
Hierarchical domains for decentralized administration of
spatially-aware RBAC systems

Maria Luisa Damiani
University of Milan, Italy

EPFL, Switzerland
maria.damiani@dico.unimi.it

Claudio Silvestri
University of Milan, Italy

silvestri@dico.unimi.it

Elisa Bertino
Purdue University, USA
bertino@cs.purdue.edu

Abstract

Emerging models for context-aware role-based access
control pose challenging requirements over policy adminis-
tration. In this paper we address the issues raised by the de-
centralized administration of a spatially-aware access con-
trol model in a mobile setting. We present GEO-RBAC Ad-
min, the administration model for the GEO-RBAC model.
The model is based on the notion of hierarchy of spatial do-
mains; a spatial domain is an entity grouping objects based
on organizational and spatial proximity criteria. In the pa-
per we formally define the model and introduce and prove
relevant properties.

1 Introduction

The administration of RBAC (Role Based Access Con-
trol) policies in large organizations is an important research
issue, which is gaining new momentum under the push of
new emerging paradigms like context-aware access control
models.

Typically access control policies are administered in ac-
cordance with an administrative model. An administrative
model defines a number of functions for the policies admin-
istration and which subjects can enter these policies; it is
thus the basis on which the policy specification language
is defined. For example, the administration model of the
RBAC standard defines a set of functions comprising ad-
ministrative functions for the creation and maintenance of
the element sets and relations of the RBAC system, and re-
view functions to review the effects of the administrative
actions. In most cases administration is centralized, that is,
the policy is administered by a unique administrator [5].

Unfortunately RBAC, when applied to large organiza-
tions consisting of thousands of roles and users [12], does
not scale well because it lacks mechanisms for the modu-
lar organization of roles and the decentralized management

of policies. Note that we use the terms administration de-
centralization and administration delegation as synonyms to
mean that someone has the authority of assigning adminis-
trative functions to somebody else and thus of “distributing”
the administration tasks.

To overcome such limitation, a promising approach is
to extend RBAC with the notion of administrative domain
(simply domain hereinafter). A domain basically denotes a
portion of the overall policy which is administered by one
or more autonomous administrators. Unfortunately, there is
no consensus on the meaning of domain in RBAC. Even less
investigated is the notion of domain in the various context-
aware extensions of RBAC.

An important category of context-aware RBAC models
is represented by the location-based models. A model is
location-based if the authorization to access depends on the
position of the user in a reference space. For example, one
can state that a doctor is authorized to access the patients’
records only when inside the hospital. Location-based pol-
icy enforcement is motivated by the need of strong control
over information access in a mobile context for privacy pur-
poses, protection of highly sensitive data or marketing rea-
sons. A number of location-based access control models
have been recently proposed [1, 8, 4].

Now consider a large organization, for example a health
organization consisting of several clinics, willing to adopt
a location-based access control policy for protecting very
sensitive health records in clinics. A central management
of such policy may be extremely complex. To address such
issue, we introduce the notion of domain in location-based
policies. To make the discussion more concrete, we refer
to a specific location-based model, GEO-RBAC [4]. Like
RBAC, GEO-RBAC is a family of models. Moreover, roles
in GEO-RBAC have a complex structure comprising at-
tributes, role types and spatial objects.

The geographical location represents a natural element
of cohesion inside a community or an organization, There-
fore, according to the approach by Kern & al. [7], we de-
fine a GEO-RBAC domain as an entity which collects ob-



jects according to some characteristic, such as the organi-
zational structure, and spatial proximity. We highlight the
property of spatial proximity to point out that a domain rep-
resents some sector of an organization which can be associ-
ated with a location and in which objects and users are phys-
ically close to each other. From this ontological perspective,
it follows that the domain model must have a spatial conno-
tation. Further we envision a scenario in which domains
can be dynamically decomposed in smaller domains (sub-
domains), so to enable a more flexible administration. Im-
portant questions in the definition of such model are: which
kind of relationship exists between a domain and its sub-
domains? Which is the degree of autonomy of sub-domain
administrators? To address these issues, we define GEO-
RBAC Admin a decentralized administration model for the
Core GEO-RBAC model.

The key concept of GEO-RBAC Admin is that of spa-
tial domain. A spatial domain is a first class entity which
is associated with a reference space and a owner role; the
owner role is the unique role having an authority over the
domain. GEO-RBAC Admin combines the concept of
ownership typical of discretionary access control models
with the concepts of domains and roles to support decentral-
ized administration. Despite of the focus on GEO-RBAC,
we believe that the proposed approach is of more general
applicability, and can be generalized for use in different au-
thorization administration models.

This paper is organized as follows. In the next section
we overviews Core GEO-RBAC and related work; then we
present the key design choices in GEO-RBAC Admin; the
model is formally described in the subsequent section. Final
remarks conclude the paper.

2 Background and related work

2.1 GEO-RBAC

The model is based on the central concept of spatial role.
A spatial role is a spatially confined organizational function.
A spatial roles becomes effective only when the user who
has been assigned that role is located in the role extent. In
such case the role is said to be enabled. Both the role extent
and the user positions are described by spatial objects (i.e.
spatial features compliant with geo-spatial standards) of the
type specified in the role schema. The spatial entities which
are defined in a GEO-RBAC policy are assumed to have
a geometric extent which falls inside a (possibly bounded)
reference space. Such reference space defines the spatial
scope of the organization.

The role schema is the template for spatial roles. For
example the role schema for doctor, specified as doc-
tor(HospitalType, LocationType, Lmf), is read as follows:
doctor is the role name, HospitalType is the role extent type;

LocationType is the type of logical position which describes
the position of the user at a certain granularity, for example
building and room; Lmf is the location mapping function
which maps the actual position acquired through some loca-
tion sensing technology to the logical and abstract location.
We refer the reader to [4] for more details.

2.2 Related work

The spatial dimension of domains is a novel concept
that has not been investigated before. Related work is thus
about the decentralization of administration in classical ac-
cess control models. In this section we overview signif-
icant approaches focusing, in particular, on the following
two questions:

• How can domains be represented in RBAC systems?

• Who can delegate the administration of what to whom?

How can domains be represented?
In ARBAC97 [11] a domain is indirectly represented

through the notion of role range, that is, a pair of roles
confining the portion of role hierarchy, namely the set of
roles, that an administrator can administer. Role hierar-
chy characterizes also the administrative model proposed
by Crampton [3]. Oh and Sandhu [10] propose an admin-
istration model, referred to as ARBAC02. ARBAC02 re-
tains the main features of ARBAC97, and adds the concept
of organization unit, which represents a group of individu-
als involved in related tasks. The organization unit is indi-
rectly modeled through the concepts of user pool and per-
mission pool which however have limited generality. A dif-
ferent approach is adopted by UARBAC model by Li and
Mao [9]. UARBAC is a family of administrative models for
RBAC which consists of a basic model and one extension
UARBACP . UARBACP adds constraint-based admin-
istrative domains; the basic idea is to assign one or more
attributes to each object in the RBAC system and then de-
fine administrative domains using constraints on these at-
tributes. The notion of domain is, however, not explicit,
in that it can be represented by the value of some arbitrary
attributes of objects or even by a combination of values of
attributes. Furthermore this approach makes strong assump-
tions on the nature of the RBAC model, in that domains can
only be added if objects are parametrized.

The administration of RBAC-based context-aware ac-
cess control has been addressed by X-GTRBAC Admin [2].
A salient feature of this model is that domains are first class
objects, that is, they have an identifier and can be related to
other objects, in much the same way an Internet domain is
defined by a name. A policy is then explicitly associated
with a domain. Despite its simplicity, this notion of domain
is fairly powerful, since it is actually independent from the



concepts of the underlying RBAC and thus can be naturally
added to a variety of models.

Who can delegate the administration of what to whom?
A major mechanism for administration delegation is pro-
vided by discretionary access control (DAC) models [6], in
that a subject with a certain access permission is able to pass
this permission to another subject.

In the decentralized administration models based on
RBAC, domains are administered by members of roles.
The roles which are enabled to exercise administration
functions may be either administration roles like in AR-
BAC97 and X-GTRBAC, or application-dependent roles
like in UARBAC. Separating administrative roles from non-
administrative roles ensures a stronger security control and
thus is preferable in contexts in which strong security is re-
quested. In ARBAC97 and X-GTRBAC the Security Sys-
tem Officer is the only subject allowed to create adminis-
trative roles and thus decentralize administration. The dele-
gation hierarchy thus consists of only two levels, the Secu-
rity System Officer and the application-dependent adminis-
trative roles. In large organizations, however, a delegation
hierarchy organized according to two levels may be not suf-
ficiently flexible because of the complexity of the organiza-
tional structure.

3 Baseline of the approach

Current approaches provide only partial solutions to the
requirements posed by the the GEO-RBAC administration.
GEO-RBAC Admin tries to rigorously introduce the spatial
dimension in the notion of domain. We now present the key
design choices of GEO-RBAC Admin.

3.1 The representation of domains

Following the approach proposed for X-GTRBAC, in
our model domains are first class objects. However, un-
like X-GTRBAC, a domain, besides a name, has attributes.
One attribute is mandatory, namely the reference space of
the domain. The reference space of domain d is the (pos-
sibly bounded) space, which confines the geometric extent
of the spatial entities in d. The reference spaces of two do-
mains may overlap or be disjoint, while, as we will see later
on, the relationship of containment between the references
spaces of two domains is a necessary condition for the two
domains to be one the sub-domain of the other. Following
the common intuition, a domain can be seen as “container”
of objects. Objects can be application-dependent objects
or system-defined objects. Notice that we do not make any
assumption about the meaning of application-dependent ob-
jects, and in particular whether objects are spatial or not.

A domain d is represented by the tuple d ≡< id, s >
where id is the univocal domain identifier, and s the spatial
feature of a system-defined type representing the reference
space. We denote with TopDomain the system-defined do-
main: TopDomain ≡< id0, T opF >, where TopF is the
system-defined feature which covers the whole Earth. D
denotes the set of all domains.

Example 1 Suppose Italy and Switzerland be the iden-
tifiers of two system-defined spatial features. We want
to define two domains, one for each country, say Mo-
bileI and MobileCH. The two domains take the form: <
MobileI, Italy > and < MobileCH, Switzerland >

3.2 Domain administration

A domain is administered by the members of one or more
administration roles, referred to as admin roles. The set of
admin roles is disjoint from the set of regular roles where
regular stands for non-administrative. The members of ad-
min and regular roles are users. An admin role is uniformly
represented as a GEO-RBAC role 1 and conventionally the
admin role is a role defined over the extent representing the
reference space of the domain. TopAdmin is the unique ad-
min role in the Top Domain and it has the entire set of per-
missions.

Admin roles are instances of admin schemas. Admin
schemas are used for a specific purpose, that is, to de-
fine templates for the specification of admin roles in sub-
domains. For example one can define the role schema
AdminUser, assign it a set of permissions and then
create admin roles in sub-domains as instances of this
schema, say AdminUser(Hosp1), AdminUser(Hosp2),
where Hosp1 and Hosp2 are reference spaces of sub-
domains. The concept of admin schema supports the mod-
ular organization of administrative roles and permissions in
sub-domains.

3.3 Administration delegation

Domains are created and administered by admin roles.
Let d2 be a domain created by an admin role ar of a do-
main d1; we call d1 the parent domain of d2 (conversely d2

is sub-domain of d1), and role ar the owner of d2. By def-
inition the owner of a domain is unique. The owner role is
the unique role that can create and confer and revoke autho-
rizations from admin roles and users in the owned domain.
Therefore, it cannot occur that the admin roles in a domain
are created by different roles; neither it can occur that the
admin role of a domain is assigned permissions by different
roles.

1Specifically an admin role is a GEO-RBAC non-spatial role, because
the role extent and the logical position coincide with the reference space
and that matches with the definition of non-spatial role.



An admin role can create a domain and delegate its ad-
ministration if it has been assigned the delegation permis-
sion. Moreover the member of the creator role can only
delegate a subset of the role permissions; therefore it cannot
occur that one assigns a permission that one does not hold.
The delegation permission, if assigned to the admin role r
of a sub-domain, authorizes r to further delegate adminis-
tration. It can be observed that such model is similar to the
model underlying the grant option mechanism of discre-
tionary models, in that the subject who has the delegation
permission is authorized to further propagate the adminis-
tration delegation.

3.4 Domain scoping rules

An important issue is to define the rules which govern the
visibility and thus accessibility of objects across domains.
Since this problem resembles the definition of scoping rules
in programming languages, we refer to these criteria of vis-
ibility as domain scoping rules. Note that we only consider
the issue of visibility for system objects. We have identified
three possible approaches.

• Global objects. A first approach is to have a pool of ob-
jects, accessible from all the application domains, and
only administered by the members of Top Admin. The
task of the domain administrator (i.e. the administrator
of a domain different from TopDomain) is basically to
define the user-role and role-permission relationships.
The drawback of this approach is the limited autonomy
of the domain administrator in the management of the
domain policy.

• Local objects. Objects are local to each domain, that
is, they can be accessed and administered only inside a
unique domain. This approach ensures the maximum
autonomy; the drawback is that the objects which are
of common interest to many sectors of the organization
must be replicated in each domain.

• Hybrid solution. A subset of the system objects are
global while the remaining system objects are local.
The practical effect of this domain scoping rule is the
following: when the user connects to the system and
specifies the domain in which he or she is registered,
the objects which become available are those local to
the domain and those which are globally defined. Be-
cause of its flexibility, this is the solution adopted in
GEO-RBAC.

A problem related with the choice of the hybrid approach is
how to establish what is global and what instead is local. In
principle, such a choice could exclusively depend on the ap-
plication needs. However, it can be also driven by usability
concerns. Such consideration results from the experiments

we have carried out with the prototype of the administration
system which enables the creation of various elements of
the domain policy which are then stored in a spatial DBMS.
We have observed that some objects may be too complex
to specify for a “normal” administrator: for example the
specification of a location mapping function, which ideally
can be whatever function returning a logical position out of
the real position, entails programming capabilities that ad-
ministrators do not necessarily have. It seems thus more
convenient to let the Top Admin administer these objects,
under the assumption that the member of such a role has the
needed competences. In conclusion, domain scoping should
be defined based on the desired trade-off between simplicity
of use and administrative autonomy. In the current model,
the domain scoping rules are built-in in the model. Specif-
ically the components of role schemas are global while the
other objects are local. A more flexible management of do-
main scoping rules, however, would be desirable and this
aspect will be investigated as part of future researcg.

4 Specification of GEO-RBAC Admin

4.1 Objects and permissions

For the representation of objects and permissions we
adapt the formal notation by Li and Mao [9].

System object class Meaning
CR Regular roles class
CRS Regular role schemas class
CAR Administrative roles class
CARS Administrative role schemas class
CEXT Role extent types and instances
CLPS Logical position types and instances
CLMF Logical mapping functions
CU Users class

Table 1. The set SC of system classes

Object classes. Objects describe entities of different na-
ture. It is thus convenient to group them in classes. The set
C of classes comprise:

• System classes. System classes are those of interest for
the administration. The set SC of classes is reported
in Table 1. The choice of the granularity of objects,
in particular composite objects, that is objects consist-
ing of parts like role schemas is an important design
issue. In that respect, for the sake of flexibility, we
have defined a class not only for the whole, namely
the role schema but also for each part, namely each
schema component.

• Application classes. The set AC = {CAP1 , ..., CAPn
}

of application classes is application dependent.



Access modes. Access modes define the type of opera-
tions which can be authorized over objects and are spec-
ified based on the desired control granularity. We define
access modes based on the principle of reversibility [9].
Such a principle states that a permission should enable the
reversibility of an action; for example the permission for
creating on object should also authorize the deletion of
the object. The set of access modes over system objects
is: AM = {admin, assignPrm, assignUser, delegate},
where: admin allows one to create and delete an object; as-
signPrm is to assign and revoke permissions to roles and
role schemas; assignUser is to assign and revoke roles to
users; delegate is to authorize and revoke administration
delegation.

The set of access mode over application objects is appli-
cation dependent. We only assume the access mode admin
for creating and deleting an application object.

Permissions. A permission takes the form [c, a] where c
is a class of objects and a an access mode. From the pre-
vious classification, it follows the distinction between the
set PRMSS of system permissions in Table 2 and the set
PRMSA of application permissions. In general, each ac-
cess mode authorizes two or more operations. In particular
the delegate access mode authorizes the whole set of oper-
ations which are needed to delegate (or revoke) administra-
tion to the admin roles of a sub-domain.

Permission Meaning
[CR, admin] - to create and delete a regular role
[CRS , admin] - to create and delete a regular role schema
[CR, assignPrm] - to assign and revoke regular permissions to

regular roles
[CRS , assignPrm] - to assign and revoke regular permissions to

regular role schemas
[CR, assignUser] - to assign and revoke users to regular roles
[CEXT , admin] - to create and delete role extent types and

instances
[CLPS , admin] - to create and delete logical position types

and instances
[CLMF , admin] - to create and delete logical mapping func-

tions
[CU , admin] - to create and delete users
[CAR, delegate] - to create and delete a sub-domain, an ad-

min schema and an admin role for the sub-
domain; to assign and revoke a user to the
admin role and a permissions to an admin
role of sub-domain

Table 2. The set PRMSS of system permis-
sions

4.2 State of a domain

Each domain has a state. The state defines the sets of
objects and relations which are accessible in a domain. The

state is described at intensional level by the state schema
and at extensional level by the state instance (simply state).
We introduce the following notation: O denotes the set of
all possible objects; function OBJS(c) returns the set of
possible objects in O of class c.

Definition 1 (Schema of domain state) The state schema
of a domain is defined by the following tuple of functions:

- OBA : AC × D → 2O such that OBA(c, d) ⊆
OBJS(c). The function returns the set of application
objects of a certain classes in a domain.

- OBS : SC × D → 2O such that OBS(c, d) ⊆
OBJS(c). As above, but the function returns the set
of system objects.

- PA : D → 2PRMSA returns the set of application
permissions in a domain.

- PS : D → 2PRMSS returns the set of system permis-
sions in d in a domain.

- SUA : D → 2OBJS(CU )×(OBJS(CR)
⋃

OBJS(CAR)).
The function returns the set of pairs (user, role) in a
domain. The role can be regular or administrative.

- SPAI : D → 2OBJS(CR)×PRMSA . The function
returns the set of pairs (regular role, permission) in a
domain.

- SPAS : D → 2OBJS(CRS)×PRMSA . The function
returns the set of pairs (regular role schema, permis-
sion) in a domain.

- ASPAI : D → 2OBJS(CRS)×(PRMSS

⋃
PRMSA).

The function returns the set of pairs (admin role, per-
mission) in a domain.

- ASPAS : D → 2OBJS(CARS)×(PRMSS

⋃
PRMSA).

The function returns the set of pairs (admin role
schema, permission) in a domain.

A state, denoted as I(d), is the state schema applied to
domain d. Conventionally the admin roles in a domain d
have as extent the reference space of d. I denotes the state
of the domain set, defined a I = {I(d), d ∈ D}

The state I(TopDomain) has the properties described
below.

Definition 2 (State of the TopDomain) The state of the
TopDomain satisfies the following properties:

- PA(TopDomain) = PRMSA

- PS(TopDomain) = PRMSS

- OBS(CAR, T opDomain) = {TopAdmin}



- OBS(CU , T opDomain) ⊇ {TopUser}
- ASPAI(TopDomain) =
{TopAdmin} × (PRMSA

⋃
PRMSS)

- SUA(TopDomain) ⊇ {[TopUser, TopAdmin]}

4.3 Admin hierarchy

The owner of a domain is the only admin role that can
administer that domain and the corresponding admin roles
and admin users.

The relationship to-be-owner-of is captured by the Ad-
min Hierarchy. The Admin Hierarchy consists of a partially
ordered set of nodes where nodes take the form [d, ar] with
d a domain and ar an admin role in d or ⊥ (undefined).

Definition 3 (Admin hierarchy) Let I be the state of the
domain set. The Admin Hierarchy AH = (T,≺) in I veri-
fies the following conditions:

(1) T ⊆ {[d, ar] | d ∈ D, ar ∈ OBS(CAR, d)
⋃ {⊥})

(2) ≺ ⊆ T × T is a partial order. The ordering
[dm, rm] ≺ [dn, rn] holds iff dm �= dn, rm �= ⊥ and
one of the following two conditions is true:

– rm is the owner of dn

– ∃[d, r] ∈ T such that [dm, rm] ≺ [d, r] ≺
[dn, rn]

(3) ∀ [d, ar] ∈ T, [TopDomain, TopAdmin] ≺ [d, ar].
[TopDomain,TopAdmin] is the root of AH .

It can be easily shown that the Admin Hierarchy is a tree.
In fact each node represents an admin role for a domain.
Since by definition, an admin role in a domain can be only
owned by a unique admin role in another domain, it follows
that every node, different from the root, has a unique parent
node. Therefore since the set of ancestors of a node is totally
ordered and has a bottom element (i.e. the root), the admin
hierarchy is a tree.

Example 2 Assume that the member of the TopAdmin has
created two domains, named hosp1 dom and hosp2 dom,
representing two hospitals. The rectangles in Figure 1.a
correspond to domains hosp1 dom, and hosp2 dom with
reference space hosp1 s and hosp2 s respectively. More-
over the TopAdmin has created two admin roles, one
for each of the newly created domains, named respec-
tively admin(hosp1 s) and admin(hosp2 s). Notice that
these two admin roles are instances of the same schema
admin. The member of the former role has created
two sub-domains, card dom and er dom, correspond-
ing to the cardiology and emergency room divisions, over
the spaces card s and er s respectively. The former is

administered by two admin roles: sec officier(card s)
and user admin(card s); the latter by a unique role
sec officier(er s). The resulting admin hierarcy is illus-
trated in Figure 1.b.

Figure 1. Admin hierarchy

Finally, we introduce the notion of policy state, defined
by the pair I∗ =< I, AH >.

4.4 Domain scoping rules

An object obj in domain d is global only if it represents
a schema component in the state of the TopDomain, that
is, obj ∈ OBS(Co, d) → obj ∈ OBS(Co, T opDomain)
with Co ∈ {CLPS , CLMF , CEXT }. Object obj is local to
d when obj is only in the state of d and not in the state of
any other domain.

Let Cm = {CLPS , CLMF , CEXT } and consider the
utility function d Prms(r, d) returning the set of permis-
sions assigned to admin role r in domain d comprising the
permissions both assigned to the role schema and directly
to r. The following proposition states some relevant prop-
erties of administration hierarchies with respect to scoping
rules.

Proposition 1 The following properties hold:

• Global objects cannot be administered by the admin-
istrators of application-dependent domains, that is:
∀d ∈ D − {TopDomain},∀Co ∈ Cm, �ar ∈
OBS(CAR, d), [Co, admin] ∈ d Perms(ar, d).

• The sets of local objects in the state of the domains are
disjoint, that is:

⋂
d∈D OBx(Co, d) = ∅ for Co ∈

C − Cm where OBx stands for OBA and OBS



4.5 Constraints on states

Administrative operations determine a change of state.
Operations can lead, however, to an improper state. For
example, if a role schema is removed from a domain while
instances of that schema still exist, then the enforcement of
those roles would be impossible or fail in any case. In such
case we say that the state of the domain is unsound.

It may also occur that after an operation the domain is
in a transitory state. For example, if in a domain there is a
unique admin role which is authorized to administrate reg-
ular roles and that admin role is removed, then the regular
roles which still exist cannot be administered any longer un-
til a new administrator is appointed. In that case, we say that
the state of the domain is administratively incomplete. The
notions of domain soundness and administration complete-
ness are important to enable the check of domains and the
proper specification of administrative operations. We now
define more precisely the meaning of these concepts.

Auxiliary functions: Owner(d) returns the admin role
which is owner of d; Parent(d) returns the domain of the
owner role; Sk(r) returns the schema of role r.

Proposition 2 (Soundness of domains) Let I∗ =
< I, AH > be a policy state with AH = (T,≺).
We say that I∗ is sound iff for each domain
d ∈ D − {TopDomain} the following conditions
hold:

• Regular and admin roles in d have an extent contained
in the reference space of d.

• Each regular role is instance of a regular role schema
in d, that is, ∀d ∈ D,∀r ∈ OBS(CR, d),∃rs ∈
OBS(CRS , d), rs = Sk(r).

• Each admin role is instance of an admin
role schema in the parent domain, that is,
∀d ∈ D,∀ar ∈ OBS(CAR, d),∃ars ∈
OBS(CARS , Parent(d)), ars = Sk(ar).

• d is present in some node of the Admin Hierarchy, that
is: ∃r ∈ OBS(CAR, d)

⋃⊥, [d, r] ∈ T .

• The owner role of d has the delegation permis-
sion, that is: (Owner(d), [CAR, delegate]) ∈
d Perm(Owner(d), Parent(d)).

• The reference space of d is spatially contained in the
reference space of the parent domain.

• Permissions assigned to an admin role ar in d are
included in the set of permissions assigned to the
owner of d, that is: ∀p ∈ d Perm(ar, d) → p ∈
d Perm(Owner(d), Parent(d)).

If I∗ is sound, it is easy to show that the following proper-
ties hold.

- Let d1 and d2 be two domains. If d1 and d2 are not
comparable, in that one domain is not the ancestor of
the other, then the respective reference spaces d1.s and
d2.s are spatially disjoint or overlap.

- The value of the admin role in node [d, ar] ∈ T may
be undefined, i.e. ⊥ only if the node is a leaf in AH .

Proposition 3 (Administration completeness of domains)
Let I∗ =< I, AH > be a sound policy state.
I∗ is administratively complete iff for each domain
d ∈ D − {TopDomain} the following conditions hold:

• Each admin role is assigned at least one user, that is
∀ar ∈ OBS(CAR, d),∃au ∈ OBS(CU , d) such that
(ar, au) ∈ SUA(d).

• The owner role is assigned at least one user that
is: ∃u ∈ OBS(CU , Parent(d)), (u,Owner(d)) ∈
SUA(Parent(d)).

• If there is at least one regular role instance, regular
schema or user, there must be at least one admin role
ar ∈ OBS(CAR, d) which is authorized to administer
regular roles instances, schemas and users.

• For each application object o ∈ OBA(CAPi
, d) there

must be an admin role with permission [CAPi
, admin].

It can be easily shown that if the above conditions are sat-
isfied then each object in the policy state is administered by
someone.

Admin object class meaning
CreateObj(c, o, d) Create an object o of class c
CreateDomain(d, s) Create a domain d with reference

space s as sub-domain of current
domain

GrantAdmPrm(c, r, p, d) Assign permission p to admin ob-
ject r of class c ∈ {CAR, CARS}
in d

GrantUser(u, r, d) Assign user u to role r

Table 3. Administration operations

4.6 Administration operations

In this section, for the sake of space, we only describe the
process of delegating administration to a sub-domain using
the operations of CreateDomain, CreateObj, GrantAdm-
Prm, GrantUser, reported in Table 3.

Assume that the member of an admin role ar in the cur-
rent domain cd wants to create a sub-domain sd. 1) As first



step ar creates a sub-domain through the operation Create-
Domain. A child of node [ar, cd] which is only partially
filled is created and added to the admin hierarchy. 2) If
not already existing, ar creates an admin schema ars′ in
the current domain and possibly assigns permissions to that
schema through the operation GrantAdmPrm. 3) ar cre-
ates an admin role ar′ as instance of schema ars′ through
the operation CreateObj and possibly assigns permissions
through GrantAdmPrm: ar′ is thus automatically added to
the set of admin roles of sub-domain sd. The admin hierar-
chy is updated. 4) Finally ar creates an user au′ through
CreateObj and assigns it to the admin role ar′ through
GrantUser.

Notice that if the delegation permission is assigned to the
admin role of the newly created sub-domain, the adminis-
tration can be further delegated to nested sub-domains. Fur-
ther, observe that the creator of a sub-domain can also add
new admin roles after the domain is created.

5 Conclusions

In this paper we have presented a model for the decen-
tralized administration of GEO-RBAC based on a hierarchy
of spatial domains. The approach is quite flexible. More-
over, although nested domains can be freely created, the
administration still remains indirectly under the control of
the Chief Security Officer, which is important in contexts
demanding strong access control. A first prototype of the
GEO-RBAC system has been developed as Web applica-
tion in which spatial-aware policies are stored in a Spatial
DBMS. Some important issues are still open and will be
investigated as part of the future activity:

• User sharing. In GEO-RBAC Admin, a users u who
is registered in domain d is not visible in a sub-domain
d′. The question is thus how to enable a more flexible
management of users, so to allow a sort of automatic
registration in sub-domains. To that purpose, a possi-
ble approach is to share users between domains.

• Administrative object sharing. An extension of the
previous functionality is to enable the sharing of addi-
tional administrative objects, in particular role schemas.
That would allow the specification of a role ontology
for the organization.

• Mobility. The issue is how to support mobility of users
across domains, that is, (roaming). As a scenario imag-
ine an access control system for regulating the access
to services, like traffic information services in different
cities, and assume that a domain and thus a local policy
is specified for each city. Assume also that the user is
assigned a home domain. The user however is mobile,
thus while driving the user may move outside the ex-
tent of the home domain and enter a new domain and

this in/out operation can occur several times before the
car definitely stops. This scenario raises a number of
important requirements, such as the need of transpar-
ent connection to domains and roles interoperability.

Acknowledgements

This work has been partially funded by the European
Commission project IST-6FP-014915 “GeoPKDD: Geo-
graphic Privacy-aware Knowledge Discovery and Delivery
(GeoPKDD)” (web site: http://www.geopkdd.eu), and by
the US National Science Foundation grant 0712846 “IPS:
Security Services for Healthcare Applications”.

References

[1] C. Ardagna, M. Cremonini, E. Damiani, S. D. C. di Vimer-
cati, and P. Samarati. Supporting Location-based Conditions
in Access Control Policies. In Proc. of the 2006 ACM Symp.
on Information, Computer and Comm. Security, 2006.

[2] R. Bhatti, J. B. D. Joshi, E. Bertino, and A. Ghafoor. X-
GTRBAC Admin: A Decentralized Administration Model
for Enterprise-Wide Access Control. ACM Trans. Inf. Syst.
Secur., 4, 2005.

[3] J. Crampton and G. Loizou. Administrative scope: A foun-
dation for role-based administrative models. ACM Trans.
Inf. Syst. Secur., 6(2):201–231, 2003.

[4] M. Damiani, E. Bertino, B. Catania, and P. Perlasca. GEO-
RBAC: A Spatially Aware RBAC. ACM Trans. Inf. Syst.
Secur., 10(1), 2007.

[5] D. Ferraiolo, R. Sandhu, S. Gavrila, D. Kuhn, and R. Chan-
dramouli. Proposed NIST standard for role-based access
control. ACM Trans. Inf. Syst. Secur., 4(3):224–274, 2001.

[6] P. P. Griffiths and B. W. Wade. An authorization mecha-
nism for a relational database system. ACM Trans. Database
Syst., 1(3):242–255, 1976.

[7] A. Kern, A. Schaad, and J. Moffet. An Adminstration Con-
cept for the Enterprise Role-based Access Control Model. In
Proc. of the 8th ACM Symposium on Access Control Models
and Technologies, 2003.

[8] M. Kumar and R. Newman. STRBAC - An approach to-
wards spatio-temporal role-based access control. In Proc. of
Communication, Network, and Information Security, 2006.

[9] N. Li and Z. Mao. Administration in role-based access con-
trol. In ASIACCS ’07: Proc. of the 2nd ACM symposium on
Information, computer and communications security, USA,
2007.

[10] S. Oh, R. Sandhu, and X. Zhang. An effective role adminis-
tration model using organization structure. ACM Trans. Inf.
Syst. Secur., 9(2):113–137, 2006.

[11] R. Sandhu, V. Bhamidipati, and Q. Munawer. The AR-
BAC97 model for role-based administration of roles. ACM
Trans. Inf. Syst. Secur., 2(1):105–135, 1999.

[12] A. Schaad, J. Moffett, and J. Jacob. The role-based access
control system of a European bank: a case study and discus-
sion. In Proc. of the 6th ACM symposium on Access Control
Models and Technologies, USA, 2001.


