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2.1 Introduction

The research area of trajectory databases has addressed the need for represent-
ing movements of objects (i.e., trajectories) in databases in order to perform
ad-hoc querying and analysis on them. During the last decade, there has been
a lot of research ranging from data models and query languages to implemen-
tation aspects, such as efficient indexing, query processing and optimization
techniques.

This chapter covers aspects related to data collection and handling so as to
feed trajectory databases with appropriate data. We will also focus on the step
trajectory reconstruction of the Geographic Privacy-aware KDD process (il-
lustrated in Figure 2.1) emerged from the GeoPKDD project which proposed
some solid theoretical foundations at an appropriate level of abstraction to deal
with traces and trajectories of moving objects aiming at serving real world ap-
plications. This process consists of a set of techniques and methodologies that
are applicable on mobility data and are organized in some well-defined and
individual steps that have a clear target: to extract user-consumable forms of
knowledge from large amounts of raw geographic data referenced in space and
in time. However, when mobility data is about individuals, data collection is
subject to privacy regulations and restrictions. To enable privacy-aware collec-
tion of position data, a complementary class of techniques are used, known as
location PETs (privacy-enhancing technologies).

This KDD process can be applied to heterogeneous sources of mobility data.
The cellphone icon that is illustrated in Figure 2.1 could represent various data
sets coming from various devices. In Section 2.2, we present such sources.

Before applying trajectory reconstruction techniques we may need to per-
form some basic trajectory preprocessing. This may include parameterized
trajectory compression (so as to discard unnecessary details and concurrently
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keep informative abstractions of the portions of the trajectories transmitted so
far), as well as techniques to handle missing/erroneous values. Moreover, to
deal with moving object applications that are restricted to some network, map-
matched trajectories may be needed. In other words, we may need the specific
trajectory points and portions to correspond to valid network paths. This may
include for example, performing pre-processing or post-processing tasks that
do not violate the validity of trajectories in terms of the real underlying net-
work. We describe this kind of tasks as trajectory data handling and we present
them in Section 2.3.

In Section 2.4, we present trajectory reconstruction techniques for trans-
forming sequences of raw sample points into meaningful trajectories and store
them into trajectory databases. The reconstructed trajectories can be either
semantic-free (raw trajectories) that just represent the movement of an object
or semantically enriched, containing information about the nature of the move-
ment.

Section 2.5 presents techniques for the privacy-preserving collection of tra-
jectory data.

2.2 Tracking Trajectory Data

In this section, we present some technologies that can be used for tracking
trajectories of moving objects. More specifically, these technologies provide
us access to position data that may represent an incomplete, partial or vague
representation of the real movement of moving objects but with the appropriate
handling techniques (Section 2.3) can lead to the reconstruction of trajectories
(Section 2.4).

GPS Data GPS is the fully-functional satellite navigation system that utilizes
more than two dozen satellites. It broadcasts precise timing signals by radio to
GPS receivers, allowing them to accurately determine their location (longitude,
latitude, and altitude) in any weather, day or night, anywhere on Earth. A GPS
receiver calculates its position by precisely timing the signals sent by GPS
satellites high above the Earth. Each satellite continually transmits messages
that include:

• the time the message was transmitted
• precise positioning information
• the general system health and rough orbits of all GPS satellites
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Figure 2.1 The big picture of moving object data management, warehousing
and mining concepts.

The receiver computes the distance to each satellite by using the messages it
receives to determine the transit time of each message. These distances along
with the satellites’ locations are used to compute the position of the receiver.
This position is then displayed, perhaps with a moving map display or latitude
and longitude; elevation information may be included. Many GPS enabled de-
vices show derived information such as direction and speed, calculated from
position changes. GPS enabled devices provide us with all the required infor-
mation for trajectory tracking. They give us access in accurate time stamped
locations for each tracked moving point.

GSM Data GSM is the most popular standard for mobile phones in the world,
nowadays used by over 1.5 billion people across more than 210 countries and
territories. The ubiquity of the GSM standard makes international roaming
very common between mobile phone operators, enabling subscribers to use
their phones in many parts of the world. GSM networks consist of a num-
bers of base stations each responsible for a particular spatial area (known as
cell’). Hence, for each GSM-enabled device we can collect information about
the base stations it was served at different timestamps, and as such, assume its
movement.

A GSM-enabled device can be tracked by collecting all the communication
signals transmitted (cell, signal strength) between this device and the network
infrastructure or by studying the log of the out-coming calls (UserID, data and
time of the call, duration of the call, the cell where the call began, the cell where
the call finished). However, in both levels the accuracy of trajectories that can



Trajectory Collection and Reconstruction 27

be collected is very low since the most detailed level of available information
is the network cell and not a spatial point.

Bluetooth Data The movement of a Bluetooth device within an area can be
tracked by considering the distances of the device from Bluetooth receivers
and using trilateration approaches. The distance of a Bluetooth device from a
specific receiver can be calculated using techniques that consider signal levels.

The disadvantage of this technique is that it can be mainly used for in-door
tracking of objects as Bluetooth receivers cover a limited area and they cannot
really be used for outdoor object tracking.

RFID Data The purpose of an RFID system is to enable data to be transmit-
ted by a portable device, called a tag, which is read by an RFID reader and
processed according to the needs of a particular application. A typical RFID
tag consists of a microchip attached to a radio antenna mounted on a substrate.
A typical chip can store as much as 2 kilobytes of data. A reader is needed
to retrieve the data stored on an RFID tag. A typical reader is a device that
has one or more antennas that emit radio waves and receive signals back from
the tag. The data transmitted by the tag may provide identification or location
information, or specifics about the product tagged, such as price, color, date of
purchase, etc. Same as in Bluetooth technology, RFID readers can locate tags
within a limited area so it is hard to apply this technology for outdoor tracking
of moving objects.

2.3 Handling Trajectory Data

Real-life trajectory data, collected using the technologies previously presented,
are not really readily used for analysis purposes. In this section, we elaborate
on various approaches for handling trajectory as a necessary step for identi-
fying clean (i.e. without noise), accurate (i.e. map-matched), and compressed
(i.e. compact) trajectories, from the original sequence of spatio-temporal posi-
tions (e.g., GPS records) of the moving objects.

2.3.1 Data Cleaning

Data sets collected by mobile sensors are often imprecise either unintention-
ally, due to limitations of positioning systems (e.g., inaccurate GPS measure-
ment and sampling errors, signal loss, battery running out) or intentionally so
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as to protect individuals’ privacy (e.g., people may expose an approximation
of their positions).

In case of unintentional (GPS) errors, trajectory cleaning (i.e. removing er-
rors) is an important step in the procedure of constructing meaningful raw
trajectories from the GPS feeds. Generally speaking, two types of GPS errors
can be identified: systematic errors, due to system’s limitations, and random
errors, due to external reasons. Systematic errors can be caused by horizon-
tal dilution of position (HDOP) due to the low number of available satellites,
while random errors are small errors up to ± 15 meters caused by the satellite
orbit, atmospheric and ionospheric effects, and receiver issues. We should no-
tice here that errors are related to the spatial positions and not to the temporal
aspect of mobility as it is considered highly precise.

In order to identify systematic errors, researchers may resort to visual in-
spection in case of small data sets. For that reason, we could use a filtering
method that filters noisy positions by taking advantage of the maximum al-
lowed speed of a moving object. This threshold/parameter is used in order to
determine whether a reported position from the GPS stream must be consid-
ered as noise and consequently discarded, or kept as a normal record.

On the other hand, random errors are small distortions from the true val-
ues. Their influence is reduced by smoothing methods. In the literature, dif-
ferent approaches can be found based on Gaussian kernels, where a smoothed
spatial position is the weighted local regression based on past and future posi-
tions within a sliding time window considering the weight as a Gaussian kernel
function, and Kalman filter, which uses measurements observed over time (the
positions coming in the GPS receiver), and predicts positions that tend to be
closer to the true values of the measurements.

2.3.2 Map Matching

The previous trajectory cleaning methods are designed for objects moving
without any constraint in their movement. However, real-world applications
usually consider objects that are restricted to move within a given spatial net-
work that is represented as a graph (e.g., road/railway network) (you can find
more information about this topic on Chapter 3). Other applications may con-
sider spatio-temporal constraints (e.g., a pedestrian cannot walk at a speed
above a certain limit, usually bats don’t fly during daytime).

For network-constrained trajectories, the map-matching approach refers to
the mapping of a trajectory to the edges and nodes of the network. More pre-
cisely, the general idea is the replacement of each position of the original tra-
jectory by the point on the network that is the most likely position of the mov-
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ing object. From a computational point of view, map-matching methods can
be categorized to online (processing streams of new positions in real time)
or offline (when all positions are available), while both groups can be further
classified as geometric, topological, or hybrid methods.

Geometric methods take into consideration the underlying road network and
various distance measures to determine the actual traveled roads. These dis-
tance measurements can be point-to-point (e.g., Euclidian distance), point-to-
curve (e.g., perpendicular distance), or curve-to-curve (e.g., Fréchet distance).
For instance, Dijkstra’s shortest path algorithm can be used to determine the
distance between a trajectory and a sequence of arcs on a map. The route with
the smallest distance from the initial trajectory is taken as the map-matched
trajectory. For instance, Figure 2.2 illustrates such a methodology: for every
point Pi, given that point Pi−1 has already been matched to an edge, the adja-
cent edges to this edge are the candidate edges to be matched to Pi and they are
evaluated, as illustrated in Figure 2.2. In this example, Pi−1 is matched to edge
c3, hence c1, c2 and c3, are the candidate edges for point Pi. Two measures
are used for choosing among the candidate edges that are based on similarity
and orientation criteria. The higher the sum s of these measures is, the better
the match to this edge is. If the projection of the current point on the candi-
date edges does not lie in-between the end points of any of these edges, the
algorithm does not proceed to the next point. Instead, the nearest edge of the
candidates is set as part of the trajectory and then the next set of candidate
edges is evaluated. On the contrary to geometric approaches, the topological

Figure 2.2 Applying map matching.

approaches account for the connectivity and contiguity of the road network
without assuming any knowledge of the expected traveling route and the speed
or heading information supplied by the GPS.

More recent map-matching methods deal with the problematic case where
GPS data are arriving with low sampling rate (e.g., one point every two min-
utes) and high noise. These new methods employ both distance and topology
and aim to align an entire trajectory with the road network. In some cases,
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not only distance and topology are used but also Hidden Markov Model ap-
proaches to find the most likely road route corresponding to a sequence of
positions.

The various proposals usually include several post-processing techniques
to calibrate and correct the initial matching results. Obviously this worsens
the cost/efficiency of the algorithm. This is an important issue that should be
addressed by future research.

2.3.3 Data Compression

Trajectory data in applications grow progressively and intensively as the track-
ing time goes by. Such huge amounts of data raise storage, transmission, com-
putation, and display challenges. Therefore, trajectory data compression is an
essential task of trajectory reconstruction. The bibliography in this area usually
assumes that the objectives of trajectory compression are: (1) to reduce the size
of the data set, (2) the reduced data set should allow computations of accept-
able/low complexity, and (3) a trajectory from the reduced data set should not
deviate from the original one by more than a given threshold.

From a geometric perspective, compression techniques exploit on line sim-
plification algorithms that remove positions from a trajectory without warp-
ing the trend of the trajectory or distorting the database. In general, trajec-
tory compression algorithms can be classified into four categories: top-down,
bottom-up, sliding window, and opening window. The top-down algorithm re-
cursively splits the sequence of positions and only keeps the key (represen-
tative) positions in each sub-sequence, i.e. the ones that lie far from the line
that would result if these points were removed. A classical top-down method
is the Douglas-Peucker (DP) algorithm, with many subsequent extensions. The
bottom-up algorithm starts from the finest possible representation, and merges
the successive points until some halting conditions are met. Sliding window
methods compress data in a fixed window size; whilst open window methods
use a dynamic and flexible data segment size.

For instance, the Top-Down Time Ratio (TD-TR) and Open Window Time
Ratio (OPW-TR) algorithms have been proposed for the compression of spatio-
temporal data. The TD-TR approach uses the DP algorithm and, moreover,
takes the time into account. In particular, it replaces the Euclidean distance
used in DP by a time-aware one, called Synchronous Euclidean Distance (SED)
as illustrated in Figure 2.3. In this example, let Pb be the currently examined
point against line P1Pn. The DP approach uses the perpendicular distance of Pb

to P1Pn, while the TD-TR uses the distance of Pb to (P′)b (i.e. the SED). The
coordinates of point P′b are calculated using linear interpolation. The OPW-TR
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Figure 2.3 Using SED.

algorithm works as follows. Initially, it defines a line segment between the first
and the third data point. If the SED from each internal point to the segment
is not greater than a given threshold, the algorithm moves the end point of the
segment one position up in the sequence. When the threshold is exceeded, the
data point that causes the threshold excess or its precedent is defined as the end
position of the current segment and the start position of a new one. As long as
new positions arrive, the method continues as described.

Two other interesting algorithms in the bibliography are the Thresholds and
STTrace, appropriate for online trajectory data compression. The algorithms
use the coordinates, speed, and orientation of the current position in order to
calculate a safe area where the next position might be located. If the next in-
coming position lies in the calculated safe area, it can be ignored. There are
two options for the definition of the safe area. It is either calculated by using
the last position, whether it has been previously ignored or not, or by using
the last chosen position. In order to achieve better results, a combination of
the two algorithms is also proposed. Both areas are calculated, but only their
intersection is defined as the safe area.

These trajectory compression approaches are primarily based on the exten-
sion of geometric methods like the DP algorithm. However, they are not suit-
able for network constrained trajectories. Therefore, recent works proposed
another kind of trajectory compression models that make use of the underlying
road network. By map-matching, trajectories can be reconstructed (or repre-
sented) by only the matched road segments, without the need for keeping the
original movement points.

2.4 Reconstructing Trajectories

Chapter 1 introduced the differentiation between raw and semantically en-
riched trajectories. Here we present reconstruction techniques for both types.
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Trajectory reconstruction refers to the task of transforming raw spatio-temporal
positions into meaningful trajectories. An interesting note here is that differ-
ent applications may need different trajectories. For instance, there may be a
considerable difference on the semantic definition of a trajectory given by a
traffic analyst and, on the other hand, a logistics manager. Let us consider a
fleet of trucks moving in a city and delivering goods in various locations. The
logistic manager may consider, for each truck, a number of different trajecto-
ries (e.g., between the different delivery points) while the traffic analyst may
consider a single trajectory for the whole day. Thus, in order to satisfy these
two, quite different in semantics, requirements we would have to retrieve raw
spatio-temporal position data from a common repository and, then, execute
two different reconstruction tasks so as to produce trajectories that are semanti-
cally compliant to each domain. For instance, Figure 2.4a illustrates a raw data
set of spatio-temporal positions. Different needs may result in different set of
reconstructed trajectories Figure 2.4b-d, respectively). Recalling the previous
example of the truck data set, let us consider Figure 2.4b and c that illustrate
the reconstructed trajectories for the logistic manager and for the traffic man-
ager respectively. Another example of trajectory reconstruction is presented in
Figure 2.4d which considers a compressed trajectory of the movement. The
exact number of reconstructed trajectories depends on the different semantic
definitions that can be given to a trajectory. In this section, we present recon-
struction techniques that can be used to produce either raw or semantically
enriched trajectories.

Reconstructing Raw Trajectories Collected raw data represent spatio-tem-
poral locations (Figure 2.5a). Apart from storing these raw data, we are also
interested in reconstructing trajectories (Figure 2.5b). The so-called trajectory
reconstruction task is not a straightforward procedure. Having in mind that raw
points arrive in bulk sets, we need a filter that decides if the new series of data
is to be appended to an existing trajectory or not.

The process of algorithm reconstruction needs a method for determining
different trajectories, which should be applied on raw positions. Taking into
consideration that the notion of trajectory cannot be the same in every appli-
cation due to the fact that different requirements and semantics arise, some
generic trajectory reconstruction parameters can be:

• Temporal gap between trajectories: the maximum allowed time interval be-
tween two consecutive spatio-temporal positions of the same trajectory for
a single moving object (case a in Figure 2.5a).

• Spatial gap between trajectories: the maximum allowed distance in 2D plane
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(a) (b)

(c) (d)

Figure 2.4 Three different trajectory reconstruction approaches (b, c, d) for a
raw data set (a).

between two consecutive spatio-temporal positions of the same trajectory
(case b in Figure 2.5a).

• Maximum speed: the maximum allowed speed of a moving object, used to
determine noisy spatio-temporal positions (case c in Figure 2.5a).

• Maximum noise duration: the maximum duration of a noisy part of a trajec-
tory so as to consider creating a new trajectory containing this part (case d
in Figure 2.5a).

• Tolerance distance: the maximum distance between two consecutive spatio-
temporal positions of the same object in order for the object to be considered
as stationary (case e in Figure 2.5a).
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(a) (b)

Figure 2.5 (a) raw locations, (b) reconstructed raw trajectories.

Reconstructing Semantic Trajectories Raw trajectories contain only spatio-
temporal positions 〈x, y, t〉, which are insufficient for building meaningful tra-
jectory applications. Therefore, researchers have proposed to reconstruct tra-
jectories from the low-level collected data (e.g., GPS records, movement tracks)
to high-level data abstractions, thus building semantic trajectories. The idea of
semantic trajectories is to encode meaningful geo-locations/geo-objects (e.g.,
points of interest like a shopping mall, roads) into the raw spatio-temporal
tracks; additional semantic annotations (e.g., trajectory behaviors like travel-
ing in Paris, walking on Avenue des Champs-Elyses, taking Metro 3, shopping
in a supermarket) are attached to the semantic trajectories.

Figure 2.6 briefly presents the main procedure of reconstructing such se-
mantic trajectories from the raw GPS alike mobility records. From the initial
GPS records, we can compute the trajectory episodes (e.g., stops, moves that
are largely used in the literature to understand the structure of trajectories, pre-
sented in Chapter 1); afterward, a couple of dedicated annotation algorithms
are provided for enriching trajectories using additional geo-objects and seman-
tic tags. There are four main technical components for constructing such se-
mantic trajectories, as follows:

• Building trajectory episodes: The aim is to build trajectory episodes to fur-
ther understand the inner-structure of each individual raw trajectory. Trajec-
tory episode is a sub-sequence of the raw trajectory. Trajectory data points
inside one episode is more or less homogenous (e.g., staying in the same
place, having the same travel speed), whilst data points in two neighboring
episodes are unrelated. There are different kinds of episodes, such as Begin,
End, Stop, and Move. In addition to these four types of episodes, additional
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Figure 2.6 Annotation for semantic trajectories.

episode can be further designed according to the application scenarios, e.g.,
specific episode for representing congestions in traffic. The core issue here
is to design efficient and robust trajectory segmentation algorithms to find
these meaningful episodes. A couple of trajectory segmentation algorithms
are proposed for building trajectory episodes, such as velocity, density, ori-
entation, and even time-series based segmentation methods.

• Annotating trajectory with regions: This component enables annotation of
trajectories with meaningful geographic or application domain sources of
semantic regions. It does so by computing topological correlations between
trajectories and third party data sources containing geo-objects of regions
(called regions of interest or ROI). We need to design a spatial join algo-
rithm, which can work for both regular regions (e.g., 100m × 100m grid-
based land use data) and irregular regions (e.g., regions with free-style shapes
like EPFL Rolex Learning Center).

• Annotating trajectory with lines: This component annotates trajectories with
lines of interest (LOI) like road networks and considers variations present
in heterogeneous trajectories (e.g., vehicles run on road networks, while hu-
man trajectories use a combination of transport networks and walk-ways
etc.). Given data sources of different forms of road networks, the purpose is
to identify correct road segments as well as infer the transportation modes
such as “walking”, “cycling”, and “public transportation” like metro and
bus. Thus, the algorithms in this component include two major parts: the
first part is designing/reusing a global map matching algorithm to identify
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the correct road segments for the move episodes of a trajectory, and the sec-
ond one is inferring the transportation modes that the moving objects/people
used during their moves.

• Annotating trajectory with points: This component annotates the Stop epi-
sodes in trajectory using information about suitable points of interest (POIs).
Examples of POI are “restaurants”, “bars”, “shops”, “movie theaters”, etc.
For scarcely populated landscapes, it is relatively trivial to identify the ob-
jective of a stop (e.g., petrol pump on a high-way, back home in a very sparse
residential area). However, densely populated urban areas bring many dif-
ferent types of candidate POIs for a trajectory stop. The problem of inferring
stop behaviors using POIs becomes challenging. Further, low GPS sampling
rate due to battery outage and GPS signal losses makes the problem more
intricate. Recently, a HMM (Hidden Markov Model) based inference algo-
rithm has been designed to extract the underlying stop behaviors in the tra-
jectory. In this algorithm, the location of individual trajectory stop is mod-
eled as a model observation, whilst the POI category is considered as the
hidden state that needs to be extracted.

2.5 Protecting the Privacy of Individuals’ Positions

This section overviews techniques which aim at protecting users’ privacy dur-
ing the data collection process. The concern for privacy stems from the fact that
whenever postion refers to individuals, position is qualified as personal data,
while collecting personal data is restricted by privacy norms and law in sev-
eral countries worldwide. In particular semantic trajectories magnify the risk
for privacy because behavior information on individuals is explicitly extracted
and represented in a machine-readable form, therefore can be used within in-
formation processing applications and easily unfolded to third parties. Though
fundamental, privacy regulations are not capable of preventing malicious and
curious parties from improperly accessing and use collected data. This instead
is the goal of location PETs (Privacy-Enhancing Technologies). In general, lo-
cation PETs can be applied at two different stages:

1 Before position data are collected. In this case the goal of location PETs
is to prevent mobility data collectors from obtaining the exact location and
trace of individuals, everytime and everywhere. Because these techniques
are applied on the fly, we refer to this form of protection as on-line location
privacy
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2 After position data are collected and trajectories reconstructed. The goal of
location PETs is to shape trajectory data in a way that the data set can be
published or released to some other party without incurring privacy viola-
tions. We refer to this as off-line location privacy.

Off-line and on-line location privacy present different requirements which call
for different solutions. In particular, the solutions for the on-line protection of
location privacy have to deal with incomplete knowledge of the individuals’
trajectories (usually only the current and past positions are known); moreover
techniques must be efficient so as not to compromise the effectiveness of data
collection. In what follows, we survey major paradigms supporting on-line
location privacy while techniques for off-line location privacy will be presented
later on in Chapter 9.

2.5.1 Online Location Privacy

Research on position privacy took off early last decade with the emergence of
mobile applications enabling the tracking of moving objects, e.g., the vehicles
monitored by a fleet management system and location-based services (LBS),
e.g., search of points of interests nearby. These applications typically rely on
a client-server architecture: the position is collected by mobile devices (the
clients) and conveyed to a server handled by a service provider. In this sce-
nario, service providers are in the position of collecting large amounts of posi-
tion data, therefore if they are irrespective of users rights and requirements or,
simply, the collected data are stolen, users’ privacy is at stake. Commonly loca-
tion PETs seek to limit the transmission of either accurate or explicit location
information to service providers. These techniques can be further classified
based on the information to be protected, i.e. the privacy goals. In particular,
we distinguish three main goals: identity privacy, location privacy and seman-
tic location privacy. In what follows we survey representative location PETs
addressing these goals.

Identity Privacy Identity privacy techniques are conceived to forestall the re-
identification of seemingly anonymous users, based on position information.
For example, consider the case in which an LBS is offered to the members
of a community potentially subject to discrimination, e.g., the gay commu-
nity, and assume users to interact with the system through pseudo-identifiers.
Unfortunately simply stripping off users’ identifiers is not sufficient to ensure
anonymity, because the service provider can draw identities from trajectory in-
formation, e.g., if a user requests the service from a certain place early in the
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morning, it is likely that such a place is his or her home and thus the user can
be easily re-identified through a white pages service. While we refer the reader
to the literature for a survey of identity privacy techniques we limit ourselves
to consider one of the most popular paradigms, i.e. location k-anonymity.

Figure 2.7 A cloaked region for 10-anonymity.

Given a population of users, location k-anonymity postulates the following
requirement, that the user’s position disclosed to the service provider must be
indistinguishable from the position of at least k− 1 other users. In practice, the
exact user’s position must be replaced by a coarser position, normally called
cloaked region, large enough to contain the position of k-1 other users located
nearby at the time the on-line service is requested. Accordingly, the service
provider cannot identify the requester of the service based exclusively on the
position information. This situation is exemplified in Figure 2.7. For k=10, the
position of the single individual is replaced by a larger region (i.e. a cloaked
region) containing 10 persons. If the on-line service is requested from this re-
gion, the maximum probability of identifying the requester is 1/10. Another
prominent feature of this privacy mechanism is that it typically requires a ded-
icated trusted middleware, the location anonymizer, in between the clients and
the service provider. The role of the location anonymizer is to collect the po-
sition of all the clients, intercept the individual’s requests, replace the user’s
identifier with a pseudo-identifier and finally replace the true position with the
dynamically generated cloaked region.

Figure 2.8 The Casper architecture.
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One representative solution of this class is the Casper system (Figure 2.8).
Casper consists of the location anonymizer and the privacy-aware query pro-
cessor a software component which runs on the server and which resolves
user’s requests with respect to a position which is not a point as usual, but a
region and which returns a set of candidate answers.

A common criticism to location k-anonymity is that it is difficult to gauge
which size of k is minimally necessary or sufficient. The higher the value of k,
the higher the level of protection but also the loss of position accuracy, i.e. the
cloaked region is likely larger. Moreover, the position accuracy varies in time
and space based on the distribution of people in space, i.e. if individuals are
sparse then the cloaked regions are larger.

Location Privacy Unlike identity privacy, location privacy aims at protecting
the position information. The protection strategy is to transmit a position which
is somewhat different in the content or in the form from the actual position.
In particular, the disclosed position can be fake, cloaked or transmitted using
some cryptographic protocol.

• A fake position is a position deliberately represented with a wrong value.
Privacy is achieved from the fact that the reported position is false. The accu-
racy and the amount of privacy mainly depend on how far the reported loca-
tion is from the exact location. For example, the client requesting a service,
e.g., “where is the closest restaurant” can transmit to the service provider a
fake position in proximity of the actual position and then properly filter out
candidate answers.

• An obfuscated position (another term for cloaked region) is a coarse region
including the exact user’s location. Therefore the service provider does know
that the user is located in the cloaked region, but has no clue where exactly
the user is located. A popular obfuscation method, which is often used in
commercial applications, replaces the actual position with a predefined re-
gion chosen in a taxonomy of locations at different granularities, e.g., street,
zip code area, city. Unfortunately predefined locations can be too broad to
ensure an appropriate quality of service, e.g., a zip code region can cover
an area of few squared kilometers, or conversely too small to provide pri-
vacy guarantees, e.g., a short street. Another simple method obfuscates the
position with a circle of user-defined radius and random center containing
the actual position. In other solutions, the size of the obfuscated region can
be the result of a trade-off between privacy and position accuracy. Moreover
the transmission of the position can be also delayed a while to cloak the
temporal dimension.
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• Cryptographic protocols define techniques for the secure collaboration of
different parties. An example of cryptographic protocol used for privacy pro-
tection in LBS is PIR (Private Information Retrieval). This technique allows
users to issue a query without disclosing to the LBS provider the informa-
tion which is requested as well as the information being returned. In this
sense this technique protects both the identity and the location. The method
ensures the maximum privacy. However, it incurs high computational costs
and can be only applied to certain categories of queries, e.g., the retrieval of
stationary objects (i.e. non-mobile objects).

One specific problem that may rise when the position is obfuscated by a coarse
region is that consecutive positions in the user’s trajectory are correlated, i.e.
the presence in one region constrains the position in the subsequent regions.
This information can be exploited to prune the obfuscated regions and more
precisely delimitate the user’s position. To prevent this inference when the
maximum speed of the user is known (e.g., the user can be a pedestrian, a
car driver, a cyclist and so on) and the movement is frequently sampled, i.e.
the position is continuosly reported, an approach is to modify the position in
space and time before it is released. This form of privacy leak is also called
velocity-based linkage attack.

Semantic Location Privacy Semantic location privacy is a form of location
privacy which aims at preventing data collectors from identifying the semantic
locations in which users stay, e.g., hospitals, religious buildings and so on.
Forestalling this type of inference is important for the construction of privacy-
aware semantic trajectories.

The motivation behind semantic location privacy is that the sensitivity of
positions may vary depending on the nature of places, e.g., the position of a
user staying in an oncological clinic is likely more sensitive than the position
of a user walking along a street. If all the positions are treated as they were
sensitive, the protection would be excessive. More effective is to obfuscate only
those positions which are perceived as sensitive, disclosed with no change. In
this way the loss of position accuracy is limited. This form of obfuscation is
called semantic location cloaking. A sound semantic cloaking strategy should
guarantee:

• Semantic diversity. The user’s position cannot be blurred exclusively when
the user is inside a sensitive place, but also when he or she is outside. That
way, the place in which the user is located remains uncertain. An obfuscated
region thus must include places of diverse types.
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• Independence of the position cloaking method from the user’s position. This
condition prevents the discovery of the correlation between the cloaked re-
gion and the true position, which could be exploited to infer where the user
is located.

These guidelines have been embodied in the privacy-preserving framework
called Probe (Privacy-aware Obfuscation Environment).

(a) (b)

Figure 2.9 The Probe system: (a) the workflow; (b) obfuscated map: The
blue polygons represent cloaked regions, the red rectangles sensitive places;
the grey background the distribution of population in space.

Figure 2.9 illustrates the workflow of the privacy enforcement process in
the Probe system. Users first specify in a privacy profile which categories of
points of interest are sensitive (selecting for example from a pre-defined list,
e.g., hospitals, religious buildings and so on) along with the degree of privacy
desired for each of those categories. For example a privacy degree of 0.1 as-
signed to hospitals means that the (posterior) probability of locating the user
inside a hospital must be less than 0.1. Next, coarse regions are generated satis-
fying the privacy preferences, independently from the user’s position, in order
to prevent possible inferences on their reciprocal positions. A sample set of
obfuscated regions is shown in Figure 2.9b. Finally, at runtime if the user’s po-
sition falls inside one of the coarse regions, that region is delivered instead of
the exact position. This solution is grounded on a conceptually founded privacy
metric. Moreover an additional metric is defined, the utility metric, providing a
measure of the spatial accuracy of the cloaked regions. Unlike more traditional
obfuscation techniques, the utility measure can be computed prior to any ser-
vice request. In this way users can tune and balance the amount of privacy with
the quality of service.
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2.6 Conclusions

In this chapter, we presented techniques for collecting mobility data and han-
dling them appropriately (applying data cleansing, data compression and map
matching) so as to produce noise-free and meaningful trajectories (trajectory
reconstruction). Finally, privacy issues in mobility data collection and handling
were discussed.

We outline next a few research directions that origin from the discussion
provided in this chapter.

With respect to trajectory reconstruction, future work may include the ex-
ploration of intelligent ways to automatically extract proper values of trajectory
reconstruction parameters according to a number of characteristics of data sets
as well as the extension of this technique so as to be able to identify different
movement types (pedestrian, bicycle, motorbike, car, truck etc) and hence to
apply customized trajectory reconstruction.

With respect to privacy issues, major research directions include: privacy
usability, i.e. how to provide personalizable, conceptually founded and simple
to use privacy mechanisms so to enhance user experience; and context-aware
location privacy, i.e. tayloring privacy protection based on the context in which
individuals are located. While semantic location privacy is a first attempt to in-
troduce the contextual dimension in privacy, this notion can be extended along
several directions, for example to account for the temporal and social dimen-
sion of privacy.

2.7 Bibliographic Notes

In this section, we distinguish and annotate some works from the literature.
With regard to the data handling approaches, (Yan et al., 2010) proposed

a Gaussian kernel-based local regression model to smooth out GPS feeds.
(Brakatsoulas et al., 2005) proposed the methodology for map matching that
is illustrated in Figure 2.2. (Quddus et al., 2007) proposed a technique for re-
placing each position of the original trajectory by the point on the network that
is the most likely position of the moving object. (Greenfeld, 2002) proposed
a method based on topological analysis using the observed position of the in-
dividual without assuming any knowledge of the expected traveling route and
the speed or heading information supplied by the GPS. Furthermore, (Newson
and Krumm, 2009) used Hidden Markov Model approaches to find the most
likely road route corresponding to a sequence of positions.

(Meratnia and de By, 2004) proposed the Top-Down Time Ratio (TD-TR)
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and Open Window Time Ratio (OPW-TR) algorithms for the compression of
spatio-temporal data. (Potamias et al., 2006) proposed the two algorithms,
called Thresholds and STTrace, respectively, for online trajectory data com-
pression. (Kellaris et al., 2009) present a different approach by replacing cer-
tain episodes of a trajectory by selected shortest paths between the beginning
and ending position of these episodes. As for the trajectory reconstruction
topic, (Marketos et al., 2008) presented a method for determining different
trajectories as part of a trajectory reconstruction manager. On the other hand,
(Yan et al., 2011) presented a technique for reconstructing semantic trajectories
from the raw GPS mobility records.

With regard to privacy issues, (Gruteser and Grunwald, 2003) introduced the
concept of location k-anonymity in the context of LBS; (Jensen et al., 2009)
introduced the dichotomy identity privacy vs. location privacy; Casper (Chow
et al., 2009) is a major privacy preserving framework supporting location-k
anonymity; the velocity-based attack is described in more detail in (Ghinita
et al., 2009); (Damiani et al., 2011, 2010) introduces the semantic location
cloaking paradigm.


