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Abstract. Water Framework Directive (60/20000/EC), in order to assign an appropriate cost to irrigation water 

resource, urges member states to introduce the concept of full cost and to adopt economic instruments to improve the 

efficiency of its allocation. The option to apply a volumetric supply fee promoting the rationalization of the resource, 

could thus play a role in addressing emerging and future problems of water scarcity. 

The study aims to evaluate economic performances of farms and estimate water irrigation costs in a typical Lombard 

rice-cultivated area through a simple non-linear programming model. It returns the current structural features of 

farms, their productive inputs and performances. Secondly, different scenarios are considered, related both to a 

different water government, in terms of price, quantity and distribution method, and crop water requirements; in this 

way it is possible to analyze the observable consequences on supply and compare the output data of different 

scenarios.  

Obtained results allow to identify critical points in water management and incentivize interventions for a better 

resource allocation, and their evaluation represents a useful instrument for supporting future policies on water 

resource. 
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Introduction 
 

Water represents a fundamental element for all sectors of economic, social and environmental interest. 

Particularly in agriculture, it plays undoubtedly a key role as a fundamental productive input for the 

conduction of all the related activities, in arid and semi-arid regions and temperate ones, as well. In the 

former, water allows to obtain a sufficient crop production, while in the latter to maintain yields at high 

levels, reducing the risk of loss of the product
[0][ 2][3]

. However, in relation to several emerging issues, its 
importance is increasing, even in such areas where water availability for the primary sector has not 

traditionally been limiting. Also for irrigated agriculture, in fact, a quantitative reduction of the resource 

is occurring, due to global phenomena of climate change
[4]

, to an increasing population and to a rapid 

urbanization, which are emphasizing the conflict of use of water among different sectors, as a result of an 

increasing demand on the part of each of them, and exacerbating the effects of decreased usability[5]. 

Water scarcity in agriculture is the becoming a significant issue and it has inevitably repercussions both 

on productive and economic performances of farms, modifying in long-term period their competitiveness 

and burdening on their possibility in continuing the activity. Along with water scarcity, and as a possible 

strategy to face with it, also the need of reducing the wastes of the resource has to be considered. Water as 

an economic asset with limited availability
[6]

 is to be protected through promoting an efficient and equal 

use of it, which is possible only by the attribution of a fair price. The estimation of water irrigation costs 
is then a significant topic with an important role in supporting regulations about water and allows 

decision makers to make aware choices to face water shortages. 
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The cost of the resource  
 

Water Framework Directive (WFD) 60/2000/EC[7] emphasizes the allocation of a fair price for irrigation 

water and calls on member state to the introduction of the so-called “full cost” (figure 1), which, taking 

into account financial, opportunity and environmental costs, could represent the practical application of 

the “polluter-pays principle”: it ensures that the end user pays a price high enough to recover all the costs 
arising from the use of water, and its adoption reduces wastes and non-virtuous behaviours caused by an 

underestimation of the resource.    

 
Figure 1. Structure of the full cost ([8], modified) 

In agriculture applied fees are much lower than those hypothesized by regulatory and this could lead to an 

increase of irrigation costs; then, paradoxically, the farmer, as the end user of the resource, would be in 

the condition of having less water at a higher cost; therefore this situation would not be sustainable from 

the farmers’ point of view. In order to achieve a sustainable use of the resource, different modalities for 
the delivery of water service can be adopted by the suppliers. Pricing and fees differ according to their 

efficiency in promoting a more rational use of irrigation water. A fixed fee set per irrigated or irrigable 

hectare (€/he) tends not to encourage such practices, but is relatively easier to adopt and may in some 

cases represent the most recommended solution
[9]

; volumetric fees, instead, determine a more aware use 

of water, but could have unit costs much lower than the actual cost of the resource. WFD suggests using 

preferentially a volumetric rate, as it would represent an economic instrument able both to reduce water 

consumption and cover all the costs of water service. It represents a more transparent and efficient
[10]

 

method of pricing, since it is based on water quantity actually supplied. As several studies have already 

demonstrated[11][9][12], a different tariff level, a different pricing and the increase of irrigation water cost 

influence farmers’ choices, and lead to a significant reduction of water consumption, at the expense of 

withdrawals from wells and private water sources, as well as the need for management and/or productive 

changes; but these strategies, such as a reduced irrigated area, crop diversification towards less water-
demanding crops, an increase in the efficiency of distribution and a different method of water application, 

can finally result in a significant decrease in farm income.  

Moreover, some authors consider the use of incentives not encouraging good behaviours and the 

assignment of a political price to water service supply an inefficient management system, not stimulating 

a proper use
[13]

, but efficient pricing, as well, may determine undesirable effects on farmers’ decisions or 

environmental implications not immediately anticipated. In district of ancient irrigation, such as rice-

cultivated areas in Northern Italy, environmental aspects also related to multiple use of the resource must 

be considered
[14]

: even though water distribution techniques are technically inefficient and characterized 

by huge losses due to filtration, the complex system and water network developed over the centuries, has 

allowed the creation of valuable paranatural aquatic environments. Even in these areas with high natural 

and environmental value the quantification of environmental costs is something difficult
[15]

, leading to an 
uncertain estimation of full cost.  

Finally, it must be considered that irrigation water value is strictly linked to that of agricultural production 

it contributes to. Consequently, a higher water cost inevitably reflects on water use efficiency and 

productivity
[16][17][18]

, an increase of which could represent a further way to achieve an efficient use of 

water.  

 



 

Modeling for irrigation water management 
 

A valid support to policy makers and to decisional processes lies in the results of appropriate tools, such 

as mathematical programming models. They provide information not directly observable and allow 

simulations of different scenarios related to changes in agricultural policies, resource management or 

market development, and can guide decision makers towards the identification of the most suitable 
interventions to achieve economic and environmental targets of water policies.  

Economic analysis of irrigation water are based on the formalization and implementation of both 

econometric and programming models, at different scales and levels (farm, local, regional). Among them 

the regional level is able to answer the requirements of WFD, which states that catchment area is the unit 

for the analysis and the integrated management of water resources.   

The econometric approach, based on less informative inputs, has demonstrated on several occasions the 

possibility to estimate a function of operating costs of water distribution, in irrigation districts and 

consortia
[19][20][21][22]

; more often the economic analysis of irrigated agriculture is realized through the 

application of linear programming models (mono-objective, multicriteria, stochastic discrete) to evaluate 

the impacts derived from alternative conditions, both internal and external to the system: each simulation 

generates a new solution showing the effects of the changes themselves on crops, technological choices, 

use of productive inputs, economic performances of farms
[19][20][21][22][23][24][25][26][27]

. However, these 

models require the collection and procession of a large amount of economic and productive data and 

information; even though they are useful to understand the features of agricultural system by identifying 

relationships between the use of inputs and productive levels, their results strongly depend on the 

constraints imposed on the model. 

In the same context the Positive Mathematical Programming (PMP)
[28][29]

 is recently spreading. This new 

approach requires a limited amount of data used to perfectly calibrate the model for the reference period, 

according to three main phases: - specification of a linear programming model that uses all the 

information available, - reconstruction of a total variable cost
[30]

, - formulation of a non-linear 

programming model to be used to perform simulations. Its application for water resource analyses is, 

however, currently underdeveloped. In this regard, it recalls the work of Blanco, Iglesias and Sumpsi
[31]

 in 

which is considered the impact of pricing policies on two irrigation districts in Spain by specifying a cost 
function for each of them, and what Cortignani and Severini

[32][33]
 have developed in relation to territorial 

analysis, also following the introduction of tariffs differentiated depending on the season.  

These models can be used to face issues related to the variation in the cost of the water and its 

availability, but the possibility of analyze future scenarios is limited, since they do not allow to consider 

new and different production activities compared to the reference situation. 

 

 

 

Aims and analysis methodology  
 

The paper aims to identify and implement a mathematical programming model, in order to get to an 

economic evaluation of irrigation water resource in a rice-cultivated area in Lombardy, Northern Italy, 

characterized by peculiar uses of the resource itself and particularly suited for this analysis.  
Data collection has been carried out through direct surveys at sample farms and using results of ad hoc 

experimentations conducted in an experimental farm in the same area (activities related to BIOGESTECA 

project).  

The selection of rice-growing farms operating in the district started from their extraction from the 

regional database SIARL (Sistema Informativo Agricolo della Regione Lombardia), their classification on 

the basis of Utilized Agricultural Areas (UAA) of rice and the sampling within each class. To each farm a 

specific questionnaire requiring information about the crop year 2010-2011 was submitted and filled 

through direct surveys to farmers, for a total of 19 surveys carried out and a total rice-cultivated area of 

808.5 hectares. 
Data have then been elaborated to describe the features of the system and used for the identification and 

implementation of a model, returning current economical and productive conditions of farms. In order to 

evaluate the effects of new managerial and/or productive strategies on cultivated areas (possible reduction 

of the irrigated area, crop diversification, increase of the distribution efficiency and different method of 

water provision), it has also been used to make scenario analysis, related to a different pricing system.  



 

Case study area: main features  
 

The case study area is located in a typical rice-growing district in Lombardy, i.e. the so-called Lomellina 

(figure 2), and in particular around San Giorgio di Lomellina (PV).  

 

 
Figure 2. Case study area (www.infolomellina.net) 

Agriculture in the district is mainly dedicated to rice, with a marginal portion for other arable crops, such 

as corn and soybean, and poplar. Consortium Est Sesia derives water from Cavour Canal, Arbogna River 

and leakages and provide it to farms, even though there are supplies from private sources. Distribution of 

water is mostly continuous and, for a less part, it refers to pre-established rotating shifts. To both cases 

corresponds the same product but different cultivation strategies, as shown in table 1. 

 

 

 

 

 
 

 



 

Table 1. Different managerial typologies on rice-fields: general characteristics 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

Crop type 

code 

Water 

dispensation 

Water  

management 

Agronomic 

management 

Farms  

(n.) 
% UAA 

CFW 

Continuous 

 

Continuous flooding. Water 

flows continuously for the 

whole duration of the crop 

cycle.   

Submersions are  

interrupted by 3 or 4 dries 

in correspondence of certain 

phases of the cycle or 

treatments with herbicides 
or fertilizers. 

 

 

Water-seeding after the 

submersion of the field 
10 50.63 

CFS 

Soil-seeding; the 

ground remains dry 

until the rice has 

reached the stage of 

4
th

-5
th

 leaf, then it is 

restored the normal 
regime of submersion 

5 8.95 

SCFW 

Rotating shifts 

Intermittent flooding. Water 

is available continuously 

only during predefined 

shifts. 

Continuous flooding 

during the shift 

Water-seeding after the 

submersion of the field 
1 8.02 

SCFS 
Soil-seeding before the 

first irrigation 
2 10.02 

SIW 
Flowing irrigation, 

trying to maintain 

water on the ground 

until the next shift  

Water-seeding after the 

first irrigation 
1 0.47 

SIS 
Soil-seeding before the 

first irrigation 
6 21.91 



 

According to experimentations conducted, crop production is linked to water and agronomic 

management, since differences among yields exist (table 2). 

 

Table 2. Average yield for each crop type 

Crop type Yield (tons/he) 

CFW 9.72 a 

CFS 8.33 b 

SCFW 9.72 a  

SCFS 8.33 b 

SIW 7.81 b 

SIS 7.81 b 

 

The estimation of water supplied indicates the traditional method as the most requiring for the resource, 

while differentiation of sowing techniques shows a lower overall water consumption for soil-seeding 

(table 3). At the same delivery typology, the determining factor increasing water consumption is the 

resource management typology during the growing season. Water quantity seems, then, to affect yields, 

suggesting that lower provision and availability causes a lower production.  

 
Table 3. Seasonal water consumption and water flow for each crop type  

Crop type 
Water consumption 

(m
3
/he) 

Water flow (ic) 

(l * s
-1

 he
-1

) 

CFW 22,711.6  ±  1,695.9 2.4 

CFS  20,841.8  ±   114.3 2.4 

SCFW  17,074.8 ° 1.5 

SCFS 13,073.4 ±        84  1.5 

SIW       907.2 ° 1.5 

SIS    5,475.6 ±   6,344.2 1.5 

° only one data available 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

The model implemented  
 

For an economic evaluation of irrigation water in the district a simple non-linear programming model has 

been developed.  

Decisional variable set in simulations is the rice-growing area (xcropf,c) in each farm (f index) subject to 

irrigation according to the different ways of water supply and agronomic management (c index).  
The objective function Z aims to maximize farm gross margins, as difference between revenues and costs, 

related both to cost of water supply and cost of water management[34] (table 4).  

The k-1–degree equation related to water managing costs appearing in the model gives it the characteristic 

of non-linearity, justifying the use of the specific algorithm.   

In particular Z takes the following form:  
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Table 4. Elements of the implemented model 

T
o
ta

l 
re

v
en

u
e
s 

 

CAP subsidies 
�	 
 ��	�
�,� �  0.08 
 �	 
  ��	�
�,� �  5,000�� 

r contribution of 850 €/he, with allowance of 8% for the portion in excess of 

5,000 € 

Sale of paddy-rice 

�
 
  ��,� 
 ��	�
�,�� 
p selling price (333.38 €/ton) (Camera di commercio di Pavia, 2011) 

yf,c crop yield (tons/he) 

T
o

ta
l 

c
o
st

s 
re

la
te

d
 t

o
 i

rr
ig

a
ti

o
n

 

Water supply cost (€/year) 

Water supply cost 

 

��	�
�,� 
 �� � �� 
 �� 
 3.6 
 !"	�,�� 
w current water supply fee (278.62 €/he) 

wc (€/mc) volumetric supply fee  
ic (l * s

-1
 * he

-1
) water flow supplied  

durf,c duration of the irrigations  

Water management costs (€/year) 

Maintenance and repair of 

technical means used for 

irrigation 

#� 
 $�% 
 ��	�
�,� 
  &&'(�,� ��)*+�, 
 ��	�
�,� 
 &&'(�,� 
where 

#� � 34 
 1��/5�) 
FR repair and maintenance factor (80%),  

Vo value of a new machine (70,000 €), 

 n economic life of the machine (12 yrs),  

Df physical life of the machine (12,000 hrs),  

k (-) exponent coefficient for repair and maintenance, equal to 1.9, 

hhatf,c working capacity of the pump used for irrigation (hrs/ha) 

Costs for consumables 

(fuel and oil) 

��	�
�,� 
 �
�	�/69� 
 �&&'(�,� 
 �9.4 
 �
 � 0.04 
 �
� � 7.65 
 �%(�,�� 
pwrf power of the tractor machine used for irrigation (kW), 

hhatf,c working capacity of the pump used for irrigation (hrs/ha), 

fp fuel price (0.8 €/kg), 

op oil price (3.5 €/kg) 

intf,c number of irrigation interventions during season for each crop type  

Labour costs 

2 
 0 
 ��	�
�,� 
 �%((�(�  

l hourly labor cost (€/h), set equal to 15 €/h  

inttotf total number of irrigation interventions during season 

Share of deterioration of 

the machine used for 

irrigation 

1�� 
 ���1 � 2!��/%� 
Vo value of a new machine (70,000 €), 

Td depreciation rate (-), equal to 0.125,  

n economic life of the machine (12 yrs),  

Various expenses (shelter 

and surveillance for 

machinery, taxes, 

insurance) 

� 
 1�� 

Vo value of a new machine (70,000 €), 

o coefficient of various expenses (-), equal to 0.025 



 

Z is subjected to two main farm-level and consortium-level constraints regarding land and water. Land 

balance ensures that no more land than the total available in each farm is cultivated (1.) and that 

cultivated areas still maintain the same water dispensation, continuous (2.a) or not  (2.b): 

 

∑ ��	�
�,�� 7 0'%!�,� 
xcrop=,CFW � xcrop=,CFS  7    a=,CFW � a=,CFS 

xcrop=,SCFW � xcrop=,SCFS � xcrop=,SIW xcrop=,SIS 7   a=,SCFW  � a=,SCFS  � a=,SIW   �  a=,SIS 
 

Water balance ensures that water flow resulting from the model is not higher than those currently 

provided by the consortium (ic) estimated by the experimentations and differing for each water 

dispensation (see table 3): 

� iEE 
  xcrop=,E  7  � iEE 
 a=,E  
 

Scenario analysis  
 

A scenario analysis has been then performed.  

The first condition (scenario #0) applies the maximization to available data. In a further scenario 

(scenario #1), a volumetric fee replaces the current one, that is a fixed fee per hectare, ceteris paribus. 

This phase has required a preliminary step to determine the volumetric fee level (in €/m
3
) to be then 

applied to the objective function above. A further equation has been defined to find the limit of the fee for 

which there is a change in water management. This approach started from setting the equivalence 

between known and unknown values of cultivated areas, leading to the introduction of a further variable 

tv replacing the previous parameter wc (3.); more suitable constraints have then been defined (from 4. to 
10.) 
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(1.) 

(2.a) 

(2.b) 

 

 

(3.) 

(4.) 

(5.) 

   (6.) 

(7.) 

(8.) 

(9.) 

(10.) 



 

Finally, referred to all conditions analyzed, economic and productive parameters have been recalculated 

(respectively scenarios #0.1 and #1.1). In particular:  

- Total costs and revenues, as described in table 4; 

- Water cost, or the price of irrigation water (PU, in €/m
3
), as the ratio between costs and water available 

to farm:  

PU P€/m
3R  �  costs / irrigation water 

-Water productivity (WP). It is defined as the ratio between total yield (in tons) and its water consumption 
(m3) during season due to evapotranspiration[37][38], but we have calculated it as yield compared to total 

amount of water used during watering season, not considering line losses, namely the amount potentially 

distributed each year according to the available resource: 

WP Pg/kgR  �  total yield / water consumption 
  1000 
In addition, it has also been considered the economic crop water productivity (EWP) based on the  market 

value of the crop
[35][36][37][38]

: 

EWP P€/kgR  �  crop economic value / available water 
  1000 
 

 

 

Results and comments 
 

The model has been solved through the software GAMS
[39][40]

 (General Algebric Modeling System), and 

has allowed the generation and display of a large amount of data output.  

The model has returned information about current structural features of farms, their productive inputs and 

productive and economic performances of each of them and for every type of culture, allowing the 

comparison between farm and cultural types, homogeneous or not. 
It is important to note that to SIW corresponds a very anomalous water consumption (see table 3) 

that would affect subsequent results and conclusions. Starting from this consideration and taking into 

account that it derives from only one observation and covers a very little portion of the total cultivated 

area (3.5 he), this category is no more considered in the following and results concern with a selection of 

crop typologies.  

 

 

Optimal allocation of cultivated areas  
 

Optimal allocation of cultivated areas in comparison with current conditions are shown in table 5, where 

S1_ALL represents the best solution if the anomalous value would be considered, while S1_SELECTION 

if it would not. The maximization of overall margin leads in any case to managerial and agronomic 

choices mostly far from what really applied.  

Fixed fee per hectare doesn’t seem to encourage water saving, since areas with continuous supply are 

suggested to be cultivated according to water seeding, that is more water requiring than soil-seeding, and 

those provided periodically shift to the most requiring method within the category (SCFW). In this case 

are brought down water management costs, rather than water supply ones. On the contrary, the adoption 

of a different pricing has more evident effects both on typology of water management and agronomic 
strategies: in relation to periodic irrigations water saving techniques are preferred. The opportunity to 

adopt dry or semi-dry cultivation is confirmed by previous surveys carried out in the same area: during 

the season 2004-2005 5.4% of the denounced rice-fields in S. Giorgio di Lomellina area were soil-seeded, 

and from 2008 so far this percentage is passed to almost 30%, with peak values of 37%
1
. The volumetric 

                                                        
1
These results derive from a study carried out at the experimental farm of Centro Ricerche sul Riso (Rice Research 

Center) in Castello d’Agogna (PV), which pertains to Ente Nazionale Risi (www.enterisi.it). 



 

fee hypothesized to be adopted, equal to 0.219 €/m
3
, has also allowed to identify cost levels favoring 

different irrigation techniques: its application demonstrates that soil-seeding is generally not encouraged 

with a continuous supply and it would lead to the cancellation of gross margin for most of the farms 

provided continuously, as shown by the decrease in the percentage (26.89%), suggesting that the total 

price to pay would be too high to front the high water consumptions required. For these farms it would be 

then unsustainable the adoption of a volumetric fee.  

 

Table 5. Cultivated areas for each crop type (% of UAA).  

Crop type Currently Scenario #0 Scenario #1_all Scenario#1_selection 

CFW 50.31 58.76  26.89 

CFS 8.45  23.27  

SCFW 8.18 41.24   

SCFS 10.22   39.85 

SIW 0.48  76.73  

SIS 22.36   33.25 

 

 

 
 

Economic results 
 

 

Costs analysis  
 

Fee type currently adopted links proportionally water supply cost to irrigated areas, independently from 

the amount of available water. However irrigation water supply costs expressed in a volumetric rate seem 

to contradict this affirmation, because the lower are costs, the higher is water consumption (table 6). So, 

paradoxically adopting productive and managerial water saving techniques seems to determine for farms 

increasing in supply costs, which in itself could mean, in the future, a change in farming systems; 

actually, the adoption of periodic irrigation is independent of the farmers’ will; since the fee is set by 

consortium, whenever it was modified it would consequently affect these aspects. 

If optimal allocation of cultivated areas occurs, it does not modify water supply costs. All these values are 

lower than those deriving from the application of a volumetric fee, which, both before and after the 

optimization are highest for a unite size.   
 

Table 6: irrigation water supply cost (€/m
3
), for each crop type in different cases analyzed 

Crop type Currently  Scenario #1 Scenario #0.1 Scenario #1.1 

CFW 0.01 0.22 0.02 0.22 

CFS 0.01 0.22   

SCFW 0.03 0.22 0.03  

SCFS 0.07 0.22   

SIW 0.61 0.22  0.22 

SIS 0.19 0.22   

 

Total costs related to irrigation (table 7) differ each other according to operative procedures adopted by 

each farm during irrigation practice. Differences observed among each crop typology, are due to the fact 

that for farms not using technical means, the costs don’t cover expenses related to tractors and operating 

machinery. 

 

 



 

Table 7. Total costs (€/ha) related to irrigation in different scenarios 

Crop type Currently Scenario #1 Scenario #0.1 Scenario #1.1 

CFW 609.08 10,443.79 693.66 5,786.96 

CFS 481.28 4,994.70   

SCFW 398.62 1,901.00 286.00  

SCFS 384.17 1,227.14  1,069.09 

SIW 638.62 459.34   

SIS 578.62 977.63  658 

 

In these cases higher outputs are due to an increased labor for periodic irrigations, a component that 

prevails on supply costs, as confirmed considering irrigation water cost deriving from total costs: a higher 

increase is, in fact, observable in correspondence of periodic irrigations (table 8). 

Volumetric fee, instead, significantly increases costs both before and after optimization, leading to values 

higher for a unit size than those deriving for a fixed fee per hectare.   

 

 

Table 8. Irrigation water cost (€/m
3
) deriving from total costs, for each crop type in different cases 

Crop type Currently Scenario #1 Scenario #0.1 Scenario #1.1 

CFW 0.03 0.45 0.06 0.28 

CFS 0.02 0.24   

SCFW 0.05 0.23 0.05  

SCFS 0.09 0.27  0.26 

SIW 1.41 1.01   

SIS 0.40 0.42  0.46 

 

 

Revenues analysis and water productivity 
 

Pricing would not affect total revenues (in €/he), since they depend only on the amount of cultivated area; 

however very slight differences are observable among both crop types and scenarios (table 9), due to 

different yields and water flows. 

 

Table 9. Revenues (€/he) for each crop type 

Crop type Currently  Scenario #0.1 Scenario #2.1 

CFW 4,106 4,105 4,133 

CFS 3,668   

SCFW 4,077 4,093  

SCFS 3,611  3,607 

SIW 3,539   

SIS 3,456  4,558 

 

Similarly, crop water productivity depends essentially on water management of the rice-paddy, and thus 

on seasonal water consumption. A different management is associated to an increase in the WP value: it is 

evident that higher values correspond to periodic irrigation. Finally, though independent from the price of 

the resource, slight deviations are observed if WP is calculated on areas optimizing margin (table 10).  



 

Table 10: Water Productivity (kg/m
3
) for each crop type in different scenarios 

Crop type Currently  Scenario #0.1 Scenario #1.1 

CFW 430 430 480 

CFS 400   

SCFW 570 570  

SCFS 640  640 

SIW 8610   

SIS 288  329 

 

Economic water productivity (WPec) shows the same trend as the previous, as they are perfectly 

correlated (figure 3).  

 
Figure 3. Relation between different WPs 

 

 

Conclusions 
 

In rice-paddy field the adoption of non-traditional managerial and agronomic techniques allows to 

achieve positive targets in terms of water saving and use efficiency, expressed by water productivity.  

From an economic point of view they do not modify substantially revenues of farms but affect their costs; 

in particular for dry cultivation, it could be necessary to increase workforce or labor per worker, which 

could lead to higher costs for manpower. The increase in water supply cost could also determine a better 

allocation of the resource.  
However, field analyses and observations have to be replied, confirming (or not) preliminary results 

introduced. The quantification of each element of water balance in rice-field can determine a more precise 

estimation of water productivity, that could be used as a benchmark for different managerial typologies.  

Moreover, for a complete evaluation of the system, it must be considered that the adoption of these 

strategies have to be also interpreted according to the consequences they may have on and within the 

system itself. It is in fact necessary to study in-depth all the environmental aspects of water saving. Soil-

seeding flooding may lead to a lower water demand at the beginning of the season, that would increase 

gradually and show a peak when it has to satisfy the water requirements of other crops, with the 

advantage to ensure, operatively, the provision of the resource in exceptional cases, such as breakdowns 

of channels.  

The possibility of the consortia suppliers in reducing the amount of water to farms, or increasing its cost 
(and then a decrease in demand), as well as a factor changing their managerial aspects and their farming 

systems could determine a less efficient allocation of the resource, affecting hydrological cycle on a local 

scale, interfering and changing the water returns to farms, surface water bodies and groundwater. In this 

sense changing irrigation method may result in a delay in the loading of the water table and it can occur a 

lowering in water table itself (in particular for dry cultivation).  

Similarly, a higher technical and infrastructural efficiency able to reduce distribution losses can have 

implications in recharging and supplying of water sources, eliminating the potential benefits of 

reallocation, even if in many cases a large part of the water flow available to farms comes from internal 



 

recirculation, as a mean to contrast the reduction of the water demand. Finally a dry cultivation could 

affect paranatural aquatic environments created.  

These important considerations must be properly taken into account in order to make a complete 

economic evaluation of water resource. In this sense it is then important to identify the best method for 

the estimation of environmental costs, since this step plays a key-role as a starting point towards the 

quantification of the full cost, that represents itself an crucial instrument in order to strength decisional 

support to policy makers.  

 

 

References  
[1] 

Tarimo, A.K.P.R., Mdoe, N.S. and Lutatina, J.M. (1998), “Irrigation water prices for farmer-managed 

irrigation systems in Tanzania: a case study of lower Moshi irrigation scheme”. Agr. Water Manage. 
38:33–44. 
[2] 

Iglesias, A., Estrela, T. and Gallart, F. (2005), “Impacts on hydric resources. A preliminary general 

assessment of the impacts in Spain due to the effects of climate change”. Ministerio de Medio Ambiente, 

Spain. 
[3] 

IPPC (2012), “Renewable Energy Sources and Climate Change Mitigation – Special Report of the 

Intergovernamental Panel on Climate Change”. Cambridge University Press, New York, USA. 
[4] 

Fischler, G., Tubiello, F.N., van Velthuizen, H. and Wiberg, D.A. (2007), “Climate change impacts on 

irrigation water requirements: Effects of mitigation, 1990–2080”. Technol. Forecast. Soc. 74:1083-1107. 
[5] United Nations Environment Program (UNEP) (2000), Global environmental outlook. Earthscan 

Publications. 
[6] 

ICWE. (1992) The Dublin Statement and Report of the Conference. International Conference on Water 

and the Environment: Development Issues for the 21st  century. 26–31 January. Dublin. 
[7] 

European Parliament and the Council of EU (2000). DIRECTIVE 2000/60/EC establishing a 

framework for Community action in the field of water policy. OJEC L 327, 22/12/2000. 
[8] 

WATECO (2003), Common Implementation Strategy for the Water Framework Directive 

(2000/60/CE) - Guidance Document n.1, Bruxelles. 
[9] Giannoccaro, G., Prosperi, M. and Zanni, G. (2007), “Analisi dell’efficienza tecnica ed ecologica dei 

metodi di tariffazione diretti ed indiretti dell’acqua irrigua”. Paper presentato al XLIV convegno SIDEA, 

Taormina.  
[10] 

Tsur Y., Roe, T., Doukkali, R. and Dinar, A. (2003), “Pricing Irrigation Water: Principles and cases 

from developing countries”. Resources for the Future, Washington DC. 
[11] 

Dono, G., Marongiu, S. and Severini, S. (2006), “Gli effetti della Riforma della PAC sull’uso delle 

risorse idriche di falda e di superficie. Un modello di analisi territoriale”. In: Acqua, agricoltura e 
ambiente nei nuovi scenari di politica comunitaria, Casini L., Gallerani V., Viaggi D. (a cura di), Franco 

Angeli Editori, Milano, Italy. ISBN 978-88-568-0488-1, pp. 85.  
[12] 

Bartolini, F., Bazzani, G.M., Gallerani, V., Raggi, M. and Viaggi, D. (2007), “The impact of water and 

agricultural policy scenarios on irrigated farming systems in Italy: An analysis based on farm multi-

attribute linear programming models”. Agr. Sys., 93:90-114. 
[13] 

Rogers, P., de Silva, R. and Bathia, R. (2002), “Water in an economic good: how to use prices to 

promote equity, efficiency and sustainability”. Water policy, Amsterdam, Elsevier, n.4 pp. 1-17. 
[14] 

Cadario, D. and Bischetti, G.B. (2006), “Caratteri e funzioni del reticolo idrografico della pianura 

lombarda”. In: Valutazione Ambientale. ISSN 1826-2201. – 10, luglio 2006, pp. 58-61. 
[15] European Environmental Bureau (EEB) (2001), Proposals to strengthen the Environmental Action 

programme. http://www.eeb.publication/6th%20EAP%20final.pdf 
[16] 

Kassam, A. and Smith, M. (2001), “FAO methodologies in crop water use and crop water 
productivity”. Expert meeting on water productivity, FAO, Rome 3–5 December 2001. 
[17] 

Molden, D. (1997), “Accounting for water use and productivity”. International Irrigation 

Management Institute - System Wide Initiative for Water Management (SWIM) paper 1. 
[18] 

Seckler, D., Amarasinghe, U., Molden, D., de Silva, R. and Barker, R. (1998), “World Water Demand 

and Supply, 1990 to 2025: Scenarios and Issues”. International Water Management Institute Research 

Report 19, Sri Lanka. 
[19]

 Dono G. (2003). “Costi della distribuzione idrica per l'irrigazione nell'Italia meridionale e problemi 

della formazione dei prezzi dell'acqua per l'agricoltura”. Rivista di Economia Agraria, n. 1. 



 

[20]
 Giraldo, L. (2010). “I costi operativi per la distribuzione dell’acqua a scopo irriguo. Un’analisi 

empirica con una forma funzionale flessibile”. DEAR, Università della Tuscia.  
[21]

 Dono G., and Giraldo, L. (2010). “Un’analisi dei costi per la distribuzione dell’acqua in agricoltura”. 

Rivista di Economia Agraria, vol. 64, n. 3-4. 
[22]

 Dono G., Giraldo, L. and Severini, S. (2011). “I costi della distribuzione irrigua: un tentativo di 

riconciliare i concetti di copertura dei costi”. Economia e Diritto Agroalimentare, Italia, 16 Marzo 2011.  

www.furpress.net/index.php/edaarticle/view/9373 
[23] Giannoccaro, G., Prosperi, M. and Zanni, G. (2008). “DEA Application to Evaluate the Technical and 

Ecological Efficiency of Water Pricing Policies”. In: L. Bartova, R. M’Barek, T. Ratinger (eds., 2008) 

Modelling agricultural and rural development policies. Proceedings of the 107th Seminar of the EAAE, 

Sevilla, Spain, 29 January – 1 February, 2008. European Communities. 
[24]

 Dono G., Marongiu, S., Severini, S., Sistu, G. and Strazzera, E. (2008). “Studio sulla gestione 

sostenibile delle risorse idriche: analisi dei modelli di consumo per usi irrigui e civili”. ENEA editore. 

Collana Desertificazione - Progetto RIADE. ISBN 88-8286-155-4, pp. 257. 
[25]

 Bazzani, G.M., Di Pasquale, S., Gallerani, V., Morganti, S., Raggi, M. and Viaggi, D. (2005). “The 

sustainability of irrigated agricultural systems under the Water Framework Directive: first results”. 

Environ. modell. softw. 20:165-175. 
[26]

 Bazzani, G.M. and Zucaro, R. (2008). “Scarsità idrica e Direttiva Acque. Politiche e metodologie di 

analisi: un caso di studio in Italia centrale”. In:  Acqua, agricoltura e ambiente nei nuovi scenari di 

politica comunitaria, Casini L., Gallerani V., Viaggi D. (a cura di), Franco Angeli Editori, Milano, Italy. 

ISBN 978-88-568-0488-1, pp. 67. 
[27]

 Bazzani, G.M. and Scardigno, A. (2008). “Un modello di simulazione territoriale per l’analisi 
economica dell’uso dell’acqua e della riforma della PAC: una proposta metodologica e prime applicazioni 

all’agricoltura pugliese”. Paper presentato al XLV convegno di studi SIDEA, Portici, Italy.  
[28]

 Howitt, R.E. (1995). “Positive Mathematical Programming”. Am. J. Agr. Eco., 77:329-342. 
[29] 

Paris, Q. and Howitt, R.E. (1998), “An Analysis of Ill-posed Production Problems Using Maximum 

Entropy”. American Journal of Agricultural Economics, 80(1): 124-138. 
[30]

 Arfini, F. and Paris, Q. (1995). “A positive mathematical programming model for regional analysis of 

agricultural policies”. EAAE Proc., 40th Seminar of the of the European Association of Agricultural 

Economists, Ancona, Italy, 1995, pp.17-35. 
[31]

 Blanco, M., Iglesias, E. and Sumpsi, J.M. (2004). “Environmental and socioeconomic effect of water 

pricing policies: key issues in the implementation of the Water framework Directive”. 13th Annual 

EAERE Conference, Budapest.  
[32]

 Cortignani, R. and Severini, S. (2008). “Introducing Deficit Irrigation Crop Techniques derived by 

Crop Growth into a Positive Mathematical Programming Model”. Comunicazione, XII Congresso EAAE, 

Ghent, 26‐29 Agosto 2008. 
[33]

 Cortignani, R. and Severini, S. (2009). “L’impatto delle riforme OCM zucchero ed ortofrutta sull’uso 

dell’irrigazione: un’analisi condotta mediante un modello di PMP senza prima fase”. Comunicazione, 

XLVI Convegno di Studi SIDEA Piacenza, 16-19 settembre 2009.  
[34] Castellani, L., Mancuso, T. and Massaglia, S. (2008), “Aspetti normativi ed economici in materia di 

gestione e tutela delle risorse idriche ad uso irriguo in Piemonte”. In: Acqua, agricoltura e ambiente nei 

nuovi scenari di politica comunitaria, Casini L., Gallerani V., Viaggi D. (a cura di), Franco Angeli 

Editori, Milano, Italy. ISBN 978-88-568-0488-1, pp. 31. 
[35] 

Igbadun, H., Mahoo, H., Tarimo, A. and Salim, B. (2006), “Perfomance of two temp.-based reference 
evapotranspiration models in the Mkoji subcatchment in Tanzania”. Agric. Eng. Int.: the GIGRE J. 

Manuscript LW 05 008. Vol. VIII. 
[36] 

Palanisami, K. and Suresh Kumar, D. (Eds.) (2006), “Challenges in Impact Assessment of Watershed 

Development: Methodological Issues and Experiences”, Associated Publishing Company Ltd., New 

Delhi. 
[37] 

Teixeira, A.H. de C.,. Bastiaanssen, W.G.M., Moura, M.S.B., Soares, J.M., Ahmad, M.D. and Bos, 

M.G. (2008), “Energy and water balance measurements for water productivity analysis in irrigated mango 

trees, Northeast Brazil”. Agr. forest meteorol.148:1524-1537. 
[38]

 Vazifedoust, M., van Dam, J.C., Feddes, R.A. and Feizi, M. (2008), “Increasing water productivity of 

irrigated crops under limited water supply at field scale”. Agr. Water Manage., 95:89-102. 
[39]

 Brooke, A., Kendrick, D., Meeraus, A. (1988), “GAMS: A User's Guide”. The Scientific Press, 

Redwood City, California, USA. 
[40] 

Rosenthal, R.E. (2007), GAMS: a user’s guide. GAMS development corporation, Washington, DC, 

USA. 


