
Three years of teaching using collaborative tools: patterns and lessons
learned

Andrea Trentini
Department of Computer Science, Università di Milano, via Comelico 39, Milano, ITALY

andrea.trentini@unimi.it

Keywords: Programming Learning, Collaborative Editing, Wiki, Flip Teaching

Abstract: The author has taught computer science (Programming 101 and Operating Systems 101) for about fifteen years.
He introduced the use of a student-collaborated wiki website for his courses about ten years ago. Then, three
years ago, he also began extensively using a collaborative editor (Gobby) in classroom, to let students actively
participate during lessons. This paper describes the author’s course “workflow”, summarizes tools (wiki and
collaborative editor) functionalities, collects some context pattern and tries to draw a few conclusions (lessons
learned) about the course methodology.

1 INTRODUCTION

The author of this paper is currently teaching Com-
puter Programming 101 at an italian University. He
has taught alternatively Computer Programming and
Operating Systems for more than fifteen years. He is
also the founder of a Laboratory on Free Software.

The Programming 101 course is organized using a
fairly standard structure: 1) traditional “frontal” les-
son time, with blackboard, slides and projector and 2)
traditional (before introducing the system described
here) lab time, with a PC for every student, a pro-
gramming environment with online documentation
and... blackboard, slides, and projector again. We use
GNU/Linux as our main operating system so that our
students, mainly coming from previous (if any) expe-
riences with Windows or Mac, are immersed in a dif-
ferent and unfamiliar environment, in the (often vain,
alas) hope to wake them and spark some curiosity
about the internals of an operating system and about
programming besides windows, mouses and the dam-
ages of autocompletion. We adopted Java for the Pro-
gramming 101 course even if there has always been
some debate over using an Object Oriented language
as the first language [(Clark et al., 1998), (Hadjer-
rouit, 1998), (Hosch, 1996) and (Pears et al., 2007)],
we are trying to introduce advanced language con-
cepts as soon as possible. Our course is a bit crowded
(just less than 200 students) so we usually split labs
into three turns. Classrooms are standard: about 50
PCs, GNU/Linux, (almost full) network access, over-
head projectors and a PA audio system. Since the be-

ginning of his work in teaching, the author (inspired
by the F/OSS (Free/OpenSourceSoftware) communi-
ties where collaboration is the main “tool” to achieve
a goal) started using collaborative tools to let students
participate in the learning process. The first tool was
a wiki (description in 2) website. Then, about three
years ago (academic years: 10-11, 11-12, 12-13), the
author introduced and began extensively using a col-
laborative editor (Gobby, more in 2) in classroom,
during lessons.

2 TOOLS

A wiki(-website)1 is a website that can be modi-
fied by its readers/users. Wikipedia is the most fa-
mous one of course, but there are probably millions
of almost unknown wikis scattered through the Inter-
net. A wiki is a convenient way of sharing knowl-
edge in a community: any member of the community
can add/modify/delete/upload/etc. the set of available
pages, thus augmenting, refining, ameliorating the
knowledge base of the community itself. A wiki web-
site can be set up in a matter of minutes, there are ver-
sions written in almost every language ever invented
on earth2. Editing is done using a very simple and
easy to learn tagged language, sometimes resembling
HTML. Software policies allow the wiki maintainer
to tune edit permissions, i.e. giving read/write/etc.

1http://en.wikipedia.org/wiki/Wiki
2http://en.wikipedia.org/wiki/List of wiki software

Figure 1: The Gobby editor.

rights to users. In the author’s case, his course wiki
is configured to let any student contribute upon reg-
istration. For the sake of completeness the author’s
choice for wiki software goes to DokuWiki3.

The Gobby4 editor (see Figure 1) is a “collabo-
rative” editor. The word “collaborative” means that
this editor can be simultaneously used by a group of
people, potentially located far away from one another,
to edit files together, everyone seeing and interacting
on each other’s work. For a group to work togehter
someone must install a server that must be reachable
by everybody through the Internet. Then every mem-
ber of the group must connect to that server and, if the
connection does not fail, a new user (a self-assigned
unique nickname is required) appears in the “user list”
of every Gobby client connected to that server. Users
are assigned a unique colour because every edit action
is colour marked. Selection actions of other users are
shown, so that any user can have a look at “what oth-
ers are looking at or doing”. When switching to a
particular file, on the righthandside of the Gobby user
interface there is a list of the users currently editing
that file, the file-users association is many-to-many.
The main editing area is in the centre while on the
left there is a list of available servers and open doc-
uments. On the bottom of the window a chat area
(not shown in Figure 1) can be activated, it is mostly
used during long distance session to coordinate edit-
ing (“out of band” communication). Any user can lo-
cally save any file at any moment, this is a perfect
fit for a collaborative programming environment since
anybody can save and compile on its own to verify er-
rors or the correct execution of the source code of the
program under examination. There is also a recently
introduced undo function. Gobby supports language
syntax colour coding. The current version does not
support any kind of formal coordination, i.e. different
roles in a group of users, for example to manage some
kind of “ask permission to edit”, “edit approval”, etc.
In classroom, the author’s workflow goes like this: 1)

3https://www.dokuwiki.org
4http://gobby.0x539.de

launch the server; 2) tell everybody the url to con-
nect to and wait for them to complete; 3) start edit-
ing a source file; 4) speak while showing various pro-
gramming examples; 5) let the students add/modify
the code guiding them by voice (see 3).
Alternatives: the previous (pre 0.5) versions of
Gobby were far form perfect so at one point we
had some brief experience with “google docs/google
drive” which is a cloud application server enabling
users to create and share various types of documents,
e.g. formatted text documents, spreadsheets, pre-
sentations, etc. The overall functionality is almost
the same (usernames, colours, multiple simultaneous
editing, etc.) but the main disadvantages are that: 1)
it is oriented towards formatted documents5; 2) ev-
ery piece of information is managed by Google while
the infinoted server is installed locally. Also, some
colleagues use git6 as a collaborative platform, but in
that case the collaboration is not interactive.

3 PATTERNS

First, a brief note about our course wiki usage dur-
ing these ten years, then the rest of this section will
delve into some analysis about collaborative editing
patterns. Alas, the wiki is in fact almost only used
as a conventional website. I.e. in terms of contribu-
tions there are very few students that “dare” to edit
what the teacher puts online. And this trend is wors-
ening: while a few years ago there were at least a
couple of students for each course who edited and
contributed, this year the number of editors is still
zero (they haven’t even registered), and we are at 75%
course completion. There are too many factors in-
volved to draw some conclusion about the cause(s)
of this decrement, one of them could of course be
the diminished ability of the teacher to spread enthu-
siasm among the students... some quantitative study
should be undertaken before worrying. On the other
hand, the usage of Gobby in the classroom has got
a foothold among the students, there are always at
least five of them (on an average attendance of 257)
actively interacting with the author. This wide ap-
preciation has led the author to a fair grade of usage

5They can be exported to a text only file (loosing com-
ments and any metatext) and there is no language syntax
color coding

6http://git-scm.com/ a distributed version control system
created by Linus Torvalds

7We do not oblige students to attend lessons and it is
common to all courses to observe a natural decay in atten-
dance: from 100% for the first couple of lessons to the av-
erage 50% for the rest of the course

standardization (“routine”) and to the identification of
a few patterns described in the following sections.
=> Pattern: “think ahead”
They in fact interact so much that the author must
tell them to wait before writing some final snippet of
code because he wants to show them every step, even
wrong ones. They are sometimes thinking ahead of
the teacher, at least in terms of the final solution to a
problem, but since this is a programming course they
must be exposed also to common mistakes.
=> Pattern: “leave traces for future reference”
To keep every snippet of code, even wrong (or just
worse) ones we decided to leave every significant
code statement inside the current example just by
commenting out the ones we do not want to be com-
piled. The following is a very small example of the
way we organize examples by leaving common mis-
takes in the code itself:
// this is done right
Random r=new Random();
for(..;..;..) {
...
r.nextInt();
...}
// this one stresses the GC
/* for(..;..;..) {
Random r=new Random();
...
r.nextInt();
...} */

The second half is commented out using standard Java
syntax: “//” and “/* .. */”. This way they can study
every possible solution in a single compilable exam-
ple code. It is a kind of poor man’s version control:
by commenting and decommenting lines students can
experiment with different “versions”. It may also be
useful to have some kind of visual branching tool to
show different solutions to the same problem with dif-
ferent code snippets, but it is the author opinion that
it would also complicate too much the interface of
Gobby itself.
=> Pattern: “out-of-band... inline”
Instead of using the (out-of-band8) chat to coordinate
and to ask questions, we ended up inlining questions
and comments using... code comments (again). While
the author is writing - and explaining/commenting by
voice - some example code, students prepare ques-
tions and comment simultaneously by using standard
Java comments. So that any answer, be it in form of
a code snippet (thus in the code and compilable) or
text (thus in a following comment) remains strongly
attached to the code that stimulated the question it-
self. By the way, at the end of every session all the
code created during the lesson is usually uploaded to
the wiki.

8http://en.wikipedia.org/wiki/Out-of-band

=> Pattern: “emergent syntax”
Sometimes there is a need to communicate “graph-
ically” and, since Gobby does not support anything
other than text we have to resort to the good old ASCII
art9, albeit very simple and naive, like:
// <<<=== see other doc in the list!

Or:
Stringhe di comando
|-D(igital)
| \
| |-I-pinNumber [ritorna valore]
| |-O-pinNumber-H/L
|-A(nalog)
| \
| |-I-pinNumber [ritorna valore]
| |-O-pinNumber-value
|-V(ersion) [ritorna valore]
|-NP(umber of pins) [ritorna valore]

Or:
SCHEMA
(Client) (Server)
Socket other Socket
|-InputStream <= OutputStream-|
|-OutputStream => InputStream-|

Everything is always left in the code (thus in the
wiki) for future reference. In one single compilable
file students can find examples, comments, questions,
answers, common mistakes, different solutions to the
same problem, and they participated in building that
content.
=> Pattern: “pillory demythified”
Sometimes the author gives an exercise in the class-
room to be solved by the students themselves. When
a resonable (to complete the exercise) amount of time
has passed the author jokingly asks if any of them
wants to be “put in the pillory” by copying & past-
ing their code in public, reassuring them that if there
are mistakes it will be a better chance for everybody
to learn. And it works! There is usually no need to
force anybody to “volunteer” their code, there is al-
ways one or two of them willing to show their work.
Humour is a good way to lower their fear. And using
their code instead of the teacher’s is a better chance to
discuss about different solutions and about common
mistakes, and the ones who learn more are the ones
offering their code since they are more involved of
course.
=> Pattern: “correct as the teacher speaks”
The author frequently introduces common program-
ming mistakes and asks the students to find them.
Then he leaves the keyboard and starts speaking and
explaining (maybe pointing at something on the pro-
jected screen), trying to lead the classroom towards
the correct solution. Usually, while the teacher is

9http://en.wikipedia.org/wiki/ASCII art

speaking they correct the errors (leaving, i.e. com-
menting out, wrong pieces of code for future refer-
ence) on the fly so that the visual effect (just looking
at the projector) is similar to a vocal interaction be-
tween the teacher and a programming environment.
The advantage in this case is that the teacher has good
feedback on the students understanding level. Why?
Because the speed and quality of their corrections is
an immediate and direct measure of their ability to
discuss about programming Moreover the author be-
lieves they grasp better since they can interact with
the ongoing reasoning.
=> Pattern: “humorous relief” When in need of a
coffee break they comment in the code:

// COFFEE!!!

And the teacher usually may comment like this:

// in five minutes, let me finish this example

I.e. there is a lowered authorithy gap while writing,
people usually dare a little more in written form (such
as in chats or in this collaborative editing case) than
in person.

4 CONCLUSIONS

The first lesson learned by the author is that “fully
opening” the teaching loop to students intervention
completely changes the way teaching must be ad-
dressed: since there cannot be strictly fixed and pre-
pared learning material (just a general lesson goal that
must be achieved) the teacher must be much more
flexible and prepared (e.g. the number of questions
raised is far higher than during a standard lab lesson)
to any path the students are willing to follow. With
limitations of course: the teacher must be very good
at leading them where he wants to bring them. The
teacher must earn his authority in the field - “the hack-
ers way” (Levy, 2001) - his ability and knowledge is
put more to the test in this context. The teacher must
also be more open to suggestions, needs, curiosities
and of course criticisms raised by the students. And
this approach stimulates more curiosity: students can
become very knowledge greedy. The most important
and useful habit the author has acquired during these
years is the “declaration of methodology”, the com-
plete disclosure of the approach used, even at the meta
level: i.e. the author explains in classroom almost ev-
ery pattern described in this paper and discusses with
the students any form of possible amelioration of the
teacher-student interaction.

The approach described (and also proposed) here
is a very light kind of “flip teaching” since our stu-
dents are still exposed first to traditional theory and

next they have to apply the theory during a very in-
teractive lab. This way of teaching is at the opposite
end from the traditional (blackboard and slides) les-
son and it also represents, according to the author of
course, a progress with respect to the traditional lab
lesson (in which the teacher “gives work” and then
circulates among students to help them singularly) be-
cause it does stimulate interaction (as in a standard
lab) but it also shares/spread this interaction among
all the students in the classroom. Other interesting
learning patterns can be found in (Flood and Lock-
hart, 2005) and (Hickey et al., 2005), some of them
based on student debate, they also could be applied
through gobby, the author will try to bring the most
useful ones in his classroom. This approach is lightly
coupled to any particular programming language, for
patterns more related to programming concepts the
interested reader may start from (Gomez-Albarran,
2005), a survey of tools for learning (visualization,
animation, etc.).

REFERENCES

Clark, D., MacNish, C., and Royle, G. F. (1998). Java as
a teaching language - opportunities, pitfalls and so-
lutions. In Proceedings of the 3rd Australasian con-
ference on Computer science education, ACSE ’98,
pages 173–179, New York, NY, USA. ACM.

Flood, R. and Lockhart, B. (2005). Teaching programming
collaboratively. SIGCSE Bull., 37(3):321–324.

Gomez-Albarran, M. (2005). The teaching and learning of
programming: A survey of supporting software tools.
The Computer Journal, 48(2):130–144.

Hadjerrouit, S. (1998). Java as first programming language:
a critical evaluation. SIGCSE Bull., 30(2):43–47.

Hickey, T. J., Langton, J., and Alterman, R. (2005). En-
hancing cs programming lab courses using collabora-
tive editors. J. Comput. Sci. Coll., 20(3):157–167.

Hosch, F. (1996). Java as a first language: an evaluation.
SIGCSE Bull., 28(3):45–50.

Levy, S. (2001). Hackers: Heroes of the computer revolu-
tion, volume 4. Penguin Books New York.

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E.,
Bennedsen, J., Devlin, M., and Paterson, J. (2007).
A survey of literature on the teaching of introductory
programming. In Working group reports on ITiCSE on
Innovation and technology in computer science edu-
cation, ITiCSE-WGR ’07, pages 204–223, New York,
NY, USA. ACM.

