, protofibrils are bundled together to form the large, 

insoluble, cross β-sheet fibrils which accumulate in plaques. Steps within the Aβ aggregation 

pathway are reversible, such that deposited fibrils could give rise to soluble oligomers and 

intermediates. Among Aβ peptides, Aβ 1-42 and pyroglutamate-modified Aβ very rapidly aggregate 

and initiate the complex multistep process that leads to mature fibrils and plaque (Schilling S, et al., 

2006; Bieschke J, et al., 2012).  

 

 

                                      Figure2.3 The Aβaggregation process.  N. Elizabeth Pryor, et al., 2011 

 

2.4 Oligomeric abeta and neurotoxicity. 

Recent evidence suggests that soluble aggregates of Aβ, rather than monomers or insoluble fibrils, 

are responsible for the cellular pathology associated with AD (Caughey B, et al., 2003; Glabe CG, 
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2006; Roychaudhuri R, et al., 2009). A lot of in vitro studies, done independently by different groups, 

showes that soluble aggregates, formed by synthetic Aβ1-40 and Aβ1-42, induce cellular dysfunction 

and toxicity in cultured cells (Lambert MP, et al., 1998; Gonzalez-Velasquez F.J., et al. 2008; Hartley 

DM, et al., 1999) whereas in vivo, Aβ dodecamers (Aβ-56) isolated from the brains of transgenic AD 

mice were shown to induce memory deficits (Lesne S, et al., 2006). Furthermore, soluble Aβ 

aggregates generated in cell culture drastically inhibit hippocampal long term potentiation in rats 

(Walsh DM, et al., 2002) while there is a poor correlation between the levels of insoluble Aβ fibrils 

and AD severity, in mouse models (Westerman M, et al.,2002). Thus, it is widely accepted that 

soluble Aβ oligomers rather than insoluble fibrils impair cognitive function. The toxicity of small 

soluble Aβ species has been proposed to depend on their interaction with specific neuronal 

proteins, such as the NMDA receptor (Snyder EM, et al.,2005) or the prion protein PrPC (Lauren J, et 

al.,2009), which modulates NMDA receptors through Fyn kinase (Um JW, et al.,2012). Alternatively, 

soluble Aβ oligomers may damage neurons by binding to multiple membrane components, including 

lipids, thereby changing membrane permeability and causing calcium ion leakage into the cell 

(Benilova, et al., 2012; Verdier Y, et al., 2004). 

 

2.5 Alzheimer’s Disease and genetics 

In less than 5% of the cases, AD is inherited as an autosomal dominant trait, and results from 

mutations in the APP gene or in the presenilin (PS) genes (Tanzi, et al., 1996; Hardy, 1997; Tanzi and 

Bertram, 2005) encoding PS1 or PS2, the catalytic subunits of the γ-secretase multiprotein complex 

(De Strooper,2003; Edbauer, et al., 2003). In these inherited AD cases, Aβ production is substantially 

enhanced and plays a key role in the etiology of the disease. Following the amyloid cascade 

hypothesis (Hardy and Selkoe, 2002; Goate and Hardy, 2012), accumulations of Aβ, especially an 

increased ratio of Aβ42: Aβ40, are the initial triggers for the disease process.  

ApoE is a major lipoprotein in the brain and mediates transport of cholesterol and other lipids 

between neurons and glial cells. Importantly, ApoE is also linked to the metabolism of Aβ by 

affecting its aggregation in and clearance from the brain. Inheritance of the apolipoprotein E 

(ApoE4) allele is the major genetic risk factor that is associated with late onset AD (Potter and 

Wisniewski, 2012). Several environmental factors are known as risk factors for Late onset AD 

including, aging, head trauma, type 2 diabetes, hypertension, hypercholesterolemia, and vascular 

pathology.  

http://onlinelibrary.wiley.com/doi/10.1111/jnc.12239/full#jnc12239-bib-0085
http://onlinelibrary.wiley.com/doi/10.1111/jnc.12239/full#jnc12239-bib-0034
http://onlinelibrary.wiley.com/doi/10.1111/jnc.12239/full#jnc12239-bib-0084
http://onlinelibrary.wiley.com/doi/10.1111/jnc.12239/full#jnc12239-bib-0019
http://onlinelibrary.wiley.com/doi/10.1111/jnc.12239/full#jnc12239-bib-0022
http://onlinelibrary.wiley.com/doi/10.1111/jnc.12239/full#jnc12239-bib-0037
http://onlinelibrary.wiley.com/doi/10.1111/jnc.12239/full#jnc12239-bib-0029
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 2.6 Inflammation and Neurodegeneration. 

Microglial cells, which are the resident macrophages of the CNS, play a crucial role in the process of 

neuroinflammation. Microglia have three different morphologies: resting, activated, and 

amoeboid/phagocytic. The healthy, non-inflamed brain contains almost entirely “resting” microglia 

which are highly ramified, with a small, static cell body, but with dynamic and branched processes 

actively surveying the brain parenchyma. In response to any brain alteration (cytokines and many 

signalling molecules produced during acute inflammation) microglia transform from a ramified to 

an activated phagocytic morphology, and start releasing pro-inflammatory mediators. During 

chronic neuroinflammation, these cells can remain activated for extended periods, releasing large 

quantities of cytokines and neurotoxic molecules, which contribute to long-term neuro-

degeneration (Liu and Hong, 2003).However recently it has become apparent that the microglial 

activation is a more dynamic and diverse process than it was considered previously. Indeed, 

depending on the type and duration of the stimulus that microglial cells receive from the brain 

microenvironment, microglia can acquire different functional state and change their phenotype 

during the disease progression. The two opposite phenotypes that microglia can acquire among 

different activation states are usually called M1 proinflammatory phenotype, and M2 phenotype. 

M1 (or classically activated) microglia are effector cells which produce an aggressive first-line 

immune response. M1 phenotype can be induced in vitro by exposure of microglia to interferon 

(IFN)-gamma and tumour necrosis factor α. M2 (or alternatively activated) microglia have instead 

roles in wound healing and in promoting tissue repair. M2 phenotype can be induced in vitro by 

exposure to anti-inflammatory cytokines, such as IL-4 and IL13. Microglia express the two classes of 

major histocompatibility complex, MHC class 1 and MHC class 2, and although these antigen 

presenters are mainly involved in the reaction to infectious disease, they are thought to play a role 

in the development of neuroinflammation (Al Nimer, et al., 2011). Depending on the pathology, 

different pathways contribute to inflammation processes activated in neurodegenerative diseases. 

Factors released from damaged neurons such as α-synuclein in PD, deposits of amyloid aggregates 

in AD, and SOD1 in ASL trigger activation of microglia which, in turn, release pro-inflammatory 

molecules. Furthermore, inflammation leads to enhanced levels of oxidative stress; astrocytes, 

release ROS and NO that, together with NADPH oxidase stimulation, provoke microglia activation. 

Subsequently, activated microglia secrete signals to recruit CD4+ CD25+ T cells, which directly affect 

http://www.sciencedirect.com/science/article/pii/S0168010213002253#bib0445
http://www.sciencedirect.com/science/article/pii/S0168010213002253#bib0015
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neurons via Fas/Fas–ligand interaction. However, other events, such as mitochondrial dysfunction, 

protein aggregation, glutamate excitotoxicity, and loss of trophic factor support, may promote 

neuronal cell death. For instance, tumor necrosis factor-α (TNF-α), a major pro-inflammatory 

cytokine, activates microglia and cause neurotoxicity in motor neurons. The inflammatory 

mediators such as TNF-α, IL-1β, and IL6 derived from non-neuronal cells including microglia 

modulate the progression of neuronal cell death in neurodegenerative disease. Apoptosis and 

necrosis of neurons result in the release of ATP, which further activates microglia through the 

purinergic P2X7 receptor. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        Figure2.4 Different inflammatory pathway involved in neurodegenerative diseases. (Nuzzo D, et al 2013) 
 
 

 

 
2.7 Neuroinflammation promotes neurotoxicity in AD. 

 
Alois Alzheimer himself originally identified inflammation of the brain's glial supporting cells as one 

of the hallmark of AD pathology (Alzheimer et al., 1995). In AD, the inflammatory response involves 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3708131/#B4
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microglial cells and astrocytes, which surround the amyloid plaques (Wyss-Coray, et al., 2003). Aβ 

inducing local inflammation and amplify neuronal death (Nikolaev et al., 2009). The main pathway 

of glial cell activation by Aβ is through toll-like receptors.  Toll-like receptor activation gives rise to 

an inflammatory response that is beneficial at early stages of disease, decreasing Aβ burden, but 

very detrimental at later stages by increasing inflammation and neurotoxicity (Carrero, et al., 2012). 

 

Indeed ramified, resting microglia exert a protective influence over synaptic excitotoxicity (Vinet, et 

al., 2012) by increasing neuronal adenosine A1 receptors through CXC3CL1 expression (Lauro, et al., 

2010). Conversely A beta-activated microglia contribute to excitotoxic synaptic damage (Medeiros 

et al., 2010). Consistent with the original observation made by Alois Alzheimer Aβ plaques also 

induce astrocytic reactivity (Smits, et al., 2002) and there is strong evidence for the involvement of 

the cytokines IL-1β and TNF-α in astrocyte activation by Aβ oligomers. 

In addition it has been clearly established that Aβ plaques facilitate the movement of components 

of the peripheral immune system such as T cells and macrophages into the brain (Stalder, et al., 

2005) and increased peripheral inflammation is capable of propagating sustained and damaging 

neuroinflammation in a positive feedback loop.  

In human patients the role played by inflammation in neuron degeneration is suggested by several 

lines of evidence: 

i) Subjects with high plaque burden without dementia show virtually no evidence of 

neuroinflammation (Lue LF, et al., 1996).  

ii) Recent PET studies (Edison P, et al., 2008; Okello A, et al., 2009) show an inverse correlation 

between the cognitive status and activation of microglia. 

iii)  Activation of microglia increases linearly throughout the disease course and correlates with 

AD neurodegeneration (Serrabo-Pozo A, et al., 2011).  

Moreover, recent studies demonstrating that variants of TREM2 and CD33, two receptors expressed 

in microglial cells, increase the risk for late onset AD (Okello A, et al., 2009; Hollingworth P, et al., 2011) 

have refocused the spotlight on microglia as major contributing factor in AD. 

Although multiple preclinical evidence indicates that microglia activation promotes neuronal 

dysfunction and neuron elimination (Giulian D, et al., 1996; Fuhrmann M, et al., 2010) and accelerates 

AD progression (Bealnilova I, et al., 2012; Tan B, et al., 2012; Weitz TM, et al., 2012) the molecular 

mechanisms by which microglia exert neurotoxicity remain largely unknown. 

 

http://www.sciencedirect.com/science/article/pii/S0165572813002798#bb0725
http://www.sciencedirect.com/science/article/pii/S0165572813002798#bb0455
http://www.sciencedirect.com/science/article/pii/S0168010213002253#bib0115
http://www.sciencedirect.com/science/article/pii/S0168010213002253#bib0115
http://www.sciencedirect.com/science/article/pii/S0168010213002253#bib0115
http://www.sciencedirect.com/science/article/pii/S0168010213002253#bib0115
http://www.sciencedirect.com/science/article/pii/S0168010213002253#bib0115
http://www.sciencedirect.com/science/article/pii/S0168010213002253#bib0415
http://www.sciencedirect.com/science/article/pii/S0168010213002253#bib0415
http://www.sciencedirect.com/science/article/pii/S0168010213002253#bib0480
http://www.sciencedirect.com/science/article/pii/S0168010213002253#bib0480
http://www.sciencedirect.com/science/article/pii/S0168010213002253#bib0675
http://www.sciencedirect.com/science/article/pii/S0168010213002253#bib0685
http://www.sciencedirect.com/science/article/pii/S0168010213002253#bib0685
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2.8 Exosomes and Shed Microvesicles (MVs) 

Exosomes are a population of small extracellular membrane vesicles (50-90 nm) released by an 

endocytic pathway. Generation of exosomes occurs inside the lumen of multivesicular bodies 

(MVBs) through budding, fission ad segregation of their membrane. Depending upon their biological 

characteristics, intracellular MVBs either traffic to lysosomes, where they are subjected to 

proteosomal degradation (degradative MVBs), or to the plasma membrane, where they release 

exosomes in the extracellular space (exocytic MVBs) upon fusion with the plasma membrane 

(Mathivanan, et al., 2010). The ESCRT (endosomal sorting complex required for transport) 

machinery, is involved in sorting of vesicles inside MVBs. Fission of exosome membrane is facilitated 

by components of the ESCRT-III complex, called charged multivesicular body proteins (CHMPs); 

(Hanson, et al., 2009; Wollert and Hurley, 2010; Wollert, et al., 2009) and by the AAA-ATPase 

vacuolar protein sorting associated 4, VPS4 (Babst, 2005). There are various other factors that 

promote exosome biogenesis, including the sphingolipid ceramide produced by neutral 

sphingomyelinase (Kosaka, et al., 2010; Trajkovic, et al., 2008). Exosomes are enriched in several 

proteins and lipids of the MVB membrane, and, exosome biogenesis serves as a mechanism of 

regulated assembly of MVB components. Exosomes are enriched in numerous protein involved in 

membrane transport and fusion (i.e. annexin, flotillin, Rab GTPases), in MVB biogenesis (Alix), 

besides other typical molecules such as integrins and tetraspanins (CD63, CD9, CD81, CD82). They 

are also characterized by the presence of high levels of cholesterol, sphingolipids, ceramide and 

glycerophospolipids in their membrane (Simons and Raposo, 2009). 

 

Microvesicles (MVs), sometimes refereed as shed vesicles or ectosomes (Sadallah, et al., 2011), are 

quite large membrane vesicles, more heterogeneous in size (100nm-1μm) and shape as compared 

to exosomes. They bud directly from the plasma membrane, upon cell activation and are released 

into the extracellular environment. A sorting process is involved in shedding of MVs, in which surface 

blebs selectively accumulates cellular constituents that are then packaged into MVs. Depending 

upon the cell of origin, MVs contain a variety of cell surface receptors, intracellular signalling 

proteins and genetic materials. An interesting feature of MVs is that they reflect the differential 

expression of proteins of donor cells and therefore MVs shed from distinct cells are molecularly 

different from each other. Composition and biological activity of MVs also vary depending on the 

state (e.g. resting, stimulated) of donor cells and depending on the agent employed for stimulation 
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(Bernimoulin, et al., 2008). However, in general shed vesicles are characterized by the presence of 

high levels of phosphatidylserine (PS) on their surface. 

 

 

 

                                         Figure2.5 Differences pathway of generation of Exosomes and Shed Vesicles. (Cocucci et al, 2009) 

 

2.9 Pathological and physiological role of MVs. 

MV shedding from the plasma membrane is now recognized as a widespread mode of intercellular 

communication. In addition it is widely accepted that MVs play a role in several physiological and 

pathological process such as cell proliferation, coagulation, vascular function, apoptosis, and 

inflammation and tumour progression. In physiological conditions platelet-derived MVs, by acting 

on macrophages, neutrophils and other platelets work as trigger of coagulation. However, vesicles 

are also present in the lipid core of atherosclerotic plaque where promote thrombotic signals 

(Cocucci et al, 2009). Moreover, vesicles secreted from different cells can influence the immune 

response, for example MVs can present antigen to T cells, or transfer the antigen-MHCII complex to 

dendritic cells, or directly activate natural killer cells and macrophages (Thery, et al., 2009). During 

inflammation MVs can act both as anti-inflammatory or pro-inflammatory mediators. Neutrophil 

derived microvescicles stimulate the production of anti-inflammatory cytokines and MVs released 

from fibroblasts promote the synthesis of pro-inflammatory cytokines, such as inteleukin-6 (IL-6), 

the monocyte chemotactic protein 1 and metalloproteinase. The most well characterized 

membrane vesicles are those released from blood cells, i.e. platelets, leukocytes, erythrocytes, and 

endothelial cells. However, accumulating evidence demonstrate that MVs and exosomes can also 

be released by brain cells and that these particles play an important function in the central nervous 

system (CNS) both in pathologic or healthy conditions. The exosomes derived from 
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oligodendrocytes control myelination, and those produced from Schwann cells support local axonal 

protein synthesis by delivering ribosomes to injured neuron. Moreover exosomes released by 

neuron may contribute to the spreading of pathogenic agents or degenerative proteins like beta-

amyloid and alpha-synuclein (Emmanouilidou, et al., 2010).  

2.10 Activated Microglia secrete shed microvesicles (MVs) in the extracellular matrix. 

MV shedding from microglial cells has been the main research interest of our lab during the past 

years. The size of microglial MVs ranges from 0.1 μm –1 μm. As ectosomes produced by most cell 

types microglial MVs are characterized by high levels of externalized phosphatidylserine in their 

membrane. MV shedding increases upon microglial stimulation with ATP, a typical danger signal, 

and activation of the P2X7 receptors, which are highly expressed in microglia.  MVs produced by 

reactive microglia carry the pro-inflammatory cytokine interleukin-1β (IL-1β), together with the IL-

1β-processing enzyme caspase-1, and the P2X7 receptor (Bianco, et al., 2005), suggesting that they 

contain the main components of the inflammation. The budding of MVs is facilitated by 

externalization of acid sphingomyelinase, which by locally increasing ceramide levels in the inner 

leaflet of the plasma membrane modifies the membrane curvature (Bianco, et al., 2009).  We 

recently showed that reactive microglia through the release of extracellular ectosomes propagate 

an inflammatory signal. Microglia-derived MVs can transmit inflammatory signals to recipient 

microglia, which indeed upregulate the co-stimulatory molecule CD86 and express pro-

inflammatory genes like IL-1β, IL-6, inducible nitric oxide synthase, and cyclooxygenase-2 upon 

exposure to MVs produced by reactive microglia (Verderio, et al., 2012) 

Intriguingly, microglia-derived MVs can also interact with neurons and stimulate spontaneous and 

evoked excitatory transmission both in vitro and after injection in vivo. Hippocampal neurons 

exposed to MVs show an increase in miniature excitatory post-synaptic current (mEPSC) frequency 

without changes in mEPSC amplitude. MVs affect the pre-synaptic site of the excitatory synapse by 

increasing the release probability of synaptic vesicles through induction of ceramide and 

sphingosine synthesis. Thus, microglial MVs appear to modulate synaptic activity and enhance 

neurotransmission (Antonucci, et al., 2012; Turola, et al., 2012).  

 

 

http://www.frontiersin.org/Journal/10.3389/fncel.2013.00182/full#B8
http://www.frontiersin.org/Journal/10.3389/fncel.2013.00182/full#B7
http://www.frontiersin.org/Journal/10.3389/fncel.2013.00182/full#B62
http://www.frontiersin.org/Journal/10.3389/fncel.2013.00182/full#B2
http://www.frontiersin.org/Journal/10.3389/fncel.2013.00182/full#B60
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                               Figure 2.6 P2X7R--‐induced MVs shedding in glial cells (Bianco, et al., 2009). 
 

2.11 Clinical Diagnosis in AD and prospective of MVs as biomarker. 

In 1984, a working group established by the National Institute of Neurological and Communicative 

disorders and Stroke and the Alzheimer’s Disease and Related Disorders Association created clinical 

diagnostic guidelines of probable AD (McKhann, et al.,1984), which were validated against 

neuropathological diagnosis with a sensitivity and specificity of around 80 and 70%, respectively 

(Knopman DS, et al., 2001). However, the criteria only allowed diagnosis when the patients were so 

severely affected by the disease process that they could not manage daily functioning in respect to 

intellectual and social abilities. In 2011 there was a revision of these guidelines by a new working 

group from the National Institute of Aging (Jack CR Jr, et al., 2011). Because of these new imaging 

techniques and the analysis of cerebrospinal fluid (CSF) biomarkers it is also possible to make a pre-

dementia diagnosis of AD. The CSF biomarkers included in diagnostic criteria include the total 

amount of tau (T-tau), which reflects the intensity of neuroaxonal degeneration, P-tau, which may 

correlate with tangle pathology, and the 42 amino acid amiloidogenic peptide Aβ42, which 

correlates inversely with plaque pathology (Blennow K, et al.,2010). It is well known that the 

pathological processes in the brains of AD patients start more than a decade before the first 

symptoms are noticed (Price JL, et al., 1999). The temporal dynamics of biomarker levels in relation 

to changes in cognition have been described in a hypothetical model on the continuum of AD (Jack 
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CR Jr, et al., 2010). In line with this, the revised diagnostic guidelines identify three different stages 

of AD: preclinical AD, mild cognitive impairment (MCI) or prodromal AD and AD with dementia.  

MVs are emerging as important diagnostic tool and therapeutic target (Cocucci, et al., 2009). 

Because of their small size, released MVs can move from the site of discharge and enter into 

biological fluids. MVs have been detected in almost all body fluids, including plasma, urine, milk, 

and the CSF (Camussi, et al., 2010). The presence of MVs in body fluid make them easy accessible 

and it has been suggested that the analysis of their concentration and molecular composition can 

open a window on the damaged tissue (Camussi, et al., 2010). Notably, recent findings of our 

laboratory identified microglia-derived MVs in the CSF as a novel biomarker of brain inflammation 

(Verderio C, et al., 2012; Colombo E, et al., 2012), which reflect the extent of microglial activation in 

patients with neuroinflammatory diseases .   

Remarkably, typical proteins of EMVs, like flotilin, have been detected in the plaques of AD brain 

(Rajendran L, et al., 2006). Altogether these observations suggested that MVs may be involved in 

the spatiotemporal propagation of AD pathology throughout the brain, this possibility is recently 

demonstrated where misfolded tau and Aβ have been shown to propagate through the extracellular 

space and disrupt neuronal systems (de Calignon Alix, et al., 2012; Harris et al., 2010). Intrastatial 

injection of synthetic misfolded α- Syn led to the cell-to-cell transmission of pathologic α-Syn and 

Parkinson's-like Lewy pathology in wild type mice with progressive loss of dopamine neurons in the 

substantia nigra (Luk KC, et al., 2012). 

2.12 Cross-talk of membrane lipids and Alzheimer-associated proteins.  

 In the last years, several molecular mechanisms have been identified that connect membrane lipids 

to the metabolism of AD related proteins, in particular Aβ generation and aggregation. Indeed, 

researchers have found that Aβ is produced in cholesterol-rich and detergent-resistant membrane 

microdomains of the plasma membrane, which are known as lipid rafts. So far studies have mainly 

focused on the role of cholesterol and sphingolipids on abeta processing. It has been clarified that 

alterations in the membrane lipid composition affect secretase activities, thereby modulating APP 

processing and generation of Aβ. In addition, it has been reported that membrane lipids impair the 

metabolism of tau. However, evidence was also provided that membrane lipids can directly interact 

with Aβ and modulate its aggregation. Thus, the two neuropathological hallmarks of AD, abeta 

plaques and neufibrillary tangles, could be both triggered by age-dependent changes in lipid 

metabolism. Conversely, membrane lipid composition is affected by APP and its derivatives Aβ and 

http://www.sciencedirect.com/science/article/pii/S0896627312000384
http://www.sciencedirect.com/science/article/pii/S0896627312000384#bib18


18 
 

CTFβ, which were shown to modulate lipid metabolic enzymes and directly bind membrane lipids 

including cholesterol and gangliosides. Tau also affects membrane lipid composition, likely via 

regulation of vesicular transport. Finally, ApoE as a major lipoprotein in the brain, also affect lipid 

composition, but also Aβ clearance and aggregation. These findings suggest a close interaction of 

metabolic pathways related to APP and membrane lipids. Hence, accumulating evidence indicate 

that alterations in secretase activities as well as dysregulation of lipid metabolic enzymes might 

underlie the initiation and progression of AD pathogenesis. 

 

2.13 Membrane lipids: as Platform for Amyloid aggregation and/or destabilization 

Recent biochemical studies indicated that natural sphingolipids and gangliosides, whose 

metabolism has been shown to be altered in AD patients (Mielke MM, et al., 2011), destabilize and 

rapidly resolubilize long Aβ fibrils to neurotoxic species (Martins IC, et al., 2008). These studies also 

showed that phospholipids stabilize toxic oligomers from monomeric peptides (Johansson AS, et al., 

2007). The interaction between Aβ and the cholesterol is inversely correlated with the extent of the 

peptide-peptide interactions (Zhao LN, et al., 2011). The depletion of cholesterol or gangliosides has 

been shown to significantly reduce the amount of Aβ and its accumulation (Wakabayashi M, et al., 

2009, 2005). In fact, the aggregation of Aβ to fibrills is mediated by the gangliosides on the lipid 

rafts, where a transition from the alpha-helix-rich conformation to the β-sheet-rich conformation is 

observed. Thus, the constituents of the raft-like membrane strictly control the amyloid formation. 

MVs which are derived from microglia cells, as a matter of fact should have similar membrane 

composition as its donor cells, therefore the membrane lipids of these MVs can serve as a platform 

to influence amyloid conformations and possibly play a defined role in AD pathology. 

 

 

 

 

  

 

 

Figure 2.7 Model to describe MVs sphingolipids/ ganglioside induced alterations in  the equilibrium of abeta aggregation 

pathway towards soluble non filrillar Aβ species. 

A fibrils Soluble prefibrillar A  

MVs sphingolipids/  

 gangliosides 
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2.14 FTY720: a MV shedding inhibitor 

Fingolimod, FTY720, trade name Gilenya, is a pharmacological drug from Novartis. Fingolimod was 

synthesized by modifying myriocin, which is derived from Isaria sinclairi, an entomopathogenic 

fungus. The drug is a structural analogue of the natural sphingolipid sphingosine. After oral 

administration, fingolimod crosses the blood−brain barrier (BBB), because of its lipophilic nature 

and gets phosphorylated by sphingosine kinase producing P-fingolimod, which then binds to the S1P 

receptors (S1P1,3−5) and exerts its biological action. Levels of fingolimod and active P-fingolymod 

have been shown to be higher in the brain compared to blood (Miron V, et al., 2008).  The S1P 

receptors play key roles in the immune system including regulating lymphocyte migration from 

lymphoid tissue into circulation. By binding the S1P receptors, fingolimod prevents lymphocyte 

egress from lymphoids, thereby reducing lymphocyte infiltration into the CNS (Miron V, et al., 2008). 

Therefore, fingolimod phosphate (FTY720-P) prevents autoreactive lymphocytes from infiltrating 

the central nervous system (CNS) and suppresses subsequent neuroinflammation. Because of this 

property, fingolimod is a new oral drug for multiple sclerosis (Cohen JA, et al., 2011). Recent reports 

suggest that FTY70 is an inhibitor of A-SMase (Dawson G, et al., 2011), the enzyme that controls MV 

production. Consistently, work from our lab demonstrated that FTY720 completely abolished ATP-

induced MV shedding from primary mouse microglia and strongly reduced production of myeloid 

MVs in the CSF of mice affected by EAE, the mouse model of human multiple sclerosis (Verderio C, 

et al., 2012). 

           

                                                                                       Figure2.8 Structure of FTY720 

 

2.15 FTY720 and neuroprotection in AD 

Reduced levels of S1P have been reported in AD patients as compared with the age-matched normal 

controls. In addition, it has been demonstrated in an ex vivo study, that S1P possesses 

neuroprotective effects against cell death induced by soluble Aβ oligomer by inhibiting the 

activation of acid sphingomyelinase (Gómez-Muñoz, et al., 2003). Accordingly, SPK1 (S1P producing 

http://en.wikipedia.org/wiki/Entomopathogenic_fungus
http://en.wikipedia.org/wiki/Entomopathogenic_fungus
http://link.springer.com/article/10.1007%2Fs12031-013-9979-6/fulltext.html#CR19
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enzyme) overexpression, has been described to promote neuronal survival upon Aβ exposure 

(Gomez A -Brouchet, et al., 2007).  

It has recently been described that FTY720 protects from Aβ neurotoxicity both in vitro and in vivo 

(Doi Y, et al. 2013; Fatemeh Hemmati, et al. 2013; Asle-Rousta M, et al 2013). Chronic treatment for 

5 days with FTY in rats which received single intra-hippocampus injection of Aβ 1-42 peptide, was 

observed to prevent hippocampus neuronal death along with p-38 over transcription. (Fatemeh 

Hemmati, et al. 2013). There was reduced neuroinflammation as determined by the diminished IL-

1β and TNF-α mRNA levels (Fatemeh Hemmati, et al. 2013). Consistently, FTY720 administration in 

rats subjected to bilateral intra-hippocampal injection of Aβ 1-42 peptide, for 15 days, significantly 

decreased activity of caspase-3, in hippocampus and decreased neuronal loss in the CA1 area, 

induced by Aβ 1-42 (Asle-Rousta M, et al 2013). The protective actions of FTY720 also improved 

spatial learning and memory formation in these rat models (Fatemeh Hemmati, et al. 2013; Asle-

Rousta M, et al 2013).This protective action of FTY720 may be ascribed to the capability of FTY720 

to recapitulate the function of S1P and regulate the ceramide/S1P balance, as FTY720 decreases the 

levels of ceramides (S. Lahiri, et al.2009). However, recent reports also suggest that FTY720 may act 

directly on neural and non-neural CNS cells to reduce neurodegeneration and to promote reparative 

mechanisms by upregulating BDNF, a neurotrophin which is known to attenuate oligomeric Aβ-

induced neurotoxicity (Doi Y, et al. 2013).  

 

2.16 APPswe/PS1dE9 as AD mice model to study neuroinflammation and behavioural defects 

APPswe/PS1dE9 mice, described by Jankowsky et al. in 2004, have overexpression of the Swedish 

mutation of APP, together with deletion of exon 9 in PS1 (Jankowsky J L, et al., 2004) Overexpression 

of the transgene construct leads to increase in parenchymal Aβ load. APPswe/PS1dE9 mice develop 

first Aβ plaques at the age of 4 months. As the plaque grows activated microglia and astrocytes 

surround them. By 12 months of age, the mice develop cognitive defects, as indicated by behavioral 

test measuring spatial navigation and reference learning, the Morris water maze (MWM) task, but 

memory deficits can be seen in radial arm water maze even at 6 months of age (Xiong H, et al.,2011). 

These mice do not exhibit neuronal loss, but display a variety of other clinically relevant AD-like 

symptoms. These include mild abnormalities in neuritis (Garcia M-Alloza, et al.,2010) loss in 

neuronal activity associated to plaque (Meyer M –Luehmann ,et al., 2009), increased mortality, high 

prevalence to unprovoked seizures (Minkeviciene R, et al., 2009),  age-dependent deficits in the pre- 

and postsynaptic cholinergic transmission (Machová E, et al., 2010), and co-relation of the soluble 

http://www.ncbi.nlm.nih.gov/pubmed?term=Doi%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=23593505
http://www.sciencedirect.com/science/article/pii/S0166432813003616
http://www.sciencedirect.com/science/article/pii/S0166432813003616
http://www.sciencedirect.com/science/article/pii/S0166432813003616
http://www.sciencedirect.com/science/article/pii/S0166432813003616
http://www.sciencedirect.com/science/article/pii/S0166432813003616
http://www.ncbi.nlm.nih.gov/pubmed?term=Doi%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=23593505
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Aβ levels with behavioural deficits at 12 months of age which are comparable to some clinical AD 

cases (W Zhang, et al.,2011). Therefore, these mice represent a valuable tool to study new 

therapeutic approaches targeted specifically against the plaques and plaque related 

neuroinflammation. (Xiong H, et al., 2011).  
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3.1 Primary Culture and Animal Model 

Mixed culture of primary cortical and hippocampal astrocytes were isolated from rat microglial cells 

which were established from E21 rat embryos and were maintained as described by Bianco F, et al., 

2005. The transgenic mice model APPswe/PS1dE9 used, have overexpression of the Swedish 

mutation of APP, together with deletion of exon 9 in PS1 (Jankowsky J L, et al., 2004). The animal 

colony was provided by Dr. Annalisa Buffo, University of Turin Neuroscience Institute of Turin, Italy.  

The number of animal used and their suffering was minimized as much as possible, in accordance 

to the European Communities Council Directive of September 20, 2010 (2010/63/UE). All animal 

handling procedures were performed in accordance to the guidelines of the Institutional Animal 

Care and Use Committee of the University of Milan.  

3.2 Vesicle Isolation by Differential Centrifugation 

Microglial cells were deeply washed with PBS at 37°C. For MV shedding, microglia was stimulated 

with ATP (1mM) for 30mins in Krebs-Ringer solution (KRH, 125mM NaCl, 5mM KCl, 1.2mM MgSO4, 

1.2mM KH2PO, 2mM CaCl2, 6mM D-glucose, and 25mM HEPES/NaOH, pH 7.4) at 37°C and 5% CO2.. 

The supernatant was then withdrawn and subjected to differential centrifugation at 4 C° as follows 

(all steps at 4°C): 2 times for 10 min at 300g to discard cells and debris (P1 pellet); supernatant, 20 

min at 1,200g to obtain P2 vesicle fraction; supernatant, 30 min at 10,000g to obtain P3 vesicle 

population; supernatant, 1h at 110,000g to obtain P4 vesicles.  For biochemical fractionation of 

MVs, total lipids were extracted through the method previously described (Riboni, et al., 2000) with 

2:1 (by volume) of chloroform and methanol. The lipid fraction was evaporated under a nitrogen 

stream, dried for 1 h at 50°C and resuspended in PBS at 40°C in order to obtain multilamellar 

vesicles. Small unilamellar vesicles were obtained by sonicating multilamellar vesicles, following the 

procedure of Barenholz, et a., 1977. 

3.3 A-1 42 Preparations  

A (Anaspec, Fremont, CA) was prepared at a concentration of 2 mM in dimethyl sulfoxide (DMSO) 

that was maintained at 4°C.The lyophilised protein was properly suspended till there was a clean 

solution and was aliquoted. The aliquot stocked at -80°C was directly diluted to 4µM in neuronal 

                                                             3.   MATERIAL & METHODS 

http://www.nature.com/emboj/journal/v31/n5/full/emboj2011489a.html#B39
http://www.nature.com/emboj/journal/v31/n5/full/emboj2011489a.html#B5
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medium and kept overnight at 37°C. This A 1-42 preparation was used as aggregated A 1-42 in the 

experiments, and was different from fibrillar A 1-42 preparation, consisting of more mature and 

stable fibrils. 

The soluble and fibrillar A1-42 were prepared by initially dissolving it in 100% 

hexafluoroisopropanol (HFP) (Sigma, St Louis, MO, USA) to obtain a 1 mM solution to deseed any 

aggregated protein and obtain a monomeric A 1-42 . It was aliquoted in a sterile microcentrifuge 

tubes. The HFP was allowed to dry overnight in chemical hood and finally the remains of HFP was 

removed under vacuum using a SpeedVac and the peptide film was stored (desiccated) at −80 °C. 

Soluble A 1-42 was prepared as described by Klein et al. Briefly the peptide film was freshly 

resuspended in 100% DMSO to 5mM, it was further diluted to 100M in F-12 medium (Invitrogen, 

Paisley PA4 9RF, UK) and incubated for 24 h at 5°C. Following the incubation it was further 

centrifuged at 14,0000g for 10 min at 4°C to obtain only the soluble forms in the supernatant. For 

fibrillar A1-42 preparation, A or Hylite-488- A peptide film freshly resuspended in DMSO was 

further diluted to 100µM in 10mM HCl (De Felice FG, et al., 2008). It was vortexed for 15sec and 

incubated for 24 h at 37°C. After incubation, it was diluted to 4µM in neuronal medium to be used 

for the experiment. By transmission electron microscopy the aggregation state of A1-42 

preparation was assessed with a Tecnai G2 T20 Twin microscope (FEI, Eindhoven, The Netherlands).  

3.4 Thioflavin T Assay  

A preparations (peptide or fibrillar) were incubated with or without MVs, were diluted to 4µM in 

KRH and incubated overnight at 37 °C. In case of artificial liposomes and microglial MVs lipids A 

preparations 4µM (peptide or fibrillar) where incubated overnight in incubator. For Thioflavin-T 

(ThT) assays, ThT (Fisher Scientific, Waltham, MA) powder was re-suspended in distilled water to 

10mM stock. It was then filtered and diluted to 10M and was added to the A preparations and 

monitored in a Perkin-Elmer LS50 spectrofluorometer. ThT fluorescence emission spectra were 

recorded between 465 and 565 nm with 5 nm slits, using an excitation wavelength of 450 nm. For 

the time-course experiments, the samples were kept at 37°C and aliquots of 100µl were removed 

from the sample at each time point.  
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3.5 Measurement of fluorescent fibrils by confocal microscopy 

Atagged with Hylite-488 (Anaspec, Fremont, CA) was used to prepare fibrils, as described 

previously. The fibrils incubated or not incubated overnight with MVs were exposed for 1h to 2 

weeks old hippocampal neuronal culture plated on glass coverslips. Neurons were then fixed and 

stained in blue for MAP-2. Leica SP5 confocal microscope was used to acquire fluorescence images 

of Afibrils by an operator blinded to the study and analyzed using Image J 1.46r software. 

We then set a fixed threshold on Hylite-488-Apositive images and, having selected the area 

parameter, in m, at 0.1m-infinite in “set measurements”, area of single fibrils was automatically 

measured using “analyse particle” function. The percentage of fibrils charaterized by increasing area 

values - at intervals of 5m2- was calculated and the cumulative distribution plot was constructed 

using OriginPro 8 software. 

 

3.6 Neuronal Cultures and In Vitro Stimulation  

E18 rat pups were used to isolate primary cultures of hippocampal neurons, which where plated 

onto poly-L-lysine-treated coverslips at 520 cells/mm2 cell density and maintained in neurobasal 

with 2% B27 supplement and 2mM glutamine (neuronal medium). Hippocampal neurons DIV 9-15 

were exposed to A 1-42 (4 M), or MVs (1g/100l) isolated from 1million microglial cells and to 

a combination of A 1-42 and MVs for 1h. The combinations of A 1-42, MVs were kept overnight 

at 37C° in incubator incubated in neuronal medium before being exposed to neurons. 1,7X105 

neurons were exposed to MVs produced by 1X106 microglia (microglia: neuron ratio 6:1).  

In a set of neutralizing experiments the mix of A 1-42/MVs  were added with anti-TNF- plus anti-

IL-1 antibodies (R&D Minneapolis, MN) or with the anti-A antibodies 6E10 1:100 (Covance, 

Emerville, CA, USA) plus A11 1:200  (Invitrogen, Life Technologies Ltd., Paisley, UK) or with the prion 

protein PrPC (4M) for 30 minutes before being exposed to cultured neurons.  

3.7 Viability of Cell 

PI/calcein staining. Neuron were stained with calcein-AM (0.5 mg/ml, Invitrogen, Life Technologies 

Ltd., Paisley, UK), propidium iodide (PI) (1μg/ml, Molecular Probes, Life Technologies Ltd., Paisley, 

UK) and Hoechst (8.1 μM, Molecular Probes, Life Technologies Ltd., Paisley, UK) to look for live and 

dead cells in the neuronal cultures. Incubation was performed for 20 min in neuronal medium at 
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37° C and 5% C02. The cells were washed twice with KRH and then were maintained in KRH during 

acquisition of images. Viable cells were positive for Calcein-AM which emits green fluorescence 

signal. Conversely, PI emitted red fluorescence, and was found positive for dead cells as PI could 

reach their nuclei. Fluorescence images were acquired by Leica DMI 4000B microscope, equipped 

with DIC microscopy. We then calculated the ratio of dead cells (PI+ calcein–) to the total number 

of Hoechst stained neurons in and represented it as percentage of neuronal death.  

Annexin-V assay. Incubation with annexin-V-FITC (1:100, BD Pharmingenor, Franklin Lakes, NJ) of 

live neurons was done for 5 min, which were later fixed with 4% paraformaldehyde and in non 

permeabilizing condition were counterstained for the neuronal marker SNAP-25 (mouse anti-SNAP-

25, Sternberger Monoclonals, Baltimora, MD), to preserve annexin-V staining. Fluorescence images 

were acquired by a SPE Leica confocal microscope, equipped with an ACS APO 40x/1.15 oil objective. 

For the analysis of index of neurite density we quantified area of annexin-V+ apoptotic processes by 

Image J 1.46r software and further normalized to SNAP-25 immunoreactive area. 

Cytoplasmic calcium levels. DIV 8-9 old hippocampal neuronal cultures in coverslip were loaded 

with 400l 2M Fura-2/AM (Invitrogen, Life Technologies Ltd., Paisley, UK) in neuronal medium for 

45 min at 37° C. The neurons were washed in KRH and the coverslips were placed in the recording 

chamber of an inverted microscope (Axiovert 100, Zeiss) equipped with a calcium imaging unit. The 

light source used was a Polychrome V (TILL Photonics). Images were collected with a CCD Imago-QE 

camera (TILL Photonics) and analyzed with TILLvisION 4.01 software. The emission of the light was 

acquired at 505 nm at 1Hz, after excitation at 340 and 380 nm wavelengths. The fluorescence ratio 

of F340/380 was expressed as calcium concentration. The ratio values in selected region of interest 

(ROI) corresponding to neuronal somata were calculated from sequences of images to obtain 

temporal analysis. Basal calcium concentration was recorded from at least 100 neurons/condition 

in each experiment. 

 

3.8 Immunocytochemical Staining 

Neurons were fixed with 4% paraformaldehyde and were washed twice with PBS. They were further 

washed three times with low and high phosphate salt buffers. The cells were permeablized with 

1XGSDB. Primary antibodies in 1XGSDB was incubated for 3hrs for the following markers: rabbit 

anti-beta tubulin 1:50(Sigma, St Louis, MO, USA) guinea pig anti-vGLUT-1 1:1000(Synaptic System, 
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Gottingen, Germany), mouse anti-PSD-95 (UC Davis/NIH NeuroMab Facility, CA, USA), mouse anti-

MAP-2 1:1000 (Synaptic System, Goettingen, Germany). The coverslips were washed 3 times with 

high salt buffer. Secondary antibodies in 1XGSDB were conjugated with either Alexa-488, Alexa-555 

or Alexa-633(Invitrogen, Life Technologies Ltd., Paisley, UK) fluorophores in concentration 1:200 and 

incubated for 1hrs. After incubation the cells were washed three times with high salt phosphate 

buffer, and three times with low salt phosphate buffer. The last wash was made in temporal 

phosphate 5mM and the coverslips were mounted and sealed with nail paint, and stored at -20° C 

till they were acquired. For quantification of V-glut-1 puncta per length unit, the length of single 

neuritis was measured using Image J 1.46r software and the number of positive puncta whose 

dimension was greater than 0.01 m was quantified. 

Quantification of Binding of Hylite-488 labeled A (Anaspec, Fremont, CA, USA to neurons 

was quantified using Image J 1.46r software. A fixed threshold was selected in the separate channels 

for Hylite-488-Aand  tubulin staining. Double positive punta were revealed by generating 

double-positive images of Hylite-488-A/ tubulin using “and” option of “image calculator” 

function, The resultant image was then subtracted from Hylite-488-Ausing “subtract” option 

of image calculator and the final image thus obtained represents all the Hylite-488-Apositive 

binding co-localizing with  tubulin. For the analysis the area parameter was selected, in pixels, at 

3-infinite in “set measurements”, total co-localizing area was quantified using “analyse particle” 

function. Total  tubulin fluorescence areawas directly measured in  tubulin fluorescence images, 

after setting a fixed threshold using “analyse particle” function, as described above. Finally, total 

Hylite-488-A/ tubulin co-localizing area was normalized to total  tubulin area in each 

field. tubulin was revealed by Alexa-633 fluorophore, to avoid significant interference of Hylite-

488 in the red channel. Quantification of binding was normalized to  tubulin due to the decrease 

in MAP2 immunofluorescence staining upon AbindingMaximum projection of confocal 

stacks in the x-y plane and z-axis scans were generated using Image J 1.46r software.  

3.9 Western Blotting.  

The lysates of shed MVs and exosomes obtained from Microglial cells, either by ATP induced 

stimulus or through constitutive shedding, were separated by electrophoresis revealed using 

streptavidin (1: 1500, Sigma, St Louis, MO, USA),  rabbit anti-alix (1:1000, Covalab, Billerica, MA, 

USA), mouse anti-Tsg101 (1:1000, Abcam, Cambridge, UK). For western blot analysis of brain cortical 
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samples of transgenic and wild type animals, 50 μg of cortical lysates was resolved on 15% Tri-

Glycine SDS PAGE. The resolved proteins were transferred to nitrocellulose membrane (Millipore, 

San Diego, CA, USA) and then were incubated for 1 h at room temperature with a blocking buffer 

(5% dry milk dissolved in the tris buffered saline with tween-20 (TBST) buffer). The membranes were 

incubated overnight with the primary antibodies for markers GFAP (1:500) and MHCII (1:500) 

incubated for 3 hrs and were washed 3 times with TBST buffer. Secondary antibody for anti- mouse 

HRP was incubated for 1 hr and the membrane was further washed 3 times with TBST (0.1%) and 3 

times with TBST (0.3%). The immunoreactive bands were detected using SuperSignal West Femto 

Pierce ECL (Thermo Fisher Scientific Inc., Rockford, IL) and ECL film (Amersham, GE Healthcare 

limited, UK).  

3.10 Endogenous Glutamate Determination  

High performance liquid chromatography was used to measure endogenous glutamate content. The 

analysis was done following pre-column derivatization with o-phthalaldehyde and then on a C18 

reverse-phase chromatographic column (10 x 4.6 mm, 3 µm; at 30°C; Chrompack, Middleburg, The 

Netherlands) coupled with fluorometric detection (excitation wavelength 350 nm; emission 

wavelength 450 nm) discontinuous triphase gradient separation was done. The internal standard 

was Homoserine (Klein WL, et al., 2002). 

 

3.11 SELDI TOF Mass Spectrometry 

The A isoforms were detected through immune-proteomic assay, and was performed as reported 

previously (De Felice FG, et al., 2008). In short, three microliters of the specific monoclonal 

antibodies (6E10+4G8) (Covance, Emerville, CA, USA) were incubated in a humidity chamber at total 

mAbs concentration of 0.125 mg/mL (concentration of each mAb 0.0625 mg/mL), for 2 h at RT to 

allow covalent binding to the PS20 ProteinChip Array (Bio-Rad, Hercules, CA, USA). Tris–HCl 0.5 M 

pH 8 was used to block unreacted sites, in a humid chamber at RT for 30 min. Spots were washed 

three times with PBS containing 0.5% (v/v) TritonX-100 and then twice with PBS. 5µl of sample was 

used to coat these spots and incubated in a humid chamber overnight. The spots weret washed 

three times with PBS containing 0.1% (v/v) TritonX-100, twice with PBS, and finally with deionized 

water. To the coated spots was added one microliter of α-cyano-4-hydroxy cinnamic acid (CHCA) 
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(Bio-Rad). Using the ProteinChip SELDI System, Enterprise Edition (Bio-Rad) mass identification was 

made. 

 

3.12 ELISA Quantification 

Quantitative determination of A 1-42 and total Tau protein was performed using innotest ELISA kit 

(Innogenetics, Gent, Belgium), according to the manufacturer's procedures. Absorbance was 

detected at 450nm by 1420 Multilabel Counter Victor 2- Wallac, Finland.   

 

3.13 Human Subjects 

CSF from human samples with mild cognitive impairment (n=53), definitive AD (n=89) were obtained 

for diagnostic purposes from subjects according to Dubois criteria, and from age- and sex-matched 

cognitively preserved and neurologically healthy subjects, undergoing spinal anesthesia for 

orthopedic surgery, serving as controls (n=20). The ethical committee of the San Raffaele Scientific 

Institute approved this research project, and all subjects signed written informed consent. 

 

3.14 Quantification and Isolation of MVs from human CSF  

CSF samples were collected by lumbar puncture (200-300l) and flow cytrometric analysis was done 

as described previously (Verderio C, et al., 2012). In brief, CSF from human subjects was stained with 

the myeloid marker IB4-FITC (Sigma, St Louis, MO, USA). The quantification of labeled MVs within a 

fixed time interval on a Canto II HTS flow cytometer and analyzed using FCS 3 software. A vesicle 

gate was determined using side-scatter (SSc) and FSc over the instrument noise (set by running PBS 

filtered through a 100 nm filter). IB4 positive events were evaluated within this gate, (number of 

events/ml) as a parameter of MV concentration. Human MVs were pelletted at 10,000 g from the 

volume of CSF after flow cytometry quantification in experiments, yielding 400 MVs, which is the 

amount produced in vitro by 1X106 microglia. Re-suspension of MVs was done in neuronal medium 

and exposed to 1,7X105 neurons. Alternatively, MVs (10,000 g pellet) were processed and analyzed 

by SELDI-TOF mass spectrometry. 
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3.15 Quantitative real time PCR 

RNA was extracted from cortex of transgenic and wild type mice. cDNA synthesis from total RNA 

was performed using ThermoScriptTM RT-PCR system (Invitrogen) and Random Hexamers as 

primer. IL1-β, iNOS, COX-2, TGFβ and IL-6 mRNA levels were measured by real time PCR using 

Taqman® Gene Expression Assays on the ABI-Prism7000 sequence detection system (Applied 

Biosystems). 50 ng of starting RNA were used as template. The mRNA expression was normalized to 

the levels of GAPDH mRNA. 

 

3.16 Passive Avoidance Test 

In this performance task, there are two compartments in an apparatus, one light and one dark, 

connected via a sliding door. Each mouse was placed in the light compartment and allowed to enter 

the dark compartment, which the mice prefer more than light. In the acquisition trial, the time taken 

to enter the dark compartment was recorded (in seconds).Once the mouse was in the dark 

compartment, the sliding door was closed and an unavoidable electric shock (1mA for 1 seconds) 

delivered via the paws. The animal was then placed back in the home cage, the retention trial was 

carried out 24 h after the acquisition trial, by positioning the mouse in the light compartment and 

recording the time taken to enter the dark compartment (retention latency, cut-off 180 s). An 

increased retention latency indicates that the animal has learned the association between the shock 

and the dark compartment.  

 

3.17 Novel Object Recognition test  

Animals were habituated to the test arena for 10 min on the first day. After 1-day habituation, mice 

were subjected to familiarization (T1) and novel object recognition (T2). During the initial 

familiarization stage, two identical objects were placed in the centre of the arena equidistant from 

the walls and from each other. Each mouse was placed in the centre of the arena between the two 

objects for a maximum of 10 min or until it had completed 30 s of cumulative object exploration. 

Object recognition was scored when the animal was within 0.5 cm of an object with its nose toward 

the object. Exploration was not scored if a mouse reared above the object with its nose in the air or 

climbed on an object. Mice were returned to the home cage after familiarization and retested 120 

min later, and in the arena a novel object (never seen before) took the place of one of the two 

familiar. Scoring of object recognition was performed in the same manner as during the 

familiarization phase. From mouse to mouse the role (familiar or new object) as well as the relative 
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position of the two objects were counterbalanced and randomly permuted. The objects for mice to 

discriminate consisted of white plastic cylinders, colored plastic Lego stacks of different shape and 

a metallic miniature car. The arena was cleaned with 70% ethanol after each trial. The basic measure 

was the time (in seconds) taken by the mice to explore the objects in the two trials. The performance 

was evaluated by calculating a discrimination index (N-F/N+F), where n= time spent exploring the 

new object during T2, F= time spent exploring the familiar object during T2 (Pitsikas, et al., 2001).  

 

3.18 Immunohistochemistry on brain slices 

The brain was embaded in paraffin and slices were taken onto SuperFrost Ultra Plus® glass slides, 

Menzel-Glaser. The sections were deparaffinised with two washes of xylene, 10 minute each. The 

sections were rehydrated in decreasing concentration of ethanol, 99% 95% 70% with 5 minute 

incubation in each dehydration step. Inhibition with peroxidase (3% in dH2O of 30% Hydrogen 

peroxidase) was done for 15 minute, the slides were further washed with PBS buffer for 5 minutes. 

Two more washes were performed with PBST and the sections were blocked with 10% normal horse 

serum in PBS for 30 minutes in humid chamber, at RT. Primary antibody (GFAP and IBA1 in 

concentration 1:900) was incubated for 1 hr in blocking serum, at RT and the sections were further 

washed twice with PBST for 5 minutes. Secondary antibody Vector Lab BA-2000 biotinylated Anti-

Mouse IgG (H+L), made in horse was used at dilution 1:200 in blocking serum, at room temperature 

in humid chamber for 30 minutes. The slides were washed 2 times with PBST. Biotin was complexes 

with peroxidase-labelled avidin, with Vector Lab, Vectastain Elite ABC kit PK-6100 and the reaction 

was carried out for 30 minutes. Slides were further washed with PBST twice. The chromogen 

reaction was carried out with Vector Lab DAB kit for the duration of 5- 10 minutes, depending upon 

the signal. The sections were rinsed with tap water and were counterstained with Mayer’s 

hematoxylin for 1-2 minutes. The sections were again washed in tap water and dehydrated in 

increasing concentration of ethanol, 95%99%. Finally the sections were dehydrated in xylene for 10 

minutes and were further mounted in the coverslip using mounting medium.  

 

3.19 Dot Blot analysis 

Dot blot analysis was done in cortical lysates of APPswe/PS1 using 6E10 antibody. 15 μg of protein 

from cortical tissues was spotted onto a nitrocellulose membrane that was then air-dried. The 

membranes were soaked in 5% milk in TBST, tween 0.01% for 1 h to block non-specific sites and 

were then incubated with the Aβ antibodies 6E10 (dilution 1:1500, mouse monoclonal; Covance, 

javascript:ShowProduct(456,%20null);
javascript:ShowProduct(456,%20null);
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San Diego, CA, USA) for 2hrs, the membrane were washed three times with TBST and then incubated 

with an secondary anti-mouse antibody that was conjugated with HRP (horseradish peroxidase; 1:40 

000 dilution) for 1hr min at room temperature. The membrane was again washed three times with 

TBST and was developed by chemiluminescence reagent SuperSignal West Pierce ECL (Thermo 

Fisher Scientific Inc., Rockford, IL) and ECL film (Amersham, GE Healthcare limited, UK). The analysis 

of dot blot was done by Image J software. 

 

3.20 Statistical Analysis 

The data presented are mean ± SE. SigmaStat 3.5 (Jandel Scientific) software was used to do 

statistical analysis. After testing data for normal distribution, the appropriate statistical test has 

been used, as indicated in legends of figures. The differences were significant if P<0.05 and indicated 

by an asterisk and those at P<0.01 were indicated by a double asterisk.
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4.1 Microglia-derived MVs in combination with A is neurotoxic in vitro 

 Recent evidence claims that natural lipids such as gangliosides and sphingolipids can lead to 

generation of highly toxic Aspecies by altering the equilibrium between insoluble and soluble 

Atowards neurotoxic soluble forms(Martin JC, et al., 2008; Fukunga S, et al., 2012). Given that 

microglia-derived MVs originate from lipid raft domains of the plasma membrane and contain 

bioactive lipids (Antonucci, et al., 2012) we investigated whether MVs may promote A 

neurotoxicity. To this aim, the amyloidogenic peptide A4 M) dissolved in DMSOwas 

incubated overnight with MVs derived from rat primary microglia (1 g/100 l) at 37°C in neuronal 

medium. The neurotoxic potential of Abeta exposed to MVs was then tested on two weeks old 

hippocampal rat neurons. Neurons were incubated with the mix of AandVs or with 

A alone or MVs alone, and neuron viability was then assessed 24 h later by the propidium 

iodide calcein assay (Figure 4.1a). Overnight pre-incubation of Awith MVs led to formation 

of a neurotoxic mixture that significantly increased the percentage of dead neurons. Milder toxic 

effects were observed upon shorter time periods of A pre-incubation with MVs (3-5h).  

  

Figure 4.1 A Overlays of DIC and fluorescence microscopy images of neurons stained for calcein and propidium iodide (PI), after 24 h exposure to 

A1-42MVs mixture or under control conditions. B Percentage of calcein-/PI+ neurons (dead cells) in cultures exposed to Ascrambled 

AMVs or Ascrambled Aincubated overnight withMVs. AA-MVs  (Acutely Added-MVs),freshly isolated MVs added to A 

just before neuron challenge (Kruskal-Wallis ANOVA p<0.001; Dunn’s test for comparison among groups *p<0.05). 

 

 

 

4. RESULTS 
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After overnight incubation MVs alone, A alone do not significantly affected neuronal survival 

(Figure 4.1b). Electron microscopy revealed that after overnight incubation in neuronal medium 

A alone was mainly in a aggregated state (Figure 4.1b). 

No significant increase in the percentage of dead neurons was also observed when MVs were 

incubated with scrambled A. Similarly Aalone supplemented with MVs just before 

neuron challenge (Acutely Added-MVs, AA-MVs) barely affected neuronal viability. Altogether these 

data indicate that pre-treatment of Abeta 1-42 with MVs is necessary to cause neurotoxic damage.  

 

4.2 Neurotoxicity caused by Microglia-derived MVs in combination with A is rapid. 

We observed that the toxicity caused by A pre-incubated with MVs was rapid, as about 15-

30% of neurons loaded with the calcium dye Fura-2 showed an abnormally high level of cytosolic 

calcium, one hour exposure to A pre-incubated with MVs. Basal [Ca2+]i was measured in single 

neurons and expressed as ratio between F340/380 fluorescence (Figure 4.2a-b). We also stained neuronal 

cultures with the early apoptotic marker annexin-V and analysed the neurons positive for the 

annexin-V under the same experimental condition described above. By this approach we confirmed 

that MVs, pre-incubated overnight in neuronal medium with Abeta 1-42, induced a significant 

increase in annexin-V immunoreactivity (Figure 4.2c). 

  

Figure 4.2 A Basal [Ca2+]i was measured in single neurons loaded with the ratiometric calcium dye Fura-2 and expressed as F340/380 fluorescence. 

Representative pseudocolor images of 9DIV control neurons and neurons treated with A1-42/MVs mixture for 1h. The color scale is shown on the 

left, B Quantification of basal [Ca2+]i in neurons exposed to A1-42, MVs or A1-42 in combination withMVs. At least 100 neurons/condition were 

examined. Values are normalized to control (Kruskal-Wallis ANOVA p=0.002; Dunn’s test for comparison among groups *p<0.05). C Quantification of 

early apoptotic damage, revealed by Annexin-V binding, normalized to SNAP-25 immunoreactive area, in neuron. (Kruskal-Wallis ANOVA p=0.001; 

Dunn’s test for comparison among groups *p<0.05. 
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4.3 Microglia-derived MVs in combination with A induces fragmentation of dendrites and 

synaptic loss.  

 Immunofluorescence analysis for the neuronal marker -3 tubulin and the pre- and post-synaptic 

markers V-Glut-1 and PSD-95, was performed in control hippocampal cultures and cultures exposed 

to MVs pretreated with abeta 1-42. We found that the processes of neurons treated with combined 

AandMVs were fragmented. Furthermore the density of excitatory synapses was 

significantly reduced in neurons exposed to abeta and MVs mixture, as indicated by the reduced 

number of vGLUT positive puncta per dendrite length (Figure 4.3a-b). We also observed a 

remarkable decrease in MAP-2 immunoreactivity, which is indicative of dendritic damage (Figure 

4.3c-d). 

 

 

 

 

Figure 4.3 A Confocal microscopy images of 14DIV neurons untreated or pre-treated with A 1-42 in combination with MVs and stained for beta-3 

tubulin, the vesicular glutamate transporter vGlut-1 and the postsynaptic marker PSD-95. Nuclei are stained with Hoechst. Note fragmentation of 

neuronal processes and loss of excitatory synapses in neurons exposed to A1-42/ MVs mixture. Density of excitatory synaptic puncta is quantified 

in B (data follow normal distribution, student T test **p<0.001). C Decrease in immunoreactivity of neuronal marker MAP2, upon extensive binding 

to Hylite-488 A1-42 (right panel) as compared to less A1-42 binding to neuronal process (left). D Enlarged segment of images in panel C showing 

decrease in MAP-2 staining. 

 

4.4 A in combination withMVs causes neuronal damage mainly by excitotoxicity 

The toxic effect of Ain combination withMVs was largely prevented when neurons were 

exposed to Abeta pre-treated with MVs in the presence of the glutamate receptors antagonists APV 
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(100 M) and CNQX (20 M), as evaluated by cytoplasmic calcium recordings. Protection by APV 

was confirmed by evaluation of neuron viability through the annexin-V or PI/ calcein assays 

(Figure4.4 a-c). These observations indicated excitotoxic damage as the cause of neuronal death. 

 

Figure 4.4 A-C Control cultures and cells treated with A1-42MVs mixture analysed for basal [Ca2+]i  (H) (Kruskal-Wallis ANOVA p=0.001; Dunn’s test 

for comparison among groups *p<0.05), early apoptotic damage (I) (Kruskal-Wallis ANOVA p=0.001; Dunn’s test for comparison among groups 

*p<0.05) and calcein/PI staining (J, Kruskal-Wallis ANOVA p<0.001; Dunn’s test for comparison among groups *p<0.05), either in the presence or in 

the absence of the glutamate receptor antagonists APV and CNQX. 

 

4.5 Alterations in the aggregation of Ab1-42 induced by microglial derived MVs. 

Recent evidence suggests that natural lipids solubilize inert A fibrils to neurotoxic 

protofibrillar species. To understand whether overnight incubation with microglial MVs can induce 

alterations in the content of aggregated A we performed the thioflavin T dye-binding assay.  

This assay showed a significant reduction (about 22+ SE %) in the content of abeta fibrils (Figure4.8b, 

red lines) upon overnight incubation with MVs (ref). Furthermore there was a 39+ SE % reduction 

of aggregated Aspecies when a preparation of aggregated A dissolved in DMSO and 

incubated overnight with microglial MVs at 37°c in neuronal medium was exposed to MVs 

(Figure4.5b, blu lines). No changes in Thioflavin-T spectra were detected upon acute MV addition, 

thus excluding possible interference of MV lipids on the Thioflavin-T binding site of A1-42 (Figure 

4.5c). We also performed time course analysis of Aaggregation in the presence or on the 

absence of MVs. Results from time course experiment confirmed that shed MVs solubilize  

aggregated Aand prevent its self-aggregation(Figure 4.5d). Consistent with these 

observations, we found that incubation with MVs reduced the fibril size of fluorescently-labeled 

A B C 



36 
 

A fibrils, which were observed and analyzed by a confocal microscope (Figure 4.5e, left). 

Indeed exposure to MVs induced a shift towards smaller fibril size in the cumulative distribution 

(Figure 4.5e, right). Altogether these observations indicate that aggregated A disassembles 

into soluble species upon MV exposure.  

 

 

 

 

 

Figure 4.5 A Negative staining EM image of aggregated A1-42, incubated overnight in neuronal medium. BThioflavin T emission spectra of 

aggregated Ab 1-42 (solid blue line), incubated overnight with MVs (dashed blue line) or acutely exposed to MVs. C Representative thioflavin-T 

fluorescence emission spectra of samples containing Afibrils (dashed red lines) or aggregated A1-42 (dashed blue lines) exposed to MVs. D 

Time course of fibrilization of A1-42 in the presence (dashed line) or in the absence (solid line) of MVs.  E Representative confocal images of Hylite-

488-A488-A 1-42) fibrils untreated or treated overnight with MVs and exposed for 1h to neurons. Neurons are stained in blue for MAP-2 

after fixation. Cumulative distribution of fibril size from control (solid line) and MV-treated (dashed line) 488-A 1-42 fibril preparations is shown on 

the right. 

 

 

Parallel analysis by SELDI-TOF mass spectrometry using 6E10 and 4G8 anti-A antibodies indicated 

that microglia derived MVs induce a 50% decrease of A1-42 monomers in the amyloid preparation 

(Figure 4.5f), with no significant peptide degradation. This is consistent with oligomerization and 

stabilization of A1-42 monomers in the presence of EMVs, although the absence of antibodies to 

efficiently immuneo-isolate oligomers hampers their direct detection by mass spectrometry. Thus, 
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microglia-derived EMVs may favour solubilization of aggregated A-1-42, but also induce formation 

of soluble oligomers from A1-42 monomers.  

 

 

 

  

 

 

 

 

 

Figure 4.5 F Representative spectra of SELDI-TOF mass spectrometry using 6E10 and 4G8 anti-Ab antibodies indicating decrease in amount of Ab1-42 

monomers in Ab1-42/MVs mix as compared to Ab1-42 peptide alone. 

 

 

4.6 There is a transient interaction of Aβ 1-42 with MVs, but most of the soluble Aβ 1-42 generated 

is free. 

To answer the possibility of interaction of Aβ 1-42 with MVs, Aβ 1-42 forms associated with MVs 

and soluble amyloid forms generated as consequence of this association were separated from 

insoluble species by sucrose gradient centrifugation at 100,000 g for 1 h (Martins JC., et al. 2008) in 

the samples incubated overnight with A/MVs mix. The amount of Aβ 1-42 present was 

quantified by ELISA. We observed a fivefold increase in the fraction of soluble Arecovered at 

the top of the gradient and a parallel decrease in the fraction of insoluble A at the bottom 

of the gradient, upon overnight incubation with MVs (Figure 4.6a). Interestingly acute addition of 

MVs even immediately before ultracentrifugation on sucrose gradient, partially promoted A 

migration to the top of the gradient (Figure 4.6b), suggesting that MVs being light tend to move to 

the top fractions of the gradient and along with associate A and contribute in part to A 

redistribution to the top of the gradient. 
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Figure 4.6 A “Floating assay” by ultracentrifugation reveals an increase of soluble A 1-42 species in association with MVs.. As ELISA indicates, a higher 

fraction of A 1-42 species is transported from the bottom to the top of the gradient in samples incubated overnight with MVs. Acute addition of MVs 

(AA-MVs) does not cause statistically significant changes  in A1-42 distibution (Kruskal-Wallis ANOVA p<0.001; Tukey test for comparison among 

groups *p<0.05 ).  

 

4.7 The neurotoxicity caused by Microglia-derived MVs is retained in the soup. 

MVs incubated overnight with Ain neuronal medium were centrifuged for 30 min at 10,000g 

to obtain a soup and a pellet fractions, with the soup containing soluble molecule released from 

MVs and soluble Aspecies and the pellet containing aggregated A MVs, and 

A forms eventually associated with MVs.  The neurotoxicity of these two fractions was 

analyzed by monitoring cytosolic calcium in cultured neurons. While the pellet was largely inert, 

most of the toxicity was retained in the supernatant (Figure 4.7a left). Similar results were obtained 

by quantification of neuronal death by PI/calcein assay (Figure 4.7a right). These findings suggested 

that soluble molecules not associated with MVs, were responsible for neuronal damage.  

Next we investigated if soluble molecules released from MVs mediate neurotoxicity. We know that 

the inflammatory mediators IL-1 and TNF are among the molecules contained in microglial MVs 

that, through potentiation of NMDA channel activity, may induce excitoxicity (Bianco F, et al., 2005; 

Turola E, et al., 2012). Since IL-1 and TNF expression is up-regulated in M1 proinflammatory 

microglia, and down-regulated in M2 anti-inflammatory cells, neuronal viability was analyzed after 

exposure to A incubated with MVs produced by either LPS-primed M1 microglia or M2 cells, 

polarized with IL-4. We found similar alterations in cytosolic calcium levels in neurons exposed to 

Aincubated with MVs derived from either M1 or M2 polarized microglia as compared to MVs 

produced by resting microglia (Figure 4.7b). In addition, Neuronal cultures were exposed to the 
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neurotoxic mixture in the presence of IL-1 and TNFneutralizing antibodies. There was no change 

in the level of toxicity observed, measured as alterations in cytosolic calcium levels in neurons. 

(Figure 4.7c). These data rule out the possibility that excitotoxicity of A 1-42 in combination with 

MVs depends on cytokine leakage from MVs



Figure4.7 A Basal [Ca2+]i in neurons exposed for 1h either to A1-42MVs mixture or soluble (sup)/insoluble (pellet) fractions (left panel, Kruskal-

Wallis ANOVA p<0.001; Dunn’s test for comparison among groups *p<0.05). Values are normalized to control. Right panel shows the percentage of 

calcein-/PI+ neurons under the same conditions (Kruskal-Wallis ANOVA p=0.002; Dunn’s test for comparison among groups *p<0.05).  B Basal [Ca2+]i 

in neurons exposed for  1 h to MVs derived from resting, M1 or M2 microglia preincubated with extracellular A1-42. Values are normalized to 

control (Kruskal-Wallis ANOVA p<0.001; Dunn’s test for comparison among groups *p<0.05). C Basal [Ca2+]i in neurons exposed to A1-42and/orMVs 

in the presence or in the absence of neutralizing antibodies for IL-1 and TNF. Values are normalized to control. 

 

4.8 The neurotoxicity caused by A 1-42/MVs mixture is due to soluble A forms. 

We then investigated whether neurotoxic soluble A forms could be present in A 1-42/MVs 

mixture. Electron microscopy (EM) analysis revealed globular structures of diameter between 4 and 

8 nm, similar oligomeric A 1-42, together with thin fibrils of short length, likely representing soluble 

protofibrils, in the soup obtained after centrifugation at 10,000g for 30min of the A 1-42/MVs 

mixture. 5-8 nm wide A fibrils were instead observed in the pellet (Figure4.8a). Detection of 

globular/protofibrillar species in the soluble fraction from A 1-42 and MVs mixture, prompted us 

to investigate byan array of techniques whether shed MVs change the equilibrium between soluble 

and insoluble A. (Figure 4.8b) 
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Figure 4.8 Representative TEM images of 5-8 nm wide Ab 1-42 fibrils retrieved in the pellet fraction (A) and of globular Ab 1-42 species, present in 

the supernatant (B) 

 

 

4.9 Bio-detection of the Soluble Agenerated in A 1-42/MVs mixture incubated overnight. 

 

It is known that soluble A but not fibrillar or monomeric A forms activate NMDA receptors, 

enhancing calcium influx through the channel. Therefore we used neurons expressing functional 

NMDA receptors, loaded with FURA-2, as sensor cells to bioassay soluble A 1-42 generated upon 

overnight incubation with MVs. We found that about 30% of neurons showed calcium responses to 

A 1-42 in combination with MVs, but not to A 1-42 or shed MVs alone (Figure 4.9a). Furthermore 

the NMDA receptor antagonist APV (100 M) blocked completely the calcium responses evoked by 

A 1-42 pre-treated with MVs. (Figure 4.9 b-c). HPLC measurements of glutamate content in MVs 

and A 1-42/MVs mixture revealed concentration of glutamate lower than 1 M, which is the 

minimum glutamate concentration able to induce calcium influx in our experimental conditions 

(mean glutamate concentration: 137+ 70 nM, MVs alone; 196+ 115 nM, A 1-42/MVs mixtures). 

This finding exclude possible interference of ambient glutamate in the NMDA-dependent calcium 

response evoked by Abeta and Mvs mixture. We concluded that activation of NMDA calcium 

channels, which triggers neuron excitotoxicity, were caused by soluble A 1-42 species generated 

in the presence of microglial MVs. 
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Figure4.9 Bio-detection of soluble A 1-42 by fura-2-loaded sensor neurons, expressing functional NMDA receptors. Representative traces of [Ca2+]i 

changes recorded in neurons upon exposure to KRH containing A 1-42 alone (4 M) or MVs alone (1gl) or their combination (A). [Ca2+]i  

responses induced by A 1-42/MVs mixture are strongly inhibited by the NMDA receptor antagonist APV (B), as quantified in C. Values represent peak 

[Ca2+]i  increases (ΔF340/380 fluorescence) from about 30 neurons/condition (Kruskal-Wallis ANOVA p<0.001; Dunn’s test for comparison among 

groups *p<0.05). 

 

 

4.10 Microglia derived MVs lipid promote formation of neurotoxic A-1-42 species 

We then investigated whether lipids of shed MVs play an active role in the dissolution of insoluble 

A1-42 species. We observed by thioflavin T assay that exposure to the lipid fraction extracted from 

MVs caused a reduction in amount of fibrillar (f-Ared lines) or aggregated (Ablue lines) A1-42, 

similar to that induced by intact MVs (Figure4.10a). Furthermore, neuron viability analysis revealed 

a similar percentage of dead neurons in cultures exposed to A 1-42 in combination with intact MVs 

or their lipid component (MV lipids, Figure4.10b). Interestingly, A1-42 pre-incubated with synthetic 

liposomes, mimicking the phospholipid composition of the plasma membrane (60% PC, 20% 

cholesterol, 10% SM, 10% PS) and similar in size to MVs did not produce any increase in basal 

calcium concentration (Figure4.10b). These results demonstrated that the lipid component of 

microglial MVs was responsible for the dissolution of insoluble A1-42 species. Thus interaction of 

A1-42 with MVs lipids represents the mechanism by which MVs convert inert A1-42 to neurotoxic 

forms. 
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Figure4.10 A ThioflavinT fluorescence emission spectra of aggregated A1-42 (blue lines) or Afibrils (red lines), untreated (solid lines) or pre-

treated (dashed lines) with shed MVs. Spectra of aggregated A1-42 or Afibrils exposed to MVs lipids (dotted lines) are also shown. B Basal 

[Ca2+]i of neurons exposed for 1h to A1-42pre-treated with intact MVs, small unilamellar vesicles of MV lipids (MV lipids) or artificial liposomes. 

Note that vesicles made by lipids extracted from shed MVs but not artificial liposomes significantly enhance basal [Ca2+]i. 

 

4.11Binding of newly generated soluble A-1-42-488 to neurons is competed by PrPc 

We then visualized soluble A 1-42 forms, generated in the presence of MVs, by imaging their 

binding to hippocampal neurons. To this aim we exposed neuronal cultures for 1h to fluorescent 

A1-42 (488-A1-42), incubated or not overnight with MVs. Quantification of A1-42 fluorescent  

species bound to MAP-2 positive dendrites, revealed that MVs caused a strong increase in the A 1-

42 binding to neurons (Figure 4.11a-b). Notably, binding of 488-A1-42 to dendrites was paralleled 

by a marked reduction of MAP-2 immunoreactivity (Figure 4.11a), in line with previous observations 

(Jana A, et al., 2010). No preferential association of 488-A1-42 with synapses was detected. 

Notably, there was competition between Abinding to dendrites and to PrPc, a high affinity 

receptor for oligomeric A (Lauren J, etal., 2009). This competition resulted in decreased binding 

of soluble A 1-42 forms to cultured neurons.  Furthermore, we observed that soluble A 1-42 

binding can be abolished by pretreatment of 488-A1-42 and MVs mixture with a cocktail of anti-

Aantibodies, i.e. the andantibodiesFigure 4.11 a-b. Unlike the 89-230 truncated PrPC, 
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Figure4.11 A Representative confocal images of 14DIV neurons exposed to 488-A 1-42 alone or in combination with MVs, with or without 

pretreatment with PrP or with the anti-A antibodies A11 and 6E10. B Corresponding quantification of 488-A 1-42 binding to cultured neurons 

expressed as colocalizing area between 488-A and  tubulin, relative to total  tubulin (see methods) (Kruskal-Wallis ANOVA p<0.001; Dunn’s test 

comparison among groups *p<0.05). C-D Basal [Ca2+]i and percentage of calcein-/PI+ neurons in 9-14 DIV cultures exposed to different combinations 

of A 1-42, MVs, A11 plus 6E10 antibodies, full-length or truncated (tPrPC) PrPC (Kruskal-Wallis ANOVA p<0.001; Dunn’s test for comparison among 

groups *p<0.05). 

 both full- length folded PrPC and anti-Aantibodies neutralized the toxicity of A1-42/MVs mixture, 

as revealed by calcium recording (Figure 4.11c) and PI/calcein staining (Figure 4.11d. 

 

 

 

 

 

 

 

 

 

Figure 4.11 E-F Representative confocal images of neurons exposed to the supernatant (sup) (B) or to the pellet (C) fractions obtained after 

centrifugation of 488- Ab 1-42 / MVs mixture. Quantification of binding was performed D.  (ANOVA, p<0.001, Holm-Sidak Method p<0.05). 
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Furthermore we observed that the soup, obtained after pelleting the mix of AVs by 

centrifuging at 10,000g, (speed for pelleting MVs) retained almost 70% of the total A soluble 

species (Figure 4.11e-left,f) that bound to the neuronal processes, and the pellet retained the 

species bound with MVs and more aggregated Aspecies(Figure 4.11e-right,f) 

4.12 MVs carry neurotoxic species generated from internalized A 1-42

Microglia surrounding the amyloid plaques actively phagocyte and degrade A. The MVs released 

from these activated microglia can potentially contain toxic Aspecies, generated from peptides 

internalized during phagocytosis. To investigate this possibility confocal analysis was done with 

microglia exposed to A1-42 for 12-48h. The cells were washed extensively and stained with 6E10 

anti-Aantibody, revealing intracellular A aggregates. We observed that the A1-42 uptake was 

fast. At 12 hr A1-42 was clearly visible inside microglia cells, at 24hr large A1-42 aggregates could  

be observed, a lot of which reached the plasma membrane, and were co-localized with the 

microglial surface stained by the isolectin IB4 (Figure 4.12a).  

 

 

 

 

 

 

 

 

 

 

Figure 4.12 A Living rat microglia were exposed to human A1-42 for 12-48 h and stained with IB4-FITC to label the cell surface beforebeing fixed 

and counterstained with 6E10 antibody, which recognizes human but not rat amyloids Top left panel shows representative xy-plane maximum 

projection of microglia, revealing several 6E10 immunoreactive punctainside the cells, some of which are double positive for surface IB4-FITC.  Bottom 

left panel: single stack of the selected cell, shown at higher magnification, reveals a clear association of internalized A1-42 to the cell surface, further 

revealed by the z-axis scan. Note an increase in the size of internalized A1-42 after incubation for 48 h (top right panel). Examples of EMVs, double 

positive for 6E10 and IB4-FITC are shown in bottom right panels. B Western blot analysis of A 1-42 species present in shed MVs (P2 and P3 fractions) 

and exosomes (P4 fraction) released upon 30 min ATP stimulation by 4X106 microglia pre-exposed to biotinylated A1-42 (4M). Blots were carried 

out using a 15% Tris-glycine gel and membranes were probed with streptavidine. Shed MVs and exosomes produced by 8X106 donor microglia were 
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probed in parallel for the EMV markers Tsg101 and the exosomal marker Alix (lower panels). Numbers below each lane indicate the estimated amount 

of loaded proteins.   

 

Notably, in the extracellular space, close to microglial cells a few Aand IB4 double positive particles 

were detected (Figure 4.12a bottom right panel). These observations suggested that A species can 

be present inside EMVs produced from A-loaded microglia. To verify this possibility we analyzed 

by western blotting the presence Ain MVs released from microglial cells preloaded with 

biotynilated A1-42. To obtain the EMVs, the cells were washed properly after 24 hrs incubation to 

remove the free A1-42, and were kept in ultracentrifuge medium, devoid of any vesicles for the 

next 24hrs to obtained MVs and exosomes released constitutively by microglial cells in the medium. 

After removal of the medium the cells were maintained for some hours in glial medium and were 

further stimulated with ATP for 30 min, a condition which mimics an inflammatory context and 

favours shedding of MVs (P2 and P3 fraction) versus exosome (P4 fraction) release (Bianco F, et 

al.,2009).  Biotin-conjugated A1-42 was recovered in both shed MV, and exosomes which were 

labelled by the EMV markers Tsg101 and Alix (Figure 4.12 b). 

 

 4.13 Internalized A 1-42 is processed by Microglia to other A isoforms, as detected both in MVs 

and exosomes. 

SELDI-TOF mass spectrometry using 6E10 and 4G8 anti-A antibodies showed the presence of A1-

42 and of its cleavage product A1-40, along with traces of other C-terminally truncated isoforms, 

in MVs shed from the plasma membrane (P2+P3 fractions) (Figure 4.13a). Similarly, A1-42 and A1-

40 were recovered in exosomes (P4 fraction), but compared to MVs the amount was ten times less 

(Figure 4.13a).  

By calcium recordings we found that MVs derived from microglia preloaded with 4 M A 1-42 (A-

MVs) were highly neurotoxic as compared to MVs derived from resting cells (Figure 4.13b). 

Neurotoxicity caused by MVs storing A 1-42 was significantly decreased by anti-A antibodies. We 

therefore concluded that microglia internalize and A and sort neurotoxic abeta species to MVs. 

Neurotoxic Abeta species are likely exposed on the external membrane of the MVs, which are 

delivered to neurons and cause neurotoxicity. 

 



46 
 

 

 

 

 

Figure 4.13 A Shed MVs and exosomes produced by 1X106 rat microglia pre-exposed to human A1-42 were analysed by a SELDI TOF MS 

immunoproteomic assay employing anti-human A antibodies (4G8 and 6E10) on PS20 chip array to capture A1-42 and C-terminally truncated 

abeta isoforms.  The following representative spectra of samples in NP40 1% lysis buffer are shown (from top to bottom): 4M Aβ1-42 peptide 

incubated overnight in KRH; MVs from control microglia, not exposed to Aβ1-42; MVs from Aβ1-42 preloaded microglia (A-MVs); exosomes from 

control microglia (exos);  exosomes from Aβ1-42 preloaded microglia (A-exos). B Basal [Ca2+]i recorded from neurons exposed to MVs produced from 

microglia either resting or pre-treated for 48 h with A1-42 (A-MVs), in the presence or in the absence of anti-A antibodies (A11+6E10) (Kruskal-

Wallis ANOVA p<0.001; Dunn’s test for comparison among groups *p<0.05). See also Figure S1.  

 

4.14 Elevation of Microglia derived MVs in AD patients. 

Recently studies done in our lab indicates that the extent of microglia activation in the course of 

neuroinflammation can be reflected by the amount of microglia-derived MVs detected in the CSF of 

humans (Verderio C, et al., 2012). To understand if the production of MVs from microglia could be 

elevated in AD, where neuroinflamation correlates with cognitive defects, we collected the CSF from 

patients with mild cognitive impairment (MCI) or AD, as well as from age- and gender-matched 

healthy controls (HC). We performed  flow cytometry analysis for MVs positive for the myeloid 

marker IB4 and observed strikingly higher levels (more than ten-fold) of MVs in MCI and AD patients 

than in control subjects (Figure 4.14a). Approximately 65% of total EMVs detectable by flow 

cytometry were IB4-positive. Furthermore, we found that MV concentration correlated with Tau 

protein levels in the CSF, a marker of neurodegeneration (Figure 4.14b; p<0.0001) (Holtzman DM, 

et al., 2011).  
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Figure 4.14A Quantitative flow cytometry analysis of IB4+ MVs in CSF collected from MCI patients (n= 53), AD patients (n = 89), and age- and gender-

matched controls (HC; n= 20) (Mann–Whitney p<0.0001 AD versus HC; p<0.0329 MCI versus HC). B Correlation between IB4+ MVs and total tau protein 

in the CSF of MCI and AD patients, (rho = 0.46, p<0.0001 Spearman correlation). 

 

 

4.15 Microglia derived MVs from AD patient’s effects the equilibrium between soluble and 

insoluble A 1-42 species and cause neurotoxicity. 

 

To verify whether MVs from AD patients affect the equilibrium between soluble and insoluble -

42 specie we collected the CSF from AD patients and isolated MVs by centrifugation at 10,000g. 

Confocal analysis of neurons exposed to 488-A 1-42 pre-incubated overnight with AD MVs revealed 

a three-fold decrease in the content of fluorescent A aggregates (Figure 4.15Ia,b) thus indicating 

that AD MVs break up  insoluble A 1-42 species.  We also observed that AD MVs induced a parallel 

increase in the fluorescent A species bound to dendrites (Figure 4.15Ia,c) 

 

Figure 4.15 I A Representative confocal images of cultured neurons, exposed to aggregated 488-A 1-42 untreated or pre-treated overnight with MVs 

from AD patients and stained for MAP-2 after fixation (red). Aspecies bind to MAP-2 dendrites. Note the decrease in the number of large fluorescent 

Aclusters in neurons exposed to 488-A 1-42 in combination with AD MVs B Quantification of 488-A 1-42 aggregates (larger than 5 m) per field 

(data follow normal distribution, student T test **p<0.001). C Quantification of 488-A 1-42 binding to cultured neurons, expressed as colocalizing 

area between 488-A and tubulin, relative to total  tubulin (see methods) (data follow normal distribution, Student T test **p<0.001). 
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In line with our in vitro results indicating that microglial MVs carry neurotoxic abeta species, we 

demonstrated that MVs recovered from AD patients were highly toxic and eventually lead to 

neuronal death, as quantified by calcein-/PI+ dead neurons. Interestingly MVs isolated from the CSF 

of AD patients were more toxic with respect to MVs isolated from patients with multiple sclerosis, 

(MS) a neuroinflammaory disease characterized by increased level of microglial MVs, (Figure 

4.15IId,e,fThere was a significant decrease in neurotoxicity of AD MVs with pre-treatment with 

anti-Aantibodies, 6E10 and A11 (Figure4.15IIgsuggesting that the toxicity was in part mediated 

by A 1-42 carried by the MVs.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 II D Representative fluorescence microscopy images of 14DIV neurons triple stained for calcein, PI and Hoechst 24 h after exposure to 

ADMVs or maintained in control conditions E-F Quantification of the percentage of calcein-/PI+ neurons (dead cells) in cultures exposed to ADMVs 

or MVs isolated from patients with multiple sclerosis (MS) or Aalone (Kruskal-Wallis ANOVA p<0.001; Dunn’s test for comparison among groups 

*p<0.05). G Percentage of dead neurons in cultures exposed to MVs isolated from the CSF of ADpatientsin the presence of anti-A antibodies A11 

and 6E10 (ANOVA, p<0.001, Holm-Sidak Method p<0.05). 

 

F 

25 m 

A A+CSF MVs CSF MVs control D 

B 

Table 4.1. Clinical features of MCI and AD patients 

N
e
u
ro

n
 d

e
a
th

 (
%

) 

     

               A 
            MVs       
      AD MVs 
       
      
                                    



 
 
 

0

10

20

30

40

50
 *    

 *    

     D C E

  
D 

F G 



49 
 

Interestingly, A 1-40, A 1-42 and other truncated A peptides were detected by SELDI-TOF mass 

spectrometry in CSF MVs of a patient affected by AD (Figure 4.15 III).  

 

 

 

 

 

Figure 4.15III Representative SELDI TOF MS spectra of MVs isolated from the CSF of a patient with AD showing the most common A peptides captured 

by immunoproteomic assay employing 6E10 and 4G8 monoclonal antibodies. 

 
 

Figure 4.15III Representative SELDI TOF MS spectra of MVs isolated from the CSF of a patient with AD showing the most common A peptides 

captured by immunoproteomic assay employing 6E10 and 4G8 monoclonal antibodies. 

 

 

4.16 Subchronic treatment with the MV shedding inhibitor FTY720 improves memory performance 

in APP/PS1 transgenic mice model for AD. 

It has been previously shown by our lab that MV shedding is inhibited by blockers of acid 

sphingomyelinase (A-SMase), such as imipramine or FTY720 and is almost abolished in A-SMase 

knock out glial cells in vitro and in vivo (Bianco, et al., 2009; Verderio et al., 2012). To explore the 

therapeutic potential of inhibition of MV shedding in vivo, FTY720 (1mg/Kg) or plain water were 

administered by oral gavage to 12 months-old APPswe/PS1 and their littermates for 6 weeks. Pre-

drug and post-drug behavioural tasks were carried out to test learning and different forms of 

memory performance, i.e., reference, object and innate memory, using the passive avoidance, the 

object recognition and the nest building tasks, respectively.  As expected, male APPswe/PS1 mice 

showed severe deficits in reference memory in the passive avoidance task and after 5 weeks of 

treatment with plain water performed significantly worse, as indicated by the decreased latency to 

enter the dark room, where mice receive a mild foot shock, while their cognitive performance was 

preserved upon treatment with FTY720 (Figure 4.16b-c; blue bars). These results were supported 

by object recognition memory testing, which showed reduced recognition index in vehicle-treated 

APPswe/PS1mice and improved recognition index in FTY720-treated double transgenic mice (Figure 

4.16b-c; blue bars). Female APPSwe/PS1 mice were partially protected from memory impairment 

Aβ 1-42 

Aβ 1-40 

Aβ 1-38 

Aβ 1-39 Aβ 1-37 Aβ 1-18 
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(Figure 4.16b-c; red bars).  They were never impaired in the passive avoidance task, but became 

impaired in the object recognition task after 5 weeks of treatment with plain water, while 

maintained performance similar to wild type littermates upon FTY720 administration. Consistent 

with a therapeutic action of FTY720, in the nest building task a significantly higher percentage of 

APPSwe/PS1 mice was able to complete the nest after treatment with the drug, as compared with 

pre-drug behavioural analysis (Figure 4.16d). In this task, no major difference in the behaviour of 

male and female APPSwe/PS1 mice was observed. 
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Figure 4.16 Transgenic APPPS1 Mice administered with FTY and observed for behavior tasks related to memory. A Diagrammatic representation  of  

the scheme followed for drug administration and further experiments .The mice were initially checked for their general health, reflex, sensory abilities 

and then tested for motor activity and learning and memory performance before drug administration. APPswe/PS1 displayed normal gross behavior 

and motor activity. B Passive avoidance test showed improvement with FTY720 administration, in case of APPPS1 transgenic males.  Females were 

not impaired for this test and performed like WT female controls. C Object Recognition Test was performed, initially only the transgenic male were 

impaired compared to WT control males, in course of drug/vehicle administration for 5 weeks both male and female transgenic animals, which 

received water as vehicle were impaired with respect to respective controls but transgenic animals administered with FTY720  showed significant 

improvement in their performance. D In case of Nest building, there was impairment in performance of Transgenic APPPS1 mice, both male female 

as compared to respective WT controls. We further observed improvement in performance in transgenic mice after FTY720 administration as 

compared to WT controls. The results obtained in case of male and female were similar, so the data was pooled and grouped as WT and APPPS1. 

 

4.17 FTY720 reduces inflammation in APPPS1 transgenic mice brain  

We next examined the impact of subchronic FTY720 treatment on brain inflammation. As a measure 

of astrogliosis we analyzed the mRNA (Figure 4.17a) and protein (Figure 4.17c) expression of the 

astrocytic marker GFAP in the cortex of mice. Due to differences in the behavior responses we 

analysed separately male and female both in wild type and transgenic mice.  The transgenic mice, 

especially females, showed increased levels of GFAP transcript. Interestingly, we observed that 

GFAP was significantly decrease both at mRNA and protein levels in case of male and female 

transgenic mice administered with FTY720 as compared to transgenic mice receiving vehicle alone. 

We also performed immunostaining for GFAP of the cortical slices of transgenic and wild type mice 

(Figure 4.17b). Tthis analysis was performed only in male transgenic and wild type mice and further 

indicated a significant increase in astrogliosis in transgenic mice administered with vehicle, and a 

significant decrease in GFAP protein expression upon FTY720 treatment in transgenic mice.   
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Figure 4.17 I A  Increased mRNA expression of GFAP in APPSwe/PS1 transgenic mice as compared to wild type control, which was decreased both in 

case of male and female upon FTY administration.  B Representative image of cortical section for transgenic mice showing astogliosis, the results are 

in accordance with GFAP mRNA expression. C Representative western blot for GFAP, the values obtained were normalized with Calnexin. We observed 

increased astogliosis in transgenic mice compared to wild type both in case of male and female, and decreased significantly with FTY720. 

 

 

We also observed that APPSwe/PS1 mice, especially females (Figure 4.17IIa), displayed higher mRNA 

expression of the microglial marker IBA1 in the cortex as compared to wild type littermates, and 

that upon FTY720 administration this expression was decreased. However, immunohystochemical 

analysis revealed no changes in IBA1 expression in the cortex of APPSwe/PS1mice treated with 
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FTY720 as compared to vehicle-treated mice (Figure 4.17IIb). We also analyzed by western blotting 

MCH class II molecules expression to quantify the activation of microglial towards M1 phenotype. A 

marked increase in MHCII levels was observed in female APPSwe/PS1 mice as compared to wild type 

animals. Administration of FTY720 significantly decreased MHCII expression in APPSwe/PS1 mice. 

Male APPSwe/PS1 mice showed no changed in MHCII expression with respect to control male mice 

(Figure 4.17IIc). 

  

 

 

 

 

 

 

 

 

 

 

                                               

                                                                       

M
H

C
II
 n

o
rm

a
li
z
e
d

 w
it

h
 c

a
ln

e
x
in

0.0

0.5

1.0

1.5

 

M
H

C
II
 n

o
rm

a
li
z
e
d

 w
it

h
 c

a
ln

e
x
in

0.0

0.5

1.0

1.5

2.0

2.5

                                                

 

Figure 4.17 I A  Increased mRNA expression of IBA1 in APPSwe/PS1 transgenic mice as compared to wild type control, which was decreased both in 

case of male and female upon FTY administration.  B Representative image of cortical section for transgenic male mice showing microgliosis. 

Quantification of images revealed significant increase in IBA positive cells around the plaque in transgenic mice as compared to wild type, but no 

decrease was observed upon FTY administration.  C Representative western blot for MHCII, a marker to study microglial activation. The values 

obtained were normalized with Calnexin. We observed increased microglial activation in female transgenic mice compared to wild type which 

decreased significantly with FTY720. No changes were observed for MHCII in male transgenic and wild type mice. 
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Treatment with FTY720 also lead to   a significant reduction in the mRNA expression of typical inflammatory 

markers, i.e. iNOs, COX-2 IL-1 and IL-6  as observed independently in male and female in wild type and 

double transgenic mice. (Figure 4.16 IIIa).  

 

 

 

 

 

 

 

 

 

Figure 4.16 III A FTY induces reduction in mRNA expression of inflammatory markers in male and female both in case of wild type and APPSwe/PS1 

transgenic mice. 

 

4.18 FTY720 decreases A 1-42 load in APPPS1 transgenic mice brain. 

We further investigated if FTY720 influences the Alevels in APPSwe/PS1 transgenic mice. To 

evaluate the changes in total Abeta 1-42 levels we performed dot blot analysis from the total protein 

isolated from the cortices of transgenic mice treated or not with FTY720.  We observed that 

Alevels decreased both in male and female APPSwe/PS1 mice administered with FTY720 (Figure 

4.18a) Next we analysed by Elisa the levels of A in the soluble fraction isolated in detergent-free 

buffer from the hippocampus of APPSwe/PS1 mice chronically administered with FTY720 or plain 

water. This analysis revealed a significant decrease in soluble Alevels in female transgenic mice 

administered with FTY720. No significant changes were observed in male transgenic mice upon 

FTY720 administration (Figure 4.18b). 
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Figure 4.18 A Quantification for the total amount of A through dot blot in cortex of transgenic male and female mice revealed a decrease upon FTY 

administration. B Representative image of the Dot Blot. C Quantification for soluble Athrough ELISA in the hippocampus of transgenic male and 

female mice. We observed a significant decrease in female transgenic mice upon FTY administration, whereas male transgenic mice with and without 

FTY administration showed no differences in soluble A levels. 
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                                                                                5.  DISUSSION 

 

 

In the present study, we unveil a novel mechanism by which microglia derived MVs contribute to 

neuronal damage in AD. The effect is mediated by lipid component of MVs which changes the 

equilibrium of soluble and insoluble A 1-42, promoting formation of soluble neurotoxic species. 

The species of A 1-42 so generated bind efficiently to subpopulation of neuronal cultures, 

increasing NMDA receptor permeability and excitotoxicity. This binding was greatly prevented by 

pre-incubations with PrPC and anti-Aantibodies. We also demonstrated that Microglial MVs 

contains neurotoxic Agenerated from A 1-42 internalized by phagocytising microglia. These MVs 

can act as carrier of toxic Aand eventually may be toxic to neurons they encounter on their way. 

Furthermore we observed increased level of IB4 positive MVs in CSF obtained from AD patients. In 

line with our in-vitro data MVs from CSF of AD patients were able to promote formation of soluble 

A 1-42 and were toxic to cultured neurons. Administration of FTY720, an inhibitor of MVs shedding 

for a period of 5 weeks improved cognitive impairment in APPSwe/PS1 transgenic mice by 

decreasing level of neuroinflammation and plaque load. 

 

5.1 Microglia derived MVs increased the toxicity of A 1-42 which is mediated by the lipid 

component of MVs. 

Microglial MVs can play physiological role by modulating synaptic activity and neurotransmission 

(Antonucci, et al., 2012; Turola, et al., 2012). Moreover MVs have been identified as a novel 

biomarker of brain inflammation in humans (Verderio C, et al., 2012; Colombo E,et al., 2012).  Recent 

literature suggests alterations in metabolism of natural sphingolipids and gangliosides in AD patients 

(Mielke M M, et al., 2011) altered levels of these bioactive lipids can destabilize and rapidly 

resolubilize long  A  fibrils to neurotoxic amyloid species. We demonstrated for the first time that 

MVs, extracellularly released by cultured microglia, strongly increase A 1-42 neurotoxicity in vitro. 

This effect is due to the lipid components of MVs, which promote formation of small soluble 

neurotoxic species from A 1-42 extracellular aggregates. We observed that overnight incubation 

of inert A 1-42 peptide with microglial MVs promoted formation of soluble neurotoxic species, 

whereas A 1-42 alone became aggregated and displayed low toxicity. The A 1-42 species 

generated in A 1-42/MVs mix induced fragmentation of dendrites and reduced synaptic density as 

http://www.frontiersin.org/Journal/10.3389/fncel.2013.00182/full#B2
http://www.frontiersin.org/Journal/10.3389/fncel.2013.00182/full#B60


57 
 

compared to control cultures. Our data suggest that a transient interaction takes place between 

MVs and Abeta species, as suggested by increased A flotation on sucrose gradient upon acute 

addition of MVs. However this interaction is not stable as the neurotoxic forms generated in the 

presence of MVs are recovered in the soup after fractionation of Abeta/MVs mixture at 10000g, 

while the pellet, containing MV-associated A 1-42 along with aggregated A 1-42 forms displayed 

low toxicity and little neuronal binding capacity. This indicates that most of neurotoxic forms do not 

bind to MVs strongly. We therefore identified microglial MVs as the endogenous source of bioactive 

lipids, which are able to shift the equilibrium towards toxic A species. This argument is in line with 

previous studies that demonstrated that brain membrane lipids, including phosho- and 

(glycol)sphingolipids, favour formation of soluble forms, either promoting solubilization of inert 

fibrils (Martins JC, et al., 2008), or hindering their conversion to insoluble fibrils (Johansson A S, et 

al., 2007). Interestingly, neuronal exosomes have been found to promote rather than reduce 

Afibrillogenesis (Yuyama K, et al., 2012), thus indicating that lipid composition of MVs generated 

from distinct cell types may have different effects on Aextracellular assembly and can influence 

the kind of species generated. Notably, MVs have a distinct repertoire of lipids not only compared 

to exosomes (our unpublished data) (Thery C., et al. 2009) but also to the plasma membrane of 

origin. MVs are enriched in cholesterol, sphingomyelin and ceramide and contain lipid raft elements 

(Del Conde I, et al., 2005), including GM1 and GM3 gangliosides and flotillin-2 (Han X, et al., 2003). 

Interestingly, artificial liposomes, that mimic the phospholipids composition of the plasma 

membrane, neither induce fibril solubilization nor promote Aneurotoxicity. Lipidomic profiling of 

microglial MVs will be of help to better characterize the endogenous lipids responsible for the 

generation of neurotoxic A species, which could themselves represent putative AD biomarkers 

(Serrano-Pozo A, et al., 2012; Han X, et al., 2003; Malnar M, at al., 2012). 

 

5.2 Toxicity of A 1-42/MVs mixture is due to soluble A 1-42 species, and is neutralized by PrPC 

and anti- A 1-42 antibodies. 

The majority of neurotoxic A 1-42 generated in A 1-42/ MVs mix, is retained in the soup after 

partitioning of A 1-42/ MVs in two fraction by ultracentrifugation. They are soluble, non-

aggregated A 1-42 species, which are not associated to MVs as indicated by our previous 

observations. Electron microscopic images confirmed the presence of globular structures of 

diameter between 4 and 8 nm, similar to those of oligomeric A 1-42. The toxicity of small soluble 

Aspecies has been proposed to depend on their interaction with specific neuronal proteins, 
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such as the NMDA receptor (Synder E M, et al., 2005) or the prion protein PrPC (Lauren J, et al.,2009), 

which modulates NMDA receptors through Fyn kinase (Um JW, et al., 2012). Alternatively, soluble 

Aoligomers may damage neurons by binding to multiple membrane components, including 

lipids, thereby changing membrane permeability and causing calcium ion leakage into the cell 

(Benilova I, et al.,2012; Verdier Y., et al., 2004) We demonstrated that the soluble forms generated 

in A 1-42/ MVs mix, bind efficiently to a subpopulation of neurons in vitro, and increase NMDA 

receptor permeability causing an excitotoxic damage. This response was blocked when the 

antagonist of NMDA receptor APV was administered to the neuronal cultures.  We excluded that 

toxicity could be due to glutamate content of MVs or A 1-42/MVs preparation, as we detected a 

glutamate concentration in A 1-42/MVs much below the minimum required for activation NMDA 

response. We observed significant reduction in binding of soluble A 1-42 to neurons in the 

presence of PrPC thanks to the competition between Abinding to dendrites and to PrPC, 

which is a high affinity receptor for oligomeric ABinding of soluble A 1-42 was completely 

abolished by a cocktail of anti-A antibodies. This reduction in binding of soluble A 1-42 by PrPC 

and anti- A antibodies could neutralize the neurotoxicity caused by A 1-42/MVs mix. 

 

5.3 Microglial MVs contain toxic A  forms generated from internalized A 1-42.  

First we demonstrated that microglia-derived MV mediate extracellular A processing, leading to 

neurotoxicity. Then, we could show that microglial MVs also contain toxic forms generated from 

internalized A Previous literature indicates that exosomes derived from neurons and 

oligodendrocytes carry a fraction of intracellular A (Rajendran L., et al.,2006; Gidhoni R, et al.,2011; 

Vingtdeux V, et al., 2007) and that phagocytosed  Acan be re-secreted from microglia, although 

through an unknown mechanism (Yamamoto, et al., 2008). In our study we demonstrated that 

microglia release neurotoxic A1-42 and A1-40 species in association with MVs. This is the first 

evidence that microglia, which phagocytize and degrade extracellular A fibrils (Aguzzi A, et al., 

2013; Prinz M, et al.,2011) or cause macropinocytosis of soluble A (Paresce DM., et al.1997; Lee 

CY., et al. 2010) can favour seeding and formation of neurotoxic amyloids throughout the brain. We 

assume that when there is saturation of A degradation pathways, due to excessive abeta load, 

beyond the clearing capacity of microglia, these cells can eliminate undigested Athrough the 

release of MVs. In this way, MV-mediated release of neurotoxic A forms may occur. Neurotoxic A 

species may be processed in early to late endosomes and lysosomes ( Rajendran L, et al.,2012), after 
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disassembly of phagocytosed A. Sorting to the external surface of MVs can occur through 

association with the GPI-anchored protein PrPC or GM1 gangliosides, all of which are localized to 

raft domains (Mattei V, et al., 2009) and bind tightly to A oligomers (Ariga T., et al 2001). 

Alternatively, neurotoxic forms may be generated at the plasma memnbrane of microglial cells. 

Indeed the microglial surface  contains components of the ɣ-secretase complex -also localized inside 

lipids rafts (Rajendran L, et al., 2012 ) and can cleave the carboxyl terminal of A 1-42 at position 40 

(Kiyota T, et al., 2009), resulting in the generation of neurotoxic A species. This sorting mechanism 

may be consistent with the proposed role of lipid rafts in setting up platforms to concentrate into 

MVs proteins destined to secretion (Shen B, et al., 2011; Del Conde I, et al., 2005). The fact that we 

observed significant decrease in neurotoxicity upon pretreatment with anti-A antibodies strongly 

supports the theory that neurotoxic A forms are localized to the outer lipid bilayer of MVs. Finally, 

we cannot exclude that processing of A1-42 to A1-40 may even proceed within MVs. Indeed, 

previous evidence showed that neuron-derived EMVs contain some components of the ɣ -secretase 

complex (Sharples RA, et al.,2008), while the Insulin Degrading Enzyme IDE, which proteolyzes A 

1-42 and A 1-40, has been detected among cargo proteins of microglial EMVs (Tamboli IY, et al., 

2010). However, further studies are required to unequivocally define the topology of A species and 

to clarify whether A forms are actually associated to the extracellular membrane of shed MVs. 

 

5.4 Microglial MVs in CSF of AD patients. 

The in-vitro findings of my thesis work has clear clinical implications. The main idea behind the 

hypothesis that microglia-derived MVs can lead to neurotoxicity came from the fact that both in AD 

patients and mice models for AD there are activated microglial cells surrounding the plaque. Recent 

studies demonstrates that activation of microglia increases linearly throughout the disease course 

and correlates with AD neurodegeneration (Serrano-Pozo A, et al., 2011). These activated microglia 

cells release MVs, so we were interested in investigating the production of MVs in AD patients. 

Interestingly we found that microglial MVs were very high in MCI and AD patients, reflecting 

microgliosis (Verderio C, et al., 2012), which typically characterizes the disease (Serrano-Pozo A, et 

al., 2011). In accordance with our in-vitro results we observed that MVs collected from the CSF of 

AD patients promote extra-cellular formation of neurotoxic A species, similarly to MVs shed from 

cultured cells. We also found that the MVs from AD patients were extremely toxic to cultured 

neurons, more than Mvs collected from patients with other neuroinflammatory disorders, and by 

the use of anti-Aantibodies we could partially block this toxicity. These results suggest that the 
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toxicity of MVs from AD patients is at least in part, associated to their A cargo. Further analysis of 

the various A species present in the MVs obtained from the CSF of a large cohort of AD and healthy 

subjects will clarify whether changes in the conformation and/or in the amount of Aforms may 

account for higher neurotoxicity of MVs from dementia patients. Furthermore, lipidomic profiling 

of human MVs from AD and healthy subjects will help to understand if possible alterations in lipid 

components can in part account for neurotoxicity caused by MVs from AD patients and may be used 

as a new putative AD biomarkers, thus increasing the diagnostic potential of MVs in AD. Finally, it 

should be pointed out that it is still to be defined whether MVs may associate with Abeta present in 

the parenchyma/blood vessel as well as plaques during their travel to CSF. In this case the content 

of Abeta present in MVs collected from dementia patients does not merely reflect Abeta trafficking 

inside donor microglial cells.  

 

In agreement with their pathogenic role, levels of microglia-derived MVs are positively correlated 

with classical biomarkers of neuronal injury such as tau in the CSF (Holtzma D, et al., 2011) of MCI 

and AD subjects, and with damage to white matter structures of the temporal lobe in MCI patients, 

as revealed by MRI scans (Dalla Libera, et al., manuscript in preparation). These observations 

suggest that MVs may play a critical role in AD pathogenesis and open the way for new therapies 

targeting MVs to prevent neurotoxicity of A species in the brain. Moreover our study suggests that 

MVs may represent as a novel companion tool for AD diagnosis.  

 

5.5 Treatment with the inhibitor of MV shedding FTY720 improves cognitive impairment in 

APPSwe/PS1 transgenic mice by decreasing neuro-inflammation and plaque load. 

We further observed that treatment with the pharmacological drug FTY720, which is known to exert 

therapeutic benefit in MS (Cohen JA, et al.,2011) and various CNS injuries, such as stroke and trauma 

(Aktas O, et al., 2010; Wei Y, et al., 2011) could ameliorate the pathophysiology and cognitive 

defects in APPSwe/PS1 AD mouse model. Recent reports suggest that FTY720 is a specific inhibitor 

of A-SMase (Dawson G, et al., 2011), the enzyme that controls MV production. Work from our lab 

further demonstrated that FTY720 completely abolished release of MVs evoked by ATP in vitro and 

decreased MV concentration to baseline levels in the CSF of EAE mice upon chronic treatment 

(Verderio C, et al., 2012). Thus, we were interested to explore the possibility that inhibition of MV 

shedding by FTY720 may contribute, at least in part, to the therapeutic action of FTY720 in the brain. 

To investigate this possibility we used APPSwe/PS1 transgenic mice as a model of AD.  
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As expected, we observed cognitive impairment in male APPswe/PS1 mice in passive avoidance and 

object recognition memory tests as compared to wild type mice. Transgenic females were not 

impaired in passive avoidance, but became impaired in object recognition during the course of 

treatment with the vehicle. Notably we observed a promising improvement in the cognitive 

behaviour of transgenic male and female mice upon FTY 720 administration for 5 weeks. However 

we could not correlate amelioration of cognitive behaviour to variation in MV production by the 

drug, as in the old mice used in these experiments we did not collected sufficient amount of CSF to 

analyse MV concentration by FACS. 

Consistent with the known immunosuppressive properties of the drug (S Suzuki, et al., 1996), we 

found a significant reduction in astrogliosis and microgliosis in the brain of transgenic mice treated 

with FTY720, which tipically display increased protein and mRNA levels of the astrogliosis and 

microgliosis marker GFAP and IBA1. Indeed there was a significant reduction in mRNA expression of 

these inflammatory markers in transgenic mice upon FTY treatment. The wild type mice 

administered with FTY performed poorly in behaviour and there was further reduction in glial cells 

along with decrease in inflammatory marker as compared to wild type littermates administered with 

water. There is evidence showing that S1P influences inflammatory responses and induces neuronal 

apoptosis in a concentration-dependent manner (Hagen, et al., 2009). Therefore, it may be 

hypothesized that administration of FTY720 to non-AD mice enhances the S1P signalling to 

pathologic levels. In addition, we observed decreased level of total abeta load upon FTY720 

treatment in transgenic mice, while soluble abeta brain content was significantly decreased in case 

of transgenic female.  

Recently a lot of reports point to multiple molecular targets of FTY720 neuroprotective action. The 

phosphorylated form of FTY is an analog of S1P. In AD patients, levels of SIP are significantly reduced 

compared with the age-matched normal controls. FTY720 also decreases the levels of ceramides (S 

Lahiri, et al.,2009), which have been shown to promote beta amyloid peptide formation and are also 

linked to neurotoxicity via activation of pro-apoptotic pathways (X. He, et al., 2010) Furthermore 

SPK1 (S1P producing enzyme) overexpression, promotes neuronal survival upon A exposure (A. 

Gomez-Brouchet, et al., 2007). Ex vivo study, demonstrates that S1P possesses neuroprotective 

effects against soluble Aβ oligomer-induced cell death by inhibiting the activation of acid 

sphingomyelinase (Gómez-Muñoz, et al., 2003). The balance between the levels of ceramide and 

S1P, the ‘ceramide/S1P rheostat’, contributes to the fate of cells (Cuvillier, et al., 1996). Therefore, 

the potential ability of FTY720 to recapitulate the function of S1P might also underlie its protective 

http://www.sciencedirect.com/science/article/pii/S0166432813003616#bib0280
http://link.springer.com/article/10.1007%2Fs12031-013-9979-6/fulltext.html#CR21
http://link.springer.com/article/10.1007%2Fs12031-013-9979-6/fulltext.html#CR19
http://www.sciencedirect.com/science/article/pii/S0197458008001504?np=y#bib11
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mechanism against Aβ neurotoxicity, which can account for behavioural improvement in transgenic 

mice treated with FTY.  

Recent reports also indicate that FTY720 may also act directly on neural and non-neural CNS cells to 

reduce Abeta neurodegeneration and to promote reparative mechanisms through upregulation of 

BDNF production (Doi Y, et al., 2013). In   parallel to our study, other groups observed that chronic 

treatment with FTY720 decreases the Aβ42-induced activation of caspase-3 and protects against 

hippocampal neuronal loss in vitro (Fatemeh Hemmati, et al. 2013). The protective actions of FTY720 

also manifest as improved spatial learning and memory formation in AD model rats. It has been 

suggested that FTY720 administration improves passive avoidance memory retrieval through 

mechanisms which alter the overall inflammatory and apoptotic mechanisms toward less brain 

damage and memory loss (Fatemeh Hemmati, et al. 2013).  

In conclusion, although we observed a clear improvement in the pathophysiology and cognitive 

defects of APPSwe/PS1 AD mice upon FTY720 administration, due to the multiple targets of the 

drug, we could not ascribe its neuroprotective action to its ability to inhibit MV shedding. Actually 

we believe that FTY720 may induce beneficial effects in AD by multiple pathways and either 

improving or preventing the patology from father progression. 

 

5.6 Conclusion 

Our study clearly demonstrates that MVs derived from microglial cells, surrounding the plaque may 

act as a carrier of neurotoxic species and have potential to convert extracellular inert  to 

neurotoxic. The increase in level of myeloid MVs in CSF of AD patient, identifies MVs as a novel 

therapeutic target and companion tool for AD diagnosis. 

 

 

 

 

 

 

 

 

  

http://www.ncbi.nlm.nih.gov/pubmed?term=Doi%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=23593505
http://www.sciencedirect.com/science/article/pii/S0166432813003616
http://www.sciencedirect.com/science/article/pii/S0166432813003616


63 
 

                                                                            6. REFERENCES 

 
Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH 2010. Mechanisms underlying inflammation 
in neurodegeneration. Cell 140: 918-34. 

Werner P, Mittelman MS, Goldstein D, Heinik J 2012. Family stigma and caregiver burden in 

Alzheimer's disease Gerontologist 52: 89-97.  

Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R 

1991. Physical basis of cognitive alterations in Alzheimer’s disease: Synapse loss is the major 

correlate of cognitive impairment. Ann Neurol 30: 572–580 

Mandelkow EM, Mandelkow E 1998. Tau in Alzheimer’s disease. Trends Cell Biol 8: 425–427. 
 
Trojanowski JQ, Lee VM 1998. Aggregation of neurofilament and α-synuclein proteins in Lewy 
bodies: Implications for the pathogenesis of Parkinson disease and Lewy body dementia. Arch 
Neurol 55: 151–152. 
 
Iqbal K, Grundke-Iqbal I 2002. Neurofibrillary pathology leads to synaptic loss and not the other 
way around in Alzheimer disease. J Alzheimers Dis 4: 235–238. 
 
Masliah E 2000. The role of synaptic proteins in Alzheimer’s disease. Ann NY Acad Sci924: 68–75.  
 

Beach T, Walker R, McGeer E 1989. Patterns of gliosis in Alzheimer’s disease and aging 
cerebrum. Glia 2: 420–436. 
 
Itagaki S, McGeer PL, Akiyama H, Zhu S, Selkoe D 1989. Relationship of microglia and 
astrocytes to amyloid deposits of Alzheimer disease. J Neuroimmunol 24: 173–182. 
 
Rogers J, Luber-Narod J, Styren S, Civin W 1988. Expression of immune system-associated 
antigens by cells of the human central nervous system: Relationship to the pathology of 
Alzheimer’s disease. Neurobiol Aging 9: 339–349. 
 
Masliah E, Rockenstein E, Veinbergs I, Sagara Y, Mallory M, Hashimoto M, Mucke L 2001b. β-
amyloid peptides enhance α-synuclein accumulation and neuronal deficits in a transgenic 
mouse model linking Alzheimer’s disease and Parkinson’s disease.Proc Natl Acad Sci 98: 12245–
12250. 
 
Gibson PH, Tomlison BE 1977. Numbers of Hirano bodies in the hippocampus of normal and 
demented people with Alzheimer’s disease. J Neurol Sci 33: 199–206. 
 
Gómez-Isla T, Price JL, McKeel DW Jr, Morris JC, Growdon JH, Hyman BT 1996.Profound loss 
of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 16: 
4491–4500 
 
Iqbal K, Grundke-Iqbal I 2002. Neurofibrillary pathology leads to synaptic loss and not the other 
way around in Alzheimer disease. J Alzheimers Dis 4: 235–238.  
 
Bussière T, Gold G, Kövari E, Giannakopoulos P, Bouras C, Perl DP, Morrison JH, Hof PR 
2003. Stereologic analysis of neurofibrillary tangle formation in prefrontal cortex area 9 in aging 
and Alzheimer’s disease. Neuroscience 117: 577–592. 
 

http://www.ncbi.nlm.nih.gov/pubmed/20303880
http://www.ncbi.nlm.nih.gov/pubmed/20303880
http://www.ncbi.nlm.nih.gov/pubmed?term=Werner%20P%5BAuthor%5D&cauthor=true&cauthor_uid=22048807
http://www.ncbi.nlm.nih.gov/pubmed?term=Mittelman%20MS%5BAuthor%5D&cauthor=true&cauthor_uid=22048807
http://www.ncbi.nlm.nih.gov/pubmed?term=Goldstein%20D%5BAuthor%5D&cauthor=true&cauthor_uid=22048807
http://www.ncbi.nlm.nih.gov/pubmed?term=Heinik%20J%5BAuthor%5D&cauthor=true&cauthor_uid=22048807


64 
 

Hof PR, Bussière T, Gold G, Kövari E, Giannakopoulos P, Bouras C, Perl DP, Morrison JH 
2003. Stereologic evidence for persistence of viable neurons in layer II of the entorhinal cortex 
and the CA1 field in Alzheimer disease. J Neuropathol Exp Neurol62: 55–67. 
 
Yoshiyama Y, Higucho M, Zhang B, Huang SM, Iwata N, Saido TC, Maeda J, Suhara T, 
Trojanowski JQ, Lee VM 2007. Synapse loss and microglial activation precede tangles in a P301S 
tauopathy mouse model. J Neuron 53: 337–351. 
 
Spires-Jones TL, de Calignon A, Matsui T, Zehr C, Pitstick R, Wu HY, Osetek JD, Jones  
PB, Bacskai BJ, Feany MB, et al. 2007. In vivo imaging reveals dissociation between caspase 
activation and acute neuronal death in tangle-bearing neurons. J Neurosci28: 862–867.  
 
de Calignon A, Fox LM, Pitstick R, Carlson GA, Bacskai BJ, Spires-Jones TL, Hyman BT 
2010. Caspase activation precedes and leads to tangles. Nature 464: 1201–1204. 
 
Kimura T, Fukuda T, Sahara N, Yamashita S, Murayama M, Mirozoki T, Yoshiike Y, Lee B, 
Sotiropoulos I, Maeda S, et al. 2010. Aggregation of detergent-insoluble tau is involved in 
neuronal loss but not in synaptic loss. J Biol Chem 285: 38692–38699. 
 

R. Vassar, B.D. Bennett, S. Babu-Khan, S. Kahn, E.A. Mendiaz, P. Denis, D.B. Teplow, S. Ross, P. 

Amarante, R. Loeloff, Y. Luo, S. Fisher, J. Fuller, S. Edenson, J. Lile, M.A. Jarosinski, A.L. Biere, E. 

Curran, T. Burgess, J.C. Louis, F. Collins, J. Treanor, G. Rogers, M. Citron 1999. Beta-secretase 

cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. 

Science (New York, NY), 286: 735–741 

 

D. Edbauer, C. Kaether, H. Steiner, C. Haass 2004. Co-expression of nicastrin and presenilin rescues 

a loss of function mutant of APH-1. J Biol Chem 279: 37311–37315. 

 
Xu H, Sweeney D, Wang R, Thinakaran G, Lo AC, Sisodia SS, Greengard P, Gandy S 1997. 

Generationof Alzheimer beta-amyloid protein in the trans-Golgi network in the apparent absence of 

vesicle formation. Proc Natl Acad Sci 94: 3748-52. 

Hartmann T, Bieger SC, Brühl B, Tienari PJ, Ida N, Allsop D, Roberts GW, Masters CL, Dotti 

CG, Unsicker K, Beyreuther K 1997.Distinct sites of intracellular production for Alzheimer's disease 

A beta40/42 amyloid peptides. Nat Med. :1016-20. 

Greenfield JP, Tsai J, Gouras GK, Hai B, Thinakaran G, Checler F, Sisodia SS, Greengard P, Xu H 
1999. Endoplasmic reticulum and trans-Golgi network generate distinct populations of Alzheimer 
beta-amyloid peptides. Proc Natl Acad Sci 96:742-7. 
 
Berridge M. J 1998. Neuronal calcium signaling. Neuron 21: 13–26. 
 
Khachaturian ZS, Monjan AA, Radebaugh TS 1989. The future of Alzheimer's disease research.Prog 
Clin Biol Res 317:13-21. 
 

Ohyagi Y., Asahara H., Chui D. H. et al 2005. Intracellular Abeta42 activates p53 promoter: a 
pathway to neurodegeneration in Alzheimer's disease. FASEB J. 19, 255–257. 

 

Pearson H. A. and Peers C 2006. Physiological roles for amyloid β peptides. J. Physiol. 575, 5–10. 

 

Hardy J 2007. Does Aβ 42 have a function related to blood homeostasis? Neurochem. Res. 32, 833–
835. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Xu%20H%5BAuthor%5D&cauthor=true&cauthor_uid=9108049
http://www.ncbi.nlm.nih.gov/pubmed?term=Sweeney%20D%5BAuthor%5D&cauthor=true&cauthor_uid=9108049
http://www.ncbi.nlm.nih.gov/pubmed?term=Wang%20R%5BAuthor%5D&cauthor=true&cauthor_uid=9108049
http://www.ncbi.nlm.nih.gov/pubmed?term=Thinakaran%20G%5BAuthor%5D&cauthor=true&cauthor_uid=9108049
http://www.ncbi.nlm.nih.gov/pubmed?term=Lo%20AC%5BAuthor%5D&cauthor=true&cauthor_uid=9108049
http://www.ncbi.nlm.nih.gov/pubmed?term=Sisodia%20SS%5BAuthor%5D&cauthor=true&cauthor_uid=9108049
http://www.ncbi.nlm.nih.gov/pubmed?term=Greengard%20P%5BAuthor%5D&cauthor=true&cauthor_uid=9108049
http://www.ncbi.nlm.nih.gov/pubmed?term=Gandy%20S%5BAuthor%5D&cauthor=true&cauthor_uid=9108049
http://www.ncbi.nlm.nih.gov/pubmed?term=Hartmann%20T%5BAuthor%5D&cauthor=true&cauthor_uid=9288729
http://www.ncbi.nlm.nih.gov/pubmed?term=Bieger%20SC%5BAuthor%5D&cauthor=true&cauthor_uid=9288729
http://www.ncbi.nlm.nih.gov/pubmed?term=Br%C3%BChl%20B%5BAuthor%5D&cauthor=true&cauthor_uid=9288729
http://www.ncbi.nlm.nih.gov/pubmed?term=Tienari%20PJ%5BAuthor%5D&cauthor=true&cauthor_uid=9288729
http://www.ncbi.nlm.nih.gov/pubmed?term=Ida%20N%5BAuthor%5D&cauthor=true&cauthor_uid=9288729
http://www.ncbi.nlm.nih.gov/pubmed?term=Allsop%20D%5BAuthor%5D&cauthor=true&cauthor_uid=9288729
http://www.ncbi.nlm.nih.gov/pubmed?term=Roberts%20GW%5BAuthor%5D&cauthor=true&cauthor_uid=9288729
http://www.ncbi.nlm.nih.gov/pubmed?term=Masters%20CL%5BAuthor%5D&cauthor=true&cauthor_uid=9288729
http://www.ncbi.nlm.nih.gov/pubmed?term=Dotti%20CG%5BAuthor%5D&cauthor=true&cauthor_uid=9288729
http://www.ncbi.nlm.nih.gov/pubmed?term=Dotti%20CG%5BAuthor%5D&cauthor=true&cauthor_uid=9288729
http://www.ncbi.nlm.nih.gov/pubmed?term=Unsicker%20K%5BAuthor%5D&cauthor=true&cauthor_uid=9288729
http://www.ncbi.nlm.nih.gov/pubmed?term=Beyreuther%20K%5BAuthor%5D&cauthor=true&cauthor_uid=9288729
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hartmann+T%2C+et+al.%2C+1997+APP
http://www.ncbi.nlm.nih.gov/pubmed/9892704
http://www.ncbi.nlm.nih.gov/pubmed/9892704
http://www.ncbi.nlm.nih.gov/pubmed/2690097


65 
 

 

Bailey J. A., Maloney B., Ge Y. W. and Lahiri D. K. 2011. Functional activity of the novel Alzheimer's 
amyloid β-peptide interacting domain (AβID) in the APP and BACE1 promoter sequences and 
implications in activating apoptotic genes and in amyloidogenesis. Gene 488, 13–22. 

 

Cao X. and Sudhof T. C 2001. A transcriptively active complex of APP with Fe65 and histone 
acetyltransferase Tip60. Science 293,115–120. 

 

Pardossi-Piquard R., Petit A., Kawarai T. et al 2005. Presenilin-dependent transcriptional control of 
the Abeta-degrading enzyme neprilysin by intracellular domains of βAPP and 
APLP. Neuron 46, 541–554. 

 

Müller T., Concannon C. G., Ward M. W., Walsh C. M., Tirniceriu A. L., Tribl F., Kogel D., Prehn J. 
H. and Egensperger R 2007. Modulation of gene expression and cytoskeletal dynamics by the 
amyloid precursor protein intracellular domain (AICD). Mol. Biol. Cell 18, 201–210 

Belyaev N. D., Nalivaeva N. N., Makova N. Z. and Turner A. J 2009. Neprilysin gene expression 

requires binding of the amyloid precursor protein intracellular domain to its promoter: implications 

for Alzheimer disease. EMBO Rep. 10, 94–100. 

Belyaev N. D., Kellett K. A., Beckett C., Makova N. Z., Revett T. J., Nalivaeva N. N., Hooper N. 

M. and Turner A. J 2010. The transcriptionally active amyloid precursor protein (APP) intracellular 

domain is preferentially produced from the 695 isoform of APP in a β-secretase-dependent 

pathway. J. Biol. Chem. 285, 41443–41454. 

 
Kitazume S, Tachida Y, Kato M, Yamaguchi Y, Honda T, Hashimoto Y, Wada Y, Saito T, Iwata N, 
Saido T, Taniguchi N 2010. Brain endothelial cells produce amyloid {beta} from amyloid precursor 
protein 770 and preferentially secrete the O-glycosylated form. J Biol Chem 285:40097-103 
 

Schmitt TL, Steiner E, Klingler P, Lassmann H, Grubeck-Loebenstein B 1995. Thyroid epithelial cells 

produce large amounts of the Alzheimer beta-amyloid precursor protein (APP) and generate 

potentially amyloidogenic APP fragments. J Clin Endocrinol Metab.80:3513-9. 
 
 
Fukumoto H, Tomita T, Matsunaga H, Ishibashi Y, Saido TC, Iwatsubo T 1999. Primary cultures of 

neuronal and non-neuronal rat brain cells secrete similar proportions of amyloid β peptides ending 

at Aβ40 and Aβ42. NeuroReport 10:2965–2969. 

Giuffrida ML, Caraci F, De Bona P, Pappalardo G, Nicoletti F, Rizzarelli E, Copani A  2010. The 
monomer state of beta-amyloid: where the Alzheimer's disease protein meets physiology.Rev 
Neurosci 21:83-93.  
 
Schilling, S., Lauber, T., Schaupp, M., Manhart, S., Scheel, E., Bohm, G., and Demuth, H.U 2006. On 

the seeding and oligomerization of pGlu-amyloid peptides (in vitro). Biochemistry 45:12393-12399 

Bieschke, J., Herbst, M., Wiglenda, T., Friedrich, R.P., Boeddrich, A., Schiele, F., Kleckers, D., Lopez 

del Amo, J.M., Gruning, B.A., Wang, Q., et al 2012. Small-molecule conversion of toxic oligomers to 

nontoxic beta-sheet-rich amyloid fibrils. Nature chemical biology 8:93-101 

 

 
 

http://www.ncbi.nlm.nih.gov/pubmed/20952385
http://www.ncbi.nlm.nih.gov/pubmed/20952385
http://www.ncbi.nlm.nih.gov/pubmed?term=Schmitt%20TL%5BAuthor%5D&cauthor=true&cauthor_uid=8530592
http://www.ncbi.nlm.nih.gov/pubmed?term=Steiner%20E%5BAuthor%5D&cauthor=true&cauthor_uid=8530592
http://www.ncbi.nlm.nih.gov/pubmed?term=Klingler%20P%5BAuthor%5D&cauthor=true&cauthor_uid=8530592
http://www.ncbi.nlm.nih.gov/pubmed?term=Lassmann%20H%5BAuthor%5D&cauthor=true&cauthor_uid=8530592
http://www.ncbi.nlm.nih.gov/pubmed?term=Grubeck-Loebenstein%20B%5BAuthor%5D&cauthor=true&cauthor_uid=8530592
http://www.ncbi.nlm.nih.gov/pubmed/20614800
http://www.ncbi.nlm.nih.gov/pubmed/20614800


66 
 

 

Caughey B, Lansbury PT 2003. Protofibrils, pores, fibrils, and neurodegeneration: separating the 

responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci.26:267-98.. 

 

Glabe CG 2006. Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. 
Neurobiol Aging27:570-5 
 

Roychaudhuri R, Yang M, Hoshi MM, Teplow DB  2009, Amyloid beta-protein assembly and 

Alzheimer disease. J Biol Chem.   284:4749-53.  

 
Lambert M.P., Barlow A.K., Chromy B.A., Edwards C., Freed R., Liosatos M., Morgan T.E., Rozovsky 

I., Trommer B., Viola K.L., et al 1998. Diffusible, nonfibrillar ligands derived from Aβ1-42 are potent 

central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA 95:6448–6453. 

 Gonzalez-Velasquez F.J., Kotarek J.A., Moss M.A 2008. Soluble aggregates of the amyloid-β protein 

selectively stimulate permeability in human brain microvascular endothelial monolayers. J. 

Neurochem 107:466–477. 

Hartley D.M., Walsh D.M., Ye C.P., Diehl T., Vasquez S., Vassilev P.M., Teplow D.B., Selkoe D.J 1999. 

Protofibrillar intermediates of amyloid β-protein induce acute electrophysiological changes and 

progressive neurotoxicity in cortical neurons. J. Neurosci 19:8876–8884. 

Lesne S., Koh M.T., Kotilinek L., Kayed R., Glabe C.G., Yang A., Gallagher M., Ashe K.H 2006. A 

specific amyloid-β protein assembly in the brain impairs memory. Nature 440:352–357. 

Walsh D.M., Klyubin I., Fadeeva J.V., Rowan M.J., Selkoe D.J 2002. Amyloid-β oligomers: Their 

production, toxicity and therapeutic inhibition. Biochem. Soc. Trans 30:552–557. 

Westerman M., Cooper-Blacketer D., Mariash A., Kotilinek L., Kawarabayashi T., Younkin L., 

Carlson G., Younkin S., Ashe K 2002. The relationship between aβ and memory in the tg2576 

mouse model of alzheimer’s disease. J. Neurosci 22:1858–1867. 

Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi EY, Nairn AC, Salter MW, Lombroso PJ, 
Gouras GK, Greengard P 2005.  Regulation of NMDA receptor trafficking by amyloid-beta.Nat 
Neurosci.8:1051-8. 
 
 Lauren, J., Gimbel, D.A., Nygaard, H.B., Gilbert, J.W., and Strittmatter, S.M 2009. Cellular prion 

protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457:1128-

1132. 

Um, J.W., Nygaard, H.B., Heiss, J.K., Kostylev, M.A., Stagi, M., Vortmeyer, A., Wisniewski, T., 

Gunther, E.C., and Strittmatter, S.M 2012. Alzheimer amyloid-beta oligomer bound to postsynaptic 

prion protein activates Fyn to impair neurons. Nature neuroscience 15:1227-1235. 

Benilova, I., Karran, E., and De Strooper, B 2012. The toxic Abeta oligomer and Alzheimer's disease: 

an emperor in need of clothes. Nature neuroscience 15:349-357. 

Verdier, Y., Zarandi, M., and Penke, B 2004. Amyloid beta-peptide interactions with neuronal and 

glial cell plasma membrane: binding sites and implications for Alzheimer's disease. Journal of 

peptide science : an official publication of the European Peptide Society 10:229-248. 

Tanzi R. E., Kovacs D. M., Kim T. W., Moir R. D., Guenette S. Y. and Wasco W 1996. The gene defects 

responsible for familial Alzheimer's disease. Neurobiol. Dis. 3, 159–168. 

Hardy J 1997. Amyloid, the presenilins and Alzheimer's disease. Trends Neurosci. 20:154–159. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Caughey%20B%5BAuthor%5D&cauthor=true&cauthor_uid=12704221
http://www.ncbi.nlm.nih.gov/pubmed?term=Lansbury%20PT%5BAuthor%5D&cauthor=true&cauthor_uid=12704221
http://www.ncbi.nlm.nih.gov/pubmed/16481071
http://www.ncbi.nlm.nih.gov/pubmed?term=Roychaudhuri%20R%5BAuthor%5D&cauthor=true&cauthor_uid=18845536
http://www.ncbi.nlm.nih.gov/pubmed?term=Yang%20M%5BAuthor%5D&cauthor=true&cauthor_uid=18845536
http://www.ncbi.nlm.nih.gov/pubmed?term=Hoshi%20MM%5BAuthor%5D&cauthor=true&cauthor_uid=18845536
http://www.ncbi.nlm.nih.gov/pubmed?term=Teplow%20DB%5BAuthor%5D&cauthor=true&cauthor_uid=18845536
http://www.ncbi.nlm.nih.gov/pubmed/?term=%3B+Roychaudhuri+R%2C+et+al.%2C+2009
http://www.ncbi.nlm.nih.gov/pubmed/16025111


67 
 

Tanzi R. E. and Bertram L. 2005. Twenty years of the Alzheimer's disease amyloid hypothesis: a 

genetic perspective. Cell 120:545–555. 

De Strooper B. 2003 Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma- 

secretase complex. Neuron 38: 9–12. 

Edbauer D., Winkler E., Regula J. T., Pesold B., Steiner H. and Haass C 2003.Reconstitution of 

gamma-secretase activity. Nat. Cell Biol 5:486–488. 

Hardy J, Selkoe DJ 2002 The amyloid hypothesis of Alzheimer's disease: progress and problems on 
the road to therapeutics.Science 297:353-6 
 

Goate A, Hardy J 2012. Twenty years of Alzheimer's disease-causing mutations J Neurochem 120 
Suppl 1:3-8. 
 
Potter H, Wisniewski T 2012. Apolipoprotein e: essential catalyst of the Alzheimer amyloid cascade 
Int J Alzheimers Dis 489428. 
 

Liu and Hong, 2003 B. Liu, J.S. Hong 2003. Role of microglia in inflammation-mediated 

neurodegenerative diseases: mechanisms and strategies for therapeutic intervention Journal of 

Pharmacology and Experimental Therapeutics 304: 1–7. 

 

F. Al Nimer, A.D. Beyeen, R. Lindblom, M. Strom, S. Aeinehband, O. Lidman, F. Piehl 2011. Both 

MHC and non-MHC genes regulate inflammation and T-cell response after traumatic brain injury 

Brain, Behavior, and Immunity, 25 : 981–990. 

 

Alzheimer A., Stelzmann R. A., Schnitzlein H. N., Murtagh F. R 1995. An English translation of 

Alzheimer's 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde.” Clin. Anat. 8, 429–431. 

 

T. Wyss-Coray, J.D. Loike, T.C. Brionne, E. Lu, R. Anankov, F. Yan, S.C. Silverstein, J. Husemann 

2003.Adult mouse astrocytes degrade amyloid-beta in vitro and in situ Nat. Med., 9 :453–457. 

 

Nikolaev, T. McLaughlin, D.D.M. O'Leary, M. Tessier-Lavigne 2009.APP binds DR6 to trigger axon 

pruning and neuron death via distinct caspases Nature, 457: 981–989. 

 
Carrero I, Gonzalo MR, Martin B, Sanz-Anquela JM, Arévalo-Serrano J, Gonzalo-Ruiz A 2012 
Oligomers of β-amyloid protein (Aβ1-42) induce the activation of cyclooxygenase-2 in astrocytes via 
an interaction with interleukin-1β, tumour necrosis factor-α, and a nuclear factor κ-B mechanism in 
the rat brain.Exp Neurol 236 :215-27. 
 
Vinet, H.R. Weering, A. Heinrich, R.E. Kalin, A. Wegner, N. Brouwer, F.L. Heppner, N. Rooijen, 

H.W. Boddeke, K. Biber 2012. Neuroprotective function for ramified microglia in hippocampal 

excitotoxicity Journal of Neuroinflammation, 9: 27 

C. Lauro, R. Cipriani, M. Catalano, F. Trettel, G. Chece, V. Brusadin, L. Antonilli, N. van Rooijen, F. 

Eusebi, B.B. Fredholm, C. Limatola 2010. Adenosine A1 receptors and microglial cells mediate 

CX3CL1-induced protection of hippocampal neurons against Glu-induced death 

Neuropsychopharmacology, 35: 1550–1559. 

Medeiros R, Figueiredo CP, Pandolfo P, Duarte FS, Prediger RD, Passos GF, Calixto JB. 2010.The 

role of TNF-alpha signaling pathway on COX-2 upregulation and cognitive decline induced by beta-

amyloid peptide. Behav Brain Res 209:165-73 

http://www.ncbi.nlm.nih.gov/pubmed/12130773
http://www.ncbi.nlm.nih.gov/pubmed/12130773
http://www.sciencedirect.com/science/article/pii/S0168010213002253#bib0445
http://www.ncbi.nlm.nih.gov/pubmed/22617488
http://www.ncbi.nlm.nih.gov/pubmed/22617488
http://www.ncbi.nlm.nih.gov/pubmed/22617488
http://www.ncbi.nlm.nih.gov/pubmed/20122965
http://www.ncbi.nlm.nih.gov/pubmed/20122965
http://www.ncbi.nlm.nih.gov/pubmed/20122965


68 
 

Smits HA, Rijsmus A, van Loon JH, Wat JW, Verhoef J, Boven LA, Nottet HS 2002. Amyloid-beta-

induced chemokine production in primary human macrophages and astrocytes. J 

Neuroimmunol. 127:160-8 

Lue, L.F., Brachova, L., Civin, W.H., and Rogers, J 1996. Inflammation, A beta deposition, and 

neurofibrillary tangle formation as correlates of Alzheimer's disease neurodegeneration. Journal of 

neuropathology and experimental neurology 55:1083-1088. 

Edison, P., Archer, H.A., Gerhard, A., Hinz, R., Pavese, N., Turkheimer, F.E., Hammers, A., Tai, Y.F., 

Fox, N., Kennedy, A., et al 2008. Microglia, amyloid, and cognition in Alzheimer's disease: An 

[11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiology of disease 32:412-419. 

Okello, A., Edison, P., Archer, H.A., Turkheimer, F.E., Kennedy, J., Bullock, R., Walker, Z., Kennedy, 

A., Fox, N., Rossor, M., et al 2009. Microglial activation and amyloid deposition in mild cognitive 

impairment: a PET study. Neurology 72:56-62. 

Serrano-Pozo, A., Mielke, M.L., Gomez-Isla, T., Betensky, R.A., Growdon, J.H., Frosch, M.P., and 

Hyman, B.T 2011. Reactive glia not only associates with plaques but also parallels tangles in 

Alzheimer's disease. The American journal of pathology 179:1373-1384. 

Hollingworth, P., Harold, D., Sims, R., Gerrish, A., Lambert, J.C., Carrasquillo, M.M., Abraham, R., 

Hamshere, M.L., Pahwa, J.S., Moskvina, V., et al. 2011. Common variants at ABCA7, 

MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nature 

genetics 43:429-435. 

Guerreiro, R., Wojtas, A., Bras, J., Carrasquillo, M., Rogaeva, E., Majounie, E., Cruchaga, C., Sassi, 

C., Kauwe, J.S., Younkin, S., et al 2013. TREM2 variants in Alzheimer's disease. The New England 

journal of medicine 368:117-127. 

Giulian, D., Haverkamp, L.J., Yu, J.H., Karshin, W., Tom, D., Li, J., Kirkpatrick, J., Kuo, L.M., and 

Roher, A.E 1996. Specific domains of beta-amyloid from Alzheimer plaque elicit neuron killing in 

human microglia. The Journal of neuroscience : the official journal of the Society for Neuroscience 

16:6021-6037. 

Fuhrmann, M., Bittner, T., Jung, C.K., Burgold, S., Page, R.M., Mitteregger, G., Haass, C., LaFerla, 

F.M., Kretzschmar, H., and Herms, J 2010. Microglial Cx3cr1 knockout prevents neuron loss in a 

mouse model of Alzheimer's disease. Nature neuroscience 13:411-413. 

Tan, B., Choi, R.H., Chin, T.J., Kaur, C., and Ling, E.A 2012. Manipulation of microglial activity as a 

therapy for Alzheimer's disease. Frontiers in bioscience 4:1402-1412. 

Weitz, T.M., and Town, T 2012. Microglia in Alzheimer's Disease: It's All About Context. 

International journal of Alzheimer's disease 2012:314185. 

Mathivanan S, Ji H, Simpson RJ 2010. Exosomes: extracellular organelles important in intercellular 
communication. J Proteomics 73: 1907-1920. 
 
Hanson PI, Shim S, Merrill SA 2009. Cell biology of the ESCRT machinery. Curr Opin Cell Biol 21: 
568-574. 
 
Wollert T, Hurley JH 2010. Molecular mechanism of multivesicular body biogenesis by ESCRT 
complexes. Nature 464: 864-869. 
 
Wollert T, Yang D, Ren X, Lee HH, Im YJ, Hurley JH 2009. The ESCRT machinery at a glance. JCell 
Sci 122: 2163-2166. 
 
Babst M 2005. A protein's final ESCRT. Traffic 6: 2-9. 
 

http://www.ncbi.nlm.nih.gov/pubmed?term=Smits%20HA%5BAuthor%5D&cauthor=true&cauthor_uid=12044988
http://www.ncbi.nlm.nih.gov/pubmed?term=Rijsmus%20A%5BAuthor%5D&cauthor=true&cauthor_uid=12044988
http://www.ncbi.nlm.nih.gov/pubmed?term=van%20Loon%20JH%5BAuthor%5D&cauthor=true&cauthor_uid=12044988
http://www.ncbi.nlm.nih.gov/pubmed?term=Wat%20JW%5BAuthor%5D&cauthor=true&cauthor_uid=12044988
http://www.ncbi.nlm.nih.gov/pubmed?term=Verhoef%20J%5BAuthor%5D&cauthor=true&cauthor_uid=12044988
http://www.ncbi.nlm.nih.gov/pubmed?term=Boven%20LA%5BAuthor%5D&cauthor=true&cauthor_uid=12044988
http://www.ncbi.nlm.nih.gov/pubmed?term=Nottet%20HS%5BAuthor%5D&cauthor=true&cauthor_uid=12044988
http://www.ncbi.nlm.nih.gov/pubmed/?term=Smits%2C+et+al.%2C+2002+abeta
http://www.ncbi.nlm.nih.gov/pubmed/?term=Smits%2C+et+al.%2C+2002+abeta


69 
 

Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T 2010. Secretory mechanisms 
and intercellular transfer of microRNAs in living cells. J Biol Chem 285: 17442-17452  
 
Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brugger B, Simons M 
2008. Ceramide triggers budding of exosome vesicles into multivesicular endosomes.Science 319: 
1244-1247 
 
Simons M, Raposo G 2009. Exosomes--vesicular carriers for intercellular communication. Curr Opin 
Cell Biol 21: 575-581 
 
Sadallah S, Eken C, Martin PJ, Schifferli JA 2011. Microparticles (ectosomes) shed by stored human 
platelets downregulate macrophages and modify the development of dendritic cells. JImmunol 186: 
6543-6552 
 
Bernimoulin M, Stern M, Tichelli A, Jotterand M, Gratwohl A, Nissen C 2008. Leukemic cluster 
growth in culture is an independent risk factor for acute myeloid leukemia and short survival in 
patients with myelodysplastic syndrome. Acta Haematol 119: 226-235 
 
Cocucci E, Racchetti G, Meldolesi J 2009. Shedding microvesicles: artefacts no more. Trends Cell 
Biol 19: 43-51 
 
Thery C, Ostrowski M, Segura E 2009. Membrane vesicles as conveyors of immune responses. Nat 
Rev Immunol 9: 581-593 
 
Emmanouilidou E, Melachroinou K, Roumeliotis T, Garbis SD, Ntzouni M, Margaritis LH, Stefanis 
L, Vekrellis K 2010. Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by 
exosomes and impacts neuronal survival. J Neurosci 30: 6838-6851 
 
Bianco F, Pravettoni E, Colombo A, Schenk U, Moller T, Matteoli M, Verderio C 2005.Astrocyte-

derived ATP induces vesicle shedding and IL-1 beta release from microglia. J Immunol174: 7268-

7277. 

Bianco F, Perrotta C, Novellino L, Francolini M, Riganti L, Menna E, Saglietti L, Schuchman EH, 

Furlan R, Clementi E, Matteoli M, Verderio C 2009. Acid sphingomyelinase activity triggers 

microparticle release from glial cells. EMBO J 28: 1043-1054. 

Verderio, C., Muzio, L., Turola, E., Bergami, A., Novellino, L., Ruffini, F., et al 2012. Myeloid 

microvesicles are a marker and therapeutic target for neuroinflammation.Ann. Neurol. 72, 610–624. 

Antonucci, F., Turola, E., Riganti, L., Caleo, M., Gabrielli, M., Perrotta, C., et al 2012. Microvesicles 

released from microglia stimulate synaptic activity via enhanced sphingolipid metabolism. EMBO 

J. 31, 1231–1240. 

 

Turola, E., Furlan, R., Bianco, F., Matteoli, M., and Verderio, C 2012. Microglial microvesicle 

secretion and intercellular signaling. Front. Physiol. 3:149. 

 

McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM 1984. Clinical diagnosis of 
Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of department 
of health and human services task force on Alzheimer’s disease. Neurology.  8:939–944. 

Knopman DS, DeKosky ST, Cummings JL, Chui H, Corey-Bloom J, Relkin N, Small GW, Miller B, 
Stevens JC. Practice parameter: diagnosis of dementia (an evidence-based review). Report of the 



70 
 

Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2001 8:1143–
1153.  
 
Jack CR Jr, Albert MS, Knopman DS, McKhann GM, Sperling RA, Carrillo MC, Thies B, Phelps CH 
2011.Introduction to the recommendations from the national institute on aging-Alzheimer’s 
association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s dementia j 
Alzheimer’s Assoc 8:257–262. 
 
Blennow K, Hampel H, Weiner M, Zetterberg H 2010. Cerebrospinal fluid and plasma biomarkers 
in Alzheimer disease. Nat Rev Neurol 8:131–144.  
 
Price JL, Morris JC 1999.Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s 
disease. Ann Neurol 8:358–368.  
 
Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, Trojanowski 
JQ 2010.Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet 
Neurol 8:119–128. 

Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L (2010) Exosomes/microvesicles as a 
mechanism of cell-to-cell communication. Kidney Int 78: 838-848. 

Colombo, E., Borgiani, B., Verderio, C., and Furlan, R. 2012. Microvesicles: novel biomarkers for 
neurological disorders. Frontiers in physiology 3:63. 
 
Rajendran, L., Honsho, M., Zahn, T.R., Keller, P., Geiger, K.D., Verkade, P., and Simons, K 2006. 
Alzheimer's disease beta-amyloid peptides are released in association with exosomes. Proceedings 
of the National Academy of Sciences of the United States of America 103:11172-11177. 
 
de Calignon A, Polydoro M, Suárez-Calvet M, William C, Adamowicz DH, Kopeikina KJ, Pitstick 

R, Sahara N, Ashe KH, Carlson GA, Spires-Jones TL, Hyman BT 2012. Propagation of tau pathology 

in a model of early Alzheimer's disease. Neuron 73:685-97. 

J.A. Harris, N. Devidze, L. Verret, K. Ho, B. Halabisky, M.T. Thwin, D. Kim, P. Hamto, I. Lo, G.Q. 

Yu et al 2010. Transsynaptic progression of amyloid-β-induced neuronal dysfunction within the 

entorhinal-hippocampal network Neuron 68: 428–441 

 

Luk KC, Kehm V, Carroll J, Zhang B, O'Brien P, Trojanowski JQ, Lee VM 2012. Pathological α-

synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 

338  :949-53. 

Mielke, M.M., Haughey, N.J., Bandaru, V.V., Weinberg, D.D., Darby, E., Zaidi, N., Pavlik, V., Doody, 

R.S., and Lyketsos, C.G 2011. Plasma sphingomyelins are associated with cognitive progression in 

Alzheimer's disease. Journal of Alzheimer's disease 27:259-269. 

Martins, I.C., Kuperstein, I., Wilkinson, H., Maes, E., Vanbrabant, M., Jonckheere, W., Van Gelder, 

P., Hartmann, D., D'Hooge, R., De Strooper, B., et al  2008. Lipids revert inert Abeta amyloid fibrils 

to neurotoxic protofibrils that affect learning in mice. EMBO journal 27:224-233. 

Johansson, A.S., Garlind, A., Berglind-Dehlin, F., Karlsson, G., Edwards, K., Gellerfors, P., Ekholm-

Pettersson, F., Palmblad, J., and Lannfelt, L 2007. Docosahexaenoic acid stabilizes soluble amyloid-

beta protofibrils and sustains amyloid-beta-induced neurotoxicity in vitro. The FEBS journal 

274:990-1000. 

Zhao L.N., Chiu S.W., Benoit J., Chew L.Y., Mu Y 2011. Amyloid β peptide aggregation in a mixed 

membrane bilayer: A molecule dynamic study. J. Phys. Chem. B 115:12247–12256 

http://www.ncbi.nlm.nih.gov/pubmed?term=de%20Calignon%20A%5BAuthor%5D&cauthor=true&cauthor_uid=22365544
http://www.ncbi.nlm.nih.gov/pubmed?term=Polydoro%20M%5BAuthor%5D&cauthor=true&cauthor_uid=22365544
http://www.ncbi.nlm.nih.gov/pubmed?term=Su%C3%A1rez-Calvet%20M%5BAuthor%5D&cauthor=true&cauthor_uid=22365544
http://www.ncbi.nlm.nih.gov/pubmed?term=William%20C%5BAuthor%5D&cauthor=true&cauthor_uid=22365544
http://www.ncbi.nlm.nih.gov/pubmed?term=Adamowicz%20DH%5BAuthor%5D&cauthor=true&cauthor_uid=22365544
http://www.ncbi.nlm.nih.gov/pubmed?term=Kopeikina%20KJ%5BAuthor%5D&cauthor=true&cauthor_uid=22365544
http://www.ncbi.nlm.nih.gov/pubmed?term=Pitstick%20R%5BAuthor%5D&cauthor=true&cauthor_uid=22365544
http://www.ncbi.nlm.nih.gov/pubmed?term=Pitstick%20R%5BAuthor%5D&cauthor=true&cauthor_uid=22365544
http://www.ncbi.nlm.nih.gov/pubmed?term=Sahara%20N%5BAuthor%5D&cauthor=true&cauthor_uid=22365544
http://www.ncbi.nlm.nih.gov/pubmed?term=Ashe%20KH%5BAuthor%5D&cauthor=true&cauthor_uid=22365544
http://www.ncbi.nlm.nih.gov/pubmed?term=Carlson%20GA%5BAuthor%5D&cauthor=true&cauthor_uid=22365544
http://www.ncbi.nlm.nih.gov/pubmed?term=Spires-Jones%20TL%5BAuthor%5D&cauthor=true&cauthor_uid=22365544
http://www.ncbi.nlm.nih.gov/pubmed?term=Hyman%20BT%5BAuthor%5D&cauthor=true&cauthor_uid=22365544
http://www.ncbi.nlm.nih.gov/pubmed/22365544
http://www.ncbi.nlm.nih.gov/pubmed?term=Luk%20KC%5BAuthor%5D&cauthor=true&cauthor_uid=23161999
http://www.ncbi.nlm.nih.gov/pubmed?term=Kehm%20V%5BAuthor%5D&cauthor=true&cauthor_uid=23161999
http://www.ncbi.nlm.nih.gov/pubmed?term=Carroll%20J%5BAuthor%5D&cauthor=true&cauthor_uid=23161999
http://www.ncbi.nlm.nih.gov/pubmed?term=Zhang%20B%5BAuthor%5D&cauthor=true&cauthor_uid=23161999
http://www.ncbi.nlm.nih.gov/pubmed?term=O'Brien%20P%5BAuthor%5D&cauthor=true&cauthor_uid=23161999
http://www.ncbi.nlm.nih.gov/pubmed?term=Trojanowski%20JQ%5BAuthor%5D&cauthor=true&cauthor_uid=23161999
http://www.ncbi.nlm.nih.gov/pubmed?term=Lee%20VM%5BAuthor%5D&cauthor=true&cauthor_uid=23161999


71 
 

Wakabayashi M., Matsuzaki K 2009. Ganglioside-induced amyloid formation by human islet 

amyloid polypeptide in lipid rafts. FEBS Lett 583:2854–2858. 

Wakabayashi M., Okada T., Kozutsumi Y., Matsuzaki K 2005. GM1 ganglioside-mediated 

accumulation of amyloid beta-protein on cell membranes. Biochem. Biophys. Res. Commun 

328:1019–1023 

Miron, V. E., Schubart, A., and Antel, J. P 2008. Central nervous system-directed effects of FTY720 

(fingolimod) J. Neurol. Sci 274, 13–17 

J.A. Cohen, J. Chun 2011. Mechanisms of fingolimod's efficacy and adverse effects in multiple 

sclerosis Annals of Neurology 69: 759–777 

Dawson G, Qin J 2011. Gilenya (FTY720) inhibits acid sphingomyelinase by a mechanism similar to 

tricyclic antidepressants.Biochem Biophys Res Commun 404: 321–323. 

Gómez-Muñoz A, Kong J, Salh B, Steinbrecher UP 2003. Sphingosine-1-phosphate inhibits acid 

sphingomyelinase and blocks apoptosis in macrophages. FEBS Lett 539:56–60 

A. Gomez-Brouchet, D. Pchejetski, L. Brizuela, V. Garcia, M.-F. Altié, M.-L. Maddelein et al. 2007. 

Critical role for sphingosine kinase-1 in regulating survival of neuroblastoma cells exposed to 

amyloid-β peptide Molecular Pharmacology 72: 341–349 

Doi Y, Takeuchi H, Horiuchi H, Hanyu T, Kawanokuchi J, Jin S, Parajuli B, Sonobe Y, Mizuno 

T, Suzumura A 2013. Fingolimod phosphate attenuates oligomeric amyloid β-induced neurotoxicity 

via increased brain-derived neurotrophic factor expression in neurons. PLoS One 8 :e61988.  

S. Lahiri, H. Park, E.L. Laviad, X. Lu, R. Bittman, A.H. Futerman Ceramide synthesis is modulated 

by the sphingosine analog 2009.FTY720 via a mixture of uncompetitive and noncompetitive 

inhibition in an Acyl-CoA chain length-dependent manner Journal of Biological Chemistry, 284: 

16090–16098 

Fatemeh Hemmati, Leila Dargahi, Sanaz Nasoohi,Rana Omidbakhsh, Zahurin Mohamed, Zamri 

Chik, Murali Naidu, Abolhassan Ahmadiani 2013. Neurorestorative effect of FTY720 in a rat model 

of Alzheimer's disease: Comparison with Memantine Behavioural Brain Research 252: 415–421 

J. L. Jankowsky, D. J. Fadale, J. Anderson et al 2004. Mutant presenilins specifically elevate the 

levels of the 42 residue β-amyloid peptide in vivo: evidence for augmentation of a 42-

specific γsecretase.  Human Molecular Genetics 13: 159–170.  

H. Xiong, D. Callaghan, J. Wodzinska, et al 2011. Biochemical and behavioral characterization of the 

double transgenic mouse model (APPswe/PS1dE9) of Alzheimer's disease. Neuroscience Bull 27 

:221–232,. 

M. Garcia-Alloza, L. A. Borrelli, B. T. Hyman, and B. J. Bacskai, 2010 Antioxidants have a rapid and 

long-lasting effect on neuritic abnormalities in APP:PS1 mice. Neurobiology of Aging, vol. 31, no. 12, 

pp. 2058–2068,  

M. Meyer-Luehmann, M. Mielke, T. L. Spires-Jones et al 2009. A reporter of local dendritic 

translocation shows plaque-related loss of neural system function in APP-transgenic mice. Journal 

of Neuroscience 29: 12636–12640.  

 R. Minkeviciene, S. Rheims, M. B. Dobszay et al 2009. Amyloid β-induced neuronal 

hyperexcitability triggers progressive epilepsy.Journal of Neuroscience 29: 3453–3462.   

E. Machová, V. Rudajev, H. Smyčková, H. Koivisto, H. Tanila, and V. Doležal 2010 Functional 

cholinergic damage develops with amyloid accumulation in young adult APPswe/PS1dE9 transgenic 

mice. Neurobiology of Disease 38: 27–35.   

http://www.ncbi.nlm.nih.gov/pubmed?term=Doi%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=23593505
http://www.ncbi.nlm.nih.gov/pubmed?term=Takeuchi%20H%5BAuthor%5D&cauthor=true&cauthor_uid=23593505
http://www.ncbi.nlm.nih.gov/pubmed?term=Horiuchi%20H%5BAuthor%5D&cauthor=true&cauthor_uid=23593505
http://www.ncbi.nlm.nih.gov/pubmed?term=Hanyu%20T%5BAuthor%5D&cauthor=true&cauthor_uid=23593505
http://www.ncbi.nlm.nih.gov/pubmed?term=Kawanokuchi%20J%5BAuthor%5D&cauthor=true&cauthor_uid=23593505
http://www.ncbi.nlm.nih.gov/pubmed?term=Jin%20S%5BAuthor%5D&cauthor=true&cauthor_uid=23593505
http://www.ncbi.nlm.nih.gov/pubmed?term=Parajuli%20B%5BAuthor%5D&cauthor=true&cauthor_uid=23593505
http://www.ncbi.nlm.nih.gov/pubmed?term=Sonobe%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=23593505
http://www.ncbi.nlm.nih.gov/pubmed?term=Mizuno%20T%5BAuthor%5D&cauthor=true&cauthor_uid=23593505
http://www.ncbi.nlm.nih.gov/pubmed?term=Mizuno%20T%5BAuthor%5D&cauthor=true&cauthor_uid=23593505
http://www.ncbi.nlm.nih.gov/pubmed?term=Suzumura%20A%5BAuthor%5D&cauthor=true&cauthor_uid=23593505
http://www.ncbi.nlm.nih.gov/pubmed/23593505
http://www.sciencedirect.com/science/article/pii/S0166432813003616
http://www.sciencedirect.com/science/article/pii/S0166432813003616
http://www.sciencedirect.com/science/article/pii/S0166432813003616
http://www.sciencedirect.com/science/article/pii/S0166432813003616
http://www.sciencedirect.com/science/article/pii/S0166432813003616
http://www.sciencedirect.com/science/article/pii/S0166432813003616
http://www.sciencedirect.com/science/article/pii/S0166432813003616
http://www.sciencedirect.com/science/article/pii/S0166432813003616
http://www.sciencedirect.com/science/article/pii/S0166432813003616
http://www.sciencedirect.com/science/journal/01664328
http://www.sciencedirect.com/science/journal/01664328/252/supp/C


72 
 

W. Zhang, J. Hao, R. Liu et al 2011.  Soluble Aβ levels correlate with cognitive deficits in the 12-

month-old APPswe/PS1dE9 mouse model of Alzheimer's disease,” Behavioural Brain Research 222: 

342–350.  

Riboni L, Viani P, Tettamanti G 2000. Estimating sphingolipid metabolism and trafficking in 

cultured cells using radiolabeled compounds. Methods Enzymol 311: 656–682 

De Felice, F.G., Wu, D., Lambert, M.P., Fernandez, S.J., Velasco, P.T., Lacor, P.N., Bigio, E.H., 

Jerecic, J., Acton, P.J., Shughrue, P.J., et al. 2008. Alzheimer's disease-type neuronal tau 

hyperphosphorylation induced by A beta oligomers. Neurobiology of aging 29:1334-1347 

Klein, W.L 2002. Abeta toxicity in Alzheimer's disease: globular oligomers (ADDLs) as new vaccine 

and drug targets. Neurochemistry international 41:345-352. 

Fukunaga, S., Ueno, H., Yamaguchi, T., Yano, Y., Hoshino, M., and Matsuzaki, K 2012. GM1 cluster 

mediates formation of toxic Abeta fibrils by providing hydrophobic environments. Biochemistry 

51:8125-8131. 

Jana, A., and Pahan, K 2010. Fibrillar amyloid-beta-activated human astroglia kill primary human 

neurons via neutral sphingomyelinase: implications for Alzheimer's disease. The Journal of 

neuroscience : the official journal of the Society for Neuroscience 30:12676-12689. 

Lauren, J., Gimbel, D.A., Nygaard, H.B., Gilbert, J.W., and Strittmatter, S.M 2009. Cellular prion 

protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457:1128-

1132. 

Holtzman, D.M 2011. CSF biomarkers for Alzheimer's disease: current utility and potential future 

use. Neurobiology of aging 32 Suppl 1:S4-9. 

Del Conde, I., Shrimpton, C.N., Thiagarajan, P., and Lopez, J.A 2005. Tissue-factor-bearing 

microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood 

106:1604-1611. 

Han, X., Fagan, A.M., Cheng, H., Morris, J.C., Xiong, C., and Holtzman, D.M 2003. Cerebrospinal 

fluid sulfatide is decreased in subjects with incipient dementia. Annals of neurology 54:115-119. 

Malnar, M., Kosicek, M., Bene, R., Tarnik, I.P., Pavelin, S., Babic, I., Brajenovic-Milic, B., Hecimovic, 

H., Titlic, M., Trkanjec, Z., et al 2012. Use of cerebrospinal fluid biomarker analysis for improving 

Alzheimer's disease diagnosis in a non-specialized setting. Acta neurobiologiae experimentalis 

72:264-271. 

Ghidoni, R., Paterlini, A., Albertini, V., Glionna, M., Monti, E., Schiaffonati, L., Benussi, L., Levy, E., 

and Binetti, G. 2011. Cystatin C is released in association with exosomes: a new tool of neuronal 

communication which is unbalanced in Alzheimer's disease. Neurobiology of aging 32:1435-1442. 

Vingtdeux, V., Hamdane, M., Begard, S., Loyens, A., Delacourte, A., Beauvillain, J.C., Buee, L., 

Marambaud, P., and Sergeant, N. 2007. Intracellular pH regulates amyloid precursor protein 

intracellular domain accumulation. Neurobiology of disease 25:686-696. 

Aguzzi, A., Barres, B.A., and Bennett, M.L. 2013. Microglia: scapegoat, saboteur, or something else? 

Science 339:156-161. 

Prinz, M., Priller, J., Sisodia, S.S., and Ransohoff, R.M 2011. Heterogeneity of CNS myeloid cells and 

their roles in neurodegeneration. Nature neuroscience 14:1227-1235. 

Paresce, D.M., Chung, H., and Maxfield, F.R 1997. Slow degradation of aggregates of the Alzheimer's 

disease amyloid beta-protein by microglial cells. The Journal of biological chemistry 272:29390-

29397. 



73 
 

Lee, C.Y., and Landreth, G.E 2010. The role of microglia in amyloid clearance from the AD brain. 

Journal of neural transmission 117:949-960 

Mattei, V., Barenco, M.G., Tasciotti, V., Garofalo, T., Longo, A., Boller, K., Lower, J., Misasi, R., 

Montrasio, F., and Sorice, M 2009. Paracrine diffusion of PrP(C) and propagation of prion infectivity 

by plasma membrane-derived microvesicles. PloS one 4:e5057. 

Ariga, T., Kobayashi, K., Hasegawa, A., Kiso, M., Ishida, H., and Miyatake, T 2001. Characterization 

of high-affinity binding between gangliosides and amyloid beta-protein. Archives of biochemistry 

and biophysics 388:225-230. 

Kiyota, T., Yamamoto, M., Xiong, H., Lambert, M.P., Klein, W.L., Gendelman, H.E., Ransohoff, R.M., 

and Ikezu, T 2009. CCL2 accelerates microglia-mediated Abeta oligomer formation and progression 

of neurocognitive dysfunction. PloS one 4:e6197. 

Shen, B., Wu, N., Yang, J.M., and Gould, S.J 2011. Protein targeting to exosomes/microvesicles by 

plasma membrane anchors. The Journal of biological chemistry 286:14383-14395. 

Sharples RA, Vella LJ, Nisbet RM, Naylor R, Perez K, Barnham KJ, Masters CL, Hill AF 

2008.Inhibition of gamma-secretase causes increased secretion of amyloid precursor protein C-

terminal fragments in association with exosomes.FASEB J 22:1469-78 

Tamboli IY, Barth E, Christian L, Siepmann M, Kumar S, Singh S, Tolksdorf K, Heneka MT, 

Lütjohann D, Wunderlich P, Walter J 2010. Statins promote the degradation of extracellular amyloid 

{beta}-peptide by microglia via stimulation of exosome-associated insulin-degrading enzyme (IDE) 

secretion.J Biol Chem. 285 :37405-14. 

O. Aktas, P. Küry, B. Kieseier, H. P. Hartung 2010. Fingolimod is a potential novel therapy for 

multiple sclerosis Nature Reviews Neurology 6: 373–382 

Y. Wei, M. Yemisci, H.H. Kim, L.M. Yung, H.K. Shin, S.K. Hwang et al 2011.Fingolimod provides 

long-term protection in rodent models of cerebral ischemia Annals of Neurology 69: 119–129 

S. Suzuki, S. Enosawa, T. Kakefuda, T. Shinomiya, M. Amari, S. Naoe et al 1996. A novel 

immunosuppressant, Fty720, with a unique mechanism of action, induces long-term graft 

acceptance in rat and dog allotransplantation 1. Transplantation 61: 200–205 

Hagen N, Van Veldhoven PP, Proia RL, Park H, Merrill AH Jr, van Echten-Deckert G 

2009.Subcellular origin of sphingosine 1-phosphate is essential for its toxic effect in lyase-deficient 

neurons. J Biol Chem 284:11346-53. 

O. Cuvillier, G. Pirianov, B. Kleuser, P.G. Vanek, O.A. Coso, S. Gutkind, S. Spiegel 1996. Suppression 

of ceramide-mediated programmed cell death by sphingosine-1-phosphateNature, 381 : 800–803. 
 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed/18171695
http://www.ncbi.nlm.nih.gov/pubmed/18171695
http://www.ncbi.nlm.nih.gov/pubmed/20876579
http://www.ncbi.nlm.nih.gov/pubmed/20876579
http://www.ncbi.nlm.nih.gov/pubmed/20876579
http://www.ncbi.nlm.nih.gov/pubmed?term=Hagen%20N%5BAuthor%5D&cauthor=true&cauthor_uid=19251691
http://www.ncbi.nlm.nih.gov/pubmed?term=Van%20Veldhoven%20PP%5BAuthor%5D&cauthor=true&cauthor_uid=19251691
http://www.ncbi.nlm.nih.gov/pubmed?term=Proia%20RL%5BAuthor%5D&cauthor=true&cauthor_uid=19251691
http://www.ncbi.nlm.nih.gov/pubmed?term=Park%20H%5BAuthor%5D&cauthor=true&cauthor_uid=19251691
http://www.ncbi.nlm.nih.gov/pubmed?term=Merrill%20AH%20Jr%5BAuthor%5D&cauthor=true&cauthor_uid=19251691
http://www.ncbi.nlm.nih.gov/pubmed?term=van%20Echten-Deckert%20G%5BAuthor%5D&cauthor=true&cauthor_uid=19251691


74 
 

It’s always a mentor’s job to guide their students, in the best possible way and if you are lucky one 

you can be blessed to have mentors who can become a part of your life. Since childhood, it was cake 

ride for me, with my teachers and well-wishers to always support and encourage me. A special 

thanks to all my teachers in school and college. I would specially like to thank Dr Rajnish Chaturvedi, 

under whose guidance I did my master’s thesis and who made me believe in myself and introduced 

me to the field of Neurobiology. 

I still remember my first skype talk with Prof Michela Matteoli, before joining her lab. After the talk 

I had no double thoughts, if given a chance to work with her I would undoubtedly be more than 

happy to be a part. Since landing in Milan till the date I am writing this acknowledgement it has been 

a pleasure to work under her. I really thank her for all her moral and emotional support during my 

times of need, and her encouragement and valuable discussions during the course of my PhD. 

There are no words to express my gratitude for Dr. Claudia Verderio, who guided me throughout 

my PhD. I appreciate a lot her enthusiasm, her passion and devotion for science, her scientific 

aptitude and her ability to always keep encouraging and bringing out the best from her students. I 

thank her a lot to be there for me during times of profession and personal crises, which she use to 

welcome with a smile that was so comforting that for me she will always remain as a motherly figure. 

The efforts she put to groom me all the way till now and all the patience she kept with me I will 

always acknowledge. I also take opportunity to apologize for all the times I could not give my best. 

I wish all success to her and wish that she gets what she deserves. 

I take opportunity to thank all the Lab members, without whom I surely would have had nightmares 

being a foreigner in this country. Since my first day in laboratory, I was so lucky to have met 

enthusiastic batch-mates in Guliana Fossati and Stefania Zambetti, grateful to Raffaella Morini for 

helping me all through the bureaucratic procedure. Working along with Elena during the first year 

of my PhD was a great experience, who helped me to understand the work and with the basics in 

the experiments. It was fun to share personal and professional experience with Ana Maria Ruiz. I 

am thankful to her for her guidance and all the possible help in experiments and discussions. Days 

spend working in Filarete were always special,, of course being near to my apartment in Milan I was 

always happy to work there, but more so the company of Ana, Cinzia Camoglli, Matteo, lorena and 

Stefania the blond one!!!! for lunch and coffee and chatting sessions in between experiments will 

                                                                   7.  ACKNOWLEDGEMENT 

https://www.google.it/search?espv=210&es_sm=122&q=bureaucratic&spell=1&sa=X&ei=1dipUrW4JOWyywPS34DACQ&ved=0CC4QvwUoAA


75 
 

be always memorable. Special thanks to Matteo who helped a lot with the brain sectioning and 

immunostaining, it was always special to share working space with you Matteo, with all funny 

moments and scientific blunders we did together… :p I raise a toast of RUM!!!! But I really appreciate 

you as a crazy person who is motivated to make any impossible thing happen. I miss not meeting 

you often, but at same time I wish you all success in life. Big thanks to Cinzia for always being there 

to organise and making it easy to work in Filarete, and helping through dissections and some of the 

experiments. 

There are no words to thank the support from Verderio’s Lab members. It is always a relief to have 

lab members who are understanding and willing to help personally and professionally. I would 

appreciate Martina Gabrilla for her willingness to take care of Patients sample in my absence and 

would like to apologize for moments of arguments ( thought only 2 :p ) but it was always fun to 

exchange our cultural background, your disliking for my Bollywood music… and our endless 

relationship talks!!!!  

Special thanks to Loredana for taking care of all the orders and rescuing me from Evelena :p and all 

her assistance  being the most senior most member of the group. It was always nice to get expert 

advice from Ilaria Prada and to share the mantra of life. I really appreciate your encouragement to 

push me to speak in Italian… I day will come when I will speak Ila ;). I would like to further thank 

Marta for taking care of the animal colony in my absence. Martina, the student assisting me with 

the experiments, I would like to thank her for her valuable help for immunostaining and organising 

for experiments along with helping in all possible assistance in preparation of medium, coated flasks 

and petri. I further thank her for bearing with me when I use to be short tempered.   

 

A special thanks to all the lab members of Michela’s group: Elezabeta, Irene, Flavia, Elisa, Lucrezia, 

Stefania, Guliana, Davide, Romana, for being there for discussions in the lab meeting and giving 

there critical comments and suggestions. I am in debt to Elezabetta who personally help me when I 

was ill and encouraged me. I would further like to thank Sonia who helped in performing Elisa and 

gave her valuable suggestions in animal experiments conducted with transgenic mice for AD. 

 

I would like to thank all the people in Roberto Furlan’s lab who helped us with the Patient CSF 

analysis and providing us with the significant data. A special thanks to Annamaria who always is kind 

to organise the availability of CSF samples. Special thanks to Roberta Gidhoni for the analysis of 



76 
 

Mass Spectrometry and Annamaria Rosa for lending us spetroflorimeter to do thioflavin assay. The 

behaviour test was done in co-laboration with Prof. Mariavina Sala and I would like to thank Andria 

for his help to perform the experiments. 

 

Lastly I would like to thank Stefania, who always helped me through the procedures of University 

from time of enrolment till the time I will submit my thesis….  it is always refreshing to talk to you 

be it related to experiments or personal life… I will rember the small Pooja ;) will miss you dear! 

 

I am very grateful to know in person Fabia, who is an amazing person, always there to help, even 

when I was ill or any other personal problems she has always been the first person who came out 

of comfort zone and helped me to make my life smooth and beautiful. I always wish her the best in 

all aspects of her life,, and am grateful to have found a friend like her,, no matter where I will be in 

future I will always try to be in touch with you,,,, a lot of kissesss and huggss!!!! Thanks to your 

family for the wonderful dinner I shared with them. 

 

Finally… Dannnii…. Danialla how can I forget you…. Ohhh grl I so miss you!!! But at same time happy 

for you that you are doing great and living up to your dreams… the times me you Martina, Matteo 

spent together will always remain as beautiful memories. Thanks for being there.  

 

Having said about Milan, life is just incomplete without mentioning my Indian friends and flatmates.  

I was blessed to have such wonderful friends cum family…a mini India in Milan and I never thought 

I will follow the rituals and celebrations in the same way as we do in India. Special thanks to Ajay 

Vikram Singh who helped me settle in the initial days along with his motivational talks. I am thankful 

to the support and care provided by Rashmi, Sheetal, Sonia, Rama, Jaya and Shruti. I would like to 

thank Madhu, Ajay for scientific discussion. Will always remember the talks shared over cup of tea 

with Vimal and Dinesh. The person whom I would will always remember for being there for me in 

the department, with whom I could open my heart and talk endless…Vijay it was amazing to know 

you.I wish you all the success in life. The refreshing talks with Pawan, Pallavi, Sonu, Prem, Miland, 

Rama, Prasitha, Raj, Yatish, Vivek, Ashish, Amit during the Indian parties, always will be cherished. 

I will miss a lot the times spent with Neethu, with whom I spend some of the memorable days in the 

residence. Talking about residence always gives good feelings, as even in Milan because of all the 

Indians it always felt we are in India,, the endless cooking, the Friday and Saturday 



77 
 

nights….sometimes extending to Sundays…and then hangover till the nextweek end!!! Debolina, 

Riti, Ganesh, Arun, Vivek, Rohan, Guru, Gopi.. it was amazing the times we spend and I am glad to 

have met people like you all,, hopefully till I am in Milan, I will always love to be “MOM” to all :p. 

Thanks Riti  Ganesh and Rashmi for being there to support me when I was ill it means a lot. 

I feel short of words to thank you Ramveer, though it’s not a long time that we are friends, but I feel 

lucky to have met you and must say influenced by you,, you are an amazing person. Sometimes life 

bring you in a situation where you no more can think for yourself, no matter you know how much 

important it is to be strong and believe in yourself,,,,,,,.I am really thankful to you and owe you a lot 

for helping me through the crucial times while I was writing my thesis. I was blessed to have you 

around, to motivate me and take care of me. I wish that you get all happiness and care along with a 

very successful life,, best wishes for your future endure.  

Though we keep on getting older and older but the kid inside us always gives us the energy to live 

every moment of life. As life becomes more and more complicated not all are able to keep this kid 

alive, but I was blessed to have Prakhar, with whom my life became so much worth to live… I have 

no complains if I groomed with you. I am happy the changes you brought in me, as I leant that life 

is not to regret for..but to let go yourself free and feel every moment of it. You mean happiness to 

me..,, and I am thankfull to you for always being there for me in my hour of need, in my crises,,to 

listen to all my problems,,, to critically put you view point, which offends me but at same time I 

respect it. I have no words to express my gratitude for your parents, who are always there with 

endless love, care and affection. It feels blessed when people around you make you feel that you 

are an important part in their lives. Thanks for everything.. I love u  

Mommaaa,, Dadyyyy..Nids and Saku.. I consider myself the luckiest person having you all in my life.. 

The every day I spend here in Milan, every single day moma you made it special with your messages, 

I have no words to express how much happiness and relief it gives I read them. I am so proud of you 

mom k aapne koi chez nai chode jis se aap mujh se touch me reh sako….and moma mafi un sab time 

ke liye jab main aapko reply nai kar paya..but aap mere bahut badi strength ho… jab main bimar bhi 

huva tab bhi aap hanesha mujhe feel karaya main fit hoon and kush rahoon…aapke jaisa to nai ban 

sakta but ma I promise main hamesha khush rahunga aapko…I miss you so so so so much…. Jaldi se 

run run karke ek baar aap bhi milan aajao fir bahut sari masti karenge… :* bahut sari kissiii….yaar 

but u know ma jab main thesis likhing… aapke stickers in FB yaar maza aajata tha.. kaha se lato 

ho…bilkul aapke jaise they are so fuuny and made me so happy…Thanks for everything moma..and 

I love u the most,,,what all I am today Is bcz of your and dad support encouragement and strictness 



78 
 

I pray to god to bless you will good health and at same time I wish to spend some more time with 

you…jaha main aapke moma banu :p. Papa…you are the best hanesha kuch rahte ho and always 

gave me stranght and courage.. aapne hum sab ko hamesha support kiya to do what all we wanted 

to,,,really I respect all you did for us…and hope we will never let you down ..love you dad!!!!    

Bhai chillar party,,, kya bolu ab if I will write emotional tum log hasoge,, but yaar staying here alone 

the small small things you guys did for me meant a lot to me,,, my bday celebration,, sending gifts 

for me,, mere bakvas sunna and being there for all times I was feeling down… love you behno….and 

yaar it’s rare to have younger sisters you actually make you as feel the youngest one,,,with all 

pampering and troubleshoot that you guys do!!! May god give you both what u deserve.. Lastly I 

would thank all my relatives and friends who were always in touch and I thank to all the people who 

helped me or their gesture made my life beautiful.  

 

A note of thanks to all……. 

There are times in life, we take a step back, 

Laden in the memories of past, we recollect, 

Words sometimes become short to express, 

Things that mark the meaning of our present. 

 

How much I am in-depth, is not my concern, 

As nothing can pay back the emotions, 

What I believe, I could demand nothing more, 

For God has already blessed me with all!!!!! 

 

Someday more wiser I may become, 

To realize how much I may be wrong, 

For the judgements made by me, 

I apologise for not carrying my best. 

 

In the cascade sometimes important it becomes 

To realize who stood by in your need, 

To acknowledge of course I will, 

The people who accepted me with all my greed!!! 

 

Life keeps on going and it never ends, 

With few chances to look back and recollect, 

Moments that mark the meaning of present, 

I owe you all for bringing me through this. 
 

-----POOJA JOSHI, 12thDec 2013 

 



79 
 

 

 

1. AD:           Alzhheimer’s Disease 

2. Aβ:          Amyloid beta 

3. MVs:        Microvesicles 

4. CAA:       Congophilic amyloid angiopathy  

5. ER:           Endoplasmic Reticulum 

6. APP:       Amyloid precursor protein 

7. BACE-1: β-site APP-cleaving enzyme  

8. CTF:       C-terminal APP fragment  

9. APH-1:   Anterior pharynx-defective phenotype 1 

10. PEN-2:   PS-enhancer 2 

11. AICD:     APP intracellular domain  

12. GAGs:    Glycosaminoglycans  

13. apoE :    apolipoprotein E  

14. SAP :      Serum amyloid P  

15. IFN :       Interferon  

16. MHC :    Major histocompatibility complex,  

17. TNF-α :  Tumor necrosis factor-α  

18. MVBs :   Multivesicular bodies  

19. ESCRT:   Endosomal sorting complex required for transport 

20. CHMPs : Charged multivesicular body proteins  

21. IL-1β:      Interleukin-1β  

22. IL-6:        Inteleukin-6  

23. CNS:       Central nervous system 

24. mEPSC:  Miniature excitatory post-synaptic current  

25. CSF:        Cerebrospinal fluid  

26. MCI:       Mild cognitive impairment 

                                                                             8.  ABBREVIATIONS 
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27. BBB:       blood−brain barrier  

28. BDNF:    Brain-derieved neutotrophic factor 

29. MWM:   Morris water maze  

30. DMSO:   dimethyl sulfoxide  

31. HFP:       hexafluoroisopropanol  

32. ThT:       Thioflavin-T  

33. PI :         propidium iodide  

34. TBST:     tris buffered saline with tween-20  

35. CHCA:    α-cyano-4-hydroxy cinnamic acid  

36. SSc:        side-scatter  

37. EM:        Electron microscopy  

38. HC:         healthy controls  
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